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Not chaos-like together crush’d and bruis’d,

But, as the world, harmoniously confus’d:

Where order in variety we see,

And where, though all things differ, all agree.
— Alexander Pope, 1713

Frontispiece: DNA from a bacterium that has been lysed (burst), for example by osmotic shock
(12200 x magnification). The bacterial genome that once occupied a small region in the center

of the figure now extends in a series of loops from the core structure (arrow). From (Wolfe,
1985).



About this manuscript:

Here is the first half of the text. (The second half will come in about a month.)
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is free, apart from duplication costs. The bad news is that you have to help me write it. No,
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things I've wrongly assumed you already know, what questions are phrased ambiguously, and so
on. Please pass all these comments, and more, on to me via your professor.
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viii TO THE STUDENT

To the student

This is a book for life-science students who are willing to use calculus. This is also a book for
physical-science and engineering students who are willing to think about cells. I believe that in the
future every student in either group will need to know the essential core of the others’ knowledge.

In the past few years I have attended many conferences and seminars. Increasingly I have
found myself surrounded not only by physicists, biologists, chemists, and engineers, but also by
physicians, mathematicians, and entrepreneurs. At these conferences nobody ever stands up and
says, “Hey, is this nanotechnology or biomathematics?” because nobody really cares. These people
come together to learn from each other, and the traditional academic distinctions between their
fields are becoming increasingly irrelevant to this exciting work. In this book I want to share some
of their excitement.

I began to wonder how this diverse group managed to overcome the Tower-of-Babel syndrome.
Slowly I began to realize that while each discipline carries its immense load of experimental and
theoretical machinery, still the headwaters of these rivers are manageable, and come from a common
spring, a handful of simple, general ideas. Armed with these few ideas, I found that one can
understand an enormous amount of front-line research. In this book I want to explore these first
common ideas, ruthlessly suppressing the more specialized ones for later.

I also realized that my own undergraduate education had postponed the introduction of many
of these ideas to the last year of my degree (or even later), and that many programs still have this
character: We meticulously build a sophisticated mathematical edifice before introducing many of
the Big Ideas. My colleagues and I became convinced that this approach did not serve the needs of
our students. Many of our undergraduate students get started on research in their very first year
and need the big picture early. Many others create interdisciplinary programs for themselves and
may never even get to our specialized, advanced courses. In this book I want to present some of the
big picture in a way accessible to any student who has taken first-year physics and calculus (plus a
smattering of high-school chemistry and biology), and who is willing to stretch. When you’re done
you should be in a position to read current work in Science and Nature. You won’t get every detail,
of course. But you will get the sweep.

When we began to offer this course, we were surprised to find that many of our graduate students
wanted to take it too. In part this reflected their own compartmentalized education: The physics
students wanted to read the biology part and see it integrated with their other knowledge, the
biology students wanted the reverse, and so on. To our amazement, we found that the course
became popular with students at all levels from sophomore to third-year graduate, with the latter
digging more deeply into the details. Accordingly, many sections in this book have “Track—2”

addenda addressing this more mathematically experienced group.

Physical science vs life science At the dawn of the twentieth century it was already clear
that, chemically speaking, you and I are not much different from cans of soup. And yet we can do
many complex and even fun things we do not usually see cans of soup doing. At that time people
had basically no correct ideas for how living organisms create order from food, do work, and even
compute things—just a lot of inappropriate metaphors drawn from the technology of the day.

By mid-century it began to be clear that the answers to many of these questions would be found
in the study of very big molecules. Now, as we begin the twenty-first century, ironically, the situation

is inverted: The problem is now that we have way too much information about those molecules!
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We are drowning in information; we need an armature, a framework, on which to organize all those
zillions of facts.

Some life scientists dismiss physics as ‘reductionist’, tending to strip away all the details which
make frogs different from, say, neutron stars. Others believe that right now some unifying frame-
work is essential to see the big picture. My own conviction is that the tension between the ‘de-
velopmental /historical /complex’ sciences and the ‘universal/ahistorical /reductionist’ ones has been
enormously fruitful, and that the future belongs to those who can switch fluidly between both kinds
of brain.

Setting aside philosophy, it’s a fact that the past decade or two has seen a revolution in physical
techniques to get inside the nanoworld of cells, tweak them in physical ways, and measure quanti-
tatively the results. At last, a lot of physical ideas lying behind the cartoons found in cell biology
books are getting the precise tests needed to confirm or reject them. At the same time, even some

mechanisms not necessarily used by Nature have proven to be of immense technological value.

Why all the math?

I said it in Hebrew, I said it in Dutch,
I said it in German and Greek;
But I wholly forgot (and it vexes me much)
That English is what you speak!
— Lewis Carroll, The Hunting of the Snark

Life-science students may wonder whether all the mathematical formulas in this book are really
needed. Physical scientists believe that the way to get conviction that a theory is correct is to
make quantitative predictions from a simplified model, then test them experimentally. This book
supplies many of the tools to do this. Ultimately I want you to be able to walk into a room with
an unfamiliar problem, pull out the right tool, and solve the problem. I realize this is not easy, at
first.

Actually it’s true that physicists sometimes overdo the mathematical analysis. In contrast,
the point of view in this book is that beautiful formulas are usually a means, not an end, in
understanding Nature. Usually only the simplest tools, like dimensional analysis, suffice to see
what’s going on. Only when you've been a very, very good scientist, do you get the reward of
carrying out some really elaborate mathematical calculation and seeing your predictions come to
life in an experiment. Your other physics and math courses will give you the background you’ll
need for that.

Features of this book I have tried to adhere to some principles while writing the book. Most

of these are boring and technical, but there are four that are worth pointing out here:

1. When possible, relate the ideas to everyday phenomena.

2. Say what’s going on. Instead of just giving a list of steps, I have tried to explain why we are
taking these steps, and how we might have guessed that a step would prove fruitful. This
exploratory (or discovery-style) approach involves more words than you may be used to in
physics texts (though fewer than in biology texts!). The goal is to help you to make the

difficult transition to choosing your own steps.

3. No black bores. The dreaded phrase “it can be shown” hardly ever appears in Track—1.
Almost all mathematical results mentioned are actually derived here, or taken to the point
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where you can get them yourself as homework problems. When I could not obtain a result in
a discussion at this level, I usually omitted it altogether.

4. No fake data. When you see an object that looks like a graph, almost always it really is a
graph. That is, the points are somebody’s actual laboratory data, usually with a citation. The
curves are some actual mathematical function, usually derived in the text (or in a homework
problem). Graphlike sketches are clearly labeled as such. In fact, every figure carries a
pedantic little tag giving its logical status, so you can tell which are actual data, which are

reconstructions, and which are artist’s impressions.

Real data are generally not as pretty as fake data. You need the real thing in order to develop your
critical skills. For one thing, some simple theories don’t work as well as you might believe just from
listening to lectures. On the other hand, some unimpressive-looking fits of theory to experiment
actually do support strong conclusions; you need practice looking for the relevant features.

Many chapters contain a section titled “Excursion.” These lie outside the main story line. Some
are short articles by leading experimentalists about experiments they did. Others are historical or
cultural essays. There are also two Appendices. Please take a moment now to check them. They
include a list of all the symbols used in the text to represent physical quantities, definitions of all
the units, and numerical values for many physical quantities, some of them useful in working the

homework problems.

Why the history? This is not a history book, and yet you will find many ancient results dis-
cussed. (Many people take “ancient” to mean “before Internet,” but in this book I use the more
classical definition “before television.”) The old stuff is not there just to give the patina of scholar-
ship. Rather, a recurring theme of the book is the way in which physical measurements have often
disclosed the existence and nature of molecular devices in cells long before traditional biochemical
assays nailed down their precise identities. The historical passages document case studies where
this has happened; in some cases the gap has been measured in decades!

Even today, with our immensely sophisticated armamentum of structural biology, the traditional
knock-out-the-gene-and-see-what-kind-of-mouse-you-get experimental strategy can be much slower
and more difficult to perform and interpret than a more direct, reach-in-and-grab-it approach. In
fact, the menu of ingenious new tools for applying physical stresses to functioning cells or their
constituents (all the way down to the single-molecule level) and quantitatively measuring their
responses has grown rapidly in the last decade, giving unprecedented opportunities for indirectly
deducing what must be happening at the molecular level. Scientists who can integrate the lessons
of both the biochemical and biophysical approaches will be the first ones to see the whole picture.

Knowing how it has worked in the past prepares you for your turn.

Learning this subject If your previous background in physical science is a first-year undergrad-
uate course in physics or chemistry, this book will have a very different feel from the texts you've
read so far. This subject is rapidly evolving; my presentation won’t have that authoritative, stone-
tablets feeling of a fixed, established subject, nor should it. Instead I offer you the excitement of a
field in flux, a field where you personally can make new contributions without first hacking through
a jungle of existing formalism for a decade.

If your previous background is in life sciences, you may be accustomed to a writing style in
which facts are delivered to you. But in this book many of the assertions, and most of the formulas,
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are supposed to follow from the previous ones, in ways you can and must check. In fact, you will
notice the words “we, us, our, let’s” throughout the text. Usually in scientific writing these are
just pompous ways of saying “I, me, my,” and “watch me,” but in this book they refer to a team
consisting of you and me. You need to figure out which statements are new information and which
are deductions, and work out the latter ones. Sometimes I have flagged especially important logical
steps as “Your Turn” questions. These are intended to be short enough that you can do them on
the spot before proceeding. It is essential to work these out yourself in order to get the skill you
need in constructing new physical arguments.

Each time the text introduces a formula, take a moment to look at it and think about its
reasonableness. If it says @ = yz/w, does it make sense that increasing w should decrease x? How
do the units work out? At first I'll walk you through these steps, but from then on you need to do
them automatically. When you find me using an unfamiliar mathematical idea, please talk to your
instructor as soon as possible instead of just bleeping over it. Another helpful resource is the book
by Shankar (Shankar, 1995).1

Beyond the questions in the text, you will find problems at the ends of the chapters. They are
not as straightforward as they were in first-year physics; often you will need some common sense,
some seat-of-the-pants qualitative judgment, even some advice from your instructor to get off to the
right start. Most students are uncomfortable with this approach at first—it’s not just you!—but in
the end this skill is going to be one of the most valuable ones you’ll ever learn, no matter what you
do later in life. It’s a high-technology world out there, and it will be your oyster when you develop
the agility to solve open-ended, quantitative problems.

The problems also get harder as you go on in the text, so do the early ones even if they seem

easy.

1:12 Some sections and problems are flagged with this symbol. These are For Mature Au-

diences Only. Of course I say it that way to make you want to read them, whether or not your
instructor assigns them.? These “Track-2” sections take the mathematical development a bit far-
ther. They forge links to what you are learning/will learn in other physics courses. They also
advertise some of the cited research literature. The main (“Track—1") text does not rely on these
sections; it is self-contained. Even Track—2 readers should skip the Track—2 sections on the first

reading.

Many students find this course to be a stiff challenge. The physics students have to digest a
lot of biological terminology; the biology students have to brush up on their math. It’s not easy,
but it’s worth the effort: Interdisciplinary subjects like this one are among the most exciting and
fertile. I've noticed that the happiest, most excited, students are the ones who team up to work
together with another student from a different background and do the problems together, teaching
each other things. Give it a try.

Last [[...]]

1See the Bibliography at the back of this book.
2In a similar vein, do not, under any circumstances, read “To the Instructor.”
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To the instructor

A few years ago my department asked their undergraduate students what they needed but were
not getting from us. One of the answers was, “a course on Biological Physics.” Our students could
not help noticing all the exciting articles in the New York Times, all the cover articles in Physics
Today, and so on; they wanted a piece of the action. This book emerged from their request.

Around the same time many of my friends at other universities were beginning to work in this
field, and were keenly interested in teaching a course, but felt uncomfortable with the existing texts.
Some were brilliant but decades old; none seemed to cover the beautiful new results in molecular
motors, self-assembly, and single-molecule manipulation and imaging that were revolutionizing the
field. My friends and I were also daunted by the vastness of the literature and our own limited
penetration of the field; we needed a synthesis. This book is my attempt to answer that need.

The book also serves to introduce much of the conceptual material underlying the young fields of
nanotechnology and soft materials. It’s not surprising—the molecular and supramolecular machines
in each of our cells are the inspiration for much of nanotechnology, and the polymers and membranes
from which they are constructed are the inspiration for much of soft-materials science.

This text was intended for use with a wildly diverse audience. It is based on a course I have
taught to a single class containing students majoring in physics, biology, biochemistry, biophysics,
materials science, and chemical, mechanical, and bio-engineering. I hope the book will prove useful
as a main or adjunct text for courses in any science or engineering department. My students also
vary widely in experience, from sophomores to third-year graduate students. You may not want
to try such a broad group, but it works at Penn. To reach them all, the course is divided into
two sections; the graduate section has harder and more mathematically sophisticated problems
and exams. The structure of the book reflects this division, with numerous “Track—2" sections

and problems covering the more advanced material. These sections are set in smaller type and

introduced with a special symbol: | T®|. The Track-2 sections are largely independent of each

other, so you can assign them a la carte. Note that I recommend that all students skip them on
the first reading.

The only prerequisites for the core, Track—1, material are first-year calculus and calculus-based
physics, and a distant memory of high-school chemistry and biology. The concepts of calculus are
used freely, but very little technique; only the very simplest differential equations need to be solved.
More importantly, the student needs to possess or acquire a fluency in throwing numbers around,
making estimates, keeping track of units, and carrying out short derivations. The Track—2 material
and problems should be appropriate for senior physics majors and first-year graduate students.

For a one-semester class of less experienced students you will probably want to skip one or both
of Chapters 9 and 10 (or possibly 11-12). For more experienced students, you can instead skim the
opening chapters quickly, then spend extra time on the advanced chapters.

When teaching this course, I also assign supplementary readings from one of the standard cell
biology texts. Cell biology inevitably contains a lot of nomenclature and iconography; both students
and instructor must make an investment in learning these. The payoff is clear and immediate: Not
only does this investment allow one to communicate with professionals doing exciting work in many
fields, it is also crucial in order to see what physical problems are of real, urgent, relevance to
biomedical research.

I have made a special effort to keep the terminology and notation unified, a difficult task when

spanning several disciplines. Appendix A summarizes all the notation in one place. Appendix B
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contains a lot of useful numerical values, many more than are used in the text. You may find these
useful in making new homework and exam problems.

More details about how to get from this book to a full course can be found in the Instructor’s
Guide, available from the publisher. The Guide also contains solutions to all the problems and
“Your Turn” questions, suggested class demonstrations, and the computer code used to generate
many of the graphs found in the text. You can use this code to create computer-based problems,

do class demos, and so on.

Why doesn’t my favorite topic appear?

A garden is finished when there is nothing left to remove. — Zen

aphorism

It’s probably one of my favorite topics, too. But the text reflects the relentless pursuit of a few

maxims:

e Keep it a course, not an encyclopedia. The book corresponds to what I actually manage to
cover (that is, what the students actually manage to learn) in a typical 42-hour semester, plus

about 20% more to allow flexibility.
e Keep a unified storyline.
e Keep it elementary, especially the math, yet honest.
e Maintain a balance between very recent results and the important classical topics.

e Restrict the discussion to topics actually useful for understanding recent articles in Science,
Nature, and the New York Times. Choose those topics which open the most doors into physics,

biology, chemistry, and engineering.

e Make practically no mention of quantum theory, which our students encounter only after this
course. Fortunately, a huge body of important biological physics (including the whole field of

soft biomaterials) makes no use of the deep quantum ideas.

e Restrict the discussion to concrete problems where the physical vision leads to falsifiable,
quantitative predictions and where laboratory data are available. Every chapter presents

some real experimental data.

e But choose problems that illuminate, and are illuminated by, the big ideas. Students want

that—that’s why they study science.

Underlying the above points is a determination to present physical ideas as beautiful and important
in their own right. Respect for these foundational ideas has kept me from relegating them to
the currently fashionable utilitarian status of a toolbag to help out with other disciplines. A few
apparently dilatory topics, which pursue the physics beyond the point (currently) needed to explain
biological phenomena, reflect this conviction.

I am aware that many subtle subjects are presented in this book with important details burnished
off. This was an inevitable result of my conviction that one must do whatever it takes to introduce
this material to this audience. Ars est celare artem.

Finally, I have tried to cover topics that I have found to be of greatest interest to students,
while respecting their often limited degree of mathematical experience. Certainly you will find
places where I could have done this better. I would be glad to have your feedback.
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Standard disclaimers This is a textbook, not a monograph. No attempt has been made to sort
out historical priority, except in those sections titled “history.” The experiments described here
were chosen simply because they fit some pedagogical imperative, and seemed to have particularly
direct interpretations. The citation of original works is haphazard, except for my own work, which
is systematically not cited. No claim is made that anything in this book is original, though at times

I just couldn’t stop myself.

Is this stuff really physics? Should it be taught in a physics department? If you’ve come this
far, probably you have made up your mind already. But I'll bet you have colleagues who ask this
question. The text attempts to show not only that many of the founders of molecular biology had
physics background, but conversely that historically the study of life has fed crucial insights back
into physics. It’s true at the pedagogical level as well. Many students find the ideas of statistical
physics to be most vivid in the life-science context. In fact some students take my course after
courses in statistical physics or physical chemistry; they tell me that Biological Physics puts the
pieces together for them in a new and helpful way.

More importantly, I have found a group of students who are keenly interested in studying physics,
but feel turned away when their physics departments offer no connections to the excitement in the
life sciences. It’s time to give them what they need.

At the same time, your life-sciences colleagues may ask, “Do our students need this much
physics?” The answer is, maybe not in the past, but certainly in the future. (Your colleagues may
enjoy two recent, eloquent articles on this subject: (Alberts, 1998; Hopfield, 2002).) The book tries
to show that there is a quantitative, physical-sciences approach to problems, and it’s versatile. It’s
not the only toolbox in the well-educated scientist’s mind, but it’s one of the powerful ones. We
need to teach it to everyone, not just to physical-science majors. I believe that the recent insularity
of physics is only a temporary aberration; both sides can only stand to prosper by renewing their
once-tight linkage.

Last I had the great good fortune to see statistical physics for the first time through the beautiful
lectures of Sam Treiman (1925-1999). Treiman was a great scientist and one of the spiritual leaders
of a great department for decades. From time to time I still go back to my notes from that course.

And there he is, just as before.
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Chapter 1

What the ancients knew

Although there is no direct connection between beer and the
First Law of thermodynamics, the influence of Joule’s profes-
sional expertise in brewing technology on his scientific work is
clearly discernible. — Hans Christian von Baeyer, Warmth dis-

perses and time passes

The modest goal of this book is to take you from the mid-nineteenth century, where first-year
physics courses often end, to the science headlines you read this morning. It’s a long road. To
get to our destination on time we’ll need to focus tightly on just a few core issues involving the
interplay between energy, information, and life.

We will eventually erect a framework, based on only a few principles, in which to begin addressing
these issues. It’s not enough simply to enunciate a handful of key ideas, of course. If it were, then
this book could have been published on a single wallet card. The pleasure, the depth, the craft
of our subject lie in the details of how living organisms work out the solutions to their challenges
within the framework of physical law. The aim of the book is to show you a few of these details,
to clothe the eternal, mathematical bones of physical law with the wet, contingent flesh of life.

Each chapter of this book opens with a biological question, and a terse slogan encapsulating a
physical idea relevant to the question. Think about these as you read the chapter.

Biological question: How can living organisms be so highly ordered?

Physical idea: The flow of energy can leave behind increased order.

1.1 Heat

Living organisms eat, grow, reproduce, and compute. They do these things in ways that appear
totally different from man-made machines. One key difference involves the role of temperature.
For example, if you chill your vacuum cleaner, or even your television, to a degree above freezing,
these appliances continue to work fine. But try this with a grasshopper, or even a bacterium, and
you find that life processes practically stop. (After all, that’s why you own a freezer in the first
place.) Understanding the interplay of heat and work will prove to be crucial to the fundamental

©2000 Philip C. Nelson
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processes of life and will become a central obsession of this book. This chapter will develop some
plausible but preliminary ideas about this interplay; Part II of the book will sharpen these into

precise, quantitative tools.

1.1.1 Heat is a form of energy

When a rock of mass m falls freely, its altitude z and velocity v change together in just such a
way as to ensure that the quantity £ = mgz + %mv2 stays constant, where g is the acceleration of

gravity at Earth’s surface. We say that “energy is conserved.”

Show this.
dFE

Example Solution: We need to show that the time derivative < equals zero. Taking v to be

the velocity in the upward direction z, we have v = %. Using the chain rule from

calculus then gives 92 = muv(g + 9%). But the acceleration, ¥, is always equal to

dE
dt

—g in free fall. Hence = 0 throughout the motion: The energy is a constant.

G. Leibnitz obtained this result in 1693. We call the first term of E (that is, mgz) the potential
energy of the rock, and the second term (%va) its kinetic energy. We’'ll call their sum the
mechanical energy of the rock.

Now suppose our rock lands in some mud at z = 0. The instant before it lands, its kinetic energy
is nonzero, and so E is nonzero too. An instant later, the rock is at rest in the mud and its total
mechanical energy is zero. Apparently mechanical energy is not conserved in the presence of mud!
Every first-year physics student learns why: A mysterious “frictional” effect in the mud drained off
the mechanical energy of the rock. The genius of Isaac Newton lay in part in his realizing that the
laws of motion were best studied in the context of the motions of cannonballs and planets, where
complications like frictional effects are tiny: Here the conservation of energy, so apparently false on
Earth, is most clearly seen. It took another two centuries before others would arrive at a precise
statement of the more subtle idea that

Friction converts mechanical energy into thermal form. When thermal energy

(1.1)

That is, the actual conserved quantity is not the mechanical energy, but the total energy, the sum

is properly accounted for, the energy accounts balance.

of the mechanical energy plus heat.

But what is friction? What is heat? On a practical level, if energy is conserved, if it cannot be
created or destroyed, then why must we be careful not to “waste” it? Indeed what could “waste”
mean? We'll need to look a bit more deeply before we really understand Idea 1.1.

Idea 1.1 says that friction is not a process of energy loss but rather of energy conversion, just as
the fall of a rock converts potential to kinetic energy. You may have seen an illustration of energy
conversion in a grammar school exercise exploring the pathways that could take energy from the
sun and convert it to useful work, for example a trip up a hill (Figure 1.1).

A point your schoolteacher may not have mentioned is that in principle all the energy conversions
in Figure 1.1 are two-way: Light from the sun can generate electricity using a solar cell, that energy
can be partially converted back to light using a light bulb, and so on. The key word here is partially.
We never get all the original energy back in this way: Some is “lost” as heat, both in the solar cell
and the light bulb. The word “lost” here implies not that energy isn’t conserved—it is—but that
some of it makes a one-way conversion to heat.

The same idea holds for the falling rock. We could let it down on a pulley, taking some of

its gravitational potential energy to run a lawnmower. But if we just let it plop into the mud,
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Figure 1.1: (Diagram.) Various ways to get up a hill. Each arrow represents an energy-conversion process.

its mechanical energy is lost. Nobody has ever seen a rock sitting in warm mud suddenly fly up
into space, leaving cold mud behind, even though such a process is perfectly compatible with the
conservation of energy!

So even though energy is strictly conserved, something has been wasted when we let the rock
plop. To make a scientific theory of this something, we’d like to find an independent, measurable
quantity describing the “quality” or “usefulness” of energy; then we could assert that sunlight, or
the potential energy of a rock, has high quality, whereas thermal energy (heat) has poor quality.
We could also try to argue that the quality of energy always degrades in any transaction, and in
this way explain why the conversions indicated by arrows in Figure 1.1 are so much easier than
those moving against the arrows. Before doing these things, though, it’s worthwhile to recall how

the ancients arrived at Idea 1.1.

1.1.2 Just a little history

Physicists like a tidy world with as few irreducible concepts as possible. If mechanical energy can
be converted to thermal energy, and (partially) reconverted back again, and the sum of these forms
of energy is always constant, then it’s attractive to suppose that in some sense these two forms
of energy are really the same thing. But we can’t build scientific theories on @sthetic, culturally
dependent judgements—Nature cares little for our prejudices, and other eras have had different
prejudices. Instead we must anchor Idea 1.1 on some firmer ground.

