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Preface

Number theory has long been a favorite subject for students and teachers of
mathematics. It is a classical subject and has a reputation for being the
"purest” part of mathematics, yet recent developments in cryptology and
computer science are based on elementary number theory. This book is the
first text to integrate these important applications of elementary number
theory with the traditional topics covered in an introductory number theory
course.

This book is suitable as a text in an undergraduate number theory course at
any level. There are no formal prerequisites needed for most of the material
covered, so that even a bright high-school student could use this book. Also,
this book is designed to be a useful supplementary book for computer science
courses, and as a number theory primer for computer scientists interested in
learning about the new developments in cryptography. Some of the important
topics that will interest both mathematics and computer science students are
recursion, algorithms and their computationai complexity, computer arithmetic
with large integers, binary and hexadecimal representations of integers,
primality testing, pseudoprimality, pseudo-random numbers, hashing functions,
and cryptology, including the recently-invented area of public-key
cryptography.  Throughout the book various algorithms and their
computational complexities are discussed. A wide variety of primality tests are
developed in the text.

Use of the Book

The core material for a course in number theory is presented in Chapters 1,
2, and 5, and in Sections 3.1-3.3 and 6.1. Section 3.4 contains some linear
algebra; this section is necessary background for Section 7.2; these two
sections can be omitted if desired. Sections 4.1, 4.2, and 4.3 present
traditional applications of number theory and Section 4.4 presents an
application to computer science; the instructor can decide which of these
sections to cover. Sections 6.2 and 6.3 discuss arithmetic functions, Mersenne
primes, and perfect numbers; some of this material is used in Chapter 8.
Chapter 7 covers the applications of number theory to cryptology. Sections
7.1, 7.3, and 7.4, which contain discussions of classical and public-key
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vi Preface

cryptography, should be included in all courses. Chapter 8 deals with primitive
roots; Sections 8.1-8.4 should be covered if possible. Most instructors will
want to include Section 8.7 which deals with pseudo-random numbers.
Sections 9.1 and 9.2 are about quadratic residues and reciprocity, a
fundamental topic which should be covered if possible; Sections 9.3 and 9.4
deal with Jacobi symbols and Euler pseudoprimes and should interest most
readers. Section 10.1, which covers rational numbers and decimal fractions,
and Sections 11.1 and 11.2 which discuss Pythagorean triples and Fermat’s
last theorem are covered in most number theory courses. Sections 10.2-10.4
and 11.3 involve continued fractions; these sections are optional.

The Contents

The reader can determine which chapters to study based on the following
description of their contents.

Chapter 1 introduces two importants tools in establishing results about the
integers, the well-ordering property and the principle of mathematical
induction. Recursive definitions and the binomial theorem are also developed.
The concept of divisibility of integers is introduced. Representations of
integers to different bases are described, as are algorithms for arithmetic
operations with integers and their computational complexity (using big-O
notation). Finally, prime numbers, their distribution, and conjectures about
primes are discussed.

Chapter 2 introduces the greatest common divisor of a set of integers. The
Euclidean algorithm, used to find greatest common divisors, and its
computational complexity, are discussed, as are algorithms to express the
greatest common divisor as a linear combination of the integers involved. The
Fibonacci numbers are introduced. Prime-factorizations, the fundamental
theorem of arithmetic, and factorization techniques are covered. Finally,
linear diophantine equations are discussed.

Chapter 3 introduces congruences and develops their fundamental
properties. Linear congruences in one unknown are discussed, as are systems
of linear congruences in one or more unknown. The Chinese remainder
theorem is developed, and its application to computer arithmetic with large
integers is described.

Chapter 4 develops applications of congruences. In particular, divisibility
tests, the perpetual calendar which provides the day of the week of any date,
round-robin tournaments, and computer hashing functions for data storage are
discussed.
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Chapter 5 develops Fermat’s little theorem and Euler’s theorem which give
some important congruences involving powers of integers. Also, Wilson’s
theorem which gives a congruence for factorials is discussed. Primality and
probabilistic primality tests based on these results are developed.
Pseudoprimes, strong pseudoprimes, and Carmichael numbers which
masquarade as primes are introduced.

Chapter 6 is concerned with multiplicative functions and their properties.
Special emphasis is devoted to the Euler phi-function, the sum of the divisors
function, and the number of divisors function and explicit formulae are
developed for these functions. Mersenne primes and perfect numbers are
discussed.

Chapter 7 gives a thorough discussion of applications of number theory to
cryptology, starting with classical cryptology. Character ciphers based on
modular arithmetic are described, as is cryptanalysis of these ciphers. Block
ciphers based on modular arithmetic are also discussed. Exponentiation
ciphers and their applications are described, including an application to
electronic poker. The concept of a public-key cipher system is introduced and
the RSA cipher is described in detail. Knapsack ciphers are discussed, as are
applications of cryptography to computer science.

Chapter 8 includes discussions of the order of an integer and of primitive
roots. Indices, which are similar to logarithms, are introduced. Primality
testing based on primitive roots is described. The minimal universal exponent
is studied. Pseudo-random numbers and means for generating them are
discussed. An application to the splicing of telephone cables is also given.

Chapter 9 covers quadratic residues and the famous law of quadratic
reciprocity. The Legendre and Jacobi symbols are introduced and algorithms
for evaluating them are developed. Euler pseudoprimes and a probabilistic
primality test are covered. An algorithm for electronically flipping coins is
developed.

Chapter 10 covers rational and irrational numbers, decimal representations
of real numbers, and finite simple continued fractions of rational and irrational
numbers. Special attention is paid to the continued fractions of the square
roots of positive integers.

Chapter 11 treats some nonlinear diophantine equations. Pythagorean
triples are described. Fermat’s last theorem is discussed. Finally, Pell’s
equation is covered.
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Problem Sets

After each section of the text there is a problem set containing exercises of
various levels of difficulty. Each set contains problems of a numerical nature;
these should be done to develop computational skills. The more theoretical
and challenging problems should be done by students after they have mastered
the computational skills. There are many more problems in the text than can
be realistically done in a course. Answers are provided at the end of the book
for selected exercises, mostly those having numerical answers.

Computer Projects

After each section of the text there is a selection of computer projects that
involve concepts or algorithms discussed in that section. Students can write
their programs in any computer language they choose, using a home or
personal computer, or a minicomputer or mainframe. I encourage students to
use a structured programming language such as C, PASCAL, or PL/1, to do
these projects. The projects can serve as good ways to motivate a student to
learn a new computer language, and can give those students with strong
computer science backgrounds interesting projects to tie together computer
science and mathematics.

Unsolved Problems

In the text and in the problem sets unsolved questions in number theory are
mentioned. Most of these problems have eluded solution for centuries. The
reader is welcome to work on these questions, but should be forewarned that
attempts to settle such problems are often time-consuming and futile. Often
people think they have solved such problems, only to discover some subtle flaw
in their reasoning.

Bibliography

At the end of the text there is an extensive bibliography, split into a section
for books and one for articles. Further, each section of the bibliography is
subdivided by subject area. In the book section there are lists of number
theory texts and references, books which attempt to tie together computer
science and number theory, books on some of the aspects of computer science
dealt with in the text, such as computer arithmetic and computer algorithms,
books on cryptography, and general references. In the articles section of the
bibliography, there are lists of pertinent expository and research papers in
number theory and in cryptography. These articles should be of interest to the
reader who would like to read the original sources of the material and who
wants more details about some of the topics covered in the book.
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Appendix

A set of five tables is included in the appendix to help students with their
computations and experimentation. Students may want to compile tables
different than those found in the text and in the appendix; compiling such
tables would provide additional computer projects.

List of Symbols

A list of the symbols used in the text and where they are defined is
included.
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Introduction

Number theory, in a general sense, is the study of numbers and their
properties. In this book, we primarily deal with the integers, 0, =1, 2, ...
We will not axiomatically define the integers, or rigorously develop integer
arithmetic.! Instead, we discuss the interesting properties of and relationships
between integers. In addition, we study the applications of number theory,
particularly those directed towards computer science.

As far back as 5000 years ago, ancient civilizations had developed ways of
expressing and doing arithmetic with integers. Throughout history, different
methods have been used to denote integers. For instance, the ancient
Babylonians used 60 as the base for their number system and the Mayans
used 20. Our method of expressing integers, the decimal system, was first
developed in India approximately six centuries ago. With the advent of
modern computers, the binary system came into widespread use. Number
theory has been used in many ways to devise algorithms for efficient computer
arithmetic and for computer operations with large integers.

The ancient Greeks in the school of Pythagoras, 2500 years ago, made the
distinction between primes and composites. A prime is a positive integer with
no positive factors other than one and the integer itself. In his writings,
Euclid, an ancient Greek mathematician, included a proof that there are
infinitely many primes. Mathematicians have long sought formulae that
generate primes. For instance, Pierre de Fermat, the great French number
theorist of the seventeenth century, thought that all integers of the form
2% + 1 are prime; that this is false was shown, a century after Fermat made
this claim, by the renowned Swiss mathematician Leonard Euler, who
demonstrated that 641 is a factor of 22 + 1.

The problem of distinguishing primes from composites has been extensively
studied. The ancient Greek scholar Eratosthenes devised a method, now called

1. Such an axiomatic development of the integers and their arithmetic can be found in Landau
le1l.
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the sieve of Eratosthenes, that finds all primes less than a specified limit. It
is inefficient to use this sieve to determine whether a particular integer is
prime. The problem of efficiently determining whether an integer is prime has
long challenged mathematicians.

Ancient Chinese mathematicians thought that the primes were precisely
those positive integers n such that n divides 2" — 2. Fermat showed that if n
is prime, then n does divide 2" — 2. However, by the early nineteenth
century, it was known that there are composite integers n such that »n divides
2" — 2, such as n = 341 . These composite integers are called pseudoprimes .
Because most composite integers are not pseudoprimes, it is possible to develop
primality tests based on the original Chinese idea, together with extra
observations. It is now possible to efficiently find primes; in fact, primes with
as many as 200 decimal digits can be found in minutes of computer time.

The fundamental theorem of arithmetic, known to the ancient Greeks,
says that every positive integer can be written uniquely as the product of
primes. This factorization can be found by trial division of the integer by
primes less than its square-root; unfortunately, this method is very time-
consuming. Fermat, Euler, and many other mathematicians have produced
imaginative factorization techniques. However, using the most efficient
technique yet devised, billions of years of computer time may be required to
factor an integer with 200 decimal digits.

The German mathematician Carl Friedrich Gauss, considered to be one of
the greatest mathematicians of all time, developed the language of
congruences in the early nineteenth century. When doing certain
computations, integers may be replaced by their remainders when divided by a
specific integer, using the language of congruences. Many questions can be
phrased using the notion of a congruence that can only be awkwardly stated
without this terminology. Congruences have diverse applications to computer
science, including applications to computer file storage, arithmetic with large
integers, and the generation of pseudo-random numbers.

One of the most important applications of number theory to computer
science is in the area of cryptography. Congruences can be used to develop
various types of ciphers. Recently, a new type of cipher system, called a
public—key cipher system, has been devised. When a public-key cipher is
used, each individual has a public enciphering key and a private deciphering
key. Messages are enciphered using the public key of the receiver. Moreover,
only the receiver can decipher the message, since an overwhelming amount of
computer time is required to decipher when just the enciphering key is known.
The most widely used public-key cipher system relies on the disparity in
computer time required to find large primes and to factor large integers. In
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particular, to produce an enciphering key requires that two large primes be
found and then multiplied; this can be done in minutes on a computer. When
these large primes are known, the deciphering key can be quickly found. To
find the deciphering key from the enciphering key requires that a large
integer, namely the product of the large primes, be factored. This may take
billions of years.

In the following chapters, we discuss these and other topics of clementary
number theory and its applications.




1

The Integers

1.1 The Well-Ordering Property

In this section, we discuss several important tools that are useful for proving
theorems. We begin by stating an important axiom, the well-ordering
property.

The Well-Ordering Property. Every nonempty set of positive integers has a
least element.

The principle of mathematical induction is a valuable tool for proving
results about the integers. We now state this principle, and show how to prove
it using the well-ordering property. Afterwards, we give an example to
demonstrate the use of the principle of mathematical induction. In our study
of number theory, we will use both the well-ordering property and the
principle of mathematical induction many times.

The Principle of Mathematical Induction. A set of positive integers that
contains the integer 1 and the integer n + 1 whenever it contains # must be
the set of all positive integers.

Proof. Let S be a set of positive integers containing the integer 1 and the
integer n + 1 whenever it contains n. Assume that S is not the set of all
positive integers. Therefore, there are some positive integers not contained in
S. By the well-ordering property, since the set of positive integers not
contained in S is nonempty, there is a least positive integer n which is not in
S. Note that n # 1, since 1 is in S. Now since n > 1, the integer n — 1 is

4



1.1 The Well-Ordering Property 5

a positive integer smaller than n, and hence must be in S. But since S
contains n — 1, it must also contain (n—1) + 1 = n, which is a contradiction,
since n is supposedly the smallest positive integer not in S. This shows that S
must be the set of all positive integers. O

To prove theorems using the principle of mathematical induction, we must
show two things. We must show that the statement we are trying to prove is
true for 1, the smallest positive integer. In addition, we must show that it is
true for the positive integer n + 1 if it is true for the positive integer n. By
the principle of mathematical induction, one concludes that the set S of all
positive integers for which the statement is true must be the set of all positive
integers. To illustrate this procedure, we will use the principle of
mathematical induction to establish a formula for the sum of the terms of a
geometric progression.

Definition. Given real numbers a and r, the real numbers

a, ar, ar?, ar’,...

are said to form a geometric progression. Also, a is called the initial term
and r is called the common ratio.

Example. The numbers 5, —15, 45, —135,... form a geometric progression
with initial term 5 and common ratio —3.

In our discussion of sums, we will find summation notation useful. The
following notation represents the sum of the real numbers a;, a,,...,a,.
n
Ya=a t+a+ - +ta,.
k=1

We note that the letter k, the index of summation, is a "dummy variable" and
can be replaced by any letter, so that

n

n n
> ag = Y a;= 2 a;,and so forth.
k=1 j=1 i=

Example. We see that
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2

Jj=1

> 2

j=1

1+2+3+4+5=15,

24+42+2+2+2=10,

and

5 .
DY =2+2+2+2°+25=62.
j=1

We also note that in summation notation, the index of summation may
range between any two integers, as long as the lower limit does not exceed the
upper limit. If m and 7 are integers such that m < n, then

n
Zak=am+am+l+ +an_

k=m

For instance, we have

5
k* =33 + 4% + 52 = 50,
k;3
3k =30+3"+32=13,
k=0

and

1
S =2+ EDP+0+ 1P =8
k==2

We now turn our attention to sums of terms of geometric progressions. The
sum of the terms a, ar, ar?,..., ar" is

n
Sarl=a+ar+a*+ - +ar",
J=0

where the summation begins with j = 0. We have the following theorem.

Theorem 1.1. If a and r are real numbers and r # 1, then
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ar"tl—a

n
(1.1 Sal=a+ar+a*+ - tar" =
r—1

j=0

Proof. To prove that the formula for the sum of terms of a geometric
progression is valid, we must first show that it holds for » = 1. Then, we must
show that if the formula is valid for the positive integer #, it must also be true
for the positive integer n + 1.

To start things off, let n = 1. Then, the left side of (1.1) is @ + ar, while
on the right side of (1.1) we have
ar’*-a _ a(-1) _ alr+)(-=1) _

= = =a(r+1) =a +ar.
r—1 r—1 r—1 ar+l) =a +ar

So the formula is valid when n = 1.

Now we assume that (1.1) holds for the positive integer n. That is, we
assume that

arn+l_

r—I1

(1.2) a+ar+art+ - +ar" = a

We must show that the formula also holds for the positive integer n + 1.
What we must show is that

r(n+1)+l_a ar"t2—g

(13) a+ar+ar’+ - +ar" +amt' =4 =
r—1 r—1

To show that (1.3) is valid, we add ar"*! to both sides of (1.2), to obtain

arn+l_

(1.4) (a+ar+ar’+ - - - +ar") + ar"t! = n 2+ grmtls
e

The left side of (1.4) is identical to that of (1.3). To show that the right sides
are equal, we note that

ar"*'—q 4 gt = ar™=a  arr—1)
-l hal Tl e
_ar" —a+ar" —ar”
r—1
_ar*t’—q
r—1

Since we have shown that (1.2) implies (1.3), we can conclude that (1.1)
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holds for all positive integers n. O

Example. Let n be a positive integer. To find the sum

S2k=14+2+22+ -+ +27,
k=0

we use Theorem 1.1 with g = 1 and r = 2, to obtain

2n+1_1
2—1

1+2+224 - 42" = =2+,

Hence, the sum of consecutive nonnegative powers of 2 is one less than the
next largest power of 2.

A slight variant of the principle of mathematical induction is also sometimes
useful in proofs.

The Second Principle of Mathematical Induction. A set of positive integers
which contains the integer 1, and which has the property that if it contains all
the positive integers 1, 2, ..., k , then it also contains the integer k& + I, must
be the set of all positive integers.

Proof. Let T be a set of integers containing 1 and containing k& + 1 if it
contains 1, 2, ..., k. Let S be the set of all positive integers n such that all
the positive integers less than or equal to n are in 7. Then 1 is in §, and by
the hypotheses, we see that if k is in S, then & + 1 is in S. Hence, by the
principle of mathematical induction, S must be the set of all positive integers,
so clearly T is also the set of all positive integers. O

The principle of mathematical induction provides a method for defining the
values of functions at positive integers.

Definition. We say the function f is defined recursively if the value of f at 1
is specified and if a rule is provided for determining f (n+1) from f (n) .

If a function is defined recursively, one can use the principle of
mathematical induction to show it is defined uniquely at each positive integer.
(See problem 12 at the end of this section.)

We now give an example of a function defined recursively. We define the
factorial function f(n) = n!. First, we specify that
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fa) =1,

and then we give the rule for finding f (n+1) from f (n), namely
fn+1) = (n+1)-f () .

These two statements uniquely define n!.

To find the value of f(6) = 6! from the recursive definition of f(n) = n!,
use the second property successively, as follows

f(6) =6f(5) =65f(4) =654f03) = 6:5:4-3.f(2) = 6:54-32f (1).
We now use the first statement of the definition to replace f (1) by its stated
value 1, to conclude that

6! = 654321 =720.

In general, by successively using the recursive definition, we see that n! is the
product of the first n positive integers, i.e.

n'=123 - n.

For convenience, and future use, we specify that 0! = 1.

We take this opportunity to define a notation for products, analogous to
summation notation. The product of the real numbers a, a5,...,a, is denoted
by

n

jl'Ilaj=a1a2 ccay .

The letter j above is a "dummy variable", and can be replaced arbitrarily.

Example. To illustrate the notation for products we have

5
.IIl Jj=12345=120.
j=

5
02=22222= 25=32.
-

5
s 2 =22223242% =215
-
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n
We note that with this notation, n! = II j .
J=1

Factorials are used to define binomial coefficients.

Definition. Let m and k be nonnegative integers with k < m. The

m
binomial coefficient [ k] is defined by

[’”] _ m!
k| klm—k)! -

m
In computing k |» we see that there is a good deal of cancellation, because
[m _ m! _ 123 --- m—=k)m—k+1) --- (m=Dm
k] k'm—k)! k' 123 - (m—k)
_(m—k+1) - (m=1m
h k! ‘

, we note that

Example. To evaluate the binomial coefficient [3

= = = = 35.
3 34 1231234 123

7] 71234567 567

We now prove some simple properties of binomial coefficients.

Proposition 1.2. Let n and k be nonnegative integers with k < n . Then

n
o [

n
) [ k]

Proof. To see that (i) is true, note that

Il
——
S S
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n n! n!

o) = 0mt ~ !
and

n n! n!

n) = o = !

To verify (ii), we see that

.

An important property of binomial coefficients is the following identity.

n

_ n! _ n! _ { 0
T ok'n—k)! =k (n—(n—k))!  |(n—k)

Theorem 1.2. Let n and k be positive integers with n > k. Then

n n n+l1
k|t le-1] 7| &
Proof. We perform the addition
h h n! n!
+ = +
k k—l} k'n—k)! (k=1 n—k+1)!

by using the common denominator k!(n—k+1)!. This gives

n
k-1

n

k

_ nlln—k+1) nlk

CkMa=k+1D)! T kNn—k+D)!

n!'((n—k+1)+k)
kK'(n—k+1)!
nl(n+1)

kn—k+1)

___(n+1)

 kMn—k+1)!

n+l1
k

+

. O
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.Using Theorem 1.2, we can easily construct Pascal’s triangle, which
displays the binomial coefficients. In this triangle, the binomial coefficient
n

k| is the (k+Dth number in the (n+1)th row. The first nine rows of

Pascal’s triangle are displayed in Figure 1.1.

Figure 1.1.  Pascal’s triangle.

We see that the exterior numbers in the triangle are all 1. To find an
interior number, we simply add the two numbers in the positions above, and to
either side, of the position being filled. From Theorem 1.2, this yields the
correct integer.

Binomial coefficients occur in the expansions of powers of sums. Exactly
how they occur is described by the binomial theorem.

The Binomial Theorem. Let x and y be variables and n a positive integer.
Then

n
2 xn—2y2+

n n
G4p)" = |g|x" + |4 x" 1y +

+

n
2 xzyn—Z +

or using summation notation,
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(x+y)" = nE [’?]x”‘jyf )

j= U

We prove the binomial theorem by mathematical induction. In the proof we
make use of summation notation.

Proof. We use mathematical induction. When n =1, according to the
binomial theorem, the formula becomes

1
1

1
(x+y)! = [0 x1y® + xop! .

= 1, this states that (x+y)! =x + y , which is

1 1
But because {0} = [1
obviously true.

We now assume the theorem is valid for the positive integer n, that is, we
assume that

(x+y)" = é [;Jx"_fyj )

j=0
We must now verify that the corresponding formula holds with n replaced by
n + 1, assuming the result holds for n. Hence, we have
x+p)"t = (x+y)" (x+y)
n

> {Z] x" Tyl [ (x+y)

Jj=0

L I
| xTT I

n n ) . n
z [j]"""“y’ P>

j=0 Jj=0

We see that by removing terms from the sums and consequently shifting
indices, that
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no|n . . n n . )
E J xn—j+1y; ==xn-l-l + E j xn—_;+1yj

j=0 J=1

and

XMipitl 4yt

51,

Jj=0

nej i+l _ P
xPy T =y j

j=0

< " j+1
=21j—1 x"J y1+y

J

Hence, we find that

( )n+1 n+1 < n n xt—ith,J
x+y =x""+ j + -1 v+t
j=1
By Theorem 1.2, we have
n n n+1
A+ = .|,
J J—1 J
so we conclude that
n+l n+l < ntl —j+1 J n+1
(x+y)t=x"1+ 3 j vty
j=1
n+l |n+1 +
= xmHl=iyi
== . y
j=o U/

This establishes the theorem. O

We now illustrate one use of the binomial theorem. If welet x =y =1, we
see from the binomial theorem that

n n . n n
"=+ =3 [j]l"-flf =3 [j

Jj=0 Jj=0

This formula shows that if we add all elements of the (n+1)th row of Pascal’s
triangle, we get 2". For instance, for the fifth row, we find that
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4
0

4
1

4
2

4

3 =1+4+6+4+1=16=2%

+

4

15

1.1 Problems

1. Find the values of the following sums

10 10
a) X2 o 3

| j=1 j=1

‘ 10 10 .
b) ¥ d X2,

‘ j=1 j=1

‘ 2. Find the values of the following products

5 5
a) II 2 c) IIj2
j=1 Jj=1
S 5
b) I j d 1m2.
Jj=1 Jj=1

3. Find n! for n equal to each of the first ten positive integers.
) 10{ (10| (10| [10 10
4.F1nd0,3,5,7,and10‘
9f |9
5. Find the binomial coefficients 3| |4
9 9 10
4l

3 4
6. Show that a nonempty set of negative integers has a largest element.

