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Physical Constants

k=1.381 x 102 J/K
= 8.617 x 10~% eV/K
Ni = 6.022 x 10%
R =38.315 J/mol-K
h=6.626x107% J.s
= 4,136 x 10715 Vs
c=2.998 x 10° m/s
G = 6.673 x 107! N.m?/kg?
e=1.602x107°C
me = 9.109 x 1073 kg
mp = 1.673 x 1077 kg

Unit Conversions

1 atm = 1.013 bar = 1.013 x 10° N/m?
= 14.7 Ib/in? = 760 mm Hg
(T'in °C) = (T in K) — 273.15
(T in °F) = (T in °C) + 32
I°R=§K
1cal=4.186 J
1 Btu = 1054 J
1eV=1602x1071%)
1u=1661x10"% kg
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Preface

Thermal physics deals with collections of large numbers of particles—typically
10%% or so. Examples include the air in a balloon, the water in a lake, the electrons
in a chunk of metal, and the photons (electromagnetic wave packets) given off by
the sun. Anything big enough to see with our eves (or even with a conventional
microscope) has enough particles in it to qualify as a subject of thermal physics.

Consider a chunk of metal, containing perhaps 10?% ions and 10?® conduction
electrons. We can'’t possibly follow every detail of the motions of all these particles,
nor would we want to if we could. So instead, in thermal physics, we assume
that the particles just jostle about randomly, and we use the laws of probability
to predict how the chunk of metal as a whole ought to behave. Alternatively, we
can measure the bulk properties of the metal (stiffness, conductivity, heat capacity,
magnetization, and so on), and from these infer something about the particles it is
made of.

Some of the properties of bulk matter don’t really depend on the microscopic
details of atomic physics. Heat always flows spontaneously from a hot object to 2
cold one, never the other way. Liquids always boil more readily at lower pressure.
The maximum possible efficiency of an engine, working over a given temperature
range, is the same whether the engine uses steam or air or anything else as its
working substance. These kinds of results, and the principles that generalize them,
comprise a subject called thermodynamics.

But to understand matter in more detail, we must also take into account both
the quantum behavior of atoms and the laws of statistics that make the connection
between one atom and 1073, Then we can not only predict the properties of metals
and other materials, but also explain why the principles of thermodynamics are
what they are—why heat flows from hot to cold, for example. This underlying
explanation of thermodynamics, and the many applications that come along with
it, comprise a subject called statistical mechanics.

Physics instructors and textbook authors are in bitter disagreement over the
proper content of a first course in thermal physics. Some prefer to cover only
thermodynamics, it being less mathematically demanding and more readily applied
to the everyday world. Others put a strong emphasis on statistical mechanics, with

vii
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its spectacularly detailed predictions and concrete foundation in atomic physics.
To some extent the choice depends on what application areas one has in mind:
Thermodynamics is often sufficient in engineering or earth science, while statistical
mechanics is essential in solid state physics or astrophysics.

In this book I have tried to do justice to both thermodynamics and statistical
mechanics, without giving undue emphasis to either. The book is in three parts.
Part | introduces the fundamental principles of thermal physics (the so-called first
and second laws) in a unified way, going back and forth between the microscopic
{statistical) and macroscopic (thermodynamic) viewpoints. This portion of the
book also applies these principles to a few simple thermodynamic systems, chosen
for their illustrative character. Parts II and IIi then develop more sophisticated
techniques to treat further applications of thermodynamics and statistical mechan-
ics, respectively. My hope is that this organizational plan will accomodate a variety
of teaching philosophies in the middle of the thermo-to-statmech continuum. In-
structors who are entrenched at one or the other extreme should look for a different
book.

The thrill of thermal physics comes from using it to understand the world we
live in. Indeed, thermal physics has so many applications that no single author
can possibly be an expert on all of them. In writing this book I've tried to learn
and include as many applications as possible, to such diverse areas as chemistry,
biology, geology, meteorology, environmental science, engineering, low-temperature
physics, solid state physics, astrophysics, and cosmology. I'm sure there are many
fascinating applications that I've missed. But in my mind, a book like this one
cannot have too many applications. Undergraduate physics students can and do go
on to specialize in all of the subjects just named, so I consider it my duty to make
you aware of some of the possibilities. Even if you choose a career entirely outside
of the sciences, an understanding of thermal physics will enrich the experiences of
every day of your life.

One of my goals in writing this book was to keep it short enough for a one-
semester course. I have falled. Too many topics have made their way into the
text, and it is now too long even for a very fast-paced semester. The book is still
intended primarily for a one-semester course, however. Just be sure to omit several
sections so you'll have time to cover what you do cover in some depth. In my
own course I've been omitting Sections 1.7, 4.3, 4.4, 5.4 through 5.6, and all of
Chapter 8. Many other portions of Parts IT and 1II make equally good candidates
for omission, depending on the emphasis of the course. I you're lucky enough to
have more than one semester, then you can cover all of the main text and/or work
some extra problems.

Listening to recordings won't teach you to play piano (though it can help),
and reading a textbook won’t teach you physics (though it too can help). To
encourage you to learn actively while using this book, the publisher has provided
ample margins for your notes, questions, and objections. 1 urge you to read with
a pencil (not a highlighter). Even more important are the problems. All physics
textbook authors tell their readers to work the problems, and I hereby do the same.
In this book you'll encounter problems every few pages, at the end of almost every
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section. I’ve put them there (rather than at the ends of the chapters) to get your
attention, to show you at every opportunity what you're now capable of doing. The
problems come in all types: thought guestions, short numerical calculations, order-
of-magnitude estimates, derivations, extensions of tie theory, new applications, and
extended projects. The time required per problem varies by more than three orders
of magnitude. Please work as many problems as you can, early and often. You
won't have time to work all of them, but please read them all anyway, so you'll
know what you're missing. Years later, when the mood strikes you, go back and
work some of the problems you skipped the first time around.

Before reading this book you should have taken a year-long introductory physics
course and a year of calculus. If your introductory course did not include any
thermal physics you should spend some extra time studying Chapter 1. If your
introductory course did not include any quantum physics you'll want to refer to
Appendix A as necessary while reading Chapters 2, 6, and 7. Multivariable calculus
is introduced in stages as the book goes on; a course in this subject would be a
helpful, but not absolutely necessary, corequisite.

Some readers will be disappointed that this book does not cover certain topics,
and covers others only superficially. As a partial remedy 1 have provided an an-
notated list of suggested further readings at the back of the book. A number of
references on particular topics are given in the text as well. Except when I have
borrowed some data or an illustration, 1 have not included any references merely
to give credit to the originators of an idea. I am utterly unqualified to determine
who deserves credit in any case. The occasional historical comments in the text
are grossly oversimplified, intended to tell how things could have happened, not
necessarily how they did happen.

No textbook is ever truly finished as it goes to press, and this one is no ex-
ception. Fortunately, the World-Wide Web gives authors a chance to continnally
provide updates. For the foreseeable future, the web site for this book will be at
http://physics.weber.edu/thermal/. There you will ind a variety of further
information including a list of errors and corrections, platform-specific hints on
solving problems requiring a computer, and additional references and links. You'll
also find my e-mail address, to which you are welcome to send questions, comments,
and suggestions.
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1 Energy in Thermal Physics

1.1 Therma! Equilibrium

The most familiar concept in thermodynamics is temperature. It's also one of
the trickiest concepts—1I1 won’t be ready to tell you what temperature really is until
Chapter 3. For now, however, let’s start with a very naive definition:

Temperature is what you measure with a thermometer.

If you want to measure the temperature of a pot of soup, you stick a thermometer
(such as a mercury thermometer) into the soup, wait a while, then look at the
reading on the thermometer’s scale. This definition of temperature is what’s called
an operational definition, because it tells you how to megsure the guantity in
question.

Ok, but why does this procedure work? Well, the mercury in the thermometer
expands or contracts, as its temperature goes up or down. Eventually the temper-
ature of the mercury equals the temperature of the soup, and the volume occupied
by the mercury tells us what that temperature is.

Notice that our thermometer (and any other thermometer) relies on the follow-
ing fundamental fact: When you put two objects in contact with each other, and
wait long enough, they tend to come to the same temperature. This property is so
fundamental that we can even take it as an alternative definition of temperature:

Temperature is the thing that’s the same for two objects, after they’ve
been in contact long enough.

T'li refer to this as the theoretical definition of temperature. But this definition
is extremely vague: What kind of “contact” are we talking about here? How long is
“long enough”? How do we actually ascribe a numerical value to the temperature?
And what if there is more than one quantity that ends up being the same for both
objects?
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Before answering these questions, let me introduce some more terminology:

After two objects have been in contact long enough, we say that they are in
thermal equilibrium.

The time required for & system to come to thermal equilibriom is called the
relaxation time.

So when you stick the mercury thermometer into the soup, you have to wait for the
relaxation time before the mercury and the soup come to the same temperature (so
you get a good reading). After that, the mercury is in thermal equilibrium with
the soup.

Now then, what do I mean by “contact”? A good enough definition for now is
that “contact,” in this sense, requires some means for the two objects to exchange
energy spontaneously, in the form that we call “heat.” Intimate mechanical contact
(i.e., touching) usually works fine, but even if the objects are separated by empty
space, they can “radiate” energy to each other in the form of electromagnetic waves.
If you want to prevent two objects from coming to thermal equilibrium, you need to
put some kind of thermal insulation in between, like spun fiberglass or the double
wall of a thermos bottle. And even then, they’ll eventually come to equilibrium;
all you're really doing is increasing the relaxation time.

The concept of relaxation time is usually clear enough in particular examples.
When you pour cold cream into hot coffee, the relaxation time for the contents of
the cup is only a few seconds. However, the relaxation time for the coffee to come
to thermal equilibrium with the surrounding room is many minutes.*

The cream-and-coffee example brings up another issue: Here the two substances
not only end up at the same temperature, they also end up blended with each other.
The blending is not necessary for thermal equilibrium, but constitutes a second type
of equilibrium—diffusive equilibrium---in which the molecules of each substance
(eream molecules and coffee molecules, in this case) are free to move around but no
longer have any tendency to move one way or ancther. There is also mechanical
equilibrium, when large-scale motions {such as the expansion of a balloon—see
Figure 1.1) can take place but no longer do. For each type of equilibrium between
two systems, there is a quantity that can be exchanged between the systems:

Exchanged quantity Type of equilibrium

energy thermal
volume mechanical
particles diffusive

Notice that for thermal equilibrium Pm claiming that the exchanged quantity is
energy. We'll see some evidence for this in the following section.

When two objects are able to exchange energy, and energy tends to move spon-
taneously from one to the other, we say that the object that gives up energy is at

*Some authors define relaxation time more precisely as the time required for the tem-
perature difference to decrease by a factor of e & 2.7. In this book all we'll need is a
qualitative definition.



1.1 Thermal Equilibrium

Figure 1.1, A hot-air balloon interacts thermally, mechanically, and diffusively
with its environment—exchanging energy, volume, and particles. Not all of these
interactions are at equilibrium, however.

a higher temperature, and the object that sucks in energy is at a lower tempera-
ture. With this convention in mind, let me now restate the theoretical definition of
temperature:

Temperature is a measure of the tendency of an object to spontaneously
give up energy to its surroundings. When two objects are in thermal contact,
the one that tends to spontaneously lose energy is at the higher temperature.

In Chapter 3 I'll return to this theoretical definition and make it much more precise,
explaining, in the most fundamental terms, what temperature really is.

Meanwhile, I still need to make the operational definition of temperature (what
you measure with a thermometer) more precise. How do you make a properly
calibrated thermometer, to get a numerical value for temperature?

Most thermometers operate on the principle of thermal expansion: Materials
tend to cccupy more volume (at a given pressure) when they're hot. A mercury
thermometer is just a convenient device for measuring the volume of a fixed amount
of mercury. To define actual units for temperature, we pick two convenient temper-
atures, such as the freezing and boiling points of water, and assign them arbitrary
numbers, such as § and 100. We then mark these two points on our mercury ther-
mometer, measure off a hundred equally spaced intervals in between, and declare
that this thermometer now measures temperature on the Celsius (or centigrade)
scale, by definition!

Of course it doesn’t have to be a mercury thermometer; we could instead exploit
the thermal expansion of some other substance, such as a strip of metal, or a gas
at fixed pressure. Or we could use an electrical property, such as the resistance, of
some standard object. A few practical thermometers for various purposes are shown
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Figure 1.2. A selection of thermometers. In the center are two liquid-in-glass
thermometers, which measure the expansion of mercury (for higher temperatures)
and aleohol (for lower temperatures). The dial thermometer to the right measures
the turning of a coil of metal, while the bulb apparatus behind it measures the
pressure of a fixed volume of gas. The digital thermometer at left-rear uses a
thermocouple—a junction of two metals—which generates a small temperature-
dependent voltage. At left-front is a set of three potter’s cones, which melt and
droop at specified clay-firing temperatures.

in Figure 1.2. It’s not obvious that the scales for various different thermometers
would agree at all the intermediate temperatures between 0°C and 100°C. In fact,
they generally won’t, but in many cases the differences are quite small. If you ever
have to measure temperatures with great precision you'll need to pay attention to
these differences, but for our present purposes, there’s no need to designate any one
thermometer as the official standard.

A thermometer based on expansion of a gas is especially interesting, though,
because if you extrapolate the scale down to very low temperatures, you are led to
predict that for any low-density gas at constant pressure, the volume should go to
zero at approximately --273°C. {In practice the gas will always liquefy first, but
until then the trend is quite clear.} Alternatively, if you hold the volume of the gas
fixed, then its pressure will approach zero as the temperature approaches —273°C
(see Figure 1.3). This special temperature is called absolute zero, and defines
the zero-point of the absolute temperature scale, first proposed by William
Thomson in 1848. Thomson was later named Baron Kelvin of Largs, so the 81
unit of absolute temperature is now called the kelvin.* A kelvin is the same size
as a degree Celsius, but kelvin temperasures are measured up from absolute zero
instead of from the freezing point of water. In round numbers, room temperature
is approximately 300 K.

As we're about to see, many of the equations of thermodynamics are correct
only when you measure temperature on the kelvin scale (or another absolute scale
such as the Rankine scale defined in Problem 1.2). For this reason it’s usually wise

*The Unit Police have decreed that it is impermissible to say “degree kelvin”-—the
name is simply “kelvin”—and also that the names of all Official 8I Units shall not be
capitalized.



1.1 Thermal Equilibrium

1.6
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Figure 1.3. Data from a student experiment measuring the pressure of a fixed
volume of gas at various temperatures (using the bulb apparatus shown in Fig-
ure 1.2). The three data sets are for three different amounts of gas (air) in the bulb,
Regardiess of the amount of gas, the pressure is a linear function of temperature
that extrapolates to zero at approximately —280°C. (More precise measurements
show that the zero-point does depend slightly on the amount of gas, but has a
well-defined limit of ~273.15°C as the density of the gas goes to zero.)

to convert temperatures to kelvins before plugging them into any formula. (Celsius
is ok, though, when you’re talking about the difference between two temperatures.)

Problem 1.1. The Fahrenheit temperature scale is defined so that ice melts at
32°F and water boils at 212°F.

{a) Derive the formulas for converting from Fahrenheit to Celsius and back.

{b) What is absolute zero on the Fahrenheit scale?
Problem 1.2. The Rankine temperature scale (abbreviated °R) uses the same
size degrees as Fahrenheit, but measured up from absolute zero like kelvin {so
Rankine is to Fahrenheit as kelvin is to Celsius). Find the conversion formula
between Rankine and Fahrenheit, and also between Rankine and kelvin. What is
room temperature on the Rankine scale?
Problem 1.3. Determine the kelvin temperature for each of the following:

{a) human body temperature;

(b} the boiling point of water {at the standard pressure of 1 atm);

(¢} the coldest day you can remember;

{d} the boiling point of liquid nitrogen (—196°C);

{e) the melting point of lead (327°C}.
Problem 1.4. Does it ever make sense to say that one object is “twice as hot” as
another? Does it matter whether one is referring to Celsius or kelvin temperatures?
Explain.
Problem 1.5. When you're sick with a fever and you take your temperature with
a thermotmeter, approximately what is the relaxation time?
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Problem 1.6. Give an example to illustrate why you cannot accurately judge the
temperature of an object by how hot or cold it feels to the touch.

Problem 1.7. When the temperature of liquid mercury increases by one degree
Celsius {or one kelvin), its volume increases by one part in 550,000. The fractional
increase in volume per unit change in temperature (when the pressure is held fixed)
is called the thermal expansion coeflicient, 3:

L AVIV

- AT
{where V is volume, T is temperature, and A signifies a change, which in this
case should really be infinitesimal if 5 is to be well defined). So for mercury,
B =1/550,000 K~! = 1.81x10"* K™, (The exact value varies with temperature,
but between 0°C and 200°C the variation is less than 1%.)

(a) Get a mercury thermometer, estimate the size of the bulb at the bottom,
and then estimate what the inside diameter of the tube has to be in order for
the thermometer to work as required. Assume that the thermal expansion
of the glass is negligible.

{b) The thermal expansion coefficient of water varies significantly with tem-
perature: It is 7.5 x 1074 K~ at 100°C, but decreases as the temperature
is lowered until it becomes zero at 4°C. Below 4°C it is slightly negative,
reaching a value of —0.68 x 10™* K™! at 0°C. (This behavior is related
to the fact that ice is less dense than water.) With this behavior in mind,
imagine the process of a lake freezing over, and discuss in some detail how
this process would be different if the thermal expansion coefficient of water
were always positive.

Problem 1.8. For a solid, we also define the linear thermal expansion coef-
ficient, a, as the fractional increase in length per degree:
ALJ/L

AT

Q=

(a) For steel, @ is 1.1 x 1073 K™, Estimate the total variation in length of a
1-km steel bridge between a cold winter night and a hot summer day.

(b) The dial thermometer in Figure 1.2 uses a coiled metal strip made of two
different metals laminated together. Explain how this works.

{¢) Prove that the volume thermal expansion coefficient of a solid is equal to
the sum of its linear expausion coefficients in the three directions: § =
ag + ay + ;. (So for an isotropic solid, which expands the same in all
directions, 4 = 3a.)

1.2 The 1deal Gas

Many of the properties of a low-density gas can be summarized in the famous ideal

gas law,
PV = nRT, (1.1}

where P = pressure, V' = volume, n = number of moles of gas, R is a universal
constant, and T is the temperature in kelvins. (If you were to plug a Celsius
temperature into this equation you would get nonsense—it would say that the
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volume or pressure of a gas goes to zerc at the freezing temperature of water and
becomes negative at still lower temperatures.)
The constant R in the ideal gas law has the empirical value

J
mol - K

R=2831 {1.2)
in ST units, that is, when you measure pressure in N/m? = Pa (pascals) and volume
in m®. Chemists often measure pressure in atmospheres (1 atm = 1.013 x 10° Pa)
or bars (1 bar = 10° Pa exactly) and volume in liters (1 liter = (0.1 m)?®), so be
careful.

A mole of molecules is Avogadro’s number of them,

N = 6.02 x 10?3, (1.3)

This is another “unit” that’s more useful in chemistry than in physics. More often
we will want to simply discuss the number of molecules, denoted by capital N:

N =n x Na. (1.4)

If you plug in N/N, for n in the ideal gas law, then group together the combination
R/Ny and call it a new constant k, you get

PV = NkT. (1.5)

This is the form of the ideal gas law that we'll usually use. The constant k is called
Boltzmann’s constant, and is tiny when expressed in SI units {since Avogadro’s

number is so huge):

k= 2L _ 1381 x 1028 J/K. (1.6)
Na

In order to remember how all the constants are related, I recommend memorizing
nR = Nk. (1.7)

Units aside, though, the ideal gas law summarizes a number of important phys-
ical facts. For a given amount of gas at a given temperature, doubling the pressure
squeezes the gas into exactly half as much space. Or, at a given volume, doubling
the temperature causes the pressure to double. And so on. The problems below
explore just a few of the implications of the ideal gas law,

Like nearly all the laws of physics, the ideal gas law is an approzimation, never
exactly true for a real gas in the real world. It is valid in the limit of low density,
when the average space between gas molecules is much larger than the size of a
molecule. For air (and other common gases) at room temperature and atmospheric
pressure, the average distance between molecules is roughly ten times the size of a
molecule, so the ideal gas law is accurate enough for most purposes.

Problem 1.9. What is the volume of one mole of air, at room temperature and
1 atm pressure?
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Problem 1.10. Estimate the number of air molecules in an average-sized room.

Problem 1.11. Rooms A and B are the same size, and are connected by an open
door. Room A, however, is warmer {perhaps because its windows face the sun).
Which room contains the greater mass of air? Explain carefully.

Problem 1.12. Calculate the average volume per molecule for an ideal gas at
room temperature and atmospheric pressure. Then take the cube root to get
an estimate of the average distance between molecules. How does this distance
compare to the size of a small molecule like No or Ha07?

Problem 1.13. A mole is approximately the number of protons in a gram of
protons. The mass of a neutron is about the same as the mass of a proton, while
the mass of an electron is usually negligible in comparison, so if you know the
total number of protons and neutrons in a molecule {i.e., its “atomic mass”), you
know the approximate mass {in grams) of a mole of these molecules.” Referring to
the periodic table at the back of this book, find the mass of 8 mole of each of the

following: water, nitrogen (Ny), lead, quartz (SiO2).

Problem 1.14. Calculate the mass of a mole of dry air, which is a mixture of Ng
{78% by volume), Oz (21%), and argon (1%).

Problem 1.15. Estimate the average temperature of the air inside a hot-air
balloon (see Figure 1.1). Assume that the total mass of the unfilled balioon and
payload is 500 kg. What is the mass of the air inside the balloon?

Problem 1.16. The exponential atmosphere.

{a) Consider a horizontal slab of air whose thickness (height} is dz. 1f this slab
is at rest, the pressure holding it up from below must balance both the
pressure from above and the weight of the slab. Use this fact to find an
expression for dP/dz, the variation of pressure with altitude, in terms of
the density of air.

(b) Use the ideal gas law to write the density of air in terms of pressure, tem-
perature, and the average mass m of the air molecules. (The information
needed to calculate m is given in Problem 1.14.) Show, then, that the
pressure obeys the differential equation

aP _ _mg

dz kT

called the barometric equation.

P,

T

(c) Assuming that the temperature of the atmosphere is independent of height
(not a great assumption but not terrible either), solve the barometric equa-
tion to obtain the pressure as a function of height: P(z) = P(0)e™M92/kT
Show also that the density obeys a similar equation.

*The precise definition of a mole is the number of carbon-12 atoms in 12 grams of
carbon-12, The atomic mass of a substance is then the mass, in grams, of exactly one
mole of that substance. Masses of individual atoms and molecules are often given in
atornic mass units, abbreviated “w”, where 1 u is defined as exactly 1/12 the mass of
a carbon-12 atom. The mass of an isolated proton is actually slightly greater than 1 u,
while the mass of an isolated neutron is slightly greater still. But in this problem, as in
most thermal physics calculations, it’s fine to round atomic masses to the nearest integer,
which amounts to counting the total number of protons and neutrons.
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(d) Estimate the pressure, in atmospheres, at the following locations: Ogden,
Utah (4700 £ or 1430 m above sea level); Leadville, Colorado (10,150 ft,
3090 m); Mt. Whitney, California (14,500 ft, 4420 m); Mt. Everest, Nepal/
Tibet {29,000 £, 8840 m). (Assume that the pressure at sea level is 1 atm.)

Problem 1.17. Even at low density, real gases don’t quite obey the ideal gas
law. A systematic way to account for deviations from ideal behavior is the virial

expansion,
_ B(T) oy |
PV =nRT(1+ G+ i )

where the functions B{T), C(1"), and so on are called the virial coefficients.
When the density of the gas is fairly low, so that the volume per mole is large,
each term in the series is much smaller than the one before. In many situations it’s
sufficient to omit the third term and concentrate on the second, whose coefficient
B(T) is called the second virial coefficient {the fizst coefficient being 1). Here are
some measured values of the second virial coefficient for nitrogen (Na):

T (K) B (cem®/mol)
100 ~160
200 35
300 -4.2
400 9.0
500 16.9
600 21.3

{a) For each temperature in the table, compute the second term in the virial
equation, B{T}/(V/n), for nitrogen at atmospheric pressure. Discuss the
validity of the ideal gas law under these conditions.

{b) Think about the forces between molecules, and explain why we might ex-
pect B(T'} to be negative at low temperatures but positive at high temper-
atures.

{c) Any proposed relation between P, V, and T, like the ideal gas law or the
virial equation, is called an equation of state. Another famous equation
of state, which is qualitatively accurate even for dense fluids, is the van
der Waals equation,

2

(P+ fgiz-)(v — nb) = nRT,
where @ and b are constants that depend on the type of gas. Calculate the
second and third virial coefficients (B and C') for a gas obeying the van der
Waals equation, in terms of & and b. (Hint: The binomial expansion says
that (1 + z)P =~ 1 +pz + %p(p——l)xz, provided that |pz| < 1. Apply this
approximation to the quantity {1 — (nb/V)]™1.)

{d) Plot a graph of the van der Waals prediction for B(T), choosing a and b
s0 as to approximately match the data given above for nitrogen. Discuss
the accuracy of the van der Waals equation over this range of conditions.
{The van der Waals equation is discussed much further in Section 5.3.)
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Microscopic Model of an Ideal Gas

In Section 1.1 I defined the concepts of “temperature” and “thermal equilibrium,”
and briefly noted that thermal equilibrium arises through the exchange of energy
between two systems. But how, exactly, is temperature related to energy? The
answer to this question is not simple in general, but it és simple for an ideal gas,
as Ull now attempt to demonstrate.

I'm going to construct a mental “model” of a container full of gas.* The model
will not be accurate in all respects, but I hope to preserve some of the most impor-
tant aspects of the behavior of real low-density gases. To start with, I'll make the
model as simple as possible: Imagine a cylinder containing just one gas molecule,
as shown in Figure 1.4. The length of the cylinder is L, the area of the piston is
A, and therefore the volume inside is V = LA. At the moment, the molecule has
a velocity vector ¥, with horizontal component v,. As time passes, the molecule
bounces off the walls of the cylinder, so its velocity changes. I'll assume, however,
that these collisions are always elastic, so the molecule doesn’t lose any kinetic en-
ergy; its speed never changes. I'll also assume that the surfaces of the cylinder and
piston are perfectly smooth, so the molecule’s path as it bounces is symmetrical
about a line normal to the surface, just like light bouncing off a mirror.

Here’'s my plan. I want to know how the temperature of a gas is related to
the kinetic energy of the molecules it contains. But the only thing I know about
temperature so far is the ideal gas law,

PV = NkT (1.8)

(where P is pressure). So what Pl first try to do is figure out how the pressure is
related to the kinetic energy; then 'Ll invoke the ideal gas law to relate pressure to
temperature.

‘Well, what is the pressure of my simplified gas? Pressure means force per unit
area, exerted i this case on the piston (and the other walls of the cylinder). What

Piston area == A

Figure 1.4. A greatly sim-
plified model of an ideal gas,
with just one molecule bounc-
ing around elastically.

Volume = V =LA

Length = L

*This model dates back to a 1738 treatise by Daniel Bernoulli, although many of its
implications were not worked out until the 1840s.

TThese assumptions are actually valid only for the average behavior of molecules bounc-
ing off surfaces; in any particular collision a melecule might gain or lose energy, and can
leave the surface at almost any angle.
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is the pressure exerted on the piston by the molecule? Usually it's zero, since the
molecule isn’t even touching the piston. But periodically the molecule crashes into
the piston and bounces off, exerting a relatively large force on the piston for a brief
moment. What I really want to know is the average pressure exerted on the piston
over long time pericds. I'll use an overbar to denote an average taken over some
long time period, like this: P. I can calculate the average pressure as follows:

(sz)
T Fal Hi
Fﬂ:, on piston __ "F:a:, on molecule At

P= A A = A

(1.9)

In the first step I've written the pressure in terms of the r component of the force
exerted by the molecule on the piston. In the second step I've used Newton's third
law to write this in terms of the force exerted by the piston on the molecule. Finally,
in the third step, I've used Newton’s second law to replace this force by the mass m
of the molecule times its acceleration, Awv,/Af. I'm still supposed to average over
some long time period; I can do this simply by taking At to be fairly large. However,
I should include only those accelerations that are caused by the piston, not those
caused by the wall on the opposite side. The best way to accomplish this is to take
At to be exactly the time it takes for the molecule to undergo one round-trip from
the left to the right and back again:

At = 2L/v,. (1.10)

(Collisions with the perpendicular walls will not affect the molecule’s motion in the
x direction.) During this time interval, the molecule undergoes exactly one collision
with the piston, and the change in its x velocity is

&'Ux = ('U:x, ﬁnal) - ('U:l:, initial) = (“‘"”:1:) - ('U:.n) = —2u,. (1.11)

Putting these expressions into equation 1.9, I find for the average pressure on the
piston
m (—2v;)  mul  mw

A(2Ljv,) AL TV

it’s interesting to think about why there are two factors of v, in this equation. One
of them came from Aw,: I the molecule i3 moving faster, each collision is more
violent and exerts more pressure. The other one came from At: If the molecule is
moving faster, collisions occur more frequently.

Now imagine that the c¢ylinder contains not just one molecule, but some large
number, N, of identical molecules, with random* positions and directions of motion.
T'll pretend that the molecules don’t collide or interact with each other—just with

2

P=- z, (1.12)

*What, exactly, does the word random mean? Philosophers have filled thousands of
pages with attempts to answer this question. Fortunately, we won't be needing much more
than an everyday understanding of the word. Here I simply mean that the distribution
of molecular positions and velocity vectors is more or less uniform; there’s no cbvious
tendency toward any particular direction.

11
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the walls. Since each molecule periodically collides with the piston, the average
pressure is now given by a sum of terms of the form of equation 1.12:

BY = mol, + mv, + mod, + -, (1.13)

If the number of molecules is large, the collisions will be so frequent that the pressure
is essentially continuous, and we can forget the overbar on the P. On the other
hand, the sum of v2 for all N molecules is just N times the average of their v2
values. Using the same overbar to denote this average over all molecules, equation
1.13 then becomes

PV = Nma2. (1.14)

So far I've just been exploring the consequences of my model, without bringing
in any facts about the real world (other than Newton's laws). But now let me
invoke the ideal gas law (1.8}, treating it as an experimental fact. This allows me
to substitute NkT for PV on the left-hand side of equation 1.14. Canceling the
N’s, we're left with

KT =mv: or  ime2 = kT (1.15)
I wrote this equation the second way because the left-hand side is almost equal to
the average translational kinetic energy of the molecules. The only problem is
the x subscript, which we can get rid of by realizing that the same equation must
also hold for y and 2

3mo? = tmo? = LkT. (1.16)

The average translational kinetic energy is then
Kirans = 3mo? = dm(vZ + v2 +02) = 16T + kT + $kT = $kT. (1.17)

(Note that the average of a sum is the sum of the averages.)

This is a good place to pause and think about what just happened. I started
with a naive model of a gas as a bunch of molecules bouncing around inside a
cylinder. I also invoked the ideal gas law as an experimental fact. Conclusion: The
average translational kinetic energy of the molecules in a gas is given by a simple
constant times the temperature. So if this model is accurate, the temperature of a
gas is a direct measure of the average translational kinetic energy of its molecules.

This result gives us a nice interpretation of Boltzmann’s constant, k. Recall that
k has just the right units, J/K, to convert a temperature into an energy. Indeed, we
now see that k is essentially a conversion factor between temperature and molecular
energy, at least for this simple system. Think about the numbers, though: For an
air molecule at room temperature (300 K), the quantity kT is

(1.38 x 107% J/K)(300 K) = 4.14 x 107% ], (1.18)

and the average translational energy is 3/2 times as much. Of course, since mole-
cules are so small, we would expect their kinetic energies to be tiny. The joule,
though, is not a very convenient unit for dealing with such small energies. Instead



1.2  The Ideal Gas

we often use the electron-volt {eV), which is the kinetic energy of an electron that
has been accelerated through a voltage difference of one volt: 1 eV = 1.6 x 10719 J.
Boltzmann's constant is 8.62 x 10~% eV/K, so at room temperature,

ET = (8.62 x 107° eV/K)(300 K) = 0.026 eV » 41—0 eV. (1.19)
Even in electron-volts, molecular energies at room temperature are rather small.
If you want to know the average speed of the molecules in a gas, you can almost
get it from equation 1.17, but not quite. Solving for v2 gives
KT
e ¥

v = (1.20)
but if you take the square root of both sides, you get not the average speed, but
rather the square root of the average of the squares of the speeds (root-mean-square,

or ros for short):
Verms = V2 = %‘: (1.21)

We'll see in Section 6.4 that v, is only slightly larger than %, so if you're not too
concerned about accuracy, vnys is a fine estimate of the average speed. According
to equation 1.21, light molecules tend to move faster than heavy ones, at a given
temperature. If you plug in some numbers, you'll find that small molecules at
ordinary temperatures are bouncing around at hundreds of meters per second.