An example may help to underscore this point. We remember Benjamin Franklin as the great
scientist who developed a theory of electricity as an invisible fluid. Franklin proposed that a

positively charged body had “too much” of this fluid!, and a negative body “too little.” When such

1Franklin’s convention for the sign of charge was unfortunate. Today we know that the main carriers of charge—
electrons—each carry a negative quantity of charge in his convention. Thus it’s more accurate to say that a positively
charge body has too few electrons, and a negatively charged body too many.
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bodies were placed in contact the fluid flowed from one to the other, much like joining a cylinder of
compressed air to a balloon and opening the valve. What’s less well remembered is that Franklin,
and most of his contemporaries, had a similar vision of heat. In this view heat, too, was an invisible
fluid. Hot bodies had “too much,” cold bodies “too little,” and when one placed such bodies in
contact the fluid flowed until the fluid was under the same “pressure” in each, or in other words
until both were at the same temperature.

The fluid theory of heat made some superficial sense. A large body would need more heat
fluid to increase its temperature by one degree than would a small body, just as a large balloon
needs more air than does a small one to increase its internal pressure to, say, 1.1 times atmospheric
pressure. Nevertheless, today we believe that Franklin’s theory of electricity was exactly correct,
while the fluid theory of heat was dead wrong. How did this change in attitudes come about?

Franklin’s contemporary Benjamin Thompson was also intrigued by the problem of heat. After
leaving the American colonies in a hurry in 1775 (he was a spy for the British), Thompson eventually
became a major general in the court of the Duke of Bavaria. For his services he was later named
Count Rumford. In the course of his duties, Thompson arranged for the manufacture of weapons.
A curious phenomenon in the boring (drilling) of cannon barrels triggered his curiosity. Drilling
takes a lot of work, at that time supplied by horses. It also generates a lot of frictional heat. If heat
were a fluid, one might expect that rubbing could transfer some of it from one body to another,
just as brushing your cat leaves cat and brush with opposite electrical charges. But the drill bit
doesn’t grow cold while the cannon barrel becomes hot! Both become hot.

Moreover, the fluid theory of heat seems to imply that eventually the cannon barrel would
become depleted of heat fluid, and that no more heat could be generated by additional friction.
This is not what Thompson observed. One barrel could generate enough heat to boil a surrounding
bath of water. The bath could be replaced by cool water, which would also eventually boil, ad
infinitum. A fresh cannon barrel proved neither better nor worse at heating water than one that
had already boiled many liters. Thompson also weighed the metal chips cut out of the barrel and
found their mass plus that of the barrel to be equal to the original mass of the barrel: No material
substance had been lost.

What Thompson noticed instead was that heat production from friction ceases the moment we
stop doing mechanical work on the system. This was a suggestive observation. But later work,
presented independently in 1847 by James Joule and Hermann von Helmholtz, went much further.
Joule and Helmholtz upgraded Thompson’s qualitative observation to a quantitative law: The heat

produced by friction is a constant times the mechanical work done against that friction, or
(heat produced) = (mechanical energy input) x (0.24 cal/J). (1.2)

Let’s pause to sort out the shorthand in this formula. We measure heat in calories: One calorie
is roughly the amount of heat needed to warm a gram of water by one degree Celsius.? The
mechanical energy input, or work done, is the force applied (in Thompson’s case by the horse),
times the distance (walked by the horse); we measure it in joules just as in first-year physics.
Multiplying work by the constant 0.24 cal/J creates a number with units of calories. The formula
asserts that this number is the amount of heat created.

Equation 1.2 sharpens Idea 1.1 into a quantitative assertion. It also succinctly predicts the

2The modern definition of the calorie acknowledges the mechanical equivalent of heat: One calorie is now defined
as the quantity of thermal energy created by converting exactly 4.184 joules of mechanical work. (The “Calorie”
appearing on nutritional statements is actually one thousand of the physical scientist’s calories, or one kilocalorie.)
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outcomes of several different kinds of experiments: It says that the horse will boil twice as many
liters of water if it walks twice as far, or walks equally far while exerting twice the force, and so
on. It thus contains vastly more information than the precise but limited statement that heat
output stops when work input stops. Scientists like hypotheses that make such a sweeping web of
interlocking predictions, because the success of such a hypothesis is hard to brush aside as a mere
fluke. We say that such hypotheses are highly falsifiable, since any one of the many predictions
of Equation 1.2, if disproved experimentally, would kill the whole thing. The fluid theory of heat
made no comparably broad, correct predictions. Indeed, as we have seen, it does make some wrong
qualitative predictions. This was the logic that ultimately led to the demise of the fluid theory,
despite the strenuous efforts of its powerful adherents.

Suppose we are using a very dull drill bit, so that in one revolution we make little progress in
drilling; that is, the cannon barrel (and the drill itself) are not changed very much. Equation 1.2

says that the net work done on the system equals the net heat given off. More generally,

Suppose a system undergoes a process that leaves it in its original state (that
is, a cyclic process). Then the net of the mechanical work done on the system, (13)
and by the system, equals the net of the heat it gives off and takes in, once we '

convert the work into calories using Equation 1.2.

It doesn’t matter whether the mechanical work was done by a horse, or by a coiled spring, or even
by a flywheel that was initially spinning.

What about processes that do change the system under study? In this case we’ll need to
amend Idea 1.3 to account for the energy that was stored in (or released from) the system. For
example, the heat released when a match burns represents energy initially stored in chemical form.
A tremendous amount of nineteenth-century research by Joule and Helmholtz (among many others)
convinced scientists that when every form of energy is properly included, the accounts balance for all
the arrows in Figure 1.1, and for every other thermal/mechanical/chemcal process. This generalized

form of Idea 1.3 is now called the First Law of thermodynamics.

1.1.3 Preview: The concept of free energy

This subsection is just a preview of ideas to be made precise later. Don’t worry if these ideas don’t
seem firm yet. The goal is to build up some intuition, some expectations, about the interplay of
order and energy. Chapters 3—2 will give many concrete examples of this interplay, to get us ready
for the abstract formulation in Chapter 6.

The quantitative connection between heat and work lent strong support to an old idea (Newton
had discussed it in the seventeenth century) that heat really is nothing but a particular form of
mechanical energy, namely the kinetic energy of the individual molecules constituting a body. In
this view, a hot body has a lot of energy stored in an (imperceptible) jiggling of its (invisible)
molecules. Certainly we’ll have to work hard to justify claims about the imperceptible and the
invisible. But before doing this, we must deal with a more direct problem.

Equation 1.2 is sometimes called the “mechanical equivalent of heat.” The discussion in Sec-
tion 1.1.1 makes it clear, however, that this phrase is a slight misnomer: Heat is not fully equivalent
to mechanical work, since one cannot be fully converted to the other. Chapter 3 will explore the
view that slowly emerged in the late nineteenth century, which is that thermal energy is the por-
tion of the total energy attributable to random molecular motion (all molecules jiggling in random
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directions), and so is distinct from the organized kinetic energy of a falling rock (all molecules have
the same average velocity).

Thus the random character of thermal motion must be the key to its low quality. In other
words, we are proposing that the distinction between high- and low-quality energy is a matter of
organization. Everyone knows that an orderly system tends to degrade into a disorganized, random
mess. Sorting it back out again always seems to take work, both in the colloquial sense (sorting
a big pile of coins into pennies, nickels, and so on is a lot of work) and in the strict sense. Thus
for example, an air conditioner consumes electrical energy to suppress random molecular motion in
the air of your room (and hence it heats the outside world more than it cools your room).

The idea in the preceding paragraph may be interesting, but it hardly qualifies as a testable
physical hypothesis. We need a quantitative measure of the useful energy of a system, the part of
the total that can actually be harnessed to do useful work. A major goal of Chapter 6 will be to
find such a measure, which we will call “free energy” and denote by the symbol F. But we can
already see what to expect. The idea we are considering is that F' is less than the total energy E
by an amount related to the randomness, or disorder, of the system. More precisely, Chapter 6 will
show how to characterize this disorder using a quantity called “entropy” and denoted by the letter

S. The free energy will turn out to be given by the simple formula
F=FE-TS§, (1.4)

where T is the temperature of the system. We can now state the proposal that F' measures the

“useful” energy of a system a bit more clearly:

A system held at a fixed temperature T' can spontaneously drive a process if
the net effect of the process is to reduce the system’s free energy F'. Thus, if (1.5)
the system’s free energy is already at a minimum, no spontaneous change will )

occur.
According to Equation 1.4, a decrease in free energy can come about either by lowering the energy
E (rocks tend to fall) or by increasing the entropy S (disorder tends to increase).

We can also use Equation 1.4 to clarify our idea of the “quality” of energy: A system’s free
energy is always less than its mechanical energy. If the disorder is small, though, so that T'S is much
smaller than E, then F' ~ F; we then say that the system’s energy content is of “high quality.”
(More precisely still, we should discuss changes of energy and entropy; see Section 6.5.4.)

Again: Equation 1.4 and Idea 1.5 are provisional—we haven’t even defined the quantity S
yet. Nevertheless, they should at least seem reasonable. In particular, it makes sense that the
second term on the right side of Equation 1.4 should be multiplied by T, since hotter systems have
more thermal motion and so should be even more strongly influenced by the tendency to maximize
disorder than cold ones. Chapters 6-7 will make these ideas precise. Chapter 8 will extend the idea
of free energy to include chemical forms of energy; in general these are also of high quality.

1.2 How life generates order

1.2.1 The puzzle of biological order

The ideas of the previous section have a certain intuitive appeal. When we put a drop of ink in a
glass of water, the ink eventually mixes, a process we will study in great detail in Chapter 4. We

never see an ink-water mixture spontaneously unmix. Chapter 6 will make this intuition precise,
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formulating a principle called the “Second Law of thermodynamics.” Roughly speaking it says that
in an isolated system molecular disorder never decreases spontaneously.

But now we are in a bit of a bind. We have just concluded that a mixture of hydrogen, carbon,
oxygen, nitrogen, phosphorus, and traces of a few other elements, left alone and isolated in a beaker,
will never organize spontaneously to make a living organism. After all, even the lowliest bacterium
is full of exquisite structure (see Chapter 2), whereas physical systems tend relentlessly toward
greater disorder. And yet, the Earth is teeming with life, even though long ago it was barren. How
indeed does any organism manage to remain alive, let alone create progeny, and even evolve to
more sophisticated organisms? Stated bluntly, our puzzle is: Must we suppose that living organisms
somehow lie outside the jurisdiction of physical law?

At the end of the nineteenth century many respected scientists still answered “yes” to this
question. Their doctrine was called “vitalism.” Today vitalism has gone the way of the fluid theory
of heat, as answers to the paradox of how living things generate order have emerged. Sketching a
few of the details of these answers, along with their precise quantitative tests, is the goal of this
book. It will take some time to reach that goal. But we can already propose the outlines of an
answer in the language developed so far.

It’s encouraging to notice that living creatures obey at least some of the same physical laws as
inanimate matter, even those involving heat. For example, we can measure the heat given off by a
mouse, and add the work it does on its exercise wheel using the conversion formula (Equation 1.2).
Over the course of a few days, the mouse doesn’t change. The First Law of thermodynamics,
Idea 1.3, then says that the total energy output must be proportional to the food intake of the
mouse, and indeed it’s roughly true. (The bookkeeping can get a bit tricky—see Problem 1.7.)

Thus living organisms don’t manage to create energy from nothing. Still, though, when we
look around it seems obvious that life is constantly generating order from nothing (that is, from
disorder). To escape from vitalism, then, we must reconcile this commonplace observation with the
Second Law of thermodynamics.

Such a reconciliation is easier than it at first sounds. After all, a sealed jar full of dense water
vapor changes spontaneously into a jar with a puddle of water at the bottom and very little vapor.
After this transformation the inside of the jar is more organized than before, since most of the
water molecules are stuck in a very thin layer instead of moving freely throughout the interior of
the jar. But nobody would be tempted to believe that an unphysical, occult influence ordered the
water molecules!

To see what is happening, we must recall that the Second Law applies only to an isolated system.
Even though the jar with water vapor is sealed, it gave off heat to its surroundings as the water
condensed, so it’s not isolated. And there is nothing paradoxical about a subsystem of the world
spontaneously increasing its order. Indeed, Section 1.1.3 proposed that a system (in this case the
contents of the jar) will tend spontaneously to move toward lower free energy F', which is not
necessarily the same as moving toward higher disorder. According to our proposed formula for F'
(Equation 1.4) the subsystem’s entropy S can indeed decrease (the water can condense) without
raising F', so long as the internal energy E also decreases by a large enough amount (via heat loss).

The Earth, like our jar, is not an isolated system. To see if the increase in the ordering of
molecules on Earth as life began to develop really contradicts the Second Law, then, we must look
globally at what flows into and out of the Earth. Figure 1.2a depicts the stream of solar energy
impinging on Earth. Since Earth’s temperature is roughly stable over the long term, all of this

energy must also leave the Earth (along with a bit of geothermal energy generated here). Some of
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Figure 1.2: (Diagram.) (a) Energy budget of Earth’s biosphere. Most of the incident high-quality energy gets
degraded to thermal energy and radiated into space, but some gets captured and used to create the order we see in
life. (b) What plants do with energy: High-quality solar energy is partly used to upgrade low-energy molecules to
high-energy molecules, and the ordered structures they form; the rest is released in thermal form. (c) What animals
do with energy: The high-quality energy in food molecules is partly used to do mechanical work and create ordered

structures; the rest is released in thermal form.

this energy is just reflected into space. The rest leaves when the Earth radiates it away as thermal
energy to the rest of the Universe. Thus Earth constantly accepts energy from the Sun, a very hot
body, and exports it as radiation at its own surface temperature. On a dead rock like the Moon,
this is the whole story. But, as depicted symbolically in Figure 1.2b,c, there is a more interesting
possibility.

Suppose that the incoming energy flux is of higher “quality” than the outgoing flux, and hence
represents a net flow of order into the Earth (Chapter 6 will sharpen this statement). Then we can
imagine some enterprising middleman inserting itself in the middle of this process and skimming
off some of the incoming flux of order, using it to create more and better middlemen! Looking only

at the middle layer, it would seem as though order were magically increasing. That is,
The flow of energy through a system can leave behind increased order. (1.6)

This is life’s big trick. The middle zone is our biosphere; we are the middlemen.? Green plants

ingest a high-quality form of energy (sunlight), passing it through their bodies to exit as thermal

3A second, largely independent, biosphere exists in hot ocean vents, fuelled not by the Sun but by high-energy
chemicals escaping from inside the Earth.
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energy (Figure 1.2b). The plant needs some of this energy just to resist the degrading tendency of
thermal disorder to turn its tissues into well-mixed chemical solutions. By processing even more
energy through its body than this minimum, the plant can grow and do some “useful work,” for
example upgrading some of its input matter from a low-energy form (carbon dioxide and water) to
a high-energy form (carbohydrate). Plants consume order, not energy.

Closer to home, each of us must constantly process about 100 joules per second (100 watts) of
high-quality energy through our bodies (for example by eating the carbohydrate molecules manu-
factured by plants), even at rest. If we eat more than that, we can generate some excess mechanical
(ordered) energy to build our homes and so on. As shown in Figure 1.2¢, the input energy again
leaves in a low-quality form (heat). Animals, too, consume order, not energy.

Again: life doesn’t really create order from nowhere. Life captures order, ultimately from the
Sun. This order then trickles through the biosphere through an intricate set of transformation
processes, which we will refer to generically as free energy transductions. Looking only at the

biosphere, it seems as though life has created order.

1.2.2 A paradigm for free energy transduction

Osmotic flow If the trick just described were unique to living organisms, then we might still
feel that they sat outside the physical world. But nonliving systems can transduce free energy too:
The drawing on page 1 shows a machine that processes solar energy and performs useful work.
Unfortunately, this sort of machine is not a very good analogy to the processes driving living cells.

Figure 1.3 sketches another sort of machine, more closely related to what we are looking for.
A sealed tank of water has two freely sliding pistons. When one piston moves to the left, so does
the other, since the water between them is practically incompressible (and unstretchable). Across
the middle of the chamber we place a membrane permeable to water, but not to dissolved sugar
molecules. The whole system is kept at room temperature: Any heat that must be added or removed
to hold it at this temperature comes from (or goes into) the surrounding room. Initially a lump of
sugar is uncovered on the right side. What happens?

At first nothing seems to happen at all. But as the sugar dissolves and spreads through the
right-hand chamber, a mysterious force begins to push the pistons to the right. This is an honest,
mechanical force; we could use it to lift a weight, as shown in Figure 1.3a. The process is called
osmotic flow.

Where did the energy to lift the weight come from? The only possible source of energy is
the outside world. Indeed, careful measurements show that the system absorbs heat from its
surroundings; somehow this thermal energy gets converted to mechanical work. Didn’t Section 1.1.3
argue that it is impossible to convert heat completely back into mechanical work? Yes, but we are
paying for this transaction; something is getting used up. That something is order. Initially the
sugar molecules are partially confined: Each one moves freely, and randomly, throughout the region
between the membrane and the right-hand piston. As water flows through the membrane, forcing
the pistons to the right, the sugar molecules lose some of their order (or gain some disorder), being
no longer confined to just one half of the total volume of water. When finally the left side has shrunk
to zero, the sugar molecules have free run of the entire volume of water between the pistons; their
disorder can’t increase any more. Our device then stops and will yield no more work, even though
there’s plenty of thermal energy left in the surrounding world. Osmotic flow sacrifices molecular

order, to organize random thermal motion into gross mechanical motion against a load.
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Figure 1.3: (Schematic.) A machine transducing free energy. A cylinder filled with water is separated into two
chambers by a semipermeable membrane (dashed line). The membrane is anchored to the cylinder. Two pistons
slide freely, allowing the volumes of the two chambers to change as water molecules (solid dots) cross the membrane.
The pistons must slide together, though, because the water between them is incompressible. Sugar molecules (open
circles) remain confined to the right-hand chamber. (a) Osmotic flow: As long as the weight is not too heavy, when
we release the pistons water crosses the membrane, forcing both pistons to the right, and lifting the weight. The
sugar molecules then spread out into the increased volume of water on the right. (b) Reverse osmosis: If we pull hard
enough, though, the pistons will move to the left, increasing the concentration of the sugar solution in the right-hand
chamber and generating heat.

We can rephrase the above argument in the language introduced in Section 1.1.3. Idea 1.5 on
page 7 intdroduced the idea that the osmotic machine will spontaneously move in the direction that
lowers its free energy F'. According to Equation 1.4, F' can decrease even if the potential energy of
the weight increases (and hence so does the mechanical energy F), as long as the entropy increases
by a compensating amount. But the previous paragraph argued that as the pistons move to the
right, the disorder (and hence the entropy) increases. So indeed Idea 1.5 predicts that the pistons
will move to the right, as long as the weight is not too heavy.

Now suppose we pull very hard on the left piston, as in Figure 1.3b. This time, a rightward
movement of the piston would increase the potential energy of the weight so much that F' increases,
despite the second term of Equation 1.4. Instead, the pistons will move to the left, the region of
concentrated solution will shrink and become more concentrated, and in short the system will gain
order.

This really works—it’s a common industrial process called reverse osmosis (or “ultrafiltration”).
You could use it to purify water before drinking it.

Reverse osmosis (Figure 1.3b) is just the sort of process we were looking for. An input of high-
quality energy (in this case mechanical work) suffices to upgrade the order of our system. The
energy input must go somewhere, according to the First Law (Idea 1.3), and indeed it does: The

system gives off heat in the process. We passed energy through our system, which degraded it from
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mechanical form to thermal form while increasing its own order. We could even make our machine
cyclic. After pulling the pistons all the way to the left, we dump out the contents of each side, move
the pistons all the way to the right (lifting the weight), refill the right side with sugar solution,
and repeat everything. Then our machine continuously accepts high-quality (mechanical) energy,
degrades it into thermal energy, and creates molecular order (by separating sugar solution into
sugar and pure water).

But that’s the same trick we ascribed to living organisms, as summarized in Figure 1.2! It’s not
precisely the same—in Earth’s biosphere the input stream of high-quality energy is sunlight, while
our reverse-osmosis machine runs on externally supplied mechanical work. Nevertheless, much of
this book will be devoted to showing that at a deep level these processes, one from the living and one
from the nonliving worlds, are essentially the same. In particular, Chapters 6, 7, and 10 will pick
up this story and parlay our understanding into a view of biomolecular machines. That the motors
found in living cells differ from our osmotic machine by being single molecules, or collections of a
few molecules. But we’ll argue that these “molecular motors” are again just free energy transducers,
essentially like Figure 1.3. They work better than simple machines because evolution has engineered

them to work better, not because of some fundamental exemption from physical law.

Preview: Disorder as information The osmotic machine illustrates another key idea, on which
Chapter 7 will build, namely the connection between disorder and information. To introduce this
concept, consider again the case of a small load (Figure 1.3a). Suppose we measure experimentally
the maximum work done by the piston, by integrating the maximum force the piston can exert over

the distance it travels. Doing this experiment at room temperature yields an empirical observation:
(maximum work) &~ N x (4.1 x 10721 J x ). (experimental observation) (1.7)

Here N is the number of dissolved sugar molecules. (v is a numerical constant whose value is not
important right now; you will find it in Your Turn 7b.)

In fact Equation 1.7 holds for any dilute solution at room temperature, not just sugar dissolved
in water, regardless of the details of the size or shape of the container and the number of molecules.
Such a universal law must have a deep meaning. To interpret it, we return to Equation 1.4. We get
the maximum work when we let the pistons move gradually, always applying the biggest possible
load. According to Idea 1.5, the largest load we can apply without stalling the machine is the one
for which the free energy F' hardly decreases at all. In this case Equation 1.4 claims that the change
in potential energy of the weight (that is, the mechanical work done) just equals the temperature
times the change of entropy. So Equation 1.7 is telling us something about the meaning of entropy,
namely that TAS ~ N x (4.1 x 10721 J x ).

We already have the expectation that entropy involves disorder, and indeed some order does
disappear when the pistons move all the way to the right: Initially each sugar molecule was confined
to half the total volume, whereas in the end they are not so confined. Thus what’s lost as the pistons
move is a knowledge of which half of the chamber each sugar molecule was in—a binary choice.
If there are N sugar molecules in all, we need to specify N binary digits (bits) of information to
specify where each one sits in the final state, to the same accuracy that we knew it originally.
Combining this remark with the result of the previous paragraph gives that

AS = constant x (number of bits lost).

Thus the entropy, which we have been thinking of qualitatively as a measure of disorder, turns out

to have a quantitative interpretation. If we find that biomolecular motors also obey some version
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of Equation 1.7, with the same numerical constant, then we will be on firm ground when we assert
that they really are free energy transduction devices, and can make a fair claim to have learned
something fundamental about how they work. Chapter 10 will develop this idea.

1.3 Excursion: Commercials, philosophy, pragmatics

And oftentimes, to winne us to our harme
The Instruments of Darkness tell us Truths
Winne us with honest trifles, to betray’s

In deepest consequence — Shakespeare, Macbeth

Cell and tissue, shell and bone, leaf and flower, are so many
portions of matter, and it is in obedience to the laws of physics
that their particles have been moved, moulded, and conformed.
— D’Arcy Thompson, 1917

Section 1.2 dove directly into the technical issues that we’ll wrestle with throughout this book. But
before we begin our exploration in earnest, a very few words are in order about the relation between
physical science and biology.

The quotes above were chosen to highlight a fruitful tension between the two cultures:

eThe physical scientist’s impulse is to look for the forest, not the trees, to see that which

is universal and simple in any system.

eTraditionally, life scientists have been more likely to emphasize that in the inherently
complex living world, frozen accidents of history often dominate what we see, not

universal laws. In such a world, often it’s the details that really matter most.

The views are complementary; one needs the agility to use whichever approach is appropriate at
any given moment, and a willingness to entertain the possibility that the other one is valuable too.

How can one synthesize these two approaches? Figure 1.4 shows the essential strategy. The first
step is to look around at the rich fabric of the phenomena around us. Next, we selectively ignore
nearly everything about these phenomena, snipping the fabric down to just a few threads. This
process involves (a) selecting a simplified but real model system for detailed study, and (b) rep-
resenting the simple system by an equally simple mathematical model, with as few independent
constructs and relations as possible. The steps (a) and (b) are not deductive; words like “mystery”
and “insight” apply to this process.