10
, and 4l and verify

+

7. Use mathematical induction to prove the following formulae.

n
D Nj=1+2+3+ - + n=20ED
= >
B 3= 2+22 4324 o 4 g2 AtDQrtD)

j=1 6

that
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11.

12.

13.

14.

15.
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n{n+1) ?

n
o JpP=0P+2+3+ - +43= 5

J=1

n
Find a formula for IT 2/.

j=1
Use the principle of mathematical induction to show that the value at each
positive integer of a function defined recursively is uniquely determined.

What function f(n) is defined recursively by f(1) =2 and  f(n+1) = 21 (n)
for n>1?

If g is defined recursively by g(1) =2 and g(n) =286“"Y for n > 2,
what is g (4)?

The second principle of mathematical induction can be used to define functions
recursively. We specify the value of the function at 1 and give a rule for finding
S (n+1) from the values of f at the first n positive integers. Show that the
values of a function so defined are uniquely determined.

We define a function recursively for all positive integers n by f(1) =1,
f(@) =5, and for n > 2, f(n+1) = f(n) + 2f(n—1). Show that f(n) =
2" + (=1)", using the second principle of mathematical induction.

a) Let n be a positive integer. By expanding (1+(—1))" with the binomial
theorem, show that

> 1k [Z
k=0

n |n
b) Use part (a), and the fact that 3} kJ = 2" to find
k=0

n n n
o) T l2] T la]t
and
n n n
3 ts| o
¢) Findthesum1—2+22—-23 + .- 4210,

Show by mathematical induction that if »# is a positive integer, then
(2n)! < 2> (n)2
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16.

17.

X . e
The binomial coefficients [n]’ where x is a variable, and n is a positive integer,

x
can be defined recursively by the equations {1 ] = x and

Xl _x-n |x
n+l n+l |n|’
.. . x .
a) Show that if x is a positive integer, then |, = (x—k) ; , where k is an
integer with 1 < k < x.
x x+1 . L
b) Show that S n+l | whenever n is a positive integer.

In this problem, we develop the principle of inclusion — exclusion. Suppose
that S is a set with n elements and let P, P,, ..., P, be ¢ different properties
that an element of S may have. Show that the number of elements of S
possessing none of the ¢ properties is

n—=I[P)+nP)+ - +nP)]
+ [H(Pl,Pz) + ﬂ(Pl,P3) + -+ n(P,_l,P,)]
— [n(P,Py,P3) + n(P,Pp,P) + - + n(P,_,,P,_,,P,)]
+ - + (=1)'n(P,P,,...P),

where n(P;,Pi,.., P,-J) is the number of elements of S possessing all of the
properties P; P;,..P;. The first expression in brackets contains a term for each
property, the second expression in brackets contains terms for all combinations of
two properties, the third expression contains terms for all combinations of three
properties, and so forth. (Hint: For each element of S determine the number of
times it is counted in the above expression. If an element has k of the
k k k
properties, show it is counted 1 — | | + |,| = -~ + (=1* & | times. This
equals zero by problem 14(a).)

The tower of Hanoi was a popular puzzle of the late nineteenth century. The
puzzle includes three pegs and eight rings of different sizes placed in order of
size, with the largest on the bottom, on one of the pegs. The goal of the puzzle is
to move all the rings, one at a time without ever placing a larger ring on top of a
smaller ring, from the first peg to the second, using the third peg as an auxiliary
peg.
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a) Use mathematical induction to show that the minimum number of moves to
transfer n rings, with the rules we have described, from one peg to another
is 2" — 1.

b) An ancient legend tells of the monks in a tower with 64 gold rings and 3
diamond pegs. They started moving the rings, one move per second, when
the world was created. When they finish transferring the rings to the second
peg, the world ends. How long will the world last?

Without multiplying all the terms, show that

a) 6! 7= 10! c) 16'= 14! 52

b) 10!=715'31 d) 9'=713!3120

Let a,=(a)ay) - a,.) =1, and a,4y =a'ay - - a,,!, where
a,,ay,...,a,-1 are positive integers. Show that a,4\! = a;! a,! - - a,

Find all positive integers x, y, and z such that x! + y! = z!.

1.1 Computer Projects

Write programs to do the following:

—_—

S v A W

Find the sum of the terms of a geometric series.

Evaluate n!

Evaluate binomial coefficients.

Print out Pascal’s triangle.

List the moves in the Tower of Hanoi puzzle (see problem 18).

Expand (x+y)", where n is a positive integer, using the binomial theorem.

1.2 Divisibility

When an integer is divided by a second nonzero integer, the quotient may or

may not be an integer. For instance, 24/8 = 3 is an integer, while 17/5 = 3.4
is not. This observation leads to the following definition.

Definition. If a and b are integers, we say that a divides b if there is an
integer ¢ such that b = ac. If a divides b, we also say that a is a divisor or

factor of b.
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If a divides b we write a | b, while if a does not divide b, we write a ,{ b.

Example. The following examples illustrate the concept of divisibility of
integers: 13 | 182, =5 | 30, 17 | 289, 6 [ 44,7 / 50, =3 | 33, and 17 | 0.

Example. The divisors of 6 are =1, £2, £3, and +6. The divisors of 17 are
+1 and =17. The divisors of 100 are =1, £2,+4, =5, +10,
+20, +25, =50, and £100.

In subsequent sections, we will need some simple properties of divisibility.
We now state and prove these properties.

Proposition 1.3. If a, b, and ¢ are integers witha | b and b | ¢, then a | c.

Proof. Since a | b and b | c, there are integers e and f with ae = b and
bf = c. Hence, bf = (ae)f = alef) = c, and we conclude thata | c. O

Example. Since 11 | 66 and 66 | 198, Proposition 1.3 tells us that 11 | 198.

Proposition 1.4. If a, b, m, and n are integers, and if ¢ | a and ¢ | b, then
¢ | Gma+nb).

Proof. Since ¢ | a and ¢ | b, there are integers e and f such that a = ce and
b =c¢f. Hence, ma + nb = mce + ncf = c(me+nf). Consequently, we see
that ¢ | (ma+nb). O

Example. Since 3 | 21 and 3 | 33, Proposition 1.4 tells us that

31(521-333)=105-99=6.
The following theorem states an important fact about division.
T hesrew
The Division%dgrfﬁhm If a and b are integers such that b > 0, then there

are unique integers g and r such that a = bg + r with 0 < r < b.

In the equation given in the division algorithm, we call g the quotient and r
the remainder.

We note that g is divisible by & if and only if the remainder in the division
algorithm is zero. Before we prove the division algorithm, consider the
following examples. ‘
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Example. If a =133 and b =21, then ¢g=6 and r =7, since
133 =216 + 7. Likewise, if a = —50 and b = 8, then qg=-T7and r =6,
since —50 = 8(=7) + 6.

For the proof of the division algorithm and for subsequent numerical

computations, we need to define a new function.

Definition. Let x be a real number. The greatest integer in x, denoted by
[x], is the largest integer less than or equal to x.

Example. We have the following values for the greatest integer in
x: [22]1=2,[31=3,and [-1.5] = —2.

The proposition below follows directly from the definition of the greatest
integer function.
Proposition 1.5. If x is a real number, then x—1 < [x] < x.

We can now prove the division algorithm. Note that in the proof we give
explicit formulae for the quotient and remainder in terms of the greatest
integer function.

Proof. Let ¢ =[a/b]l and r = a — bla/bl. Clearly a = bg + r. To show
that the remainder r satisfies the appropriate inequality, note that from
Proposition 1.5, it follows that

(a/b)—1 < la/bl < a/b.

We multiply this inequality by b, to obtain
a—-b <bla/pl < a

Multiplying by —1, and reversing the inequality, we find that
—a < =bla/bl < b —a.

By adding a, we see that
0<r=a-—bla/bl <b
To show that the quotient ¢ and the remainder r are unique, assume that

we have two equations @ = bg, + r; and a = bg, + ry, with 0 < r; < b and
0 < r, < b. By subtracting the second of these from the first, we find that
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0=>b(g,—q) + (ri—ry .

Hence, we see that

ry—nrn-= b(‘h“h) .

This tells us that b divides r, — r;. Since 0 < r; < b and 0 € r, < b, we
have —b < ry—r; < b. This shows that & can divide r, — r; only if
ry—ry =0, or, in other words, if r; =r,. Since bg, + r; = bg, + r, and
r; = r, we also see that g, = g,. This shows that the quotient g and the
remainder r are unique. O

Example. Let a = 1028 and » = 34. Then a = bg + r with 0 < r < b,
where ¢ = [1028/34] = 30 and r = 1028 - [1028/34]- 34 = 1028 - 30-34 = 8.

With a = —380 and b = 75, we have a = bg + r with 0 < r < b, where
g = [-380/75] = —6 and r = —380 — [—-380/75] = —380 — (=6)75 = 70.

Given a positive integer d, we can classify integers according to their
remainders when divided by d. For example, with d = 2, we see from the
division algorithm that every integer when divided by 2 leaves a remainder of
either 0 or 1. If the remainder when n is divided by 2 is O, then n = 2k for
some positive integer k, and we say n is even, while if the remainder when n
is divided by 2 is 1, then n = 2k + 1 for some integer k, and we say n is odd.

Similarly, when d = 4, we see from the division algorithm that when an
integer n is divided by 4, the remainder is either 0,1,2, or 3. Hence, every
integer is of the form 4k, 4k + 1, 4k + 2, or 4k + 3, where k is a positive
integer.

We will pursue these matters further in Chapter 3.

1.2 Problems
1. Show that 3 | 99, 5| 145, 7 | 343, and 888 | 0.
2. Decide which of the following integers are divisible by 22

a) 0 d) 192544
b) 444 e) —32516
¢) 1716 f) —195518.
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Find the quotient and remainder in the division algorithm with divisor 17 and
dividend

a) 100 c) —44
b) 289 d) -100.

What can you conclude if @ and b are nonzero integers such that a | 4 and
b|a?

Show that if a,‘b, c, and d are integers with a and ¢ nonzero such that a |
and ¢ | d, then ac | bd.

Are there integers a, b, and ¢ such thata | bc,buta | b anda [ ¢?
Show that if a, b, and ¢ # 0 are integers, then a | b if and only if ac | bc.
Show that if a and b are positive integers and a | b, then a < b.

Give another proof of the division algorithm by using the well-ordering property.
(Hint: When dividing a by b, take as the remainder the least positive integer in
the set of integers a—gb.)

Show that if @ and b are odd positive integers, then there are integers s and ¢
such that @ = bs + ¢, where ¢ is odd and |¢| < b.

When the integer a is divided by the interger b where b > 0, the division
algorithm gives a quotient of ¢ and a remainder of ». Show that if 5 | a, when
—a is divided by b, the division algorithm gives a quotient of —(g+1) and a
remainder of b — r, while if b | a, the quotient is —¢ and the remainder is zero.

Show that if a, b, and ¢ are integers with & > 0 and ¢ > 0, such that when a
is divided by b the quotient is ¢ and the remainder is r, and when ¢ is divided
by ¢ the quotient is ¢ and the remainder is s, then when a is divided by bc, the
quotient is ¢ and the remainder is bs + r.

a) Extend the division algorithm by allowing negative divisors. In particular,
show that whenever @ and b # 0 are integers, there are integers ¢ and r
such that @ = bg + r, where 0 < r < |b] .

b) Find the remainder when 17 is divided by —7.

Show that if a and b are positive integers, then there are integers ¢, and
e = x1 such that a = bq + er where —b/2 <er< b/2.

Show that if @ and b are real numbers, then [a+b] > [a]l + [b].

Show that if @ and b are positive real numbers, then [ab] > [allb] .
What is the corresponding inequality when both a and b are negative? When
one is negative and the other positive?
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What is the value of [a] + [—a] when a is a real number?
Show that if a is a real number then
a) —[—alis the least integer greater than or equal to a.

b) [a + %] is the integer nearest to a (when there are two integers equidistant
from a, it is the larger of the two).

Show that if n is an integer and x is a real number, then [x+n] =[x]+n .

Show that if m and n > 0 are integers, then

[ﬂ] if m = kn — 1 for some integer k.
m+1 "

n

-t

Show that the integer n is even if and only if n — 2[r/2] = 0.

+ 1 if m = kn — 1 for some integer k .

Show that if @ is a real number, then [a] + [a + %] =[2a].

a) Show that the number of positive integers less than or equal to x that are
divisible by the positive integer d is given by [x/d 1.

b) Find the number of positive integers not exceeding 1000 that are divisible by
5, by 25, by 125, and by 625.

¢) How many integers between 100 and 1000 are divisible by 77 by 497

To mail a letter in the U.S.A. it costs 20 cents for the first ounce and 18 cents
for each additional ounce or fraction thereof. Find a formula involving the
greatest integer function for the cost of mailing a letter. Could it possibly cost
$1.08 or $1.28 to mail a letter?

Show that if a is an integer, then 3 divides a’—a .

Show that the sum of two even or of two odd integers is even, while the sum of
an odd and an even integer is odd.

Show that the product of two odd integers is odd, while the product of two
integers is even if either of the integers is even.

Show that the product of two integers of the form 4k + 1 is again of this form,
while the product of two integers of the form 4k + 3 is of the form 4k + 1.

Show that the square of every odd integer is of the form 8k + 1.
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30. Show that the fourth power of every odd integer is of the form 16k + 1.
31. Show that the product of two integers of the form 6k + 5 is of the form 6k + 1.
32. Show that the product of any three consecutive integers is divisible by 6.

33. Let n be a positive integer. We define

n/2 if n is even

T(n) ~ {(3n+1)/2 if n is odd.

We then form the sequence obtained by iterating T;
n, T(n), T(T(n)), T(T(T(n))),.... For instance, starting with n = 7 we have
7,11,17,26,13,20,10,5,8,4,2,1,2,1,2,1... . A well-known conjecture, sometimes
called the Collatz conjecture, asserts that the sequence obtained by iterating T
always reaches the integerl no matter which positive integer n begins the sequence.

a) Find the sequence obtained by iterating T starting with n = 29.
b) Show that the sequence obtained by iterating 7 starting with n = (2¥—1)/3,
where k is an even positive integer, k > 1, always reaches the integer 1.
1.2 Computer Projects
Write programs to do the following:
1. Decide whether an integer is divisible by a given integer.
2. Find the quotient and remainder in the division algorithm.

3. Find the quotient, remainder, and sign in the modified division algorithm given in
problem 14.

4. Investigate the sequence n, T(n), T(T(n)), T(T(T(n))),... defined in problem
33,

1.3 Representations of Integers

The conventional manner of expressing numbers is by decimal notation. We
write out numbers using digits to represent multiples of powers of ten. For
instance, when we write the integer 34765, we meaa

310* + 410> + 7-102 + 610" + 5-10°,

There is no particular reason for the use of ten as the base of notation, other
than the fact that we have ten fingers. Other civilizations have used different
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bases, including the Babylonians, who used base sixty , and the Mayans, who
used base twenty . Electronic computers use two as a base for internal
representation of integers, and either eight or sixteen for display purposes.

We now show that every positive integer greater than one may be used as a
base.
Theorem 1.3. Let b be a positive integer with & > 1. Then every positive
integer n can be written uniquely in the form
n=ab* +a_b* 1+ - +ab + a,,

where g; is an integer with 0 < a; < b—1for j =0, 1, ., k and the initial
coefficient a; # 0.

Proof. We obtain an expression of the desired type by successively applying
the division algorithm in the following way. We first divide n by b to obtain
n=>bgg+ag O0<ay<b-l

Then we divide gg by b to find that
go="bg, +a;, 0<a <b-l

We continue this process to obtain

g1=bg,+a; O
42=bq3+a3, 0

Gr—2=bqr_1 +a,;, 0< g <b-l,
-1 =b0+a;, 0<a <b-1.

The last step of the process occurs when a quotient of 0 is obtained. This is
guaranteed to occur, because the sequence of quotients satisfies

n>qo>q1>4q,> 20,

and any decreasing sequence of nonnegative integers must eventually
terminate with a term equaling 0.
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From the first equation above we find that

n = bqq + ay.

We next replace g using the second equation, to obtain

n=>blbg,+a) + ag=b%q, + ab + ay,

Successively substituting for g, g5, ..., gx—;, we have

h = b3f12 + azbz + alb + ay,

h = bk_lqk_z + ak_zbk_z + - 4+ a,b + do,
n=>bkqi_ +ar_b* '+ - +ab+ ag
= akbk + ak_]bk_l + - + alb + dy,

where 0 < a; < b—1 for j = 0,1,....k and a; # 0, since a; = g, is the last
nonzero quotient. Consequently, we have found an expansion of the desired
type.

To see that the expansion is unique, assume that we have two such
expansions equal to n, i.e.

n = akb" + ak_lbk_l + - +a|b + ag
= Ckbk + Ck_lbk_l + -+ C]b + ¢y,

where 0 < a; <b and 0 < ¢, <b (and if necessary we add initial terms with
zero coefficients to have the number of terms agree). Subtracting one
expansion from the other, we have

(ak—ck)bk + (ak_l - Ck_l)bk_l + -+ (01—C1)b + (ao—C()) = 0.

If the two expansions are different, there is a smallest integer j, 0 < j < &,
such that a j # ¢;. Hence,

b] (ak_Ck)bk-j + -+ (aj.H—ch)b + (aj—cj) = 0,

so that
(ak—-ck)bk”j + - + (aj+l-—cj+1)b + (aj—cj) = (.
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Solving for a;—c; we obtain
a;—c; = (Ck—ak)bk—j + -+ (cj+,—aj+1)b

== b [(Ck—ak)bk—j_l + -+ (Cj+]—aj+1)].

Hence, we see that

b | (a;—c)).

But since 0 < a; < b and 0 < ¢; < b, we know that —b < aj—c; < b.
Consequently, b | (aj—c;) implies that a; =c¢;. This contradicts the
assumption that the two expansions are different. We conclude that our base
b expansion of n is unique. O

For b = 2, we see from Theorem 1.3 that the following corollary holds.

Corollary 1.1. Every positive integer may be represented as the sum of
distinct powers of two.

Proof. Let n be a positive integer. From Theorem 1.3 with b = 2, we know
that n = ;2% + a2 '+ -+ + a2 + ag where each q; is either 0 or I.
Hence, every positive integer is the sum of distinct powers of 2. O

In the expansions described in Theorem 1.3, b is called the base or radix of
the expansion. We call base 10 notation, our conventional way of writing
integers, decimal notation. Base 2 expansions are called binary expansions,
basc 8 expansions are called octal expansions, and base 16 expansions are
called hexadecimal, or hex for short, expansions. The coefficients a; are
called the digits of the expansion. Binary digits are called bits (binary
digizs) in computer terminology.

To distinguish representations of integers with different bases, we use a
special notation. We write (agag_)...a1ag), to represent the expansion
b + a1+ - +ab + a,

Example. To illustrate base » notation, note that (236); = 2272+ 37 + 6
and (10010011), = 1-27 + 1-2* + 1-2' + 1.

Note that the proof of Theorem 1.3 gives us a method of finding the base b
expansion of a given positive integer. We simply perform the division
algorithm successively, replacing the dividend each time with the quotient, and
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stop when we come to a quotient which is zero. We then read up the list of
remainders to find the base b expansion.

Example. To find the base 2 expansion of 1864, we use the division algorithm
successively:
{

1864 = 2:932 + 0,
932 = 2:466 + 0,
466 = 2-233 + 0
233 = 2:116 + I,
116 = 2:58 + 0,
58 =229 + 0,
29 =214 + 1,
14 =27 +0,
7=23 41,
3=21  +1,
1 =20 + 1.

To obtain the base 2 expansion of 1984, we simply take the remainders of
these divisions. This shows that (1864),, = (11101001000),.

Computers represent numbers internally by using a series of "switches"
which may be either "on" or "off". (This may be done mechanically using
magnetic tape, electrical switches, or by other means.) Hence, we have two
possible states for each switch. We can use "on" to represent the digit 1 and
"off" to represent the digit 0. This is why computers use binary expansions to
represent integers internally.

Computers use base 8 or base 16 for display purposes. In base 16, or
hexadecimal, notation there are 16 digits, usually denoted by
0,1,2,3,4,5,6,7,8,9,4,B,C,D,E and F. The letters 4,B,C,D,E, and F are
used to represent the digits that correspond to 10,11,12,13,14 and 15 (written
in decimal notation). We give the following example to show how to convert
from hexadecimal notation to decimal notation.

Example. To convert (435B0F )¢ we write

(435BOF) g = 10-16° + 3-16* + 5:16> + 11:16% + 0-16 + 15
= (10705679) 1.
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A simple conversion is possible between binary and hexadecimal notation.
We can write each hex digit as a block of four binary digits according to the
correspondence given in Table 1.1.

Hex Binary|{ Hex | Binary

Digit | Digits || Digit | Digits
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Table 1.1. Conversion from hex digits to blocks of binary digits.

Example. An example of conversion from hex to binary is (2FB3),s =
(10111110110011),. Each hex digit is converted to a block of four binary
digits (the initial zeros in the initial block (0010), corresponding to the digit
(2) ¢ are omitted).

To convert from binary to hex, consider (11110111101001),. We break this
into blocks of four starting from the right. The blocks are, from right to left,
1001, 1110, 1101, and 0011 (we add the initial zeros). Translating each block
to hex, we obtain (3DE9) .

We note that a conversion between two different bases is as easy as binary
hex conversion, whenever one of the bases is a power of the other.

1.3 Problems

1. Convert (1999),, from decimal to base 7 notation. Convert (6105), from base 7
to decimal notation.

2. Convert (101001000), from binary to decimal notation and (1984),, from
decimal to binary notation.
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11.

12.

14.

The Integers

Convert (100011110101), and (11101001110), from binary to hexadecimal.

Convert (4BCDEF),s, (DEFACED);, and (940B) s from hexadecimal to
binary.

Explain why we really are using base 1000 notation when we break large decimal
integers into blocks of three digits, separated by commas.

a) Show that if b is a negative integer less than —1, then every integer n can
be uniquely written in the form

=ab* +a_b* '+ - +ab + a,,
where a, #0 and 0 <q;<[|b| for j=012,.,k We write
n = (ayay_...a; ag)y, just as we do for positive bases.
b) Find the decimal representation of (101001)_, and (12012)_,.
¢) Find the base —2 representations of the decimal numbers —7,—17, and 61.

Show that any weight not exceeding 2—1 may be measured using weights of
1,2,22,..., 2¥7 when all the weights are placed in one pan.

Show that every integer can be uniquely represented in the form

3 te 3¥ T+ - +e3+ e
where e; =—1,0, or 1 for j=0,1,2,..,k. This expansion is called a
balanced ternary expansion.

Use problem 8 to show that any weight not exceeding (3*—1)/2 may be
measured using weights of 1, 3, 32, ..., 3*”!, when the weights may be placed in
either pan.

Explain how to convert from base 3 to base 9 notation, and from base 9 to base 3
notation.

Explain how to convert from base r to base r" notation, and from base r"
notation to base r notation, when » > 1 and n are positive integers.

Show that if r = (agag_;...a\ag), , then the quotient and remainder when »n is
divided by b7 are ¢ = (agay_,...a;), and r = (a;_,...a1a0), respectively.

If the base b expansion of n is n = (aga;_...ajap),, what is the base b
expansion of b™n?

A Cantor expansion of a positive integer n is a sum

n=a,m!'+ a_im=1)'+ - + a2 +a,l!
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15.

16.

where each a; is an integer with 0 < a; < j |
a) Find Cantor expansions of 14, 56, and 384.
b) Show that every positive integer has a unique Cantor expansion.

The Chinese game of nim is played as follows. There are a number of piles of
matches, each containing an arbitrary number of matches at the start of the
game. A move consists of a player removing one or more matches from one of
the piles. The players take turns, with the player removing the last match
winning the game.