Getting back to our main result, equation 1.17, you may be wondering whether
it's really true for real gases, given all the simplifying assumptions I made in deriving
it. Strictly speaking, my derivation breaks down if molecules exert forces on each
other, or if collisions with the walls are inelastic, or if the ideal gas law itself fails.
Brief interactions between molecules are generally no big deal, since such collisions
won't change the average velocities of the molecules. The only serious problem is
when the gas becomes so dense that the space occupied by the molecules themselves
becomes a substantial fraction of the total volume of the container. Then the basic
picture of molecules flying in strajght lines through empty space no longer applies.
In this case, however, the ideal gas law also breaks down, in such a way as to
precisely preserve eqguation 1.17. Consequently, this equation is still true, not only
for dense gases but also for most liguids and sometimes even solids! T'll prove it in
Section 6.3.

Problem 1.18. Calculate the rms speed of a nitrogen molecule at room temper-
ature.

Problern 1.19, Suppose you have a gas containing hydrogen molecules and oxygen
molecules, in thermal equilibrium. Which molecules are moving faster, on average?
By what factor?

Problem 1.20. Uranium has two common isotopes, with atomic masses of 238
and 235. One way to separate these isoctopes is to combine the uranium with
flucrine to make uranium hexafluoride gas, UFg, then exploit the difference in the
average thermal speeds of molecules containing the different isctopes. Calculate
the rms speed of each type of molecule at room temperature, and compare them,

i3
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Problem 1.21. During a hailstorm, hailstones with an average masg of 2 g and
a speed of 15 m/s strike a4 window pane at a 45° angle. The area of the window
is 0.5 m® and the hailstones hit it at a rate of 30 per second. What average
pressure do they exert on the window? How does this compare to the pressure of
the atmosphere?

Problem 1.22. If you poke a hole in a container full of gas, the gas will start
leaking out. In this problem you will make a rough estimate of the rate at which
gas escapes through a hole. {This process is called effusion, at least when the
hole is sufficiently small.)

{a) Consider a small portion (area = A) of the inside wall of a container full
of gas. Show that the number of molecules colliding with this surface in
a time interval Al is PA A4/ {2mz), where P is the pressure, m is the
average molecular mass, and 75 is the average « velocity of those molecules
that collide with the wall.

(b) It’s not easy to calculate Uz, but a good enough approximation is (v2)*/2,
where the bar now represents an average over all molecules in the gas. Show
that (v2)}/2 = \/ET/m.

{¢) If we now take away this small part of the wall of the container, the mole-
cules that would have collided with it will instead escape through the hole.
Assuming that nothing enters through the hole, show that the number N
of molecules inside the container as a function of time is governed by the

differential equation
N __A T,
a8 WVm

Solve this equation (assuming constant temperature) to obtain a formula
of the form N{t} = N {O)e"” ", where 7 is the “characteristic time” for N
(and P) to drop by a factor of e.

(d) Calculate the characteristic time for a gas to escape from a 1-liter confainer
punctured by a 1-mm? hole.

{e)} Your bicycle tire has a slow leak, so that it goes Hat within about an hour
after being inflated. Roughly how big is the hole? (Use any reasonable
estimate for the volume of the tire.)

(f) In Jules Verne's Round the Moon, the space travelers dispose of a dog's
corpse by quickly opening a window, tossing it out, and closing the win-
dow. Do you think they can do this quickly enough to prevent a significant
amount of air from escaping? Justify your answer with some rough esti-
mates and calculations.

1.3 Equipartition of Energy

Equation 1.17 is a special case of a much more general result, called the equipar~
tition theorem. This theorem concerns not just translational kinetic energy but
all forms of energy for which the formula is a quadratic function of a coordinate or
velocity component. Each such form of energy is called a degree of freedom. So
far, the only degrees of freedom Pve talked about are transiational motion in the
z, y, and z directions. Other degrees of freedom might include rotational motion,
vibrational motion, and elastic potential energy {as stored in a spring). Look at
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the similarities of the formulas for all these types of energy:

%mfui, %mvg, %mvg, %Iw?c, %Iuﬁ, %kgmz, ete. (1.22)
The fourth and fifth expressions are for rotational kinetic energy, a function of
the moment of inertia I and the angular velocity w. The sixth expression is for
elastic potential energy, a function of the spring constant &k, and the amount of
displacement from equilibrium, . The equipartition theorem simply says that for

each degree of freedom, the average energy will be 14T

Equipartition theorem: At temperature T, the average energy of any
quadratic degree of freedom is 2k7".

If a system contains N molecules, each with f degrees of freedom, and there are
no other (non-quadratic) temperature-dependent forms of energy, then its total
thermal energy is

Uthermal = IV - f - %kT (1'23)

Technically this is just the average total thermal energy, but if NV is large, fluctua-
tions away from the average will be negligible.

I'll prove the equipartition theorem in Section 6.3. For now, though, #t’s im-
portant to understand exactly what it says. First of all, the quantity Uipermar 18
almost never the tofal energy of a system; there's also “static” energy that doesn’t
change as you change the temperature, such as energy stored in chemical bonds or
the rest energies (mc?) of all the particles in the system. So it’s safest to apply the
equipartition thecrem only to changes in energy when the temperature is raised or
lowered, and to avoid phase transformations and other reactions in which bonds
between particles may be broken.

Another difficulty with the equipartition theorem is in counting how many de-
grees of freedom a system has. This is a skill best learned through examples. In a
gas of monatomic molecules like helium or argon, only translational motion counts,
so each molecule has three degrees of freedom, that is, f = 3. In a diatomic gas
like oxygen {O3) or nitrogen (N3}, each molecule can also rotate about two differ-
ent axes {see Figure 1.5). Rotation about the axis running down the length of the
molecule doesn’t count, for reasons having to do with guantum mechanics. The

Figure 1.5. A diatomic molecule can rotate about two independent axes, per-
pendicular to each other. Rotation about the third axis, down the length of the
molecule, is not allowed.

15
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same is true for carbon dioxide {COy), since it also has an axis of symmetry down
its length. However, most polyatomic molecules can rotate about all three axes.

It’s not obvious why a rotational degree of freedom should have exactly the same
average energy as a transiational degree of freedom. However, if you imagine gas
molecules knocking around inside a container, colliding with each other and with the
walls, you can see how the average rotational energy should eventually reach some
equilibrium value that is larger if the molecules are moving fast {high temperature)
and smaller if the molecules are moving slow (low temperature). In any particular
collision, rotational energy might be converted to transiational energy or vice versa,
but on average these processes should balance out.

A diatomic molecule can also vibrate, as if the two atoms were held together by
a spring. This vibration should count as fwe degrees of freedom, one for the vibra-
tional kinetic energy and one for the potential energy. (You may recall from classical
mechanics that the average kinetic and potential energies of a simple harmonic os-
cillator are equal-a result that is consistent with the equipartition theorem.) More
complicated molecules can vibrate in a variety of ways: stretching, flexing, twisting.
Each “mode” of vibration counts as two degrees of freedom.

However, at room temperature many vibrationa! degrees of freedom do not
contribute to a molecule’s thermal energy. Again, the explanation lies in quan-
tum mechanics, as we will see in Chapter 3. So air molecules {N; and Qp), for
instance, have only five degrees of freedom, not seven, at rcom temperature. At
higher temperatures, the vibrational modes do eventually contribute. We say that
these modes are “frozen out” at room temperature; evidently, collisions with other
molecules are sufficiently violent to make an air molecule rotate, but hardly ever
violent enough to make it vibrate.

In a solid, each atom can vibrate in three perpendicular directions, so for each
atom there are six degrees of freedom (three for kinetic energy and three for poten-
tial energy). A simple model of a crystalline solid is shown in Figure 1.6. If we let
N stand for the number of afoms and f stand for the number of degrees of freedom
per atom, then we can use equation 1.23 with f = 6 for a solid. Again, however,
some of the degrees of freedom may be “frozen out” at room temperature.

Liquids are more complicated than either gases or solids. You can generally use
the formula %kT to find the average translational kinetic energy of molecules in a

Figure 1.6. The “bed-spring” model
of a crystalline solid. Each atom is
like a ball, joined to its neighbors by
springs. In three dimensions, there are
six degrees of freedom per atom: three
from kinetic energy and three from po-
tential energy stored in the springs.
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liquid, but the equipartition theorem doesn’t work for the rest of the thermal energy,
because the intermolecular potential energies are not nice quadratic functions.

You might be wondering what practical consequences the equipartition theorem
has: How can we test it, experimentally? In brief, we would have to add some energy
to a system, measure how much its temperature changes, and compare to equation
1.23. T'li discuss this procedure in more detall, and show some experimental results,
in Section 1.6.

Problem 1.23. Calculate the total thermal energy in a liter of helium at room
temperature and atmospheric pressure. Then repeat the calculation for a liter of
air,

Problem 1.24. Calculate the total thermal energy in a gram of lead at room
temperature, assuming that none of the degrees of freedom are “frozen out” (this
happens to be a good assumption in this case).

Problem 1.25. List all the degrees of freedom, or as many as you can, for a
molecule of water vapor. (Think carefully about the various ways in which the
molecule can vibrate.)

1.4 Heat and Work

Much of thermodynamics deals with three closely related concepts: temperature,
energy, and heat. Much of students’ difficulty with thermodynamics comes from
confusing these three concepts with each other. Let me remind you that tempera-
ture, fundamentally, is a measure of an object’s tendency to spontaneously give up
energy. We have just seen that in many cases, when the energy content of a system
increases, so does its temperature. But please don't think of this as the defindtion of
temperature——it’s merely a statement cbout temperature that happens to be true.

To further clarify matters, I really should give you a precise definition of en-
ergy. Unfortunately, T can’t do this. Energy is the most fundamental dynamical
concept in all of physics, and for this reason, I can’t tell you what it is in terms
of something more fundamental. I can, however, list the various forms of energy—
kinetic, electrostatic, gravitational, chemical, nuclear-and add the statement that,
while energy can often be converted from one form to another, the total amount
of energy in the universe never changes. This is the famous law of conservation
of energy. I sometimes picture energy as a perfectly indestructible (and unmak-
able} fluid, which moves about from place to place but whose total amount never
changes. (This image is convenient but wrong—there simply isn’t any such fluid.)

Suppose, for instance, that you have a container full of gas or some other ther-
modynamic system. If you notice that the energy of the system increases, you can
conclude that some energy came in from outside; it can’t have been manufactured
on the spot, since this would viclate the law of conservation of energy. Similarly,
if the energy of your system decreases, then some energy must have escaped and
gone elsewhere. There are all sorts of mechanisms by which energy can be put into
or taken out of a system. However, in thermodynamics, we usually classify these
mechanisims under two categories: heat and work.
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Heat is defined as any spontaneous flow of energy from one object to another,
caused by a difference in temperature between the objects. We say that “heat”
flows from a warm radiator into a cold room, from hot water into a cold ice cube,
and from the hot sun to the cool earth. The mechanism may be different in each
case, but in each of these processes the energy transferred is called “heat.”

Work, in thermodynamics, is defined as any other transfer of energy intoc or out
of a system. You do work on a system whenever you push on a piston, stir a cup
of coffee, or run current through a resistor. In each case, the system’s energy will
increase, and usually its temperature will too. But we don’t say that the system
is being “heated,” because the flow of energy is not a spontaneous one caused by
a difference in temperature. Usually, with work, we can identify some “agent”
{possibly an inanimate object) that is “actively” putting energy into the system, it
wouldn’t happen “automatically.”

The definitions of heat and work are not easy to internalize, because both of
these words have very different meanings in everyday language. It is strange to
think that there is no “heat” entering your hands when you rub them together to
warm them up, or entering a cup of tea that you are warming in the microwave.
Nevertheless, both of these processes are classified as work, not heat.

Notice that both heat and work refer to energy in transit. You can talk about
the total energy inside a system, but it would be meaningless to ask how much heat,
or how much work, is in a system. We can only discuss how much heat entered a
system, or how much work was done on a system.

I'll use the symbol U for the total energy inside a system. The symbols @ and
W will represent the amounts of energy that enter a system as heat and work,
respectively, during any time period of interest. (Either one could be negative, if
energy leaves the system.} The sum @ + W is then the total energy that enters the
system, and, by conservation of energy, this is the amount by which the system’s
energy changes (see Figure 1.7}). Written as an equation, this statement is

AU = Q + W, (1.24)

the change in energy equals the heat added plus the work done.* This equation is

*Many physics and engineering texts define W to be positive when work-energy leaves
the system rather than enters. Then equation 1.24 instead reads AU = Q@ — W. This
sign convention is convenient when dealing with heat engines, but I find it confusing in
other situations. My sign convention is consistently followed by chemists, and seems to
be catching on among physicists,

Anocther notational issue concerns the fact that we’ll often want AU, @, and W to be
infinitesimal. In such cases I'll usually write UV instead of AU, but P'll leave the symbols
@ and W alone. Elsewhere you may see “d@Q” and “dW" used to represent infinitesimal
amounts of heat and work. Whatever you do, don’t read these as the “changes” in Q
and W-—that would be meaningless. To caution you not to commit this crime, many
authors put a little bar through the d, writing d@ and dW. To me, though, that d still
locks like it should be proncumced “change.” So I prefer to do away with the d entirely
and just remember when @ and W are infinitesimal and when they’re not.
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Figure 1.7, The total change in the energy of
a systermn is the sum of the heat added to it and
the work done on it.

really just a statement of the law of conservation of energy. However, it dates from
a time when this law was just being discovered, and the relation between energy
and heat was still controversial. So the equation was given a more mysterious name,
which is still in use: the first law of thermodynamics.

The official SI unit of energy is the joule, defined as 1 kg-m?/s%. (So a 1-kg
object traveling at 1 m/s has % J of kinetic energy, $mv?.) Traditionally, however,
heat has been measured in calories, where 1 cal was defined as the amount of
heat needed to raise the temperature of & gram of water by 1°C {while no work is
being done on it). It was James Joule {among others®) who demonstrated that the
same temperature increase could be accomplished by doing mechanical work (for
instance, by vigorously stirring the water) instead of adding heat. In modern units,
Joule showed that 1 cal equals approximately 4.2 J. Today the calorie is defined
to equal exactly 4.186 J, and many people still use this unit when dealing with
thermal or chemical energy. The well-known food calorie (sometimes spelled with
a capital C) is actually a kilecalorie, or 4186 J.

Processes of heat transfer are further classified into three categories, according to
the mechanism invoived. Conduction is the transfer of heat by molecular contact:
Fast-moving molecules bump into slow-moving molecules, giving up some of their
energy in the process. Convection is the bulk motion of a gas or liguid, usually
driven by the tendency of warmer material to expand and rise in a gravitational
field. Radiation is the emission of electromagnetic waves, mostly infrared for
objects at room temperature but including visible light for hotter objects like the
fitarnent of a lightbulb or the surface of the sun.

Problem 1.26. A battery is connected in series to a resistor, which is immersed
in water (to prepare a nice hot cup of tea). Would you classify the flow of energy
from the battery to the resistor as “heat” or “work”? What about the flow of
energy from the resistor to the water?

Problem 1.27. Give an example of a process in which no heat is added to a
system, but its temperature increases. Then give an example of the opposite: a
process in which heat is added to a system but its temperature does not change.

*Among the many others who helped establish the first law were Benjamin Thompson
(Count Rumford), Robert Mayer, William Thomson, and Hermann von Helmholtz.
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Problem 1.28. Estimate how long it should take to bring a cup of water to
boiling temperature in a typical 600-watt microwave oven, assuming that all the
energy ends up in the water. (Assume any reasonable initial temperature for the
water.) Explain why no heat is involved in this process.

Problem 1.29. A cup contsining 200 g of water is sitting on your dining room
table. After carefully measuring its temperature to be 20°C, you leave the room.
Returning ten minutes later, you measure its temperature again and find that it is
now 25°C. What can you conclude about the amount of heat added to the water?
(Hint: This is a trick question.)

Problem 1.30. Put a few spoonfuls of water into a bottle with a tight lid. Make
sure everything is at room temperature, measuring the temperature of the water
with a thermometer to make sure. Now close the bottle and shake it as hard as
you can for several minutes. When you're exhausted and ready to drop, shake it
for several minutes more. Then measure the temperature again. Make a rough
calculation of the expected temperature change, and compare.

1.5 Compression Work

We'll deal with more than one type of work in this book, but the most important
type is work done on a systemn (often a gas) by compressing it, as when you push on
a piston. You may recall from classical mechanics that in such a case the amount
of work done is equal to the force you exert dotted into the displacement:

W =F.dr. (1.25)

(There is some ambiguity in this formula when the system is more complicated
than a point particle: Does dr refer to the displacement of the center of mass, or
the point of contact (if any), or what? In thermodynamics, it is always the point
of contact, and we won't deal with work done by long-range forces such as gravity.
In this case the work-energy theorem tells us that the total energy of the system
increases by W.*)

For a gas, though, it’s much more convenient to express the work done in terms
of the pressure and volume. For definiteness, consider the typical cylinder-piston
arrangement shown in Figure 1.8. The force is parallel to the displacement, so we
can forget about dot products and just write

W= F Az (1.26)

(I'm taking Az to be positive when the piston moves inward.)

What I want to do next is replace F' by PA, the pressure of the gas times the
area of the piston. But in order to make this replacement, I need to assume that as
the gas is compressed it always remains in internal equilibrium, so that its pressure
is uniform from place to place (and hence well defined). For this to be the case, the

*For a detailed discussion of different definitions of “work,” see A. John Mallinckrodt
and Harvey S. Leff, "All About Work,” American Journal of Physics 60, 356-365 (1992).
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Figure 1.8. When the pis-
ton moves inward, the vol-
ume of the gas changes by
AV (anegative amount) and
the work done on the gas
(asswming quasistatic com-
pression) is —PAV,

piston’s motion must be reasonably slow, so that the gas has time to continually
equilibrate to the changing conditions. The technical term for a volume change that
is slow in this sense is guasistatic. Although perfecily quasistatic compression is
an idealization, it is usually a good approximation in practice. To compress the gas
non-quasistatically you would have to slam the piston very hard, so it moves faster
than the gas can “respond” (the speed must be at least comparable to the speed of
sound in the gas).

For quasistatic compression, then, the force exerted on the gas equals the pres-
sure of the gas times the area of the piston.* Thus,

W =PAAx (for quasistatic compression). (1.27)

But the product A Az is just minus the change in the volume of the gas (minus
because the volume decreases when the piston moves in), so

W=—-PAV {quasistatic). {1.28)

For example, if you have a tank of air at atmospheric pressure (10° N/m?) and you
wish to reduce its volume by one liter (1073 m?), you must perform 100 J of work.
You can easily convince yourself that the same formula holds if the gas expands;
then AV is positive, so the work done on the gas is negative, as required.

There is one possible flaw in the derivation of this formula. Usually the pressure
will change during the compression. In that case, what pressure should you use—
initial, final, average, or what? There’s no difficuity for very small {“infinitesimal”)
changes in volume, since then any change in the pressure will be negligible. Ah—
but we can always think of a large change as a bunch of small changes, one after
another. So when the pressure does change significantly during the compression,
we need to mentally divide the process into many tiny steps, apply equation 1.28
to each step, and add up all the little works to get the total work.

*Even for quasistatic compression, friction between the piston and the cylinder walls
could upset the balance between the force exerted from outside and the backward force
exerted on the piston by the gas. If W represents the work done on the gas by the piston,
this isn't a problem. But if it represents the work you do when pushing on the piston,
then 'l need to assume that friction is negligible in what follows.
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Figure 1.9. When the volume of a gas changes and its pressure is constant, the
work done on the gas is minus the area under the graph of pressure vs. volume.
The same is true even when the pressure is not constant.

This procedure is easier to understand graphically. If the pressure is constant,
then the work done is just minus the ares under a graph of pressure vs. volume
{see Figure 1.9). If the pressure is not constant, we divide the process into a bunch
of tiny steps, compute the area under the graph for each step, then add up all the
areas to get the total work. That is, the work is still minus the total area under
the graph of P vs. V.

If you happen to know a formula for the pressure as a function of volume, P{V),
then you can compute the total work as an integral:

v,
W= - / "PV)aV  (quasistatic). (1.29)
This is a good formula, since it is valid whether the pressure changes during the
process or not. It isn't always easy, however, to carry out the integral and get a
simple formula for W.

It's important to remember that compression-expansion work is not the only
type of work that can be done on thermodynamic systems. For instance, the chem-
ical reactions in a battery cause electrical work to be done on the circuit it is con-
nected to. We'll see plenty of examples in this book where compression-expansion
work is the only kind of relevant work, and plenty of examples where it isn’t.

Problem 1.3%. Imagine some helium in a cylinder with an initial volume of 1 liter

and an initial pressure of 1 atm. Somehow the helium is made to expand to a final

volume of 3 liters, in such a way that its pressure rises in direct proportion fo its
volume.

(a) Sketch a graph of pressure vs. volume for this process.

(b) Calculate the work done on the gas during this process, assuming that there
are no “other” types of work being done.

{c) Calculate the change in the helium’s energy content during this process.

(d) Calculate the amount of heat added to or removed from the helium during
this process.

(e) Describe what you might do to cause the pressure to rise as the helium
expands.
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Problem 1.32. By applying a pressure of 200 atm, you can compress water
to 99% of its usual volume. Sketch this process (not necessarily to scale) on a
PV diagram, and estimate the work required to compress a liter of water by this
amount. Does the result surprise you?

Problem 1.33. An ideal gas is made to undergo the cyclic process shown in
Figure 1.10(a). For each of the steps A, B, and C, determine whether each of
the following is positive, negative, or zero: {a} the work done on the gas; {b) the
change in the energy content of the gas: (c) the heat added to the gas. Then
determine the sign of each of these three quantities for the whole cycle. What does
this process accomplish?

b (@ 4 (b)
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Figure 1.10. PV diagrams for Problems 1.33 and 1.34.

Problem 1.34. An ideal diatomic gas, in a cylinder with a movable piston,
undergoes the rectangular cyclic process shown in Figure 1.10(b). Assume that
the temperature is always such that rotational degrees of freedom are active, but
vibrational modes are “frozen out.” Also assurne that the only type of work done
on the gas is quasistatic compression-expansion work.

{a) For each of the four steps A through D, compute the work done on the gas,
the heat added to the gas, and the change in the energy content of the gas.
Express all answers in terms of Py, P, V1, and V3. (Hint: Compute AU
before (}, using the ideal gas law and the equipartition theorem.}

{b) Describe in words what is physically being done during each of the four
steps; for example, during step A. heat is added to the gas (from an external
flame or something) while the piston is held fixed.

(¢) Compute the net work done on the gas, the net heat added to the gas, and
the net change in the energy of the gas during the entire cycle. Are the
results as you expected? Explain briefly.

Compression of an 1deal Gas

To get a feel for some of the preceding formulas, I'd like to apply them to the
compression of an ideal gas. Since most familiar gases {(such as air) are fairly close
to ideal, the results we obtain will actually be quite useful.

When you compress a container full of gas, you're doing work on it, that is,
adding energy. Generally this causes the temperature of the gas to increase, as you
know if you've ever pumped up a bicycle tire. However, if you compress the gas very
slowly, or if the container is in good thermal contact with its environment, heat
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will escape as the gas is compressed and its temperature won't rise very much.*
The difference between fast compression and slow compression is therefore very
important in thermodynamics.

In this section I'll consider two idealized ways of compressing an ideal gas:
isothermal compression, which js so slow that the temperature of the gas doesn’t
rise at all; and adiabatic compression, which is so fast that no heat escapes from
the gas during the process. Most real compression processes will be somewhere
between these extremes, usually closer to the adiabatic approximation. D'l start
with the isothermal case, though, since it's simpler.

Suppose, then, that you compress an ideal gas isothermally, that is, without
changing its temperature. This almost certainly implies that the process is qua-
sistatic, so I can use formula. 1.29 to calculate the work done, with P determined by
the ideal gas law. On a PV diagram, the formula P = NkT/V, for constant T, is
a concave-up hyperbola (called an isotherm), as shown in Figure 1.11. The work
done is minus the ares under the graph:

Vi Vrq
W=mf PdemeT/ w‘-/:dV
v vi y (1.30)
= —NKT (InVy — InV;) = NkT In#.
!

Notice that the work done is positive if V; > Vj, that is, if the gas is being
compressed. If the gas expands isothermally, the same equation applies but with
Vi < Vy, that is, the work done on the gas is negative.

As the gas is compressed isothermally, heat must be flowing out, into the envi-
ronment. To calculate how much, we can use the first law of thermodynamics and
the fact that for and ideal gas U is proportional to T

Vi

Q=AU - W = A(JNFET) =W =0 W = NkT In L. (1.31)

Figure 1.11. For isothermal
compression of an ideal gas, the
PV graph is a concave-up hy-
perbola, called an isotherm.
As always, the work done is mi-
nus the area under the graph.

Pressure

Vi Vi  Volume

*Scuba tanks are usually held under water as they are filled, to prevent the compressed
air inside from getting too hot.
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Thus the heat input is just minus the work done. For compression, (@ is negative
because heat leaves the gas: for isothermal expansion, heat must enter the gas so
@ is positive.

Now let’s consider adiabatic compression, which is so fast that ne heat flows out
of {or into) the gas. I'll still assume, however, that the compression is quasistatic.
In practice this usually isn't a bad approximation.

If you do work on a gas but don’t let any heat escape, the internal energy of
the gas will increase:

AU =Q+W =W {1.32)

I it's an ideal gas, U/ is proportional to T so the temperature increases as well.
The curve describing this process on a PV diagram must connect a low-temperature
isotherm to a high-temperature isotherm, and therefore must be steeper than either
of the isotherms (see Figure 1.12).

To find an equation describing the exact shape of this curve, let me first use the
equipartition theorem to write

U= gNkT, (1.33)

where f is the number of degrees of freedom per molecule—-3 for a monatomic gas,
5 for a diatomic gas near room temperature, etc. Then the energy change along
any infinitesimal segment of the curve is

dU = gNk drT. (1.34)

Meanwhile, the work done during quasistatic compression is ~FPdV, so equation
1.32, applied to an infinitesimal part of the process, becomes

f

2
This differential equation relates the changes in temperature and volume during
the compression process. To solve the equation, however, we need to write the
pressure P in terms of the variables T and V. The needed relation is just the ideal
gas law; plugging in NkT/V for P and canceling the Nk gives

NkdT = —PdV. (1.35)

dr dV
f“ e T e (1.36)
2T Vv
A
Figure 1.12. The PV curve © Adiabat
for adiabatic compression (called 2
an adiabat) begins on a lower- ?}
temperature isotherm and ends on o
. . Ty
a higher-temperature isotherm. 7
i
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Now we can integrate both sides from the initial values (V; and T;) to the final
values (Vy and T):

o0 Yy
5 In T = In v (1.37)

To simplify this equation, exponentiate both sides and gather the i’s and f’s. After
& couple of lines of algebra you'll find

v, Ti? = v, {7, (1.38)

or more compactly,

VT¥/? = constant. {1.39)

Given any starting point and any final volume, you can now calculate the final
temperature. To find the final pressure you can use the ideal gas law to eliminate
T on both sides of equation 1.38. The result can be written

V7P = constant, {1.40)
where -y, called the adiabatic exponent, is an abbreviation for (f + 2}/f.

Problem 1.35. Derive equation 1.40 from equation 1.39.

Problem 1.36. In the course of pumping up 2 bicycle tire, a liter of air at
atmospheric pressure is compressed adiabatically to a pressure of 7 atm. {Air is
mostly diatomic nitrogen and oxygen.)

{a) What is the final volume of this air after compression?
{b} How much work is done in compressing the air?

(¢} If the temperature of the air is initially 300 K, what is the temperature
after compression?

Problem 1.37. In a Diesel engine, atmospheric air is quickly compressed to about
1/20 of its original volume. Estimate the temperature of the air after compression,
and explain why a Diesel engine does not require spark plugs.

Problem 1.38. Two identical bubbles of gas form at the bottom of a lake, then
rise to the surface. Because the pressure is much lower at the surface than at the
bottom, both bubbles expand as they rise. However, bubble A rises very quickly,
so that no heat is exchanged between it and the water. Meanwhile, bubble B rises
slowly (impeded by a tangle of seaweed), so that it always remains in thermal
equilibrium with the water (which has the same temperature everywhere). Which
of the two bubbles is larger by the time they reach the surface? Explain your
reasoning fully.
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Problem 1.39. By applying Newton's laws to the oscillations of a continuous
medium, one can show that the speed of a sound wave is given by

B

Cg == Ty

p
where p is the density of the medium (mass per unit volume) and B is the bulk
modulus, a measure of the medium’s stiffness. More precisely, if we imagine
applying an increase in pressure AP to a chunk of the material, and this increase
results in a {negative) change in volume AV, then B is defined as the change in
pressure divided by the magnitude of the fractional change in volume:

AP
TAVIV

This definition is still ambiguous, however, because I haven't said whether the
compression is to take place isothermally or adiabatically (or in some other way).

B =

(a) Compute the bulk modulus of an ideal gas, in terms of its pressure P, for
both isothermal and adiabatic compressions.

{b) Argue that for purposes of computing the speed of a sound wave, the adi-
abatic B is the one we should use.

{c) Derive an expression for the speed of sound in an ideal gas, in terms of
its temperature and average molecular mass. Compare your result to the
formula for the rms speed of the molecules in the gas. Evaluate the speed
of sound numerically for air at room temperature.

{d) When Scotland’s Battlefield Band played in Utah, one musician remarked
that the high altitude threw their bagpipes out of tune. Would you expect
altitude to affect the speed of sound {(and hence the frequencies of the
standing waves in the pipes)? If so, in which direction? If not, why not?

Problem 1.40. In Problem 1.16 you calculated the pressure of earth’s atmosphere
as a function of altitude, assuming constant temperature. Ordinarily, however, the
temperature of the bottommost 10-15 km of the atmosphere {called the tropo-
sphere) decreases with increasing altitude, due to heating from the ground (which
is warmed by sunlight). If the temperature gradient |dT/dz| exceeds a certain
critical value, convection will occur: Warm, low-density air will rise, while cool,
high-density air sinks. The decrease of pressure with altitude causes a rising air
mass to expand adiabatically and thus to cool. The condition for convection to
occur is that the rising air mass must remain warmer than the surrounding air
despite this adiabatic cooling.

{a) Show that when an ideal gas expands adiabatically, the temperature and
pressure are related by the differential equation

ar 2 T
dP = f+2 P

{b) Assume that d7'/dz is just at the critical value for convection to begin, so
that the vertical forces on a convecting air mass are always approximately
in balance. Use the result of Problem 1.16(b) to find a formula for dT'/dz in
this case. The result should be a constant, independent of temperature and
pressure, which evaluates to approximately ~10°C/lon. ‘This fundamental
meteorological quantity is known as the dry adiabatic lapse rate.
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1.6 Heat Capacities

The heat capacity of an object is the amount of heat needed to raise its temper-
ature, per degree temperatyre increase:

¢
C = el 1.41

N (1.41)
{The symbol for heat capacity is a capital C.} Of course, the more of a substance
you have, the larger its heat capacity will be. A more fundamental quantity is the
specific heat capacity, defined as the heat capacity per unit mass:
C
—. {1.42)

m

il

[4

{The symbol for specific heat capacity is a lowercase ¢.)

The most important thing to know about the definition {1.41) of heat capacity
is that it is ambiguous. The amount of heat needed to raise an object’s temperature
by one degree depends on the circumstances, specifically, on whether you are also
doing work on the object {and if so, how much}. To see this, just plug the first law
of thermodynamics into equation 1.41:

Q AU -W
= AT = AT {1.43)
Even if the energy of an object is a well-defined function of its temperature alone
{which is sometimes but not always the case}, the work W done on the object can
be anything, so ¢ can be anything, too.