The last step is to (c) perform some analysis, deducing from the mathematical model some
nonobvious, quantitative, and experimentally testable predictions. If a model makes many such
successful predictions, we gain conviction that we have indeed found the few key ingredients in our
simplifying steps (a) and (b). Words like “hygiene” and “technique” apply to step (c). While this
step is deductive, however, here again imagination is needed to find those consequences of the model
that are both nontrivial and practical to test. The best, most striking, results are those where the
right side of the figure opens up to embrace phenomena that had previously seemed unrelated. We
have already foreshadowed an example of such a global linkage of ideas: The physics of osmotic

flow is linked to the biology of molecular machines.
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Figure 1.4: (Diagram.) What biological physicists try to do.

In the best case, the results of step (c) give the sense of getting something for nothing: The
model generates more structure than was present in its bare statement (the middle part of Fig-
ure 1.4), a structure moreover usually buried in the mass of raw phenomena we began with (left
end of Figure 1.4). In addition, we may in the process find that the most satisfactory physical
model involves some threads, or postulated physical entities (middle part of the figure), whose
very existence wasn’t obvious from the observed phenomena (left part), but can be substantiated
by making and testing quantitative predictions (right part). One famous example of this process is
Max Delbriick’s deduction of the existence of a hereditary molecule, to be discussed in Chapter 3.
We'll see another example in Chapters 11-12, namely the discovery of ion pumps and channels in
cells.

Physics students are heavily trained on the right end of the figure, the techniques for working
through the consequences of a mathematical model. But this is not enough. Uncritically accepting
someone’s model can easily lead to a large body of both theory and experiment culminating in
irrelevant results. Similarly, biology students are heavily trained in the left side, the amassing of
many details of a system. For them the risk is that of becoming an archivist who misses the big
picture. To avoid both of these fates, one must usually know all the details of a biological system,
then transcend them with an appropriate simple model.

Is the physicist’s insistence on simplicity, concreteness, and quantitative tests on model systems
just an immature craving for certainty in an uncertain world? Certainly, at times. But other times
this approach lets us perceive connections not visible “on the ground” by viewing the world “from
above.” When we find such universality we get a sense of having ezxplained something. We can also
get more pragmatic benefits:
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eOften when we forge such a link we find that powerful theoretical tools to solve one
problem have already been created in the context of another. An example will be

the mathematical solution of the helix-coil transition model in Chapter 9.

eSimilarly, we get to carry over powerful existing ezperimental techniques as well. For
example, the realization that DNA and proteins were molecules led Max Perutz,
Linus Pauling, Maurice Wilkins and others to study their structure using X-ray
diffraction, a technique invented to find the structure of simple, nonliving crystals

like quartz.

eFinally, perceiving a link between two circles of ideas can lead us to ask new questions
which later prove to be key. For example, even after Watson and Crick’s discovery
that the DNA molecule was a very long sentence written in an alphabet with four
letters (see Chapter 3), attention did not focus at once on the importance of finding
the dictionary, or code, relating sequences of those letters to the 20-letter alphabet of
amino acids constituting proteins. Thinking about the problem as one in information
transfer led George Gamow, a physicist interested in biology, to write an influential
paper in 1954 asking this question and suggesting that answering it might not be so
difficult as it at first seemed.

It may seem that we need no longer content ourselves with simple models. Can’t massive
computers now follow the fine details of any process? Yes and no. Many low-level processes can in
fact now be followed in molecular detail. But in practice, our ability to get a detailed picture of even
simple systems is surprisingly limited, in part by the rapid increase of computational complexity
when we study large numbers of particles. Surprisingly, though, many physical systems have simple
“emergent properties” not visible in the complex dynamics of their individual molecules. The
simple equations we’ll study seek to encapsulate these properties, and often manage to capture the
important features of the whole complex system. Examples in this book will include the powerful
property of hydrodynamic scale invariance to be explored in Chapter 5, the mean-field behavior
of ions in Chapter 7, and the simple elasticity theory of complex macromolecules in Chapter 9.
The need to exploit such simplicity and regularity in the collective behavior of many similar actors
becomes even more acute when we begin to study even larger systems than the ones discussed in
this book.

1.4 How to do better on exams (and discover new physical

laws)

Equation 1.2 and the discussion below it made use of some simple ideas involving units. Students
often see units, and the associated ideas of dimensional analysis, presented with a brush-your-teeth
attitude. This is regrettable. Dimensional analysis is more than just hygiene. It’s a shortcut to

insight.

1.4.1 Dimensions and units

Every physical quantity has abstract dimensions that tell us what kind of thing it is. Every kind

of dimension can be measured using a variety of different units. The choice of units is arbitrary.
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Once people used the size of the king’s foot. This book will instead use primarily the Systeéme
International, or SI units. In this system, lengths are measured in meters, masses in kilograms,
time in seconds, and electric charge in coulombs. To clarify the distinction between dimensions and

units, here are some examples:

1. Length has dimensions of L, by definition. In SI units we measure it in meters, abbreviated

in this book as m.

2. Mass has dimensions of M, by definition. In SI units we measure it in kilograms, abbreviated

as kg.

3. Time has dimensions of T, by definition. In SI units we measure it in seconds, abbreviated as
s.

4. Velocity has dimensions of LT™'. In SI units we measure it in ms™*

(pronounced “meters per
second”).

5. Acceleration has dimensions of LT 2. In SI units we measure it in ms™—2.

6. Force has dimensions of MILT 2. In SI units we measure it in kgms~2, which we also call

newtons and abbreviate as N.

7. Energy has dimensions of MIL*T 2. In SI units we measure it in kg m? s~2, which we also call

joules and abbreviate as J.

8. Electrical charge has dimensions of QQ, by definition. In SI units we measure it in units of
coulombs, abbreviated in this book as coul to avoid confusion with the symbol C. The flow
rate of charge, or electric current, then must have dimensions of QT . In SI units we measure

1

it in units of coulombs per second, or couls™, also called amperes, abbreviated as A.

9. (We defer a full discussion of temperature units to Section 6.3.2.)

Notice that in this book all units are set in a special typeface, to help you distinguish them from
named quantities (such as m for the mass of an object).

We also create related units by attaching prefixes giga (=107, or billion), mega (=10°, or million),
kilo (=103, or thousand), milli (=103, or thousandth), micro (=10~°, or millionth), nano (=107,
or billionth), pico (=107'2). In writing, we abbreviate these prefixes to G, M, K, m, y, n, and p,
respectively. Thus 1 Gy is a billion years, 1 pN is a piconewton, and so on. Forces in cells are
usually in the pN range.

A few non-SI units, like cm and kcal, are so traditional that we’ll occasionally use them as
well. You will constantly find these units in the research literature, so you might as well get good
at interconverting them now. See Appendix A for a list of all the units in this book; Appendix B
presents the hierarchy of length, time, and energy scales of interest to cell biology, and pulls together
the numerical values of many useful constants.

In any quantitative problem, it is absolutely crucial to keep units in mind at all times. Students
sometimes don’t take dimensional analysis too seriously since it seems trivial, but it’s a very powerful
method for catching algebraic errors. Much more importantly, it gives a way to organize and classify
numbers and situations, and even to guess new physical laws, as we’ll see below. Working scientists
eventually realize that when faced with an unfamiliar situation, dimensional analysis is always step
one.

Most constants of Nature have dimensions. Ounly a few are dimensionless quantities (also called

“pure numbers”). For example, a geometric angle is dimensionless; it expresses the circumference of
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a part of a circle divided by the circle’s radius. Nevertheless we sometimes use dimensionless units
to describe them. A dimensionless unit is just an abbreviation for some pure number. Thus the
degree of angle, represented by the symbol °, denotes the number 27/360. From this point of view
the “radian” is nothing but the pure number 1, and may be dropped from formulas; we sometimes
retain it just to emphasize that a particular quantity is an angle.

A quantity with dimensions is sometimes called dimensional. It’s important to understand that
the units are an integral part of such a quantity. Thus when we use a named variable for a physical
quantity, the units are part of what the name represents. For example, we don’t say “A force equal
to f newtons” but rather “A force equal to f” where, say, f = 5N.

In fact, a dimensional quantity should be thought of as the product of a “numerical part” times
some units; this makes it clear that the numerical part depends on the units chosen. For example,
the quantity 1 m is equal to the quantity 1000 mm. To convert from one unit to another we take
any such equivalence between units, for example 1in = 2.54 cm, and reexpress it as

lin
254cm

Then we take any expression and multiply or divide by one, cancelling the undesired units. For
example, we can convert the acceleration of gravity to ins~2 by writing

100 lin in

gzg_gﬁ._qﬁ. — 386—.

s2 548 2.54 ¢ s2

Finally, no dimensional quantity can be called “large” in any absolute sense. Thus a speed of
1

lcms™ may seem slow to you, but it’s impossibly fast to a bacterium. In contrast, dimensionless
quantities do have an absolute meaning: when we say that they are “large” or “small,” we implicitly
mean “compared to 1.” Finding relevant dimensionless combinations of parameters is often a key
step to classfying the qualitative properties of a system. Section 5.2 of this book will ilustrate this

idea, defining the “Reynolds number” to classify fluid flows.

1.4.2 Using dimensional analysis to catch errors and recall definitions

Isn’t this a lot of pedantic fuss over something trivial? Not really. Things can get complicated
pretty quickly, for example on an exam. Training yourself to carry all the units explicitly, through
every calculation, can save you from many errors.

Suppose you need to compute a force. You write down a formula made out of various quantities.
To check your work, write down the dimensions of each of the quantities in your answer, cancel
whatever cancels, and make sure the result is MLT 2. If it’s not, you probably forgot to copy
something from one step to the next. It’s easy, and it’s amazing how many errors you can find in
this way. (You can also catch your instructors’ errors.)

When you multiply two quantities the dimensions just pile up: force (MILT?) times length (L)
has dimensions of energy (MLZT_2). On the other hand you can never add or subtract terms with
different dimensions in a valid equation, any more than you can add dollars to kilograms. You can
add dollars to rubles, with the appropriate conversion factor, and similarly meters to miles. Meters
and miles are different units that both have the same dimensions.

Another useful rule of thumb involving dimensions is that you can only take the exponential of
a dimensionless number. The same thing holds for other familiar functions, like sin, cos, In, ....

One way to understand this rule is to notice that e* = 1+z+ %xQ +---. According to the previous
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paragraph, this sum makes no sense unless z is dimensionless. (Recall also that the sine function’s
argument is an angle, and angles are dimensionless.)
Suppose you run into a new constant in a formula. For example the force between two charged

objects in vacuum is
1 qig
dreg r2

(1.8)

What are the dimensions of the constant €37 Just compare:
MLT 2 = [go] 'Q’L 2.

In this formula the notation [g¢] means “the dimensions of €4”; it’s some combination of L, M, T, Q
that we want to find. Remember that numbers like 47 have no dimensions. (After all, 7 is
the ratio of two lengths, the circumference and the diameter of a circle.) So right away we find
[e0] = Q*T?L—3M !, which you can then use to check formulas containing &g.

Finally, dimensional analysis helps you remember things. Suppose you're faced with an obscure
ST unit, like “farad” (abbreviated F). You don’t remember its definition. You know it measures
capacitance, and you have some formula involving it, say E = %q2 /C where E is the stored electrical
energy, ¢ is the stored charge, and C' is the capacitance. Knowing the units of energy and charge
gives that the dimensions of C are [C] = T?Q*M 'L ™2. Substituting the SI units second, coulomb,
kilogram, and meter, we find that the natural SI unit for capacitance is 52c0u|2kg71m’2). That’s

what a farad really is.

Example Appendix B lists the units of the permittivity of empty space gy as F/m. Check
this.
Solution: You could use Equation 1.8, but here’s another way. The electric potential

V(r) a distance r away from a point charge ¢ is

_ q
Amegr’

Vir) (1.9)
The potential energy of another charge ¢ sitting at r equals ¢V (r). Since we know
the dimensions of energy, charge, and distance, we work out [gg] = T2Q°M 'L 73,
as already found above. Comparing what we just found for the dimensions of ca-
pacitance gives that [g9] = [C]/L, so the SI units for gy are the same as those for

capacitance per length, or Fm™!.

1.4.3 Using dimensional analysis to formulate hypotheses

Dimensional analysis has other uses. Let us see how it actually lets us guess new physical laws.

Chapter 4 will discuss the “viscous friction coefficient” ( for an object immersed in a fluid. This
is the force applied to the object, divided by its resulting speed, so its dimensions are M/T. We will
also discuss another quantity, the “diffusion constant” D of the same object, which has dimensions
L2 /T. Both ¢ and D depend in very complicated ways on the temperature, the shape and size of
the object, and the nature of the fluid.

Suppose now that someone tells you that in spite of this great complexity, the product (D is
very simple: This product depends only on the temperature, not on the nature of the object nor

even on the kind of fluid it’s in. What could the relation be? You work out the dimensions of the
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product to be MIL? /T2, That’s an energy. What sort of energy scales are relevant to our problem?
It occurs to you that the energy of thermal motion, Eipermal (to be discussed in Chapter 3), is
relevant to the physics of friction, since friction makes heat. So you could guess that if there is any

fundamental relation, it must have the form
?
CD = Ethermal- (110)

You win. You have just guessed a true law of Nature, one that we will derive in Chapter 4. In
this case Albert Einstein got there ahead of you, but maybe next time you’ll have priority. As we’ll
see, Einstein had a specific goal: By measuring both ¢ and D experimentally, he realized, one could
find Fihermal- We'll see how this gave Einstein a way to measure how big atoms are, without ever
needing to manipulate them individually. And... Atoms really are that size!

What did we really accomplish here? This isn’t the end, it’s the beginning: We didn’t find any
explanation of frictional drag, nor of diffusion, yet. But we know a lot about how that theory should
work. It has to give a relation that looks like Equation 1.10. This helps in figuring out the real
theory.

1.4.4 Some notational conventions involving flux and density

To illustrate how units help us disentangle related concepts, consider a family of related quantities
that will be used throughout the book. (See Appendix A for a complete list of symbols used in the
book.)

eWe will often use the symbols N to denote the number of discrete things (a dimen-
sionless integer), V to denote volume (with SI units m?), and ¢ to denote a quantity
of electric charge (with dimensions coul).

eThe rates of change of these quantities will generally be written dN/dt (with units
s71), Q (the “volume flow rate,” with units m3s™1), and I (the electric current,
with units couls™).

oIf we have five balls in a room of volume 1000 m3, we say that the number density (or

“concentration”) of balls in the room is ¢ = 0.005m~3.

Densities of dimensional
quantities are traditionally denoted by the symbol p; a subscript will indicate what
sort of quantity. Thus mass density is p,, (units kgm~3), while charge density is
pq (units coulm=3).

eSimilarly, if we have five checkers on a 1 m? checkerboard, the surface number density”
is 5m~2. Similarly, the surface charge density” o, has units coulm—2.

eSuppose we pour sugar down a funnel, and 40000 grains fall each second through an
opening of area 1cm?. We say that the number flux (or simply “flux”) of sugar
grains through the opening is j = (40000s™1)/(1072m)? = 4-108 m~2s~!. Similarly,
the fluxes of dimensional quantities are again indicated using subscripts; thus jq is
the charge flux (with units coulm~2s7!)) and so on.

If you accidentally use number density in a formula requiring mass density, you’ll notice that your
answer’s units are missing a factor of kg; this is your signal to go back and introduce the mass of
each object, converting ¢ to pp,.
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1.5 Other key ideas from physics and chemistry

Our story will rest on a number of other points known to the ancients.

1.5.1 Molecules are small

Ordinary molecules, like water, must be very small—we never perceive any grainy quality to water.
But how small, exactly, are they? Once again we turn to Benjamin Franklin.

Around 1773, Franklin’s attention turned to, of all things, oil slicks. What intrigued him was
the fact that a certain quantity of oil could spread only so far on water. Attempting to spread it
farther caused the film to break up into patches. Franklin noticed that a given quantity of olive oil
always covered about the same area of water; specifically, he found that a teaspoon of oil (=~ 5cm?)
covered half an acre of pond (&~ 2000m?). Franklin reasoned that if the oil were composed of
tiny irreducible particles, then it could only spread until these particles formed a single layer, or
“monolayer,” on the surface of the water. It’s easy to go one step farther than Franklin and find
the thickness of the layer, and hence the size scale of a single molecule. Dividing the volume of
oil by the area of the layer, we find the size of one oil molecule to be about 2.5 nm. Remarkably,
Franklin’s eighteenth-century experiment gives a reasonable estimate of the molecular size scale!

Since molecules are so tiny, we find ourselves discussing inconveniently big numbers when we
talk about, say, a gram of water. Conversely we also find ourselves discussing inconveniently small
numbers when we try to express the energy of one molecule in human-size units like joules—see for
example the constant in Equation 1.7. Chemists have found it easier to define, once and for all, one
huge number expressing the smallness of molecules, and then relate everything to this one number.
That number is Avogadro’s number N, defined as the number of carbon atoms needed to make
up twelve grams of (ordinary) carbon. Thus Ny,ele is also roughly the number of hydrogen atoms in
one gram of hydrogen, since a carbon atom has a mass about 12 times that of hydrogen. Similarly,
there are roughly Npo1e 0xygen molecules, Os, in 32 g of oxygen, since each oxygen atom’s mass is
about 16 times as great as a hydrogen atom’s, and each molecule consists of two of them.

Note that Npole is dimensionless.* Any collection of Ny molecules is called a mole of that
type of molecule. In our formulas the word “mole” will simply be a synonym for the number Nye,
just as the word “million” can be thought of as a synonym for the dimensionless number 10°.

Returning to Franklin’s estimate, suppose water molecules are similar to oil molecules, roughly

tiny cubes 2.5 nm on a side.® Let’s see what we can deduce from this observation.

Example Find an estimate for Avogadro’s number starting from this size.

Solution: We won’t get lost if we carry all the dimensions along throughout the

calculation. 1 m3 of water contains
1y

6410
(2.5-10-9 )3

molecules. That same cubic meter of water has a mass of a thousand kilograms,

4 T2 See Section 1.5.4’ on page 26 for more about notational conventions.
5

Really they’re more like slender rods. The cube of the length of such a rod is an overestimate of its volume, so

our estimate here is rough.
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3

since the density of water is 1gecm™ and

s (100cm\® 1g lkg
Lot X( 1ot ) T 1000g

We want to know how many molecules of water make up a mole. Since each water

= 1000 kg.

molecule consists of one oxygen and two hydrogen atoms, its total mass is about
16+14+1=18 times as great as that of a single hydrogen atom. So we must ask, if
6.4 - 10%> molecules have mass 1000 kg, then how many molecules does it take to
make 18 g, or 0.018 kg?

6.4 -10%°

Noote = 0.018 kg x =~
: K€ X 000 kg

=0.011-10%.  (estimate)

The estimate for Avogadro’s number just found is not very accurate (the modern value is
Nuole = 6.0 - 1023). But it’s amazingly good, considering that the data on which it is based were
taken nearly a quarter of a millennium ago. Improving on this estimate, and hence nailing down
the precise dimensions of atoms, proved surprisingly difficult. Chapter 4 will then show how the
dogged pursuit of this quarry led Albert Einstein to a key advance in our understanding of the
nature of heat.

Your Turn 1la
Using the modern value of Avogadro’s number, turn the above calculation around and find the

volume occupied by a single water molecule.

1.5.2 Molecules are particular spatial arrangements of atoms

There are only about a hundred kinds of atoms. Every atom of a given kind is exactly like every
other: Atoms have no individual personalities. For example, every atom of (ordinary) hydrogen
has the same mass as every other one. One way to express an atom’s mass is simply to give it in
grams, but usually it’s more convenient to quote the mass of Ny, atoms (the molar mass).

Similarly, every molecule of a given chemical type has a fixed, definite composition, a rule we
attribute to J. Dalton and J. Gay-Lussac. For example, carbon dioxide always consists of exactly
two oxygen atoms and one of carbon, in a fixed spatial relationship. Every COy molecule is like
every other, for example equally ready or unwilling to undergo a given chemical change.

There may be more than one allowed arrangement for a given set of atoms, yielding two chem-
ically distinct molecules called isomers. Some molecules flip back and forth rapidly between their
isomeric states: They are “labile.” Others do so very rarely: They are rigid. For example, Louis
Pasteur discovered in 1857 that two sugars containing the same atoms, but in mirror-image ar-
rangements, are chemically different and essentially never spontaneously interconvert (Figure 1.5).
A molecule whose mirror image is an inequivalent stereoisomer is called “chiral”; such molecules
will play a key role in Chapter 9.

@Section 1.5.2" on page 26 discusses the division of elements into isotopes.
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X’ Chiral Achiral
_ Mirror +—— molecule: Mirror molecule:
image of Rotated image of Rotated
original molecule original molecule
molecule cannot be molecule can be
superimposed superimposed
on its mirror on its mirror
N image image
Original Original
molecule molecule

Figure 1.5: (Molecular structure sketches.) (a) The original molecule shown is chiral; it cannot be rotated into
any orientation that makes it identical to its mirror image. The original and its mirror (or “enantiomeric”) form are
chemically different, even though they have the same atoms, the same bonds, and the same bond angles. (b) This
molecule, in contrast, is nonchiral: The original molecule can be rotated until it coincides with its mirror image.
[Copyrighted figure; permission pending.]

1.5.3 Molecules have definite internal energies

Section 1.1.2 briefly alluded to the chemical energy stored in a match. Indeed the atoms making
up a molecule carry a definite amount of stored energy, which is said to reside in “chemical bonds”
between the atoms. The chemical bond energy drives toward lower values just as any other form of
stored energy (for example the potential energy of the weight in Figure 1.3). Indeed the chemical
bond energy is just another contribution to the quantity £ appearing in Equation 1.4 on page 7.
Molecules generally prefer to indulge in heat-liberating (exothermic) reactions over heat-accepting
(endothermic) ones, but we can nevertheless get them to adopt higher-energy states by adding
energy from outside. For example, we can split (or hydrolyze) water by passing electrical current
through it. More precisely, Chapter 8 will show that chemical reactions proceed in the direction
that tends to lower the free energy, just as in the osmotic machine.

Even an unstable molecule may not spontaneously split up until a large “activation energy” is
supplied; this is how explosives store their energy until they are detonated. The activation energy
can be delivered to a molecule mechanically, by collision with a neighbor. But this is not the only
possibility. In one of his five historic papers written in 1905, Albert Einstein showed that light, too,
comes in packets of definite energy, called photons. A molecule can absorb such a packet and then
hop over its activation energy barrier, perhaps even ending in a higher-energy state than initially.

The explanations for all of the familiar facts in this subsection and the previous one come from
a branch of physics called “quantum mechanics.” Quantum mechanics also explains the numerical
values of the typical atomic sizes and bond energies in terms of a fundamental physical constant,
the Planck constant A. In this book we will take all these values as just experimentally determined
facts, sidestepping their quantum origins altogether.

How can there be a “typical” bond energy? Don’t some reactions (say, in a stick of dynamite)
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liberate a lot more energy than others (burning a match)? No, the dynamite just liberates its energy

much faster; the energy liberated per chemical bond is roughly comparable to any other reaction.

Example One important chemical reaction is the one happening inside the batteries in your
channel-changer. Estimate the chemical energy released in this reaction.

Solution: Printed on the battery we find that its terminals differ in potential by
AV = 1.5volt. This means that the battery imparts an energy of roughly eAV =
1.6 - 10719 coul x 1.5volt = 2.4 - 10719 J to each electron passing through it. (The
value of the fundamental charge e used above is listed in Appendix B.) If we suppose
that each electron passing across the battery enables the chemical reaction inside
to take one step, then the energy just calculated is the change in chemical bond

energies (minus any thermal energy given off).

In contrast to chemical reactions, the radioactive decay of plutonium liberates about a million
times more energy per atom than a typical chemical reaction. Historically this was the first solid
clue that something very different from chemistry was going on in radioactive decay.