A winning position is an arrangement of matches in piles so that if a player can
move to this position, then, no matter what the second player does, the first
player can continue to play in a way that will win the game. An example is the
position where there are two piles each containing one match; this is a winning
position, because the second player must remove a match leaving the first player
the opportunity to win by removing the last match.

a) Show that the position where there are two piles, each with two matches, is
a winning position.

b) For each arrangement of matches into piles, write the number of matches in
each pile in binary notation, and then line up the digits of these numbers
into columns (adding initial zeroes if necessary to some of the numbers).
Show that a position is a winning one if and only if the number of ones in
each column is even (Example: Three piles of 3, 4, and 7 give

011
111
100
where each column has exactly two ones).

Let a be an integer with a four-digit decimal expansion, with not all digits the
same. Let a' be the integer with a decimal expansion obtained by writing the
digits of a in descending order, and let a" be the integer with a decimal
expansion obtained by writing the digits of a in ascending order. Define
T(a) = a'— a". For instance, T(7318) = 8731 — 1378 = 7358.

a) Show that the only integer with a four-digit decimal expansion with not all
digits the same such that T(a) = a is a = 6174.

b) Show that if a is a positive integer with a four-digit decimal expansion with
not all digits the same, then the sequence a, T (a), T(T(a)),
T(T(T(a))),..., obtained by iterating T, eventually reaches the integer
6174. Because of this property, 6174 is called Kaprekar's constant.
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Let b be a positive integer and let a be an integer with a four-digit base b
expansion, with not all digits the same. Define T,(a) = a' — a”, where a' is the
integer with base b expansion obtained by writing the base & digits of a in
descending order, and let a” is the integer with base b expansion obtained by
writing the base b digits of a in ascending order.

a) Let b =5. Find the unique integer ay with a four-digit base 5 expansion
such that Ts(ag) = ao. Show that this integer a is a Kaprekar constant for
the base 5, ie., a, T(a), T(T()), T(T(T(a))),.. eventually reaches
ag, whenever a is an integer which a four-digit base 5 expansion with not all
digits the same.

b) Show that no Kaprekar constant exists for the base 6.

1.3 Computer Projects

Write programs to do the following:

1.

Find the binary expansion of an integer from the decimal expansion of this
integer and vice versa.

Convert from base b, notation to base b, notation, where b, and b, are arbitrary
positive integers greater than one.

Convert from binary notation to hexadecimal notation and vice versa.

Find the base (—2) notation of an integer from its decimal notation (see problem
6).

Find the balanced ternary expansion of an integer from its decimal expansion
(see problem 8).

Find the Cantor expansion of an integer from its decimal expansion (see problem
14).

Play a winning strategy in the game of nim (see problem 15).

Find the sequence a, T(a), T(T(a)), T(T(T(a))),.. defined in problem 16,
where a is a positive integer, to discover how many iterations are needed to reach
6174.

Let b be a positive integer. Find the Kaprekar constant to the base b, when it
exists (see problem 17).
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1.4 Computer Operations with Integers

We have mentioned that computers internaily represent numbers using bits,
or binary digits. Computers have a built-in limit on the size of integers that
can be used in machine arithmetic. This upper limit is called the word size,
which we denote by w. The word size is usually a power of 2, such as 2%,
although sometimes the word size is a power of 10.

To do arithmetic with integers larger than the word size, it is necessary to
devote more than one word to each integer. To store an integer n > w, we
express n in base w notation, and for each digit of this expansion we use one
computer word. For instance, if the word size is 235, using ten computer
words we can store integers as large as 23°—1, since integers less than 23%0
have no more than ten digits in their base 233 expansions. Also note that to
find the base 2*° expansion of an integer, we need only group together blocks
of 35 bits.

The first step in discussing computer arithmetic with large integers is to
describe how the basic arithmetic operations are methodically performed.

We will describe the classical methods for performing the basic arithmetic
operations with integers in base r notation where » > 1 is an integer. These
methods are examples of algorithms.

Definition. An algorithm is a specified set of rules for obtaining a desired
result from a set of input.

We will describe algorithms for performing addition, subtraction, and
multiplication of two n-digit integers a = (a,-a,-)..a1a9), and
b = (b,_1by_s...b1by), , where initial digits of zero are added if necessary to
make both expansions the same length. The algorithms described are used
both for binary arithmetic with integers less than the word size of a computer,
and for multiple precision arithmetic with integers larger than the word size
w, using w as the base.

We first discuss the algorithm for addition. When we add a and b, we
obtain the sum

n—1 . n—1 . n-1 )
a+b= E ajrf + 2 bjr] = 2 (aj + bj)rf.
j=0 j=0 j=0

To find the base r expansion of the a + b, first note that by the division
algorithm, there are integers Cgy and sq such that
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a0+b0=C0r+s0,0<s0<r.

Because ag and b, are positive integers not exceeding r, we know that
0<ag+by<2r—2,s0that Cy=0or 1 ; here Cy is the carry to the next
place. Next, we find that there are integers C, and s, such that

a1+b|+C0=C1r+sl,0<s1 <r
Since 0 < a,+b;+ Cy < 2r — 1, we know that C; =0 or 1. Proceeding
inductively, we find integers C; and s; for | < i < n — 1 by
a,-+b,~+C,-_1=C,~r +S,',0<S,~ <r,
with C; = 0 or 1. Finally, we let s, = C,_; , since the sum of two integers

with n digits has n + 1 digits when there is a carry in the nth place. We
conclude that the base r expansion for the sum is a + b = (s,5,-1...5,50), -

When performing base r addition by hand, we can use the same familiar
technique as is used in decimal addition.
Example. To add (1101), and (1011), we write
1

—_—O O~

O = =

+
1

O = =
— D

where we have indicated carries by 1’s in italics written above the appropriate
column. We found the binary digits of the sum by noting that 1 + 1 =
1'2+0,0+0+1=0-2+1, 1+0+0=02+1,and1+1=12+0.

We now turn our attention to subtraction. We consider

n—1 n—1 . n—1 .
a—b=3ar — 3 bir =73 (a—b)r,
Jj=0 Jj=0 j=0

where we assume that a > b. Note that by the division algorithm, there are
integers By and dg such that

ao—b0=Bor+d0, O<d0<r,

and since ag and bg are positive integers less than r, we have
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—(r—1) <ay—by<r—1

When ag— by = 0, we have By = 0. Otherwise, when ag — bg < 0, we have
By = — 1; By is the borrow from the next place of the base r expansion of a.
We use the division algorithm again to find integers B; and d such that

al—b|+Bo=B,r+dl, 0< d1<r.
From this equation, we see that the borrow B; =0 as long as a; — b, + By

> 0, and B, = —1 otherwise, since —r < a; —b;+By <r—1. We
proceed inductively to find integers B; and d;, such that

a,-—bi+B,-_1=B,~r+d,-‘ Osd, <r
with B; =0 or —1, for 1 < i < n —2. We see that B,_, =0, since a > b.
We can conclude that
a—b= (dn—ldn—ZmdldO)r.

When performing base r subtraction by hand, we use the same familiar
technique as is used in decimal subtraction.
Example. To subtract (10110), from (11011),, we have

-1

11
10

—_— o O
S| — =
—_—

where the —1 in italics above a column indicates a borrow. We found the
binary digits of the difference by noting that 1—-0=02+1,
1-1=024+0, 0—-1=—-12+1, 1-0—1= 02+0,and 1 ~-1=
0-2+0.

Before discussing multiplication, we describe shifting. To multiply
(a,_,..ayap), by r™ , we need only shift the expansion left m places,
appending the expansion with m zero digits.

Example. To multiply (101101), by 2°, we shift the digits to the left five
places and append the expansion with five zeros, obtaining (10110100000),.
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To deal with multiplication, we first discuss the multiplication of an n-place
integer by a one-digit integer. To multiply (a,_,...a1ao), by (b), , we first
note that

agh =qor + po, 0< py <,

and 0 < go < 7 — 1, since 0 < agh < (r—1)2. Next, we have

ab+qo=qir+p;, 0<p, <r,

and 0 < ¢, < r—1. In general, we have
aib+q1=qr +p;, 0<p; <r
and 0 < g; <r—1. Furthermore, we have p,=g,_,. This yields
(ay-1..@1a0); (B); = (PuPu-1..p1PO) ;-
To perform a multiplication of two n-place integers we write

ab =a ['EI bjrj] = nil (abj)ri.

J=1 j=0

For each j, we first multiply a by the digit b;, then shift to the left j places,
and finally add all of the n integers we have obtained to find the product.

When multiplying two integers with base r expansions, we use the familiar
method of multiplying decimal integers by hand.

Example. To multiply (1101), and (1110), we write

SO -

0
1
0
1

— O O = =

1
1
0
1
0
1
0

—_ | — —
—_— O = -

1
10 110

Note that we first multiplied (1101), by each digit of (1110),, shifting each
time by the appropriate number of places, and then we added the appropriate
integers to find our product.
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We now discuss integer division. We wish to find the quotient g in the
division algorithm

a=bg+R, 0SR<Hb.

If the base r expansion of ¢ is ¢ = (g,—19n—2---9190), , then we have

n—1 X
a=b | q;r’
=0

+R, 0SSR <VD

To determine the first digit q,—; of g, notice that

n=2 .
a—bg,_r"'=b > qir’| + R
j=0
The right-hand2 side of this equation is not only positive, but also it is less than
n— .
br"~!, since 3 gq;r/ < r*~'—1. Therefore, we know that
j=0
0<a-—bg,_r" ! <br !,
.U : £
This tells us that o< -{;ﬁ' = Lr l
dm & 4 Gn_1 = La/brm1],
TS

We can obtain g,—, by successively subtracting b7"~! from a until a negative
result is obtained, and then g,_, is one less than the number of subtractions.

To find the other digits of g, we define the sequence of partial remainders
Ri by

RO =a
and

R; = Ri_; — bg,_ir"™"

fori =1, 2, ..., n. By mathematical induction, we show that

n—i—1

Jj=0

b+ R

For i = 0, this is clearly correct, since Rg = a = gb + R. Now assume that
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n—k—1

Jj=0

Then

Rpv1 = Ry — bgy_j—yr"*!

n—k—1

> g

j=0
[n—(k+l)—l

b+R- bqn—k—-lrn_k_1

I

b+ R,

z

j=0

establishing (1.5).

From (1.5), we see that 0 < R; < r"'b, for i=1,2,.. n, since

n—i—1 . . .

> gq;b/ < b"" — 1. Consequently, since R; =R, — bg,_;r"~" and
j=0 :
0 < R; < r""'b, we see that the digit g,—; is given by [R;_;/br"™] and can
be obtained by successively subtracting br"™* from R;_; until a negative result
is obtained, and then ¢,_; is one less than the number of subtractions. This is
how we find the digits of g.

Example. To divide (11101), by (111), , we let ¢ = (g29,90)2>. We subtract
22(111), = (11100), once from (11101), to obtain (1),, and once more to
obtain a negative result, so that g, = 1. Now R, = (11101), — (11100), =
(1),. We find that g; = 0, since R; — 2(111), is less than zero, and likewise
g, = 0. Hence the quotient of the division is (100), and the remainder is (1),

We will be interested in discussing how long it takes a computer to perform
calculations. We will measure the amount of time needed in terms of
bit operations. By a bit operation we mean the addition, subtraction, or
multiplication of two binary digits, the division of a two-bit integer by one-bit,
or the shifting of a binary integer one place. When we describe the number of
bit operations needed to perform an algorithm, we are describing the
computational complexity of this algorithm.

In describing the number of bit operations needed to perform calculations
we will use big—O notation.
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Definition. If f and g are functions taking positive values, defined for all x in
a set S, then we say f is O(g) if there is a positive constant K such that
f(x) < Kg(x) for all x in the set S.

Proposition 1.6. If f is O(g) and c is a positive constant, then ¢f is O(g).

Proof. 1f f is O(g), then there is a constant K such that f(x) < Kg(x) for
all x under consideration. Hence ¢f (x) < (cK)g(x). Therefore, ¢f is
0(g). O

Proposition 1.7. If f, is O(g,) and f, is O(gy), then f| + f, is O(g;+gy)
and f,f,is O(g,g7).

Proof. If fis O(g)) and f, is O(g,), then there are constants K, and K,
such that f(x) < K,g,(x) and f,(x) < K,g,(x) for all x under
consideration. Hence

S1x) + fo(x) € K12 (x) + Kygo(x)
< K(gi(x) + g,(x))

where K is the maximum of K| and K,. Hence f; + f,is O(g, + gJ).
Also

S10)f2(x) < Kig,(x) Kaga(x)
= (Kle)(g1(X)g2(X)),

so that ff, is 0(g|g2). O
Corollary 1.2. If f, and f, are O(g), then f, + f, is O(g).

Proof.  Proposition 1.7 tells us that f,+ f, is OQg). But if
f1+f2 < K(Q2g), then f, + £ < 2K)g, so that f, + f5is O(g). O

Using the big-O notation we can see that to add or subtract two n-bit
integers takes O(n) bit operations, while to multiply two n-bit integers in the
conventional way takes O(n?) bit operations (see problems 16 and 17 at the
end of this section). Surprisingly, there are faster algorithms for multiplying
large integers. To develop one such algorithm, we first consider the
multiplication of two 2n-bit integers, say a = (a;,_1a3,-7...a;ay); and
b = (b2d32n—2~-b1b0)2- We write a = 2"A4,; + Ag and b = 2"B, + B, where
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Ay = (@2,-120-2.-8n118n)2, Ao = (@y-18,3..01a0)2, By = (byy_1b3n—r...bysi
bn)2 and Bg = (b,—y by_y...b,by),. We will use the identity

(1.6) ab = Q™" +2")A,B) + 2"(4,—Ag) (Bo—B)) + (2"+1) AoB,.

To find the product of a and b using (1.6), requires that we perform three
multiplications of n-bit integers (namely A,B,, (4, — Ax) (B, — B,), and
AoBy), as well as a number of additions and shifts. If we let M (n) denote the
number of bit operations needed to multiply two n-bit integers, we find from
(1.6) that

(1.7) MQn) < 3Mn) + Cn,
where C is a constant, since each of the three multiplications of n-bit integers
takes M (n) bit operations, while the number of additions and shifts needed to

compute a-b via (1.6) does not depend on n, and each of these operations
takes O (n) bit operations.

From (1.7), using mathematical induction, we can show that
(1.8) M(Q2F) < e(3k —2%),
where ¢ is the maximum of the quantities M (2) and C (the constant in

(1.7)). To carry out the induction argument, we first note that with k =1,
we have M (2) < ¢(3' —=2') = ¢, since ¢ is the maximum of M (2) and C.

As the induction hypothesis, we assume that

M©2%) < (3% — 2K).

Then, using (1.7), we have

M (¥ < 3M(2F) + C2k
< 3¢ (3k —2k) + C2*
< 3k — 3.2k + 2K
< Bk — 2kt

This establishes that (1.8) is valid for all positive integers k.

Using inequality (1.8), we can prove the following theorem.

Theorem 1.4. Multiplication of two n-bit integers can be performed using
0 (n'®%) bit operations. (Note: log,3 is approximately 1.585, which is
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considerably less than the exponent 2 that occurs in the estimate of the
number of bit operations needed for the conventional multiplication
algorithm.)

Proof. From (1.8) we have

M) = MQ°5") < Q"=
< C(3llog,n]+l _2[log,n]+l)

< 30.3[log,n] < 36.3log,n - 3cnlog,3

(since 3'%%" = n'°&%),

Hence, M (n) = 0(n'®’). O

We now state, without proof, two pertinent theorems. Proofs may be found
in Knuth [56] or Kronsjo [58].

Theorem 1.5. Given a positive number ¢ > 0, there is an algorithm for
multiplication of two n-bit integers using O (n!*¢) bit operations.

Note that Theorem 1.4 is a special case of Theorem 1.5 with ¢ = log,3 — 1,
which is approximately 0.585.

Theorem 1.6. There is an algorithm to multiply two n-bit integers using
O (n log,n logylog,n) bit operations.

Since log,n and log,log,n are much smaller than n® for large numbers n,
Theorem 1.6 is an improvement over Theorem 1.5. Although we know that
M (n) = O(n log,n log,log,n), for simplicity we will use the obvious fact that
M (n) = O(n?) in our subsequent discussions.

The conventional algorithm described above performs a division of a 2x-bit
integer by an n-bit integer with O (n?) bit operations. However, the number
of bit operations needed for integer division can be related to the number of
bit operations needed for integer multiplication. We state the following
theorem, which is based on an algorithm which is discussed in Knuth [56].

Theorem 1.7. There is an algorithm to find the quotient ¢ = [a/b], when
the 2n-bit integer a is divided by the integer b having no more than n bits,
using O(M(n)) bit operations, where M (n) is the number of
bit operations needed to multiply two n-bit integers.
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1.4 Problems

I.

I I

10.

11.

12.

13.

15.
16.

17.

18.

Add (101111011), and (110011101 D,.

Subtract (101110101), from (1101101100),.

Multiply (11101), and (110001),.

Find the quotient and remainder when (110100111), is divided by (11101),.
Add (4BAB) s and (BABA) .

Subtract (CAFE) s from (FEED) 4.

Multiply (FACE) s and (BAD)q.

Find the quotient and remainder when (BEADED) 4 is divided by (4BBA) .

Explain how to add, subtract, and multiply the integers 18235187 and 22135674
on a computer with word size 1000.

Write algorithms for the basic operations with integers in base (—2) notation
(see problem 6 of Section 1.3).

Give an algorithm for adding and an algorithm for subtracting Cantor
expansions (see problem 14 of Section 1.3).

Show that if f, and f, are O(g,) and O(g,), respectively, and ¢, and ¢, are
constants, then ¢ f| + cyf2is O(g, + g»).

Show that if f is O(g), then f* is O(g*) for all positive integers k.

Show that a function f is O(logyn) if and only if f is O(log,n) whenever r > 1.
(Hint: Recall that log,n/log,n = log,b.)

Show that the base b expansion of a positive integer n has [log,n]+1 digits.

Analyzing the algorithms for subtraction and addition, show that with rn-bit
integers these operations require O (n) bit operations.

Show that to multiply an n-bit and an m-bit integer in the conventional manner
requires O (nm) bit operations.

Estimate the number of bit operations needed to find 1424+ - - +n
a) by performing all the additions.

b) by using the identity 142+ -+ 4+ n = n{(n+1)/2, and multiplying and
shifting. :
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19. Give an estimate for the number of bit operations needed to find

n
a) n! b [k]

20. Give an estimate of the number of bit operations needed to find the binary
expansion of an integer from its decimal expansion.

21. a) Show there is an identity analogous to (1.6) for decimal expansions.

b) Using part (a), multiply 73 and 87 performing only three multiplications of
one-digit integers, plus shifts and additions.

¢) Using part (a), reduce the multiplication of 4216 and 2733 to three
multiplications of two-digit integers, plus shifts and additions, and then
using part (a) again, reduce each of the multiplications of two-digit
integers into three multiplications of one-digit integers, plus shifts and
additions. Complete the multiplication using only nine multiplications of
one-digit integers, and shifts and additions.

22. a) If A and B are nxn matrices, with entries a; and b; for 1 < i < n,
n

1 < j < n, then 4B is the nxn matrix with entries c¢; = 2 auby;.
k=1

Show that n® multiplications of integers are used to find 4B directly from
its definition.

b) Show it is possible to multiply two 2x2 matrices using only seven
‘ multiplications of integers by using the identity

by b
by by
anby + apby x + (ay + ap) (b—by) +
(ay1+a,—an—anby

|
‘ [011 ap

a; an

x +lay—an)(byp=bi) — x + (a;—ay) (bp—by) +
ay(by1—by—bi2+by) (ay + axp) (b,—by)

where x = a“b“ - (a“ —dajy — 022)(b|1 - blz + bzz).

¢) Using an inductive argument, and splitting 2nX2n matrices into four nxn
matrices, show that it is possible to multiply two 2% x2% matrices using only
7% multiplications, and less than 7%*! additions.
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24.

25.
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d) Concl:lu7de from part (c) that two nxn matrices can be multiplied using
O . . . .
o™ bit operations when all entries of the matrices have less than ¢
bits, where ¢ is a constant.

A dozen equals 12 and a gross equals 122 Using base 12, or duodecimal,
arithmetic answer the following questions.

a) If 3 gross, 7 dozen, and 4 eggs are removed from a total of 11 gross and 3
dozen eggs, how many eggs are left?

b) If 5 truckioads of 2 gross, 3 dozen, and 7 eggs each are delivered to the
supermarket, how many eggs were delivered?

¢) If 11 gross, 10 dozen and 6 eggs are divided in 3 groups of equal size, how
many eggs are in each group?

A well-known rule used to find the square of an integer with decimal expansion
(@,-...a1a0) 1o with final digit @g =5 is to find the decimal expansion of the
product (a,a,-y...a)) 1o [(@,a,-y...a)) 1o + 1] and append this with the digits
(25)10. For instance, we see that the decimal expansion of (165)2 begins with
1617 = 272, so that (165)2 = 27225. Show that the rule just described is valid.

In this problem, we generalize the rule given in problem 24 to find the squares of
integers with final base 2B digit B, where B is a positive integer. Show that the
base 2B expansion of the integer (a,a,_;...a,a0),5 starts with the digits of the
base 2B expansion of the integer (a,a,-;..a1a0)25 [(a,a,-,...a1a0),5 + 1] and
ends with the digits B/2 and 0 when B is even, and the digits (B—1)/2 and B
when B is odd.

1.4 Computer Projects

Write programs to do the following:

1.

2
3
4.
5
6

Perform addition with arbitrarily large integers.

Perform subtraction with arbitrarily large integers.

Multiply two arbitrarily large integers using the conventional algorithm.
Multiply two arbitrarily large integers using the identity (1.6).

Divide arbitrarily large integers, finding the quotient and remainder.

Multiply two nXn matrices using the algorithm discussed in problem 22.
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1.5 Prime Numbers

The positive integer 1 has just one positive divisor. Every other positive
integer has at least two positive divisors, because it is divisible by 1 and by
itself. Integers with exactly two positive divisors are of great importance in
number theory; they are called primes.

Definition. A prime is a positive integer greater than 1 that is divisible by no
positive integers other than 1 and itself.

Example. The integers 2,3,5,13,101 and 163 are primes.

Definition. A positive integer which is not prime, and which is not equal to 1,
is called composite.

Example. The integers 4 =2-2,8=4-2, 33=311,111 =337, and
1001 = 7-11-13 are composite.

The primes are the building blocks of the integers. Later, we will show that
every positive integer can be written uniquely as the product of primes.

Here, we briefly discuss the distribution of primes and mention some
conjectures about primes. We start by showing that there are infinitely many
primes. The following lemma is needed.

Lemma 1.1. Every positive integer greater than one has a prime divisor.

Proof. We prove the lemma by contradiction; we assume that there is a
positive integer having no prime divisors. Then, since the set of positive
integers with no prime divisors is non-empty, the well-ordering property tells
us that there is a least positive integer n with no prime divisors. Since n has
no prime divisors and n divides n, we see that # is not prime. Hence, we can
write n=ab with 1 < a <nand 1 < b < n. Because a < n, a must have
a prime divisor. By Proposition 1.3, any divisor of a is also a divisor of n, so
that n must have a prime divisor, contradicting the fact that » has no prime
divisors. We can conclude that every positive integer has at least one prime
divisor. O

We now show that the number of primes is infinite.

Theorem 1.8. There are infinitely many primes.
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Proof . Consider the integer

Q,=n'+1, nzl.

Lemma 1.1. tells us that Q, has at least one prime divisor, which we denote
by g,. Thus, g, must be larger than n; for if g, < n, it would follow that
gn | n!, and then, by Proposition ll .;1, 4n | (©@,—n!) = 1, which is impossible.