In practice, there are two types of circamstances (and choices for W) that are
most likely to ocecur. Perhaps the most obvious choice is W = 0, when there is no
work being done on the system. Usually this means that the system’s volume isn’t
changing, since if it were, there would be compression work equal to ~PAV. Se
the heat capacity, for the particular case where W = § and V is constant, is called
the heat capacity at constant volume, denoted Cy. From equation 1.43,

AU ou

o=(5z),~ (5), ()
{The subscript V indicates that the changes are understood to occur with the
volume held fixed. The symbol 9 indicates a partial derivative, in this case treating
U as a function of T and V, with only T, not V', varying as the derivative is
taken.} A better name for this quantity would be “energy capacity,” since it is the
energy needed to raise the object’s temperature, per degree, regardless of whether
the energy actually enters as heat. For a gram of water, Cy is 1 cal/°C or about
4.2 J/°C.

In everyday life, however, objects often expand as they are heated. In this case
they do work on their surroundings, so W is negative, so C is larger than Cyv:
you need to add additional heat to compensate for the energy lost as work, If
the pressure surrounding your object happens to be constant, then the total heat
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needed is unambiguous, and we refer to the heat needed per degree as C'p, the heat
capacity at constant pressure. Plugging the formula for compression-expansion
work into equation 1.43 gives

con (G0 (%) or(%), ae

The last term on the right is the additional heat needed to compensate for the
energy lost as work. Notice that the more the volume increases, the larger this
term is. For solids and liquids, 8V/8T is usually small and can often be neglected.
For gases, however, the second term is quite significant. (The first term, (U /8T )p,
is not quite the same as Cy, since it is P, not V, that is held fixed in the partial
derivative.)

Equations 1.41 through 1.45 are essentially definitions, so they apply to any
object whatsoever. To determine the heat capacity of some particular object, you
generally have three choices: measure it {see Problem 1.41); look it up in a reference
work where measured values are tabulated; or try to predict it theoretically. The
last is the most fun, as we’ll see repeatedly throughout this book. For some objects
we already know enough to predict the heat capacity.

Suppose that our system stores thermal energy only in quadratic “degrees of
freedom,” as described in Section 1.3. Then the equipartition theorem says U =
%N FET {neglecting any “static” energy, which doesn’t depend on temperature), so

U _ 8 (N};kT) _ Nfk

CV — ‘gi'; - "8"'T" 2 1
assuming that f is independent of temperature. (Note that in this case it doesn’t
matter whether V or P is held fixed in the derivative 8U//8T.) This result gives
us a direct method of measuring the number of degrees of freedom in an object,
or, if we know this number, of testing the equipartition theorem. For instance, in
& monatomic gas like helium, f = 3, so we expect Oy = -23-N k= %nR; that is,
the heat capacity per mole should be %R =125 J/K. For diatomic and polyatomic
molecules the heat capacity should be larger, in proportion to the number of degrees
of freedom per molecule. Figure 1.13 {see the following page) shows a graph of Cy
vs. temperature for a mole of hydrogen (Hp) gas, showing how the vibrational and
rotational degrees of freedom freeze out at low temperatures. For a solid, there are
six degrees of freedom per atom, so the heat capacity per mole should be gR = 3R;
this general result is called the rule of Dulong and Petit. In this case, though,
all of the degrees of freedom freeze out at low temperature, so the heat capacity
approaches zero as T' — (. What qualifies as “low” temperature depends on the
material, as shown in Figure 1.14.

What about heat capacities of gases at constant pressure? For an ideal gas, the
derivative QU/8T is the same with P fixed as with V fixed, and we can compute
the second term in equation 1.45 using the ideal gas law. At constant pressure,

(%)P = %(J_V%Z) = ﬁ; (ideal gas). (1.47)

(1.46)
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Figure 1.13. Heat capacity at constant volume of one mole of hydrogen {Hp) gas.
Note that the temperature scale is logarithmic. Below about 100 K only the three
transiational degrees of freedom are active. Around room temperalure the two
rotational degrees of freedom are active as well. Above 1000 K the two vibrational
degrees of freedom also become active. At atmospheric pressure, hydrogen liquefies
at 20 K and begins to dissociate at about 2000 K. Data from Woolley et al. (1948).
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Figure 1.14. Measured heat capacities at constant pressure (data points) for
one mole each of three different elemental solids. The solid curves show the heat
capacity at constant volume predicted by the model used in Section 7.5, with the
horizontal scale chosen to best fit the data for each substance. At sufficiently high
temperatures, Cy for each material approaches the value 3R predicted by the
equipartition theorem. The discrepancies between the data and the solid curves
at high T are mostly due to the differences between Cp and Cy. At T == 0 all
degrees of freedom are frozen out, so both Cp and Cy go to zero. Data from Y. S.
Touloukian, ed., Thermophysical Properties of Matter (Plenum, New York, 1970).

Therefore,
Cp=Cy +Nk=Cy +nR (ideal gas). (1.48)

In other words, for each mole of an ideal gas, the heat capacity at constant pressure
exceeds the heat capacity at constant volume by R, the gas constant. Oddly, the
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additional term in the heat capacity doesn’t depend on what the pressure is, so
long as it is constant. Apparently, if the pressure is high the gas expands less, in
such a way that the work done on the environment is independent of P.

Problem 1.41. To measure the heat capacity of an object, all you usually have
to do is put it in thermal contact with another object whose heat capacity you
know. As an example, suppose that a chunk of metal is immersed in boiling water
(100°C), then is quickly transferred into a Styrofoam cup containing 250 g of
water at 20°C. After a minute or so, the temperature of the contents of the cup is
24°C. Assume that during this time no significant energy is iransferred between
the eontents of the cup and the surroundings. The heat capacity of the cup itself
is negligible.

{a) How much heat is lost by the water?

(b) How much heat is gained by the metal?

{c} What is the heat capacity of this chunk of metal?

{d} If the mass of the chunk of metal is 100 g, what is its specific heat capacity?

Problem 1.42. The specific heat capacity of Albertson’s Retint Tricolore is ap-
proximately 1.8 J/g-°C. Suppose you toss 340 g of this pasta {at 25°C) into 1.5
liters of boiling water. What effect does this have on the temperature of the water
(before there is time for the stove to provide more heat)?

Problem 1.48. Calculate the heat capacity of liguid water per molecule, in terms
of k. Suppose (incorrectly) that all the thermal energy of water is stored in
guadratic degrees of freedom. How many degrees of freedom would each mole-
cule have to have?

Problem 1.44. At the back of this book is a table of thermodynamic data for
selected substances at room temperature. Browse through the Cp values in this
table, and check that you can account for most of them {approximately) using the
equipartition theorem. Which values seem anomalous?

Problem 1.45. As an illustration of why it matters which variables you hold fixed
when taking partial derivatives, consider the following mathematical example. Let
w =gy and z = yz.

{a) Write w purely in terms of x and z, and then purely in terms of y and 2.

(b} Compute the partial derivatives

dw and Gw
gz Y n oz /.’

and show that they are not equal. (Hint: To compute (8w/8zx)y, use a
formula for w in terms of z and y, not z. Similarly, compute (Jw/8x).
from a formula for w in terms of only z and z.)

(c) Compute the other four partial derivatives of w (two each with respect to
y and z}, and show that it matters which variable is held fixed.
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Problem 1.46. Measured heat capacities of solids and liquids are almost always
at constant pressure, not constant volume. To see why, estirnate the pressure
needed to keep V fixed as T increases, as follows.

(a) First imagine slightly increasing the temperature of a material at constant
pressire. Write the change in volume, dV1, in terms of dT” and the thermal
expansion coefficient 8 introduced in Problem 1.7,

{b) Now imagine slightly compressing the material, holding its temperature
fixed. Write the change in volume for this process, dV%, in terms of dP and
the isothermal compressibility s7, defined as

T="V\P )y

(This is the reciprocal of the isothermal bulk modulus defined in Prob-
lem 1.39.)

{c) Finally, imagine that you compress the material just enough in part (b)
to offset the expansion in part (a). Then the ratio of dP to dT is equal
to (BP/8T )}y, since there is no net change in volume. Express this partial
derivative in terms of 3 and «1. Then express it more abstractly in terms of
the partial derivatives used to define 3 and . For the second expression

you should obtain
or ) _ _(avjorip
ar j, ~  (8V/8P)y’
This result is actually a purely mathematical relation, true for any three
quantities that are related in such a way that any two determine the third.
(d} Compute 5, k7, and (@P/8T )y for an ideal gas, and check that the three
expressions satisfy the identity you found in part {c).

(e) For water at 25°C, § = 2.57 x 107% K™! and np = 4.52 x 10720 Pa~1,
Suppose you increase the temperature of some waler from 20°C to 30°C.
How much pressure must you apply to prevent it from expanding? Repeat
the caleulation for mercury, for which (at 25°C) 8= 1.81 x 107 * K~ ! and
Kr =4.04 x 1071 Pa~!. Given the choice, would you rather measure the
heat capacities of these subsiances at constant V' or at constant P?

Latent Heat

In some situations you can put heat into a system without increasing its temperature
at all. This normally happens at a phase transformation, such as melting ice or
boiling water. Technically, the heat capacity is then infinite:

L ) {during a phase transformation). (1.49)

However, you still might want to know how much heat is required to melt or boil
the substance completely. This amount, divided by the mass of the substance, is
called the latent heat of the transformation, and denoted L:

= % to accomplish the transformation. {1.50)

Like the definition of heat capacity, this definition is ambiguous, since any amount
of work could also be done during the process. By convention, however, we assume
that the pressure is constant (usually 1 atm), and that no other work is done
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besides the usual constant-pressure expansion or compression. The latent heat for
melting ice is 333 J/g, or 80 cal/g. The latent heat for boiling water is 2260 J/g,
or 540 eal/g. (To get a feel for these numbers, recall that raising the temperature
of water from 0°C to 100°C requires 100 cal/g.)

Problem 1.47. Your 200-g cup of tea is boiling-hot. About how much ice should
you add to bring it down to a comfortable sipping temperature of §5°C? {Assume
that the ice is initially at —15°C. The specific heat capacity of ice is 0.5 cal/g-°C.}

Problern 1.48. When spring finally arrives in the mountains, the snow pack
may be two meters deep, composed of 50% ice and 50% air. Direct sunlight
provides about 1000 watts/m? to earth’s surface, but the snow might reflect 90%
of this energy. Estimate how many weeks the snow pack should last, if direct solar
radiation is the only source of energy.

Enthalpy

Constant-pressure processes occur quite often, both in the natural world and in the
laboratory. Keeping track of the compression-expansion work done during these
processes gets to be a pain after a while, but there is a convenient trick that makes
it a bit easier. Instead of always talking about the energy conteni of a system, we
can agree to always add in the work needed to make room for it {under 2 constant
pressure, usually 1 atm). This work is PV, the pressure of the environment times
the total volume of the system (that is, the total space you would need to clear
out to make room for it). Adding PV onto the energy gives a quantity called the
enthalpy, denoted H:

H =0+ PV. (1.51)

This is the total energy you would have to come up with, to create the system out
of nothing and put it into this environment (see Figure 1.15). Or, put another way,
if you could somehow annihilate the system, the energy you could extract is not
just U, but also the work {PV) done by the atmosphere as it collapses to fill the
vacuum left behind.

h

Figure 1.15. Tb create a rabbit out of nothing and place it on the table, the
magician must summon up not only the energy U of the rabbit, but also some
additional energy, equal to PV, to push the atmosphere out of the way to make
room. The total energy required is the enthalpy, H = U + PV.
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To see the usefulness of enthalpy, suppose that some change takes place in the
system—you add some heat, or chemicals react, or whatever—while the pressure is
always held constant. The energy, volume, and enthalpy can ali change, by amounts
that T'll call AV, AU, and AH. The new enthalpy is

H+ AH = U+ AU)+ P(V + AV)
={U + PV)+ (AU + PAV) (1.52)
= H + (AU + PAV),

so the change in enthalpy during a constant-pressure process is
AH =AU+ PAV  (constant P). {1.53)

This says that enthalpy can increase for two reasons: either because the energy
increases, or because the system expands and work is done on the atmosphere to
make room for it.

Now recall the first law of thermodynamics: The change in energy equals the
heat added to the system, plus the compression-expansion work done on it, plus
any other work (e.g., electrical) done on it:

AU = Q + (—PAV) + Wother- (154)
Combining this law with equation 1.53, we obtain
AH = Q + Worher {constant P}, {1.55)

that is, the change in enthalpy is caused only by heat and other forms of work,
not by compression-expansion work {during constant-pressure processes}. In other
words, you can forget all about compression-expansion work if you deal with en-
thalpy instead of energy. If no “other” types of work are being done, the change in
enthalpy tells you directly how much heat has been added to the system. (That's
why we use the symbol H.)

For the simple case of raising an object’s temperature, the change in enthalpy
per degree, at constant pressure, is the same as the heat capacity at constant

pressure, Cp:
aH

This formula is really the best way to define Cp, though you can easily see that it is
equivalent to equation 1.45. Just as C'y should really be called “energy capacity,”
C'p should really be called “enthalpy capacity.” And as with Cy, there doesn’t
have {o be any heat involved at all, since the enthalpy could just as well enter as
“other” work, as in a microwave oven.

Chemistry books are full of tables of AH values for more dramatic processes:
phase transformations, chemical reactions, ionization, dissolution in sclvents, and
so on. For instance, standard tables say that the change in enthalpy when you boil
one mole of water at 1 atm is 40,660 J. Since a mole of water is about 18 grams
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ilﬁ for the oxygen and 2 for the hydrogen), this means that the change in enthalpy
When you boil one gram of water should be (40,660 J)/18 = 2260 J, precisely the
humber I quoted earlier for the latent heat. However, not all of this energy ends
gp in the vaporized water. The volume of one mole of water vapor, according to
the ideal gas law, is RT'/P (while the initial volume of the liquid is negligible), so
the work needed to push the atmosphere away is

PV = RT = (8.31 J/K)(373 K) = 3100 J. (1.57)

This is only 8% of the 40,660 J of energy put in, but sometimes it's necessary to
keep track of such things.

As another example, consider the chemical reaction in which hydrogen and
pxygen gas combine to form liquid ‘water:

Hy 4 %02 — HoO. {(1.58)

For each mole of water produced, AH for this reaction is —286 kJ; in tables this
quantity is referred to as the enthalpy of formation of water, because it’s being
Hormed” out of elemnental constituents in their most stable states. {The numerical
value assumes that both the reactants and the product are at room temperature
and atmospheric pressure. This number and others like it are tabulated in the data
section at the back of this book.) If you simply burn a mole of hydrogen, then
286 kJ is the amount of heat you get out. Nearly all of this energy comes from
the thermal and chemical energy of the molecules themselves, but a small amount
comes from work done by the atmosphere as it collapses to fill the space left behind
by the consumed gases.

You might wonder, though, whether some of the 286 kJ can’t be extracted as
work {perhaps electrical work) rather than as heat. Certainly this would be a good
thing, since electricity is so much more useful and versatile than heat. In general
the answer is that much of the energy from a chemical reaction can be extracted
a8 work, but there are limits, as we'll see in Chapter 5.

Problem 1.49. Consider the combustion of one mole of Ha with 1/2 mole of Oy
under standard conditions, as discussed in the text. How much of the hest energy
produced comes from a decrease in the internal energy of the system, and how
much comes from work done by the collapsing atmosphere? {Treat the volume of
the liquid water as negligible.)

Problem 1.50. Consider the combustion of one mole of methane gas:
CHy(gas) + 202{gas) — COy{gas) + 2Hp0(gas).
The system is at standard temperature {298 K) and pressure (10° Pa) both before

and after the reaction.

{a} First imagine the process of converting a mole of metbane into its elemental
consituents {graphite and hydrogen gas). Use the data at the back of this
book to find AH for this process.

{b) Now imagine forming a mole of CO2 and two moles of water vapor from
their elemental constituents. Determine AH for this process.
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{c) What is AH for the actual reaction in which methane and oxygen form
carbon dioxide and water vapor directly? Explain.

{d) How much heat is given off during this reaction, assuming that no “other”
forms of work are done?

{e) What is the change in the system’s energy during this reaction? How would
your answer differ if the HyO ended up as liquid water instead of vapor?

{f) The sun has a mass of 2 x 10%° kg and gives off energy at a rate of 3.9 x
10?6 watts. If the source of the sun’s energy were ordinary combustion of
& cherical fuel such as methane, about how long could it last?

Problem 1.51. Use the data at the back of this book to determine AH for the
combustion of a mole of glucose,

CgH120g + 602 — 6C0Og + 6H50,
This is the (net} reaction that provides most of the energy needs in our bodies.

Problem 1.52. The enthalpy of combustion of a gallon {3.8 liters) of gasoline is
about 31,000 kcal. The enthalpy of combustion of an ounce (28 g) of corn flakes is
about 100 keal. Compare the cost of gasoline to the cost of corn flakes, per calorie.

Problem 1.53. Look up the enthalpy of formation of atomic hydrogen in the
back of this book. This is the enthalpy change when a mole of atomic hydrogen
is formed by dissociating 1/2 mole of molecular hydrogen (the more stable state
of the element). From this number, determine the energy needed to dissociate a
single Hy molecule, in electron-volts.

Problem 1.54. A 60-kg hiker wishes to climb to the summit of Mt. Ogden, an
ascent of 5000 vertical feet (1500 m).

{a) Assuming that she is 256% efficient at converting chemical energy from food
into mechanical work, and that essentially all the mechanical work is used
to climb vertically, roughly how many bowls of corn flakes (standard serving
size 1 ounce, 100 kilocalories) should the hiker eat before setting out?

(b} As the hiker climbs the mountain, three-quarters of the energy from the
corn flakes is converted to thermal energy. If there were no way to dissipate
this energy, by how many degrees would her body temperature increase?

{c} In fact, the extra energy does not warm the hiker's body significantly; in-
stead, it goes (mostly} into evaporating water from her skin. How many
liters of water should she drink during the hike to replace the lost Ruids?
(At 25°C, a reasonable temperature to assume, the latent heat of vapor-
ization of water is 580 cal/g, 8% more than at 100°C.)

Problem 1.55. Heat capacities are normally positive, but there is an important
class of exceptions: systems of particles held together by gravity, such as stars and
star clusters.

{a) Consider a system of just two particles, with identical masses, orbiting in
circles about their center of mass. Show that the gravitational potential
energy of this system is —2 times the total kinetic energy.

{b) The conclusion of part (a) turns out to be true, at least on average, for any
system of particles held together by mutual gravitational attraction:

Upote:ntial = =2 inetic-
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Here each U refers to the total energy (of that type) for the entire syster,
averaged over some sufficiently long time period. This result is known as the
virial theorem. (For a proof, see Carroll and Ostlie {1996}, Section 2.4.)
Suppose, then, that you add some energy to such a system and then wait
for the system to equilibrate. Does the average total kinetic energy increase
or decrease? Explain.

(c} A star can be modeled as a gas of particles that interact with each other
only gravitationally. According to the equipartition theorem, the average
kinetic energy of the particles in such a star should be %ch, where T is
the average temperature. Express the total energy of a star in terms of its
average temperature, and calculate the heat capacity. Note the sign.

{d) Use dimensional analysis to argue that a star of mass M and radius R
should have a total potential energy of —GM? /R, times some constant of
order 1.

{e) Estimate the average temperature of the sun, whose mass is 2 x 1030 kg
and whose radius is 7 x 10® m. Assume, for simplicity, that the sun is made
entirely of protons and electrons.

1.7 Rates of Processes

Usually, to determine what the equilibrium state of a system is, we need not worry
about how long the system takes to reach equilibrium. Thermodynamics, by many
people’s definitions, includes only the study of equilibrium states themselves. Ques-
tions about time and rates of processes are then considered a separate (though
related) subject, sometimes called transport theory or kinetics.

In this book I wen’t say much about rates of processes, because these kinds
of questions are often quite difficult and require somewhat different tools. But
transport theory is important enough that I should say something about it, at least
the simpler aspects. That is the purpose of this section.”

Heat Conduction

At what rate does heat flow from a hot object to a cold object? The answer
depends on many factors, particularly on what mechanisms of heat transfer are
possible under the circumstances,

If the objects are separated by empty space (like the sun and the earth, or
the inner and outer walls of a thermos bottle} then the only possible heat transfer
mechanism is radiation. I'll derive a formula for the rate of radiation in Chapter 7.

If a fluid (gas or liquid) can rmediate the heat transfer, then convection—bulk
motion of the fluid-—is often the dominant mechanism. Convection rates depend on
all sorts of factors, including the heat capacity of the fiuid and the many possible
forces acting on it. I won't try to calculate any convection rates in this hook.

That leaves conduction: heat transfer by direct contact at the molecular level.
Conduction can happen through a solid, liquid, or gas. In a liquid or a gas the

*This section is somewhat outside the main development of the book. No other sections
depend on it, so you may omit or postpone it if you wish.
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energy is transferred through molecular collisions: When a fast molecule hits a
slow molecule, energy is usually transferred from the former to the latter. In solids,
heat is conducted via lattice vibrations and, in metals, via conduction electrons.
Good electrical conductors tend to be good heat conductors as well, because the
same conduction electrons can carry both electric current and energy, while lattice
vibrations are much less efficient than electrons at conducting heat.

Regardless of these details, the rate of heat conduction obeys a mathematical
law that is not hard to guess. For definiteness, imagine a glass window separat-
ing the warm interior of a building from the cold outdoors (see Figure 1.16). We
would expect the amount of heat @ that passes through the window to be di-
rectly proportional to the window's total area A, and to the amount of time that
passes, At. We would probably expect ¢} to be inversely proportional to the thick-
ness of the window, Az. Finally, we would expect ¢ to depend on the indoor and
outdoor temperatures, in such a way that @@ = ( if these temperatures are the
same. The simplest guess is that @ is directly proportional to the temperature
difference, AT = Ty — T); this guess turns out to be correct for any heat transfer
by conduction {though not for radiation). Summarizing these proportionalities, we

can write AAT At Q JaT

Q o —5';—, QF E—t ox A E

The constant of proportionality depends on the material through which the heat

is being conducted (in this case, glass). This constant is called the thermal con-

ductivity of the material. The usual symbol for thermal conductivity is &, but to

distinguish it from Boltzmann’s constant I'll called it k,. I'll also put a minus sign

into the equation to remind us that if T increases from left to right, @ flows from
right to left. The law of heat conduction is then
@ dar

A" —k A pg (1.60)

This equation is known as the Fourier heat conduction law, after the same

J. B. J. Fourier who invented Fourier analysis.

To derive the Fourier heat conduction law, and to predict the value of k¢ for a

particular material, we would have to invoke a detailed molecular model of what

happens during heat conduction. I'll do this for the easiest case, an ideal gas, in the

(1.59)

Area = A
Outside Inside Figure 1.1.6. The rate of heat conduction
through a pane of glass is proportional to
L 1 its area A and inversely proportional to its
thickness Ax.

ol Az b
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following subsection. For now, though, let’s just take Fourler’s law as an empirical
fact and treat k; as a property that you need to measure for any material of interest.

Thermal conductivities of common materials vary by more than four orders of
magnitude. In SI units (watts per meter per kelvin), a few representative values
are: air, 0.026; wood, 0.08; water, 0.6; glass, 0.8; iron, 80; copper, 400. Again, good
electrical conductors tend to be good thermal conductors. Note that the values
for air and water apply to conduction only, even though convection can often be
extremely important.

Back to our window, suppose it has an area of cne square meter and a thickness
of 3.2 mm (1/8 inch). Then if the temperature just inside the window is 20°C and
the temperature just outside is 0°C, the rate of heat flow through it is

Q _ (08 W/mK)(1 m?)(293 K ~ 273 K)
At~ 0.0032 m

= 5000 watts. (1.81)

if this number seems absurdly high to you, you're right. My assumption of such a
large temperature difference between “just inside” and “just outside” the window
is unrealistic, because there is always a thin layer of still air on each side of the
glass. The two air layers can provide many times more thermal insulation than the
glass itself, bringing the heat loss down into the range of a few hundred watts (see
Problem 1.57).

Problem 1.56. Calculate the rate of heat conduction through a layer of still air
that is I mm thick, with an area of 1 m®, for a temperature difference of 20°C.

Problem 1.57. Home owners and builders discuss thermal conductivities in terms
of the R value (R for resistance} of a material, defined as the thickness divided
by the thermal conductivity:
Az
R = ";“;".
{a) Calculate the R value of a 1/8-inch {3.2 mm) piece of plate glass, and then
of a 1 mm layer of still air. Express both answers in SI units.

{b) In the United States, R values of building materials are normally given in
English units, °F -ftz-hr/ Btu. A Btu, or British thermal unit, is the energy
needed to raise the temperature of a pound of water by 1°F. Work out the
conversion factor between the SI and English units for R values. Convert
your answers from part (a) to English units.

(c} Prove that for a compound layer of two different materials sandwiched
together (such as air and glass, or brick and wood), the effective total
R value is the sum of the individual R values.

{d) Calculate the effective R vslue of a single piece of plate glass with a 1.0
mm layer of still air on each side. (The effective thickness of the air layer
will depend on how much wind is blowing; 1 mm is of the right order of
magnitude under most conditions.) Using this effective R value, make a
revised estimate of the heat loss through a 1-m® single-pane window when
the temperature in the room is 20°C higher than the outdoor temperatare.
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Problem 1.58. According to a standard reference table, the R value of a 3.5-
inch-thick vertical air space {within a wall) is 1.0 (in English units), while the
A value of a 3.5-inch thickness of fiberglass batting is 10.9. Calculate the R value
of a 3.5-inch thickness of still air, then discuss whether these two numbers are
reasonable. {(Hint: These reference values include the effects of convection.)

Problem 1.59. Make a rough estimate of the total rate of conductive heat loss
through the windows, walls, floor, and roof of a typical house in a cold climate.
Then estimate the cost of replacing this lost energy over the course of a month. If
possible, compare your estimate to a real utility bill. (Utility companies measure
electricity by the kilowatt-hour, a unit equal to 3.6 MJ. In the United States,
natural gas is billed in therms, where 1 therm = 10% Btu. Utility rates vary by
region; I currently pay about 7 cents per kilowatt-hour for electricity and 50 cents
per therm for natural gas.)

Problem 1.680. A frying pan is quickly heated on the stovetop to 200°C. It has
an iron handle that is 20 em long. Estimate how much time should pass before
the end of the handle is too hot to grab with your bare hand. (Hint: The cross-
sectional area of the handie doesn’t matter. The density of iron is about 7.9 g/ cm®
and its specific heat is 0.45 J/g-°C).

Problem 1.61. Geologists measure conductive heat flow out of the earth by
drilling holes (a few hundred meters deep) and measuring the temperature as a
function of depth. Suppose that in a certain location the temperature increases by
20°C per kilometer of depth and the thermal conductivity of the rock is 2.5 W/m-K.
What is the rate of heat conduction per square meter in this location? Assuming
that this value is typical of other locations over all of earth’s surface, at approxi-
mately what rate is the earth losing heat via conduction? (The radius of the earth
is 6400 km.)

Problem 1.62. Consider a uniform rod of material whose temperature varies
only along its length, in the x direction. By considering the heat flowing from
both directions into a small segment of length Az, derive the heat equation,
ar _  O°T
aH Hx2
where K = k¢ /ep, ¢ is the specific heat of the material, and p is its density. (Assume
that the only motion of energy is heat conduction within the rod; no energy enters
or leaves along the sides.) Assuming that K is independent of temperature, show
that a solution of the heat equation is

A .g? J4Kt
Tz, ) =T+ —e ,
(z, ) =To i
where Tp is a constant background temperature and A is any constant. Sketch
{or use a computer to plot) this solution as a function of z, for several values of 1.
Interpret this solution physically, and discuss in some detail how energy spreads
through the rod as time passes.
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Conductivity of an Ideal Gas

In a gas, the rate of heat conduction is limited by how fer a molecule can fravel
before it collides with another molecule. The average distance traveled between
collisions is called the mean free path. In a dilute gas the mean free path is many
times larger than the average distance between molecules, because a molecule can
pass by many of its neighbors before actually hitting one of them. Let me now
make & rough estimate of the mean free path in a dilute gas.

For simplicity, imagine that all the molecules in a gas except one are frozen
in place. How far does the remaining molecule travel between collisions? Well,
a collision happens when the center of cur molecule comes within one molecular
diameter (2r, where r is the radius of a molecule) of the center of some other
molecule (see Figure 1.17). Collisions would oceur just as often if our molecule
were twice as wide and all the others were points; let’s therefore pretend that this
is the case. Then, as our molecule travels along, it sweeps out an imaginary cylinder
of space whose radius is 2r. When the volume of this cylinder equals the average
volume per molecule in the gas, we're likely to get a collision. The mean free path,
¢, is roughly the length of the cylinder when this condition is met:

volume of cylinder = average volume per molecule

= w(2r)2£z%
iV

= h R
4mr2 N

(1.62)

The = symbol indicates that this formula is only a rough approximation for £,
because T've neglected the motion of the other molecules as well as the variation in
path lengths between collisions. The actual mean free path will differ by a numerical
factor that shouldn’t be too different from 1. But there’s not much peint in being
more precise, because v itself is not well defined: Molecules don’t have sharp edges,

Figure 1.17. A collision between molecules occurs when their centers are sepa-~
rated by twice the molecular radius . The same would be true if one molecule
had radius 2r and the other were a point. When a sphere of radius 2r moves in a
straight line of length £, it sweeps out a cylinder whose volume is 4rr2e.
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and most of them aren’t even spherical.*
The effective radius of a nitrogen or oxygen molecule should be one or two
Angstroms; let’'s say r = 1.5 A = 1.5 x 1071 m. Treating air as an ideal gas,
the volume per particle is V/N = kT/P = 4 x 1072 m® at room temperature
and atmospheric pressure. With these numbers, equation 1.62 predicts a mean free
path of 150 nm, about 4{ times greater than the average separation between air

molecules. We can also estimate the average time between collisions:
£ £ _15x 107" m

At = N =~ m)s

=3x 10710 5 (1.63)

Now back to heat conduction. Consider a small region within a gas where the
termperature increases in the x direction (see Figure 1.18). The heavy dotted line
in the figure represents a plane perpendicular to the z direction; my intent is to
estimate the amount of heat that flows across this plane. Let At be the average
time between collisions, so that each molecule travels a distance of roughly one
mean free path during this time. Then, during this time, the molecules that cross
the dotted line from the left will have started from somewhere within box 1 {whose
thickness is £), while the molecules that cross the dotted line from the right will
have started from somewhere within box 2 (whose thickness is also £). Both of
these boxes have the same area A in the yz plane. If the total energy of all the
molecules in box 1 is Uy, then the energy crossing the dotted line from the left
is roughly U/ /2, since only half of the molecules will have positive x velocities at
this moment. Similarly, the energy crossing the line from the right is half the total
energy in box 2, or Uz /2. The net heat flow across the line is therefore

1 1 i 1 dr
= §(U1 -Up) = “§(Uz ~ )= m'z'C'v(Tz -T1) = -§C‘v8 s (1.64)

where Cy is the heat capacity of all the gas in either box and T and T, are the
average temperatures in the two boxes. (In the last step I've used the fact that the
distance between the centers of the two boxes is £.)

Figure 1.18. Heat conduction across
the dotted line occurs because the
molecules moving from box 1 to box 2
have a different average energy than
the molecules moving from box 2 to
box 1. For free motion between these
boxes, each should have a width of
roughly one mean free path.

*For that matter, I haven't even given a precise definition of what constitutes a collision.
After all, even when molecules pass at a distance, they attract and deflect each other
somewhat. For a more careful treatment of transport processes in gases, see Reif (1965).
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Equation 1.64 confirms Fourier’s law, that the rate of heat conduction is di-
rectly proportional to the difference in temperatures. Furthermore, comparison to
equation 1.60 yields an explicit prediction for the thermal conductivity:

_1Gvt 1Cv & 1Cv
T2AAt 2AEAt 2V
where # is the average speed of the molecules. The quantity Cy/V is the heat
capacity of the gas per unit volume, which can be evaluated as

Cy §Nk _gP
Vv v o IT
where f is the number of degrees of freedom per molecule. Recall, however, that £
for a gas is proportional to V/N. Therefore the thermal conductivity of a given gas
should depend only on its temperature, through 7 « VT and pessibly through f.
QOver limited ranges of temperature the number of degrees of freedom is fairly con-
stant, so ky should be proportional to the square root of the absolute temperature.
Experiments on a wide variety of gases have confirmed this prediction (see Fig-
ure 1,19},
For air at room temperature and atmospheric pressure, f = 5 so Cy/V =
2(10° N/m?) /(300 K} =~ 800 J/m* K. Equation 1.65 therefore predicts a thermal
conductivity of

ke 2%, {1.65)

(1.66)

k, ~ 3(800 J/m3K)(L5 x 10~7 m)(500 m/s) = 0.031 W/mK, (1.67)

only a little higher than the measured value of 0.026. Not bad, considering all the
crude approximations ’ve made in this section.