1.5.4 Low-density gases obey a universal law

The founders of chemistry arrived at the idea that atoms combine in definite proportions by noticing
that gases combine in simple, fixed ratios of volume. Eventually it became clear that this obser-
vation reflects the fact that the number of gas molecules in a box at atmospheric pressure is just
proportional to its volume. More precisely, one finds experimentally that the pressure p, volume
V', number of molecules N, and temperature T of any gas (at low enough density) are related in a
simple way called the ideal gas law:

pV = NkgT. (1.11)

Here the temperature 7' is understood to be measured starting from a special point called absolute
zero; other equations in this book, such as Equation 1.4, also use T measured from this point.
In contrast, the Celsius scale assigns zero to the freezing point of water, which turns out to be
273°C above absolute zero. Thus room temperature 7T, corresponds to about 295 degrees above
absolute zero (we will define temperature more carefully in Chapter 3). The quantity kg appearing
in Equation 1.11 is called the Boltzmann constant; it turns out to be about 1.38 - 10723 joules per
degree Celsius. Thus the numerical value of kgT at room temperature is kg7, = 4.1-10721J. A
less cumbersome way of quoting this value, and an easier way to memorize it, is to express it in

units relevant to cellular physics (piconewtons and nanometers):

kgT, ~ 4.1pN - nm. most important formula in this book (1.12)

Take a minute to think about the reasonableness of Equation 1.11: If we pump in more gas (N
increases), the pressure goes up. Similarly if we squeeze the box (V decreases), or heat it up (T
increases), p again increases. It’s all quite reasonable, but the formula makes it very precise.

The form of Equation 1.11 may look unfamiliar. Chemistry texts generally write it as pV = nRT,
where n is the “amount of substance” (number of moles) and RT' is about 2500 joules per mole at

room temperature. Dividing 2500 J by Nyl indeed gives the quantity kgT; in Equation 1.12.
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The remarkable thing about Equation 1.11 is that it holds universally: Any gas, from hydrogen
to vaporized steel, obeys it (at low enough density). All gases (and even mixtures of gases) have
the same numerical value of the constant kg (and all agree about the value of absolute zero). In
fact, even the osmotic work formula, Equation 1.7, involves this same quantity! Physical scientists
sit up and take notice when a law or a constant of Nature proves to be universal (Section 1.3).
Accordingly, our first order of business in Part IT of this book will be to tease out the deep meaning
of Equation 1.11, and its constant kg.

Section 1.5.4'" on page 26 makes more precise this book’s use of the unit “mole,” and relates it

to other books’ usage.

The big picture

Let’s return to this chapter’s Focus Question. Section 1.2 discussed the idea that the flow of energy,
together with its degradation from mechanical to thermal energy, could create order. We saw this
principle at work in a humble process (reverse osmosis, Section 1.2.2 on page 10), then claimed
that life, too, exploits this loophole in the Second Law of thermodynamics to create—or rather,
capture—order. Our job in the following chapters will be to work out the details of how this
works. For example, Chapter 5 will describe how tiny organisms, even single bacteria, carry out
purposeful motion in search of food, enhancing their survival, despite the randomizing effect of
their surroundings. We will need to expand and formalize our ideas in Chapters 6 and 8. Then
we’ll be ready to understand the self-assembly of complicated structures in Chapter 8. Finally,
Chapters 10-12 will see how two paragons of orderly behavior, namely the motion of molecular
machines and nerve impulses, emerge from the disorderly world of single-molecule dynamics.
Before attempting any of these tasks, however, we should pause to appreciate the sheer immen-
sity of the biological order puzzle. Accordingly, the next chapter will give a tour of some of the
extraordinarily ordered structures and processes present even in single cells. Along the way we will

meet many of the devices and interactions to be discussed in later chapters.

Key formulas

Each chapter of Parts IT-11I of this book ends with a summary of the key formulas appearing in that
chapter. The list below is slightly different; it focuses mainly on formulas from first-year physics,
which will be used throughout the book. You may want to review these using an introductory
physics text.

1. First-year physics: Make sure you recall these formulee from first-year physics, and what all
their symbols mean. Most of these have not been used yet, but they will appear in the coming
chapters.
momentum = (mass) X (velocity).
centripetal acceleration in uniform circular motion = rw?.
force = rate of transfer of momentum.
torque = (moment arm)x (force).
work = transferred mechanical energy = (force)x (distance) = (torque)x (angle).
pressure = (force)/(area).

kinetic energy = %mv?
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force and potential energy of a spring, f = kz, E = %Im‘Q.

potential energy in Earth’s gravity =(mass)-g-(height).

potential energy of a charged object in an electrostatic potential field =q¢V .
electric field, £ = —dV/dz.

force on a charged body, f = ¢€.

electric potential created by a single point charge ¢ in an infinite, uniform, insulating medium,
V(r) = q/(4me|r]), where € is the permittivity of the medium.

The electrostatic self-energy of a charged sphere of radius a is ¢?/(87ea).
Ohm’s law, V = IR; power loss from a resistor, I°R.

electric potential drop across a capacitor, V = ¢/C.

electrical potential energy stored in a capacitor £ = %qQ /C.

capacitance of a parallel-plate capacitor of area A and thickness D, C' = Ae/D.

2. Mechanical equivalent of heat: One joule of mechanical energy, when completely converted
to heat, can raise the temperature of 1g of water by about 0.24°C (Equation 1.2).

3. Ideal gas: The pressure, volume, number of molecules, and temperature of a confined ideal
gas are related by pV = NkgT (Equation 1.11). At room temperature T}, the quantity
kgT, ~ 4.1 pNnm (Equation 1.12).

Further reading

Semipopular:

Heat: (von Baeyer, 1999; Segre, 2002)
The Second Law: (Atkins, 1994)
Franklin’s oil experiment: (Tanford, 1989)

Intermediate:
General physics with biological applications: (Benedek & Villars, 2000c; Benedek & Villars, 2000a;
Benedek & Villars, 2000b; Hobbie, 1997)

Technical:
Biophysical Society’s On-Line Textbook: http://www.biophysics.org/btol/
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TQ Track 2

1.5.2° There is an important elaboration of the rule that atoms of a given species are all identical.
Atoms that behave identically chemically may nevertheless subdivide into a few distinct classes
of slightly different mass, the “isotopes” of that chemical element. Thus we specified ordinary
hydrogen above, to acknowledge the existence of two other, heavier forms (deuterium and tritium).
Despite this complication, however, there are only a handful of different stable isotopes of each
element, so the number of distinct species is still small, a few hundred. The main thing is that the

distinction between them is discrete, not continuous.

1.5.4" Physics textbooks generally use molecular quantities, while chemistry textbooks generally
use the corresponding molar versions. Like most artificial barriers to friendship, this one is easily
overcome. The SI gives “amount of substance” its own dimension, with a corresponding fundamental
unit called mol. This book will not use any quantities containing this unit. Thus we will not measure
amounts using the quantity n, with units mol, nor will we use the quantities RT, = 2470 Jmol
or F = 96000 coul mol™!; instead we use respectively the number of molecules N, the molecular
thermal energy, kgT;, and the charge on one proton, e. Similarly, we do not use the quantity
Ny =6.0- 1023mo|71; our Npole is the dimensionless number 6.0 - 10%3. And we don’t use the unit
dalton, defined as 1 gmol™!; instead we measure masses in kilograms.

A more serious notational problem is that different books use the same symbol p (the “chemical
potential” defined in Chapter 8) to mean two slightly different things: either the derivative of the
free energy with respect to n (with units J mol '), or the derivative with respect to N (with units J).
This book always uses the second convention (see Chapter 8). We choose this convention because
we will frequently want to study single molecules, not mole-sized batches.”

To avoid this confusion, recall that in this book the word “mole” in formulas is just an abbrevia-
tion for the number Nyo.. When convenient, we can express our molecular energies as multiples of
mole': then the numerical part of our quantities just equals the numerical part of the corresponding
molar quantities. For example, we can write

6.0-1023
kT, = 4.1-107%' J x ————— = 2500 J/mole,
mole

whose numerical part agrees with that of RT;.

6Similar remarks apply to the standard free energy change AG.
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Problems

1.1 Dorm-room-dynamics

a. An air conditioner cools down your room, removing thermal energy. And yet it consumes elec-
trical energy. Is there a contradiction with the First Law?

b. Could you design a high-tech device that sits in your window, continuously converting the un-
wanted thermal energy in your room to electricity, which you then sell to the power company?

Explain.

1.2 Thompson’s experiment

Long ago people did not use SI units.

a. Benjamin Thompson actually said that his cannon-boring apparatus could bring 25.5 pounds of
cold water to the boiling point in 2.5 hours. Supposing that “cold” water is at 20 °C, find the power
input into the system by his horses, in watts. [Hint: A kilogram of water weighs 2.2 pounds. That
is, Earth’s gravity pulls it with a force of 1kg x g = 2.2 pound.]

b. James Joule actually found that 1 pound of water increases in temperature by one degree Fahren-
heit (or 0.56 °C) after he input 770 foot pounds of work. How close was he to the modern value of

the mechanical equivalent of heat?

1.3 Metabolism
Metabolism is a generic term for all of the chemical reactions that break down and “burn” food,

releasing energy. Here are some data for metabolism and gas exchange in humans.

Food kcal/g liters Og/g liters COs/g
Carbohydrate 4.1 0.81 0.81
Fat 9.3 1.96 1.39
Protein 4.0 0.94 0.75
Alcohol 7.1 1.46 0.97

The table gives the energy released, the oxygen consumed, and the carbon dioxide released upon
metabolizing the given food, per gram of food.

a. Calculate the energy yield per liter of oxygen consumed for each food type, and note that it is
roughly constant. Thus we can determine a person’s metabolic rate simply by measuring her rate of
oxygen consumption. In contrast, the COs /O ratios are different for the different food groups; this
circumstance allows us to estimate what is actually being used as the energy source, by comparing
oxygen intake to carbon dioxide output.

b. An average adult at rest uses about 16 liters of O per hour. The corresponding heat release is
called the “basal metabolic rate” (BMR). Find it, in kcal/hour and in kcal/day.

c. What power output does this correspond to in watts?

d. Typically, the CO5 output rate might be 13.4 liters/hour. What, if anything, can you say about
the type of food materials being consumed?

e. During exercise, the metabolic rate increases. Someone performing hard labor for 10 hours a day
might need about 3500 kcal of food per day. Suppose the person does mechanical work at a steady
rate of 50W over 10 hours. We can define the body’s efficiency as the ratio of mechanical work
done to excess energy intake (beyond the BMR calculated in (b)). Find this efficiency.

1.4 Earth’s temperature
The Sun emits energy at a rate of about 3.9 - 1026 W. At Earth this gives an incident energy flux
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I. of about 1.4kW/m?2. In this problem we’ll investigate whether any other planets in our solar
system could support the sort of water-based life we find on Earth.

Consider a planet orbiting at distance d from the Sun (and let d. be Earth’s distance). At this
distance the Sun’s energy flux is I = I.(d./d)?, since it falls off as the inverse square of distance.
Let’s call the planet’s radius R and suppose that it absorbs a fraction « of the incident sunlight,
reflecting the rest back into space. The planet intercepts a disk of sunlight of area 7 R2, so it absorbs
a total power of mR%2al. Earth’s radius is about 6400 km.

The Sun has been shining for a long time, but Earth’s temperature is roughly stable: The planet
is in a steady state. For this to happen, the absorbed solar energy must get reradiated back to space
as fast as it arrives (see Figure 1.2). Since the rate at which a body radiates heat depends on its

temperature, we can find the expected mean temperature of the planet, using the formula
radiated heat flux = aocT?.

In this formula o denotes the number 5.7- 1078 W/m?2 K* (the “Stefan-Boltzmann constant”). The
formula gives the rate of energy loss per unit area of the radiating body (here the Earth). You
needn’t understand the derivation of this formula, but make sure you do understand how the units
work.

a. Based on this formula work out the average temperature at the Earth’s surface and compare to
the actual value of 289 K.

b. Based on the formula work out how far from the Sun a planet the size of Earth may be, as a
multiple of d., and still have a mean temperature greater than freezing.

c. Based on the formula work out how close to the Sun a planet the size of Earth may be, as a
multiple of de, and still have a mean temperature below boiling.

d. Optional: If you happen to know the planets’ orbits, which ones are then candidates for water-

based life, using this rather oversimplified criterion?

1.5 Franklin’s estimate

One reason why our estimate of Avogadro’s number in Section 1.5.1 came out too small was because
we used the molar mass of water, not of oil. We can look up the molar mass and mass density of
some sort of oil available in the eighteenth century in the Handbook of Chemistry and Physics (Lide,
2001). The Handbook tells us that the principal component of olive oil is oleic acid, and gives the
molar mass of oleic acid (also known as 9-octadecenoic acid or CH3(CHy)7CH:CH(CHz);COOH)
as 282 g/mole. We'll see in Chapter 2 that oils and other fats are triglycerides, made up of three
fatty-acid chains, so we estimate the molar mass of olive oil as a bit more than three times the
above value. The Handbook also gives its density as 0.9 g/cm?.

Make an improved estimate of Nyl from these facts and Franklin’s original observation.

1.6 Atomic sizes, again

In 1858 J. Waterston found a clever way to estimate molecular sizes from macroscopic properties
of a liquid, by comparing its surface tension and heat of vaporization.

The surface tension of water, 3, is the work per unit area needed to create more free surface.
To define it, imagine breaking a brick in half. The two pieces have two new surfaces. Let ¥ be the
work needed to create these new surfaces, divided by their total area. The analogous quantity for
liquid water is the surface tension.

The heat of vaporization of water, Qap, is the energy per unit volume we must add to liquid
water (just below its boiling point) to convert it completely to steam (just above its boiling point).
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That is, the heat of vaporization is the energy needed to separate every molecule from every other
one.

Picture a liquid as a cubic array with N molecules per centimeter in each of three directions.
Each molecule has weak attractive forces to its six nearest neighbors. Suppose it takes energy € to
break one of these bonds. Then the complete vaporization of 1 cm? of liquid requires that we break
all the bonds. The corresponding energy cost is Qvap x (1cm?).

Next consider a molecule on the surface of the fluid. It has only five bonds—the nearest neighbor
on the top is missing (suppose this is a fluid—vacuum interface). Draw a picture to help you visualize
this situation. Thus to create more surface area requires that we break some bonds. The energy
needed to do that, divided by the new area created, is X.

a. For water, Quap = 2.3 - 10° J/m?, while ¥ = 0.072J/m?. Estimate N.
b. Assuming the molecules are closely packed, estimate the approximate molecule diameter.

c¢. What estimate for Avogadro’s number do you get?

1.7 Tour de France

A bicycle rider in the Tour de France eats a lot. If his total daily food intake were burned it would
liberate about 8000 kcal of heat. Over the three or four weeks of the race his weight change is
negligible, less than 1%. Thus his energy input and output must balance.

Let’s first look at the mechanical work done by the racer. A bicycle is incredibly efficient. The
energy lost to internal friction, even including the tires, is negligible. The expenditure against air
drag is however significant, amounting to 10 MJ per day. Each day the rider races for 6 hours.

a. Compare the 8000 kcal input to the 10 MJ of work done. Something’s missing! Could the missing
energy be accounted for by the altitude change in a hard day’s racing?

Regardless of how you answered (a), next suppose that on one particular day of racing there’s
no net altitude change, so that we must look elsewhere to see where the missing energy went. We
have so far neglected another part of the energy equation: the rider gives off heat. Some of this
is radiated. Some goes to warm up the air he breathes in. But by far the greatest share goes
somewhere else.

The rider drinks a lot of water. He doesn’t need this water for his metabolism—he is actually
creating water when he burns food. Instead, nearly of all that liquid water leaves his body as water
vapor. The thermal energy needed to vaporize water appeared in Problem 1.6 above.

b. How much water would the rider have to drink in order for the energy budget to balance? Is this
reasonable?

Next let’s go back to the 10 MJ of mechanical work done by the rider each day.

c. The wind drag for a situation like this is a backward force of magnitude f = Bv?, were B is
some constant. We measure B in a wind-tunnel to be 1.5 kg/m. If we simplify by supposing a day’s

racing to be at constant speed, what is that speed? Is your answer reasonable?



Chapter 2

What’s inside cells

Architecture is the scientific, correct, and magnificent play of

volumes assembled under the light. — Le Corbusier

Chapter 1 exposed an apparent incompatibility between physical law and the living world (the
apparently spontaneous generation of order by living things), and proposed the outline of a reconcil-
iation (living things ingest high-quality energy and give off low-quality energy). With this physical
backdrop, we’re now ready to look a bit more closely into the organization of a living cell, where
the same ideas play out over and over. This chapter sketches the context for the various phenomena

that will concern us in the rest of the book:

eEach device we will study is a physical object; its spatial context involves its location
in the cell relative to the other objects.

eEach device also participates in some processes; its logical context involves its role in

these processes relative to other devices.

Certainly this introductory chapter can only scratch the surface of this vast topic.! But it is useful
to collect some visual images of the main characters in our story, so that you can flip back to them
as they appear in later chapters.

This chapter has a very different flavor from the others. For one thing, there will be no formulas
at all. Most of the assertions will appear with no attempt to justify them. Most of the figures have
detailed captions, whose meaning may not be clear to you until we study them in detail in a later
chapter. Don’t worry about this. Right now your goal should be to finish this chapter knowing a
lot of the vocabulary we will use later. You should also come away with a general feeling for the
hierarchy of scales in a cell, and a sense of how the governing principles at each scale emerge from,
but have a character different from, those at the next deeper scale.

Finally, the exquisite structures on the following pages practically beg us to ask: How can a

cell keep track of everything, when there’s nobody in there running the factory? This question has

(©2000 Philip C. Nelson
1If you’re not familiar with the vocabulary of this chapter, you will probably want to supplement it by reading

the opening chapters of any cell biology book; see for example the list at the end of this chapter.
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white blood
flea protozoan cell E. coli T2 phage DNA atoms in DNA
1 mm 0.1 mm 0.01 mm 1 pum 0.1 pum 2 nm 0.2 nm

Figure 2.1: (Icons.) Dramatis persone. Approximate relative sizes of some of the actors in our story. T2 phage
is a virus that infects bacteria, for example Escherichia coli. Much of this book will be occupied with phenomena

relevant at length scales from the protozoan down to the DNA helix. [Copyrighted figure; permission pending.]

Figure 2.2: (Drawing, based on light microscopy.) Relative sizes (1000x magnification). (a) Five Escherichia coli
bacteria cells (enlarged in Figure 2.3). (b) Two cells of baker’s yeast. (c) Human red blood cell. (d) Human white
blood cell (lymphocyte). (e) Human sperm cell. (f) Human epidermal (skin) cell. (g) Human striated muscle cell
(myofibril). (h) Human nerve cell. [From (Goodsell, 1993).] [Copyrighted figure; permission pending.]

a very long answer, of course. Among the many physical ideas relevant to this question, however,
three will dominate this chapter and the rest of the book:
Biological question: How do cells organize their myriad ongoing chemical processes and reactants?

Physical idea: (a) Bilayer membranes self-assemble from their component molecules; the cell uses
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Figure 2.3: (Drawing, based on electron microscopy.) Relative sizes (10° x magnification). (a) Some molecules and
macromolecules (enlarged in Figure 2.4). (b) A bacterial cell (see Figures 2.1, 2.2a and 2.5). Visible structures include
flagella (trailing to the right), the nucleoid (white region in center), and the thick, rigid cell wall. The flagella propel
the bacterium by a mechanism discussed in Chapter 5; they are in turn driven by motors discussed in Chapter 11.
(¢) Human immunodeficiency virus. (d) A bacterial virus, or “phage.” [From (Goodsell, 1993).] [Copyrighted figure;

permission pending.]

them to partition itself into separate compartments. (b) Cells use active transport to bring synthe-
sized materials to particular destinations. (c) Biochemical processes are highly specific: Most are

mediated by enzymes, which select one particular target molecule and leave the rest alone.

2.1 Cell physiology

Roadmap We will begin our story by recalling some of the characteristic activities of living cells,
then turn to their overall structural features. The physical aspects of cell function and structure
are sometimes called “cell physiology.” Section 2.2 will turn to the ultimate molecular constituents
of cells, progressively building from the smallest to the largest. This approach is generally called
“molecular cell biology.” By this point we will have a beautiful, but static, picture of the cell as a
collection of architectural elements. To close the circle of logic, we’ll need to understand something
about how these elements get constructed, and more generally how the cell’s other activities come
about. Thus, Section 2.3 will introduce the world of “molecular devices.” This third aspect of
cells is the primary focus of this book, though along the way we will touch on the others, and even

occasionally go beyond cells to organisms.
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Figure 2.4: (Drawing, based on structural data.) Relative sizes of the objects shown in panel (a) of Figure 2.3
(108 x magnification). (a) Single carbon atom. (b) Glucose, a simple sugar molecule. (c) ATP, a nucleotide.
(d) Chlorophyll molecule. (e) Transfer RNA, or “tRNA.” (f) An antibody, a protein used by the immune system.
(g) The ribosome, a large protein machine. (h) The virus responsible for polio. (i) Myosin, a molecular machine
discussed in Chapter 10. (j) DNA, a nucleic acid. Chapter 9 will discuss the mechanical properties of long molecules
like this one. (k) F-actin, a cytoskeletal element. (l) Ten enzymes (protein machines) involved in glycolysis, a
series of coupled chemical reactions that produce ATP, the energy currency molecule, from glucose. Chapter 11 will
discuss ATP production. (m) Pyruvate dehydrogenase, a large enzyme complex also discussed in Chapter 11. [From
(Goodsell, 1993).] [Copyrighted figure; permission pending.]

Cells are the fundamental functional units of life. Whether alone or integrated into communities
(organisms), individual cells perform a common set of activities. More precisely, while a particular
cell may not do everything on the following list—there are a couple hundred distinct, specialized
cell types in our bodies, for example—still there is enough overlap between all cells to make it clear

that all are basically similar.

eLike entire organisms, individual cells take in chemical or solar energy. As discussed in
Chapter 1, most of this energy gets discarded as heat, but a fraction turns into useful
mechanical activity or the synthesis of other energy-storing molecules, via a set of
processes collectively called “metabolism.” Chapter 11 will examine one aspect of

this remarkably efficient free energy transduction process.

eln particular, each cell manufactures more of its own internal structure, in order to
grow. Much of this structure consists of a versatile class of macromolecules called
“proteins.” Our bodies contain about 100000 different kinds of protein. We will
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return many times to the interactions responsible for protein structure and function.

eMost cells can reproduce by mitosis, a process of duplicating their contents and splitting

in two. (A few types instead create germ cells by meiosis; see Section 3.3.2.)

e All cells must maintain a particular internal composition, sometimes in spite of widely
varying external conditions. Cells generally must also maintain a fixed interior vol-

ume (see Chapter 7).

eBy maintaining concentration differences of electrically charged atoms and molecules
(generically called “ions”), most cells also maintain a resting electrical potential
difference between their interiors and the outside world (see Chapter 11) Nerve and

muscle cells use this resting potential for their signaling needs (see Chapter 12).

eMany cells move about, for example by crawling or swimming. Chapter 5 discusses

the physics of such motions.

oCells sense environmental conditions for a variety of purposes:

1. Sensing the environment can be one step in a feedback loop that regulates the
cell’s interior composition.

2. Cells can alter their behavior in response to opportunities (such as a nearby
food supply) or hardships (such as drought).

3. Single cells can even engage in attack, self-defense, and evasive maneuvers upon
detecting other cells.

4. The highly specialized nerve and muscle cells obtain input from neighboring
nerve cells by sensing the local concentration of particular small molecules, the
neurotransmitters, secreted by those neighbors. Chapter 12 will discuss this

process.

o(Cells can also sense their own internal conditions as part of feedback and control loops.
Thus for example an abundant supply of a particular product effectively shuts down
further production of that product. One way feedback is implemented is by the
physical distortion of a molecular machine when it binds a messenger molecule, a

phenomenon called “allosteric control” (see Chapter 9).

eAs an extreme form of feedback, a cell can even destroy itself. This “apoptosis” is a
normal part of the development of higher organisms, for example removing unneeded

neurons in the developing brain.

2.1.1 Internal gross anatomy

Paralleling the large degree of overlap between the functions of all cells, we find a correspondingly
large overlap between their gross internal architecture: Most cells share a common set of quasiper-
manent structures, many of them visible in optical microscopes. To see some of the fine substructure
below, however, we need to use the electron microscope, an instrument that gives better resolution

but requires killing the cell.
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Figure 2.5: (Electron micrograph.) A prokaryotic cell, E. coli. Cw, cell wall; N, nucleoid; R, ribosomes. The
plasma membrane lies just under the cell wall. [From (Wolfe, 1985).] [Copyrighted figure; permission pending.]

Membrane-bounded structures The simplest and most ancient type of cells are the prokary-

otes, including the familiar bacteria (Figures 2.3b and 2.5).2

Typically about one micrometer in
length, the gross anatomy of a bacterium consists mainly of a thick, rigid cell wall, creating a
single interior compartment. The wall may be studded with a variety of structures, such as one or
several flagella, long appendages used for swimming (Chapter 5). Just inside the wall lies a thin
plasma membrane. The material inside the plasma membrane sometimes shows a poorly defined
division into an interior “nucleoid” and the rest, but this region has no sharp edge and indeed has
no bounding membrane.