Since we have found a prime larger than n, for every positive integer n,
there must be infinitely many primes. O

Later on we will be interested in finding, and using, extremely large primes.
We will be concerned throughout this book with the problem of determining
whether a given integer is prime. We first deal with this question by showing
that by trial divisions of n by primes not exceeding the square root of n, we
can find out whether n is prime.

Theorem 1.9. If n is a composite integer, then n has a prime factor not
exceeding Vn.

Proof. Since n is composite, we can write n = ab, where a and b are
integers with 1 <a < b <n. We must have a < +/n, since otherwise
b>a>+n and ab > Vn-Vn =n. Now, by Lemma 1.1, a must have a
prime divisor, which by Proposition 1.3 is also a divisor of a and which is
clearly less than or equal to v/n. O

We can use Theorem 1.9 to find all the primes less than or equal to a given
positive integer n. This procedure is called the sieve of Eratosthenes. We
illustrate its use in Figure 1.2 by finding all primes less than 100. We first
note that every composite integer less than 100 must have a prime factor less
than /100 = 10. Since the only primes less than 10 are 2,3,4, and 7, we only
need to check each integer less than 100 for divisibility by these primes. We
first cross out, below by a horizontal slash —, all multiples of 2. Next we
cross out with a slash / those integers remaining that are multiples of 3.
Then all multiples of 5 that remain are crossed out, below by a backslash \.
Finally, all multiples of 7 that are left are crossed out, below with a vertical
slash |. All remaining integers (other than 1) must be prime.
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Figure 1.2. Finding the Primes Less Than 100 Using the Sieve of Eratosthenes.

Although the sieve of Eratosthenes produces all primes less than or equal to
a fixed integer, to determine whether a particular integer #n is prime in this
manner, it is necessary to check n for divisibility by all primes not exceeding
Vn. This is quite inefficient; later on we will have better methods for deciding
whether or not an integer is prime.

We know that there are infinitely many primes, but can we estimate how
many primes there are less than a positive real number x? One of the most
famous theorems of number theory, and of all mathematics, is the
prime number theorem which answers this question. To state this theorem,
we introduce some notation.

Definition. The function 7(x), where x is a positive real number, denotes the
number of primes not exceeding x.

Example. From our example illustrating the sieve of Eratosthenes, we see that
7(10) = 4 and #(100) = 25.

We now state the prime number theorem.

The Prime Number Theorem. The ratio of 7(x) to x/log x approaches one as
x grows without bound. (Here log x denotes the natural logarithm of x. In

the language of limits, we have lim x(x)/—— = 1).
x—o0 log x
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The prime number theorem was conjectured by Gauss in 1793, but it was
not proved until 1896, when a French mathematician J. Hadamard and a
Belgian mathematician C. J. de la Vallée-Poussin produced independent
proofs. We will not prove the prime number theorem here: the various proofs
known are either quite complicated or rely on advanced mathematics. In
Table 1.1 we give some numerical evidence to indicate the validity of the

theorem.

x w(x) x/log x | x(x)/—= i (x) w () /i (x)

log x

103 168 144.8 1.160 ‘ 178 | 0.9438202
104 1229 1085.7 1.132 7 1246 |  0.9863563
10° 9592 8685.9 1.104 9630 | 0.9960540
10° 78498 72382.4 1.085 78628 |  0.9983466
10’ 664579 620420.7 1.071 664918 |  0.9998944
108 5761455 5428681.0 1.061 5762209 | 0.9998691
10° 50847534 48254942 .4 1.054 50849235 |  0.9999665
1010 455052512 | 434294481.9 1.048 455055614 |  0.9999932
10" | 4118054813 | 3948131663.7 1.043 4118165401 |  0.9999731
10'2 | 37607912018 | 36191206825.3 1.039 | 37607950281 | 0.9999990
10'3 | 346065535898 [334072678387.1 1.036 | 346065645810 | 0.9999997

Table 1.1. Approximations to 7(x).
x,/inx
The prime number theorem tells us that x/log x is a good approximation to
w(x) when x is large. It has been shown that an even better approximation is

given by
Pt )””‘90 ) =1 litx) = f ld’
K X/l”K 5 logt
r _di
(where f Tog 1 represents the area under the curve y = 1/log t, and above
2

the t-axis from ¢ =2 to r = x). In Table 1.1, one sees evidence that /i (x) is
an excellent approximation of = (x).

Penrly: ICRUICRS L =0

gy X T kT ogx
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We can now estimate the number of bit operations needed to show that an
integer n is prime by trial divisions of n by all primes not exceeding Vn. The
prime number theorem tells us that there are approximately
Jn flog/n = 2~/n [log n primes not exceeding Jn. To divide n by an integer
m takes O(log,n-logym) bit operations. Therefore, the number of bit
operations needed to show that n is prime by this method is at least
(2v/n /log n) (c logsn) = c+/n (where we have ignored the log,m term since it
is at least 1, even though it sometimes is as large as (logyn)/2) . This method
of showing that an integer n is prime is very inefficient, for not only is it
necessary to know all the primes not larger than Jn, but it is also necessary to
do at least a constant multiple of v bit operations. Later on we will have
more efficient methods of showing that an integer is prime.

We remark here that it is not necessary to find all primes not exceeding x
in order to compute w(x). One way that w(x) can be evaluated without
finding all the primes less then x is to use a counting argument based on the
sieve of Eratosthenes (see problem 13). (Recently, very efficient ways of
finding 7 (x) using O (x*/**) bit operations have been devised by Lagarias and
Odlyzko [69].)

We have shown that there are infinitely many primes and we have discussed
the abundance of primes below a given bound x, but we have yet to discuss
how regularly primes are distributed throughout the positive integers. We first
give a result that shows that there are arbitrarily long runs of integers
containing no primes.

Proposition 1.8. For any positive integer n, there are at least n consecutive
composite positive integers.

Proof. Consider the n consecutive positive integers
+1D+2,r+D+3,.,(n+ D' +n+1.
When 2 < j < n+ 1, we know that j | (n + 1)!. By Proposition 1.4, it

follows that j | (n + 1)! + j. Hence, these n consecutive integers are all
composite. O

Example. The seven consecutive integers beginning with 8! + 2 = 40322 are
all composite. (However, these are much larger than the smallest seven
consecutive composites, 90, 91, 92, 93, 94, 95, and 96.)




50 The Integers

Proposition 1.8 shows that the gap between consecutive primes is arbitrarily
long. On the other hand, primes may often be close together. The only
consecutive primes are 2 and 3, because 2 is the only even prime. However,
many pairs of primes differ by two; these pairs of primes are called
twin primes. Examples are the primes 5 and 7, 11 and 13, 101 and 103, and
4967 and 4969. A famous unsettled conjecture asserts that there are infinitely
many twin primes.

There are a multitude of conjectures concerning the number of primes of
various forms. For instance, it is unknown whether there are infinitely many
primes of the form n2 + 1 where n is a positive integer. Questions such as this
may be easy to state, but are sometimes extremely difficult to resolve.

We conclude this section by discussing perhaps the most notorious
conjecture about primes.

Goldbach’s Conjecture. Every even positive integer greater than two can be
written as the sum of two primes.

This conjecture was stated by Christian Goldbach in a letter to Euler in
1742. 1t has been verified for all even integers less than a million. One sees
by experimentation, as the following example illustrates, that usually there are
many sums of two primes equal to a particular integer, but a proof that there
always is at least one such sum has not yet been found.

Example. The integers 10,24, and 100 can be written as the sum of two
primes in the following ways:

10=3+7=5+35,
24 =5+19=7+17=11+ 13,
100 =3+97=11+89=17 + 83

=29+ 71 =41+ 59 =47 + 53.

1.5 Problems

1. Determine which of the following integers are primes

a) 101 < 107 e) 113
b) 103 d) 111 f) 121.
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13.
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Use the sieve of Eratosthenes to find all primes less than 200.
Find all primes that are the difference of the fourth powers of two integers.
Show that no integer of the form n> + 1 is a prime, other than 2 = 1341

Show that if @ and n are positive integers such that a”—1 is prime, then a = 2
and n is prime. (Hint: Use the identity a®—1 = (a*-1) (a*4 Y +
ak®D oo gk

In this problem, another proof of the infinitude of primes is given. Assume there
are only finitely many primes pi,p2..\Dn- Form the integer
QO =ppz2 -+ p.+ 1. Show that Q has a prime factor not in the above list.
Conclude that there are infinitely many primes.

Let Q, =pyp2 " pPn + 1 where pyps, ....p, are the n smallest primes.
Determine the smallest prime factor of Q, for n =1,2,3,4,5, and 6. Do you
think Q, is prime infinitely often? (This is an unresolved question.)

Let p,ps, ..., P be the first n primes and let m be an integer with 1| < m < n.
Let Q be the product of a set of m primes in the list and let R be the product of
the remaining primes. Show that Q + R is not divisible by any primes in the
list, and hence must have a prime factor not in the list. Conclude that there are
infinitely many primes.

Show that if the smallest prime factor p of the positive integer n exceeds n
then n/p must be prime or 1.

a) Find the smallest five consecutive composite integers.
b) Find one million consecutive composite integers.

Show that there are no "prime triplets”, i.e. primes p, p + 2, and p + 4, other
than 3,5, and 7.

Show that every integer greater than 11 is the sum of two composite integers.

Use the principle of inclusion-exclusion (problem 17 of Section 1.1) to show that

) = @)= —n = || |+ | ]+ -+ | Z
141 Y 2] Pr
+ n + + - + n
PPz P\P3 Pr-1Dr
- 2 L - n + -,
P\PaP3 P1P2Pa Pr—2Pr—1\Pr

where p1.p,...p, are the primes less than or equal to Vi (with r=r(:/n)).
(Hint: Let property Pi,...i be the property that an integer is divisible by all of
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Piy--pi , and use problem 23 of Section 1.2.)
Use problem 13 to find 7(250).

a) Show that the polynomial x? — x + 41 is prime for all integers x with
0 < x < 40. Show, however, that it is composite for x = 4].

b) Show that if f(x) = anx" + @ x" '+ .- +ax +a, where the
coefficients are integers, then there is an integer y such that £ (p) is composite.
(Hint: Assume that f (x) = p is prime, and show p divides f (x+kp) for all
integers k. Conclude from the fact that a polynomial of degree n takes on each
value at most n times, that there is an integer y such that f(y) is composite.)

The lucky numbers are generated by the following sieving process. Start with
the positive integers. Begin the process by crossing out every second integer in
the list, starting your count with the integer 1. Other than 1 the smallest integer
left is 3, so we continue by crossing out every third integer left, starting the
count with the integer 1. The next integer left is 7, so we cross out every seventh
integer left. Continue this process, where at each stage we cross out every kth

integer left where k is the smallest integer left other than one. The integers that
remain are the lucky numbers.

a) Find all lucky numbers less than 100.

b) Show that there are infinitely many lucky numbers.

. Pl .
Show that if p is prime and 1 < k < p, then the binomial coefficient [k] is
divisible by p.

Decide whether an integer is prime using trial division of the integer by all
primes not exceeding its square root.

Use the sieve of Eratosthenes to find all primes less than 10000.

Find 7 (n), the number of primes less than or equal to », using problem 13.

Verify Goldbach’s conjecture for all even integers less than 10000.

Find all twin primes less than 10000.

Find the first 100 primes of the form n2 + 1.

Find the lucky numbers less than 10000 (see problem 16).
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Greatest Common Divisors

and Prime Factorization

2.1 Greatest Common Divisors

If @ and b are integers, that are not both zero, then the set of common
divisors of @ and b is a finite set of integers, always containing the integers +1
and —1. We are interested in the largest integer among the common divisors
of the two integers.

Definition. The greatest common divisor of two integers a and b, that are
not both zero, is the largest integer which divides both @ and 5.

The greatest common divisor of a and b is written as (a, b).
Example. The common divisors of 24 and 84 are £1, 2, £3, +4, +6, and
+12. Hence (24, 84) = 12. Similarly, looking at sets of common divisors, we

find that (15, 81) = 3,(100, 5) = 5, (17, 25) = 1,(0, 44) = 44.(—6, —15) = 3,
and (—17, 289) = 17.

We are particularly interested in pairs of integers sharing no common
divisors greater than 1. Such pairs of integers are called relatively prime.

Definition. The integers a and b are called relatively prime if a and b have
greatest common divisor (@, b) = 1.

Example. Since (25, 42) = 1, 25 and 42 are relatively prime.
53
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Note that since the divisors of —a are the same as the divisors of a, it
follows that (a, ) = (|a|, |b|) (where |a| denotes the absolute value of a
which equals @ if a0 and equals —a if a <0). Hence, we can restrict our
attention to greatest common divisors of pairs of positive integers.

We now prove some properties of greatest common divisors.

Proposition 2.1. Let a, b, and ¢ be integers with (a, b) = d. Then

()  (a/d,bld) =1
i) (a+ch, b) = (a, b).

Proof. (i) Let a and b be integers with (a,b) = d. We will show that a/d
and b/d have no common positive divisors other than 1. Assume that e is a
positive integer such that e | (a/d) and e | (b/d). Then, there are integers k
and § with a/d = ke and b/d = Qe, such that a = dek and b = de{. Hence,
de is a common divisor of a and b. Since d is the greatest common divisor of
a and b,e must be 1. Consequently, (a/d, b/d) = 1.

(i) Let a, b, and ¢ be integers. We will show that the common divisors of a
and b are exactly the same as the common divisors of @ + ¢b and b. This
will show that (a+cb, b) = (a, b). Let e be a common divisor of @ and b.
By Proposition 1.4, we see that e | (a+cb), so that e is a common divisor of
a +c¢b and b. If f is a common divisor of a + ¢b and b, then by Proposition
1.4, we see that f divides (a+cbh) — cb = a, so that f is a common divisor of
a and b. Hence (a+cb, b) = (a, ). O

We will show that the greatest common divisor of the integers a and b, that
are not both zero, can be written as a sum of multiples of @ and . To phrase
this more succinctly, we use the following definition.

Definition. If @ and b are integers, then a linear combination of a and b is a
sum of the form ma + nb, where both m and n are integers.

We can now state and prove the following theorem about greatest common
divisors.

Theorem 2.1. The greatest common divisor of the integers @ and b, that are

not both zero, is the least positive integer that is a linear combination of a and
b.

Proof. Let d be the least positive integer which is a linear combination of a
and b. (There is a least such positive integer, using the well-ordering
property, since at least one of two linear combinations 1@ + 0-b and
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(=1)a + 0-b, where a # 0, is positive.) We write

(2.1)\\ ? d = ma + nb,

where m and n are M iritegcrs. We will show that d | a and d | b.
By the division algorithm, we have

a=dg+r, 0<r<d

From this equation and (2.1), we see that

r=a—dq =a— q(ma+nb) = (1-gm)a — gnb .

This shows that the integer r is a linear combination of a and b. Since
0 < r <d, and d is the least positive linear combination of ¢ and b, we
conclude that r = 0, and hence d | @. In a similar manner, we can show that

d|b.

We now demonstrate that d is the greatest common divisor of ¢ and . To
show this, all we need to show is that any common divisor ¢ of a and b must
divide d. Since d = ma + nb, if ¢ | a and ¢ | b, Proposition 1.4 tells us that
cld. O

We have shown that the greatest common divisor of the integers a and b,
that are not both zero, is a linear combination of @ and b. How to find a
particular linear combination of a and b equal to (a, b) will be discussed in
the next section.

We can also define the greatest common divisor of more than two integers.
Definition. Let ay, a,,..., a, be integers, that are not all zero. The
greatest common divisor of these integers is the largest integer which is a
divisor of all of the integers in the set. The greatest common divisor of
ay, as,..., a, is denoted by (ay, as,..., a,).

Example. We easily see that (12, 18, 30) = 6 and (10, 15, 25) = S.
To find the greatest common divisor of a set of more than two integers, we

can use the following lemma.

Lemma 2.1. If ay,a,,...,a, are integers, that are not all zero, then
(a]s az,...s Ap—1, an) = (als aj,..., (an—b an))'

Proof. Any common divisor of the n integers ay, ay,..., a,_;, @, is, in
particular, a divisor of a,_; and a,, and therefore, a divisor of (a,_;, a,).
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Also, any common divisor of the n—2 integers ay, aj,..., a,_5, and (a,_,.a,),
must be a common divisor of all n integers, for if it divides (a,_,, a,,), it must
divide both a,_; and a,. Since the set of n integers and the set of the first
n—2 integers together with the greatest common divisor of the last two
integers have exactly the same divisors, their greatest common divisors are
equal. O

Example. To find the greatest common divisor of the three integers
105, 140, and 350, we use Lemma 2.1 to see that (105, 140, 350) =
(105, (140, 350)) = (105, 70) = 35.

Definition. We say that the integers a,ay,..., a, are mutually relatively
prime if (a,, a,.., a,) =1. These integers are called pairwise relatively
prime if for each pair of integers 4; and a; from the set, (a;, a;) = 1, that is,
if each pair of integers from the set is relatively prime.

It is easy to see that if integers are pairwise relatively prime, they must be
mutually relatively prime. However, the converse is false as the following
example shows.

Example. Consider the integers 15, 21, and 35. Since
(15,21, 35) = (15, (21, 35)) = (15, 7) =1,
we see that the three integers are mutually relatively prime. However, they

are not pairwise relatively prime, because (15, 21) = 3, (15,35) =5, and
(21,35 =1.

2.1 Problems

1. Find the greatest common divisor of each of the following pairs of integers

a) 15,35 d) 99, 100
b) 0, 111 e) 11,121
c) —12,18 f) 100, 102 .

2. Show that if @ and b are integers with (a, b) = 1, then (a+b, a—b) =1 or 2.

3. Show that if @ and b are integers, that are not both zero, and ¢ is a nonzero
integer, then (ca, cb) = |c|(a, b).

4. What is (a®+b?, a+b), where a and b are relatively prime integers, that are not
both zero?
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Periodical cicadas are insects with very long larval periods and brief adult lives.
For each species of periodical cicada with larval period of 17 years, there is a
similar species with a larval period of 13 years. If both the 17-year and 13-year
species emerged in a particular location in 1900, when will they next both
emerge in that location?

a) Show that if @ and b are both even integers, that are not both zero, then
(a, b) =2(a/2, b)2).

b) Show that if a is an even integer and & is an odd integer, then
(a, b) = (a/2, b).

Show that if a, b, and ¢ are integers such that (a, b) = 1 and ¢ | (a+b), then
(c,a) =(c,b) =1.

a) Show that if a, b, and ¢ are integers with (a, b) = (a,¢) =1, then
(a, bc) = 1.

b) Use mathematical induction to show that if a), a,,..., a, are integers, and b is
another integer such that (a;, b) = (a3, b) = --- = (a,, b) =1, then
(a1a; - ay, b) = 1.

Show that if a, b, and ¢ are integers with ¢ | ab, then ¢ | (a, ¢) (b, ¢).

a) Show that if a and b are positive integers with (a, ) = 1, then (a”, b") =1
for all positive integers n.

b) Use part (a) to prove that if @ and b are integers such that a” | b" where n
is a positive integer, then a | b.

Show that if @, b and ¢ are mutually relatively prime nonzero integers, then
(a, be) = (a, b)(a, c).

Find a set of three integers that are mutually relatively prime, but not relatively
prime pairwise. Do not use examples from the text.

Find four integers that are mutually relatively prime, such that any two of these
integers are not relatively prime.

Find the greatest common divisor of each of the following sets of integers
a) 8,10, 12 d) 6,15,21

b) 5,25,75 e) —7, 28,35
¢} 99,9999,0 f) 0,0,1001.

Find three mutually relatively prime integers from among the integers
66, 105, 42, 70, and 165.

Show that ay, a,,..., a, are integers that are not all zero and ¢ is a positive
integer, then (ca,, cas,..., ca,) = c(a,, a,..., a,).
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17. Show that the greatest common divisor of the integers a,, a,,..., a,, that are not
all zero, is the least positive integer that is a linear combination of a,, a,,..., a,.

18. Show that if k is an integer, then the six integers 6k—1, 6k+1,
6k+2, 6k+3, 6k+5, are pairwise relatively prime.

19. Show that if k is a positive integer, then 3k+2 and 5k+3 are relatively prime.

20. Show that every positive integer greater than six is the sum of two relatively
prime integers greater than 1.

21. a) Show that if @ and b are relatively prime positive integers, then
((a"=b")/(a=b),a—b) =1 or n.

b) Show that if a and b are positive integers, then ((a"—b")/(a—b), a—b) =
(n(a, b)"'a—b).

2.1 Computer Projects

1. Write a program to find the greatest common divisor of two integers.

2.2 The Euclidean Algorithm

We are going to develop a systematic method, or algorithm, to find the
greatest common divisor of two positive integers. This method is called the
FEuclidean algorithm. Before we discuss the algorithm in general, we
demonstrate its use with an example. We find the greatest common divisor of
30 and 72. First, we use the division algorithm to write 72 = 30-2 + 12, and
we use Proposition 2.1 to note that (30, 72) = (30, 72 — 2:30) = (30, 12).
Another way to see that (30, 72) = (30, 12) is to notice that any common
divisor of 30 and 72 must also divide 12 because 12 =72 — 302, and
conversely, any common divisor of 12 and 30 must also divide 72, since
72 = 30-2 + 12. Note we have replaced 72 by the smaller number 12 in our
computations since (72, 30) = (30, 12). Next, we use the division algorithm
again to write 30 = 2-12 + 6. Using the same reasoning as before, we see that
(30, 12) = (12, 6). Because 12=62+0, we now see that
(12,6) = (6,0) = 6. Consequently, we can conclude that (72, 30) =6,
without finding all the common divisors of 30 and 72.

We now set up the general format of the Euclidean algorithm for computing
the greatest common divisor of two positive integer.

The Euclidean Algorithm. Let ry = a and r; = b be nonnegative integers with
b # 0. If the division algorithm 1is successively applied to obtain

rj = rj+lqj+| + rj+2 with 0 < rj+2 < rj+] for _] = 0,1,2,...,'1_2 and ry, = O,

d:)){,b,(—(‘z O((;_(\o
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then (a, b) = r,_;, the last nonzero remainder.

From this theorem, we see that the greatest common divisor of @ and b is
the last nonzero remainder in the sequence of equations generated by
successively using the division algorithm, where at each step, the dividend and
divisor are replaced by smaller numbers, namely the divisor and remainder.

To prove that the Euclidean algorithm produces greatest common divisors,
the following lemma will be helpful.

Lemma 2.2. If ¢ and d are integers and ¢ = dg + r where ¢ and d are
integers, then (¢, d) = (d, r).

Proof. If an integer e divides both ¢ and d, then since r = c—dgq, Proposition
1.4 shows that e |r. If e|d and e |r, then since ¢ =dg + r, from
Proposition 1.4, we see that e | ¢. Since the common divisors of ¢ and d are
the same as the common divisors of d and r, we see that (¢, d) = (d,r). O

We now prove that the Euclidean algorithm works.

Proof. Let rg=a and r; =05 be positive integers with a > b. By
successively applying the division algorithm, we find that

ro =riqtr, 0sr, <ry,
ry =ryg,tr; 0<r; < ry
Fn=3 = In—2qn—2 t rp—1 0<rpy < ryey,
Fn—2 =rn—1qn—l+rn 0<r,, < Fn—1,
Fn—1 = rnqn -

We can assume that we eventually obtain a remainder of zero since the

sequence of remainders a = ro >ry> r, > -+ = 0 cannot contain more
than a terms. By Lemma 2.2, we see that (a, b) = (rg,r)) =(r, r) =
(ry, 7r9) = -+ = (rpoay rp-) = (rp—y, r)= (r,,00 =r, Hence

(a,b) = r., the last nonzero remainder. O

We illustrate the use of the Euclidean algorithm with the following example.