The preceding analysis of the thermal conductivities of gases is an example of
what's called kinetic theory, an approach to thermal physics based on actual
molecular motions. Another example was the microscopic model of an ideal gas
presented in Section 1.2, While kinetic theory is the mest direct and concrete
approach to thermal physics, it is also the most difficult. Fortunately, there are

0101
r Helium

—~ 0.08¢
Figure 1.19. Thermal con- b ]
ductivities of selected gases, g
plotted vs. the square root of ; 0.06¢ Neog
the absolute temperature. The el - .
curves are approximately lin- ¢ 0.04f Air
ear, as predicted by equation +
1.65. Data from Lide (1994). 0.02F Krypton
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much easier methods for predicting most of the equilibrium properties of materials,
without having to know the details of how molecules move. To predict the rates of
processes, however, we usually have to resort to kinetic theory.

Problem 1.63. At about what pressure would the mean free path of an air mole-
cule at room temperature equal 10 cm, the size of a typical laboratory apparatus?

Problem 1.64. Make a rough estimate of the thermal conductivity of helium at
room temperature. Discuss your result, explaining why it differs from the value
for air.

Problem 1.65. Pretend that you live in the 19th century and don’t know the
value of Avogadro’s number” (or of Boltzmann's constant or of the mass or size of
any molecule). Show how you could make & rough estimate of Avogadro’s number
from a measurement of the thermal conductivity of a gas, together with other
messurements that are relatively easy.

Viscosity

Energy isn’t the only thing that can spread through a fluid at the molecular level;
another is momentum.

Consider the situation shown in Figure 1.20: two parallel solid surfaces moving
past one another, separated by a small gap containing a liquid or gas. Let’s work
in the reference frame where the bottom surface is at rest and the top surface
is moving in the +x direction. What about the motion of the fluid? At normal
temperatures the fluid molecules will be jostling with thermal velocities of hundreds
of meters per second, but let’s ignore this motion for the moment and instead ask
about the average motion at the macroscopic scale. Taking a macroscopic view,
it’s natural to guess that just above the bottom surface the fluid should be af rest;
a thin layer of Auid “sticks” to the surface. For the same reason {since reference
frames are arbitrary), a thin layer “sticks” to the top surface and moves along with
it. In between the motion of the fluid could be turbulent and chaotic, but let's
assume that this is not the case: The motion is slow enough, or the gap is narrow
enough, that the flow of the fluid is entirely horizontal. Then the flow is said to be
laminar. Assuming laminar flow, the x velocity of the fluid will increase steadily
in the 2 direction, as shown in the figure.

With only a few exceptions at very low temperatures, all fluids tend to resist
this kind of shearing, differential flow. This resistance is called viscosity. The top
layer of fluid gives up some of its forward momentum to the next layer down, which
gives up some of its forward momentum to the next layer, and so on down to the
bottom layer which exerts a forward force on the bottom surface. At the same time
{by Newton's third law) the loss of momentum by the top layer causes it to exert a

* Amedeo Avogadro himself, who died in 1856, never knew the numerical value of the
number that was later named after him. The first accurate determination of Avogadro’s
number was not made until around 1913, when Robert Millikan measured the fundamental
unit of electric charge. Others had already measured the charge-to-mass ratio of the proton
(then called simply a hydrogen ion}, so at that point it was easy to calculate the mass of
the proton and hence the number of them needed to make a gram.
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Fluid

Figure 1.20. The simplest arrangerment for demonstrating viscosity: two paraliel
surfaces sliding past each other, separated by a narrow gap containing & fluid. If
the motion is slow enough and the gap narrow enough, the fluid flow is laminar:
At the macroscopic scale the fluid moves only horizontally, with no turbulence.

“Area =— A

backward force on the top surface. The more “viscous” the fluid, the more efficient
the momenturn transfer and the greater these forces will be. Air isn’t very viscous;
corn syrup is.

As with thermal conductivity, it isn't hard to guess how the viscous drag force
depends on the geometry of the situation. The simplest guess (which turns out to
be correct) is that the force is proportional to the common area of the surfaces,
inversely proportional to the width of the gap, and directly proportional to the
difference in velocity between the two surfaces. In the notation of Figure 1.20
{using u, for the macroscopic velocity to distinguish it from the much faster thermal
velocities},

F, x A (upsop Azux’b‘mm) or % x % (1.68)
The constant of proportionality is called the coefficient of viscosity or simply
the viscosity of the fluid; the standard symbol for this coeflicient is n, the Greek
letter eta. Qur formula for the force is then

s daty
Pl g e, (169)

where I've put absolute value bars around F, because it could represent the force
on cither plate, these two forces being equal in magnitude but opposite in direction.
The force per unit area has units of pressure (Pa or N/m?), but please don’t call
it a pressure because it's exerted parallel to the surface, not perpendicular. The
correct term for such a force per unit area is shear stress.

From equation 1.69 you can see that the coefficient of viscosity has units of
pascal-seconds in the SI system. (Sometimes you’ll still see viscosities given in a
unit called the poise; this is the cgs unit, equal to a dyne-second per cm?, which
turns out to be 10 times smaller than the SI unit.} Viscosities vary enormously from
one fluid to another and also vary considerably with temperature. The viscosity of
water is (.0018 Pa-s at 0°C but only 0.00028 Pa-s at 100°C. Low-viscosity motor oil
{SAE 10} has a room-temperature viscosity of about 0.25 Pa-s. Gases have much
lower viscosities, for example, 19 yPa-s for air at room temperature. Surprisingly,
the viscosity of an ideal gas is independent of its pressure and increases as a function
of temperature. This strange behavior requires some explanation.

Recall from the previous subsection that the thermal conductivity of an ideal
gas behaves in a similar way: It is independent of pressure and incresses with
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temperature in proportion to v7. Although the amount of energy carried by
a parcel of gas is proportional to the density of particles N/V, this dependence
cancels in k; because the mean free path, which controls how far the energy can
travel at once, is proportional te V/N. The temperature dependence of k; comes
from the remaining factor of 7, the average thermal speed of the gas molecules (see
equation 1.65).

In exactly the same way, the transfer of horizontal momentum vertically through
a gas depends on three factors: the momentum density in the gas, the mean free
path, and the average thermal speed. The first two factors depend on the particle
density, but this dependence cancels: Although a dense gas carries more momen-
tumn, random thermal motions transport that momentum through less distance at
a time. The molecules do move faster at high temperature, however. According
to this picture the viscosity of a gas should be proportional to /T just like the
thermal conductivity, and experiments confirm this prediction.

Why, then, does the viscosity of a liquid decrease as its temperature increases?
In a liquid the density and the mean free path are essentially independent of tem-
perature and pressure, but another factor comes into play: When the temperature
is low and the thermal motions are slow, the molecules can better latch onto each
other as they collide. This binding allows a very efficient transfer of momentum
from one molecule to another. In the extreme case of a solid, the molecules are more
or less permanently bonded together and the viscosity is almost infinite; solids cen
flow like fluids, but only on geeological time scales,

Problem 1.66. In analogy with the thermal conductivity, derive an approximate
formula for the viscosity of an ideal gas in terms of its density, mean free path,
and average thermal speed. Show explicitly that the viscosity is independent of
pressure and proportional to the square root of the temperature. Evaluate your
formula numerically for air at room temperature and compare to the experimental
value quoted in the text.

Diffusion

Heat conduction is the transport of energy by random thermal moticns. Viscosity
results from the transport of momentum, which in gases is accomplished mainly
by random thermal motions. A third entity that can be transported by random
thermal motions is particles, which tend to spread from areas of bigh concentration
to areas of low concentration. For example, if you drop a drop of food coloring
into a cup of still water, you'll see the dye gradually spreading out in all directions.
This spreading out of particles is called diffusion.”

Like the flow of energy and momentum, the flow of particles by diffusion obeys
an equation that is fairly easy to guess. Just as heat conduction is caused by a
temperature difference and viscous drag is caused by a velocity difference, diffusion
is caused by a difference in the concentration of particles, that is, the number of
particles per unit volume, N/V. In this section (and only in this section) I'll use the

*Problem 1.22 treats the simpler process of a gas escaping through a hole into a vacuum,
called effusion.
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Figure 1.21. When the concentration of a cer- . .
tain type of molecule increases from left to right, RN &~
there will be diffusion, a net flow of molecules, : -
from right to left.
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symbol n for particle concentration. To keep the geometry simple, imagine a region
where n for a certain type of particle increases uniformly in the = direction (see
Figure 1.21). The flux of these particles across any surface is the net number that
cross it per unit area per unit time; the symbol for particle flux is J. Then, in anal-
ogy with equations 1.60 and 1.69, we would probably guess that |J| is proportional
to dn/dr. Again, this guess turns out to be correct under most circumstances.
Using the symbol I for the constant of proportionality, we can write

dn
Jp = =D . (1.70)
The minus sign indicates that if dn/dx is positive, the flux is in the negative z di-
rection. This equation is known as Fick’s law, after the 19th century German
physiologist Adolf Eugen Fick.

The constant [ is called the diffusion coefficient; it depends both on the
type of molecule that is diffusing and on what it is diffusing through. In SI units
(m?/s), diffusion coefficients in water near room temperature range from 9 x 10~°
for H ions to 5 x 1071 for sucrose to a few times 107! for very large molecules
such as proteins. Diffusion in gases is faster: For CO molecules diffusing through air
at room temperature and atmospheric pressure, D = 2 x 10"3 m?/s. Other small
molecules diffusing through air have similar D values. As you would probably
expect, diffusion coefficients generally increase with increasing temperature.

Although diffusion is extremely important on the small scales of biological cells,
cloud droplets, and semiconductor fabrication, the small D values quoted above
indicate that it is not an efficient mechanism for large-scale mixing. As a quick
example, consider a drop of food coloring added to a glass of water. Imagine that
the dye has already spread uniformly through half of the glass. How long would
it take to diffuse into the other half? According to Fick’s law, I can write very
roughly

N NV

AAt T T Az

where N is the total number of dye molecules, Az isabout 0.l mand V = A.- Ax.
T've written the particle flux in terms of the same N to indicate that I want At to be
the time for approximately all (that is, half) of the molecules to cross from one side
of the glass to the other. I don’t know how big a molecule of food coloring is, but

(.71)
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it can't be too different in size from sucrose so I'll guess I = 1079 m?/s. Solving
for At then gives 107 seconds, or almost four months. If you actually perform an
experiment with water and food coloring, you'll probably find that they mix much
faster than this, due to bulk motion of the water—convection. You can see the
diffusion, though, if you look very closely at the interface between the colored and
clear water.

Problem 1.67. Make a rough estimate of how far food coloring (or sugar) will
diffuse through water in one minute.

Problem 1.68. Suppose you open a bottle of perfume at one end of a room. Very
roughly, how much time would pass before a person at the other end of the room
could smell the perfume, if diffusion were the only transport mechanism? Do you
think diffusion s the dominant transport mechanism in this situation?

Problem 1.69. Imagine a narrow pipe, filled with fluid, in which the concentration
of & certain type of molecule varies only along the length of the pipe (in the
z direction), By considering the flux of these particles from both directions into a
short segment Az, derive Fick’s second law,

2
o _p 6—72‘-.
at Jz
Noting the sirnilarity to the heat equation derived in Problem 1.62, discuss the
implications of this equation in some detail.

Problem 1.70. In analogy with the thermal conductivity, derive an approximate
formula for the diffusion coefficient of an ideal gas in terms of the mean free path
and the average thermal speed. Evaluate your formula numerically for air at room
temperature and atmospheric pressure, and compare to the experimental value
quoted in the text. How does D depend on T, at fixed pressure?

Humans are to a large degree sensitive to energy fluxes rather than temper-
atures, which you can verify for yourself on a cold, dark morning in the
outhouse of a mountain cabin equipped with wooden and metal toilet seats.
Both seats are at the same temperature, but your backside, which is not a
very good thermometer, is nevertheless very effective at telling you which is
which.
~—Craig F. Bohren and Bruce A. Albrecht,
Atmospheric Thermodynamics (Oxford
University Press, New York, 1998).



2 The Second Law

The previous chapter explored the law of energy conservation as it applies to ther-
modynamic systems. It also introduced the concepts of heat, work, and temper-
ature. However, some very fundamental questions remain unanswered: What is
temperature, really, and why does heat flow spontaneously from a hotter object to
a cooler object, never the other way? More generally, why do so many thermo-
dynamic processes happen in one direction but never the reverse? This is the Big
Question of thermal physics, which we now set out to answer.

In brief, the answer is this: Ireversible processes are not inevitable, they are
just overwhelmingly probable. For instance, when heat flows from a hot object to
a cooler object, the energy is just moving around more or less randomly. After we
wait a while, the chances are overwhelming that we will find the energy distributed
more “uniformly” (in a sense that 1 will make precise later) among all the parts of
a system. “Temperature” is a way of quantifying the tendency of energy to enter
or leave an object during the course of these random rearrangements.

To make these ideas precise, we need to study how systems store energy, and
learn to count all the ways that the energy might be arranged. The mathematics
of counting ways of arranging things is called combinatorics, and this chapter
begins with a brief introduction to this subject.

2.1 Two-State Systems

Suppose that I flip three coins: a penny, a nickel, and a dime. How many possible
outcomes are there? Not very many, so I've listed them all explicitly in Table 2.1.
By this brute-force method, I ¢count eight possible outcomes. If the coins are fair,
each outcome is equally probable, so the probability of getting three heads or three
tails is one in eight. There are three different ways of getting two heads and a
tall, so the probability of getting exactly two heads is 3/8, as is the probability of
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Penny Nickel Dime
H H H

Table 2.1. A list of all possible “mi-
crostates” of a set of three coins (where H
is for heads and T is for tails).
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getting exactly one head and two tails.

Now let me introduce some fancy terminology. Each of the eight different out-
comes is called a microstate. In general, to specify the microstate of a system,
we must specify the state of each individual particle, in this case the state of each
coin. If we specify the state more generally, by merely saying how many heads or
tails there are, we call it a macrostate. Of course, if you know the microstate of
the system {say HHT), then you also know its macrostate (in this case, two heads).
But the reverse is not true: Knowing that there are exactly two heads does not
tell you the state of each coin, since there are three microstates corresponding to
this macrostate. The number of microstates corresponding to a given macrostate
is called the multiplicity of that macrostate, in this case 3.

The symbol I'll use for multiplicity is the Greek letter capital omega, Q1. In
the example of the three coins, {2(3 heads) == 1, {2 heads) == 3, Q)(1 head) = 3,
and (0 heads) == 1. Note that the total multiplicity of all four macrostates is
14+ 3+ 3+ 1 =8, the total number of microstates. 'l call this quantity Q(all).
Then the probability of any particular macrostate can be written

Hn)
Qall)”

For instance, the probability of getting 2 heads is 2(2)/Q(all) = 3/8. Again, I'm
assuming here that the coins are fair, so that all 8 microstates are equally probable.

To make things a little more interesting, suppose now that there are not just
three coins but 100. The total number of microstates is now very large: 2*%, since
each of the 100 coins has two possible states. The number of macrostates, however,
is only 101: O heads, 1 head, ... up to 100 heads. What about the multiplicities of
these macrostates?

Let’s start with the 0-heads macrostate. If there are zero heads, then every coin
faces tails-up, so the exact microstate has been specified, that is, 2{0) = 1.

What if there is exactly one head? Well, the heads-up coin could be the first
one, or the second one, etc., up to the 100th one; that is, there are exactly 100
possible microstates: Q1) = 100. ¥ you imagine all the coins starting heads-down,
then (1) is the number of ways of choosing one of them to turn over.

To find ({2), consider the number of ways of choosing two coins to turn heads-
up. You have 100 choices for the first coin, and for each of these choices you have

probability of n heads = (2.1)
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99 remaining choices for the second coin. But you could choose any pair in either
order, so the number of distinct pairs is

(2) = 1002' 9 (2.2)

If you're going to turn three coins heads-up, you have 100 choices for the first,
99 for the second, and 98 for the third. But any triplet could be chosen in several
ways: 3 choices for which one to flip first, and for each of these, 2 choices for which
to flip second. Thus, the number of distinct triplets is

_ 100-99-98
= T
Perhaps you can now see the pattern. To find {¥{n), we write the product of n

factors, starting with 100 and counting down, in the numerator. Then we divide
by the product of n factors, starting with » and counting down to 1:

100-99--- (100 — n + 1)
--+2-1 )
The denominator is just n-factorial, denoted “nl”. We can also write the numerator

in terms of factorials, as 1001/(100—n)!. (Imagine writing the product of all integers
from 100 down to 1, then canceling all but the first n of them.) Thus the general

formula can be written
100! 100
%) = o6 =1 = ( ) @8

0(3) (2.3)

Q(n) = (2.4)

The last expression is just a standard abbreviation for this quantity, sometimes
spoken “100 choose n”-—the number of different ways of choosing n items out
of 100, or the number of “combinations” of n items chosen from 100.

If instead there are IV coins, the multiplicity of the macrostate with n heads is

QN = — (N ) (2.6)

n!- (N — n)! n
the number of ways of choosing n objects out of N.

Problem 2.1. Suppose yvou flip four fair coins.

{a} Make a list of all the possible outcomes, as in Table 2.1.

{b} Make a list of all the different “macrostates” and their probabilities.

{c} Compute the multiplicity of each macrostate using the combinatorial for-
mula 2.6, and check that these results agree with what you got by brute-
force counting.

Problem 2.2. Suppose you flip 20 fair coins.
{a) How many possible outcomes {microstates) are there?

{b} What is the probabillty of getting the sequence HTHHTTTHTHHHTHH-
HHTHT (in exactly that order)?

{¢) What is the probability of getting 12 heads and 8 tails (in any order)?
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Problem 2.3. Suppose you flip 50 fair coins.
(a) How many possible outcomes {microstates} are there?
{b) How many ways are there of getting exactly 25 heads and 25 talls?
{c) What is the probability of getting exactly 25 heads and 25 tails?
{d) What is the probability of getting exactly 30 heads and 20 tails?
{e) What is the probability of getting exactly 40 heads and 10 tails?
{f) What is the probability of getting 50 heads and no tails?
(g) Plot a graph of the probability of getting n heads, as a function of n.

Problem 2.4. Calculate the number of possible five-card poker hands, dealt from
a deck of 52 cards. (The order of cards in a hand does not matter.) A royal flush
consists of the five highest-ranking cards (ace, king, queen, jack, 10) of any one
of the four suits. What is the probability of being dealt a royal flush {on the first
deal)?

The Two-State Paramagnet

You may be wondering what this silly coin-flipping example has to do with physies.
Not much yet, but actually there are important physical systems whose combina-
torics are exactly the same. Perhaps the most important of these is a two-state
paramagnet.

All materials will respond in some way to a magnetic field, because of the
electrical nature of electrons and atomic nuclel. A paramagnet is a material in
which the constituent particles act like tiny compass needles that tend to align
parallel to any externally applied magnetic field. (If the particles interact strongly
enough with each other, the material can magnetize even withou! any externally
applied field. We then call it a ferromagnet, after the most famous example, iron.
Paramagnetism, in constrast, is a magnetic alignment that lasts only as long as an
external field is applied.)

Tl refer to the individual magnetic particles as dipoles, because each has its
own magnetic dipole moment vector. In practice each dipole could be an individual
electron, a group of electrons in an atom, or am atomic nucleus. For any such
microscopic dipole, quantum mechanics allows the component of the dipole moment
vector along any given axis can take on only certain discrete values—intermediate
values are not allowed. In the simplest case only two values are allowed, one positive
and the other negative. We then have a two-state paramagnet, in which each
elementary compass needle can have only two possible orientations, either parallel
or antiparallel to the applied field. I'll draw this system as a bunch of little arrows,
each pointing either up or down, as in Figure 2.1.*

Now for the combinatorics. Let’s define N; to be the number of elementary
dipoles that point up (at some particular time), and Nj to be the number of dipoles
that point down. The total number of dipoles is then N = Ny 4+ Nj, and we'll

* A particle’s dipole moment vector is proportional to its angular momentum vector; the
simple two-state case occurs for particles with “spin 1/2." For a more complete discussion
of quantum mechanics and angular momentum, see Appendix A.
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Figure 2.1. A symbolic representation of a two-state paramagnet, in which each
elementary dipole can point either parallel or antiparallel to the externally applied
magnetic field.

consider this number to be fixed. This system has one macrostate for each possible
value of Ny, from § to N. The multiplicity of any macrostate is given by the same
formula as in the coin-tossing example:

(2.7)

AN, = (N) NI

N T NN

The external magnetic field exerts a torque on each little dipole, trying to twist
it to point parallel to the field. If the external field points up, then an up-dipole has
less energy than a down-dipole, since you would have add energy to twist it from
up to down. The total energy of the system (neglecting any interactions between
dipoles) is determined by the total numbers of up- and down-dipoles, so specifying
which macrostate this system is in is the same as specifying its total energy. In
fact, in nearly all physical examples, the macrostate of a system is characterized,
at least in part, by its total energy.

2.2 The Einstein Model of a Solid

Now let’s move on to a system that’s a bit more complicated, but also more rep-
resentative of the systems typically encountered in physics. Consider a collection
of microscopic systems that can each store any number of energy “units,” all of
the same size. Equal-size energy units occur for any quantum-mechanical har-
monic oscillator, whose potential energy function has the form %kszQ {where k,
is the “spring constant”). The size of the energy units is then hf,* where h is
Planck’s constant (6.63 x 10734 J.s) and f is the natural frequency of the oscilla-
tor (2—11; v ks/m). An abstract way of picturing a collection of many such oscillators
is shown in Figure 2.2,

*As explained in Appendix A, the lowest possible energy of a quantum harmonic os-
cillator is actually %h f, not zero. But this “zero-point” energy never moves around, so
it plays no role in thermal interactions. The excited-state energies are %h i, %h f, and so
on, each with an additional energy “unit” of Af. For our purposes, it's fine to measure all
energies relative to the ground state; then the allowed energies are 0, Af, 2hf, etc.

Elsewhere you may see the energy unit of a quantum oscillator written as fiw, where
k= h/2n and w = 2xf. The difference between hw and Af is nothing but a matter of
where to put the factors of 2n.
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Figure 2.2. In quantum mechanics, any system with a quadratic potential energy
function has evenly spaced energy levels separated in energy by hf, where f is the
classical oscillation frequency. An Einstein solid is a collection of N such oscillators,
all with the same frequency.

Energy —-m

Examples of quantum oscillators include the vibrational motions of diatomic and
polyatomic gas molecules. But an even more common example is the oscillation
of atoms in a solid (see Figure 1.6). In a three-dimensional solid, each atom can
oscillate in three independent directions, so if there are N oscillators, there are
only N/3 atoms. The model of a solid as a collection of identical oscillators with
quantized energy units was first proposed by Albert Einstein in 1907, so I will refer
to this system as an Einstein solid.

Let’s start with a very small Einstein solid, containing only three oscillators:
N = 3. Table 2.2 lists the various microstates that this system could have, in
order of increasing total energy; each row in the table corresponds to a different
microstate. There is just one microstate with total energy 0, while there are three
microstates with one unit of energy, six with two units, and ten with three units.
That is,

QO)=1, =3  Q@2)=6  923) =10 (2.8)

The general formula for the multiplicity of an Einstein solid with NV oscillators

Oscillator:  #1  #2
Energy:

F
w

Oscillator:  #1
Energy:

=
o
e
w

3
0
0
2
2
1
0
1
0
1

o e i L e 2 -
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0
1
0
0
2
g
]
1
1
]
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Table 2.2. Microstates of a small Einstein solid consisting of only three oscillators,
containing a total of zero, one, two, or three units of energy.
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and ¢ energy units is

(2.9)

(N, g) = (iH-Nw—l) _(g+N-1)

q g (N -1}

Please check this formula for the examples just given. To prove this formla, let
me adopt the following graphical representation of the microstate of an Einstein
solid: I'll use a dot to represent each energy unit, and a vertical line to represent
a partition between one oscillator and the next. So in a solid with four oscillators,
the sequence

o | o0 | 0000

represents the microstate in which the first oscillator has one unit of energy, the
second oscillator has three, the third oscillator has none, and the fourth oscillator
has four. Notice that any microstate can be represented uniquely in this way, and
that every possible sequence of dots and lines corresponds to a microstate. There
are always g dots and N — 1 lines, for a total of g+ N — 1 symbols. Given g and
N, the number of possible arrangements is just the number of ways of choosing ¢
of the symbols to be dots, that is, (""'”2’ -h.

Problem 2.5. For an Einstein solid with each of the following values of N and ¢,
list all of the possible microstates, count them, and verify formula 2.9.

(a) N=3,g=4

(b) N=3,g=5

() N=3,q=6

{d) N=4,¢=2

{e) N=4,¢4=3

(f} N =1, ¢ = anything

{g) N = anything, ¢ =1
Problem 2.6. Calculate the multiplicity of an Einstein solid with 30 oscillators
and 30 units of energy. (Do not attempt to list all the microstates.)

Problem 2.7. For an Einstein solid with four oscillators and two units of energy,
represent each possible microstate as a series of dots and vertical lines, as used in
the text to prove eguation 2.9.

You know, the most amazing thing happened to me tonight. I was coming
here, on the way to the lecture, and I came in through the parking lot.

And you won't believe what happened. I saw a car with the license plate
ARW 357! Can you imagine? Of all the millions of license plates in the state,
what was the chance that I would see that particular one tonight? Amazing!

—Richard Feynman, quoted by David
Goodstein, Physics Today 42, 73
(February, 1989).
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2.3 Interacting Systems

We now know how to count the microstates of an Einstein solid. To understand
heat flow and irreversible processes, however, we need to consider a system of two
Einstein solids that can share epergy back and forth.* I'll call the two solids A
and B (see Figure 2.3).

First I should be clear about what is meant by the “macrostate” of such a com-
posite system. For simplicity, I'll assume that the two solids are weakly coupled,
so that the exchange of energy between them is much slower than the exchange of
energy among atoms within each solid. Then the individual energies of the solids,
Uy and Ug, will change only slowly; over sufficiently short time scales they are
essentially fixed. I will use the word “macrostate” to refer to the state of the com-
bined system, as specified by the (temporarily) constrained values of Uy and Ug.
For any such macrostate we can compute the multiplicity, as we shall soon see.
However, on longer time scales the values of Uy and Up will change, so I'll also
talk about the total multiplicity for all allowed values of Uy and Ug, counting all
possible microstates with only the sum Uioa = Us + Up held fixed.

Let's start with a very small system, in which each of the “solids” contains only
three harmonic oscillators and they contain a total of aix units of energy:

Ny = Np = 3; Jeotal = g4 +qp = 6. (2.10)

{Again I'm using ¢ to denote the number of units of energy. The actual value of
the energy is U = ghf.) Given these parameters, | must still specify the individual
value of g4 or gp to describe the macrostate of the system. There are seven possible
macrostates, with g4 =0, 1, ..., 6, as listed in Figure 2.4. I've used the standard
formula (q+1;r "I) to compute the individual multiplicities Q4 and Qp for each
macrostate. (I also computed some of them in the previous section by explicitly
counting the microstates.) The total multiplicity of any macrostate, Qyorar, is just
the product of the individual multiplicities, since the systems are independent of
each other: For each of the {4 microstates available to solid A, there are Qg
microstates available to solid B. The total multiplicity is also plotted in the bar

Solid B

NB’ 4B

Figure 2.3. Two Einstein solids that can exchange energy with each other, iso-
lated from the rest of the universe.

*This section and parts of Sections 3.1 and 3.3 are based on an article by T. A. Moore
and D. V. Schroeder, American Journal of Physics 65, 26-36 {1997).
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ga Qa4 g O Qioa = 2a0p
0 1 6 28 28
1 3 5 21 63
2 6 4 15 90 'fg
3 16 3 10 100 )
4 15 2 6 90
5 21 1 3 63
6 28 0 1 28 :
"4‘6"2":(61‘3*1) 01 2 3 4 5 6

gA

Figure 2.4. Macrostates and multiplicities of a system of two Einstein solids,
each containing three oscillators, sharing a total of six units of energy.

graph. Over long time scales, the number of microstates accessible to the system is
482, the sum of the last column in the table. This number can also be checked by
applying the standard formula to the entire system of six oscillators and six energy
units.

Now let me introduce a big assumption: Let’s assume that, over long time scales,
the energy gets passed around randomly™ in such a way that all 462 microstates are
equally probable. So if vou look at the system at any instant, you are equally likely
to find it in any of the 462 microstates. This assumption is called the fundamental
assumption of statistical mechanics:

In an isolated system in thermal equilibrinum, all accessible microstates are
equally probable.

1 can’t prove this assumption, though it should seem plausible. At the microscopic
level, we expect that any process that would take the system from state X to state ¥
is reversible, so that the system can just as easily go from state Y to state X.7 In
that case, the system should have no preference for one state over another. Still,
it's not obvious that all of the supposedly “accessible” microstates can actually
be reached within a reasonable amount of time. In fact, we'll soon see that for a
large system, the number of “accessible” microstates is usually so huge that only
a miniscule fraction of them could possibly occur within a lifetime. What we're
assuming is that the microstates that do occur, over “long” but not unthinkably
long time scales, constitute a representative sample. We assumme that the transitions

*Exchange of energy requires some kind of interaction among the oscillators. Fortu-
nately, the precise nature of this interaction doesn’t really matter. There is a danger,
though, that interactions among oscillators could affect the energy levels of each partic-
ular oscillator. This would spoil cur assumption that the energy levels of each oscillator
are evenly spaced. Let us therefore assume that the interactions among oscillators are
strong enough to allow the exchange of energy, but too weak to have much effect on the
energy levels themselves. This assumption is not fundamental to statistical mechanics,
but it makes explicit calculations a whole lot easier.

tThis idea is called the principle of detailed balance.
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¥

are “random,” in the sense that they have no pattern that we could possibly care
about.”

If we invoke the fundamental assumption for our system of two small Einstein
solids, we can immediately conclude that, while all 462 microstates are equally
probable, some macrostates are more probable than others, The chance of find-
ing the system in the fourth macrostate (with three energy units in each solid) is
100/462, while the chance of finding it in the first macrostate (with all the energy
in solid B) is only 28/462. If all the energy is in solid B initially, and we wait a
while, chances are we'll find the energy distributed more evenly later on.

Even for this very small system of only a few oscillators and energy units,
computing all the multiplicities by hand is a bit of a chore. I would hate to do it
for a system of a hundred oscillators and energy units. Fortunately, it’s not hard to
instruct a computer to do the arithmetic. Using a computer spreadsheet program,
or comparable software, or perhaps even a graphing calculator, you should be able
to reproduce the table and graph in Figure 2.4 without too much difficulty (see
Problem 2.9).

Figure 2.5 shows a computer-generated table and graph for a system of two
Einstein solids with

Na =300, Ng=200, geota = 100. (2.11)

Now there are 101 possible macrostates, of which only a few are shown in the table.
Look at the multiplicities: Even the least likely macrostate, with all the energy in
solid B, has a multiplicity of 3 x 108!, The most likely macrostate, with g4 = 60,
has a multiplicity of 7 x 10**4. But what is important about these numbers is not
that they are large, but that their ratio is large: The most likely macrostate is more
than 10%% times more probable than the least likely macrostate.

Let’s look at this example in a little more detail. The total number of microstates
for all the macrostates is 9 x 10'!%, so the probability of finding the system in its
most likely macrostate is not particularly large: about 7%. There are several other
macrostates, with g4 slightly smaller or larger than 60, whose probabilities are
nearly as large. But as g4 gets farther away from 60, on either side, the probability
drops off very sharply. The probability of finding g4 to be less than 30 or greater
than 90 is less than one in g million, and the probability of finding g4 < 10 is less
than 10~%°, The age of the universe is less than 103 seconds, so you would need to
check this system a hundred times each second over the entire age of the universe
before you had a decent chance of ever finding it with g4 < 10. Even then, you
would never find it with g4 =0.