Plants, fungi, and animals are collectively called eukaryotes; they consist of “eukaryotic cells.”
Bakers’ yeast, or Saccharomyces cerevisie, is a simple example of a eukaryotic cell (Figure 2.6).
Eukaryotic cells are bigger than prokaryotes, typically 10 um or more in diameter. They too are
bounded by a plasma membrane, though the cell wall may either be absent (in animal cells) or
present (in plants and fungi). They contain various well-defined internal compartments (examples
of organelles), each bounded by one or more membranes roughly similar to the plasma membrane.?
In particular, eukaryotic cells are defined by the presence of a nucleus. The nucleus contains the
material that condenses into visible chromosomes during cell division (Section 3.3.2); the rest of
the cell’s contents is collectively called the cytoplasm. During this process the nucleus itself may
lose its definition, then re-form after the division is complete.

In addition to a nucleus, eukaryotic cells contain mitochondria, sausage-shaped organelles about
1 um wide (Figure 2.7). The mitochondria carry out the final stages of the metabolism of food and
the conversion of its chemical energy into molecules of ATP, the internal energy currency of the cell

2Since prokaryotes were originally defined only by the absence of a well-defined nucleus, it took some time to
realize that they actually consist of two distinct kingdoms, the “bacteria” (including the familiar human pathogens)
and the “archeea” (including many of those found in environments with extreme acidity, salt, or high temperature).

30ne definition of organelle is a discrete structure or subcompartment of a cell specialized to carry out a particular
function.
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Figure 2.6: (Electron micrograph.) Budding yeast cell, a simple eukaryote (14000x magnification). The nucleus
(n) is in the process of dividing. Pores in the nuclear surface are clearly visible. Also shown is a vacuole (v) and several
mitochondria (m, lower left). The sample was prepared by flash-freezing, cleaving the frozen block, then heating
gently in a vacuum chamber to remove outer layers of ice. A replica in carbon-platinum mixture was then made
from the surface thus revealed, and finally examined in the electron microscope. [From (Dodge, 1968)] [Copyrighted
figure; permission pending.]

(see Chapter 11). Mitochondria divide independently of the surrounding cell; when the cell divides,
each daughter cell gets some of the parent’s intact mitochondria.

Eukaryotic cells also contain several other classes of organelles (Figures 2.6-2.8):

eThe “endoplasmic reticulum” is a labyrinthine structure attached to the nucleus. It
serves as the main factory for the synthesis of the cell’s membrane structures, as well
as most of the products destined for export outside the cell.

eProducts from the endoplasmic reticulum in turn get sent to the “Golgi apparatus”
for further processing, modification, sorting, and packaging.

eGreen plants contain “chloroplasts.” Like mitochondria, chloroplasts manufacture the
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Figure 2.7: (Schematic; scanning electron micrograph.) (a) Locations of various internal structures in the mito-
chondrion. The ATP synthase particles are molecular machines where ATP production takes place (see Chapter 11).
They are studded into the mitochondrion’s inner membrane, a partition between an interior compartment (the ma-
trix) and an intermembrane space. (b) Interior of a mitochondrion. The sample has been flash-frozen, fractured,
and etched to show the internal matrix enclosed by the folds of the inner membrane. [From K. Tanaka, Int. Rev.
Cytol. 68(1980)111.] [Copyrighted figure; permission pending.]
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Figure 2.8: (Sketch; electron micrograph.) Gross anatomy of a white blood cell. A single plasma membrane
surrounds the cell. Other organelles are visible, most of them small compartments defined by membranes. Other
examples of secretory vesicles include the synaptic vesicles in neurons, shown in Figure 2.9 and discussed in Chap-
ter 12. Chapters 10 and 11 will discuss the osmotic regulation mechanism that keeps the cell’s interior full of fluid.
[Copyrighted figure; permission pending.]

internal energy-carrying molecule ATP. Instead of metabolizing food, however, they
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Figure 2.9: (Transmission electron micrograph.) Fusion of synaptic vesicles with the nerve cell membrane (upper
solid line) at the junction, or synapse, between a neuron (above) and a muscle fiber (below). A vesicle at the left has
arrived but not yet fused; two in the center are in the process of fusion, releasing their contents; one on the right is
almost completely incorporated into the cell membrane. Vesicle fusion is the key event in the transmission of nerve
impulses from one neuron to the next; see Chapter 12. [Digital image kindly supplied by J. Heuser.] [Copyrighted
figure; permission pending.]

obtain high-quality energy by capturing sunlight.
eThe cells of fungi such as yeast, as well as those of plants, also contain internal storage
areas called vacuoles (Figure 2.6). Like the cell itself, vacuoles also maintain electrical

potential drops across their bounding membranes (see Problem 11.3).

The part of the cytoplasm not contained in any membrane-bounded organelle is collectively called
the cell’s cytosol.

In addition, cells create a variety of vesicles (small bags). Vesicles can form by “endocytosis,”
as a part of the cell’s outer membrane engulfs some exterior object or fluid, then pinches off to
form an internal compartment. The resulting vesicle then fuses with internal vesicles containing
digestive enzymes, which break down its contents. Another class of vesicles are the “secretory
vesicles,” bags containing products destined for delivery outside the cell. A particularly important
class of secretory vesicles are the synaptic vesicles, which hold neurotransmitters at the ends of
nerve cells. When triggered by an arriving electrical impulse, the synaptic vesicles fuse with the
outer membrane of the nerve cell (Figure 2.9), release their contents, and thus stimulate the next

cell in a neural pathway (see Chapter 12).

Other elements In addition to the membrane-bounded structures listed above, cells construct
various other structures visible with the light microscope. For example, during mitosis the chro-
mosomes condense into individual objects, each with a characteristic shape and size (Figure 2.10).

Another class of structures, the cytoskeletal elements, will appear in Section 2.2.4.

2.1.2 External gross anatomy

Though many cells have simple spherical or brick-shaped forms, still others can have a much richer
external anatomy. For example, the fantastically complex, branched form of nerve cells (Figure 2.22

on page 51) allows them to connect to their neighbors in a correspondingly complex way. Each
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Figure 2.10: (Schematic; electron micrograph.) One of the 46 chromosomes of a somatic (ordinary, non-germ)
human cell. Just prior to mitosis, every chromosome consists of two identical “chromatids,” each consisting of tightly
folded “chromatin fibers.” Each chromatin fiber consists of a long DNA molecule wrapped around histone proteins
to form a series of “nucleosome particles.” [After WM Becker and DW Deamer The world of the cell, 2d edition, fig
13-20 (Benjamin—Cummings, 1991).] [Copyrighted figure; permission pending.]

Figure 2.11: (Scanning electron micrograph.) Cell crawling. At the front of this fibroblast cell (left), filopo-
dia, lamellipodia, and ruffles project from the plasma membrane. The arrow indicates the direction of movement.

[Copyrighted figure; permission pending.]

nerve cell, or neuron, has a central cell body (the soma) with a branching array of projections
(or processes). The processes on a neuron are subdivided into many “input lines,” the dendrites,
and one “output line,” the axon. The entire branched structure has a single interior compartment
filled with cytoplasm. Each axon terminates with one or more axon terminals (or “boutons”),
containing synaptic vesicles. A narrow gap, or synapse, separates the axon terminal from one of
the next neuron’s dendrites. Chapter 12 will discuss the transmission of information along the axon,
and from one neuron to the next.

Still other elements of the external anatomy of a cell are transient. For example, consider the cell
shown in Figure 2.11. This cell is a “fibroblast”; its job is to crawl between other cells, laying down



40 CHAPTER 2 . WHAT,S INSIDE CELLS [[STUDENT VERSION, DECEMBER 8, 2002]]

Figure 2.12: (Scanning electron micrograph.) The ciliate Didinium (2285x magnification), a single-cell animal
found in still fresh water. Didinium’s “mouth” is at the end of a small projection, surrounded by a ring of cilia.
Chapter 5 will discuss how cilia drive fluid flow. [From (Shih & Kessel, 1982).] [Copyrighted figure; permission
pending.]

a trail of protein which then forms connective tissue. Other crawling cells include the “osteoblasts,”
which lay down mineral material to make bones, and the “Schwann cells” and “oligodendroglia,”
which wrap themselves around nerve axons, creating layers of electrical insulation.

The fibroblast shown in the figure has many protrusions on its leading edge. Some of these
protrusions, called “filopodia,” are fingerlike, about 0.1 um in diameter and several micrometers
long. Others, the “lamellipodia,” are sheetlike. Other sorts of cells, such as amceba, push out
thicker protrusions called “pseudopodia.” All of these protrusions form and retract rapidly, for
example searching for other cells with appropriate signaling molecules on their surfaces. When
such a surface is found, the crawling cell adheres to it, pulling the rest of its body along. In this
way, cell crawling can lead to the construction of complex multicellular tissues: Each cell searches
for a proper neighbor, then sticks to it.

Other specialized cells, such as the ones lining the intestine, may have hundreds of tiny fingerlike
projections, called “microvilli,” to increase their surface area for fast absorption of food. Other cells
have similarly shaped projections (cilia and eukaryotic flagella) that actively beat back and forth
(Figure 2.12). For example, the protozoan Paramecium has cilia that propel it through fluid;
conversely, the stationary cells lining your lungs wash themselves by constantly transporting a layer
of mucus upward. Chapter 5 will discuss this process. Figure 2.12 shows yet another use for cilia:
These ones bring food particles to the mouth of a single-celled animal.

Another class of small anatomical features includes the fine structure of the dendrite on a neuron.
The actual synapse frequently involves not the main body of the dendrite, but a tiny dendritic spine
projecting from it (fine bumps in Figure 2.22).
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2.2 The molecular parts list

Proceeding with our program (Roadmap, page 32), we now take a brief tour of the chemical world,
from which all the beautiful biological structures shown earlier arise. In this book we will not
be particularly concerned with the details of the chemical structures shown here. Nevertheless, a

certain minimum of terminology is needed to make the ideas we will study concrete.

2.2.1 Small molecules

Of the hundred or so distinct kinds of atoms, our bodies consist mostly of just six: carbon, hydrogen,
nitrogen, oxygen, phosphorus, and sulfur. Other atoms (such as sodium and chlorine) are present
in smaller amounts. A subtle change in spelling communicates a key property of many of these
single-atom chemicals: In water, neutral chlorine atoms (abbreviated Cl) take on an extra electron
from their surroundings, becoming “chloride ions” (Cl7). Other neutral atoms lose one or more
electrons in water, such as sodium atoms (abbreviated Na), which become “sodium ions” (Na™).

Of the small molecules made by joining these atoms, the most important one in cells is water,
which constitutes 70% of our body mass. We will explore some of the remarkable properties of water
in Chapter 7. Another important inorganic (that is, non-carbon-containing) molecule is phosphoric
acid (H3POy); in water this molecule separates into the negatively charged inorganic phosphate
(HPO3 ™, also called P;) and two positively charged hydrogen ions (also called “protons”). (You'll
look more carefully at the dissociation of phosphate in Problem 8.6.)

An important group of organic (carbon containing) molecules have atoms bonded into rings:

e Simple sugars include glucose and ribose, with one ring, and sucrose (cane sugar), with two.

e The four “bases” of DNA (see Section 2.2.3) also have a ring structure. One class (the
pyrimidines: cytosine, thymine) has one ring; the other (the purines: guanine and adenine)
has two. See Figure 2.13.

o A slightly different set of four bases is used to construct RNA: here thymine is replaced by

the similar one-ring molecule uracil.

The ring structures of these molecules give them a fixed, rigid shape. In particular, the bases
are flat (or “planar”) rings (in contrast, the sugars are “puckered”). Joining a base to a simple
sugar (ribose or deoxyribose) and one or more phosphates yields a nucleotide. Thus for example,
the nucleotide formed from the base adenine, the sugar ribose, and a single phosphate is called
“adenosine monophosphate,” or AMP. The corresponding molecules with two or three phosphate
groups in a row are called “adenosine diphosphate” (ADP) or “adenosine triphosphate” (ATP)
respectively (Figure 2.14). The nucleotide triphosphates are sometimes referred to generically as
“NTPs.”

Nucleotide triphosphates such as ATP carry a lot of stored energy, due in part to the self-
repulsion of a large electric charge (equivalent to four electrons), held in close proximity by the
chemical bonds of the molecule. (We will begin to study the idea of stored chemical energy, and its
utilization, in Chapter 8.) In fact, cells use ATP as a nearly universal internal energy currency; they

maintain high interior concentrations of ATP for use by all their molecular machines as needed.*

4To a lesser extent cells also use guanosine triphosphate (GTP), and a handful of other small molecules, for similar
purposes. Nucleotides also serve as internal signaling molecules in the cell. A modified form of AMP, called “cyclic
AMP” or cAMP, is particularly important in this regard.
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Figure 2.13: (Molecular structure.) J. Watson and F. Crick demonstrate the complementarity of DNA base pairs.
The dotted lines denote hydrogen bonds (see Chapter 7). The shapes and chemical structure of the bases allow
hydrogen bonds to form optimally only between adenine (A) and thymine (T) and between guanine (G) and cytosine
(C); in these pairings, atoms that are able to form hydrogen bonds can be brought close together without distorting
the bases’ geometries. [Cartoon by Larry Gonick, from (Gonick & Wheelis, 1991).] [Copyrighted figure; permission
pending.]

Two more classes of small molecules will be of special interest to us. The first of these, the
“fatty acids,” have a simple structure: They consist of a chain of carbon atoms (for example, 15
for palmitic acid, derived from palm oil), with a carboxyl group (-COOH) at the end. Fatty acids
are partly important as building blocks of the phospholipids to be discussed in the next subsection.
Finally, the amino acids are a group of about twenty building blocks from which all proteins are
constructed (Figure 2.15). As shown in the figure, each amino acid has a common central element,
with a “plug” at one end (the carboxyl group, -COOH) and a “socket” at the other (the amino
group, -NH,). Attached to the side of the central carbon atom (the “a-carbon”) is one of about
twenty different side groups (or “residues,” generically denoted by R in Figure 2.15a) determining
the identity of the amino acid; for example, alanine is the amino acid whose side group is ~CHs.
Protein synthesis consists of successively attaching the socket of the next amino acid to the plug of
the previous one by the “condensation reaction” shown, creating a polymer called a polypeptide.
The C-N bond formed in this process is called the peptide bond. Section 2.2.3 and Chapter 9 will

sketch how polypeptides turn into functioning proteins.

2.2.2 Medium-size molecules

A huge number of medium-sized molecules can be formed from the handful of atoms used by living
organisms. Remarkably, only a tiny subset of these are actually used by living organisms. Indeed,
the list of possible compounds with mass under 25000 times that of water probably runs into the
billions, and yet fewer than a hundred of these (and their polymers) account for most of the weight

of any given cell (see Table 2.1).
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Figure 2.14: (Molecular structure diagrams.) Adenosine triphosphate is hydrolyzed as part of many biochemical
processes. An ATP and a water molecule are both split, yielding ADP, inorganic phosphate (P;), and a proton (H7).
A similar reaction yielding about the same amount of free energy splits ATP into adenosine monophosphate (AMP),
a compound with one phosphate group, and pyrophosphate, or PP;. Chapter 8 will discuss chemical energy storage;
Chapter 10 will discuss molecular motors fueled by ATP. [Copyrighted figure; permission pending.]
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Figure 2.15: (Molecular structure diagrams.) (a) Formation of a polypeptide from amino acids by the condensation
reaction, essentially the reverse of the hydrolysis reaction shown in Figure 2.14. The four atoms in each gray
box constitute the “peptide bond.” (b) A short segment of a polypeptide chain, showing three residues (amino
acid monomers) joined by two peptide bonds. The residues shown are respectively histidine, cysteine, and valine.
Chapters 7-8 will discuss the interactions between the residues that determine the protein’s structure; Chapter 9 will
briefly discuss the resulting complex arrangement of protein substates. [Copyrighted figure; permission pending.]
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Table 2.1: Composition of bacterial cells, by weight. [From (Alberts et al., 1997)]

Small molecules (74%):

Tons, other inorganic small molecules 1.2%
Sugars 1%
Fatty acids 1%
Individual amino acids 0.4%
Individual nucleotides 0.4%
Water 70%
Medium and big molecules (26%):
Protein 15%
RNA 6%
DNA 1%
Lipids 2%
Polysaccharides 2%

Figure 2.16: (Structure.) Space-filling model of DPPC (dipalmitoyl phosphatidylcholine), a common phospholipid
molecule. Two “tails” (hydrocarbon chains, right) join to a “head” group (left) via phosphate and glycerol groups
(middle). Molecules like this one self-assemble into bilayer membranes (Figures 2.24 and 2.25), which in turn form
the partitions between cell compartments. Chapter 8 will discuss self-assembly. [Copyrighted figure; permission

pending.]

Figure 2.16 shows a typical phospholipid molecule. Phospholipids are formed by joining one or
two fatty acid chains (“tails”), via a glycerol molecule, to a phosphate and thence to a “head group.”
As described in Section 2.3.1 and Chapter 8, phospholipids self-assemble into thin membranes,
including the one surrounding every cell. Phospholipid molecules have long but informative names;
thus for example dipalmitoylphosphatidylcholine (or DPPC) consists of two (“di”) palmitic acid
chains joined by a phosphate to a choline headgroup. Similarly, most fats consist of three fatty
acid chains joined together by chemically bonding them to the three carbon atoms in a glycerol
molecule, to form a “triglyceride.” The joining is accomplished by a condensation reaction similar

to the one shown in Figure 2.15.
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Figure 2.17: (Structure rendered from atomic coordinates.) Stereo image of the DNA double helix. To view this
image, begin with your nose a few centimeters from the page (if you’re nearsighted, remove your glasses). Imagine
staring through the page at a distant object. If necessary, rotate the page a few degrees, so that the two dots near
the centers of each panel are aligned horizontally. Wait until the dots fuse. Concentrate on holding the dots fused
as you slowly move the page away from your nose. When the page is far enough away for your eyes to focus on it,
the three-dimensional image will jump off the page at you. The structure is about 2 nm wide. The portion shown
consists of twelve base pairs in a vertical stack. Each base pair is roughly a flat, horizontal plate about 0.34 nm thick.
The stack twists through slightly more than one full revolution from top to bottom. [From (Dickerson et al., 1982).]
[Copyrighted figure; permission pending.]

2.2.3 Big molecules

Just as amino acids can be joined into polypeptide chains, so, chains of nucleotide bases can also
be strung together to form polynucleotides. A polynucleotide formed from nucleotides containing
ribose is called a “ribonucleic acid,” or RNA; the analogous chain with deoxyribose is called a
molecule of “deoxyribonucleic acid,” or DNA. Watson and Crick’s insight (Section 3.3.3) was that
the flat, planar bases of DNA not only fit each other precisely, like jigsaw puzzle pieces (Figure 2.13);
they also can nest neatly in a helical stack (Figure 2.17), with the bases pointing inward and the
sugar and phosphate groups forming two “backbones” on the outside. Cells do not manufacture
RNA strands in complementary pairs, but a single RNA can have short tracts that complement
others along the chain, giving rise to a partially folded structure (Figure 2.18).

Each of your cells contains a total of about one meter of DNA, consisting of forty-six pieces.
Keeping track of such long threads, without their turning into a useless tangle, is not easy. Part of

the solution is a hierarchical packaging scheme: The DNA is wound onto protein “spools,” to form
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Figure 2.18: (Schematic molecular structure.) RNA is generally single-stranded, but it can contain local regions of
short complementary sequences, which can pair via hydrogen bonding as in DNA. The pairing between such regions
can fold the RNA up into a specific three-dimensional shape, as shown. Section 6.7 will discuss how the folding and
unfolding of RNA can be controlled by external forces. [Copyrighted figure; permission pending.]

“nucleosomes.” The nucleosomes in turn wind into higher-order structures, and so on up to the
level of entire condensed chromosomes (Figure 2.10).5

Section 2.2.1 mentioned the formation of polypeptides. The genetic message in DNA encodes
only the polypeptide’s primary structure, or linear sequence of amino acids. After the polypeptide
has been synthesized, though, it folds into an elaborate three-dimensional structure—a protein—
such as those seen in Figure 2.4g h,ik,l,m. The key to understanding this process is to note that
unlike DNA, whose large, uniform negative charge makes it repel itself, individual amino acid
residues on a protein may attract or repel each other (see Chapter 8). Thus the primary structure
determines the protein’s final, three-dimensional folded structure.

The lowest level of folding (the secondary structure) involves interactions between residues near
each other along the polypeptide chain. An example that will interest us in Chapter 9 is the alpha
helix, shown in Figure 2.19. At the next higher level, the secondary structures (along with other,
disordered regions) assemble to give the protein’s tertiary structure, the overall shape visible in the
examples of Figure 2.4. A simple protein consists of a single chain of 30-400 amino acids, folded
into a tertiary structure which is dense, roughly spherical, and a few nanometers in diameter (a
“globular” protein).

More complex proteins consist of multiple polypeptide chain subunits, usually arranged in a sym-
metrical array—the quaternary structure. A famous example is hemoglobin, the carrier of oxygen
in your blood (Chapter 9), which has four subunits. Many membrane channels (see Section 2.3.1
below) also consist of four subunits.

Polysaccharides form a third class of biopolymers (after nucleic acids and proteins). These are
long chains of sugar molecules. Some, like glycogen, are used for long-term energy storage. Others

help cells to identify themselves to each other.

2.2.4 Macromolecular assemblies

The previous subsection mentioned that individual protein chains can form confederations with def-
inite shapes, the quaternary structure of a protein assembly. Another possibility is the construction

of a linear array of polypeptide subunits, extending for an arbitrarily long distance. Such arrays

5Simpler forms of DNA packaging have also been found recently in prokaryotic cells.
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Figure 2.19: (Artist’s sketches of molecular structure.) The alpha helix structure. An oxygen atom in each amino
acid forms a hydrogen bond with a hydrogen located four units farther down the chain, helping to stabilize the
ordered structure against thermal motion. Chapter 9 will discuss the formation and loss of ordered structures like
this one under changes in environmental conditions. The structure shown is “right-handed” in the following sense:
Choose either direction along the helix axis, for example upward in the figure. Point your right thumb along this
direction. Then as you proceed in the direction of your thumb, the ribbon in (b) rotates around the axis in the same
direction as your fingers point (and oppositely to the direction you’d have gotten using your left hand). [Copyrighted
figure; permission pending.]

can be thought of as polymers made up of monomers which are themselves proteins. Two examples
will be of particular interest in Chapter 10: microtubles and F-actin.

The organelles mentioned in Section 2.1.1 are suspended within the eukaryotic cell’s cytosol. The
cytosol is far from being a structureless, fluid soup. Instead, a host of structural elements pervade
it, both anchoring the organelles in place and conferring mechanical integrity upon the cell itself.
These elements are all long, polymeric structures; collectively they are called the cytoskeleton.

The most rigid of the cytoskeletal elements are the microtubules (Figure 2.20). Microtubules
are 25 nm in diameter and can grow to be as long as the entire cell. They form an interior network of
girders, helping the cell to resist overall deformation (Figure 2.23). Another function of microtubules
is to serve as highways for the transport of cell products from one place to another (see Figure 2.21
and Section 2.3.2).
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Figure 2.20: (Electron micrographs; sketch.) Microtubules and their structure. (a) The main figure shows several
microtubules (130000 magnification). The arrangement of the wall subunits into parallel rows is clearly visible
(brackets). The inset shows a single microtubule in cross-section (830000x magnification). Each microtubule is
constructed from a circle of 13 protofilaments surrounding a central channel (C). (b) The sketch shows how the
subunits line up to form the microtubule wall. Tubulin monomers, called « and S, first link in a3 pairs to form the
dumbbell-shaped subunits shown in the diagram; the dumbbells then line end-to-end to form the microtubule. The
dashed lines are separated by 8 nm, the distance between adjacent 3 subunits. [From (Wolfe, 1985).] [Copyrighted

figure; permission pending.]

Actin filaments (also called “filamentous” actin, or F-actin) form a second class of cytoskeletal
elements. F-actin fibers are only 7nm in diameter; they can be several micrometers long (Fig-
ure 2.4k). A thin meshwork of these filaments underlies the surface of the cell, forming the cell’s
actin cortex. Filopodia, lamellipodia, and microvilli are all full of actin fibers, which cross-link
to each other, forming stiff bundles that help to push these projections out of the cell. Finally,
actin filaments furnish the “tracks” along which single-molecule motors walk to generate muscle
contraction (Chapter 10).