Example. To find (252, 198), we use the division algorithm successively to
obtain
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252 =1-198 + 54
198 = 3-54 + 36
54=136 + 18
36 = 2:18.

Hence (252, 198) = 18.

Later in this section, we give estimates for the maximum number of
divisions used by the Euclidean algorithm to find the greatest common divisor
of two positive integers. However, we first show that given any positive integer
n, there are integers a and b such that exactly n divisions are required to find
(a, b) using the Euclidean algorithm. First, we define a special sequence of
integers.

Definition. The Fibonacci numbers u,, u,, us,... are defined recursively by
the equations v, = u, =1 and u, = u,_; + u,—, forn > 3.

Using the definition, we see that uz=wu,+u;=1+1=2, u;+ u,
=2+ 1 =3, and so forth. The Fibonacci sequence begins with the integers
1,1,2,3,5, 813,21, 34, 55, 89, 144 ,... . Each succeeding term is obtained
by adding the two previous terms. This sequence is named after the thirteenth
century Italian mathematician Leonardo di Pisa, also known as Fibonacci, who
used this sequence to model the population growth of rabbits (see problem 16
at the end of this section).

In our subsequent analysis of the Euclidean algorithm, we will need the

following lower bound for the nth Fibonacci number.

Theorem 2.2. Let n be a positive integer and let a = (1+v/5)/2. Then
u, > o 2forn > 3.

Proof. We use the second principle of mathematical induction to prove the
desired inequality. We have a < 2 = u3, so that the theorem is true for
n=3.

Now assume that for all integers k& with & < n, the inequality

ak"z < Uk

holds.

Since a = (1++/5)/2 is a solution of x2 —x — 1 =0, we have a? = a + 1.
Hence,

"V =23 = (at+]) " ="+ o3
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By the induction hypothesis, we have the inequalities

"2 <y, "< Uy

Therefore, we conclude that

oV < uy Uy = Upy

This finishes the proof of the theorem. O

We now apply the Euclidean algorithm to the successive Fibonacci numbers
34 and 55 to find (34, 55). We have

55 =341+ 21
34 =21-1+13
21=131+ 8
13=281 + 5§
§=51+ 3
S5=31 4+ 2
3=21 + 1
2=12

We observe that when the Euclidean algorithm is used to find the greatest
common divisor of the ninth and tenth Fibonacci numbers, 34 and 55, a total
of eight divisions are required. Furthermore, (34, 55) = 1. The following
theorem tells us how many divisions are needed to find the greatest common
divisor of successive Fibonacci numbers.

Theorem 2.3. Let u,4; and wu,4, be successive terms of the Fibonacci
sequence. Then the Euclidean algorithm takes exactly n divisions to show that

(g1, Unsr) = 1.
Proof. Applying the Euclidean algorithm, and using the defining relation for
the Fibonacci numbers u; = u;_; + u;_, in each step, we see that

Upyp = Upsr' ] + u,,
Upsp = Up'l + Uy,

ug=uszl + Uy,
Uy = U2‘2.

Hence, the Euclidean algorithm takes exactly n divisions, to show that
(un+2»un+l) =u,=1.10
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We can now prove a theorem first proved by Gabriel Lame’, a French
mathematician of the nineteenth century, which gives an estimate for the
number of divisions needed to find the greatest common divisor using the
Euclidean algorithm.

Lamé’s Theorem. The number of divisions needed to find the greatest common
divisor of two positive integers using the Euclidean algorithm does not exceed
five times the number of digits in the smaller of the two integers.

Proof. When we apply the Euclidean algorithm to find the greatest common
divisor of @ = rg and b = r| with a > b, we obtain the following sequence of
equations:

ro =r1q1+r2, 0<
r =r2q2+r3, O<r3<r2‘

Fn-2 = Fp—19n—1 +rn, 0 < r'n < Tn—1,
n—1 = Tuqn.

We have used n divisions. We note that each of the quotients g, ¢,,..., gu—
is greater than or equal to 1, and g, = 2, since r, < r,_;. Therefore,

I'n > 1= Us,

In—1 > 27',, > 2u2 = Us,

Fny 2 Tnop b1y 2 Uz + Uy = uy,
Fn—3 2 Ty & Iy 2 ug + u3 = us,

ro2rytry 2 u, +u,_y=u,,
b=r1>r2+r3>un+u,,_1=u,,+1.

Thus, for there to be n divisions used in the Euclidean algorithm, we must
have b > u,4,. By Theorem 2.2, we know that u,4+; > o"~! for n > 2 where
a = (14v/5)/2. Hence, b > o"~'. Now, since logjeax > 1/5, we see that

logiob > (n—1)logypa > (n—1)/5.

Consequently,

n —1 < 5logob.
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Let b have k decimal digits, so that b < 10% and log b < k. Hence, we see
that n — 1 < 5k and since k is an integer, we can conclude that n < Sk.
This establishes Lamé’s theorem. O

The following result is a consequence of Lamé’s theorem.

Corollary 2.1. The number of bit operations needed to find the greatest
common divisor of two positive integers a and b with p > a is O ((logya)?).

“, O(\;2) IO(,\:'g\:f\?
Proof. We know from Lamé’s theorem that O(log,a) divisions, each taking
0 ((log,a)? bit operations, are needed to find (a, b). Hence, by Proposition
1.7, (a, b) may be found using a total of O ((log,a)?) bit operations. O

The Euclidean algorithm can be used to express the greatest common divisor
of two integers as a linear combination of these integers. We illustrate this by
expressing (252, 198) = 18 as a linear combination of 252 and 198. Referring
to the steps of the Euclidean algorithm used to find (252, 198), from the next
to the last step, we see that

18 = 54 — 1-36.

From the second to the last step, it follows that

36 = 198 — 3-54,

which implies that
18 =54 — 1-(198—3-54) = 4-54 — 1-198.

Likewise, from the first step we have

54 =252 — 1-198,

so that

18 = 4(252—1-198) — 1-198 = 4-252 — 5-198.
This last equation exhibits 18 = (252, 198) as a linear combination of 252 and
198.

In general, to see how d = (a, b) may be expressed as a linear combination
of a and b, refer to the series of equations that is generated by use of the
Euclidean algorithm. From the penultimate equation, we have

rn = (a’ b) =Tp-2 = I'n-19n-1 -

This expresses (a, b)as a linear combination of r,_, and r,_,. The second to
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the last equation can be used to express r,—y as r,—3 —r,—»qn,— . Using this
last equation to eliminate r,_; in the previous expression for (a,b), we find
that

Ip =7rp—3 = I'n-2qn-2,
so0 that

(a, b) = ro—y = (rp3=rn—2Gn-2)qn-1
= (1+qn—1qn—2)rn—2 — qn-1"n-3,

which expresses (a, b) as a linear combination of r,_, and r,_3. We continue
working backwards through the steps of the Euclidean algorithm to express
(a, b) as a linear combination of each preceding pair of remainders until we
have found (a, b) as a linear combination of o = @ and r; = b. Specifically,
if we have found at a particular stage that

(a,b) = srj + trj_,,

then, since
ryp ="rjp = rj1qj-1,

we have

(a,b) =3 (rj_z-—rj_lqj_l) + trj_l
= (t—qu_l)rj_l + Ng»

This shows how to move up through the equations that are generated by the
Euclidean algorithm so that, at each step, the greatest common divisor of a
and b may be expressed as a linear combination of a and b.

This method for expressing (a, b) as a linear combination of a and b is
somewhat inconvenient for calculation, because it is necessary to work out the
steps of the Euclidean algorithm, save all these steps, and then proceed
backwards through the steps to write (a,b) as a linear combination of each
successive pair of remainders. There is another method for finding (a,b)
which requires working through the steps of the Euclidean algorithm only
once. The following theorem gives this method.

Theorem 2.4. Let a and b be positive integers. Then
(a,b) =s,a +1,b,

for n = 0,1,2,..., where s, and ¢, are the nth terms of the sequences defined
recursively by
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So=1,t0=0,
S|=0,t|=l,

and
$j = Sj=2 = gj-18j-1 4 = tj-2 ~ §j-2tj
for j = 2,3, .., n, where the qj's are the quotients in the divisions of the
Euclidean algorithm when it is used to find (a,b).
Proof. We will prove that
(22) rj=sja +t]'b
for j =0, 1,.,n. Since (a,b) =r,, once we have established (2.2), we will
know that
(a,b) = s,a + t,b.

We prove (2.2) using the second principle of mathematical induction. For

j=0, we have a =rg=1-a + 0-b = sqa + tob. Hence, (2.2) is valid for

j =0. Likewise, b =r; =0a + 1'b = s,a + 1,b, so that (2.2) is valid for
j=1

Now, assume that
rjp=s;a + tjb

for j =1, 2,..., k—1. Then, from the kth step of the Euclidean algorithm, we
have

Tk = Tk-2 = Tk—19k-1 -
Using the induction hypothesis, we find that

ry = (sk_2a+tk_2b) - (Sk_|a+tk_|b)qk—l
= (sk-2—Sk—1qk-1)a + (e~ tx1qk-1)b
=sra + ;b .

This finishes the proof. O

The following example illustrates the use of this algorithm for expressing
(a,b) as a linear combination of a and b.

Example. Let a =252 and b = 198. Then
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S(]=1, t0=09
S1=0, t1 =1,
Sa=850—s51g1=1— 01= 1, t2=t0—[1ql=0— I'1 = -1,

§3=58] —$2q,=0— 13 =-3, t3=t|—t2q2=1—(—1)3=4,

Sa=8y—53g3=1— (=3)1 = 4, ly=1,—t3g3= —1— 41 =-5.
Since r4 = 18 = (252, 198) and r4 = s4a + t4b, we have
18 = (252, 198) = 4252 — 5:198 .

It should be noted that the greatest common divisor of two integers may be
expressed in an infinite number of different ways as a linear combination of
these integers. To see this, let d = (a,b) and let d = sa + tb be one way to
write d as a linear combination of a and b, guaranteed to exist by the
previous discussion. Then

d=1(—-k®/d)a+ & -k(a/d)b
for all integers k.

Example. With a =252 and b = 198, 18 = (252, 198) = (4 — 11k)252 +
(=5 — 14k) 198 whenever k is an integer.

2.2 Problems
1. Use the Euclidean algorithm to find the following greatest common divisors
a) (45,75) c) (666, 1414)
b) (102, 222) d) (20785, 44350).
2. For each pair of integers in problem 1, express the greatest common divisor of
the integers as a linear combination of these integers.

3. For each of the following sets of integers, express their greatest common divisor
as a linear combination of these integers

a) 6,10, 15
b) 70, 98, 105
c) 280, 330, 405, 490.

4. The greatest common divisor of two integers can be found using only
subtractions, parity checks, and shifts of binary expansions, without using any
divisions. The algorithm proceeds recursively using the following reduction
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a if a=25

2(a/2,b/2) if a and b are even
(@) = (a/2,b) if a is even and b is odd

(a—b,b) if a and b are odd.

a) Find (2106, 8318) using this algorithm.

b) Show that this algorithm always produces the greatest common divisor of a
pair of positive integers.

5. In problem 14 of Section 1.2, a modified division algorithm is given which says
that if @ and b > O are integers, then there exist unique integers g, r, and e
such that @ = bg + er, where e = £1,r 2 0, and —=b/2 < er < b/2. We can
set up an algorithm, analogous to the FEuclidean algorithm, based on this
modified division algorithm, called the least —remainder algorithm. It works as
follows. Let ro=a and r, = b, where @ > b > 0. Using the modified division
algorithm repeatedly, obtain the greatest common divisor of @ and b as the last
nonzero remainder 7, in the sequence of divisions

ro = ng;teyr,, -ri/2 < ey, < /2

Fp—2 = I'n-1qn-1 + €nly, _"n—l/2 < eyry < rn—l/z
Fp—1 = Tnqn -

a) Use the least-remainder algorithm to find (384, 226).

b) Show that the least-remainder algorithm always produces the greatest
common divisor of two integers.

c) Show that the least-remainder algorithm is always faster, or as fast, as the
Euclidean algorithm.

d) Find a sequence of integers vq, vy, v,,... such that the least-remainder
algorithm takes exactly n divisions to find (41, Vu42).

e) Show that the number of divisions needed to find the greatest common
divisor of two positive integers using the least-remainder algorithm is less
than 8/3 times the number of digits in the smaller of the two numbers, plus
4/3.

6. Let m and n be positive integers and let a be an integer greater than one. Show
that (@™—1, a"—1) = a™ ™ — 1.

7. In this problem, we discuss the game of Euclid. Two players begin with a pair
of positive integers and take turns making moves of the following type. A player
can move from the pair of positive integers {x,y} with x > y, to any of the pairs
{x—ty, y}, where ¢t is a positive integer and x—ty > 0. A winning move
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10.

11.
12.
13.

14.

15.

16.

17.
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consists of moving to a pair with one element equal to 0.

a) Show that every sequence of moves starting with the pair {a, b} must
eventually end with the pair {0, (a, b)}.

b) Show that in a game beginning with the pair {a, b}, the first player may
play a winning strategy if @ = b or if @ > b(1+ +/5)/2 : otherwise the
second player n‘}gy play a winning strategy. (Hint: First show that if
y < x £ y(1++/5)/2 then there is a unique move from {x, y} that goes to
a pair {z, y} with y > z(1+/5)/2)

In problems 8 to 16, u, refers to the nth Fibonacci number.

Show that if # is a positive integer, then u; + 4y + -+ + u, = tyey — 1.

Show that if n is a positive integer, then u,4 1,y — u2 = (=1)".

Show that if n is a positive integer, then u, = (a®"—B")//5, where
a=(14+/5)/2 and g = (1-V5) /2.

Show that if m and n are positive integers such that m | n, then u,, | u,.
Show that if m and n are positive integers, then (u,, #,) = u(y. n).-

Show that u,, is even if and only if 3 | n.

_ (11
Let U = [0 IJ .

" Unt+] Up
a) Show that U" = ety

b) Prove the result of problem 9 by considering the determinant of U”.

We define the generalized Fibonacci numbers recursively by the equations
g1=a,g,=>b,and g, = g,y + g,—, for n > 3. Show that g, = au,_, + bu,_,
forn 2 3.

The Fibonacci numbers originated in the solution of the following problem.
Suppose that on January 1 a pair of baby rabbits was left on an island. These
rabbits take two months to mature, and on March 1 they produce another pair of
rabbits. They continually produce a new pair of rabbits the first of every
succeeding month. Each newborn pair takes two months to mature, and
produces a new pair on the first day of the third month of its life, and on the first
day of every succeeding month. Show that the number of pairs of rabbits alive
after n months is precisely the Fibonacci number u,, assuming that no rabbits
ever die.

Show that every positive integer can be written as the sum of distinct Fibonacci
numbers.
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2.2 Computer Projects
Write programs to do the following:
1. Find the greatest common divisor of two integers using the Euclidean algorithm.

2. Find the greatest common divisor of two integers using the modified Euclidean
algorithm given in problem S.

3. Find the greatest common divisor of two integers using no divisions (see problem
4).

4. Find the greatest common divisor of a set of more than two integers.

5. Express the greatest common divisor of two integers as a linear combination of
these integers.

6. Express the greatest common divisor of a set of more than two integers as a
linear combination of these integers.

7. List the beginning terms of the Fibonacci sequence.

8. Play the game of Euclid described in problem 7.

2.3 The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic is an important resuit that shows
that the primes are the building blocks of the integers. Here is what the
theorem says.

The Fundamental Theorem of Arithmetic. Every positive integer can be
written uniquely as a product of primes, with the prime factors in the product
written in order of nondecreasing size.

Example. The factorizations of some positive integers are given by

240 = 2:2:2-2:3-5 = 2%3-5, 289 = 17-17 = 172, 1001 = 7-11-13 .

Note that it is convenient to combine all the factors of a particular prime
into a power of this prime, such as in the previous example. There, for the
factorization of 240, all the factors of 2 were combined to form 2°
Factorizations of integers in which the factors of primes are combined to form
powers are called prime-power factorizations.

To prove the fundamental theorem of arithmetic, we need the following
lemma concerning divisibility.

Lemma 2.3. If a, b, and ¢ are positive integers such that (a, b) = 1 and
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albe, thena | c.

Proof. Since (a, b) = 1, there are integers x and y such that ax + by = 1.
Multiplying both sides of this equation by ¢, we have acx + bcy =c. By
Proposition 1.4, @ divides acx + bcy, since this is a linear combination of a
and bc, both of which are divisible by a. Hence a |c. O

The following corollary of this lemma is useful.
Corollary 2.2. If p divides aya, ‘- - a, where p is a prime and a,, a,,..., a,

are positive integers, then there is an integer i with 1 < i < n such that p
divides a;.

Proof. We prove this result by induction. The case where n =1 is trivial.
Assume that the result is true for n. Consider a product of n + 1, integers,

a;a; ' a4 that is divisible by the prime p. Since p | a; a; - apy =
(aya, -+ ay)a,4;, we know from Lemma 2.3 that p | a,a, -+ a, or
p | @us1. Now,if p | ayay -+ a,, from the induction hypothesis there is an

integer i with 1 < i < n such that p | a;. Consequently p | a; for some i
with 1 < i < n + 1. This establishes the result. O

We begin the proof of the fundamental theorem of arithmetic. First, we
show that every positive integer can be written as the product of primes in at
least one way. We use proof by contradiction. Let us assume that some
positive integer cannot be written as the product of primes. Let n be the
smallest such integer (such an integer must exist from the well-ordering
property). If n is prime, it is obviously the product of a set of primes, namely
the one prime n. So n must be composite. Let n = ab, with 1 < a < n and
1 < b < n. But since a and b are smaller than » they must be the product
of primes. Then, since n = ab, we conclude that n is also a product of
primes. This contradiction shows that every positive integer can be written as
the product of primes.

We now finish the proof of the fundmental theorem of arithmetic by
showing that the factorization is unique.

Suppose that there is a positive interger that has more than one prime
factorization. Then, from the well-ordering property, we know there is a least
integer n that has at least two different factorizations into primes:

n=pip2 " Ps=4q192 """ 4,

where pi, pas...s Pssq1»--» g; are all primes, with p; < p, € -+ < p, and
GS$@sS <4
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We will show that p, = ¢, p; = ¢5,..., and continue to show that each of
the successive p’s and g’s are equal, and that the number of prime factors in
the two factorizations must agree, that is s =¢. To show that p, =gq,,
assume that p; # ¢q,. Then, either p; > ¢, or p; < gq,. By interchanging
the variables, if necessary, we can assume that p; < ¢g,. Hence, p; < g; for
i =1,2,., since q; is the smallest of the g’s. Hence, p, | ¢; for all i. But,
from Corollary 2.2, we see that p; 1g1g» -~ ¢ =n. This is a
contradiction. Hence, we can conclude that p,=¢; and
n/py=paps - Ps=¢2493 - q,. Since n/p; is an integer smaller than
n, and since n is the smallest positive integer with more than one prime
factorization, n/p; can be written as a product of primes in exactly one way.
Hence, each p; is equal to the corresponding ¢;, and s =¢. This proves the
uniqueness of the prime factorization of positive integers. O

The prime factorization of an integer is often useful. As an example, let us
find all the divisors of an integer from its prime factorization.

Example. The positive divisors of 120 = 2°-3-5 are those positive integers with
prime power factorizations containing only the primes 2, 3, and 5, to powers
less than or equal to 3, 1, and 1, respectively. These divisors are

1 3 5 35=15

2 23=6 25=10 235=30
2=4 223=12 2%5=20 2%35=60
2=8 2%3=24 2¥5=40 2335=120.

Another way in which we can use prime factorizations is to find greatest
common divisors. For instance, suppose we wish to find the greatest common
divisor of 720 = 2+32:5 and 2100 = 223-5%7. To be a common divisor of both
720 and 2100, a positive integer can contain only the primes 2, 3, and 5 in its
prime-power factorization, and the power to which one of these primes appears
cannot be larger than either of the powers of that prime in the factorizations
of 720 and 2100. Consequently, to be a common divisor of 720 and 2100, a
positive integer can contain only the primes 2, 3, and 5 to powers no larger
than 2, 1, and 1, respectively. Therefore, the greatest common divisor of 720
and 2100 is 2%3-5 = 60.

To describe, in general, how prime factorizations can be used to find
greatest common divsors, let min(a, b) denote the smaller or minimum, of the
two numbers a and 4. Now let the prime factorizations of @ and b be

al al an b| bz bl
a=pi'py’ " pas b=pi'p - p,

where each exponent is a nonnegative integer and where all primes occurring
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in the prime factorizations of @ and of b are included in both products,
perhaps with zero exponents. We note that

min(a ,b) min(a_b) min(a, b )

(a,b) = p, P2 " Dn ,

since for each prime p;, a and b share exactly min(a;, b;) factors of p;.

Prime factorizations can also be used to find the smallest integer that is a
multiple of two positive integers. The problem of finding this integer arises
when fractions are added.

Definition. The least common multiple of two positive integers a and b is the
smallest positive integer that is divisible by @ and b.

The least common multiple of @ and b is denoted by [a, b].

Example. We have the following least common multiples: [15, 211 = 105,
[24, 36] = 72, [2, 20] = 20, and [7, 11] = 77.

Once the prime factorizations of a and b are known, it is easy to find

la,b]. If a =p‘;‘pg’ S p:‘ and b =p7‘p127‘ s p,[:', where p1,pa,....Pn
are the primes occurring in the prime-power factorizations of @ and b, then
for an integer to be divisible by both a and b, it is necessary that in the
factorization of the integer, each p; occurs with a power at least as large as q;
and b;. Hence, [a, b], the smallest positive integer divisible by both a and b
is

max(a,b) max(a,b) max(a b )

la,b] = p; P2 " Pn

where max(x, y) denotes the larger, or maximum, of x and y.

Finding the prime factorization of large integers is time-consuming.
Therefore, we would prefer a method for finding the least common multiple of
two integers without using the prime factorizations of these integers. We will
show that we can find the least common multiple of two positive integers once
we know the greatest common divisor of these integers. The latter can be
found via the Euclidean algorithm. First, we prove the following lemma.

Lemma 24. If x and y are real numbers, then max(x, y) + min(x, y)
=x+y.

Proof. f x 2y, then min(x,y) =y and max(x,y) =x, so that
max(x, y) + min(x,y) =x +y. If x <y, then min(x,y) =x and
max(x,y) =y, and again we find that max(x,y) + min(x,y) =x +y. O
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To find [a, b1, once (a, b) is known, we use the following theorem.

Theorem 2.5. If a and b are positive integers, then la, bl =ab/(a,b),
where [a, b] and (a, b) are the least common multiple and greatest common
divisor of a and b, respectively.

Proof. Let a and b have prime-power factorizations a = p?'p;’ S p:‘ and

b b b Lo
b =py'ps* - p,', where the exponents are nonnegative integers and all
primes occurring in either factorization occur in both, perhaps with zero
exponents. Now let M; = max(a;, b;) and m; = min(a;,b;). Then, we have

M M M m m m
[a,b](a,b)'—-p[ lpzz e pn'p]'p21 p"-
MAm M tm, M +m
-_—pl p2 . pn
a+b, ath, a +b,
=p 22 “tt P
15,2 a, bl b,
=pi'py? - pn pl p"

since M; + m; = max(a;, b;) + min(a;, b;) = a; + b; by Lemma 2.4. O

The following consequence of the fundamental theorem of arithmetic will be
needed later.

Lemma 2.5. Let m and n be relatively prime positive integers. Then, if d is
a positive divisor of mn, there is a unique pair of positive divisors d; of m and
d, of n such that d = d,d,. Conversely, if d and d; are positive divisor of m
and n, respectively, then d = d,d, is a positive divisors of mn.