*There can be whole classes of states that are not accessible at all, perhaps because
they have the wrong total energy. There can also be classes of states that are accessible
only over time scales that are much longer than we are willing to wait. The concept of
“accessible,” like that of “macrostate,” depends on the time scale under consideration. In
the case of the Einstein solids, I'm assuming that all microstates with a given energy are
accessible.
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ga Q4 9B {1p Diotal

0 1 100 2.8 x 108%% 28 x 108
1 300 99 93x10%0 28 x10%
2 45150 98 3.1x10%0 1.4x10%
3
4

4545100 97 1.0x 1050 4.6 x 10%
34x10% 96 33x107 1.1x10%8

59 22x 10°% 41 3.1x10% 68 x 10t
60 1.3x109 40 53x10% g.9x 10114
61 7.7x10% 39 88x10* 6.8x 101t

Qtotal ( X 10“4)

100 1.7x 10% ¢ i 1.7 x 10%6 0 20 40 60 80 100
9.3 x 10115 qa

Figure 2.5. Macrostates and multiplicities of a system of two Einstein solids,
with 300 and 200 oscillators respectively, sharing a total of 100 units of energy.

Suppose, however, that this system is initially in a state with ga much less
than 60; perhaps all the energy starts out in solid B. ¥ you now wait a while for the
energy to rearrange itself, then check again, you are more or less cerfain to find that
energy has flowed from B to A. This system exhibits érreversible behavior: Energy
flows spontaneously from B to A, but never (aside from small fluctuations around
g4 = 60) from A to B. Apparently, we have discovered the physical explanation of
heat: It is a probabilistic phenomenon, not absolutely certain, but extremely likely.

We have also stumbled upon a new law of physics: The spontaneous flow of
energy stops when a system is at, or very near, its most likely macrostate, that is,
the macrostate with the greatest multiplicity. This “law of increase of multiplicity”
is one version of the famous second law of thermodynamics. Notice, though,
that it’s not a fundamentel law at all—it’s just a very strong statement about
probabilities.

To make the statement stronger, and to be more realistic in general, we really
should consider systems with not just a few hundred particles, but more like 1023,
Unfortunately, even a computer cannot calculate the number of ways of arranging
10% units of energy among 10%% oscillators. Fortunately, there are some nice ap-
proximations we can make, to tackle this problem analytically. That is the subject
of the following section.

Problem 2.8. Consider a system of two Einstein solids, A and B, each containing
10 oscillators, sharing a total of 20 units of energy. Assume that the solids are
weakly coupled, and that the total energy is fixed.

(a) How many different macrostates are available to this system?
{b) How many different microstates are available to this system?

(c) Assuming that this system is in thermal equilibrium, what is the probability
of finding all the energy in solid A7

{ed) What is the probability of finding exactly half of the energy in solid A?
{e} Under what circumstances would this system exhibit irreversible behavior?
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Problem 2.9. Use a computer to reproduce the table and graph in Figure 2.4:
two Einstein solids, each containing three harmonic oscillators, with a total of six
units of energy. Then modify the table and graph to show the case where one Ein-
stein solid contains six harmonic oscillators and the other contains four harmonic
oscillators {with the total number of energy units still equal to six). Assuming
that all microstates are equally likely, what is the most probable macrostate, and
what is its probability? What is the least probable macrostate, and what is its
probability?

Problem 2.10. Use a computer to produce a table and graph, like those in this
section, for the case where one Einstein solid contains 200 oscillators, the other
contains 100 oscillators, and there are 100 units of energy in total. What is the
most probable macrostate, and what is its probability? What is the least probable
macrostate, and what is its probability?

Problem 2.11. Use a computer to produce a table and graph, like those in this
section, for two interacting two-state paramagnets, each containing 100 elementary
magnetic dipoles. Take a “unit” of energy to be the amount needed to flip a single
dipole from the “up” state (parallel to the external field} to the “down” state
(antiparallel}. Suppose that the total number of units of energy, relative to the
state with all dipoles pointing up, is 80; this energy can be shared in any way
between the two paramagnets. What is the most probable macrostate, and what is
its probability? What is the least probable macrostate, and what is its probability?

2.4 Large Systems

In the previous section we saw that, for a system of two interacting Finstein solids,
each with a hundred or so oscillators, certain macrostates are much more probable
than others. However, a significant fraction of the macrostates, roughly 20%, were
still fairly probable. Next we'll look at what happens when the system is much
larger, so that each solid contains, say, 10%° or more oscillators. My goal, by the
end of this section, is to show you that out of all the macrostates, only a tiny
fraction are reasonably probable. In other words, the multiplicity function becomes
very sharp (see Figure 2.6). To analyze such large systems, however, we must first
make a detour into the mathematics of very large numbers.

N, g = few hundred N, ¢ = few thousand

A A
oy ey
2 8
& &
= 3
] =
= =

B qA = gA

Figure 2.6. Typical multiplicity graphs for two interacting Einstein solids, con-
taining a few hundred oscillators and energy units {left} and a few thousand (right).
As the size of the system increases, the peak becomes very narrow relative to the
full horizontal scale. For N =g = 1020, the peak is much too sharp to draw.
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Very Large Numbers

There are three kinds of numbers that commonly occur in statistical mechanics:
small mumbers, large numbers, and very large numbers.

Small numbers are small numbers, like 6, 23, and 42. You already know how
to manipulate small numbers.

Large numbers are much larger than small numbers, and are frequently made
by exponentiating small numbers. The most important large number in statistical
mechanics is Avogadro’s number, which is of order 10®. The most important
property of large numbers is that you can add a small number to a large number
without changing it. For example,

107 4 23 = 107, (2.12)

(The only exception to this rule is when you plan to eventually subtract off the
same large number: 1072 + 42 — 107 = 42.)

Very large numbers are even larger than large numbers, and can be made by
exponentiating large numbers. An example would be* 10107, Very large numbers
have the amazing property that you can multiply them by large numbers without
changing them. For instance,

1010% « 1078 = 10(10%%423) .. 1010231 (2.13)

by virtue of equation 2.12. This property takes some getting used to, but can be
extremely convenient when manipulating very large numbers. (Again, there is an
exception: When you plan to eventually divide by the same very large number, you
need to keep track of any leftover factors.)

One common trick for manipulating very large numbers is to take the logarithm.
This operation turns a very large number into an ordinary large number, which is
much more familiar and can be manipulated more straightforwardly. Then at the
end you can exponentiate to get back the very large number. I'll use this trick later
in this section.

Problem 2.12. The natural logarithm function, In, is defined so that ¢®% = g

for any positive number .

{a) Sketch a graph of the natural logarithm function.
{b) Prove the identities

lnab=1lna+inb and Ina® = blna.

(c) Prove that &% Inz= é

{d) Berive the useful approximation
In(l 4 =) = =z,

which is valid when |z] < 1. Use a caleulator to check the accuracy of this
approximation for z = 0.1 and z = 0.01.

*Note that ¥ means 2"}, not (z¥)*.

81



62

Chapter 2 'T'he Second Law

Problem 2.13. Fun with logarithms.

@b (That is, write it in & way that doesn't

(a) Simplify the expression e
involve logarithms.)

(b} Assuming that b < a, prove that In{a + b} = (Ina) + (b/e). {(Hint: Factor
out the a from the argument of the logarithm, so that you can apply the
approximation of part {d) of the previous problem.)

Problem 2.14. Write '%" in the form 10° , for some 7.

Stirling’s Approximation

Our formulas for multiplicities involve “combinations,” which invelve factorials. To
apply these formulas to large systems, we need a trick for evaluating factorials of
large numbers. The trick is called Stirling’s approximation:

Nia NNe=¥y/2rN. (2.14)

This approximation is accurate in the limit where N > 1. Let me try to explain
why.

The quantity N! is the product of N factors, from 1 up to N. A very crude
approximation would be to replace each of the N factors in the factorial by N, so
Nix~ NN, This is a gross overestimate, since nearly all of the N factors in N! are
actually smaller than N. It turns out that, on average, each factor is effectively

smaller by a factor of e:
NV _ NN
N~ (“e"") = NNe=N. (2.15)

This is still off by a large factor, roughly V2« N. But if N is a large number, then
Nlis a very large number, and often this correction factor {which is only a large
number) can be omitted.

If all you care about is the logarithm of N}, then equation 2.15 is usually good
enough. Another way to write it is

InN'&= NInN~N. (2.16)

It's fun to test Stirling’s approximation on some not-very-large numbers, using
a calculator or a computer. Table 2.3 shows a sampling of results. As you can see,
N does not have to be particularly large before Stirling’s approximation becomes
useful. Equation 2.14 is quite accurate even for N = 10, while equation 2.16 is
quite accurate for N == 100 (if all you care about is the logarithm).

For a derivation of Stirling’s approximation, see Appendix B.

N | Nt  NNeN2zN Error | WhN!l NIaN-N  FError
1 1 922 7% 0 -1 00
10 3628800 3598696  .83% 15.1 13.0  13.8%
100 | 9% 10497 9 x 10'%7  .083% 364 360  .89%

Table 2.3. Comparison of Stirling's approximation (equations 2.14 and 2.16) to
exact values for N == 1, 10, and 100.
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Problem 2.15. Use a pocket calculator to check the accuracy of Stirling’s ap-
proximation for N == 50. Also check the accuracy of equation 2.16 for In N1

Problem 2.16. Suppose you flip 1000 coins.

{a) What is the probability of getting exactly 500 heads and 500 tails? (Hint:
First write down a formula for the total number of possible outcomes. Then,
to determine the “multiplicity” of the 500-500 “macrostate,” use Stirling's
approximation, [f you have a fancy calculator that makes Stirling’s ap-
proximation unnecessary, multiply all the numbers in this problem by 10,
or 106, or 1000, unti] Stirling’s approximation becomes necessary.)

(b) What is the probability of getting exactly 608 heads and 400 tails?

Multiplicity of a Large Einstein Solid

Armed with Stirling’s approximation, let me now estimate the multiplicity of an
Einstein solid containing a lerge number of oscillators and energy units. Rather
than working it out in complete generality, I'll consider only the case ¢ > N, when
there are many more energy units than oscillators. (This is the “high-temperature”
timit.)

I'll start with the exact formula:

q+N—I) _ g+ N-1 g+ N)!

QN,q) = ( (2.17)

q g(N=1 = ¢'N!

T'm making the last approximation because the difference between N!and (N —1}!
is only a large factor {N), which is insignificant in a very large number like (. Next
T'Hl take the natural logarithm and apply Stirling’s approximation in the form 2.16:

1nQ=ln(W)
=In{g+ N} —ln¢! - In V! (2.18)
~(g+N)ln{g+ N)~(g+ N} ~¢lng+g—-NInN 4+ N
= (g+ N)ln(g+ N) -glng—- NI N.

8o far 1 haven't assumed that ¢ > N-—only that both ¢ and N are large. But now
let me manipulate the first logarithm as in Problem 2.13:

N
In{g+ N)= ln[q(l + E)}
N
=lng+ ln(l + ?) (2.19)
ing + N
q 7
The last step follows from the Taylor expansion of the logarithm, In(1 + z) =~ z for

z| < 1. Plugging this result into equation 2.18 and canceling the qln g terms, we

obtain N2
Innzmn}% N (2.20)
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The last term becomes negligible compared to the others in the limit ¢ > N.
Exponentiating the first two terms gives

N
(N, q) = eV Ia/MeN = (ENE) (when ¢ >» N). (2.21)

This formula is nice and simple, but it’s bizarre. The exponent is a large number, so
{1 is a very large number, as we already knew. Furthermore, if you increase either
N or g by just a little bit, £ will increase by a lot, due to the large exponent N,

Problem 2.17. Use the methods of this section to derive a formula, similar to
equation 2.21, for the muitiplicity of an Einstein solid in the “low-temperature”
limit, ¢ < N.

Problem 2.18. Use Stirling’s approximation to show that the multiplicity of an
Einstein solid, for any large values of N and g, is approximately

(L) ()
V2ralg+ N)/N

The square root in the denominator is merely large, and can often be neglected.

|
However, it is needed in Problem 2.22. (Hint: First show that I = F-%rﬁ ‘f;N -
Do not neglect the v/2a N in Stirling’s approximation.)

SUN,q) =

Problem 2.19. Use Stirling’s approximation to find an approximate formula for
the multiplicity of a two-state paramagnet. Simplify this formula in the limit
N; < N to obtain 2 = (Ne/N l)Nl. This result should lock very similar to your
answer to Problem 2.17; explain why these two systems, in the limits considered,
are essentially the same.

Sharpness of the Multiplicity Fanction

Finally we're ready to return to the issue raised at the beginning of this section:
For a system of fwo large, interacting Einstein solids, just how skinny is the peak
in the multipHcity function?

For simplicity, let me assume that each solid has N oscillators. T'll call the total
number of energy units siraply ¢ {instead of g} for brevity, and I'll assume that
this is much larger than N, so we can use formula 2.21. Then the multiplicity of
the combined system, for any given macrostate, is

= () (R - (e, em

where ¢4 and gg are the numbers of energy units in solids A and B. (Note that
ga + gp must equal ¢.)
If you graph equation 2.22 as a function of g4, it will have a very sharp peak at

ga = q/2, where the energy is distributed equally between the solids. The height
of this peak is a very large number:

o = (f»)m(%)w. (2.23)
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I want to know what the graph looks like near this peal, so let me set

=4 .
ga = 2 +z, gp = 9 x, (2'24)
where x can be any number that is much smaller than ¢ (but still possibly quite

large). Plugging these expressions into equation 2.22 gives

_yeNrrg\? N

o= (5) 1(3) -+ (2.25)
To simplify the second factor, I'll take its logarithm and manipulate it as I did in
equation 2.19:

(2.26)

Now I can exponentiate the last expression and plug this back into equation 2.25:
aN
Q= (%) eNIna/2? =N @2/0) L . o~N(22/a) (2.27)

A function of this form is called a Gaussian; it has a peak at x = 0 and a sharp
fall-off on either side, as shown in Figure 2.7. The multiplicity falls off to 1/e of its
maximum value when

N(z—m)2 =1 or (2.28)

q
T
g 2vN
This is actually a rather large number. But if N = 10%, it’s only one part in ten
billion of the entire scale of the graph! On the scale used in the figure, where the

- Qma‘x

Width = g/vN
Pull scale & 10% km

Ao i

Py

q/2 qa

Figure 2.7. Multiplicity of a system of two large Einstein solids with many
epergy tnits per oscillator (high-temperature limit), Only a tiny fraction of the
full horizontal scale is shown.
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width of the peak is about 1 cm, the full scale of the graph would have to stretch
169 cm, or 100,000 km—more than twice around the earth. And near the edge of
the page, where z is only ten times larger than g/ 2+/N, the multiplicity is less than
its maximum value by a factor of e~ 100 &~ 10~4,

This result tells us that, when two large Einstein solids are in thermal equilib-
riwm with each other, any random fluctuations away from the most likely macrostate
will be utterly unmeasurable. To measure such fluctuations we would have to mea-
sure the energy to an accuracy of ten significant figures. Once the system has had
time to come to thermal equilibrium, so that all microstates are equally probable,
we might as well assume that it is in its most likely macrostate. The limit where
a system becomes infinitely large, so that fluctuations away from the most likely
macrostate never occur, is called the thermodynamic limit.

Problem 2.20. Suppose you were to shrink Figure 2.7 until the entire horizontal
scale fits on the page. How wide would the peak be?

Problem 2.21. Use a computer to plot formula 2.22 directly, as follows. Define
z = qa/q, so that {1-2) = gg/q. Then, aside from an overall constant that we’ll
ignore, the multiplicity function is §4z(1-z)]N , where z ranges from 0 to 1 and the
factor of 4 ensures that the height of the peak is equal to 1 for any N. Plot this
function for N = 1, 10, 100, 1000, and 10,060. Observe how the width of the peak
decreases as N increases.

Problem 2.22. This problem gives an alternative approach to estimating the
width of the peak of the multiplicity function for a system of two large Einstein
solids.

(a) Consider two identical Einstein solids, each with N oscillators, in thermal
contact with each other. Suppose that the total number of energy units in
the combined system is exactly 2N. How many different macrostates {that
is, possible values for the total energy in the first solid} are there for this
combined system?

{(b) Use the result of Problem 2.18 to find an approximate expression for the
total number of microstates for the combined system. (Hint: Treat the
combined systern as a single Eipstein solid. Do net throw away factors
of “large” numbers, since you will eventuall% be dividing two “very large”
numbers that are nearly equal. Answer: 237 //8xN.)

{e) The most likely macrostate for this system is {of course) the one in which
the energy is shared equally between the two solids. Use the result of
Problem 2.18 to find an approximate expression for the multiplicity of this
macrostate. {Answer: 24N [{4nNY.)

(d) You can get a rough idea of the “sharpness” of the multiplicity function
by comparing your answers to parts {b) and {c}. Part (¢} tells you the
height of the peak, while part (b} tells you the total area under the entire
graph. As a very crude approximation, pretend that the peak’s shape is
rectangular. In this case, how wide would it be? Out of all the macrostates,
what fraction have reasonably large probabilities? Ewvaluate this fraction
numerically for the case N == 10%.
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Problem 2.23. Consider a two-state paramagnet with 1022 elementary dipoles,
with the total energy fixed at zero go that exactly half the dipoles point up and
half point down.

{a) How many microstates are “accessible” to this system?

{b) Suppose that the microstate of this system changes a billion times per
second. How many microstates will it explore in ten billion years (the age
of the universe)?

{c) Isit correct to say that, if you wait long enough, a system will eventually be
found in every “accessible” microstate? Explain your answer, and discuss
the meaning of the word “accessible.”

Problem 2.24. For a single large two-state paramagnet, the multiplicity function
is very sharply peaked about Ni = N/2.
{a} Use Stirling’s approximation to estimate the height of the peak in the
multiplicity function.

{b)} Use the methods of this section to derive a formula for the multiplicity
function in the vicinity of the peak, in terms of z = Ny — {N/2). Check
that your formula agrecs with your answer to part (a) when =z = 0.

(e} How wide is the peak in the multiplicity function?

{d) Suppose you flip 1,000,600 coins. Would you be surprised to obtain 501,000
heads and 499,000 tails? Would you be surprised to obtain 510,000 heads
and 490,000 tails? Explain.

Problem 2.25. The mathematics of the previous problem can also be applied to
a one-dimensional random walk: a journey comsisting of NV steps, all the same
size, cach chosen randomly to be cither forward or backward. (The usual mental
image is that of a drunk stumbling along an alley.)

{a) Where are you most likely to find yourself, after the end of a long randem
walk?

{b)} Suppose you take a random walk of 10,000 steps (say each a yard long).
About how far from your starting point would you expect to be at the end?

{c} A good example of a random walk in nature is the diffusion of a molecule
through a gas; the average step length is then the mean free path, as com-
puted in Section 1.7. Using this model, and neglecting any small numerical
factors that might arise from the varying step size and the multidimensional
nature of the path, estimate the expected net displacement of an air mole-
cule (or perhaps a carbon monoxide molecule traveling through air} in one
second, at room temperature and atmospheric pressure. Discuss how your
estimate would differ if the elapsed time or the temperature were different.
Check that your estimate is consistent with the treatment of diffusion in
Section 1.7.

It all works because Avogadro’s number is closer to infinity than to 10.

—Ralph Balerlein, American Journal of
Physics 46, 1045 (1978). Copyright
1978, American Association of Physics
Teachers. Reprinted with permission.
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2.5 The Ideal Gas

The conclusion of the previous section—that only a tiny fraction of the macrostates
of a large interacting system have reasonably large probabilities—applies to many
other systems besides Einstein solids. In fact, it is true for essentially any pair of
interacting objects, provided that the number of particles and the number of energy
units are both “large.” In this section I'll argue that it is true for ideal gases.

An ideal gas is more complicated than an Einstein solid, because its multi-
plicity depends on its volume as well as its total energy and number of particles.
Furthermore, when two gases interact, they can often expand and confract, and
even exchange molecules, in addition to exchanging energy. We will still find, how-
ever, that the multiplicity function for two interacting gases is very sharply peaked
around a relatively small subset of macrostates.

Multiplicity of a Monatomic Ideal Gas

For simplicity, I'll consider only a monatomic ideal gas, like helium or argon. 'li
begin with a gas consisting of just one molecule, then work up to the general case
of N molecules.

So suppose we have a single gas atom, with total energy U, in a container of
volume V. What is the multiplicity of this system? That is, how many microstates
could the molecule be in, given the fixed values of U and V7

Well, a container with twice the volume offers twice as many states to a mole-
cule, so the multiplicity should be proportional to V. Also, the more different
momentum vectors the molecule can have, the more states are available, so the
multiplicity should also be proportional to the “volume” of available momentum
space. (Momentum space is an imaginary “space” in which the axes are p;, py,
and p,. Each “point” in momentum space corresponds to a momentum vector for
the particle.) So let me write schematically

o V-V, (2.29)

where V' is the volume of ordinary space (or position space), V; is the volume of
momentum space, and the 1 subscript indicates that this is for a gas of just one
molecule.

This formula for £, is still pretty ambiguous. One problem is in determining
the available volume of momentum space, V. Since the molecule’s kinetic energy
must equal U, there is a constraint:

1 1
U= §m(vﬁ + vi + vf) =5 (pi +p§ +p3). {2.30)
This equation can also be written
P2 +p2 +pl =2mU, (2.31)

which defines the surface of a sphere in momentum space with radius v2m{ (see
Figure 2.8}, The “volume” of momentum space is really the surface area of this
sphere (perhaps multiplied by a small thickness if U is allowed to fluctuate some-
what).
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i
‘ Radius = v2ml/

Figure 2.8. A sphere in momen-
tum space with radius v2ml/. ifa
molecule has energy U, its momen-
tum vector must lie somewhere on > Py
the surface of this sphere.

The other problem with equation 2.29 is in determining the constant of propor-
tionality. While it seemns pretty clear that 3 must be proportional to the volumes
of position space and momentum space, how can we possibly count the various
microstates to get a finite number for the multiplicity? It would seem that the
number of allowed microstates, even for a gas of just one molecule, is infinite.

To actually count the number of microstates we must invoke quantum me-
chanics. (For a systematic overview of quantum mechanics, see Appendix A} In
quantumx mechanics, the state of a system is described by a wavefunction, which is
spread out in both position space and momentum space. The less spread out the
wavefunction is in position space, the more spread out it must be in momentum
space, and vice versa. This is the famous Heisenberg uncertainty principle:

(Az}{(Aps) = h, {2.32)

where Az is the spread in z, Ap, is the spread in p., and h is Planck’s constant.
{The product of Az and Ap, can also be more than h, but we are interested in
wavefunctions that specify the position and momentum as precisely as possible.)
The same limitation applies to y and p,, and to 2z and p..

Even in quantum mechanics, the number of allowed wavefunctions is infinite.
But the number of independent wavefunctions {in a technical sense that's defined
in Appendix A) is finite, if the total available position space and momentum space
are limited. 1 like to picture it as in Figure 2.9. In this one-dimensional example,
the number of distinct position states is L/{Az), while the number of distinct

Position space Momentum space
Ax A
Dz
PN -
L Ly

Figure 2.9. A number of “independent” position states and momentum states
for a quantum-mechanical particle moving in one dimension. If we make the wave-
functions narrower in position space, they become wider in momentum space, and
vice versa.
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momentum states is L,/{Ap,). The total number of distinct states is the product,
L L, LI
Az Ap, h

according to the uncertainty principle. In three dimensions, the lengths become
volumes and there are three factors of h:

(2.33)

VY,
h3 ~
This “derivation” of the constant of proportionality in £2; is admittedly not
very rigorous. I certainly haven’t proved that there are no further factors of 2 or
7 in equation 2.34. If you prefer, just think of the result in terms of dimensional
analysis: The multiplicity must be a unitless number, and you can easily show that
h® has just the right units to cancel the units of V and V,,.*
So much for a gas of one molecule. I we add a second molecule, we need
a factor of the form of equation 2.34 for each molecule, and we multiply them
together because for each state of molecule 1, there are {1; states for molecule 2.
Well, not quite. The ¥, factors are more complicated, since only the total energy
of the two molecules is constrained. Equation 2.31 now becomes

Ql=

(2.34)

Pi + 03y + 15, + P3, + P3y + 3, = 2mU, (2.35)

assuming that both molecules have the same mass. This equation defines the surface
of a six-dimensional “hypersphere” in six-dimensional momentum space. I can't
visualize it, but one can still compute its “surface area” and call that the total
volume of allowed momentum space for the two molecules.

So the multiplicity function for an ideal gas of two molecules should be

2

= %g- x {area of momentum hypersphere). (2.36)
This formula is correct, but only if the two molecules are distinguishable from each
other. If they're indistinguishable, then we've overcounted the microstates by a
factor of 2, since interchanging the molecules with each other does not give us a
distinct state (see Figure 2.10).! Thus the multiplicity for a gas of two indistin-
guishable molecules is

2

Q= SHE < {area of momentum hypersphere). (2.37)

*Don't worry about the fact that Vj is really & surface area, not a volume. We can
always allow the sphere in momentum space to have a tiny thickness, and multiply its
area by this thickness to get something with units of momentum cubed. When we get to
a gas of N molecules, the multiplicity will be such a huge number that it doesn’t matter
if we're off a little in the units.

P his argument assurmes that the individual states of the two molecules are always
different. The two molecules could be in a state where they both have the same position
and the same momentum, and such a state is not double-counted in equation 2.36. Unless
the gas is very dense, however, such states hardly ever occur.
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7w T

Figure 2.10. In a gas of two identical molecules, interchanging the states of the
molecules leaves the system in the same state as before.

For an ideal gas of N indistinguishable molecules, the multiplicity function
contains N factors of V', divided by 3N factors of . The factor that compensates for
the overcounting is 1/N!, the number of ways of interchanging the molecules. And
the momentum-space factor is the “surface area” of a 3N-dimensional hypersphere
whose radius is (still) v2mU:

1 VN

O = AR

x (area of momentum hypersphere). (2.38)
To make this result more explicit, we need a general formula for the “surface
aren” of a d-dimensional hypersphere of radius r. For d = 2, the “area” is just the
circumference of a circle, 2rr. For d = 3, the answer is 4wr%. For general d, the
answer should be proportional to r®~!, but the coefficient is not easy to guess. The
full formula is
27rdj2
”
(4 -1

This formula is derived in Appendix B. For now, you can at least check the coefli-
cient for the case d = 2. To check it for d = 3, you need to know that (1/2)! = /7 /2.

Plugging equation 2.39 (with d = 3N and r = +/2ml/) into equation 2.38, we
obtain

-1 (2.39)

“area!1 =

3N/2

1 VN 27T3N/2 AN -1 1 VN % aN

In the last expression I've thrown away some large factors, which is ok since 0y is
a very large number.*

This formuia for the multiplicity of a monatomic ideal gas is a mess, but its
dependence on U and V is pretty simple:

Q(U,V,N) = f(NYVNU3N/Z (2.41)

where f(N) is a complicated function of N.

*If you're not happy with my sloppy derivation of equation 2.40, please be patient. In
Section 6.7 I'll do a much better job, using a very different method.
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Notice that the exponent on U in formula 2.41 is 1/2 times the total number of
degrees of freedom (3N) in the monatomic gas. The same is true of the multiplicity
of an Einstein solid in the high-temperature limit, equation 2.21. These results
are special cases of a more general theorem: For any system with only quadratic
“degrees of freedom,” having so many units of energy that energy quantization is
unnoticeable, the multiplicity is proportional to UYf/2 where N f is the total num-
ber of degrees of freedom. A general proof of this theorem is given in Stowe (1984).

Problem 2.26. Consider an ideal monatomic gas that lives in a two-dimensional
universe {“fiatland”), occupying an area A instead of a volume V. By following
the same logic as above, find a formula for the multiplicity of this gas, analogous
to equation 2.40.

Interacting Ideal Gases

Suppose now that we have two ideal gases, separated by a partition that allows
energy to pass through (see Figure 2.11). If each gas has N molecules {of the same
species), then the total multiplicity of this system is

Quotal = [F(N)2(VaVp)™ (UsUp M2 (2.42)

This expression has essentially the same form as the corresponding result for a pair
of Einstein solids (equation 2.22): Both energies are raised to a lerge exponent.
Following exactly the same reasoning as in Section 2.4, we can conclude that the
multiplicity function, plotted as a function of Uy, has a very sharp peak:

width of peak = Liotal (2.43)

VN2

Provided that N is large, only a tiny fraction of the macrostates have a reasonable
chance of occurring, assuming that the system is in equilibrinm.

In addition to exchanging energy, we could allow the gases to exchange volume;
that is, we could allow the partition to move back and forth, as one gas expands
and the other is compressed. In this case we can apply exactly the same argument
to volume that we just applied to energy. The multiplicity, plotted as a function

Figure 2.11. Two ideal gases, each confined to a fixed volume, separated by a
partition that allows energy to pass through. The total energy of the two gases is
fixed.
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Qtotal

Figure 2.12. Multiplicity of a system of twe ideal gases, as a function of the
energy and volume of gas A {with the total energy and total volume held fixed). If
the number of molecules in each gas is large, the full horizontal scale would stretch
far beyond the edge of the page.

of V4, again has a very sharp peak:

. Vtotai
width of peak = T (2.44)
So again, the equilibrium macrostate is essentially determined, to within a tiny
fraction of the total volume available (if NV is large). In Figure 2.12 I've plotted
Diota as a function of both Uy and V4. Like Figure 2.7, this graph shows only a
tiny fraction of the full range of Uy and Vj values. For N = 10%°, if the full scale
were compressed to fit on this page, the spike would be narrower than an atom.

Instead of allowing the partition to move, we could just poke holes in it and
let the molecules move back and forth between the two sides. Then, to find the
equilibrium macrostate, we would want to look at the behavior of 4,1 as a function
of Ny and 4. ¥From equation 2.40, you can see that the analysis would be more
difficult in this case. But once again, we would find a very sharp peak in the graph,
indicating that the equilibrium macrostate is fixed to a very high precision. (As
you might expect, the equilibrium macrostate is the one for which the density is
the same on both sides of the partition.)

Sometimes you can calculate probabilities of various arrangements of molecules
just by looking at the volume dependence of the multiplicity function (2.41). For
instance, suppose we want to know the probability of finding the configuration
shown in Figure 2.13, where all the molecules in a container of gas are somewhere
in the left half. This arrangement is just a macrostate with the same energy and
number of molecules, but half the original volume. Looking at equation 2.41, we
see that replacing V by V/2 reduces the multiplicity by a factor of 2V. In other
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Figure 2.13. A very unlikely arrangement of gas molecules.

words, out of all the allowed microstates, only one in 2" has all the molecules in the
left half. Thus, the probability of this arrangement is 2-~. Even for N = 100, this
is less than 10799, so you would have to check a trillion times per second for the
age of the universe before finding such an arrangement even once. For N = 10%3,
the probability is a very small number.

Problem 2,27. Rather than insisting that all the molecules be in the left half
of a container, suppose we only require that they be in the leftmost 99% (leaving
the remaining 1% completely empty). What is the probability of finding such an
arrangement if there are 100 molecules in the container? What if there are 10,000
molecules? What if there are 10237

2.6 Entropy

We have now seen that, for a variety of systems, particles and energy tend to
rearrange themselves until the multiplicity is at {or very near) its maximum value.
In fact, this conclusion seems to be true* for any system, provided that it contains
enough particles and units of energy for the statistics of very large numbers to
apply:

Any large system in equilibriurn will be found in the macrostate with the
greatest multiplicity {aside from fluctuations that are normally too small to
measure}.

This is just a more genersal statement of the second law of thermodynamics.
Another way to say it is simply:

Multiplicity tends to increase.

Even though this law is not “fundamental” (since I essentially derived it by looking
at probabilities), I'll treat it as fundamental from now on. If you just remember
to look for the macrostate with greatest multiplicity, you can pretty much forget
about calculating what the actual probabilities are.

*As far as I'm aware, nobody has ever proved that it is true for all large systems.
Perhaps an exception lurks out there somewhere. But the experimental successes of ther-
modynamics indicate that exceptions must be exceedingly rare.
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Since multiplicities tend to be very large numbers, which are very cumbersome
to work with, we will find it convenient from now on to work with the natural
logarithm of the multiplicity instead of the multiplicity itself. For historical reasons,
we will also multiply by a factor of Boltzmann’s constant. This gives us a quantity
called the entropy, denoted S:

S=kin (2.45)

In words, entropy is just the logarithm of the number of ways of arranging things
in the system (times Boltzmann’s constant). The logarithm turns a very large
number, the multiplicity, into an ordinary large number. If you want to understand
entropy, my advice is to ignore the factor of k and just think of entropy as a unitless
quantity, In{). When we include the factor of &k, however, S has units of energy
divided by temperature, or J/K in the SI system. I’li explain the usefulness of these
units in Chapter 3.