Examples of even more elaborate protein assemblies include the shells surrounding viruses, and

the whiplike bacterial flagellum (see Figure 2.3 on page 32).

2.3 Bridging the gap: Molecular devices

As projected (Roadmap, page 32), we now have a catalog of beautiful structures in cells, but little
has been said about how they form from the molecules in Section 2.2, nor indeed about how cells
carry out the many other activities characteristic of life. To begin bridging this gap, this section will
sketch a few of the molecular devices cells use. The unity of living things becomes very apparent
when we study molecular devices: While all cells are somewhat similar at the level of physiology,
they are very similar at the molecular level. Today’s routine use of bacteria as factories for the

expression of human genes testifies to this unity. The discovery of the function of human genes by
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Figure 2.21: (Schematic; electron micrograph.) (a) Model for how kinesin drags an organelle along a microtubule.
Chaper 10 will discuss the action of this single-molecule motor. (b) Micrograph appearing to show the situation
sketched in (a). The microtubule is labeled “MT” (lower left). Arrows show the attachment points. Neurons from
rat spinal cord were flash-frozen and deep-etched to create the sample. [Image kindly supplied by N. Hirokawa; see
(Hirokawa et al., 1989).] [Copyrighted figure; permission pending.]

studying their analogs in fruitflies gives another good example.

2.3.1 The plasma membrane

In order to maintain its identity (for example, to control its composition), every cell must be
surrounded by some sort of envelope. Similarly, every organelle and vesicle, too, must somehow be
packaged. Remarkably, all cells have met all of these challenges with a single molecular construction:
the “bilayer membrane” (Figure 2.24). Thus for example the plasma membrane of any cell looks
like a double layer under the electron microscope; all have roughly similar chemical composition,
electrical capacitance, and so on.

As its name implies, the bilayer membrane consists of two layers of molecules, primarily the
phospholipids shown in Figure 2.24. It’s only about 4 nm thick, and yet covers the entire exterior
of a cell, often a billion or more square nanometers! To be effective, this fragile-looking structure
must not rip, and yet it must also be fluid enough to let the cell crawl, endocytose, divide, and
so on. We will study the remarkable properties of phospholipid molecules which reconcile these
constraints in Chapter 8.

We get another surprise when we mix phospholipid molecules with water: Even without of any
cellular machinery, bilayer membranes self-assemble spontaneously. Chapter 8 will show that this
phenomenon is driven by the same interactions that cause salad dressing to separate spontaneously
into oil and water. Similarly, microtubules and F-actin can self-assemble from their subunits,
without the intervention of any special machinery (see Figure 10.4 on page 356).

Bilayer membranes do far more than just partition cells. The outer cell membrane is also studded
with a rich variety of other devices (Figure 2.25):

e “Integral membrane proteins” span the membrane, projecting on both the inner and outer
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sides. Some examples include the channels, which allow the passage of specified molecules
under specified conditions, “receptors,” which sense exterior conditions, and “pumps, which

actively pull material across the membrane (see Figure 2.30).

e Receptors can in turn connect to “peripheral membrane proteins,” which communicate infor-

mation to the interior of the cell.

e Still other integral membrane proteins anchor the cell’s membrane to its underlying actin cor-
tex, helping the cell to maintain its optimal shape. A related example concerns the membrane
of the human red blood cell. A network of elastic protein strands (in this case spectrin) is
anchored to the membrane by integral membrane proteins. This network deforms as the red
cell squeezes through the body’s capillaries, then pops the cell back to its normal shape after

its passage.

2.3.2 Molecular motors

As mentioned earlier, actin filaments form the “tracks” along which tiny motors walk, generating
muscle contraction (Chapter 10). Many other examples of walking motors are known in cells.
Figure 2.21 shows a vesicle being dragged along a microtubule to its destination at an axon terminal.
This “axonal transport” brings needed proteins to the axon terminal, as well as the ingredients from
which synaptic vesicles will be built. A family of single-molecule motors called “kinesins” supply
the motive force for this and other motions, for example the dragging of chromosomes to the two
halves of a dividing cell. Indeed, selectively staining both the microtubules and the kinesin (by
attaching fluorescent markers to each) shows that they are generally found together in the cell
(Figure 2.26). It is even possible to follow the progress of individual kinesin molecules as they walk
along individual microtubules (Figure 2.27). In such experiments, the kinesin molecules begin to
walk as soon as a supply of ATP molecules is added; they stop when the ATP is used up or washed
away.

The cilia mentioned in Section 2.1.2 are also powered by walking motors. Each cilium contains
a bundle of microtubules. A motor molecule called dynein attaches to one microtubule and walks
along its neighbor, inducing a relative motion. Coordinated waves of dynein activity create traveling
waves of bending in the cilium, making it beat rhythmically.

Other motors generate rotary motion. Examples include the motor that drives the bacterial
flagellum (Figure 2.3b; see Chapters 5 and 11), and the one that drives the synthesis of ATP in
mitochondria (Chapter 11). Rather than being driven directly by ATP, both of these motors use
as their “fuel” a chemical imbalance between the sides of the membrane they span. Ultimately the

imbalance comes from the cell’s metabolic activity.
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Figure 2.22: (Two-photon laser scanning micrograph.) Purkinje neuron of the brain. The neuron shown is alive
and surrounded by a dense network of other neurons; a fluorescent dye has been injected into the cell soma from the
micropipette at lower left to visualize only the one cell of interest. The dendritic tree of this neuron (shown) receives
over 100000 synaptic inputs on dendritic spines. The spines are visible as tiny bumps on the dendrites. Chapter 12
will discuss the transmission of impulses in neurons. [Digital image kindly supplied by K. Svoboda; see also (Svoboda
et al., 1996).]
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Figure 2.23: (Fluorescence micrograph.) Newt lung cell in which the DNA is stained blue and microtubules in
the cytoplasm are stained green. This network of rigid filaments helps the cell maintain its proper shape, as well as
supplying the tracks along which kinesin and other motors walk. Chapter 10 will discuss these motors. [Copyrighted

figure; permission pending.]
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Figure 2.24: (Drawing, based on molecular-dynamics simulations.) Space-filling model of an artificial bilayer
membrane. Imagine repeating the arrangement of molecules upward and downward on the page, and into and out
of the page, to form a double layer. The phospholipid molecules are free to move about in each layer, but remain
oriented with their polar head groups facing outward, toward the surrounding water. Chapter 8 will discuss the self-
assembly of structures like these. As with any molecular structure, keep in mind when looking at this picture that
things are not really static: The molecules are in constant, riotous, thermal motion. [Copyrighted figure; permission

pending.]
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Figure 2.25: (Sketch.) Plasma membrane of a eukaryotic cell. The membrane consists mainly of proteins inserted

into, or attached to, a bilayer of phospholipid molecules. Integral membrane proteins are embedded in the membrane,
usually via short hydrophobic stretches. Some transmembrane proteins span the membrane only once; others have
multiple membrane-spanning regions. Other proteins are anchored to the membrane by phospholipids that are
chemically attached to the protein. Still other proteins can be anchored to the outer face of the plasma membrane
by glycolipids (lipids chemically attached to sugar chains) and to the inner face by fatty acids. Peripheral membrane
proteins are not inserted in the membrane, but rather are indirectly attached, for example by attaching to an integral

membrane protein as shown. [Copyrighted figure; permission pending.]
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Figure 2.26: (Fluorescence optical micrograph.) Experimental demonstration that kinesin and microtubules are
found in the same places within cells. This cell has been doubly labeled with fluorescent antibodies labeling both
kinesin (yellow) and tubulin (green). The kinesin, attached to transport vesicles, is mostly associated with the
microtubule network, as seen from the orange color where fluorescence from the two kinds of antibodies overlap.
[Digital image kindly supplied by S. T. Brady; see (Brady & Pfister, 1991).] [Copyrighted figure; permission pending.]
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Figure 2.27: (Video photomicrograph frames.) Motility assay of the fluorescently labeled molecular motor C351, a
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single-headed member of the kinesin family. A solution of C351 with concentration between 1-10 pm was washed over
a set of microtubules fixed to a glass slide. The microtubules were also fluorescently labeled; one of them is shown
here (green). The motors (red) attached to the microtubule, moved along it for several seconds, then detached and
wandered away. Two individual motors have been chosen for study; their succesive locations are marked by triangles
and arrows respectively. Generally the motors moved strictly in one direction, but backward stepping was also
observed (triangles), in contrast to ordinary, two-headed kinesin. [From (Okada & Hirokawa, 1999).] [Copyrighted
figure; permission pending.]
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Figure 2.28: (Structure rendered from atomic coordinates.) Phosphoglycerate kinase. This enzyme performs one
of the steps in the glycolysis reaction; see Section 10.4. In this figure and Figure 2.29, hydrophobic carbon atoms are
white, mildly hydrophilic atoms are pastel (light blue for nitrogen and pink for oxygen), and strongly hydrophilic
atoms carrying a full electrical charge are brightly colored (blue for nitrogen and red for oxygen). The concept
of hydrophobicity, and the behavior of electrostatic charges in solution, are discussed in Chapter 7. Sulfur and
phosphate atoms are colored yellow. Hydrogen atoms are colored according to the atom to which they are bonded.
The enzyme manufactures one ATP molecule (green object) with each cycle of its action. [From (Goodsell, 1993)]

[Copyrighted figure; permission pending.]

Figure 2.29: (Composite of structures rendered from atomic coordinates.) A DNA-binding protein (107 x magni-
fication). The color scheme is the same as Figure 2.28. Repressor proteins like this one bind directly to the DNA
double helix, physically blocking the polymerase that makes messenger RNA. They recognize a specific sequence of
DNA, generally blocking a region of 10—20 basepairs. The binding does not involve the formation of chemical bonds,
but rather uses the weaker interactions discussed in Chapter 7. Repressors form a molecular switch, turning off the
synthesis of a given protein until it is needed. [From (Goodsell, 1993).] [Copyrighted figure; permission pending.]
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2.3.3 Enzymes and regulatory proteins

Enzymes are molecular devices whose job is to bind particular molecules, under particular condi-
tions, and promote particular chemical changes. The enzyme molecule itself is not modified or used
up in this process—it is a catalyst, or assistant, for a process that could in principle happen on its
own. Enzymes may break down large molecules, as in digestion, or build small molecules into big
ones. One feature of enzymes immediately apparent from their structures is their complicated and
well-defined shape (Figure 2.28). Chapter 7 will begin a discussion of the role of shape in conferring
specificity to enzymes; Chapter 9 will look more deeply into how the shapes actually arise, and how
an enzyme maintains them despite random thermal motion.

Another context where binding specificity is crucial concerns control and feedback. Nearly every
cell in your body contains the same collection of chromosomes,® and yet only pancreas cells secrete
insulin; only hair cells grow hairs, and so on. Each cell type has a characteristic arrangement of
genes that are active (“switched on”) and inactive (“switched off”). Moreover, individual cells
can modulate their gene activities based on external circumstances: If we deny a bacterium its
favorite food molecule, but supply an alternative food, the cell will suddenly start synthesizing
the chemicals needed to metabolize what’s available. The secret to gene switching is a class of
“regulatory proteins,” which recognize and bind specifically to the beginning of the genes they
control (Figure 2.29). One class, the “repressors,” can physically block the start of their gene,
preventing transcription. Others help with the assembly of the transcriptional apparatus and have
the opposite effect. Eukaryotic cells have a more elaborate implementation of the same general
idea.

Finally, the pumps and channels embedded in cell membranes are also quite specific. For
example, a remarkable pump to be studied in Chapter 11 has an operating cycle in which it binds
only sodium ions, ferries them to the other side of the membrane, then binds only potassium ions
and ferries them in the other direction! As shown in Figure 2.30c, this pump also consumes ATP,
in part because the sodium ions are being pulled from a region of negative electrical potential (the
cell’s interior) to a positive region, increasing their potential energy. According to the First Law
(Section 1.1.2 on page 4), such a transaction requires a source of energy. (The Example on page 419
will explore the energy budget of this pump in greater detail.)

2.3.4 The overall flow of information in cells

Section 2.3.3 hinted that the cell’s genome should not be regarded as a blueprint, or literal repre-
sentation, of the cell, but rather as specifying an algorithm, or set of instructions, for creating and
maintaining the entire organism containing the cell. Gene regulatory proteins supply some of the
switches turning parts of the algorithm on and off.

We can now describe a simplified version of the flow of information in cells (Figure 2.31).7

1. The DNA in the cell nucleus contains the master copy of the software, in duplicate. Under
ordinary circumstances this copy is not modified, but only duplicated during cell division. A
molecular machine called DNA polymerase accomplishes the duplication. Like the machines
mentioned in Section 2.3.2, DNA polymerase is made from proteins. The DNA contains

genes, consisting of regulatory regions along with code specifying the amino acid sequences

6Exceptions include germ cells (genome not present in duplicate) and human red blood cells (no nucleus at all).
7"Some authors refer to this scheme as the “central dogma” of molecular biology, an unfortunate phrase due to
F. Crick, who proposed it in 1958. Several amendments to this scheme are discussed in Section 2.3.4’ on page 61.
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Figure 2.30: (Schematic.) (a) , (b) Passive ion channels, leading to the Ohmic part of membrane conductances

(see Chapter 11). When open, the individual ion channels for sodium and potassium have similar conductances,

but the latter are about 25 times more plentiful in living cells. (c) Schematic of the sodium—potassium pump, also

discussed in Chapter 11. The sketch has been simplified; actually the pump is believed to bind three Nat ions and

a phosphate before its main conformational change, which expels the Nat’s. Then it binds two K¥ ions, releases

ADP and phosphate, pulls the KT’s in and releases them. At this point the pump is ready to begin its cycle anew.

[Copyrighted figure; permission pending.]

of various needed proteins. A higher organism may have tens of thousands of distinct genes,
while E. coli has fewer than 5000. (The simplest known organism, Mycoplasma genitalium,
has fewer than 500!) In addition to the genes, the DNA contains a rich array of regulatory
sequences for the binding of regulatory proteins, along with immense stretches with no known

function.

. Another molecular machine called RNA polymerase reads the master copy in a process called

transcription (Figure 2.32). RNA polymerase is a combination of walking motor and enzyme;
it attaches to the DNA near the start of a gene, then pulls the polymer chain through a
slot, simultaneously adding successive monomers to a growing “transcript” made of RNA
(Section 2.2.3). The transcript is also called messenger RNA or “mRNA.” In eukaryotic cells
it leaves the nucleus through pores in its bounding membrane (see Figure 2.6), thus entering
the cytosol. The energy needed to drive RNA polymerase comes from the added nucleotides
themselves, which arrive in the high-energy NTP form (Section 2.2.1); the polymerase clips off
two of the three phosphate groups from each nucleotide as it incorporates it into the growing
transcript (Figure 2.14).

In the cytosol, a complex of devices collectively called the ribosome binds the transcript and
again walks along it, successively building up a polypeptide, based on instructions encoded
in the transcript. The ribosome accomplishes this translation by orchestrating the sequential
attachment of transfer RNA (or “tRNA”) molecules, each binding to a particular triplet
of monomers in the transcript and each carrying the corresponding amino acid monomer
(residue) to be added to the growing polypeptide chain (Figure 2.33).

The polypeptide may spontaneously fold into a functioning protein, or may so fold with the
help of other auxiliary devices picturesquely called chaperones. Additional chemical bonds

(“disulfide bonds” between residues containing sulfur atoms) can form to cross-link monomers
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Figure 2.31: (Schematic.) The flow of information in a cell. Sometimes the product of translation is a regulatory

protein, which interacts with the cell’s genome, creating a feedback loop. [Copyrighted figure; permission pending.]

/RNA polymerase

Figure 2.32: (Drawing, based on structural data.) Transcription of DNA to messenger RNA by RNA polymerase,
a walking motor. The polymerase reads the DNA as it walks along it, synthesizing its mRNA transcript as it moves.
[From (Goodsell, 1993).] [Copyrighted figure; permission pending.]

distant from each other along the chain, or even in another chain.

5. The folded protein may then form part of the cell’s architecture. It may become a function-
ing device, for example one of the ones shown in Figure 2.33. Or it may be a regulatory
protein, helping close a feedback loop. This last option gives a mechanism orchestrating the

development of the cell (or indeed of its surrounding organism).

Section 2.3.4" on page 61 mentions some modifications to the simplified scheme given above.

The big picture

Returning to the Focus Question, we see that we have a lot of work to do: The following chapters
will need to shed physical light on the key phenomenon of specificity, self-assembly, and active
transport. As mentioned throughout the chapter, specific structures and processes from this chapter
to be discussed later include flagellar propulsion, RNA folding, the material properties of bilayer

membranes and of individual DNA and protein molecules, the structure and function of hemoglobin,
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Figure 2.33: (Drawing, based on structural data.) The information in messenger RNA is translated into a sequence
of amino acids making up a new protein by the combined action of over fifty molecular machines. In particular, amino
acyl-tRNA synthetases supply transfer RNAs loaded with amino acid residues to the ribosomes, which construct
the new protein as they read the messenger RNA. Not shown are some smaller auxiliary proteins, the “initiation,
elongation, and transcription factors,” that help the ribosomes do their job. [From (Goodsell, 1993).] [Copyrighted
figure; permission pending.]

the operation of the kinesin motor, the synthesis of ATP in mitochondria, and the transmission of
nerve impulses.

It should be clear that the complete answers to these questions will occupy whole shelves full
of books, at some future date when the complete answers are known! The purpose of this book is
not to give the complete answers, but rather to address the more elementary question: Faced with
all these miraculous processes, we only ask, “How could anything like that happen at all?” Here
indeed we will find that simple physical ideas do help.

Further reading

Semipopular:
Structure and function in cells: (Goodsell, 1993); (Hoagland & Dodson, 1995)

Intermediate:
General reference: (Lackie & Dow, 1999; Smith et al., 1997)
Texts: (Cooper, 2000; Alberts et al., 1997; Karp, 2002; Pollard & Earnshaw, 2002)

Technical:
Texts: (Alberts et al., 2002), (Lodish et al., 2000)
Proteins: (Branden & Tooze, 1999)
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2.3.4" Since its enunciation in the 1950’s, several amendments to the above simplified picture of

information flow have been found. (Others were known even at the time.) Just a few examples

include:

1.

It is an overstatement to claim that all of the cell’s heritable characteristics are determined by
its DNA sequence. A cell’s entire state, including all the proteins and other macromolecules
in its cytoplasm, can potentially affect its descendants. The study of such effects has come
to be called “epigenetics.” Omne example is cell differentiation: Once a liver cell forms, its
descendants will be liver cells. A cell can also give its daughters misfolded proteins, or
“prions,” transmitting a pathology in this way. Even multiple clones of the same animal are
generally not identical.®

Moreover, the cell’s DNA can itself be modified, either permanently or temporarily. Examples
of permanent modification include random point mutations (Chapter 3), random duplication,
deletion, and rearrangement of large stretches of the genome from errors in crossing-over
(Chapter 3), and insertion of foreign DNA by retroviruses such as HIV. Temporary, reversible

changes include chemical modification, for example methylation.

2'. Other operations, such as “RNA editing,” may intervene between mRNA synthesis and trans-
lation.
3’. A polypeptide can be modified after translation: Additional chemical groups may need to be
added, and so on, before the finished protein is functional.
4'. Besides chaperones, eukaryotic cells also have special enzymes to destroy polypeptides that
have improperly folded.
Problems

2.1 All Greek to me

Now’s the time to learn the Greek alphabet. Here are the letters most often used by scientists. The

following list gives both lower and upper case (but omits the upper case when it looks just like a

Roman letter):

a? 57 7/F7 5/A7 67 C7 777 9/@7 ,{/7 A/“/\“7 /'1’7 1/7 6/57 /n-/Hﬂ p7 0/27 T? U/Tﬂ ¢/¢7 X’ /IZ}/\IJ7 u}/(2

When reading aloud we call them alpha, beta, gamma, delta, epsilon, zeta, eta, theta, kappa,

lambda, mu, nu, xi (pronounced “k’see”), pi, rho, sigma, tau, upsilon, phi, chi (pronounced “ky”),

[y

psi (pronounced “p’sy”), omega. Don’t call them all “squiggle.”

Practice by examining the quote given in Chapter 1 from D’Arcy Thompson, which in its entirety

reads: “Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is

in obedience to the laws of physics that their particles have been moved, moulded, and conformed.

They are no exception to the rule that ©cos ael yewperper.” From the sounds made by each letter,

can you guess what Thompson was trying to say? [Hint: ¢ is an alternate form of o.]

81dentical twins are more similar, but they share more than DNA—they come from a common egg and thus share

its cytoplasm.
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2.2 Do-it-yourself proteins
This book contains some molecular structure pictures, but you can easily make your own. Down-
load RasMol from http://www.umass.edu/microbio/rasmol/index.html (or get some other free
molecular viewing application?). Now go to the Protein Data Bank,'? http://www.rcsb.org/pdb/.
On the main page, try searching for and viewing molecules (see also the “molecule of the month”
department, from which the examples below were taken). Once you get the molecule’s main entry,
click “explore” on the right, then “view” and download in RasMol format. Play with the many
RasMol options. Alternatively you can just click “quickpdb” for a viewer that requires no separate
application. Here are some examples; several are discussed in this chapter elsewhere in this book:
a. Thrombin, a blood-clotting protein (code 1ppb).
b. Insulin, a hormone (code 4ins).
c. Transfer RNA (code 4tna).
d. Myosin, a molecular motor (code 1b7t).
e. The actin-myosin complex (code 1alm). This entry shows a model of one myosin motor bound
to a short actin filament formed of five molecules, based on data from electron microscopy. The
file contains only alpha carbon positions for the proteins, so you’ll need to use backbone diagrams
when you look at it.
f. Rhinovirus, responsible for the common cold (code 4rhv).
g. Myoglobin, an oxygen-storing molecule found in muscles (code imbn). Myoglobin was the first
protein structure ever determined.
h. DNA polymerase (code 1tau).
i. the nucleosome (code 1aoi).

Use your mouse to rotate the pictures. Use the measurement feature of RasMol to find the
physical size of each object. Selectively color only the hydrophobic residues. Try the “stereo”

option. Print the ones you like.

2.3 Do-it-yourself nucleic acids

Go to the Nucleic Acid Database, http://ndbserver.rutgers.edu/. Download coordinates and
view using RasMol or another software:

a. The B-form of DNA (code bd0001). Choose the space-filling representation and rotate the
molecule to see its helical structure.

b. Transfer RNA (code trnal2).

¢. RNA hammerhead enzyme, a ribozyme (code urx067).

d. The complex of integration host factor bound to DNA (code pdt040). Try the “cartoon” display

option.

2.4 Do-it-yourself small molecules
Go to http://molbio.info.nih.gov/cgi-bin/pdb and search for some small molecule mentioned
in this chapter. You’ll probably find PDB files for larger molecules binding the one you chose. Look

around.

2.5 Do-it-yourself micelles and bilayers

9RasMol was written by Roger Sayle and others. Protein Explorer, available at the same site, was written by
Eric Martz and others; it requires installation of additional software. Yet another popular package is VMD; see

http://www.ks.uiuc.edu/Research/vmd/.
10The PDB is operated by the Research Collaboratory for Structural Bioinformatics (RCSB). You can also find

RasMol there under “software.”
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Go to http://moose.bio.ucalgary.ca/, http://persweb.wabash.edu/facstaff/fellers/,
http://www.umass.edu/microbio/rasmol/bilayers.htm, or some other database with lipid
structures.

a. Go to “downloads” at the first site mentioned and look at the file m65.pdb, which shows a micelle
containing 65 molecules of the surfactant. This picture is the ouput of a molecular simulation. Tell
RasMol to remove the thousands of water molecules surrounding the micelle (uncheck “hydrogen”
and “hetero atoms”), so you can see it.

b. At the second site mentioned, get the coordinates of the dipalmitoyl phosphatidylcholine) bilayer
and view it. Again remove the surrounding water. Rotate it to see the layer structure.