Proof. Let the prime-power factorizations of m and n be m ==p'1"‘p'2"’
m n n n . .
- ps' and n =gq,'qy* -~ q'. Since (m,n) =1, the set of primes

p1P2-» Ps and the set of primes q;4,,..., ¢, have no common elements.
Therefore, the prime-power factorization of mn is
p— ml mZ m. nl nl nl
mn=pyp2" " Psq1q92 " qr .
Hence, if d is a positive divisor of mn, then
e e e f, [ f,
d=pi'p? " P9 4

where 0 < e; < m; for i =1,2,.,s and 0 < f; < n; for j=1,2,.,1.
Now let
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and

Clearly d = d\d, and (d,, d;) = 1. This is the decomposition of d we desire.
Conversely, let d, and d, be positive divisors of m and n, respectively. Then
d\ = pip7 - - pe
where 0 < e; < m; fori =1,2,.., s, and
di=ql'gy? - gl
where 0 < f; < n; for j =1, 2,.., 2. The integer
d=didy=pip7 - prglar - g
is clearly a divisor of
mn =pi'py* < plgrey - 4,

since the power of such prime occurring in the prime-power factorization of d
is less than or equal to the power of that prime in the prime-power
factorization of mn. O

A famous result of number theory deals with primes in arithmetic
progressions.

Dirichlet’s Theorem on Primes in Arithmetic Progressions. Let @ and b be
relatively prime positive integers. Then the arithmetic progression
an +b,n =1,2,3,.., contains infinitely many primes.

G. Lejeune Dirichlet, a German mathematician, proved this theorem in
1837. Since proofs of Dirichlet’s Theorem are complicated and rely on
advanced techniques, we do not present a proof here. However, it is not
difficult to prove special cases of Dirichlet’s theorem, as the following
proposition illustrates.

Proposition 2.2. There are infinitely many primes of the form 4n + 3, where
n is a positive integer.
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Before we prove this result, we first prove a useful lemma.

Lemma 2.6. If a and b are integers both of the form 4n + 1, then the
product ab is also of this form.

Proof. Since a and b are both of the form 4n + 1, there exist integers r and
s such that a =4r + 1 and b = 45 + 1. Hence,

ab = (4r+1)(ds+1) = 16rs + 4r + 4s + 1 = 4(drs+r+s) + 1,

which is again of the form 4n + 1. O

We now prove the desired result.

Proof. Let us assume that there are only a finite number of primes of the
form 4n + 3, say po = 3, py, P2 -, Pr- Let

Q=4pip2 - pt3.

Then, there is at least one prime in the factorization of Q of the form 4n + 3.
Otherwise, all of these primes would be of the form 4n + 1, and by Lemma
2.6, this would imply that Q would also be of this form, which is a
contradiction. However, none of the primes pg, py,..., pn divides Q. The
prime 3 does not divide Q, for if 3| Q, then 3| (Q—3) =4p,p, - p,,
which is a contradiction. Likewise, none of the primes p; can divide @,
because p; | Q implies p; | (Q—4py p» -+ - p,) = 3 which is absurd. Hence,
there are infinitely many primes of the form 4n + 3. O

2.3 Problems
1. Find the prime factorizations of

a) 36 e) 222 i) 5040
b) 39 f) 256 j) 8000
¢) 100 g) 515 k) 9555
d) 289 h) 989 ) 9999.

2. Show that all the powers in the prime-power factorization of an integer n are
even if and only if n is a perfect square.

3. Which positive integers have exactly three positive divisors? Which have exactly
four positive divisors?

4. Show that every positive integer can be written as the product of a square and a
square-free integer. A square—free integer is an integer that is not divisible by
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13.
14.
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any perfect squares.

An integer n is called powerful if whenever a prime p divides n, p? divides n.
Show that every powerful number can be written as the product of a perfect
square and a perfect cube.

Show that if a and b are positive integers and a’ | b2, then a | b.

Let p be a prime and 7 a positive integer. If p® | n, but p°*! [ n, we say that
p’ exactly divides n, and we write p° |l n.

a) Show that if p? Il m and p® Il n, then p®*® || mn.

b) Show that if p? Il m, then p*@ I m*,

c) Show that if p? Il m and p® Il n, then p™"“* || m + n.

a) Let n be a positive integer. Show that the power of the prime p occurring in
the prime power factorization of n! is

(n/pl + (n/p + [n/p’] + - -

b) Use part (a) to find the prime-power factorization of 20!,

How many zeros are there at the end of 1000! in decimal notation? How many
in base eight notation?

Find all positive integers n such that n! ends with exactly 74 zeros in decimal
notation.

Show that if n is a positive integer it is impossible for n! to end with exactly 153,
154, or 155 zeros when it is written in decimal notation.

This problem presents an example of a system where unique factorization into
primes fails. Let H be the set of all positive integers of the form 4k+1, where &
is a positive integer.

a) Show that the product of two elements of H is also in H.

b) An element A1 in H is called a "Hilbert prime" if the only way it can be
written as the product of two integers in H is h = h-1 = 1-h, Find the 20
smallest Hilbert primes.

¢) Show every element of H can be factored into Hilbert primes.

d) Show that factorization of elements of H into Hilbert primes is not
necessarily unique by finding two different factorizations of 693 into Hilbert
primes.

Which positive integers n are divisible by all integers not exceeding Vn?

Find the least common multiple of each of the following pairs of integers
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15.

16.

20.

21.

22.

23.

24,

25.

a) 8,12 d 111,303
b) 14,15 e) 256, 5040
c) 28,35 ) 343,999

Find the greatest common divisor and least common multiple of the following
pairs of integers

a) 2%2335%77273%5%7?

b) 2:35:7-11:13,17-19-23-29

¢y 23571119,2:3:57-11:13

d) 47''79'1101'%! 4111831110110,

Show that every common multiple of the positive integers a and b is divisible by
the least common multiple of @ and b.

Which pairs of integers a and b have greatest common divisor 18 and least
common multiple 5407

Show that if @ and b are positive integers, then (a, b) | [a; b]l. When does
(a, b) =la, b]?

Show that if a and b are positive integers, then there are divisors ¢ of a and d
of b with (¢, d) =1 and c¢d =la, bl.

Show that if a, b, and ¢ are integers, then [a, b1 | ¢ if and only if a | ¢ and
b|e.

a) Show that if @ and b are positive integers then (a, b) = (a+b, [a,b]).
b) Find the two positive integers with sum 798 and least common multiple
10780.

Show that if a,b, and ¢ are positive integers, then ([a, b], ¢c) = [(a, ¢), (b, )]
and [(a, b), c) = (a, c), [, c]).

a) Show that if a,b, and ¢ are positive integers, then
max(a,b,c) =a + b + ¢ — min(a,b) — mina,c) — min(b,c)
+ min(a,b,c).

b) Use part (a) to show that

abc(a,b.c)
(ab)ac)b,e)
Generalize problem 23 to find a formula for (ai,a,,..,a,)- [a,,a5,...,a,] where
a, a,,...,a, are positive integers.

[abcllab,cl =

The least common multiple of the integers a,,a,,...,a,, that are not all zero, is
the smallest positive integer that is divisible by all the integers a,,a,,...,a,; it is
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26.

27.

28.

29.

30.

31

32.
33.

34.
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denoted by [a,,a,,...,a,].
a) Find [6,10,15] and [7,11,13].
b) Show that [a),a,,....a,_1,a,) = [a;,a;,...a,,],a,].

Let n be a positive integer. How many pairs of positive integers satisfy
[a,b] =n?

Prove that there are infinitely many primes of the form 6k + 5, where k is a
positive integer.

Show that if a and b are integers, then the arithmetic progression
a,a+b, a+2b,... contains an arbitrary number of consecutive composite terms.

Find the prime factorizations of
a) 10%-1 d) 2%-1

b 10%-1 e 2%-]
o 2P-] f) 2%-1.

A discount store sells a camera at a price less than its usual retail price of $99.
If they sell $8137 worth of this camera and the discounted dollar price is an
integer, how many cameras did they sell?

a) Show that if p is a prime and a is a positive integer with p | a2, then p | a.
b) Show that if p is a prime, a is an integer, and n is a positive integer such
that p | a®, then p | a.

Show that if @ and b are positive integers, then a? | b2 implies that a | b.

Show that if a,b, and ¢ are positive integers with (a,b) = 1 and ab = ¢", then
there are positive integers d and e such that a = d" and b = ¢".

Show that if a,,a,,..,4, are pairwise relatively prime integers, then
laaz..8,] =aa, - a,.

2.3 Computer Projects

Write programs to do the following:

1.
2.

Find all positive divisors of a positive integer from its prime factorization.

Find the greatest common divisor of two positive integers from their prime
factorizations.

Find the least common multiple of two positive integers from their prime
factorizations.

Find the number of zeros at the end of the decimal expansion of n! where n is a
positive integer.
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5. Find the prime factorization of n! where n is a positive integer.

2.4 Factorization of Integers and the Fermat Numbers

From the fundamental theorem of arithmetic, we know that every positive
integer can be written uniquely as the product of primes. In this section, we
discuss the problem of determining this factorization. The most direct way to
find the factorization of the positive integer n is as follows. Recall from
Theorem 1.9 that n either is prime, or else has a prime factor not exceeding
Vn . Consequently, when we divide n by the primes 2,3,5,... not exceeding
Vn, we either find a prime factor p, of n or else we conclude that n is prime.
If we have located a prime factor p; of n, we next look for a prime factor of
n; = n/p,, beginning our search with the prime p;, since n, has no prime
factor less than p;, and any factor of n; is also a factor of n. We continue, if
necessary, determining whether any of the primes not exceeding \/n_l divide
n,. We continue in this manner, proceeding recursively, to find the prime
factorization of n.

Example. Let n = 42833. We note that n is not divisible by 2,3 and 5, but
that 7 | n. We have

42833 =7-61109.

Trial divisions show that 6119 is not divisible by any of the primes
7,11,13,17,19, and 23. However, we see that

6119 =29 - 211.

Since 29 > 211, we know that 211 is prime. We conclude that the prime
factorization of 42833 is 42833 =7 - 29 - 211.

Unfortunately, this method for finding the prime factorization of an integer
is quite inefficient. To factor an integer N, it may be necessary to perform as
many as w(~/N) divisions, altogether requiring on the order of VN bit
operations, since from the prime number theorem w(/N) is approximately
VN flogvN = 2+/N /logN, and from Theorem 1.7, these divisions take at least
log N bit operations each. More efficient algorithms for factorization have
been developed, requiring fewer bit operations than the direct method of
factorization previously described. In general, these algorithms are
complicated and rely on ideas that we have not yet discussed. For information
about these algorithms we refer the reader to Guy [66] and Knuth [56]. We
note that the quickest method yet devised can factor an integer N in
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approximately

exp(Viog N - log log N )

bit operations, where exp stands for the exponential function.

In Table 2.1, we give the time required to factor integers of various sizes
using the most efficient algorithm known, where the time for each bit
operation has been estimated as one microsecond (one microsecond is 1076

seconds).
Number of decimal digits | Number of bit operations Time
50 1.4x10'° 3.9 hours
75 9.0x10'? 104 days
100 2.3x10" 74 years
200 1.2x10% 3.8x10° years
300 1.5x10% 4.9x10"° years
500 1.3x10% 4.2x10% years

Table 2.1. Time Required For Factorization of Large Integers.

Later on we will show that it is far easier to decide whether an integer is
prime, than it is to factor the integer. This difference is the basis of a
cyptographic system discussed in Chapter 7.

We now describe a factorization technique which is interesting, although it
is not always efficient. This technique is known as Fermat factorization and
is based on the following lemma.

Lemma 2.7. If n is an odd positive integer, then there is a one-to-one
correspondence between factorizations of n into two positive integers and
differences of two squares that equal »n.

Proof. Let n be an odd positive integer and let n = ab be a factorization of n
into two positive integers. Then n can be written as the difference of two

squares, since ,
a-—-b
b

2
a+b
2

- b=
n a 2




2.4 Factorization of Integers and the Fermat Numbers 81

where (a+b)/2 and (a—b)/2 are both integers since @ and b are both odd.

Conversely, if n is the difference of two squares, say n = s? — t2, then we
can factor n by noting that n = (s—t)(s+¢). O

To carry out the method of Fermat factorization, we look for solutions of
the equation n = x2 — y? by searching for perfect squares of the form x* — n.
Hence, to find factorizations of n, we search for a square among the sequence

of integers
t2=n, (¢+1)2=n, (t42)?—n,...

where ¢ is the smallest integer greater than Vn. This procedure is guaranteed
to terminate, since the trivial factorization n = n-1 leads to the equation

2 2
_ |n=1
2 .
Example. We factor 6077 using the method of Fermat factorization. Since
77 < V6077 < 78, we look for a perfect square in the sequence

n+1
2

n=

782 — 6077 = 7

792 — 6077 = 164

80% — 6077 = 323

812 — 6077 = 484 = 222.

Since 6077 = 812 — 222, we conclude that 6077 = (81—22)(81+22) =
59-103.

Unfortunately, Fermat factorization can be very inefficient. To factor n
using this technique, it may be necessary to check as many as
(n +1)/2 — Jn integers to determine whether they are perfect squares.
Fermat factorization works best when it is used to factor integers having two
factors of similar size.

The integers F, =2% + 1 are called the Fermat numbers. Fermat
conjectured that these integers are all primes. Indeed, the first few are
primes, namely Fo=3, F; =5, F,=17 F3=257, and F,=65537.
Unfortunately, Fs = 22+ 1is composite as we will now demonstrate.

Proposition 2.3. The Fermat number Fs5 = 2% + 1 is divisible by 641.

Proof. We will prove that 641 | Fs without actually performing the division.
Note that
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641 = 527 +1 =24+ 54
Hence,

P41 =2241=242811=(641 — 5928 +1
= 641228 — (527)% + 1 = 641-28 — (641 — 1)* + 1
= 641022 — 6413 + 4-641%2 — 6641 + 4).

Therefore, we see that 641 | F5. O

The following result is a valuable aid in the factorization of Fermat
numbers.

Proposition 2.4. Every prime divisor of the Fermat number F, = 2% + 1 is
of the form 2"*?k + 1.

The proof of Proposition 2.4 is left until later. It is presented as a problem
in Chapter 9. Here, we indicate how Proposition 2.4 is useful in determining
the factorization of Fermat numbers.

Example. From Proposition 2.4, we know that every prime divisor of
Fy=2"+41 =257 must be of the form 2% + 1 = 32-k + 1. Since there
are no primes of this form less than or equal to V257, we can conclude that
F3 =257 is prime.

Example. In attempting to factor Fg = 2% + 1, we use Proposition 2.4 to see
that all its prime factors are of the form 2%k + 1 = 256:k + 1. Hence, we
need only perform trial divisions of Fg by those primes of the form 256-k + 1
that do not exceed \/FZ. After considerable computation, one finds that a
prime divisor is obtained with k = 1071, i.e. 274177 = (256-:1071 + 1) | F,.

A great deal of effort has been devoted to the factorization of Fermat
numbers. As yet, no new Fermat primes have been found, and many people
believe that no additional Fermat primes exist. An interesting, but
impractical, primality test for Fermat numbers is given in Chapter 9.

It is possible to prove that there are infinitely many primes using Fermat
numbers. We begin by showing that any two distinct Fermat numbers are
relatively prime. The following lemma will be used.

Lemma 2.8. Let F; = 2% + 1 denote the kth Fermat number, where k is a
nonnegative integer. Then for all positive integers n , we have

FoF\Fy -+ Fpoy=F, — 2.

Proof. We will prove the lemma using mathematical induction. For n =1,
the identity reads




2.4 Factorization of Integers and the Fermat Numbers 83

F0=F1—2.

This is obviously true since Fy =3 and F; = 5. Now let us assume that the
identity holds for the positive integer n, so that

FoF\Fy- " Fpy=F, = 2.
With this assumption we can easily show that the identity holds for the integer

n + 1, since

FoF\Fy + - FpoFy = (ffoFle o Fy_)F,
=(F,-F,=0Q¥-1DQ¥+1)
="~ 1=2""-2=F,, -2 O

This leads to the following theorem.

Theorem 2.6. Let m and n be distinct nonnegative integers. Then the
Fermat numbers F,, and F, are relatively prime.

Proof. Let us assume that m < n. From Lemma 2.8, we know that
FoF\Fy+++Fp " Fo_y=F, = 2.
Assume that d is a common divisor of F,, and F,. Then, Proposition 1.4 tells
us that
d| (F, — FoF\Fy --+ Fp -+ F,_y) =2.
Hence, either d=1 or d=2. However, since F,, and F, are odd, d cannot be
2. Consequently, d=1 and (F,,,F,) =1. O

Using Fermat numbers we can give another proof that there are infinitely
many primes. First, we note that from Lemma 1.1, every Fermat number F,
has a prime divisor p,. Since (F,,,F,) = 1, we know that p,, & p, whenever
m # n. Hence, we can conclude that there are infinitely many primes.

The Fermat primes are also important in geometry. The proof of the
following famous theorem may be found in Ore [28].

Theorem 2.7. A regular polygon of n sides can be constructed using a ruler
and compass if and only if n is of the form n =2%p; - -- p, where p;,
i=1,2,...,t are distinct Fermat primes and a is a nonnegative integer.
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2.4 Problems

1.

Find the prime factorization of the following positive integers

a) 692921 b) 1468789 ¢) 55608079.

Using Fermat's factorization method, factor the following positive integers

a) 7709 d) 11021
b) 73 e) 3200399
¢ 10897 ) 24681023.

a) Show that the last two decimal digits of a perfect square must be one of the
following pairs: 00, e 1, e4, 25, 06, 9, where e stands for any even digit and o
stands for any odd digit. (Hint: Show that n2, (50+#)? and (50—n)? all have
the same final decimal digits, and then consider those integers n with
0<n<25)

b) Explain how the result of part (a) can be used to speed up Fermat's
factorization method.

Show that if the smallest prime factor of n is p, then x’—n will not be a perfect
square for x > (n+p?/2p.

In this problem, we develop the method of Draim factorization. To search for a
factor of the positive integer n = n,, we start by using the division algorithm, to
obtain
m=3q+r, 0<r <3
Setting m, = n,, we let
my=m; —2q,, ny=my+r,.
We use the division algorithm again, to obtain
ny=5q,+r; 0<r,<5,
and we let
my=my;—2q,, ny=my+r,
We proceed recursively, using the division algorithm, to write

n = (2k+1)qk + Tk 0< [ < 2k+1,

and we define
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11.

mg = mg_1—2qx—, ng =mg t e

We stop when we obtain a remainder r, =

a) Show that n, = kn, — Qk+1) (q,+ g+ -+ g,—) and my = n; —
2(q1+q2+ e +qk—1)'

b) Show that if (2k+1) | n, then k+1) | n, and n=Qk+1) my 4.
¢) Factor 5899 using the method of Draim factorization.

In this problem, we develop a factorization technique known as Euler’s method.
[t is applicable when the integer being factored is odd and can be written as the
sum of two squares in two different ways. Let n be odd and let
n=a’+b?>=c?+ d? where a and ¢ are odd positive integers, and b and d
are even positive integers.

a) Let u = (a—c, b—d). Show that u is even and that if r = (a—c)/u and
s = (d=b)/u, then (r,s) =1, r(a+c) = s(d+b),and s | a+c.

b) Letsv =a+c. Showthat v =d + b,y = (a+c,d+b), and v is even.
¢) Conclude that n may be factored as n = [(1/2)2 + (v/2)?1(+* + 5?).

d) Use Euler’s method to factor 221 = 10% + 112 = 5% + 142, 2501 = 50° + 12
= 49% 4+ 10% and 1000009 = 1000% + 3% = 9722 + 2352

Show that any number of the form 2**2 + 1 can be easily factored by the use of
the identity 4x*+ 1= (QxX4+2x+1)(2x?-2x+1). Factor 2'3+1 using this
identity.

Show that if a is a positive integer and a™+1 is a prime, then m=2" for some
positive integer »n. (Hint: Recall the identity a™+1 = (a* +1)
(a*®V—gk0-D 4 ... —gk+1) where m=k{ and { is odd).

Show that the last digit in the decimal expansion of F, =2 + 1 is 7if n > 2.
(Hint: Using mathematical induction, show that the last decimal digit of 2% is
6.)

Use the fact that every prime divisor of Fy = 2% + 1 = 65537 is of the form
26k + 1 = 64k + 1 to verify that F, is prime. (You should need only one trial
division.)

Use the fact that every prime divisor of F,=2"+1 is of the form
2% + 1 =128k + 1 to demonstrate that the prime factorization of Fs is
Fs=641-6700417.

Find all primes of the form 2% + 5, where n is a nonnegative integer.

Estimate the number of decimal digits in the Fermat number F,.
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2.4 Computer Projects
Write programs to do the following:
1. Find the prime factorization of a positive integer.
2. Perform Fermat factorization.
3. Perform Draim factorization (see problem 5).

4. Check a Fermat number for prime factors, using Proposition 2.4.

2.5 Linear Diophantine Equations

Consider the following problem. A man wishes to purchase $510 of
travelers checks. The checks are available only in denominations of $20 and
$50. How many of each denomination should he buy? If we let x denote the
number of $20 checks and y the number of $50 checks that he should buy,
then the equation 20x + 50y = 510 must be satisfied. To solve this problem,
we need to find all solutions of this equation, where both x and y are
nonnegative integers.

A related problem arises when a woman wishes to mail a package. The
postal clerk determines the cost of postage to be 83 cents but only 6-cent and
15-cent stamps are available. Can some combination of these stamps be used
to mail the package? To answer this, we first let x denote the number of 6-
cent stamps and y the number of 15-cent stamps to be used. Then we must
have 6x + 15y = 83, where both x and y are nonnegative integers.

When we require that solutions of a particular equation come from the set
of integers, we have a diophantine equation. Diophantine equations get their
name from the ancient Greek mathematician Diophantus, who wrote
extensively on such equations. The type of diophantine equation ax + by = ¢,
where a, b, and ¢ are integers is called a linear diophantine equations in two
variables. We now develop the theory for solving such equations. The
following theorem tells us when such an equation has solutions, and when
there are solutions, explicitly describes them.

Theorem 2.8. Let a and b be positive integers with d = (a,b). The equation
ax + by = ¢ has no integral solutions if 4 lc. If d|c, then there are
infinitely many integral solutions. Moveover, if x = xqo, y = y, is a particular
solution of the equation, then all solutions are given by

x=xo+ (b/d)n, y =y — (a/d)n,
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where n is an integer.

Proof. Assume that x and y are integers such that ax + by = c. Then, since
d | a and d | b, by Proposition 1.4, d | ¢ as well. Hence, if d ] c, there are
no integral solutions of the equation.

Now assume that d | ¢c. From Theorem 2.1, there are integers s and ¢ with
(2.3) d =as + bt.
Since d | ¢, there is an integer e with de = ¢. Multiplying both sides of (2.3)
by e, we have

¢ =de = (as + bt)e = a(se) + bte).

Hence, one solution of the equation is given by %ﬂs‘xmj—y-,«yg, where
Xxo =FedndFg=te. =Se an

To show that there are infinitely many solutions, let x =’xo + (b/d)n and
y =¥ — (a/d)n, where n is an integer. We see that this pair (x,y) is a

solution, since Vigw graph
ax + by =axy+a(b/d)n + byy— bla/d)n = axy + byy = c.

We now show that every solution of the equation ax + by = ¢ must be of the
form described in the theorem. Suppose that x and y are integers with
ax + by = c¢. Since

axg+ byy = c,

by subtraction we find that
(ax + by) — (axqy + byy) =0,

which implies that
alx —xg) +b(y —yy) =0.

Hence,

alx —xg) =b(Qo—y).

Dividing both sides of this last equality by d, we see that
(a/d) (x — xg) = (b/d) (po — y).