As a first example, let’s go back to the case of a large Einstein solid with N
oscillators, ¢ units of energy, and ¢ 3» N. Since 2 = (eq/N)¥,

S = kln{eg/N}N = Nkfin(g/N} + 1]. (2.46)
So if N = 10?2 and ¢q = 10%,
S = Nk-(5.6) = (5.6 x 10°}k = 0.77 J/K. (247

Notice also that increasing either ¢ or N increases the entropy of an Einstein solid
(though not in direct proportion).

Generally, the more particles there are in a system, and the more energy it
contains, the greater its multiplicity and its entropy. Besides adding particles and
energy, you can increase the entropy of a system by letting it expand into a larger
space, or breaking large molecules apart into small ones, or mixing together sub-
stances that were once separate. In each of these cases, the total number of possible
arrangements increases,

Some people find it helpful to think of entropy intuitively as being roughly
synonymous with “disorder.” Whether this idea is accurate, however, depends on
exactly what vou consider to be disorderly. Most people would agree that a shuffled
deck of cards is more disorderly than a sorted deck, and indeed, shuffling increases
the entropy because it increases the number of possible arrangements.* However,
many people would say that a glass of crushed ice appears more disorderly than
a glass of an equal amount of water. In this case, though, the water has much
more entropy, since there are so many more ways of arranging the molecules, and
so many more ways of arranging the larger amount of energy among them.

*This example is actually somewhat controversial: Some physicists would not count
these rearrangements into the thermodynamic entropy because cards don’t ordinarily re-
arrange themselves without outside help. Personally, 1 see no point in being so picky.
At worst, my somewhat broad definition of entropy is harmless, because the amount of
entropy in dispute is negligible compared to other forms of entropy.
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One nice property of entropy is that the total entropy of a composite system is
the sum of the entropies of its parts. For instance, if there are two parts, 4 and B,
then

Seotat = k10 Shota1 = kIn(Q405) = kInQs + klnQg =S4+ Sp.  (2.48)

Pm assuming here that the macrostates of systems A and B have been specified
separately. If these systems can interact, then those macrostates can fluctuate over
time, and to compute the entropy over long time scales we should compute $yoa)
by summing over all macrostates for the two systems. Entropy, like multiplicity, is
a function of the number of accessible microstates, and this number depends on the
time scale under consideration. However, in practice, this distinction rarely matters.
If we just assume that the composite system is in its most likely macrostate, we get
essentially the same entropy as if we sum over all macrostates {see Problems 2.29
and 2.30}.

Since the natural logarithm is a monotonically increasing function of its argu-
ment, a macrostate with higher multiplicity also has higher entropy. Therefore we
can restate the second law of thermodynamics as follows:

Any large system in equilibriurn will be found in the macrostate with the
greatest entropy (aside from fluctuations that are normally too small to
measure).

Or more briefly:
Entropy tends to increase.

Note, however, that a graph of entropy vs. some variable (such as Uy or V3) that
is allowed to fluctuate will generally not have a sharp peak. Taking the logarithm
smooths out the peak that was present in the multiplicity function. Of course this
does not affect our conclusions in the least; it is still true that fluctuations away
from the macrostate of greatest entropy will be negligible for any reasonably large
system.

Although “spontaneous” processes always occur because of a net increase in
entropy, you might wonder whether human intervention could bring about a net
decrease in entropy. Common experience seems to suggest that the answer is yes:
Anyone can easily turn all the coins in a collection heads-up, or sort a shuffled deck
of cards, or clean up & messy room. However, the decreases in entropy in these
situations are extremely tiny, while the entropy created by the metabolism of food
in our bodies (as we take energy out of chemical bonds and dump most of it into
the environment as thermal energy) is always substantial. As far as we can tell, our
bodies are just as subject to the laws of thermodynamics as are inanimate objects.
So no matter what you do to decrease the entropy in one place, you're bound to
create at least as much entropy somewhere else.

Even if we can't decrease the total entropy of the universe, isn't it possible
that someone (or something) else could? In 1867 James Clerk Maxwell posed this
question, wondering whether a “very observant and neat-fingered being”* couldn’t

*Quoted in Leff and Rex (1990), p. 5.
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deflect fast-moving molecules in one direction and slow-moving molecules in an-
other, thereby causing heat to flow from a cold object to a hot one. William
Thomson later named this mythical creature Mazwell’s Demon, and physicists and
philosophers have been trying to exorcise it ever since. Countless designs for me-
chanical “demons” have been drafted, and all have been proven ineffective. Even a
hypothetical “intelligent” demon, it turns out, must create entropy as it processes
the information needed to sort molecules. Although thinking about demons has
taught us much about entropy since Maxwell's time, the verdict seems to be that
not even a demon can violate the second law of thermodynamics.

Problem 2.28. How many possible arrangements are there for a deck of 52 playing
cards? (For simplicity, consider only the order of the cards, not whether they are
turned upside-down, etc.) Suppose you start with a sorted deck and shufHe it
repeatedly, so that all arrangements become “accessible.” How much entropy do
you create in the process? Express your answer both as a pure number (neglecting
the factor of k) and in SI units. Is this entropy significant compared to the entropy
associated with arranging thermal energy among the molecules in the cards?

Problem 2.29. Consider a system of two Einstein solids, with N4 = 300, Ng =
200, and @uoea = 100 {as discussed in Section 2.3). Compute the entropy of the
most likely macrostate and of the least likely macrostate. Also compute the entropy
over long time scales, assuming that ofl microstates are accessible. {Neglect the
factor of Boltzmann’s constant in the definition of entropy: for systems this small
it is best to think of entropy as a pure number.)

Problem 2.30. Consider again the system of two large, identical Einstein solids
treated in Problem 2.22.

(a) For the case N = 1023, compute the entropy of this system (in terms of
Boltzmann’s constant), assuming that all of the microstates are allowed.
{This is the system’s entropy over long time scales.}

{b} Compute the entropy again, assuming that the system is in its most likely
macrostate. (This is the systern’s entropy over short time scales, except
when there is a large and unlikely fluctuation away from the most likely
macrostate.)

(¢) Is the issue of thme scales really relevant to the entropy of this system?

{d) Suppose that, at a moment when the system is near its most likely macro-
state, you suddenly ingert a partition between the solids so that they can
no longer exchange energy. Now, even over long time scales, the entropy
is given by your answer to part {b). Since this number is less than your
answer to part (a), you have, in a sense, caused a violation of the second
jaw of thermodynamics. Is this violation significant? Should we lose any
sleep over it7?

Entropy of an Ideal Gas

The formula for the entropy of a monatomic ideal gas is rather complicated, but
extremely useful. If you start with equation 2.40, apply Stirling’s approximation,
throw away some factors that are merely large, and take the logarithm, you get

V drmUN\32\ 5
S= Nk{ln(ﬁ(w) ) + -é] (2.49)
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This famous result is known as the Sackur-Tetrode equation.

Consider, for instance, a mole of helium at room temperature and atmospheric
pressure. The volume is then 0.025 m® and the internal energy is %nRT = 3700 J.
Plugging these numbers into the Sackur-Tetrode equation, I find that the argument
of the logarithm is 330,000, but the logarithm itself is only 12.7. So the entropy is

S = Nk-(15.2) = (9.1 x 10°*)k = 126 J/K. (2.50)

The entropy of an ideal gas depends on its volume, energy, and number of
particles. Increasing any of these three variables increases the entropy. The simplest
dependence is on the volume; for instance, if the volume changes from V; to Vy while
U and N are held fixed, the entropy changes by

Vi
AS = Nkln A (U, N fixed). (2.51)

T
This formula applies, for instance, to the quasistatic isothermal expansion consid-
ered in Section 1.5, where the gas pushes on a piston, doing mechanical work, while
we simultaneously supply heat from outside to keep the gas at constant tempera~
ture. In this case we can think of the entropy increase as being caused by the heat
input. Putting heat into a system always increases its entropy; in the following

chapter I'll discuss in general the relation between entropy and heat.

A very differemt way of letting a gas expand is shown in Figure 2.14. Initially,
the gas is separated by a partition from an evacuated chamber. We then puncture
the partition, letting the gas freely expand to fill the whole available space. This
process is called free expansion. How much work is done during free expansion?
None! The gas isn't pushing on anything, sc it can’t do any work. What about
heat? Again, none: No heat whatsoever flowed into or out of the gas. Therefore,
by the first law of thermodynamics,

AU =Q+W =0+0=0. (2.52)

The energy content of the gas does not change during free expansion, hence for-
mula 2.51 applies. This time, however, the entropy increase was not caused by the
input of heat; instead we have manufactured new entropy, right here on the spot.

L
.

Vacuum

Figure 2.14. Free expansion of a gas into a vacuum. Because the gas neither does
work nor absorbs heat, its energy is unchanged. The entropy of the gas increases,
kowever.
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Problem 2.31. Fill in the algebraic steps to derive the Sackur-Tetrode equation
(2.49).

Problem 2.32. Find an expression for the entropy of the two-dimensional ideal
gas considered in Problem 2.26. Express your result in terms of U, A, and N,

Problem 2.33. Use the Sackur-Tetrode equation to calculate the entropy of a
mole of argon gas at room temperature and atmospheric pressure. Why is the
entropy greater than that of a mole of helium under the same conditions?

Problem 2.34. Show that during the quasistatic isothermal expansion of 2 mon-
atomic ideal gas, the change in entropy is related to the heat input @ by the simple
formula

Q

AS = "'T".
In the following chapter I'll prove that this formula is valid for any quasistatic
process. Show, however, that it is not valid for the free expansion process described
above.

Problem 2.35. According to the Sackur-Tetrode equation, the entropy of 2 mon-
atomic ideal gas can become negative when its temperature {and hence its energy)
is sufficiently low. Of course this is absurd, so the Sackur-Tetrode equation must
be invalid at very low temperatures. Suppose you start with a sample of helium at
room temperature and atmospheric pressure, then lower the temperature holding
the density fixed. Pretend that the helium remains a gas and does not liquefy.
Below what temperature would the Sackur-Tetrode equation predict that S is neg-
ative? {The behavior of gases at very low temperatures is the main subject of
Chapter 7.)

Problem 2.36. For either a monatomic ideal gas or a high-temperature Einstein
solid, the entropy is given by Nk times some logarithm. The logarithm is never
large, so if all you want is an order-of-magnitude estimate, you can neglect it and
just say S ~ Nk. That is, the entropy in fundamental units is of the order of the
number of particles in the system. This conclusion turns out to be true for most
systems (with some important exceptions at low temperatures where the particles
are behaving in an orderly way). So just for fun, make a very rough estimate of
the entropy of each of the following: this book (a kilogram of carbon compounds);
a moose (400 kg of water); the sun (2 x 10°° kg of ionized hydrogen).

Entropy of Mixing

Another way to create entropy is to let two different materials mix with each other.
Suppose, for instance, that we start with two different monatomic ideal gases, A
and B, each with the same energy, volume, and number of particles. They occupy
the two halves of a divided chamber, separated by a partition (see Figure 2.15).
if we now remove the partition, the entropy increases. To calculate by how much,
we can just treat each gas as a separate system, even after they mix. Since gas A
expands to fill twice its initial volume, its entropy increases by

Vi

ASq4=Nkin = = Nkln2, (2.53)

Vi
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Figure 2.15. Two different gases, separated by a partition. When the partition
is removed, each gas expands to fill the whole container, mixing with the other
and creating entropy.

while the entropy of gas B increases by the same amount, giving a total increase of
ASiotal = ASa + ASp = 2NkIn 2. (2.54)

This increase is called the entropy of rmixing.

It’s important to note that this result applies only if the two gases are different,
like helivm and argon. ¥ you start with the seme gas on both sides, the entropy
doesn’t increase at all when you remove the partition. {Technically, the total mul-
tiplicity does incresse, because the distribution of molecules between the two sides
can now fluctuate. But the multiplicity increases only by a “large” factor, which
has negligible effect on the entropy.)

Let's compare these two situations it a slightly different way. Forget about the
partition, and suppose we start with a mole of helium in the chamber. Its total
entropy is given by the Sackur-Tetrode equation,

V' fdrmii\3/2 5
S = Nk [In(ﬁ(m) ) + 5]. (2.55)

If we now add a mole of argon with the same thermal energy U, the entropy
approximately doubles:

Stotal = She!ium + Sargon- (2'56)

{Because the molecular mass enters equation 2.55, the entropy of the argon is
actually somewhat greater than the entropy of the heliuin.) However, if instead we
add a second mole of helium, the entropy does nof double. Look at formula 2.55:
If you double the values of both N and U, the ratio U/N inside the iogarithm is
unchanged, while the N out front becomes 2N. But there's another N, just inside
the logarithm, underneath the V, which also becomes 2N and makes the total
entropy come out less than you might expect, by a term 2NkIn2. This “missing”
term is precisely the entropy of mixing.

So the difference between adding argon and adding more helium comes from
the extra NV under the V in the Sackur-Tetrode equation. Where did this N come
from? If you look back at the derivation in Section 2.5, you'll see that it came
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from the 1/N! that I slipped into the multiplicity function to account for the fact
that molecules in a gas are indistinguishable (so interchanging two molecules does
not yield a distinct microstate). If T hadn’t slipped this factor in, the entropy of a
menatomic ideal gas would be

3/2
S =Nk [13 (V(émg) ) e g] (distinguishable molecules). {2.57)

This formula, if it were correct, would have some rather disturbing consequences.
For instance, if you insert a partition into a tank of helium, dividing it in half,
this formula predicts that each half would have significantly less than half of the
original entropy. You could violate the second law of thermodynamics simply by
inserting the partition! 1 don’t know an easy way of proving that the world isn't
like this, but it certainly would be confusing.

This whole issue was first raised by J. Willard Gibbs, and is now known as
the Gibbs paradox. The best resolution of the paradox is simply to assume that
all atoms of a given type are truly indistinguishable. In Chapter 7 we’ll see more
evidence to support this assumption.

Problem 2.37. Using the same method as in the text, caiculate the entropy
of mixing for a systemn of two monatomic ideal gases, A and B, whose relative
proportion is arbitrary. Let N be the total number of molecules and let = be the
fraction of these that are of species B. You should find

ASmixing = —Nk[zInz + (1-z}In{1-2)].
Check that this expression reduces to the one given in the text when z = 1/2.

Problem 2.38. The mixing entropy formula derived in the previcus problem
actually applies to any ideal gas, and to some dense gases, Hquids, and solids as
well. For the denser systems, we have to assume that the two types of molecules
are the same size and that molecules of different types interact with each other in
the same way as molecules of the same type (same forces, ete.). Such a system is
called an ideal mixture. Explain why, for an ideal mixture, the mixing entropy
is given by

N
Asmixéng = kln(NA) s

where N is the total number of molecules and N4 is the number of molecules of
type A. Use Stirling’s approximation to show that this expression is the same as
the result of the previous problem when both N and N4 are large.

Problem 2.39. Compute the entropy of a mole of helium at room tempera-
ture and atmospheric pressure, pretending that all the atoms are distinguishable.
Compare to the actual entropy, for indistinguishable atoms, computed in the text.
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Reversible and Irreversible Processes

If a physical process increases the total entropy of the universe, that process cannot
happen in reverse, since this would violate the second law of thermodynamics.
Processes that crcate new entropy are therefore said to be irreversible. By the
same token, a process that leaves the total entropy of the universe unchanged would
be reversible. In practice, no macroscopic process is perfectly reversible, although
some processes come close enough for most purposes.

One type of process that creates new entropy is the very sudden expansion of
a system, for instance, the free expansion of a gas discussed above. On the other
hand, a gradual compression or expansion does not {(hy itself} change the entropy
of a system. In Chapter 3 I'll prove that any reversible volume change must in fact
be quasistatic, so that W = — PAV. (A quasistatic process can still be irreversible,
however, if there is also heat flowing in or out or if entropy is being created in some
other way.)

It’s interesting to think about why the slow compression of a gas does not cause
its entropy to increase. One way to think about it is to imagine that the molecules
in the gas inhabit various quantum-mechanical wavefunctions, each filling the entire
box, with discrete (though very closely spaced) energy levels. (See Appendix A for
more about the energy levels of particles in a box.) When you compress the gas,
each wavefunction gets squeezed, so the energies of all the levels increase, and each
molecule’s energy increases accordingly. But if the compression is sufficiently slow,
molecules will not be kicked up into higher energy levels; a molecule that starts in
the nth level remains in the nth level (although the energy of that level increases).
Thus the number of ways of arranging the molecules among the various energy
levels will remain the same, that is, the multiplicity and entropy deo not change.
On the other hand, if the compression 1s violent enough to kick molecules up into
higher levels, then the number of possible arrangements will increase and so will
the entropy.

Perhaps the most important type of thermodynamic process is the flow of heat
from a hot object to a cold one. We saw in Section 2.3 that this process occurs
because the total multiplicity of the combined system thereby increases; hence the
total entropy increases alse, and heat flow is always irreversible. However, we'll
see in the next chapter that the increase in entropy becomes negligible in the limit
where the temperature difference between the two objects goes to zero. So if you
ever hear anyone talking about “reversible heat flow,” what they really mean is very
slow heat flow, between objects that are at nearly the same temperature. Notice
that, in the reversible limit, changing the temperature of one of the objects only
infinitesimally can cause the heat to flow in the opposite direction. Similarly, during
a quasistatic volume change, an infinitesimal change in the pressure will reverse the
direction. In fact, one can define a reversible process as one that can be reversed
by changing the conditions only infinitesimally.

Most of the processes we observe in life involve large entropy increases and
are therefore highly irreversible: sunlight warming the earth, wood burning in the
fireplace, metabolism of nuirients in our bodies, mixing ingredients in the kitchen.
Because the total entropy of the universe is constantly increasing, and can never
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decrease, some philosophically inclined physicists have worried that eventually the
universe will become a rather boring place: a homogeneous fluid with the maximum
possible entropy and no variations in temperature or density anywhere. At the rate
we're going, though, this “heat death of the universe” won’t occur any time soon;
our sun, for instance, should continue to shine brightly for at least another five
billion years.*

It may be more fruitful to ask instead about the beginning of time. Why did
the universe start out in such an improbable, low-entropy state, so that after more
than ten billion years it is still so far from equilibrium? Could it have been merely
a big coincidence (the biggest of all time)? Or might someone, someday, discover a
more satisfying explanation?

Problem 2.40. For each of the following irreversible processes, explain how you
can tell that the total entropy of the universe has increased.

{a) Stirring salt inte a pot of soup.

(b) Scrambling an egg.

(¢} Humpty Dumpty having a great fall.
{d} A wave hitting a sand castle.

{e) Cutting down a tree.

(f) Burning gasoline in an automobile.

Problem 2.4%1. Describe a few of your favorite, and least favorite, irreversible
processes. In each case, explain how you can tell that the entropy of the universe
increases.

Problem 2.42. A black hole is a region of space where gravity is so strong
that nothing, not even light, can escape. Throwing something into a black hole is
therefore an irreversible process, at least in the everyday sense of the word. In fact,
it is irreversible in the thermodynamic sense as well: Adding mass to a black hole
increases the black hole’s entropy. It turns out that there’s no way to tell {at least
from outside) what kind of matter has gone into making a black hole.! Therefore,
the entropy of a black hole must be greater than the entropy of any conceivable
type of matter that could have been used to create it. Knowing this, it's not hard
to estimate the entropy of a black hole.

{a) Use dimensional analysis to show that a black hole of mass M should have
a radivs of order GM/c?, where G is Newton's gravitational constant and ¢
is the speed of lght. Calculate the approximate radius of a one-solar-mass
black hole {M = 2 x 10%0 kg).

{b) In the spirit of Problem 2.36, explain why the entropy of a black hole,
in. fundamental units, should be of the order of the maximum number of
particles that could have been used to make it.

*For 2 modern analysis of the long-term prospects for our universe, see Steven Frautschi,
“Entropy in an Expanding Universe,” Science 217, 593-599 (1982).

This statement is a slight exaggeration. Electric charge and angular momentum are
conserved during black hole formation, and these quantities can still be measured from
outside a black hole. In this problem I'm assuming for simplicity that both are zero.

B3
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{c} To make a black hole out of the maximurm possible number of particles,
you should use particles with the lowest possible energy: long-wavelength
photons (or other massless particles). But the wavelength can’t be any
longer than the size of the black hole. By setting the total energy of the
photons equal to Mc?, estimate the maximum nuruber of photons that
could be used to make a black hole of mass M. Aside from a factor of 872,
your result should agree with the exact formula for the entropy of a black
hole, obtained® through a much more difficult calculation:

{d) Calculate the entropy of a one-solar-mass black hole, and comment on the
result.

There are 10!} stars in the galaxy. That used to be a huge number. But it’s
only a hundred billion. It’s less than the national deficit! We used to call
them astronomical numbers. Now we should call them economical numbers.

—Richard Feynman, quoted by David
Goodstein, Physics Today 42, 73
{February, 1989).

*By Stephen Hawking in 1973. To learn more about black hole thermodynamics, see
Stephen Hawking, “The Quantum Mechanics of Black Holes,” Scientific American 236,
34-40 (January, 1977); Jacob Beckenstein, “Black Hole Thermodynamics,” Physics Today
33, 24-31 (January, 1980); and Leonard Susskind, “Black Holes and the Information
Paradox,” Scientific American 276, 52-57 (April, 1997).



Interactions and Implications

In the previous chapter | argued that whenever two large systems interact, they
will evolve toward whatever macrostate has the highest possible entropy. This
statement is known as the second law of thermodynamics. The second law is not
built into the fundamental laws of nature, though; it arises purely through the
laws of probability and the mathematics of very large numbers. But since the
probabilities are so overwhelming for any system large enough to see with our
eyes, we might as well forget about probabilities and just treat the second law as
fundamental. That's what I'll do throughout most of the rest of this book, as we
explore the consequences of the second law.

The purpose of the present chapter is twofold. First, we need to figure out
how entropy is related to other variables, such as temperature and pressure, that
can be measured more directly. I'll derive the needed relations by considering
the various ways in which two systems can interact, exchanging energy, volume,
and/or particles. In each case, for the second law to apply, entropy must govern
the direction of change. Second, we'll use these relations and our various formulas
for entropy to predict the thermal properties of a variety of realistic systems, from
the heat capacity of a solid to the pressure of a gas to the magnetization of a
paramagnetic material.

3.1 Temperature

The second law says that when two objects are in thermal equilibrium, their total
entropy has reached its maximum possible value. In Section 1.1, however, I gave
another criterion that is met when two objects are in thermal equilibrium: I said
that they are then at the same temperature. In fact, I defined temperature to be
the thing that’s the same for both objects when they're in thermal equilibrium. So
now that we have a more precise understanding of thermal equilibrium in terms of
entropy, we are in a position to figure out what temperature is, really.
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Let’s look at a specific example. Consider two Einstein solids, A and B, that
are “weakly coupled” so that they can exchange energy (but with the total energy
fixed). Suppose {as in Figure 2.5) that the numbers of oscillators in the two solids
are Ng = 300 and Ng = 200, and that they are sharing 100 units of energy:
Grotal = 100. Table 3.1 lists the various macrostates and their multiplicities. Now,
however, I have also included columns for the entropy of solid A, the entropy of
solid B, and the total entropy (which can be obtained either by adding S4 and Sg,
or by taking the logarithm of Qopa).

Figure 3.1 shows a graph of S4, S5, and Siota1 (in units of Boltzmann’s constant),
for the same parameters as in the table. The equilibrium point is at g4 = 60, where
Siotal Teaches its maximum value. At this point, the tangent to the graph of Siotal
is horizontal; that is,

aStotai w {) or aStotai
Bga U4

(Technically it’s a partial derivative because the number of oscillators in each solid
is being held fixed. The energy Uy is just g4 times a constant, the size of each unit
of energy.} But the slope of the Syoear graph is the sum of the slopes of the Sy and
Sp graphs. Therefore,

=0  at equilibrium. (3.1)

95: 0S5 _ "
A + 3 = at equilibrium. (3.2)

The second term in this equation is rather awkward, with B in the numerator and
A in the denominator. But dUj4 is the same thing as ~dUp, since adding a lgﬁi*t
of energy to solid A is the same as subtracting the same amount from solid B.

qa Qa Sa/k ae Qg Se/k Qiotal Stotat/k
0 1 0 100 2.8 x 1080 1875 2.8 x 1081 1875
1 300 5.7 99 0.3 x 105 1864 2.8 x 105 1921
2 45150 16.7 08 3.1x10%% 1853 1.4 x 10% 1960
11 5.3x10'% 454 89 1.1 x107 1751 5.9 x 10% 2205
12 1.4 x10°1 487 88 3.4x10™ 1739 4.7 x 109 2224

13 33x10% 519 87 1.0x 107 179.7 3.5 x 1097 2246

59 2.2x10% 1574 41 3.1 x10% 107.0 6.8 x 10114 2644
60 1.3x10% 1591 40 53 x10% 1055 6.9 x 1011 264.4
61 7.7x10° 1609 39 88x10% 1035 | 68x10' 2644

100 1.7x10% 2218 0 1 0 1.7 x 10%  221.6

Table 3.1. Macrostates, multiplicities, and entropies of a system of two Einstein
solids, one with 300 oscillators and the other with 200, sharing a total of 100 units
of energy.
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Figure 3.31. A plot of the entropies calculated in Table 3.1. At equilibrium
(g4 = 60), the total entropy is a maximurm so its graph has a horizontal tangent;
therefore the tangents to the graphs of S4 and Sp are equal in magnitude. Away
from equilibrium (for instance, at ¢4 = 12), the solid whose graph has the steeper
tangent line tends to gain energy spontaneously; therefore we say that it has the
lower temperature.

We can therefore write

384 38p

50, = 50 at equilibrium. (3.3)

In other words, the thing that'’s the same for both systems when they’re in thermal
equilibrium is the slope of their entropy vs. energy graphs. This slope must somehow
be related to the temperature of a system.

To get a better idea of how temperature is related to the slope of the entropy vs.
energy graph, let’s look at a point away from equilibrium, for instance, the point
g4 = 12 in the figure. Here the slope of the S4 graph is considerably steeper than
the stope of the Sp graph. This means that if a bit of energy passes from solid B to
solid A, the entropy gained by A will be greater than the entropy lost by B. The
total entropy will increase, so this process will happen spontaneously, according to
the second law. Apparently, the second law tells us that energy will always tend
to flow into the object with the steeper S vs. U graph, and out of the object with
the shallower S vs. U grapb. The former really “wants” to gain energy (in order to
increase its entropy ), while the latter doesn’t so much “mind” losing a bit of energy
{since its entropy doesn’t decrease by much). A steep slope must correspond to a
low temperature, while a shallow slope must correspond to a high temperature.

Now let’s look at units. Thanks to the factor of Boltzmmann’s constant in the
definition of entropy, the slope 05/8U of a system’s entropy vs. energy graph has
units of (J/K)}/3 = 1/K. If we take the reciprocal of this slope, we get something
with units of kelvins, just what we want for temperature. Moreover, we have just
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seen that when the slope is large the temperature must be small, and vice versa. I
therefore propose the following relation:

T= (gg)-l. (3.4)

The temperature of a systern is the reciprocal of the slope of its entropy vs. energy
graph. The partial derivative is to be taken with the system’s volume and number
of particles held fixed;* more explicitly,

% = (%)Mv. 39)

From now on 1 will take equation 3.5 to be the definition of temperature. (To verify

that no further factors of 2 or other numbers are needed in equation 3.5, we need

to check an example where we already know the answer. I'll do so on page 91.)
You may be wondering why I don't just turn the derivative upside down, and

write equation 3.5 as
ou

The answer is that there’s nothing wrong with this, but it’s less convenient in
practice, because rarely do you ever have a formula for energy in terms of entropy,
volume, and mumber of particles. However, in numerical examples like in Table 3.1,
this version of the formula is just fine. For instance, comparing the two lines in the
table for g4 = 11 and g4 = 13 gives for solid A

13e — 11e
Ta=sTop —asag = 231 e/, (3.7)

where ¢ (= hf) is the size of each energy unit. If ¢ = 0.1 eV, the temperature
is about 360 K. This number is the approximate temperature at g4 = 12, in the
middle of the small interval considered. (Technically, since a difference of one or
two energy units is not infinitesimal compared to 12, the derivative is not precisely
defined for this small system. For a large system, this ambiguity will never occur.)
Similarly, for solid B,

89¢ — 87¢

Ts = fe ik 1737k

= 0.83 ¢/k. {3.8)
As expected, solid B is hotter at this point, since it is the one that will tend to lose
energy.

It’s still not obvious that our new definition of temperature {3.5) is in complete
agreement with the operationael definition given in Section 1.1, that is, with the
result that we would get by measuring the temperature with a properly calibrated

*Volume isn't very relevant for an Einstein solid, although the size of the energy units
can depend on volume. For some systems there can be other variables, such as magnetic
field strength, that must also be held fixed in the partial derivative.
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thermometer. H you're skeptical, let me say this: For most practical purposes, the
two definitions are equivalent. However, any operational definition is of limited
scope, since it depends on the physical limitations of the instruments used. In our
case, any particular thermometer that you use to “define” temperature will have
limitations—it may freeze or melt or something. There are even some systems for
which no standard thermometer will work; we’ll see an example in Section 3.3. So
our new definition really is better than the old one, even if it isn’t quite the same.

Problem 3.1. Use Table 3.1 to compute the temperatures of solid A and solid B
when g4 = 1. Then compute both temperatures when g4 = 60. Express your
answers in terms of ¢/k, and then in kelvins assuming that ¢ = 0.1 eV.

Problem 3.2. Use the definition of temperature to prove the zeroth law of
thermodynamics, which says that if system A is in thermal equilibrinm with
systemm B, and system B is in thermal equilibrium with system C, then system 4
is in thermal equilibrium with system €. (If this exercise seems totally pointless
to you, you're in good company: Everyone considered this “law” to be completely
obvious until 1931, when Ralph Fowler pointed out that it was an unstated as-
sumption of classical thermodynamics.)

A Silly Analogy

To get a better feel for the theoretical definition of temperature (3.5}, I like to
make & rather silly analogy. Imagine a world, not entirely unlike our own, in which
people are constantly exchanging money in their attempts to become happier. They
are not merely interested in their oum happiness, however; each person is actually
trying to maximize the total happiness of everyone in the community. Now some
individuals become much happier when given only a little money. We might call
these people “greedy,” since they accept money gladly and are reluctant to give
any up. Other individuals, meanwhile, become only a little happier when given
more money, and only a little sadder upon losing some. These people will be guite
generous, giving their money to the more greedy people in order to maximize the
jotal happiness.

The analogy to thermodynamics is as follows. The community corresponds to
an isolated system of objects, while the people correspond to the various objects
in the system. Money corresponds to energy; it is the quantity that is constantly
being exchanged, and whose total amount is conserved. Happiness corresponds to
entropy; the community’s overriding goal is to increase its total amount. Generosity
corresponds to temperature; this is the measure of how willingly someone gives up
money {energy). Here is a summmary of the analogies:

money -  energy
happiness «  entropy
generosity  «  temperature

One can press this analogy even further. Normally, you would expect that as
people acquire more money, they become more generous. In thermodypamics, this
would mean that as an object’s energy incresses, so does its temperature. Indeed,
most objects behave in this way. Increasing temperature corresponds {o a decreasing
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Figure 3.2. Graphs of entropy vs. energy (or happiness vs. money) for a “normal”
system that becomes hotter (more generous) as it gains energy; a “miserly” system
that becomes colder (less generous) as it gains energy; and an “enlightened” system
that doesn’t want to gain energy at all.

slope on the entropy vs. energy graph, so the graph for such an objeet is everywhere
concave-down (see Figures 3.1 and 3.2).

However, every community seems to have a few misers who actually become
less generous as they acquire more money. Similarly, there’s no law of physics
that prevents an object’s temperature from decreasing as you add energy. Such an
object would have & negative heat capacity; its entropy vs. energy graph would be
concave-up. {Collections of particles that are held together by gravity, such as stars
and star clusters, behave in exactly this way. Any added energy goes into potential
energy, as the particles in the system get farther apart and actually slow down. See
Problems 1.55, 3.7, and 3.15.)