Part 11:

Diffusion, Dissipation,

Drive

Robert Hooke’s original drawing of cork cells (1665). [R. Hooke, Micrographia (Martyn and Allestry,
London, 1665)]
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Chapter 3

The molecular dance

Who will lead me into that still more hidden and dimmer region
where Thought weds Fact, where the mental operation of the
mathematician and the physical action of the molecules are seen
in their true relation? Does not the way pass through the very
den of the metaphysician, strewed with the remains of former
explorers? — James Clerk Maxwell, 1870

The previous chapter made it clear that living cells are full of fantastically ordered structures,
all the way down to the molecular scale. But Chapter 1 proposed that heat is disorganized molec-
ular motion, and tends to destroy order. Does that imply that cells work best at the coldest
temperatures? No, life processes stop at low temperature.

To work our way out of this paradox, and ultimately own the concept of free energy sketched
in Chapter 1, we must first understand more precisely the sense in which heat is a form of motion.
This chapter will begin to explain and justify that claim. We will see how the idea of random
molecular motion quantitatively explains the ideal gas law (Section 1.5.4), as well as many common
observations, from the evaporation of water to the speeding-up of chemical reactions when we add
heat.

These physical ideas have an immediate biological application: As soon as we appreciate the
nanoworld as a violent place, full of incessant thermal motion, we also realize just how miraculous
it is that the tiny cell nucleus can maintain a huge database—your genome—without serious loss of
information over many generations. Section 3.3 will see how physical reasoning led the founders of
molecular biology to infer the existence of a linear-chain molecule carrying the database, decades
before the actual discovery of DNA.

Here is a question to focus our thoughts:
Biological question: Why is the nanoworld so different from the macroworld?

Physical idea: Everything is (thermally) dancing.

(©2000 Philip C. Nelson
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3.1 The probabilistic facts of life

We want to explore the idea that heat is nothing but random motion of molecules. First, though,
we need a closer look at that slippery word, “random.” Selecting a person at random on the
street, you cannot predict that person’s IQ before measuring it. But on the other hand, you can be
virtually certain that her IQ is less than 300! In fact, whenever we say that a measured quantity
is “random,” we really implicitly have some prior knowledge of the limits its value may take, and
more specifically of the overall distribution that many measurements of that quantity will give, even
though we can say little about the result of any one measurement. This simple observation is the
starting point of statistical physics.

Scientists at the start of the twentieth century found it hard to swallow that sometimes physics
gives only the expected distribution of measurements, and cannot predict the actual measured
value of, say, a particle’s momentum. Actually, though, this is a blessing in disguise. Suppose we
idealize the air molecules in the room as tiny billiard balls. To specify the “state” of the system
at an instant of time, we would list the positions and velocity vectors of every one of these balls.
Eighteenth-century physicists believed that if they knew the initial state of a system perfectly, they
could in principle find its final state perfectly too. But it’s absurd—the initial state of the air in
this room consists of the positions and velocities of all 102> or so gas molecules. Nobody has that
much initial information, and nobody wants that much final information! Rather, we deal in average
quantities, such as “how much momentum, on average, do the molecules transfer to the floor in one
second?” That question relates to the pressure, which we can easily measure.

The beautiful discovery made by physicists in the late nineteenth century is that in situa-
tions where only probabilistic information is available and only probabilistic information is desired,
physics can sometimes make incredibly precise predictions. Physics won’t tell you what any one
molecule will do, nor will it tell you precisely when a molecule will hit the floor. But it can tell you
the precise probability distribution of gas molecule velocities in the room, as long as there are lots
of them. The following sections introduce some of the terminology we’ll need to discuss probability

distributions precisely.

3.1.1 Discrete distributions

Suppose some measurable variable x can take only certain discrete values 1, o, ... (see Figure 3.1).
Suppose we have measured x on N unrelated occasions, finding © = x; on Nj occasions, x = x4
on N> occasions, and so on. If we start all over with another N measurements we’ll get different
numbers N/, but for large enough N they should be about the same; then we say the probability
of observing x; is P(x;), where

N;/N — P(x;) for large N. (3.1)

Thus P(z;) is always a number between zero and one.

The probability that any given observation will yield either x5 or 15 (say) is just (N5 + Ni2)/N,
or P(x5)+ P(x12). Since the probability of observing some value of = is 100% (that is, 1), we must
have

> P(zi)=(Ny+Ny+--)/N=N/N=1. normalization condition (3.2)

Equation 3.2 is sometimes expressed in the words “P is properly normalized.”
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Figure 3.1: (Metaphor.) Examples of intermediate outcomes not allowed in a discrete probability distribution.
[Cartoon by Larry Gonick, from (Gonick & Smith, 1993).] [Copyrighted figure; permission pending.]

3.1.2 Continuous distributions

More often x can take on any value in a continuous interval a < z < b. In this case, we partition
the interval into bins of width dz. Again we imagine making many measurements and drawing a
histogram, finding that dN(xo) of the measurements yield a value for x somewhere between zy and

xo + dz. We then say that the probability of observing x in this interval is P(z() da, where
dN(z¢)/N — P(zo)dz for large N. (3.3)

Strictly speaking, P(x) is only defined for the discrete values of x defined by the bins. But if we
make enough measurements, we can take the bin widths dz to be as small as we like and still have
a lot of measurements in each bin, dN(z) > 1. If P(x) approaches a smooth limiting function as
we do this, then we say P(x) is the probability distribution (or probability density) for x. Once
again, P(x) must always be nonnegative.

Equation 3.3 implies that a continuous probability distribution has dimensions inverse to those
of . A discrete distribution, in contrast, is dimensionless (see Equation 3.1). The reason for this
difference is that the actual number of times we land in a small bin depends on the bin width dz.
In order to get a quantity P(x) that is independent of bin width, we needed to divide dN(xg)/N
by dz in Equation 3.3; this operation introduced dimensions.

What if the interval isn’t small? The probability of finding x is then just the sum of all
the bin probabilities making up that interval, or f;f da P(z). The analog of Equation 3.2 is the

normalization condition for a continuous distribution:

b
/ dz P(z) = 1. (3.4)
Dull Example: The uniform distribution is a constant from 0 to a:

P(z) = {(1/a) if0<z<a;

. (3.5)
0 , otherwise.
Interesting Example: The famous Gaussian distribution, or “bell curve,” or “normal distribution”

is

P(z) = Ae~(@=w0)*/207 (3.6)
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Figure 3.2: (Mathematical function.) Unnormalized Gaussian distribution centered at o = 1 with o = 1/4/2 and
A =1 (see Equation 3.6).

where A and ¢ are positive constants and x is some other constant.

Your Turn 3a
You can quickly see what a function looks like with your favorite graphing software. For example,

in Maple writing plot (exp(-(x-1)"2),x=-1..3); gives Figure 3.2. Try it, then play with the
constants A and o to see how the figure changes.

The constant A isn’t free; it’s fixed by the normalization condition. This is such an important
and useful derivation that we should see how it works in detail.

Example Find the value of A required to normalize the Gaussian distribution.

Solution: First we need that

/ N dye ¥ = /. (3.7)

— 00
You can think of this as merely a mathematical fact to be looked up in an integral
table (or see the derivation given in Section 6.2.2" on page 206). What’s more

important are a couple of easy steps from calculus. Equation 3.4 requires that we
choose the constant A so that

1= A/Oo dz e~ (z=0)*/20*

Change variables to y = (x —0)/(v/20), so dy = dz/v/20. Then Equation 3.7 gives
A=1/(cV2m).

In short, the Gaussian distribution is

1
P(z) = 2—6_(36_10)2/202. Gaussian distribution (3.8)
o

Looking at Figure 3.2, we see that it’s a bump function centered at xo (that is, maximum there).

The bump has a width controlled by . The larger o, the fatter the bump, since one gets to go
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farther away from xo before the factor e~ (®=20)*/20* heging to hurt. Remembering that P(z) is a
probability distribution, this observation means that for bigger o you’re likely to find measurements
with bigger deviations from the most-likely value zy. The prefactor of 1/0 in front of Equation 3.8
arises because a wider bump (larger o) needs to be lower to maintain a fixed area. Let’s make all

these ideas more precise, for any kind of distribution.

3.1.3 Mean and variance

The average (or mean or expectation value) of z for any distribution is written (z) and defined
by .

() = {ZZ x;P(x;) dlscr.ete (3.9)

[dzxP(x) , continuous.

For the uniform and Gaussian distributions, the mean is just the center point. That’s because these

distributions are symmetrical: There are exactly as many observations a distance d to the right of

the center as there are a distance d to the left of center. For a more complicated distribution this

needn’t be true; moreover, the mean may not be the same as the most probable value, which is

the place where P(z) is maximum.
More generally, even if we know the distribution of z we may instead want the mean value of

some other quantity f(x) depending on x. We can find (f) via

o) = {ZZ flx)P(x;) , discrete

fdxf(if)P(%) , continuous. (3.10)

If you go out and measure = just once you won’t necessarily get (x) right on the nose. There
is some spread, which we measure using the root-mean-square deviation (or RMS deviation, or
standard deviation):

RMS deviation = /((z — ())?). (3.11)

Example a. Show that (((f))) = (f) for any function f of x.

b. Show that if the RMS deviation equals zero, this implies that every measurement
of z really does give exactly (x).

Solution:

a. We just note that (f) is a constant (that is, a number), independent of 2. The
average of a constant is just that constant.

b. In the formula 0 = ((z — (2))?) = >, P(;)(x; — (z))?, the right hand side doesn’t
have any negative terms. The only way this sum could equal zero is for every term

to be zero separately, which in turn requires that P(z;) = 0 unless x; = (z).

Note that it’s crucial to square the quantity (x — (z)) when defining the RMS deviation; otherwise
we’d trivially get zero for the average value ((x — (z))). Then we take the square root just to get
something with the same dimensions as z. We'll refer to ((z — (z))?) as the variance of x (some
authors call it the second moment of P(x)).

Your Turn 3b
a. Show that variance(z) = (22) — ((x))2.

b. Show for the uniform distribution (Equation 3.5) that variance(z) = a?/12.




70 CHAPTER 3 THE MOLECULAR DANCE [[STUDENT VERSION, DECEMBER 8, 2002]]

Let us work out the variance of the Gaussian distribution, Equation 3.8. Changing variables as

in the Example on page 68, we need to compute
2 2 00
variance(z) = % /_OC dy er_yQ. (3.12)
To do this we need a trick, which we’ll use again later: Define a function I(b) by
1(b) :/ dye V"

Again changing variables gives I(b) = y/7/b. Now consider the derivative dI/db. On one hand it’s

1
dI/db=—3 ;T—g (3.13)

On the other hand,
dI/db = / dy %e—b?f =— / dyyPe " (3.14)

Setting b = 1, that last integral is the one we needed (see Equation 3.12)! Combining Equations 3.13,
3.14, and 3.12 gives variance(z) = % (—%|b:1) = % X 4 Thus the RMS deviation of the
Gaussian distribution just equals the parameter ¢ appearing in Equation 3.8.

3.1.4 Addition and multiplication rules

Addition rule Section 3.1.1 noted that for a discrete distribution, the probability that the next
measured value of x is either z; or z; equals P(z;) + P(z;), unless ¢ = j. The key thing is that
x can’t equal both x; and x;; we say the alternative values are exclusive. More generally, the
probability that a person is either taller than 2m or shorter than 1.9 m is obtained by addition,
whereas the probability to be either taller than 2 m or nearsighted cannot be obtained in this way.

For a continuous distribution, the probability that the next measured value of x is either between
a and b or between ¢ and d equals the sum, fab dz P(x) + fj dz P(x), provided the two intervals
don’t overlap. That’s because the two probabilities (to be between a and b or between ¢ and d) are

exclusive in this case.

Multiplication rule Now suppose we measure two independent quantities, for example, tossing
a coin and rolling a die. What is the probability that we get heads and roll a 67 To find out, just
list all 2 x 6 = 12 possibilities. Each is equally probable, so the chance of getting the specified one
is 1/12. This shows that the joint probability distribution for two independent events is the product
of the two simpler distributions. Let PJ-Oint(xi,yK) be the joint distribution where ¢ = 1 or 2 and
r1 =%“heads,” xo =“tails”; similarly yx = K, where K = 1,...,6 is the number on the die. Then

the multiplication rule says
Pioint (%4, Yk ) = Peoin (i) X Paie(Yr)- (3.15)

Actually Equation 3.15 is correct even for loaded dice (the Pyic(ys) aren’t all equal to §) or a
two-headed coin (Peoin(21) = 1, Peoin(22) = 0). On the other hand, for two connected events (for

example, the chance of rain versus the chance of hail) we don’t get such a simple relation.

Your Turn 3c
Show that if P.oin and Pyje are correctly normalized, then so will be Piging.
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Your Turn 3d
Suppose we roll two dice. What’s the probability that the numbers on the dice add up to 27 To

67 To 127 Think about how you used both the addition and the multiplication rule for this.

To try out all these concepts, here’s a more complicated example. Suppose you are shooting
arrows into a distant target. Wind currents give random shifts to the x component of your arrows’
arrival locations, and independent random shifts to the y component. Suppose that the probability

distribution P, (z) is a Gaussian with variance 0%, and the same is true for P,(y).

Example Find the probability, P(r)dr, that an arrow lands a distance between r and r + dr
from the bull’s-eye.

Solution: To answer we use both the rules discussed above. r is the length of the
displacement vector: r = |r| = /22 4+ y? + 22. First we find the joint distribution,
the probability that the z-component lies between x and z+dx and the y-component

lies between y and y + dy. The multiplication rule gives this as

Poy(z,y)dedy = Py(z)dr x P,(y)dy
= (27r02)_2/2 e~ (@ H7)/(20%) daxdy
= (2m0%) e /g2y, (3.16)

The two Gaussians combined into a single exponential involving only the distance
T

We're not done. Many different displacements r all have the same speed r; to find
the total probability that r has any of these values we must now use the addition
rule. Think about all the r vectors with length lying between r and r 4+ dr. They
form a thin ring of width dr. The joint probability distribution Py, (r) is the same for
all these r, since it depends only on the length of r. So to sum all the probabilities,
we multiply P, by the total area of the ring, which is its circumference times its
thickness: 2mrdr. We thus get

1
P(r)dr = (271_02) e 29"« onrdr., (3.17)

Figure 3.3 shows this distribution.

Notice two notational conventions used above (see also Appendix A): First, the symbol “="
above is a special form of the equal sign, which alerts us to the fact that r = |r| is a definition
(it defines 7). We pronounce it “is defined as,” or “equals by definition.” Second, the symbol dr
denotes the area of a little box in position space; it is not itself a vector. The integral of d’r over
a region of space equals that region’s area .

Your Turn 3e
Find the fraction of all the arrows you shoot that land outside a circle of some radius R, as a

function of Ry.
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Figure 3.3: (Mathematical function.) The probability distribution for the distance r from the origin, when both =

and y are independent distributions with variance 2.
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Figure 3.4: (Sketch.) The set of all vectors v of length u is a sphere. The set of all vectors with length between u

and u + du is a spherical shell.

Your Turn 3f
a. Repeat the above example for a three-component vector v, each of whose components is an

independent, random variable distributed as a Gaussian of variance o2. That is, let u denote the
length of v and find P(u)du. [Hint: Examine Figure 3.4.]
b. Graph your answer to (a) with a computer math package. Again try various values of o.

3.2 Decoding the ideal gas law

Let us try to interpret the ideal gas law (Equation 1.11 on page 23), and its universal constant kg,
in the light of the working hypothesis that heat is random motion. Once we make this hypothesis

precise, and confirm it, we’ll be in a position to understand many physical aspects of the nanoworld.



32 . DECODING THE IDEAL GAS LAW [[STUDENT VERSION, DECEMBER 8, 2002]] 73

a b

- /
-
>0 /

z

| 4

- N —

Figure 3.5: (Schematic.) Origin of gas pressure. (a) A molecule traveling parallel to an edge with velocity vy
bounces elastically off a wall of its container. The effect of the collision is to reverse the direction of the molecule,
transferring momentum 2muv, to the wall. (b) A molecule traveling with arbitrary velocity v. If its next collision
is with a wall parallel to the yz-plane, the effect of the collision is to reverse the z-component of the molecule’s

momentum, again transferring momentum 2muv, to the wall.

3.2.1 Temperature reflects the average kinetic energy of thermal motion

When faced with a mysterious new formula, our first impulse should be to think about it in the
light of dimensional analysis.

Your Turn 3g
Examine the left side of the ideal gas law (Equation 1.11 on page 23), and show that the product

kT has the units of energy, consistent with the numerical value given in Equation 1.12.

So we have a law of Nature, and it contains a fundamental, universal constant with units of energy.
We still haven’t interpreted the meaning of that constant, but we will in a moment; knowing its
units will help us.

Let’s think some more about the box of gas introduced in Section 1.5.4 on page 23. If the
density is low enough (an ideal gas), the molecules don’t hit each other very often.! But certainly
each one does hit the walls of the box. We now ask whether that constant hitting of the walls can
explain the phenomenon of pressure. Suppose that a gas molecule is traveling parallel to one edge
of the box, say in the z direction, with speed v,, and the box is a cube of length L, so that its
volume is V = L3 (see Figure 3.5a).

Every time the molecule hits the wall, the molecule’s momentum changes from muv, to —muv,;
it delivers 2muw, to the wall. This happens every time the molecule makes a round trip, which takes
a time At = 2L/v,. If there are N molecules, all with this velocity, then the total rate at which
they deliver momentum to the wall is (2mwv,)(v,/2L)N. But you learned in first-year physics that
the rate of delivery of momentum is precisely the force on the wall of the box.

Your Turn 3h
Check the dimensions of the formula f = (2muv,)(v,/2L)N to make sure they are appropriate

for a force.

Actually every molecule has its own, individual velocity v,. Really, then, what we need is not N

times one molecule’s velocity-squared, but rather the sum over all molecules, or equivalently, N

1The precise way to say this is that we define an ideal gas to be one for which the time-averaged potential

energy of each molecule in its neighbors’ potential fields is neglibible compared to its kinetic energy.
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times the average velocity-squared. As in Equation 3.9, we use the shorthand notation (v,2) for
this quantity.

The force per unit area on the wall is called pressure, so we have just found that
p=m{v,>)N/V. (3.18)

FEureka. Our simple formula Equation 3.18, which just embodies the idea that gas consists of
molecules in motion, has already explained two key features of the experimentally observed ideal
gas law (Equation 1.11), namely the facts that the pressure is proportional to N and to 1/V.

Skeptics may say, “Wait a minute. In a real gas, the molecules aren’t all traveling along the x
direction!” It’s true. Still, it’s not hard to do a better job. Figure 3.5b shows the situation. Each
individual molecule has a velocity vector v. When it hits the wall at * = L, its component v,
changes sign, but v, and v, don’t. So, the momentum delivered to the wall is again 2muv,. Also,
the time between bounces off this particular wall is once again 2L /v,, even though in the meantime
the molecule may bounce off other walls as well, due to its motion along y and z. Repeating
the argument leading to Equation 3.18 in this more general situation, we find that it needs no
modifications.

Combining the ideal gas law with Equation 3.18 gives
m{v,?) = kgT. (3.19)

Notice that the gas molecules are flying around at random. So the average (v,) is zero: There are
just as many traveling left as there are traveling right, so their contributions to (v, ) cancel. But the
square of the velocity can have a nonzero average, (v,2). Just as in the discussion of Equation 3.11
above, both the left-movers and right-movers have positive values of v,2, so they don’t cancel but
rather add.

In fact, there’s nothing special about the x direction. The averages (v,?), (v,?), and (v,?) are
all equal. That means that their sum is three times as big as any individual term. But the sum
vz? 4 vy? 4+ v,2 is the total length of the velocity vector, so (v?) = 3(v,?). Thus we can rewrite
Equation 3.19 as

2 x tm(v?) = LkpT. (3.20)

We now rephrase Equation 3.20, using the fact that the kinetic energy of a particle is %mu2, to find
that:

The average kinetic energy of a molecule in an ideal gas is 3kgT, (3.21)

regardless of what kind of gas we have. Even in a mixture of gases, the molecules of each type must
separately obey Idea 3.21.

The analysis leading to Idea 3.21 was given by Rudolph Clausius in 1857; it supplies the deep
molecular meaning of the ideal gas law. Alternatively, we can regard Idea 3.21 as explaining the
concept of temperature itself, in the special case of an ideal gas.

Let’s work some numbers to get a feeling for what our results mean. A mole of air occupies
22 liters (that’s 0.022 m?) at atmospheric pressure and room temperature. What’s atmospheric
pressure? It’s enough to lift a column of water about 10 meters (you can’t sip water through a
straw taller than this). A 10 m column of water presses down with a force per area (pressure) equal
to the height times the mass density of water times the acceleration of gravity, or zpm wg. Thus
atmospheric pressure is

k k
p~10m x (103%) x (1092) ~ 10° —2- — 10° Pa. (3.22)
m S m s
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In the last equality, Pa stands for pascal, the SI unit of pressure. Substituting V = 0.022m3,
p~ 10°kgm !s72 and N = Nyl into the ideal gas law (Equation 1.11 on page 23) shows that

indeed it is approximately satisfied:
k
(10°=%55) x (0.022m*) & (6.0-10%) x (4.1-10721J).

We can go farther. Air consists mostly of nitrogen molecules. The molar mass of atomic nitrogen
is about 14 gmole ', so a mole of nitrogen molecules, Ny, has mass about 28 g. Thus the mass of
one nitrogen molecule is m = 0.028 kg/Nyole = 4.7 - 10726 kg.

Your Turn 3i
Using Idea 3.21, show that the typical velocity of air molecules in the room where you're sitting

is about y/(v2) ~ 500ms~t. Convert to miles/hour to see whether you should drive that fast
(maybe in the Space Shuttle).

So the air molecules in your room are pretty frisky. Can we get some independent confirmation
to see if this result is reasonable? Well, one thing we know about air is... there’s less of it on top
of Mt. Everest. That’s because gravity exerts a tiny pull on every air molecule. On the other hand,
the air density in your room is quite uniform from top to bottom. Apparently the typical kinetic
energy of air molecules, %kBTr, is so high that the difference in gravitational potential energy, AU,
from the top to the bottom of a room is negligible, while the difference from sea level to Mt. Everest
is not so negligible. Let’s make the very rough estimate that Everest is z = 10 km high, and that
the resulting AU is roughly equal to the mean kinetic energy:

AU = mg(10km) =~ Lm(v?). (3.23)

1
2

Your Turn 3j

Show that the typical velocity is then about u = 450ms~

L remarkably close to what we just

found in Your Turn 3i.

This new estimate is completely independent of the one we got from the ideal gas law, so the fact

that it gives the same typical u is evidence that we’re on the right track.

Your Turn 3k
a. Compare the average kinetic energy %kBTr of air molecules to the difference in gravitational

potential energy AU between the top and bottom of a room. Here z = 3m is the height of the
ceiling. Why doesn’t the air in the room fall to the floor? What could you do to make it fall?
b. Repeat (a) but this time for a dirt particle. Suppose that the particle weighs about as much
as a 50 um cube of water. Why does dirt fall to the floor?

In this section we have seen how the hypothesis of random molecular motion, with an average
kinetic energy proportional to the absolute temperature, explains the ideal gas law and a number of
other facts. Other questions, however, come to mind. For example, if heating a pan of water raises
the kinetic energy of the water molecules, why don’t they all suddenly fly away when the temperature
gets to some critical value, the one giving them enough energy to escape? To understand questions
like this one, we need keep in mind that the average kinetic energy is far from the whole story. We

also want to know about the full distribution of molecular velocities, not just its mean-square value.
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Figure 3.6: (Schematic.) An experimental apparatus to measure the distribution of molecular speeds using a
velocity filter consisting of two rotating slotted disks. To pass through the filter, a gas molecule must arrive at the
left disk when a slot is in the proper position, then also arrive at the right disk exactly when another slot arrives at
the proper position. Thus only molecules with one selected speed pass through to the detector; the selected speed
can be set by adjusting how fast the disks spin. [Copyrighted figure; permission pending.]

3.2.2 The complete distribution of molecular velocities is experimentally
measurable

The logic in the previous subsection was a bit informal, in keeping with the exploratory character
of the discussion. But we ended with a precise question: How many molecules are moving at
1000ms? How many at 10ms? The ideal gas law implies that (v2) changes in a very simple
way with temperature (Idea 3.21), but what about the complete distribution?