By Proposition 2.1, we know that (a/d, b/d) = 1. Using Lemma 2.3, it
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follows that (a/d) | (g —p). Hence, there is an integer n with
(a/d)n = yo — y; this means that y = yo — (a/d)n. Now putting this value
of y into the equation a(x —xo) =b(yo—y), we find that
a(x — x¢) = b(a/d)n, which implies that x = xo + (b/d)n. O

We now demonstrate how Theorem 2.8 is used to find the solutions of
particular linear diophantine equations in two variables.

Consider the problems of finding all the integral solutions of the two
diophantine equations described at the beginning of this section. We first
consider the equation 6x + 15y = 83. The greatest common divisor of 6 and
15is (6,15) = 3. Since 3 | 83, we know that there are no integral solutions.
Hence, no combination of 6- and 15-cent stamps gives the correct postage.

Next, consider the equation 20x + 50y = 510. The greatest common
divisor of 20 and 50 is (20,50) = 10, and since 10 | 510, there are infinitely
many integral solutions. Using the Euclidean algorithm, we find that
20(=2) + 50 = 10.  Multiplying both sides by 51, we obtain
20(~102) + 50(51) = 510. Hence, a particular solution is given by
xo=—102 and yo = 51. Theorem 2.8 tells us that all integral solutions are
of the form x = —102 + 57 and y = 51 — 2n. Since we want both x and y
to be nonnegative, we must have —102 + 57 > 0 and 51 — 2n > 0; thus,
n>202/5 and n < 251/2. Since n is an integer, it follows that
n =21, 22, 23, 24, or 25. Hence, we have the following 5 solutions: (x,y) =
(3,9), 8,7, (13,5), (18,3), and (23,1).

2.5 Problems

1. For each of the following linear diophantine equations, either find all solutions, or
show that there are no integral solutions

a) 2x +5y =11

b) 17x + 13y = 100
O 2lx + 14y = 147
d) 60x + 18y =97

¢) 1402x + 1969y = 1.

2. A student returning from Europe changes his French francs and Swiss francs
into U.S. money. If he receives $11.91 and has received 17¢ for each French
franc and 48¢ for each Swiss franc, how much of each type of currency did he
exchange?
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10.

11

12.

A grocer orders apples and oranges at a total cost of $8.39. If apples cost him
25¢ each and oranges cost him 18¢ each and he ordered mere apples than
oranges, how many of each type of fruit did he order? \as

A shopper spends a total of $5.49 for oranges, which cost 18¢ each, and
grapefruits, which cost 33¢ each. What is the minimum number of pieces of
fruit the shopper could have bought?

A postal clerk has only 14-cent and 21-cent stamps to sell. What combinations
of these may be used to mail a package requiring postage of exactly

a) $3.50 b)  $4.00 o §1.11?

At a clambake, the total cost of a lobster dinner is $11 and of a chicken dinner
is $8. What can you conclude if the total bill is

a) $1M b) 896 ¢ 3697

Show that the linear diophantine equation a;x; + a,x, + - + a,x, = b has
no solutions if d | b, where d = (a,,a5,...,a,), and has infinitely many solutions if
d|b.

Find all integer solutions of the following linear diophantine equations
a) 2x+3y+4z=5
b) Tx +2ly +35z =8
¢) 101x + 102y + 103z =1.
Which combinations of pennies, dimes, and quarters have a total value 99¢?
How many ways can change be made for one dollar using
a) dimes and quarters
b) nickels, dimes, and quarters
¢) pennies, nickels, dimes, and quarters?
Find all integer solutions of the following systems of linear diophantine equations

a) x+ y+ z=100
+ 8y + 50z = 156

b) x+y + z=100
+6y +21z =121

=

=

d x+y+z + w=100
+2y +3z + 4w =300
x +4y + 9z + 16w = 1000.

=

A piggy bank contains 24 coins, all nickels, dimes, and quarters. If the total
value of the coins is two dollars, what combinations of coins are possible?
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13. Nadir Airways offers three types of tickets on their Boston to New York flights.
First-class tickets are $70, second-class tickets are $55, and stand-by tickets are
§39. If 69 passengers pay -a total of $3274 for their tickets on a particular
flight, how many of each type of tickets were sold?

14. Is it possible to have 50 coins, all pennies, dimes, and quarters worth $3?

I5. Let a and b be relatively prime positive integers and let n be a positive integer.
We call a solution x,y of the linear diophantine equation ax + by =n
nonnegative when both x and y are nonnegative.

a)

b)
c)

d)

Show that whenever n > (a—1)(b—1) there is a nonnegative solution of
this equation.

Show that if n = ab — a — b, then there are no nonnegative solutions.

Show that there are exactly (a—1)(5—1)/2 positive integers n such that
the equation has a nonnegative solution.

The post office in a small Maine town is left with stamps of only two
values. They discover that there are exactly 33 postage amounts that
cannot be made up using these stamps, including 46¢. What are the values
of the remaining stamps?

2.5 Computer Projects

Write programs to do the following:

1. Find the solutions of a linear diophantine equation in two variables.

Find all positive integers n for which the linear diophantine equation
ax + by = n has no positive solutions (see problem 15).

2. Find the positive solutions of a linear diophantine equation in two variables.

3. Find the solutions of a linear diophantine equation in an arbitrary number of
variables.
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Congruences

3.1 Introduction to Congruences

The special language of congruences that we introduce in this chapter is
extremely useful in number theory. This language of congruences was
developed at the beginning of the nineteenth century by Gauss.

Definition. If @ and b are integers, we say that a is congruent to b modulo
m if m | (a=b).

If a is congruent to b modulo m, we write a = b (mod m). If m | (a—b),
we write @ F b (mod m), and say that a and b are incongruent modulo m.

Example. We have 22 =4 (mod 9), since 9| (22—4) =18. Likewise
= —6 (mod 9) and 200 = 2 (mod 9).

Congruences often arise in everyday life. For instance, clocks work either
modulo 12 or 24 for hours, and modulo 60 for minutes and seconds, calendars
work modulo 7 for days of the week and modulo 12 for months. Utility
meters often operate modulo 1000, and odometers usually work modulo
100000.

In working with congruences, it is often useful to translate them into
equalities. To do this, the following proposition is needed.

Proposition 3.1. If a and b are integers, then a = b (mod m) if and only if
there is an integer k such that a = b + km.

91
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Proof. 1f a = b (mod m), then m | (a—b). This means that there is an
integer k with km =a — b,sothata = b + km.

Conversely, if there is an integer k with a = b + km, then km =a — b.
Hence m | (a—b), and consequently, a = b (mod m). O
Example. We have 19 = —2 (mod 7) and 19 = =2 + 3-7.

The following proposition establishes some important properties of
congruences.

Proposition 3.2. Let m be a positive integer. Congruences modulo m satisfy
the following properties:

(i) Reflexive property. If a is an integer, then a = a (mod m).

(i) Symmetric property. If a and b are integers such that
a = b (mod m), then b = a (mod m).

(iii)  Transitive property. If a,b, and ¢ are integers with
a = b (mod m) and b = ¢ (mod m), then a = ¢ (mod m).

Proof.
(i) We see that @ = a (mod m), since m | (a—a) = 0.

(i) If a = b (mod m), then m | (a—b). Hence, there is an integer k
with km =a — b. This shows that (—k)m = b — a, so that
m | (b—a). Consequently, b =a (mod m).

Gii) If a =b (mod m) and b =c (mod m), then m | (a—b) and
m | (b—c). Hence, there are integers k and  with km =a — b
and {(m=b —c. Therefore, a —c = (a—b) + (b—c) =
km +0m = (k+Dm. Consequently, m | (a—c) and
a =c (mod m). O

From Proposition 3.2, we see that the set of integers is divided into m
different sets called congruence classes modulo m, each containing integers
which are mutually congruent modulo m.

Example. The four congruence classes modulo 4 are given by

. =E—8=—-4=0=4= 8= --- (mod 4)
=T =E-3=1=5= 9= --- (mod 4)
s E—6=-2=2=Z6=10= - (mod 4)
e =E—5=—-1=3=7=11= - - (mod 4).
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Let a be an integer. Given the positive integer m, m > 1, by the division
algorithm, we have a = bm + r where 0 < r < m — 1. From the equation
a = bm + r, we see that a = r (mod m). Hence, every integer is congruent
modulo m to one of the integers of the set 0, 1,...,m — 1, namely the
remainder when it is divided by m. Since no two of the integers 0, 1,....m — 1
are congruent modulo m, we have m integers such that every integer is
congruent to exactly one of these m integers.

Definition. A complete system of residues modulo m is a set of integers
such that every integer is congruent modulo m to exactly one integer of the
set.

Example. The division algorithm shows that the set of integers
0,1, 2,..m — 1is a complete system of residues modulo m. This is called the
set of least nonnegative residues modulo m.

Example. Let m be an odd positive integer. Then the set of integers

m-l _m=3 ., 73 mol

27 2 7 2 72

is a complete system of residues called the set of absolute least residues
modulo m.

We will often do arithmetic with congruences. Congruences have many of
the same properties that equalities do. First, we show that an addition,
subtraction, or multiplication to both sides of a congruence preserves the
congruence.

Theorem 3.1. If a,b,c, and m are integers with m > 0 such that
a = b (mod m), then

0 a+c=b+c (mod m),
(i) a—c=b—-c (mod m),
(i) ac = bc (mod m).
Proof. Since a = b (mod m), we know that m | (a—b). From the identity
(a+c) — (b+c) =a — b, we see m | [(a+c) — (b+c)], so that (i) follows.
Likewise, (ii) follows from the fact that (a—c) — (b—c) =a — b. To show

that (iii) holds, note that ac — bc = c(a—b). Since m | (a=b), it follows
that m | ¢ (@a—b), and hence, ac = be (mod m). O

Example. Since 19 = 3 (mod 8), it follows from Theorem 3.1 that
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26=19+7= 3+7=10(mod8), 15=19—4= 3—4=-1 (mod 8),
and 38 = 192 = 3-2 = 6 (mod 8).

What happens when both sides of a congruence are divided by an integer?
Consider the following example.
Example. We have 14 =72 = 42 =8 (mod 6). But 7 # 4 (mod 6).

This example shows that it is not necessarily true that we preserve a
congruence when we divide both sides by an integer. However, the following
theorem gives a valid congruence when both sides of a congruence are divided
by the same integer.

Theorem 3.2. If a, b,c and m are integers such that m > 0,d = (c,m),
and ac = bc (mod m), thena = b (mod m/d).

Proof. If ac = bc (mod m), we know that m | (ac—bc) = ¢ (a—b). Hence,
there is an integer k with c(a—b) = km. By dividing both sides by d, we
have (c/d)(a—b) = k(m/d). Since (m/d,/d) =1, from Proposition 2.1 it
follows that m/d | (a—b). Hence, a = b (mod m/d). O

Example. Since 50 =20 (mod 15) and (10,5 =5, we see that
50/10 = 20/10 (mod 15/5), or S = 2 (mod 3).
The following corollary, which is a special case of Theorem 3.2, is used

often.

Corollary 3.1. If a, b, ¢, and m are integers such that m > 0, (c,m) =1,
and ac = bc (mod m), then a = b (mod m).

Example. Since 42 =7 (mod 5) and (5,7) =1, we can conclude that
42/7 = 7/7 (mod 5), or that 6 = 1 (mod 5).
The following theorem, which is more general than Theorem 3.1, is also

useful.
Theorem 3.3. If a,b,c,d, and m are integers such that m > 0,
a = b (mod m), and ¢ = d (mod m), then

@ a+c=b+d (modm),

G) a—c=b—-d (mod m),

Gii) ac = bd (mod m).

Proof. Since a = b (mod m) and ¢ = d (mod m), we know that m | (a—b)
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and m | (c=d). Hence, there are integers k and ¢ with km =a — b and
Im=c—d.

To prove (i), note that (a+c) — (b+d) = (a—b) + (c—=d) = km + fIm
k+Om. Hence, m |{(a+c) — (b+d)].  Therefore, a+c =05
d (mod m).

To prove (i), note that (a—c) — (b—d) = (a—b) — (c—d) = km —Im
(k—0)m. Hence, m|[(a—c)—(b—d)],sothata — ¢ = b — d (mod m).

To prove (iii), note  that ac — bd =ac — be+ bc — bd =
c(a=b) + blc—=d) = ckm + bdm = m(ck+bQ). Hence, m | (ac — bd).
Therefore, ac = bd (mod m). O

+

Example. Since 13 = 8 (mod 5) and 7 = 2 (mod 5), using Theorem 3.3 we
see that 20=13+7 =8+2=0 (mod5, 6=13-7 =8-7=1
(mod 5), and 91 = 137 = 82 = 16 (mod 5).

Theorem 3.4. If ry,r,,....r,, is a complete system of residues modulo m, and if
a is a positive integer with (a,m) = 1, then

ar,+b,ary+b,.., ar, +b
is a complete system of residues modulo m.

Proof. First, we show that no two of the integers

ar,+b,ar, +b,..., ar, +b

are congruent modulo m. To see this, note that if

arj +b = ary + b (mod m),

then, from (ii) of Theorem 3.1, we know that

ar; = ary (mod m) .

Because (a,m) = 1, Corollary 3.1 shows that

ri = ri (mod m) .

Since r; # ry (mod m) if j # k, we conclude that j = k.

Since the set of integers in question consists of m incongruent integers
modulo m, these integers must be a complete system of residues modulo m. O
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The following theorem shows that a congruence is preserved when both sides
are raised to the same positive integral power.

Theorem 3.5. If a, b, k, and m are integers such that k > 0, m > 0, and
a = b (mod m), then a* = b* (mod m) .
Proof. Because a = b (mod m), we have m|(a — b). Since

a* — b% = (a=b) (@*'+a* 2+ - - - +abk"24p*1),

we see that (a — b)|(a* — b*). Therefore, from Proposition 1.2 it follows
that m|(a* — b*). Hence, a* = b* (mod m). O

Example. Since 7 = 2 (mod 5), Theorem 3.5 tells us that 343 =73
= 2° = 8§ (mod 5).

The following result shows how to combine congruences of two numbers to
different moduli.
Theorem 3.6. If a = b (mod m,), a = b (mod m,),..., a = b (mod m,)
where a,b,m |, m,,...,m; are integers with m,m, ,...,m; positive, then

a = b (mod [m,m,,...m 1),
where [m,m,,...m; 1 is the least common multiple of m,m,,...,my.

Proof. Since a = b (mod m)), a = b (mod my),..., a = b (mod m), we
know that m; | (@ — b),m, | (@ — b),..., m |(a=b). From problem 20 of
Section 2.3, we see that

[ml,mz,...,mk] | (a - b).
Consequently,
a = b (mod [m;,m,,..m1). O

An immediate and useful consequence of this theorem is the following
result.

Corollary 3.2. If a = b (mod m)), a = b (mod m,),..., a = b (mod my)
where a and b are integers and mij,m,,...,m; are relatively prime positive
integers, then

a = b (mod mym, - my).
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Proof. Since m, m,...,m; are pairwise relatively prime, problem 34 of Section
2.3 tells us that

[m;,mz,...,mk] =mm, - M.

Hence, from Theorem 3.6 we know that

a =b (mod mm,- - my). O

In our subsequent studies, we will be working with congruences involving
large powers of integers. For example, we will want to find the least positive
residue of 284 modulo 645. If we attempt to find this least positive residue by
first computing 244, we would have an integer with 194 decimal digits, a most
undesirable thought. Instead, to find 2%** modulo 645 we first express the
exponent 644 in binary notation:

(644) 1o = (1010000100) .

Next, we compute the least positive residues of 2,2%,242%..2°'2 by
successively squaring and reducing modulo 645. This gives us the congruences

2 = 2 (mod 645),
22 = 4 (mod 645),
24 = 16  (mod 645),
28 = 256 (mod 645),
216 = 391  (mod 645),
2’ = 16  (mod 645),
264 = 256 (mod 645),
2128 = 391  (mod 645),
236 = 16  (mod 645),
2’12 = 256 (mod 645).

We can now compute 2%%* modulo 645 by multiplying the least positive
residues of the appropriate powers of 2. This gives
2644 - 2512+128+4 = 25]2212824 = 256-391'16
= 1601536 = 1 (mod 645).

We have just illustrated a general procedure for modular exponentiation,
that is, for computing 4" modulo m where b, m, and N are positive integers.
We first express the exponent N in binary notation, as N = (agay_...a;a¢) ;.
We then find the least positive residues of b,b%b%....b% modulo m, by
successively squaring and reducing modulo m. Finally, we multiply the least
positive residues modulo m of b? for those j with a; = 1, reducing modulo m
after each multiplication.
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In our subsequent discussions, we will need an estimate for the number of
bit operations needed for modular exponentiation. This is provided by the
following proposition.

Proposition 3.3. Let b, m, and N be positive integerswith b < m.
Then the least positive residue of 4" modulo m can be computed using
O ((logym)*og,N) bit operations.

Proof. To find the least positive residue of »"(mod m), we can use the
algorithm just described. First, we find the least positive residues of
b,b%b%,....b% modulo m, where 2¥ < N < 2k*1, by successively squaring and
reducing modulo m. This requires a total of O ((logym)?log,N) bit operations,
because we perform [log,N] squarings modulo m, each requiring O ((log,m)?)
bit operations. Next, we multiply together the least positive residues of the
integers b? corresponding to the binary digits of N which are equal to one,
and we reduce modulo m after each multiplication. This also requires
O ((logom)*log;N) bt operations, because there are at most logoN
multiplications, each requiring O ((logym)?) bit operations. Therefore, a total
of O ((logym)?log,N) bit operations are needed. O

3.1 Problems
1. For which positive integers m are the following statements true
a) 27 =5 (mod m)
b) 1000 = 1 (mod m)
¢} 1331 =0 (mod m)?

2. Show that if @ is an even integer, then a? = 0 (mod 4), and if a is an odd
integer, then a> = 1 (mod 4).

3. Show that if a is an odd integer, then a*> = 1 (mod 8).

4. Find the least nonnegative residue modulo 13 of

a) 22 d) -1
b) 100 e) —100
c) 1001 f) —1000.

5. Show that if a, b, m, and n are integers such that m > 0, n > 0, n | m, and
a = b (mod m), then a = b (mod n).

6. Show that if a,b,c, and m are integers such that ¢ > 0, m > 0, and
a = b (mod m), then ac = bc (mod mc).
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10.
11.
12.

13.
14.

15.

16.

17.

18.
19.

20.

Show that if a, b, and ¢ are integers with ¢ > 0 such that a = b (mod c¢), then
(a,c) =(b,c) .

Show that if a; =b; (mod m) for j = 1,2,...,n, where m is a positive integer and
a;b; , j =1,2,..n, are integers, then
a) Ya =X b; (modm)

= =1

b) Mg = 1 b; (mod m).
=

j=1

In problems 9-11 construct tables for arithmetic modulo 6 using the least
nonnegative residues modulo 6 to represent the congruence classes.

Construct a table for addition modulo 6.

Construct a table for subtraction modulo 6.

Construct a table for multiplication modulo 6.

What time does a clock read

a) 29 hours after it reads 11 o’clock

b) 100 hours after it reads 2 o’clock

¢) 50 hours before it reads 6 o’clock?

Which decimal digits occur as the final digit of a fourth power of an integer?

What can you conclude if > = b (mod p), where @ and b are integers and p is
prime?

Show that if a* = b* (mod m) and a**' = b**! (mod m), where a, b, k, and
m are integers with k >0 and m >0 such that (a,m) =1, then
a = b (mod m). If the condition (a,m) = 1 is dropped, is the conclusion that
a = b (mod m) still valid?

Show that if # is a positive integer, then

a) 1+2+3+ -+ +(n=1) =0 (mod n).

b) 1P+22+33+ - + (n—1)® =0 (mod n).
For which positive integers » is it true that

124224324+ -« + (n=1)>= 0 (mod n)?

Give a complete system of residues modulo 13 consisting entirely of odd integers.

Show that if » = 3 (mod 4), then n cannot be the sum of the squares of two
integers.

a) Show that if p is prime, then the only solutions of the congruence

x% = x (mod p) are those integers x with x = 0 or 1 (mod p).
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b) Show that if p is prime and k is a positive integer, then the only solutions of
x* = x (mod p*) are those integers x such that x = 0 or 1 (mod p*).

21. Find the least positive residues modulo 47 of
a) 2% b) 2% ¢ 2%
22. Let m\my,.,m; be pairwise relatively prime positive integers. Let
M =mm;- - my and M; = M/m; for j = 1,2,...,k. Show that
M1a| + M2a2 + -+ Mkak
runs through a complete system of residues modulo M when a,,a,,...a; run

through complete systems of residues modulo m;,m,,....my, respectively.

23. Explain how to find the sum « + v from the least positive residue of u + v
modulo m, where u and v are positive integers less than m. (Hint: Assume
that u < v and consider separately the cases where the least positive residue of
u + v is less than u, and where it is greater than v.)

24. On a computer with word size w, multiplication modulo n, where n < w/2, can
be performed as outlined. Let T =[vn + %], and + = T> — n. For each
computation, show that all the required computer arithmetic can be done without
exceeding the word size. (This method was described by Head [67]).

a) Show that |7| < T.
b) Show that if x and y are nonnegative integers less than n, then
x=aT +b, y=cT+d
where a,b,c, and d are integers such that 0 < a < 7T, 0< b < T,
0<c<T,and0<d <T.
¢) Letz = ad + bc (mod n), with 0 € z < n. Show that
xy = act + zT + bd (mod n).
d) Let ac =eT + f where ¢ and f are integers with 0 < e < T and
0 < f < T. Show that

xy = (z+et)T + ft + bd (mod n).

e) Letv =z + et (mod n), with 0 € v < n. Show that we can write

v=gT +h,

where g and / are integers with0 < g < 7,0 < & < T, and such that
xy = hT + (f+g)t + bd (mod n).
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25.

26.

217.

28.
29.

30.

f) Show that the right-hand side of the congruence of part (e) can be
computed without exceeding the word size by first finding j with

Jj = (f+g)t (mod n)

and 0 < j < n, and then finding k with
k =j + bd (mod n)

and 0 < k < n, so that

xy = hT + k (mod n).

This gives the desired result.

Develop an algorithm for modular exponentiation from the base three expansion
of the exponent.

Find the least positive residue of

a) 3'° modulo 11

b)  2'2 modulo 13

c) 5' modulo 17

d) 3% modulo 23.

e) Can you propose a theorem from the above congruences?
Find the least positive residues of

a) 6! modulo 7

b) 10! modulo 11

¢) 12! modulo 13

d) 16! modulo 17.

e) Can you propose a theorem from the above congruences?
Prove Theorem 3.5 using mathematical induction.

Show that the least nonnegative residue modulo m of the product of two positive
integers less than m can be computed using O (log?m) bit operations.

a) Five men and a monkey are shipwrecked on an island. The men have
collected a pile of coconuts which they plan to divide equally among
themselves the next morning. Not trusting the other men, one of the group
wakes up during the night and divides the coconuts into five equal parts with
one left over, which he gives to the monkey. He then hides his portion of
the pile. During the night, each of the other four men does exactly the
same thing by dividing the pile they find into five equal parts leaving one
coconut for the monkey and hiding his portion. In the morning, the men
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gather and split the remaining pile of coconuts into five parts and one is left
over for the monkey. What is the minimum number of coconuts the men
could have collected for their original pile?

b) Answer the same question as in part (a) if instead of five men and one
monkey, there are n men and k monkeys, and at each stage the monkeys
receive one coconut each.

3.1 Computer Projects
Write computer programs to do the following:
1. Find the least nonnegative residue of an integer with respect to a fixed modulus.

2. Perform modular addition and subtraction when the modulus is less than half of
the word size of the computer.

3. Perform modular multiplication when the modulus is less than half of the word
size of the computer using problem 24.

4. Perform modular exponentiation using the algorithm described in the text.

3.2 Linear Congruences
A congruence of the form

ax = b (mod m),

where x is an unknown integer, is called a linear congruence in one variable.
In this section we will see that the study of such congruences is similar to the
study of linear diophantine equations in two variables.