Even more unusual are those enlightened individuals who become happier as
they lose money. An analogous thermodynamic system would have an entropy-
energy graph with negative slope. This situation is extremely counterintuitive, but
does occur in real physical systems, as we’ll see in Section 3.3. (The negative-siope
portion of the total entropy graph in Figure 3.1 is not an example of “enlightened”
behavior; here I'm talking about the equilibrium entropy of a single object as a
function of its total energy.)

Problem 3.8. Figure 3.3 shows graphs of entropy vs. energy for two objects, A

and B. Both graphs are on the same scale. The energies of these two objects ini-

tially have the values indicated; the objects are then brought into thermal contact
with each other. Explain what happens subsequently and why, without using the

word “temperature.”

Sad Szh

= [y . » Up
Ug initiat

U initial

Figure 3.3. Graphs of entropy vs. energy for two objects.
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Problem 3.4. Can a “miserly” system, with a concave-up entropy-energy graph,
ever be in stable thermal equilibrium with another system? Explain.

Real-World Examples

The theoretical definition of temperature isn’t just interesting and intuitive—it is
also useful. If you have an explicit formula for the entropy of an object as a function
of energy, you can easily calculate its temperature (also as a function of energy).

Perhaps the simplest realistic example is a large Einstein solid, in the limit
g » N {where N is the number of oscillators). The total energy IV is just ¢ times
some constant that I'll eall €. T computed the entropy in equation 2.46:

S = Nk{ln(g/N}+ 1] = NklnU — Nkln(eN) + Nk. (3.9)

Therefore the temperature should be
s\t (NE\
T = (SWU) = (—U ) , (3.10)

U = NkT. (3.11)

in other words,

But this resuilt is exactly what the equipartition theorem would predict: The total
energy should be kT times the number of degrees of freedom, and an Einstein
solid has two degrees of freedom for every oscillator. {This result verifies that no
factors of 2 or other constants are needed in equation 3.3.)

As another example, let us compute the temperature of a monatomic ideal gas.
Recall from equation 2.49 that the entropy is

S = NkInV + NkInU%? 4 (a function of N) (3.12)

(where N is the number of molecules). The temperature is therefore

T o (%g‘“)—l. (3.13)

Solving this equation for U gives U/ = %N kT, again verifying the equipartition
theorem. {At this point we could reverse the logic of Section, 1.2 and derive the
ideal gas law, starting from the formula for V. Instead, however, I'll wait until
Section 3.4, and derive the ideal gas law from a much more general formula for
pressure.)

Problem 3.5. Starting with the result of Problem 2.17, find a formula for the
temperature of an Einstein solid in the limit ¢ « N. Solve for the energy as a
function of temperature to obtain U = Nee™/*T (where ¢ is the size of an energy
unit}.
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Problem 3.6. In Section 2.5 I quoted a theorem on the multiplicity of any system
with only quadratic degrees of freedom: In the high-temperature limit where the
number of units of energy is much larger than the number of degrees of freedom,
the multiplicity of any such system is proportional to U N1/2 where Nf is the
total number of degrees of freedom. Find an expression for the energy of such a
systemn in terms of its temperature, and comment on the result. How can you tell
that this formula for 2 cannot be valid when the total energy is very small?

Problem 3.7. Use the result of Problem 2.42 to calculate the temperature of a
black hole, in terms of its mass M. (The energy is Mc?.) Evaluate the resulting
expression for a one-solar-mass black hole. Also sketch the entropy as a function
of energy, and discuss the implications of the shape of the graph.

3.2 Entropy and Heat

Predicting Heat Capacities

In the preceding section we saw how to calculate the temperature as a function of
energy (or vice versa) for any system for which we have an explicit formula for the
multiplicity. To compare these predictions to experiments, we can differentiate the
function U(T) to obtain the heat capacity at constant volume {or simply “energy

capacity” ):
_(8U
CV = (ET—)N'V. (314)

For an Einstein solid with g 3> N the heat capacity is
b7
= —(NKT) = .
Cv = 57 (NkT) = Nk, (3.15)
while for a monatomic ideal gas,
Cy = %{%Nki[‘) = INk. (3.16)

In both of these systems, the heat capacity is independent of the temperature and
is simply equal to k/2 times the number of degrees of freedom. These results agree
with experimental measurements of heat capacities of low-density monatomic gases
and of solids at reasonably high temperatures. However, other systems can have
much more complicated behavior. One example is the subject of Section 3.3; others
are treated in the problems.

Before considering more complicated examples, let me pause and list the steps
you have to go through in order to predict the heat capacity of a system using the
tools we have developed:

1. Use quantum mechanics and some combinatorics to find an expression for the
multiplicity, 2, in terms of U, V, N, and any other relevant variables.

2. Take the logarithm to find the entropy, 5.

3. Differentiate § with respect to U and take the reciprocal to find the temperature,
T, as a function of U and other variables.
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4. Solve for U as a function of T (and other variables).

5. Differentiate U/{T) to obtain a prediction for the heat capacity {with the other
variables held fixed).

This procedure is rather intricate, and for most systems, vou're likely to get stuck
at step 1. In fact, there are very few systems for which I know how to write down
an explicit formula for the multiplicity: the two-state paramagnet, the Einstein
solid, the monatomic ideal gas, and a few others that are mathematically similar to
these. In Chapter 6 I'll show vou an alternative route to step 4, yielding a formula
for U(T) without the need to know the multiplicity or the entropy. Meanwhile, we
can still learn plenty from the simple examples that I've already introduced.

Problem 3.8. Starting with the result of Problem 3.5, calculate the heat capac-
ity of an Einstein solid in the low-temperature lmit. Sketch the predicted heat
capacity as a function of temperature. (Note: Measurements of heat capacities of
actual solids at low temperatures do not confirm the prediction that you will make
in this problem. A more accurate model of solids at low temperatures is presented
in Section 7.5.)

Measuring Entropies

Even if you can’t write down s mathematical formula for the entropy of a system,
you can still measure it, essentially by following steps 3-5 in reverse, According
to the theoretical definition (3.5) of temperature, if you add a bit of heat Q) to a
system while holding its volume constant and doing no other forms of work, its
entropy changes by
dS = %{—I— = —?; {constant volume, no work). (3.17)

Since heat and temperature are usually pretty easy to measure, this relation allows
us to compute the change in entropy for a wide variety of processes.* In Section 3.4
T'll show that the relation dS = /T also applies when the volume is changing,
provided that the process is quasistatic.

if the temperature of an object remains constant as heat is added to it (as during
a phase change), then equation 3.17 can be applied even when @ and dS are not
infinitesimal. When T is changing, however, it’s usually more convenient to write
the relation in terms of the heat capacity at constant volume:

Cy dT

ds = . (3.18)

Now perhaps you can see what to do if the temperature changes significantly as
the heat is added. Imagine the process as a sequence of tiny steps, compute dS for

*Equation 3.17 assumes not only fixed volume, but also fixed values of N and any other
variables held fixed in equation 3.5. It also assumes that T doesn’t vary within the system;
internal temperature variations would cause internal heat flow and thus further increases
in entropy.
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each step, and add them up to get the total change in entropy:

Ty
AS=8;-8; = %¥~ dT. (3.19)

3

Often Cy is fairly constant over the temperature range of interest, and you can take
it out of the integral. In other cases, especially at low temperatures, Cy changes
quite a bit and must be left inside the integral.

Here's a quick example. Suppose you heat a cup {200 g) of water from 20°C to
100°C. By how much does its entropy increase? Well, the heat capacity of 200 g of
water is 200 cal/K or about 840 J/K, and is essentially independent of temperature
over this range. Therefore the increase in entropy is

373K
%d'r = (840 J/K) ln( iﬁ) = 200 J/K. (3.20)

AS = (840 J/K) f -

203K

This may not seem like a huge increase, but in fundamental units (dividing by
Boltzmann’s constant) it’s an increase of 1.5 x 10%%, And this means that the
multiplicity of the system increases by a factor of e1-5%10% (4 very large number).

If you're lucky enough to know Cy all the way down to absolute zero, you can
calculate a system’s totfal entropy simply by taking zerc as the lower limit of the
integral:

T
Sy — 8(0) = g dT. (3.21)
s 1
But what is 5{0)? In principle, zero. At zero temperature a system should settle
into its unique lowest-energy state, so {1 = 1 and S = 0. This fact is often called
the third law of thermodynamics.

In practice, however, there can be several reasons why S(0) is effectively nonzero.
Most importantly, in some solid crystals it is possible to change the orientations
of the molecules with very little change in energy. Water molecules, for example,
can orient themselves in several possible ways within an ice crystal. Technically,
one particular arrangement will always have a lower energy than any other, but in
practice the arrangements are often random or nearly random, and you would have
to wait eons for the crystal to rearrange itself into the true ground state. We then
say that the solid has a frozen-in residual entropy, equal to k times the logarithm
of the number of possible molecular arrangements.

Another form of residual entropy comes from the mixing of different nuclear
isotopes of an element. Most elements have more than one stable isotope, but in
natural systems these isotopes are mixed together randomly, with an associated
entropy of mixing. Again, at T = ( there should be a unique lowest-energy state
in which the isotopes are unmixed or are distributed in some orderly way, but in
practice the atoms are always stuck at their random sites in the crystal lattice.”

*An important exception is helium, which remains a liquid at T = 0, allowing the two
isotopes (3He and *He) to arrange themselves in an orderly way.
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A third type of “residual” entropy comes from the multiplicity of alignments
of nuclear spins. At T = 0 this entropy does disappear as the spins align parallel
or antiparallel to their neighbors. But this generally doesn’t happen until the
temperature is less than a tiny fraction of 1 K, far below the range of routine heat
capacity measurements.

Entropies of a wide variety of substances have been computed from measured
heat capacities using equation 3.21, and are tabulated in standard reference works.
(A few dozen values are included at the back of this book.} By convention, tabulated
entropies do include any residual entropy due to molecular orientations, but do not
include any entropy of isotopic mixing or of nuclear spin orientations. {The tables
are generally compiled by chemists, who don’t care fiuch about nuclei.)

You might be worried that the integral in formula 3.21 appears to diverge at its
lower limit, because of the T in the denominator of the integrand. I it did diverge,
either Sy would be infinity or S(0) would be negative infinity. Entropy, however,
must always be finite and positive, according to our original definition § = klnf).
The only way out is if Cyv also goes to zero at T = 0:

Cy—0 as T-—0. (3.22)

This result is also sometimes called the third law of thermodynamics, Appar-
ently, our earlier results (3.15 and 3.16) for the heat capacities of an Finstein solid
and an ideal gas cannot be correct at very low temperatures. Instead, all degrees
of freedom must “freeze out.” This is what you should have found in Problem 3.8;
we'll see many other examples throughout the rest of this book.

Problem 3.9. In solid carbon monoxide, each CO molecule has two possible orien-
tations: CO or OC. Assuming that these orientations are completely random (not
quite true but close}, calculate the residual entropy of a mole of carbon monoxide.

The Macroscopic View of Entropy

Historically, the relation dS = Q/T was the original definition of entropy. In 1365,
Rudolf Clausius defined entropy to be the thing that increases by /T whenever
heat ) enters a system at temperature 7', Although this definition tells us nothing
about what entropy actually s, it is still sufficient for many purposes, when the
microscopic makeup of a system does not concern us.

To illustrate this traditional view of entropy, consider again what happens when
a hot object, A, is put in thermal contact with a cold object, B {see Figure 3.4).
To be specific, suppose that T4 = 500 K and T» = 300 K. From experience we
know that heat will low from A to B. Let's say that during some time interval the
armount of heat that flows is 15300 J, and that A and B are large enough objects
that their temperatures don’t change significantly due to the loss or gain of this
amount of energy. Then during this time interval, the entropy of A changes by

~1500 J

ASa = 5K

= —3 J/K. (3.23)

95



96

Chapter 3 Interactions and Implications

ASpg =45 J/K

Figure 3.4. When 1500 J of heat leaves a 500 K object, its entropy decreases by
3 J/K. When this same heat enters a 300 K object, its entropy increases by 5 J/K.

Object A loses entropy, because heat is flowing out of it. Similarly, the entropy
of B changes by

+1500 J
m‘“ = 45 J/K (324)

Object B gains entropy, because heat is flowing info it. (Notice that the traditional
entropy unit of J/K is quite convenient when we compute entropy changes in this
way.)

Just as I often visualize energy as a “fluid” that can change forms and move
around but never be created or destroyed, I sometimes imagine entropy, as well, to
be a fluid. I imagine that, whenever energy enters or leaves a system in the form
of heat, it is required (by law) to carry some entropy with it, in the amount Q/T.
The weird thing about entropy, though, is that it is only half-conserved: It cannot
be destroyed, but it can be created, and in fact, new entropy is created whenever
heat flows between objects at different ternperatures. As in the numerical example
above, the entropy that 1s “carried by” the heat is more when it arrives at the
cooler object than it was when it left the hotter object (see Figure 3.5). Only in
the limit where there is no temperature difference between the two objects will no
new entropy be created. In this limit, however, there is no tendency of heat to flow
in the first place. It’s important to remember that fundamentally, the net increase

ASp =

Figure 3.5. Each unit of heat energy {Q) that leaves a hot object is required to
carry some entropy (Q/T) with it. When it enters a cooler object, the amount of
entropy has increased.
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in entropy is the driving force behind the flow of heat. Fundamentally, though,
entropy isn’t a fluid at all and my model is simply wrong.

Problem 3.10. An ice cube (mass 30 g) at 0°C is left sitting on the kitchen table,
where it gradually melts. The temperature in the kitchen is 25°C.

{a) Calculate the change in the entropy of the ice cube as it melts into water
at 0°C. (Don’t worry about the fact that the volume changes sornewhat.)

{b) Calculate the change in the entropy of the water {from the melted ice) as
its temperature rises from 0°C to 25°C.

{c) Calculate the change in the entropy of the kitchen as it gives up heat to
the melting ice/water,

{d) Calculate the net change in the entropy of the universe during this process.
Is the net change positive, negative, or zero? Is this what you would expect?

Problem 3.11. In order to take a nice warm bath, you mix 50 liters of hot water
at 55°C with 25 liters of cold water at 10°C. How much new entropy have you
created by mixing the water?

Problem 3.12. Estimate the change in the entropy of the universe due to heat
escaping from your home on a cold winter day.

Problem 3.13. When the sun is high in the sky, it delivers approximately
1000 watts of power to each square meter of earth’s surface. The temperature
of the surface of the sun is about 6000 K, while that of the earth is about 300 K.

(a) Estimate the entropy created in one year by the flow of solar heat onto a
square meter of the earth.

{b) Suppose you plant grass on this square meter of earth. Some people might
argue that the growth of the grass (or of any other living thing) violates the
second law of thermodynamics, because disorderly nutrients are converted
into an orderly life form. How would you respond?

Problem 3.14. Experimental measurements of the heat capacity of aluminum at
low temperatures (below about 50 K} can be fit to the formula

Cy = aT + bT™,

where Cy is the heat capacity of one mole of aluminum, and the constants o
and b are approximately o = 0.00135 J/K? and b = 2.48 x 1075 J/K*. From
this data, find a formula for the entropy of a mole of aluminum as a function of
temperature. Evaluate your formula at T = 1 K and at T = 10 K, expressing
your answers both in conventional units (J/K) and as unitless numbers {dividing
by Boltzmann’s constant}. [Comment: In Chapter 7 I'll explain why the heat
capacity of a metal has this form. The linear term comes from energy stored in
the conduction electrons, while the cubic term comes from lattice vibrations of the

crystal ]

Problem 3.15. In Problem 1.55 you used the virial theorem to estimate the heat
capacity of a star. Starting with that resuit, calculate the entropy of a star, first
in terms of its average temperature and then in terms of its total energy. Sketch
the entropy as a function of energy, and comment on the shape of the graph.
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Problem 3.16. A bit of computer memory is some physical object that can be in
two different states, often interpreted as 0 and 1. A byte is eight bits, a kilobyte
is 1024 (= 210) bytes, a megabyte is 1024 kilobytes, and a gigabyte is 1024
megabytes.

{a) Suppose that your computer erases or overwrites one gigabyte of memory,
keeping no record of the information that was stored. Explain why this
process must create a certain minimum amount of entropy, and calculate
how much.

{b) If this entropy is dumped into an environment at room temperature, how
much heat must come along with it? Is this amount of heat significant?

3.3 Paramagnetism

At the beginning of the previcus section I outlined a five-step procedure for pre-
dicting the thermal properties of a material, starting from a combinatoric formula
for the multiplicity and applying the definitions of entropy and temperature. |
also carried out this procedure for two particular model systems: 2 monatomic
ideal gas, and an Einstein solid in the high-temperature limit (g > N). Both of
these examples, however, were very simple mathematically, and merely verified the
equipartition theorem. Next I would like to work out a more complicated example,
where the equipartition theorem does not apply at all. This example will be more
interesting mathematically, and also rather counterintuitive physically.

The system that I want to discuss is the two-state paramagnet, introduced
briefly in Section 2.1. I'll start by reviewing the basic microscopic physics.

Notation and Microscopic Physics

The system consists of N spin-1/2 particles, immersed in a constant magnetic
field B pointing in the +z direction (see Figure 3.6). Each particle behaves like a
little compass needle, feeling a torque that tries to align its magnetic dipole moment,
with the field. Because of this behavior I'l] refer to the particles as dipoles. For
simplicity I'll assume that there are no interactions befween dipoles—each dipole
feels only the torque from the external field. In this case we say that the system is
an ideal paramagnet.

According to quantum mechanics, the component of a particle’s dipole moment
along a given axis cannot take on just any value—instead it is quantized, that
is, limited to certain discrete values. For a spin-1/2 particle only two values are
allowed, which I'll call simply “up” and “down” (along the z axis). The magnetic

B RREEARRRRRSRRRRRERR!

Figure 3.8. A two-state paramagnet, consisting of N microscopic magnetic
dipoles, each of which is either “up” or *down” at any moment. The dipoles
respond only to the influence of the external magnetic field B; they do not interact
with their neighbors {except to exchange energy).
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Energy
A
Figure 3.7. The energy levels of a single +uB “Down”
dipole in an ideal two-state paramagnet are
—uB (for the “up” state} and +pB {for the
“down” state). 01
—pt B 1 “Upn

field, pointing in the +2z direction, gives each dipole a preference for the up state.
To flip a single dipole from up to down we would have to add some energy; the
amount of energy required is 2uB, where u is a constant related to the particle’s
magnetic moment (essentially the “strength” of the effective compass needle}. For
the sake of symmetry, I'll say that the energy of a dipole that points up is —uB, so
that the energy of a dipole that points down is +uB (see Figure 3.7).

The total energy of the system is

U = uB(N, — Ny) = uB(N — 2Ny), (3.25)

where Ny and N| are the numbers of up and down dipoles, respectively, and N =
Ni+ Ny. T'll define the magnetization, M, to be the total magnetic moment of
the whole system. Each “up” dipole has magnetic moment +u and each “down”
dipole has magnetic moment —pu, so the magnetization can be written

M = Ny~ Ny = — 2. (3.26)
We would like to know how U and M depend on temperature.

Our first task is to write down a formula for the multiplicity. We will keep N
fixed, and consider each different value of Ny {and hence U and M) to define a
different macrostate. Then this system is mathematically equivalent to a collection
of N coins with Ny heads, and the multiplicity is simply

(3.27)

mNﬁ:(N) N1

Ny) T NN

Numerical Solution

For reasonably small systems, one can just evaluate the multiplicity (3.27) directly,
take the logarithm to find the entropy, and so on. Table 3.2 shows part of a
computer-generated table of numbers for a paramagnet consisting of 100 elementary
dipoles. There is one row in the table for each possible energy value; the rows are
written in order of increasing energy, starting with the macrostate with all the
dipoles pointing up.
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N; U/uB M/Ngy Q S/k  kT/uB C/Nk
100 —100 1.00 1 0 0 -
99 —98 .98 100 4.61 A7 074

98 ~06 .96 4950 8.51 54 310

97 —94 84 16x10° 11.99 60 .365

52 -4 04 93x10%  66.70 25.2 001
51 -2 02 99x10®  66.76 50.5 —
50 0 0 1.0x10%® 66.78 o0 —
49 2 —02 99x10%® 66.76 —50.5 —_

48 4 ~-04 9.3x10% 66.70 ~25.2 .001

1 98 —.98 100 4.61 —.47 074
0 100 ~1.00 1 0 0 —

Table 3.2. Thermodynamic properties of a two-state paramagnet consisting of
100 elementary dipoles. Microscopic physics determines the energy U and total
magnetization M in terms of the number of dipoles pointing up, Ny. The muiti-
plicity Q is calculated from the combinatoric formula 3.27, while the entropy § is
kInQ. The last two columnns show the temperature and the heat capacity, calcu-
lated by taking derivatives as explained in the text.

The behavior of the entropy as a function of energy is particularly interesting,
as shown in Figure 3.8. The largest multiplicity and largest entropy occur at U = ¢,
when exactly half of the dipoles point down. As more energy is added to the system,
the multiplicity and entropy actually decrease, since there are fewer ways to arrange
the energy. This behavior is very different from that of a “normal” system such as
an Finstein solid (as discussed in Section 3.1).

Let’s look at this behavior in more detail. Suppose the system starts out in its
minimum-energy state, with all the dipoles pointing up. Here the entropy-energy
graph is very steep, so the system has a strong tendency to absorb energy from
its environment. As its energy increases (but is still negative}, the entropy-energy
graph becomes shallower, so the tendency to absorb energy decreases, just as for an
Einstein solid or any other “normal” system. However, as the energy of the param-
agnet goes to zero, so does the slope of its entropy-energy graph, so its tendency to
absorb more energy actually disappears. At this point, exactly half of the dipoles
point down, and the system “couldn’t care less” whether its energy increases a bit
more or not. If we now add a bit more energy to the system, it behaves in a most
unusual way. The slope of its entropy-energy graph becomes negative, so it will
spontaneocusly give up energy to any nearby object whose entropy-energy graph has
a positive slope. (Remember, any allowed process that increases the total entropy
will happen spontaneously.)

In the preceding paragraph I have intentionally avoided any mention of “tem-
perature.” But now let’s think about the temperature of this system as a function
of energy. When more than half of the dipoles point up, so the total energy is
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bttt 1 B
~100 50 0 50 100

Figure 3.8. Entropy as a function of energy for a two-state paramagnet consisting
of 100 elementary dipoles.

negative, this system behaves “normally”: Its temperature {the reciprocal of the
slope of the entropy-energy graph) increases as energy is added. In the analogy of
Section 3.1, the system becomes more “generous” with increasing energy. When
[/ = 0, however, the temperature is actually infinile, meaning that this system will
gladly give up energy to any other system whose temperature is finite. The para-
magnet is infinitely generous, At still higher energies, we would like to say that its
generosity is “higher than infinity,” but technically, our definition of temperature
says that T is negative (since the slope is negative). There’s nothing wrong with
this conclusion, but we have to remember that negative temperatures behave as if
they are higher than positive temperatures, since a system with negative temper-
ature will give up energy to any system with positive temperature. It would be
better, in this example, if we talked about 1/T {analogous to “greediness”) instead
of T. At zerc energy, the system has zero greediness, while at higher energies it has
negative greediness. A graph of temperature vs. energy is shown in Figure 3.9.
Negative temperatures can occur only for a system whose total energy is limited,
so that the multiplicity decreases as the maximum allowed energy is approached.
The best examples of such systems are nuclear paramagnets, in which the maguetic

kT/uB
T20

Figure 3.9. Temperature as a 110
function of energy for a two-state
paramagnet. (This graph was plot- T U/NuB
ted from the analytic formulas de- ' N
rived later in the text; a plot of the 3 1
data in Table 3.2 would look similar T
but less smooth.)

—10+
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dipoles are the atomic nuclei rather than the electrons. In certain crystals the
relaxation time for the nuclear dipoles (exchanging energy with each other) can be
much shorter than the relaxation time for the nuclear dipoles to equilibrate with
the crystal lattice. Therefore, on short time scales, the dipoles behave as an isolated
system with only magnetic energy, no vibrational energy. To give such a system
a negative temperature, all you have to do is start at any positive temperature,
with most of the dipoles parallel to the magnetic field, then suddenly reverse the
field so they’re antiparallel. This experiment was first performed by Edward M.
Purcell and R. V. Pound in 1951, using the lithium nuclel in a lithium fluoride
crystal as the system of dipoles. In their original experiment the nuclear dipoles
came to thermal equilibrium among themselves in only 1075 seconds, but required
approximately five minutes, after the field reversal, to return to equilibrium with
the room-temperature crystal lattice.”

I like the example of the paramagnet, with its negative temperatures and other
unusual behavior, because it forces us to think primarily in terms of entropy rather
than temperature. Entropy is the more fundamental quantity, governed by the
second law of thermodynamics. Temperature is less fundamental; it is merely a
characterization of a system’s “willingness” to give up energy, that is, of the rela-
tionship between its energy and entropy.

The sixth column of Table 3.2 lists numerical values of the temperature of
this system as a function of energy. I computed each of these using the formula
T = AU/AS, taking the U and S values from neighboring rows. (To be more
precise, I used a “centered-difference” approximation, subtracting the values in
the preceding row from those in the following row. So, for instance, the number
47 was computed as [(—96) — (—100)j/(8.51 — 0}.) In the last column I've taken
another derivative to obtain the heat capacity, ¢ = AU/AT. Figure 3.10 shows
graphs of the heat capacity and the magnetization vs. temperature. Notice that the
heat capacity of this systemn depends strongly on its temperature, guite unlike the
constant values predicted by the equipartition theorem for more familiar systems.
At zero temperature the heat capacity goes to zero, as required by the third law
of thermodynamics. The heat capacity also goes to zero as T approaches infinity,
since at that point only a tiny amount of energy is required to achieve a very large
increase in temperature.

The behavior of the magnetization as a function of temperature is also interest-
ing. At zero (positive) temperature the system is “saturated,” with all the dipoles
pointing up and maximum magnetization. As the temperature increases, random
jostling tends to fiip more and more dipoles. You might expect that as T" — oo, the
energy would be maximized with all the dipoles pointing down, but this is not the

*For a more detailed description of this experiment, see the fifth (1968} or sixth {1981)
edition of Heat and Thermodynamics by Zemansky (with Dittman as coauthor on the
sixth edition). The original {very short} letter describing the experiment is published
in Physical Review 81, 279 (1951). For an even more dramatic example of negative
temperature, see Pertti Hakonen and Olli V. Lounasmaa, Science 265, 1821-1825 (23
September, 1994).
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Figure 3.10. Heat capacity and magnetization of a two-state paramagnet {com-
puted from the analytic formulas derived later in the text).

case; instead, T = oo corresponds to the state of maximum “randomness,” with
exactly half the dipoles pointing down. The behavior at negative temperature is
essentially a mirror image of the positive-T behavior, with the magnetization again
saturating, but in the opposite direction, as T — 0 from below.

Problem 3.17. Verify every entry in the third line of Table 3.2 (starting with
Ny = 98),

Problem 3.18. Use a computer to reproduce Table 3.2 and the associated graphs
of entropy, temperature, heat capacity, and magnetization. (The graphs in this
section are actually drawn from the analytic formulas derived below, so your nu-
merical graphs won’t be quite as smooth.)

Analytic Solution

Now that we have studied most of the physics of this system through numerical
calculations, let us go back and use analytic methods to derive some more general
formulas to describe these phenomena.

i will assume that the number of elementary dipoles is large, and also that at any
given time the numbers of up and down dipoles are separately large. Then we can
simplify the multiplicity function {3.27) using Stirling’s approximation. Actually,
it’s easiest to just calculate the entropy:

S/k = In Nt — In Nyt — In(N — Ny)!
~NInN =N = NyInNp + Ny = (N=N;) In{N=N;) + (N=Ny)  (3.28)
= NInN — NyIn Ny — (N—Np) In{N~Ny).

From here on the calculations are fairly straightforward but somewhat tedious. I'll
outline the logic and the results, but let you fill in some of the algebraic steps (see
Problem 3.19).
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To find the temperature, we must differentiate S with respect to U. It is simplest
to first use the chain rule and equation 3.25 to express the derivative in terms of Ny:

(3.29)

1_(88\ _anas 1 88
T \8U)yp ©OUON, 2uBoN;

Now just differentiate the last line of equation 3.28 to obtain

1k (N-U/uB
== ZMan(N+U/#B). (3.30)

Notice from this formula that T and U always have opposite signs.
Equation 3.30 can be solved for U to obtain

| — g2uB/kT

U= Nj.bB(——"‘"""""I +32L¢B/kT

) = mNtha.nh(%?), (3.31)

where tanh is the hyperbolic tangent function.* The magnetization is therefore

M =Ny canh(fg). (3.32)

The hyperbolic tangent function is plotted in Figure 3.11; it rises from the origin
with a slope of 1, then flattens to an asymptotic value of 1 as its argument goes to
infinity. So at very small positive temperatures the system is completely magnetized
{as we saw before), while as T — 00, the magnetization goes to zero. To obtain
negative temperature, all we need to do is give the system a negative magnetization,
as described above.

tanhz
1
1.

Figure 3.11. The hyperbolic tangent function. In the formulas for the energy
and magnetization of & two-state paramagnet, the argument z of the hyperbolic
tangent is pnB/KT.

*The definitions of the basic hyperbolic functions are sinhz = a}‘;{e’c — &7 %), coshz =
%(e” +¢7%), and taphz = (sinh z}/(coshz}. From these definitions you can easily show
that ;ﬁ; sinh 2 = coshx and ;?; cosh z = sinhx {with no minus sign).
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To calculate the heat capacity of the paramagnet, just differentiate equation 3.31
with respect to T

_(OUN g, _HB/ETY?
Cp = ( BT)N,B = Nk eIyt (3.33)

This function approaches zero at both low and high T, as we also saw in the
numerical solution.

In a real-world paramagnet, the individual dipoles can be either electrons or
atomic nuclei. Electronic paramagnetism occurs when there are electrons with
angular momentum (orbital or spin) that is not compensated by other electrons;
the circular currents then give rise to magnetic dipole moments. The number
of possible states for each dipole is always some small integer, depending on the
particle’s total angular momentum. The simple case considered here, with just
two states, occurs when there is just one electron whose spin is uncompensated.
Ordinarily this electron would also have orbital angular momentum, but in some
environments the orbital motion is “quenched” by the neighboring atoms, leaving
only the spin angular momentum.

For an electronic two-state paramagnet the value of the constant u is the Bohr
magneton,

h
Up = ;m = 9.274 x 10724 J/T = 5.788 x 1075 eV/T. (3.34)

{Here e is the electron’s charge and m, is its mass.} If we take B =1 T (a pretty
strong magnet), then pB = 5.8x107% eV, But at room temperature, k7 =~ 1/40 eV.
So at ordinary temperatures (more than a few kelvins}, we can assume pB/kT < 1.
In this limit, tanhz = x, so the magnetization becomes

Nu’B

M~ —=

{when uB < kT). (3.35)

The fact that M o 1/T was discovered experimentally by Pierre Curie and is known
as Curie’s law; it holds in the high-temperature limit for all paramagnets, even
those with more than two angular momentum states. In this limit the heat capacity
falls off in proprtion to 1/72.

Figure 3.12 shows experimental values of the magnetization of a real two-state
paramagnet, an organic free radical known as DPPH.* To minimize interactions
between the elementary dipoles, the DPPH was diluted with benzene to form a 1:1
crystalline complex. Notice that the magnetization follows Curie’s law very closely

*The full name is o, o/ -diphenyl-3-picrylhydrazyl, if you really want to know. This
rather large molecule is paramagnetic because there is a nitrogen atom in the middle of
it with an unpaired electron.
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Figure 3.12. Experimental measurements of the magnetization of the organic
free radical “DPPH” (in a 1:1 complex with benzene), taken at B = 2.06 T and
temperatures ranging from 300 K down to 2.2 K. The solid curve is the prediction
of equation 3.32 (with u = pup), while the dashed line is the prediction of Curie’s
law for the high-temperature limit. (Because the effective number of elementary
dipoles in this experiment was uncertain by a few percent, the vertical scale of
the theoretical graphs has been adjusted to obtain the best fit.) Adapted from P.
Grobet, L. Van Gerven, and A. Van den Bosch, Journal of Chemical FPhysics 68,
5225 (1978).

down to temperatures of a few kelvins, but then deviates to follow the prediction of
equation 3.32 as the total magnetization approaches its maximum possible value.”