These are not just theoretical questions. One can measure directly the distribution of speeds
of gas molecules. Imagine taking a box full of gas (in practice one uses a vaporized metal) with
a pinhole which lets gas molecules emerge into a region of vacuum (Figure 3.6). The pinhole is
small enough that the escaping gas molecules do not disturb the state of the others inside the box.
The emerging molecules pass through an obstacle course, which only allows those with speed in
a particular range to pass. The successful molecules then land on a detector, which measures the
total number arriving per unit time.

Figure 3.7 shows the results of such an experiment. Even though individual molecules have
random velocities, clearly the distribution of velocities is predictable and smooth. The data also
show clearly that a given gas at different temperatures will have closely related velocity distributions;
two different data sets lie on the same curve after a simple rescaling of the molecular speed wu.
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Figure 3.7: (Experimental data with fit.) Speeds of atoms emerging from a box of thallium vapor, at two different
temperatures. Open circles: T = 944 K. Solid circles: T = 870K. The quantity @ on the horizontal axis equals
uy/m/4kpT; both distributions have the same most-probable value, @max = 1. Thus umax is larger for higher
temperatures, as implied by Idea 3.21. The vertical axis shows the rate at which atoms hit a detector after passing
through a filter like the one sketched in Figure 3.6 (times an arbitrary rescaling factor). Solid line: theoretical
prediction (see Problem 3.5). This curve fits the experimental data with no adjustable parameters. [Data from
(Miller & Kusch, 1955).]

3.2.3 The Boltzmann distribution

Let’s use the ideas of Section 3.2.1 to understand the experimental data in Figure 3.7. We are
exploring the idea that while each molecule’s velocity cannot be predicted, nevertheless there is
a definite prediction for the distribution of molecular velocities. One thing we know about that
probability distribution is that it must fall off at large velocities: Certainly there won’t be any
gas molecules in the room moving at a million meters per second! Moreover, the average speed
must increase as we make the gas hotter, since we’'ve argued that the average kinetic energy is
proportional to T' (see Idea 3.21 on page 74). Finally, the probability of finding a molecule moving
to the left at some velocity v, should be the same as that for finding it moving to the right at —wv,.

One probability distribution with these properties is the Gaussian (Equation 3.8), where the
spread o increases with temperature and the mean is zero. (If the mean were nonzero, there’d be a
net, directed, motion of the gas, that is, wind blowing.) Remarkably, this simple distribution really
does describe any ideal gas! More precisely, the probability P(v,.) of finding that a given molecule
at a given time has its z-component of velocity equal to v, is a Gaussian, like the form shown in
Figure 3.2, but centered on zero. Each molecule is incessantly changing its speed and direction.
What’s unchanging is not the velocity of any one molecule, but rather the distribution P(v,,).

We can replace the vague idea that the variance o2 of v, increases with temperature by something
more precise. Because the mean velocity equals zero, Your Turn 3b says that the variance of v, is

(v2). According to Equation 3.19, the mean kinetic energy must equal %kBT . So we must take
o? = kgT/m. (3.24)

Section 1.5.4 on page 23 gave the numerical value of kg7 at room temperature as kg7, ~ 4.1 X

10~2! J. That’s pretty small, but so is the mass m of one gas molecule. Thus the spread of velocities
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in a room, \/kpT;/m, is rather large (see Your Turns 3i-3j).

Now that we have the probability distribution for one component of the velocity, we can follow
the approach of Section 3.1.4 to get the three-dimensional distribution, P(v). Following your result
in Your Turn 3f on page 71 then gives the distribution of molecular speeds, a function similar to
the one shown in Figure 3.3.2

Your Turn 3l
Find the most probable value of the speed u. Find the mean speed (u). Looking at the graph

you drew in Your Turn 3f (or the related function in Figure 3.3), explain geometrically why these

are/aren’t the same.

Still assuming that the molecules move independently and are not subjected to any external
force, we can next find the probability that all N molecules in the room have specified velocities

vi,...,Vy, again using the multiplication rule:

P(Vl, o 7VN) x e—mvlz/(QkBT) N e—mvN2/(2kBT) _ e—%m(vlz"r"'VNz)/kBT- (325)

James Clerk Maxwell derived Equation 3.25, and showed how it explained many properties of
gases, around 1860. The proportionality sign reminds us that we haven’t bothered to write down
the appropriate normalization factor.

Equation 3.25 applies only to an ideal gas, free from any external influences. Chapter 6 will
generalize this formula. Though we're not ready to prove this generalization, we can at least form

some reasonable expectations:

e If we wanted to discuss the whole atmosphere, for example, we’d have to understand
why the distribution is spatially nonuniform—air gets thinner at higher altitudes.
But Equation 3.25 above gives us a hint. Apart from the normalization factor, the

distribution given by Equation 3.25 is just e~ #/ksT

, where E is the kinetic energy.
When altitude (potential energy) starts to become important, it’s reasonable to
guess that we should just replace E by the molecule’s total (kinetic plus potential)
energy. Indeed, we then find the air thinning out, with density proportional to the
exponential of minus the altitude (since the potential energy of a molecule is given
by mgz).

e Molecules in a sample of air hardly interact at all—air is nearly an ideal gas. But
in more crowded systems, such as liquid water, the molecules interact a lot. There
the molecules are not independent (like our coin+die of an earlier example), and we
can’t simply use the multiplication rule. But again we can form some reasonable
expectations. The statement that the molecules interact means that the potential

energy isn’t just the sum of independent terms U(zy) + -+ + U(xy), but rather

some kind of joint function U(zy,...,zx). Calling the corresponding total energy
E = E(x1,v1;...;2N,V0nN), let us substitute that into our provisional formula:
P(state) oc e F/keT Boltzmann distribution (3.26)

2The curve fitting the experimental data in Figure 3.7 is almost, but not quite, the one you found in Your
Turn 3fb. You’ll find the precise relation in Problem 3.5.
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We will refer to this formula as the Boltzmann distribution® after Ludwig Boltzmann, who found
it in the late 1860s.

We should pause to unpack the very condensed notation in Equation 3.26. To describe a state
of the system we must give the location r of each particle, as well as its speed v. The probability
to find particle “a” with its first coordinate lying between z; , and z;, + dz;, and so on, and
its first velocity lying between vy , and v 4 + dvi,, and so on, equals dzy, X -+ x dvy g X -+ X
P(z1,4y---,V1,a,--.). For K particles, P is a function of 6K variables and we have a total of 6K
differential factors in front. Equation 3.26 gives the probability distribution as a function of these
6K variables.

Equation 3.26 has some reasonable features: At very low temperatures, or 7' — 0, the expo-
nential is a very rapidly decreasing function of v: The system is overwhelmingly likely to be in the
lowest energy state available to it. (In a gas, this means that all of the molecules are lying on the
floor at zero velocity.) As we raise the temperature, thermal agitation begins; the molecules begin
to have a range of energies, which gets broader as 7" increases.

It’s almost unbelievable, but the very simple formula Equation 3.26 is exact. It’s not simplified;
youll never have to unlearn it and replace it by anything more complicated. (Suitably interpreted,
it holds without changes even in quantum mechanics.) Chapter 6 will derive it from very general

considerations.

3.2.4 Activation barriers control reaction rates

We are now in a better position to think about a question posed at the end of Section 3.2.1: If
heating a pan of water raises the kinetic energy of its molecules, then why doesn’t the water in the
pan evaporate suddenly, as soon as it reaches a critical temperature? For that matter, why does
evaporation cool the remaining water?

To think about this puzzle, imagine that it takes a certain amount of kinetic energy Eyaprier for
a water molecule to break free of its neighbors (since they attract each other). Any water molecule
near the surface with at least this much energy can leave the pan; we say that there is an activation
barrier to escape. Suppose we heat a covered pan of water, then turn off the heat and momentarily
remove the lid, allowing the most energetic molecules to escape. The effect of removing the lid is to
clip the Boltzmann probability distribution, as suggested by the solid line in Figure 3.8a. We now
replace the lid of the pan and thermally insulate it. Now the constant jostling of the remaining
molecules once again pushes some up to higher energies, regrowing the tail of the distribution as in
the dashed line of Figure 3.8a. We say that the remaining molecules have equilibrated. But the new
distribution is not quite the same as it was initially. Since we removed the most energetic molecules,
the average energy of those remaining is less than it was to begin with: Evaporation cooled the
remaining water. Moreover, rearranging the distribution takes time: Evaporation doesn’t happen
all at once. If we had taken the water to be hotter initially, though, its distribution of energies
would have been shifted to the right (Figure 3.8b), and more of the molecules would already be
ready to escape: Evaporation proceeds faster at higher temperature.

The idea of activation barriers can help make sense of our experience with chemical reactions,
too. When you flip a light switch, or click your computer’s mouse, there is a minimal energy, or
activation barrier, which your finger must supply. Tapping the switch too lightly may move it a

fraction of a millimeter, but doesn’t click it over to its “on” position. Now imagine drumming your

3Some authors use the synonym “canonical ensemble.”



80 CHAPTER 3 THE MOLECULAR DANCE [[STUDENT VERSION, DECEMBER 8, 2002]]

a b
~ 0.0014 f VA - /
1S € \
- y \ o 0.001} /
E" 0.001 f \ Uese ;g: / \
o8 8 \
2 0.0006 } \ l 5 00006
= , \ =
'_c% Ummax Umax = \
S S 0.0002 |
= 0.0002 \ / N g 0. N
500. 1000, 1500. 500. 1000. 1500.
speed u, ms~ speed u, ms~

Figure 3.8: (Mathematical functions.) (a) The solid line represents the distribution of molecular speeds for a
sample of water, initially at 100°C, from which some of the most energetic molecules have suddenly been removed.
After we reseal the system, molecular collisions bring the distribution of molecular speeds back to the standard form
(dashed line). The new distribution has regenerated a high-energy tail, but the average kinetic energy did not change;
accordingly the peak has shifted slightly, from wmax t0 uj,,,. (b) The same system, with the same escape speed, but
this time starting out at a higher temperature. The fraction of the distribution removed is now greater than in (a),
and hence the temperature shift is larger too.

finger lightly on the switch, giving a series of random light taps with some distribution of energies.
Given enough time, eventually one tap will be above the activation barrier and the switch will flip.

Similarly, one can imagine that a molecule with a lot of stored energy, say hydrogen peroxide,
can only release that energy after a minimal initial kick pushes it over an activation barrier. The
molecule constantly gets kicks from the thermal motion of its neighbors. If those thermal kicks are
on average much smaller than the barrier, though, it will be a very long time before a big enough
kick occurs. Such a molecule is practically stable. We can speed up the reaction by heating the
system, just as with evaporation. For example, a candle is stable, but burns when we touch it with
a lighted match. The energy released by burning in turn keeps the candle hot long enough to burn
some more, and so on.

We can do better than these simple qualitative remarks. Our argument implies that the rate
of a reaction is proportional to the fraction of all molecules whose energy exceeds the threshold.
Consulting Figure 3.8, this means we want the area under the part of the original distribution
that got clipped by escaping over the barrier. This fraction gets small at low temperatures (see
Figure 3.8a). In general the area depends on the temperature with a factor of e~ Eoamier/kBT Yoy
already found such a result in a simpler situation in Your Turn 3e on page 71: Substituting ug for
the distance Ry in that problem, and kgT/m for o2, indeed gives the fraction over threshold as
e*mu02/(2kBT) .

The above argument is rather incomplete. For example, it assumes that a chemical reaction
consists of a single step, which certainly is not true for many reactions. But there are many

elementary reactions between simple molecules for which our conclusion is experimentally true:

The rates of simple chemical reactions depend on temperature with a factor of
e~ Bvarrier/ kBT, where Fparier 1S Some temperature-independent constant charac- (3.27)

terizing the reaction.

We will refer to Idea 3.27 as the Arrhenius rate law. Chapter 10 will discuss it in greater detail.
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Figure 3.9: (Schematic; sketch graph.) (a) When a fast billiard ball collides with a slow one, in general both move
away with a more equal division of their total kinetic energy than before. (b) An initial molecular speed distribution
(solid line) with one anomalously fast molecule (or a few, creating the bump in the graph) quickly reequilibrates to
a Boltzmann distribution at slightly higher temperature (dashed line). Compare Figure 3.8.

3.2.5 Relaxation to equilibrium

We are beginning to see the outlines of a big idea: When a gas, or other complicated statistical
system, is left to itself under constant external conditions for a long time, it arrives at a situation
where the probability distributions of its physical quantities don’t change over time. Such a situation
is called “thermal equilibrium.” We will define and explore equilibrium more precisely in Chapter 6,
but already something may be troubling you, as it is troubling Gilbert here:

Gilbert: Very good, you say the air doesn’t fall on the floor at room temperature because of thermal
motion. Why then doesn’t it slow down and eventually stop (and then fall on the floor), due to
friction?

Sullivan: Oh, no, that’s quite impossible because of the conservation of energy. Fach gas molecule
makes only elastic collisions with others, just like the billiard balls in first-year physics.

Gilbert: Oh? So then in that case what s friction? If I drop two balls off the Tower of Pisa,
the lighter one gets there later, due to friction. Everybody knows that mechanical energy isn’t
conserved; eventually it winds up as heat.

Sullivan: Uh, um, ....

As you can see, a little knowledge proves a dangerous thing for our two fictitious scientists.
Suppose that instead of dropping a ball we shoot one air molecule into the room with enormous
speed, say 100 times greater than (|v|) for the given temperature. (One can actually do this
experiment with a particle accelerator.) What happens?

Soon this molecule bangs into one of the ones that was in the room to begin with. There’s an
overwhelming likelihood that the latter molecule will have kinetic energy much smaller than the
injected one, and indeed probably not much more than the average. When they collide, the fast
one transfers a lot of its kinetic energy to the slow one. Even though the collision was elastic, the
fast one lost a lot of energy. Now we have two medium-fast molecules; each is closer to the average
than it was to begin with. Each one now cruises along till it bangs into another, and so on, until
they all blend into the general distribution (Figure 3.9).
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While the total energy in the system is unchanged at every step after each collision, the original
distribution (with one molecule way out of line with the others) will settle down to the equilibrium
distribution (Equation 3.26), by a process of sharing the energy in the original fast molecule with
all the others.* What has changed is not energy, but the ordering of that energy: The one dissident
in the crowd has faded into anonymity. Again: the directed motion of the original molecule has
gotten degraded to a tiny increase in the average random motion of its peers. But, average random
velocity is just temperature, according to Equation 3.26. In other words, mechanical energy has
been converted to thermal energy in the process of reaching equilibrium. “Friction” is the name for

this conversion.

3.3 Excursion: A lesson from heredity

Section 1.2 outlined a broad puzzle about life (the generation of order), and a correspondingly broad
outline of a resolution. Many of the points made there were elegantly summarized in a short but
enormously influential essay by the physicist Erwin Schrodinger in 1944. Schrédinger then went
on to discuss a vexing question from antiquity: the transmission of order from one organism to its
descendants. Schrodinger noted that this transmission was extremely accurate. Now that we have
some concrete ideas about probability and the dance of the molecules, we can better appreciate
why Schrodinger found that everyday observation to be so profound, and how careful thought about
the physical context underlying known biological facts led his contemporary Max Delbriick to an
accurate prediction of what the genetic carrier would be like, decades before the discovery of the
details of DNA’s structure and role in cells. Delbriick’s argument rested on simple ideas from

probability theory, as well as the idea of thermal motion.

3.3.1 Aristotle weighs in

Classical and medieval authors debated long and hard the material basis of the facts of heredity.
Many believed the only possible solution was that the egg contains somewhere inside a tiny but
complete chicken, which needed only to grow. In a prescient analysis Aristotle rejected this view,
pointing out for example that certain inherited traits can skip a generation entirely. Contrary to
Hippocrates, Aristotle argued,

“The male contributes the plan of development and the female the substrate....The
sperm contributes nothing to the material body of the embryo, but only communicates
its program of development...just as no part of the carpenter enters into the wood in

which he works.”

Aristotle missed the fact that the mother also contributes to the “plan of development,” but he
made crucial progress by insisting on the separate role of an information carrier in heredity. The

organism uses the carrier in two distinct ways:

e [t uses the software stored in the carrier to direct its own construction; and

e It duplicates the software, and the carrier on which it is stored, for transmission to the off-

spring.

4Suppose we instead take one molecule and slow it down to much smaller speed than its peers. This too is possible
experimentally. Now it instead tends to gain energy by collisions with average molecules, until once again it lies in

the Boltzmann distribution.
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Figure 3.10: (Sketch histogram.) Results of an imaginary experiment measuring the femur lengths of a purebred
population of sheep. Selectively breeding sheep from the atypical group shown (black bar) doesn’t lead to a generation

of bigger sheep, but instead to offspring with the same distribution as the one shown.

Today we make this distinction by referring to the collection of physical characteristics of the
organism (the output of the software) as the phenotype, while the program itself is the genotype.

It was Aristotle’s misfortune that medieval commentators fastened on his confused ideas about
physics, raising them to the level of dogma, while ignoring his correct biology. Even Aristotle,
however, could not have guessed that the genetic information carrier would turn out to be a single

molecule.

3.3.2 Identifying the physical carrier of genetic information

Nobody has ever seen a molecule with their unaided eye. We can nevertheless speak with confidence
about molecules, because the molecular hypothesis makes such a tightly interconnected web of falsi-
fiable predictions. A similarly indirect but tight web of evidence drew Schrédinger’s contemporaries
to their conclusions about the molecular basis of heredity.

To begin, thousands of years’ experience in agronomy and animal husbandry had shown that
any organism can be inbred to the point where it will breed true for many generations. This
does not mean that every individual in a purebred lineage will be exactly identical to every other
one—certainly there are individual variations. Rather, a purebred stock is one in which there
are no heritable variations among individuals. To make the distinction clear, suppose we take a
purebred population of sheep and make a histogram of, say, femur lengths. A familiar Gaussian-
type distribution emerges. Suppose now that we take an unusually big sheep, from the high end
of the distribution (see Figure 3.10). Its offspring will not be unusually big, but rather will lie on
exactly the same distribution as the parent population. Whatever the genetic carrier is, it gets
duplicated and transmitted with great accuracy. Indeed, in humans some characteristic features
can be traced through ten generations.

The significance of this remark may not be immediately obvious. After all, an audio compact
disk contains nearly a gigabyte of information, duplicated and transmitted with near-perfect fidelity

from the factory. But each sheep began with a single cell. A sperm head is only a micrometer or



84 CHAPTER 3 THE MOLECULAR DANCE [[STUDENT VERSION, DECEMBER 8, 2002]]

so across, yet it contains roughly the same massive amount of text as that compact disk, in a
package of around 10~ '3 times the volume! What sort of physical object could lie behind this feat
of miniaturization? Nineteenth century science and technology offered no direct answers to this
question. But a remarkable chain of observation and logic broke this impasse, starting with the
work of Gregor Mendel, a monk trained in physics and mathematics.

Mendel’s chosen model system was the flowering pea plant Pisum sativum. He chose to study
seven heritable features (flower position, seed color, seed shape, ripe pod shape, unripe pod color,
flower color, and stem length). Each occurred in two clearly identifiable, alternative forms. The
distinctness of these features, or “traits,” endured over many generations, leading Mendel to propose
that sufficiently simple traits are inherited in a discrete, yes/no manner.” Mendel imagined the

” each of which could be set to

genetic code as a collection of switches, which he called “factors,’
either of two (or more) settings. The various available options for a given factor are now called
alleles of that factor. Later work would show that other traits, which appear to be continuously
variable (for example hair color), are really the combined effect of so many different factors that
the discrete variations from individual factors can’t be distinguished.

Painstaking analysis of many pea plants across several generations led Mendel in 1865 to a set

of simple conclusions:

eThe cells making up most of an individual (somatic cells) each carry two copies of
each factor; we say they are diploid. The two copies of a given factor may be “set”
to the same allele (the individual is homozygous for that factor), or different ones
(the individual is heterozygous for that factor).

eGerm cells (sperm or pollen, and eggs) are exceptional: They contain only one copy
of each factor. Germ cells form from ordinary cells by a special form of cell division,
in which one copy of each factor gets chosen from the pair in the parent cell. Today
we call this division meiosis, and the selection of factors assortment.

eMeiosis chooses each factor randomly and independently of the others, an idea now

called the “principle of independent assortment.”

Thus each of the four kinds of offspring shown in each generation of Figure 3.11 is equally likely.
After the fertilized egg forms, it creates the organism by ordinary division (mitesis), in which both
copies of each factor get duplicated. A few of the descendant cells eventually undergo meiosis to
form another generation of germ cells, and the process repeats.

If the two copies of the factor corresponding to a given trait represent different alleles, it may
be that one allele overrides (or “dominates”) the other in determining the organism’s phenotype.
Nevertheless, both copies persist, with the hidden one ready to reappear in later generations in a
precisely predictable ratio (Figure 3.11). Verifying such quantitative predictions gave Mendel the
conviction that his guesses about the invisible processes of meiosis and mitosis were correct.

Mendel’s rules drew attention to the discrete character of inheritance; the irresistible image of
two alternative alleles as a switch stuck in one of two possible states is physically very appealing.
Moreover, Mendel’s work showed that by far most of the apparent variation between generations
is simply reassortment of factors, which are themselves extremely stable. Other types of heritable

variations do occur spontaneously, but these mutations are rare. Moreover, mutations, too, are

5Interestingly, Charles Darwin also did extensive breeding experiments, on snapdragons, obtained data similar to
Mendel’s, and yet failed to perceive Mendel’s laws. Mendel’s advantage was his mathematical background. Later
Darwin would express regret that he had not made enough of an effort to know “something of the great leading
principles of mathematics,” and wrote that persons “thus endowed seem to have an extra sense.”
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Figure 3.11: (Diagram.) (a) Purebred red and white flowers are cross-pollinated to yield offspring, each with one
chromosome containing the “red” allele and one with the “white” allele. If neither allele is dominant, the offspring
will all be pink. For example four-o’clocks (a flower) exhibit this “semidominance” behavior. (b) Interbreeding the
offspring of the previous generation, we recover pure white flowers in one out of four cases. Even in other species,
for which the red allele is dominant, one in four of the second-generation offspring will still be white. [Cartoon by
George Gamow, from (Gamow, 1961).] [Copyrighted figure; permission pending.]

discrete events, and once formed, a mutation spreads in the population by the same Mendelian rules
listed above. Thus factors are switches that can snap crisply into new positions, but not easily;
once changed by mutation, they don’t switch back readily.

The history of biology in this period is a beautiful counterpoint between classical genetics and
cell biology. Cell biology has a remarkable history of its own; for example many advances had
to await the discovery of staining techniques, without which the various components of cells were
invisible. By about the time of Mendel’s work, E. Haeckel had identified the nucleus of the cell
as the seat of its heritable characters. A recently fertilized egg visibly contained two equal-sized
“pronuclei,” which soon fused. In 1882, W. Flemming noted that the nucleus organized itself into
threadlike chromosomes just before division. Each chromosome was present in duplicate prior to
mitosis, as required by Mendel’s rules (see Figure 3.11), and just before division each appeared to
double, after which one copy of each was pulled into each daughter cell. Moreover, E. van Beneden
observed that the pronuclei of a fertilized worm egg each had two chromosomes, while the ordinary
cells had four. van Beneden’s result gave visible testimony to Mendel’s logical deduction about the
mixing of factors from both parents.

By this point, it would have been almost irresistible to conclude that the physical carriers of
Mendel’s genetic factors were precisely the chromosomes, had anyone been aware of Mendel. Un-
fortunately Mendel’s results, published in 1865, languished in obscurity, not to be rediscovered
until 1900 by H. de Vries, C. Correns, and E. von Tschermak. Immediately upon this rediscov-
ery W. Sutton and T. Boveri independently proposed that Mendel’s genetic factors were physical
objects—“genes” —physically located on the chromosomes. (Sutton was a graduate student at the
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time.) But what were chromosomes, anyway? It seemed impossible to make further progress on
this point with the existing cell-biological tools.

A surprising quirk of genetics broke the impasse. Though Mendel’s rules were approximately
correct, later work showed that not all traits assorted independently. Instead, W. Bateson and
Correns began to notice that certain pairs of traits seemed to be linked, a phenomenon already
predicted by Sutton. That is, such pairs of traits will almost always be inherited together: The
offspring gets either both, or neither. This complication must have seemed at first to be a blemish
on Mendel’s simple, beautiful rules. Eventually, however, the phenomenon of linkage opened up a
new window on the old question of the identity of genetic factors.

The embryologist T. H. Morgan studied the phenomenon of genetic linkage in a series of exper-
iments starting around 1909. Morgan’s first insight was that in orde