For a nuclear paramagnet, a typical value of u can be found by replacing the
electron mass with the proton mass in expression 3.34 for the Bohr magneton.
Since a proton is nearly 2000 times heavier than an electron, u is typically smaller
for nuclei by a factor of about 2000. This means that to achieve the same degree
of magnetization you would need to either make the magnetic feld 2000 times
stronger, or make the temperature 2000 times lower. Laboratory magnets are

*This data is the best 1 could find for a nearly ideal two-state paramagnet. Ideal
paramagnets with more than two states per dipole turn out to be more common, or at
least easier to prepare. The most extensively studied examples are salts in which the
paramagnetic ions are either transition metals or rare earths, with unfilled inner electron
shells. To minimize interactions between neighboring ions, they are diluted with large
numbers of magnetically inert atoms. An example is iron ammoniom alum, Fep(SO04)s -
{NH4}2504 - 24140, in which there are 23 inert atoms {not counting the very small
hydrogens) for each paramagnetic Fe®* ion. The magnetic behavior of this crystal has
been shown to be ideal at field strengths up to 5 T and temperatures down to 1.3 K| at
which the magnetization is more than 99% complete. See W. E. Henry, Physical Review
88, 561 (1952). The theory of ideal multi-state paramagnets is treated in Problem 6.22.
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Hmited to strengths of a few teslas, so in practice it takes temperatures in the
millikelvin range to line up essentially all of the dipoles in a nuclear paramagnet.

Problem 3.19. Fill in the missing algebraic steps to derive equations 3.30, 3.31,
and 3.33.

Problem 3.20. Consider an ideal two-state electronic paramagnet such as DPPH,
with g = ug. In the experiment described above, the magnetic field strength was
2.06 T and the minimum temperature was 2.2 K. Calculate the energy, magneti-
zation, and entropy of this system, expressing each quantity as a fraction of its
maximum poessible value. What would the experimenters have had to do to attain
99% of the maximum possible magnetization?

Problem 3.21. In the experiment of Purcell and Pound, the maximum magnetic
field strength was 0.63 T and the initial temperature was 300 K. Pretending that
the lithium nuclei have only two possible spin states (in fact they have four),
calculate the magnetization per particle, M/N, for this system. Take the constant
uto be 5 x 1078 eV/T. To detect such a tiny magnetization, the experimenters
used resonant absorption and emission of radio waves. Calculate the energy that a
radio wave photon should have, in order to flip a single nucleus from one magnetic
state to the other. What is the wavelength of such a photon?

Problem 3.22. Sketch {or use a computer to plot) a graph of the entropy of a
two-state paramagnet as a function of temperature. Describe how this graph would
change if you varied the magnetic fleld strength.

Problem 3.23. Show that the entropy of a two-state paramagnet, expressed as
a function of temperature, is § = Nk{ln(2coshz} — z tanh z], where = = uB/kT.
Check that this formula has the expected behavior as T' — 0 and T — co.

*¥ *® *®

The following two problems apply the technigues of this section to a different sys-
tem, an Einstein solid {or other collection of identical harmonic oscillators) at
arbitrary temperature. Both the methods and the results of these problems are
extremely important. Be sure to work at least one of them, preferably both.

Problem 3.24. Use a computer to study the entropy, temperature, and heat
capacity of an Einstein solid, as follows. Let the solid contain 50 oscillators (ini-
tially), and from 0 to 100 units of energy. Make a table, analogous to Table 3.2, in
which each row represents a different value for the energy. Use separate columns
for the energy, multiplicity, entropy, temperature, and heat capacity. To calculate
the ternperature, evaluate AU/AS for two nearby rows in the table. (Recall that
U = ge for some constant ¢.} The heat capacity (AU/ATY) can be computed in a
similar way. The first few rows of the table should look something like this:

¢ 9 S/ kIJe C/Nk

0 1 o Q -
1 50 3in 28 12
2 1275 715 .33 45

(Irn this table T have computed derivatives using a “centered-difference” approxi-
mation. For example, the temperature .28 is computed as 2/(7.15 — 0).) Make a
graph of entropy vs. energy and a graph of heat capacity vs. temperature. Then
change the number of cscillators to 5000 (to “dilute” the system and look at lower
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temperatures), and again make a graph of heat capacity vs. temperature. Discuss
your prediction for the heat capacity, and compare it to the data for lead, alu-
minum, and diamond shown in Figure 1.14. Estimate the numerical value of ¢, in
electron-volts, for each of those real solids.

Problem 3.25. In Problem 2.18 you showed that the multiplicity of an Einstein
solid containing N oscilators and q energy units is approximately

o= (242) (52,

(a) Starting with this formula, find an expression for the entropy of an Einstein
solid as a function of N and q. Explain why the factors omitted from the
formula have no effect on the entropy, when N and ¢ are large.

(b) Use the result of part {a) to calculate the temperature of an Einstein solid
as a function of its energy. (The energy is U = ge, where € is a constant.)
Be sure to simplify vour result as much as possible.

{c} Invert the relation you found in part (b) to find the energy as a function
of temperature, then differentiate to find a formula for the heat capacity.

(d) Show that, in the imit T — 0o, the heat capacity is ¢ = Nk. (Hint: When
x is very small, €® = 1+ z.} Is this the result you would expect? Explain.

{e) Make a graph (possibly using a computer) of the result of part {c}. To
avoid awkward numerical factors, plot C/Nk vs. the dimensionless variable
t = kT /e, for ¢t in the range from 0 to about 2. Discuss your prediction
for the heat capacity at low temperature, comparing to the data for lead,
aluminum, and diamond shown in Figure 1.14. Estimate the value of ¢, in
electron-volts, for each of those real solids.

(f) Derive a more accurate approximation for the heat capacity at high temper-
atures, by keeping terms through z° in the expansions of the exponentials
and then carefully expanding the denominator and multiplying everything
out. Throw away terms that will be smaller than (¢/kT)? in the final
answer. When the smoke clears, you should find C = Nkt ~ %Q(e/kT)z].

Problem 3.26. The results of either of the two preceding problems can alsc be
applied to the vibrational motions of gas molecules. Looking only at the vibrational
contribution to the heat capacity graph for Ha shown in Figure 1.13, estimate the
value of € for the vibrational motion of an Hy molecule.

3.4 Mechanical Equilibrium and Pressure

Next I would like to generalize the ideas of this chapter to include systems whose
volumes can change as they interact. Just as the spontaneous exchange of energy
between systems is governed by their temperatures, so the exchange of volume
between systems is governed by their pressures. Hence, there must be a close
relation between pressure and entropy, analogous to the relation 1/T = 85/6U.
Consider, then, two systems {perhaps gases) separated by a movable partition
{see Figure 3.13}. The systems are free to exchange both energy and volume, but the
total energy and volume are fixed. The total entropy is a function of two variables,
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_. UA,V;{,SA @’W’;" UB‘!VB‘ISB :

Figure 3.13. Two systems that can exchange both energy and volume with each
other. The total energy and total volume are fixed.

Figure 3.14. A graph of entropy vs. Uy and V4 for the system shown in Fig-
ure 3.13. The equilibrium values of U4 and V4 are where the graph reaches its
highest point.

Us and Vg, as shown in Figure 3.14. The equilibrium point is where Sy attains
its maximum value. At this point, its partial derivatives in both directions vanish:

astotal = { 6Stotal

BUA - ¥ 8% == 0~ (3.36)

We studied the first condition already in Section 3.1, where we concluded that this
condition is equivalent to saying that the two systems are at the same temperature.
Now let us study the second condition in the same way.

The manipulations are exactly analogous to those in Section 3.1:

 OSita _ 8Sx  0Sy _8Sa 0Sp

" o T oV v Vs (347

The last step uses the fact that the total volume is fixed, so dVy = —dVp {any
volume added to A must be subtracted from B). Therefore we can conclude

95 _ 9 at equilibrium. (3.38)

70T
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‘The partial derivatives are to be taken with energy (/4 or Ug) held fixed, as well
as the number of particles (N4 or Ng). Note, however, that I have assumed that
the systems are free to exchange energy, and in fact that they are also in ther-
mal equilibrium. (If the partition is allowed to move but does not allow heat to
pass through, then the energies of the systems are not fixed, and the equilibrium
condition is more complicated.)

From experience, though, we know that when two systems are in mechanical
equilibrium, their pressures must be equal. Therefore pressure must be some func-
tion of the derivative 85/8V. To figure out what function, let's look at units.
Entropy has units of J/K, so 85/8V has units of (N/m?)/K, or Pa/K. To get
something with units of pressure, we need to multiply by a temperature. But can
we? Yes, since we’ve assumed already that the two systems are in thermal equilib-
rium, they must be at the same temperature, so the quantity T(8S/8V) is also the
same for both systems.

We should also think about whether we want 85/8V to be large or small when
the pressure is large. When 85/8V is large, the system gains a lot of entropy upon
expanding just a little. Since entropy tends to increase, this system really “wants”
to expand. Yep, that’s exactly what we mean when we say the pressure is large.

1 therefore propose the following relation between entropy and pressure:

P= T(gi )UN (3.39)

I won't try to call this the definition of pressure, but I hope you agree that this
quantity has all the same qualities as pressure, and hence, that it probably is the
same thing as force per unit area.

Of course, it's always reassuring to check that the formula works in a case
where we already know the answer. So recall the formula for the multiplicity of a
monatomic ideal gas,

Q= f(INYWNU3N/2, (3.40)

where f(N) is & complicated function of N only. Taking the logarithm gives
§=NkinV +3NkU + kin f(N). (3.41)

So aceording to formula 3.39, the pressure should be

NEKT
P=T & (WEmv) =%, (3.2

that is,
PV = NKT. (3.43)

Indeed. So if you already believed formula 3.39, then we've just derived the ideal
gas law. Alternatively, you can think of this calculation as a verification of formula
3.39, and especially of the fact that no additional constant factors are needed in
that formula.
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The Thermodynamic Identity

There’s a nice equation that summarizes both the theoretical definition of temper-
ature and our new formula for pressure. To derive it, let’s consider a process in
which you change both the energy and the volume of a system by small amounts,
AU and AV. Question: How much does the system’s entropy change?

To answer this question, let’s mentally divide the process into two steps: In
step 1, the energy changes by AU/ but the volume is held fixed. Then, in step 2,
the volume changes by AV but the energy is held fixed. These two steps are shown
graphically in Figure 3.15. The total change in entropy is just the sum of the
changes during steps 1 and 2:

AS = (AS), + (AS). (3.44)

Now multiply and divide the first term by AU, and multiply and divide the second
term by AV:
AS AS
AS = (E"EJ")VAU“}- (A—‘;)UAV

The subseripts indicate what quantity is being held fixed, as usual. Now if all of
the changes are small, the ratios in parentheses become partial derivatives, and the
change in entropy can be written

a5 a5
dsS = (éﬁ)vdU+ (W)UdV

1 P
—TdU+TdV,

(3.45)

where in the second line I have used the definition of temperature and formula 3.39
for pressure to evaluate the partial derivatives, This result is called the thermo-
dynamic identity. It is usually rearranged into the following form:

dlU =T dS ~ PdV. (3.46)
This equation is true for any infinitesimal change in any system, provided that T

and P are well defined and no other relevant variables are changing. {For instance,
I've assumed that the number of particles in the system is fixed.)

v
Figure 3.15. To compute the change in
entropy when both U/ and V change, con- AV Step 2
sider the process in two steps: changing . .!
U7 while holding V fixed, then changing Step 1

V while holding U fixed.
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If you memorize only one formaula from this chapter, make it the thermodynamic
identity, because from it you can recover the formulas for both temperature and
pressure as partial derivatives of the entropy. For instance, in a process that takes
place at constant volume (dV = (), the thermodynamic identity says dlJ = T'dS,
which can be rearranged to give the definition of temperature {equation 3.5). And
for a process in which dUU = 0, the thermodynamic identity says TdS = PdV,
which reproduces equation 3.39 for the pressure.

Problem 3.27. What partial-derivative relation can you derive from the thermo-
dynamic identity by considering a process that takes place at constant entropy?
Does the resulting equation agree with what you already knew? Explain.

Entropy and Heat Revisited

The thermodynamic identity looks an awful lot like the first law of thermodynamics,
dU = Q + W. (3.47)

It is therefore tempting to associate @ with T'dS and W with — P dV. However,
these associations are not always valid. They are valid if any change in volume takes
place quasistatically {so the pressure is always uniform throughout the system), if
no other forms of work are done, and if no other relevant variables (such as particle
numbers) are changing. Then we know that W = —PdV, so equations 3.46 and
3.47 imply

@=T4dS (quasistatic). (3.48)

Thus, under these restricted circumstances, the change in a system’s eniropy is
@/T, even if work is being done on it during the process. {In the special case of an
adiabatic process (@ = 0) that is also quasistatic, the entropy is unchanged; such
a process is called isentropic. In short, adiabatic + quasistatic = isentropic.)

This result (3.48) allows us to go back and repeat much of the discussion in
Section 3.2, removing the restriction of constant volume. For example, when a liter
of water is boiled at 180°C and atmospheric pressure, the heat added is 2260 kJ
and so the increase in its entropy is

AS = £ = = 6060 J/K. (3.49)

And for constant-pressure processes in which the temperature changes, we can write
@ = Cp dT, then integrate to obtain

Ty CP

@As)p = |~ =Lar. (3.50)

T

Since most tabulated heat capacities are for constant pressure rather than con-
stant volume, this formula is more practical than the analogous equation (3.19) for
constant volume.

But even though many familiar processes are approximately quasistatic, it's
important to remember that there are exceptions. As an example, suppose you have
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Figure 3.16. Two types of non-quasistatic volume changes: very fast compression
that creates internal disequilibrium, and free expansion into a vacuum.

a gas in a cylinder with a piston, and you hit the piston very hard, so that it moves
inward much faster than the gas molecules themselves are moving (see Figure 3.16}).
Molecules build up in front of the piston, exerting a very large backward force on it
which you must overcome. Let’s say that the piston stops after moving only a very
small distance, so that after everything settles down, the pressure has increased only
infinitesimally. The work you have done on the gas is now greater than —PdV, so
any heat that was simultaneously added must be less than T'dS. In this example,
then,

ds > % (when W > —PdV). (3.51)
You've created “extra” entropy, because you added exira energy to the gas—more
than was needed to accomplish the change in volume.

A related example is the free expansion of a gas into a vacuum, discussed in
Section 2.6. Suppose that a membrane partitions a chamber into two parts, one
filled with gas and the other containing a vacuum. The membrane is suddenly
broken, allowing the gas to expand into the vacuum. Here no work is done on or by
the gas, nor does any heat flow into it, so the first law tells us AU = 0. Meanwhile,
if the increase in the volume of the gas is very small, the thermodynamic identity
{3.46) must still apply, so T'dS = PdV > 0, that is, there is a positive change in
the entropy of the gas. (If it's an ideal gas, you can also see this directly from the
Sackur-Tetrode equation for S, as discussed in Section 2.6.)

In both of these examples, there is a mechanical process that creates new en-
tropy, over and above any entropy that might “Aow” into the system through heat.
It’s always possible to create more entropy. But the second law says that once
we've created it, we can never make it disappear.

Problem 3.28. A liter of air, initially at room temperature and atmospheric
pressure, is heated at constant pressure until it doubles in volurne. Calculate the
increase in its entropy during this process.

Problem 3.29. Sketch a qualitatively accurate graph of the entropy of a substance
{perhaps HyO) as & function of temperature, at fixed pressure. Indicate where the
substance is solid, liquid, and gas. Explain each feature of the graph briefly.
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Problem 3.30. As shown in Figure 1.14, the heat capacity of diamond near room
temperature is approximately linear in 7. Extrapolate this function up to 500 K,
and estimate the change in entropy of a mole of diamond as its temperature is
raised from 298 K to 500 K. Add on the tabulated value at 298 K {from the back
of this book) to obtain S{500 K).

Problem 3.31. Experimental measurements of heat capacities are often repre-
sented in reference works as empirical formulas. For graphife, a formula that works
well over a fairly wide range of temperatures is (for one mole)
c
C p=a-+ 5T~ "f;.z' f

where @ = 16.86 J/K, b = 4.77 x 1073 J/K?, and c = 8.54 x 10° J.K. Suppose,
then, that a mole of graphite is heated at constant pressure from 298 K to 500 K.
Calculate the increase in its entropy during this process. Add on the tabulated
value of S(298 K) (from the back of this book) to obtain S{500 K).

Problem 3.82. A cylinder contains one liter of air at room temperature {306 K)
and atmospheric pressure (10° N/m?). At one end of the cylinder is a massless
piston, whose surface area is 0.01 m?. Suppose that you push the piston in very
suddenly, exerting a force of 2000 N. The piston moves only one millimeter, before
it is stopped by an immovable barrier of some sort.

{(a)} How much work have you done on this system?
(b} How much heat has been added to the gas?

{c) Assuming that all the energy added goes into the gas {not the piston or
cylinder walls), by how much does the internal energy of the gas increase?

(d) Use the thermodynamic identity to calculate the change in the entropy of
the gas {once it has again reached equilibrium).

Problem 3.33. Use the thermodynamic identity to derive the heat capacity

formula 55
cv="(ar),

which is occasionally more convenient than the more familiar expression in terms
of U. Then derive a similar formula for Cp, by first writing dH in terms of 4§
and 4P,

Problem 3.34. Polymers, like rubber, are made of very long molecules, usually
tangled up in a configuration that has lots of entropy. As a very crude model of
a rubber band, consider a chain of N links, each of length £ (see Figure 3.17).
Imagine that each link has only two possible states, pointing either loft or right.
The total length L of the rubber band is the net displacement from the beginning
of the first link to the end of the last link.

£
‘% A Ntk
* ® —_

!

L

Figure 3.17. A crude model of a rubber band as a chain in which each
link can only point left or right.
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(a) Find an expression for the entropy of this system in terms of N and Ng,
the number of links pointing to the right.

{b) Write down a formula for L in terms of N and Ng.

{c} For a one-dimensional system such as this, the length L is analogous to
the volume V of a three-dimensional system. Similarly, the pressure P
is replaced by the tension force F. Taking F to be positive when the
rubber band is pulling inward, write down and explain the appropriate
thermodynamic identity for this system.

(d) Using the therrmodynamic identity, you can now express the tension foree F
in terms of a partial derivative of the entropy. From this expression, com-
pute the tension in terms of L, T, N, and £.

{e) Show that when L « N¥, the tension force is directly proportional to L
(Hooke's law).

{f) Discuss the dependence of the tension force on temperature. If you increase
the temperature of a rubber band, does it tend to expand or contract? Does
this behavior make sense?

(g} Suppose that you hold a relaxed rubber band in both hands and suddenly
stretch it. Would you expect its temperature to increase or decrease? Ex-
plain. Test your prediction with a real rubber band (preferably a fairly
heavy one with lots of stretch), using your lips or forehead as a thermome-
ter. (Hint: The entropy you computed in part (a) is not the total entropy
of the rubber band. There is additional entropy associated with the vibra-
tional energy of the molecules; this entropy depends on U but is approxi-
mately independent of L.}

3.5 Diffusive Equilibrium and Chemical Potential

When two systems are in thermal equilibrium, their temperatures are the same.
When they’re in mechanical equilibrium, their pressures are the same. What quan-
tity is the same when they’'re in diffusive equilibrium?

We can find out by applying the same logic as in the previous section. Consider
two systems, A and B, that are free to exchange both energy and particles, as
shown in Figure 3.18. (The volumes of the systems could also vary, but I'll take
these to be fixed for simplicity.) I've drawn a system of two interacting gases, but
it could just as well be a gas interacting with a liguid or solid, or even two solids in
which atoms gradually migrate around. Pm assuming, though, that both systems
are made of the same species of pariicles, for instance, HoO molecules.

" Ua, NA: Sa - S .- Up, Ng, Sp

e e e - -

Figure 3.18. Two systems that can exchange both energy and particles.
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Assuming that the total energy and total number of particles are fixed, the total
entropy of this system is a function of Uy and N4. At equilibrium, the total entropy
is & maximum, so

(astotal) — 0 &nd (?...Sﬁ!.) = O_ (3.52)
aUA Na Va 3NA U, Vi

(If the volumes of the systems are allowed to vary, then 8Si5ea1/0Va = 0 as well)
Again, the first condition says that the two systems must be at the same temper-
ature. The second condition is new, but is entirely analogous to the condition on
volume from the previous section. Following the same reasoning as there, we can
conclude

354 OS5p

e at equilibrium, 3.53

ONs dNp qu ( )
where the partial derivatives are taken at fixed energy and volume. We're free to
multiply this equation through by a factor of T, the temperature, since the systems
are also in thermal equilibrium. By convention, we also multiply by —1:

at equilibrium. (3.54)

The quantity —T(8S/8N) is much less familiar to most of us than temperature or
pressure, but it's still extremely important. It is called the chemical potential,
denocted p:

N a8
Moo= ~T(8_N)U9V. (355)

This is the quantity that’s the same for both systems when they're in diffusive
equilibrium:
LA = B at equilibrium. (3.56)

If the two systems are not in equilibrium, then the one with the larger value of
85/8N will tend to gain particles, since it will thereby gain more entropy than the
other loses. However, because of the minus sign in definition 3.55, this system has
the smaller value of . Conclusion: Particles tend to flow from the system with
higher 4 into the system with lower u (see Figure 3.19).

By

1 Figure 3.19. Particles tend to flow toward lower
Ha values of the chemical potential, even if both values

Particles are negative.

- - - -
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s not hard to generalize the thermodynamic identity to include processes in
which ¥V changes. If we imagine changing U by dU, V by dV, and N by dN, then,
by the same logic as in the previous section, the total change in the entropy is

as a8 a5
a8 = (EET—)N’VCH] -+ (W)Nyvdv -+ (B"N“)U‘de

) P (3.57)
I
= e dV — = dN.
7 U+ T Vv T N
Solving for 4U as before, we obtain
AU =T dS — PdV + udN. (3.58)

Just as the — P dV term is usually associated with mechanical work, the pdN term
is sometimes referred to as “chemical work.”

This generalized thermodynamic identity is a great way to remember the various
partial-derivative formulas for T, P, and u, and to generate other similar formulas.
Notice that four quantities are changing in this equation: U, S, V, and N. Now
just imagine a process in which any two of these are fixed. For instance, in a process
with fixed I/ and V,

0=TdS 4+ udN, that is, n= WT(QSM) . (3.59)
ON Juv

Similarly, in a process with fixed § and V,

dll = pdN, that is, e (%) . (3.60)
5V

This last result is another useful formula for the chemical potential. It tells us
directly that g has units of energy; specifically, p is the amount by which a system’s
energy changes, when you add one particle and keep the entropy and volume fixed.
Normally, to hold the entropy (or multiplicity) fixed, you must remove some energy
as you add a particle, so g is negative. However, if you have to give the particle some
potential energy {gravitational, if the system lives on a mountain top, or chemical,
if the system is a solid crystal) to get it into the system, this energy also contributes
to u. In Chapter 7 we’ll see an example where you have to give a particle kinefic
energy just to get it into a system.

Now let's look at some examples. First consider a very small Einstein solid, with
three oscillators and three units of energy. The multiplicity is 10, so the entropy
is kIn16. Now suppose we add one more oscillator (thinking of each oscillator as
a “particle”}. If we leave all three units of energy in the system, the multiplicity
increases to 20 and the entropy increeses to k1n20. To hold the entropy fixed, we
need to remove one unit of energy, as shown in Figure 3.20. Thus the chemical
potential of this system is

AU —€
W= (m)s = **“}*:““ = —€, (3.61)
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Figure 3.20. In order to add an oscillator {represented by a box) to this very small
Einstein solid while holding the entropy (or multiplicity) fixed, we must remove
one unit of energy {represented by a dot).

if € is the size of a unit of energy. (Because the addition of one particle is not an
infinitesimal change for such a small system, this example should be taken with a
grain of salt. Strictly speaking, the derivative 8U/8N is not well defined. Besides,
in a real solid crystal, adding an atom would entail adding three oscillators, not
just one, and we would also have to add some negative potential energy to create
the chemical bonds around the added atom.)

As a more realistic example, let’s compute ¢ for a monatomic ideal gas. Here
we need the full Sackur-Tetrode equation {2.49) for the entropy,

3/2
§ = Nk [in(v(%{‘g) ) —lnN%2 4 «Z] (3.62)

Differentiating with respect to N gives

4amll\3/2 s/2, 9 51
dmrnll \3/2
INR? )
V 2nmkT\3/2
= _’“T}“[E(T) }

(In the last line T used the relation U = %N kT.) At room temperature and atmo-
spheric pressure, the volume per molecule, V/N, is 4.2 x 10726 m3, while the quan-
tity (h?/2rmkT)%/? is much smaller. For helium, this quantity is 1.3 x 1073 m?,
so the argument of the logarithm is 3.3 x 105, the logarithm itself is 12.7, and the
chemical potential is

kT [_}3( (3.63)

ue=—0.32 eV for helium at 300 K, 10° N/m?2. {3.64)

If the concentraiion is increased while holding the temperature fixed, 1+ becomes
less negative, indicating that the gas becomes more willing to give up particles
to other nearby systems. More generally, increasing the density of particles in a
system always increases its chemical potential.

Throughout this section, I've implicitly assumed that each system contains only
one type of particle. If a system contains several types of particles (such as air, a
mixture of nitrogen and oxygen molecules), then each species has its own chemical

potential:
o5 a8
= —T(—) L m= -T(—~—) , (3.65)
ONy UV, Ny ANy U,V,N;



3.5 Diffusive Equilibrium and Chemical Potential
and so on for each species 1, 2,.... The generalized thermodynamic identity is then

AU =TdS— PdV + % pdN;, (3.66)
i

where the sum runs over all species, i = 1, 2, .... I two systems are in diffusive
equilibrium, the chemical potentials must be separately equal for each species:
14 = 1B, o4 = pgop, and so on, where A and B are the two systems.

The chemical potential is a central concept in the study of equilibrium in chem-
ical reactions and phase transformations. It also plays a central role in “quantum
statistics,” the study of exotic, dense gases and other related systems. We'll make
use of it many times in Chapters 5 and 7.

One more comment: I should mention that chemists usually define the chemical
potential in terms of moles, not individual particles:

a8
Hchemistry = -7 (“""‘") » {367)
try dn vy

where n = N/Nj is the number of moles of whatever type of particle is being
considered. This means that their chemical potentials are always larger than ours
by a factor of Avogadro’s number, Na. To translate this section into chemistry
conventions, just change every N to an n, except in the examples in equations 3.61
through 3.64, where every formula for y should be multiplied by Na.

Problem 3.35. In the text I showed that for an Einstein solid with three os-
cillators and three units of energy, the chemical potential is g == —e (where € is
the size of an energy unit and we treat each oscillator as a “particle”). Suppose
instead that the solid has three oscillators and four units of energy. How does the
chemical potential then compare to —¢? (Don’t try to get an actual value for the
chemical potential; just explain whether it is more or less than —e¢.)

Problem 3.36. Consider an Einstein solid for whick both N and ¢ are much
greater than 1. Think of each oscillator as a separate “particle.”
(a) Show that the chemical potential is

= wlen(%ﬂ).

{b} Discuss this resuit in the limits N » ¢ and N <« ¢, concentrating on the

question of how much S increases when another particle carrying no energy
is added to the system. Does the formula make intuitive sense?

Problem 3.37. Consider a monatomic ideal gas that lives at a height z above sea

level, so each molecule has potential energy mgz in addition to its kinetic energy.

(a} Show that the chemical potential is the same as if the gas were at sea level,
plus an additional term mgz:

V 7 2nmkT\3/2
p(z}:——kTin[wﬁ(—hzﬂ_) } mgz.

{You can derive this result from either the definition y = —T{85/8N )y v
or the formula g = (BU/ON}g v .)
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{b) Suppose you have two chunks of helium gas, one at sea level and one at
height z, each having the same temperature and volume. Assuming that
they are in diffusive equilibrium, show that the number of molecules in the
higher chunk is

N(z) = N(0)e ™92/

in agreement with the result of Problem 1.16,

Problem 3.38. Suppose you have a mizture of gases (such as air, a mixture of
nitrogen and oxygen). The mole fraction x; of any species 1 is defined as the
fraction of all the molecules that belong to that species: x; == N;/Nysea;. The
partial pressure P; of species i is then defined as the corresponding fraction of
the total pressure: P; = x;P. Assuming that the mixture of gases is ideal, argue
that the chemical potential u; of species ¢ in this system is the same as if the other
gases were not present, at a fixed partial pressure F;.

3.6 Summary and a Look Ahead

This chapter completes our treatment of the basic principles of thermal physics.
The most central principle is the second law: Entropy tends to increase. Because
this law governs the tendency of systems to exchange energy, volume, and particles,
the derivatives of the entropy with respect to these three variables are of great
interest and are relatively casy to measure. Table 3.3 summarizes the three types
of interactions and the associated derivatives of the entropy. The three partial-
derivative formulas are conveniently summarized in the thermodynamic identity,

dU = TdS§ - PdV + udN. (3.68)

These concepts and principles form the foundation of what is called classical ther-
modynamies: the study of systems comprised of large numbers of particles, based
on general laws that do not depend on the detailed microscopic behavior of those
particles. The formulas that appear here apply to any large system whose macro-
state is determined by the variables U, V, and N, and these formulas can be
generalized with little difficulty to other large systems.

Type of Exchanged Governing
interaction quantity variable Formula
thermal energy temperature % = (gg)v,;v
mechanical volume ressure P_(5

‘ P T~ \8V /)y
diffusive particles chemical potential % = _(_g%)u,v

Table 3.3. Summary of the three types of interactions considered in this chapter,

and the associated variables and partial-derivative relations.



3.6 Summary and a Look Ahead

In addition to these very general concepts, we have also worked with three
specific model systems: the two-state paramagnet, the Einstein solid, and the mon-
atomic ideal gas. For each of these systems we used the laws of microscopic physics
to find explicit formulas for the multiplicity and entropy, and hence computed
heat capacities and a variety of other measurable quantities. The business of us-
ing microscopic models to derive these kinds of predictions is called statistical
mechanics.

The remainder of this book explores further applications of thermal physics.
Chapters 4 and 5 apply the general laws of classical thermodynamics to a variety
of systems of practical interest in engineering, chemistry, and related disciplines.
Chapters 6, 7, and 8 then return to statistical mechanics, introducing more sophis-
ticated microscopic models and the mathematical tools needed to derive predictions
from them.

Problem 3.39. In Problem 2.32 you computed the entropy of an ideal monatomic
gas that lives in a two-dimensional universe, Take partial derivatives with respect
to U, A, and N to determine the temperature, pressure, and chemical potential of
this gas. (In two dimensions, pressure is defined as force per unit length.) Simplify
your results as much as possible, and explain whether they make sense.

A good many times I have been present at gatherings of people who, by the
standards of the traditional culture, are thought highly educated and who
have with considerable gusto been expressing their incredulity at the illiteracy
of scientists. Once or twice I have been provoked and have asked the company
how many of them could describe the Second Law of Thermodynamics. The
response was cold: it was also negative. Yet I was asking something which is
about the scientific equivalent of: Have you read a work of Shakespeare’s?

-C. P. Snow, The Two Cultures (Cambridge Uni-
versity Press, Cambridge, 1959). Reprinted with
the permission of Cambridge University Press.
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4 Engines and Refrigerators

4.1 Heat Engines

A heat engine is any device that absorbs heat and converts part of that energy
into work. An important example is the steam turbine, used to generate electricity
in most of today’s power plants. The familiar internal combustion engine used in
automobiles does not actually absorb heat, but we can pretend that the thermal
energy comes from outside rather than inside and treat it, also, as a heat engine.

Unfortunately, only part of the energy absorbed as heat can be converted to work
by a heat engine. The reason is that the heat, as it flows in, brings along entropy,
which must somehow be disposed of before the cycle can start over. To get rid of
the entropy, every heat engine must dump some waste heat into its environment.
The work produced by the engine is the difference between the heat absorbed and
the waste heat expelled.

My goal in this section is to make these ideas precise, and to determine exactly
how much of the heat absorbed by an engine can be converted into work. Amazingly,
we can say a great deal without knowing anything about how the engine actually
works.

Figure 4.1 shows the How of energy into and out of a heat engine. The heat
absorbed by the engine comes from a place called the hot reservoir, while the waste
heat is dumped into the cold reservoir. The temperatures of these reservoirs, T
and T, are assumed fixed. (In general, a reservoir in thermodynamics is anything
that’s so large that its temperature doesn’t change noticeably when heat enters or
leaves. For a steam engine, the hot reservoir is the place where the fuel is burned
and the cold reservoir is the surrounding environment.}