We first note that if x =x, is a solution of the congruence
ax = b (mod m), and if x; = xo (mod m), then ax, = axy = b (mod m),
so that x; is also a solution. Hence, if one member of a congruence class
modulo m is a solution, then all members of this class are solutions.
Therefore, we may ask how many of the m congruence classes modulo m give
solutions; this is exactly the same as asking how many incongruent solutions
there are modulo m. The following theorem tells us when a linear congruence
in one variable has solutions, and if it does, tells exactly how many
incongruent solutions there are modulo m.

Theorem 3.7. Let a, b, and m be integers with m > 0 and (a,m) =d. If
d b, then ax =b (mod m) has no solutions. If d|b, then
ax = b (mod m) has exactly d incongruent solutions modulo m.
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Proof. From Proposition 3.1, the linear congruence ax = b (mod m) is
equivalent to the linear diophantine equation in two variables ax — my = b.
The integer x is a solution of ax = b (mod m) if and only if there is an
integer y with ax —my = b. From Theorem 2.8, we know that if d 1b,
there are no solutions, while if d | b, ax — my = b has infinitely many
solutions, given by

x =xo+ (m/d)t,y =yo+ (a/d)1,
where x = xq and y = yq is a particular solution of the equation. The values
of x given above,

x =xo+ (m/d)t,

are the solutions of the linear congruence; there are infinitely many of these.

To determine how many incongruent solutions there are, we find the
condition that describes when two of the solutions x; = xo + (m/d)¢, and
Xy =xo+ (m/d)t, are congruent modulo m. If these two solutions are
congruent, then

xo+ (m/d)t; = xo + (m/d)t,(mod m).

Subtracting x, from both sides of this congruence, we find that

(m/d)t, = (m/d)t; (mod m).

Now (m,m/d) = m/d since (m/d) | m, so that by TheorerrP '35.724—we see that
t; = t; (mod d). C’\--: Lo
/)

This shows that a complete set of incongruent solutions is obtained by taking
x =xo+ (m/d)t, where ¢ ranges through a complete system of residues
modulo d. One such set is given by x =x¢+ (m/d)t where
t=0,12,..4d—-1. 0

We now illustrate the use of Theorem 3.7.
Example. To find a]] solutions of 9x = 12 (mod 15), we first note that since
(9,15) = 3 and 3 | 9% there are exactly three incongruent solutions. We can

find these solutions by first finding a particular solution and then adding the
appropriate multiples of 15/3 = 5.

To find a particular solution, we consider the linear diophantine equation
9x — 15y = 12. The Euclidean algorithm shows that

¢- 5%
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15=91+6
9=61+3
6 =32,

QIS) :3)

s

so that 39 =61 =9 — (15-9:1) = 92 — 15. Hence 9-8 — 154 = 12, and
a particular solution of 9x — 15y = 12 is given by xo = 8 and y, = 4.

From the proof of Theorem 3.7, we see that a complete set of 3 incongruent
solutions is given by x = xo = 8 (mod 15), x = xo + 5 = 13 (mod 15), and
x=x0+52=18 = 3 (mod 15).

We now consider congruences of the special form ax = 1 (mod m). From
Theorem 3.7, there is a solution to this congruence if and only if (a,m) = 1,
and then all solutions are congruent modulo m. Given an integer a with
(a,m) =1, a solution of ax =1 (mod m) is called an inverse of
a modulo m. . . ) .
A=y s\ E=87+3 T2 57 -2 (bi-17):39310
Example. Since the solutions of 7x. = 1 (mod 31) satisfy x = 9 (mod 31), 9,
and all integers congruent to 9 modulo 31, are inverses of 7 modulo 31.
Analogously, since 97 = 1 (mod 31), 7 is an inverse of 9 modulo 31.

When we have an inverse of a modulo m, we can use it to solve any
congruence of the form ax = b (mod m). To see this, let @ be an inverse of
a modulo m , so that aa = 1 (mod m). Then, if ax = b (mod m), we can
multiply both sides of this congruence by a to find that
a(ax) = ab (mod m), so that x = ab (mod m).

Example. To find the solutions of 7x = 22 (mod 31), we multiply both sides
of this congruence by 9, an inverse of 7 modulo 31, to obtain
9-7x = 9-22 (mod 31). Hence, x = 198 = 12 (mod 31).

We note here that if (a,m) =1, then the linear congruence
ax = b (mod m) has a unique solution modulo 1.

Example. To find all solutions of 7x = 4 (mod 12), we note that since
(7,12) = 1, there is a unique solution modulo 12. To find this, we need only
obtain a solution of the linear diophantine equation 7x — 12y =4. The
Euclidean algorithm gives

12=71+5
7=51+2
5=22+1

2=12.

Hence 1=5-22=5-(7-51)2=53-27=(12-71) =3-27=




3.2 Linear Congruences 105

12:3 — 5-7. Therefore, a particular solution to the linear diophantine equation
is xo = —20 and yo = 12. Hence, all solutions of the linear congruences are
given by x = —20 = 4 (mod 12).

Later on, we will want to know which integers are their own inverses
modulo p where p is prime. The following proposition tells us which integers
have this property.

Proposition 3.4. Let p be prime. The positive integer a is its own inverse
modulo p if and only if @ = 1 (mod p) or @ = —1 (mod p).

Proof. 1f a = 1(mod p) or a = —1(mod p), then a?> = 1(mod p). so that a
is its own inverse modulo p.

Conversely, if a is its own inverse modulo p, then at=aa =1 (mod p).
Hence, p | (a®>~1). Since a?—1= (a—1)(a+1), either p | (a=1) or

p | (@a+1). Therefore, either a = 1 (mod p) or a = —1 (mod p). O

3.2 Problems

1. Find all solutions of each of the following linear congruences.

a) 3x =2 (mod7) d)  15x = 9 (mod 25)
b) 6x =3 (mod 9) e) 128x = 833 (mod 1001)
¢ 17x = 14 (mod 21) f)  987x = 610 (mod 1597).

2. Leta, b, and m be positive integers with a > 0, m > 0, and (a,m) = 1. The
following method can be used to solve the linear congruence ax = b (mod m).

a) Show that if the integer x is a solution of ax = b (mod m), then x is also
a solution of the linear congruence

a;x = —blm/al (mod m).
where a,; is the least positive residue of m modulo a. Note that this

congruence is of the same type as the original congruence, with a positive
integer smaller than a as the coefficient of x.

b) When the procedure of part (a) is iterated, one obtains a sequence of

linear congruences with coefficients of x equal to
ag=a > a; > a, > ---. Show that there is a positive integer n with
a, =1, so that at the nth stage, one obtains a linear congruence

x = B (mod m).
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c) Use the method described in part (b) to solve the linear congruence
6x = 7 (mod 23).

3. An astronomer knows that a satellite orbits the earth in a period that is an
exact multiple of 1 hour that is less than 1 day. If the astronomer notes that
the satellite completes 11 orbits in an interval starting when a 24-hour clock
reads 0 hours and ending when the clock reads 17 hours, how long is the orbital
period of the satellite?

4. For which integers ¢ with 0 < ¢ < 30 does the congruence 12x = ¢ (mod 30)
have solutions? When there are solutions, how many incongruent solutions are
there?

5. Find an inverse modulo 17 of

a) 4 o 7
b) S d) 1e6.

6. Show that if @ is an inverse of @ modulo m and b is an inverse of b modulo m,
then a b is an inverse of ab modulo m.

7. Show that the linear congruence in two variables ax + by = ¢ (mod m),
where a, b, ¢, and m are integers, m > 0, with d = (a,b,m), has exactly dm
incongruent solutions if d | ¢, and no solutions otherwise.

8. Find all solutions of the following linear congruences in two variables

a) 2x +3y =1 (mod7) ¢) 6x +3y =0 (mod9)
b)) 2x +4y =6 (mod 8) d  10x + 5y =9 (mod 15).

9. Let p be an odd prime and k a positive integer. Show that the congruence
x? =1 (mod p*¥) has exactly two incongruent solutions, namely
x = =1 (mod p*).

10. Show that the congruence x* = 1 (mod 2¥) has exactly four incongruent
solutions, namely x = 1 or +£(1+2*™") (mod 2*), when k > 2. Show that
when k =1 there is one solution and when k& = 2 there are two incongruent
solutions.

11. Show that if a and m are relatively prime positive integers with @ < m, then
an inverse of @ modulo m can be found using O (log m) bit operations.

12.  Show that if p is an odd prime and a is a positive integer not divisible by p,
then the congruence x? = a (mod p) has either no solution or exactly two
incongruent solutions.

3.2 Computer Projects

Write programs to do the following:
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1. Solve linear congruence using the method given in the text.
2. Solve linear congruences using the method given in problem 2.

3. Find inverses modulo m of integers relatively prime to m where m is a positive
integer.

4. Solve linear congruences using inverses.

S. Solve linear congruences in two variables.

3.3 The Chinese Remainder Theorem

In this section and in the one following, we discuss systems of simultaneous
congruences. We will study two types of such systems. In the first type, there
are two or more linear congruences in one variable, with different moduli
(moduli is the plural of modulus). The second type consists of more than one
simultaneous congruence in more than one variable, where all congruences
have the same modulus.

First, we consider systems of congruences that involve only one variable, but
different moduli. Such systems arose in ancient Chinese puzzles such as the
following: Find a number that leaves a remainder of 1 when divided by 3, a
remainder of 2 when divided by 5, and a remainder of 3 when divided by 7.
This puzzle leads to the following system of congruences:

x=1(mod3), x =2 (mod5), x =3 (mod7).

We now give a method for finding all solutions of systems of simultancous
congruences such as this. The theory behind the solution of systems of this
type is provided by the following theorem, which derives its name from the
ancient Chinese heritage of the problem.

The Chinese Remainder Theorem. Let mj,m,,...,m, be pairwise relatively
prime positive integers. Then the system of congruence

x = a,(mod m,),
X = a,(mod m,),
x = a,(mod m,),

has a unique solution modulo M = mym, - - - m,.
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Proof.  First, we construct a simultaneous solution to the system of
congruences. To do this, let My = M/my = mm,- - my_ymyy, - - - m,.
We  know that (M, my) =1 from problem 8 of Section 2.1, since
(mj, m;) =1 whenever j # k. Hence, from Theorem 3.7, we can find an
inverse y; of My modulo my, so that My, = 1 (mod m;). We now form
the sum

X =a1M1y1 +02M2y2+ e +a,M,y, .

The integer x is a simultaneous solution of the r congruences. To
demonstrate this, we must show that x = a; (mod my) for k =1.2,..r.
Since my | M; whenever j #= k, we have M; =0 (mod my). Therefore, in
the sum for x, all terms except the kth term are congruent to 0 (mod my).

Hence, x = ay My, = a; (mod my), since My, = 1 (mod my).

We now show that any two solutions are congruent modulo M. Let x, and
x| both be simultaneous solutions to the system of r congruences. Then, for
each k, xg = x; = a; (mod my), so that my | (xo—x;). Using Theorem 3.7,
we see that M|(xg—x,). Therefore, xo = x, (mod M). This shows that the
simultaneous solution of the system of r congruences is unique modulo M. O

We illustrate the use of the Chinese remainder theorem by solving the
system that arises from the ancient Chinese puzzle.

Example. To solve the system

1 (mod 3)
2 (mod 5)
3 (mod 7),

X
X
X

we have M =357 =105, M,=105/3 =35 M,=105/5=21, and
M3 =105/7=15. To determine y;, we solve 35y; =1 (mod 3), or
equivalently, 2y; = 1 (mod 3). This yields y; = 2 (mod 3). We find y, by
solving 21y; = 1 (mod 5); this immediately gives y, = 1 (mod 5). Finally,
we find y3 by solving 15y3 = 1 (mod 7). This gives y; = 1 (mod 7). Hence,

1-35-2 + 2:21-1 + 3151
157 = 52 (mod 105).

X

There is also an iterative method for solving simultaneous systems of
congruences. We illustrate this method with an example. Suppose we wish to
solve the system
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1 (mod 5)
2 (mod 6)
3 (mod 7).

X
X
X

We use Proposition 3.1 to rewrite the first congruence as an equality, namely
x =5t + 1, where ¢ is an integer. Inserting this expression for x into the
second congruence, we find that

5t + 1 = 2 (mod 6),

which can easily be solved to show that ¢ = 5 (mod 6) . Using Proposition
3.1 again, we write ¢ =6u +5 where u is an integer. Hence,
x = 5(6u+5) + 1 = 30u + 26. When we insert this expression for x into the
third congruence, we obtain

30u + 26 = 3 (mod 7).

When this congruence is solved, we find that ¥ = 6 (mod 7). Consequently,
Proposition 3.1 tells us that u = 7v + 6, where v is an integer. Hence,

x = 30(7v+6) + 26 = 210v + 206.

Translating this equality into a congruence, we find that

x = 206 (mod 210),

and this is the simultaneous solution.

Note that the method we have just illustrated shows that a system of
simultaneous questions can be solved by successively solving linear
congruences. This can be done even when the moduli of the congruences are
not relatively prime as long as congruences are consistent. (See problems 7-10
at the end of this section.)

The Chinese remainder theorem provides a way to perform computer
arithmetic with large integers. To store very large integers and do arithmetic
with them requires special techniques. The Chinese remainder theorem tells
us that given pairwise relatively prime moduli m,m,,...,m,, a positive integer
n with n < M = mm, - - - m, is uniquely determined by its least positive
residues moduli m; for j = 1,2,...,r. Suppose that the word size of a computer
is only 100, but that we wish to do arithmetic with integers as large as 10°.
First, we find pairwise relatively prime integers less than 100 with a product
exceeding 10% for instance, we can take m; =99, m, =98, m3; =97, and
m4 = 95. We convert integers less than 10° into 4-tuples consisting of their
least positive residues modulo m,, m,, m3, and my,. (To convert integers as
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large as 108 into their list of least positive residues, we need to work with large
integers using multiprecision techniques. However, this is done only once for
each integer in the input and once for the output.) Then, for instance, to add
integers, we simply add their respective least positive residues modulo
my, my, mj, and m,, making use of the fact that if x = x; (mod m;) and
y =y; (mod m;), then x +y = x; + y; (mod m;). We then use the Chinese
remainder theorem to convert the set of four least positive residues for the sum
back to an integer.

The following example illustrates this technique.

Example. We wish to add x = 123684 and y = 413456 on a computer of
word size 100. We have

x = 33 (mod 99), y = 32 (mod 99),
x = 8 (mod 98), y = 92 (mod 98),
x = 9 (mod 97), y = 42 (mod 97),
x = 89 (mod 95), y = 16 (mod 95),
so that

x +y = 65 (mod 99)

x+y = 2 (mod 98)

x +y = 51 (mod 97)

x +y =10 (mod 95).

We now use the Chinese remainder theorem to find x +y modulo
99:98-97-95. We have M = 99-98-97-95 = 89403930, M, = M /99 = 903070,
M,= M/98 = 912288, M;= M/97 =921690, and M, = M /95 = 941094,
We need to find the inverse of M; (mod y;) for i = 1,2,3,4. To do this, we
solve the following congruences (using the Euclidean algorithm):

903070y; = 91y, = 1 (mod 99),
912285y, = 3y, = 1 (mod 98),
921690y; = 93y; = 1 (mod 97),
941094y, = 24y, = 1 (mod 95).

We find that y, = 37 (mod 99), y, = 38 (mod 98), y; = 24 (mod 97), and
v4 = 4 (mod 95). Hence,

65-903070-37 + 2-912285-33 +51:921690-24 + 10-941094-4
3397886480 ,
537140 (mod 89403930).

x t+y

Since 0 < x + y < 89403930, we conclude that x + y = 537140.
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On most computers the word size is a large power of 2, with 2*° a common
value. Hence, to use modular arithmetic and the Chinese remainder theorem
to do computer arithmetic, we need integers less than 23% that are pairwise
relatively prime which multiply together to give a large integer. To find such
integers, we use numbers of the form 2™ — 1, where m is a positive integer.
Computer arithmetic with these numbers turns out to be relatively simple (see
Knuth [57]). To produce a set of pairwise relatively prime numbers of this
form, we first prove some lemmata.

Lemma 3.1. If a and b are positive integers, then the least positive residue of
29 — 1 modulo 2 — 1 is 2" — 1, where r is the least positive residue of a
modulo b.

Proof. From the division algorithm, @ = bg + r where r is the least positive
residue of a  modulo b. We have (29—1) = (2%9*—1) =
(2b—1)(2b@-D+r 4 ... 426+ 42r) 4+ (27—1), which shows that the
remainder when 2% — 1 is divided by 26 — 1 is 2 — 1; this is the least positive
residue of 2¢ — 1 modulo 22 — 1. O

We use Lemma 3.1 to prove the following result.

Lemma 3.2. If @ and b are positive integers, then the greatest common
divisor of 2¢ — 1 and 2% — 1 is 2@®) — 1.

Proof. When we perform the Euclidean algorithm with @ = roand b = r,, we
obtain

ro =rqtr;

0Lr,<nrn
ry =rygytr; 0 <

r3<r2

Fn—3 = Fp—2qn—2 % In-
n=3 = Fn-2qn-2 7 Fn-1 0 < rpey < Fnez

Fn— = rn—-149n-1-

where the last remainder, r,_,, is the greatest common divisor of a and b.

Using Lemma 3.1, and the steps of the Euclidean algorithm with a = rg
and b =r,;, when we perform the Euclidean algorithm on the pair
29 — | = Ryand 2> — 1 = R, we obtain
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Ry =R\0;+ R, R, =2"—-1
R, =R2Q2+R3 R, =92
Ryp3=R, 50,5+ R, _ ’
n—-3 n 2Qn 2 n—1 Ry = 2"—1
R, ,= Ry1Qu-.
Here the last non-zero remainder, R,_; = 2" — | = 2@ — 1 s the greatest

common divisor of Ry and R,. O

From Lemma 3.2, we have the following proposition.

Proposition 3.5. The positive integers 2* — 1 and 2° — 1 are relatively prime
if and only if @ and b are relatively prime.

We can now use Proposition 3.5 to produce a set of pairwise relatively prime
integers, each of which is less than 235, with product greater than a specified
integer. Suppose that we wish to do arithmetic with integers as large as 2!86.
We pick m=2¥ -1, my=2%-1 my=23-1, m,=2"-1,
ms=2% —1, and mg = 2% — 1. Since the exponents of 2 in the expressions
for the m; are relatively prime, by Proposition 3.5 the M,’s are pairwise
relatively prime. Also, we have M = m m,msmmsme > 2'%6. We can now
use modular arithmetic and the Chinese remainder theorem to perform
arithmetic with integers as large as 2186,

Although it is somewhat awkward to do computer operations with large
integers using modular arithmetic and the Chinese remainder theorem, there
are some definite advantages to this approach. First, on many high-speed
computers, operations can be performed simultaneously. So, reducing an
operation involving two large integers to a set of operations involving smaller
integers, namely the least positive residues of the large integers with respect to
the various moduli, leads to simultaneous computations which may be
performed more rapidly than one operation with large integers. Second, even
without taking into account the advantages of simultaneous computations,
multiplication of large integers may be done faster using these ideas than with
many other multiprecision methods. The interested reader should consult
Knuth [56].
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3.3 Problems

1.

Find all the solutions of each of the following systems of congruences.

a) x =4(mod 11) ¢) x = 0(mod 2)
x = 3(mod 17) x = 0(mod 3)
x = 1(mod 5)
b) x = 1(mod 2) x = 6(mod 7)
X = 2(m0d 3)
x = 3(mod 5) d x =2(mod 11)
x = 3(mod 12)
x = 4(mod 13)
x = 5(mod 17)
x = 6(mod 19).

A troop of 17 monkeys store their bananas in eleven piles of equal size with a
twelfth pile of six left over. When they divide the bananas into 17 equal groups
none remain. What is the smallest number of bananas they can have?

As an odometer check, a special counter measures the miles a car travels modulo
7. Explain how this counter can be used to determine whether the car has been
driven 49335, 149335, or 249335 miles when the odometer reads 49335 and
works modulo 100000.

Find a multiple of 11 that leaves a remainder of 1 when divided by each of the
integers 2,3,5, and 7.

Show that there are arbitrarily long strings of integers each divisible by a perfect
square. (Hint: Use the Chinese remainder theorem to show that there is a
simultaneous solution to the system of congruences x =0 (mod 4),
x = —1 (mod 9), x = =2 (mod 25),..., x = —k+1 (mod p?), where p, is the
kth prime.)

Show that if a,b, and ¢ are integers with (a,b) = 1, then there is an integer n
such that (an+b,c) = 1.

In problems 7-10 we will consider systems of congruences where the moduli of
the congruences are not necessarily relatively prime.

Show that the system of congruences

X
X

a, (mod m,)
a, (mod m,)

mm

has a solution if and only if (m,,m,) | (a;—a;). Show that when there is a
solution, it is unique modulo ([m),m,)). (Hint: Write the first congruence as
x = a, + km; where k is an integer, and then insert this expression for x into
the second congruence.)

Using problem 7, solve the following simultaneous system of congruences
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9.

11.

12.

13.

14.

Congruences

a) x

4 (mod 6) b) x =7 (mod 10)
X =

13 (mod 15) 4 (mod 15).

Show that the system of congruences

x = a, (mod m,)
x = a, (mod m,)

a, (mod m,)

X

has a solution if and only if (m;,m;) | (a; — a;) for all pairs of integers (i,j)
with 1 < i < j < r. Show that if a solution exists, then it is unique modulo
[m,, m,,..., m,). (Hint: Use problem 7 and mathematical induction.)

Using problem 9, solve the following systems of congruences

a) x =5 (mod 6) d) x =2 (mod 6)
x =3 (mod 10) x =4 (mod 8)
x =8 (mod 15) x =2 (mod 14)
x = 14 (mod 15)
b) x =2 (mod 14)
x =16 (mod 21) e) x =7 (mod 9)
x = 10 (mod 30) x =2 (mod 10)
x =3 (mod 12)
¢) x =2 (mod9) x =6 (mod 15).
x =8 (mod 15)
x =10 (mod 25)

What is the smallest number of eggs in a basket if one egg is left over when the
eggs are removed 2,3,4,5, or 6 at a time, but no eggs are left over when they are
removed 7 at a time?

Using the Chinese remainder theorem, explain how to add and how to multiply
784 and 813 on a computer of word size 100.

A positive integer x # 1 with »n base b digits is called an
automorph to the base b if the last n base b digits of x? are the same as those
of x.

a) Find the base 10 automorphs with four or fewer digits.

b) How many base b automorphs are there with n or fewer base b digits, if b
. L b, b b
has prime-power factorization b = p' p;* - p*?

According to the theory of biorhythms, there are three cycles in your life that
start the day you are born. These are the physical, emotional, and intellectual
cycles, of lengths 23,28, and 33 days, respectively. Each cycle follows a sine
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curve with period equal to the length of that cycle, starting with amplitude zero,
climbing to amplitude 1 one quarter of the way through the cycle, dropping back
to amplitude zero one half of the way through the cycle, dropping further to
amplitude minus one three quarters of the way through the cycle, and climbing
back to amplitude zero at the end of the cycle.

Answer the following questions about biorhythms, measuring time in quarter
days (so that the units will be integers).

a) For which days of your life will you be at a triple peak, where all of your
three cycles are at maximum amplitudes?

b) For which days of your life will you be at a triple nadir, where all three of
your cycles have lowest amplitude?

¢)  When in your life will all three cycles be a neutral position (amplitude 0)?

15. A set of congruences to distinct moduli greater than one that has the property
that every integer satisfies at least one of the congruences is called a covering set
of congruences.

a) Show the set of congruences x =0 (mod2), x =0 (mod 3),
x=1(mod4), x =1 (mod 6), and x = 11 (mod 12) is a covering set of
congruences.

b) Show that the set of congruences x =0 (mod 2), x =0 (mod 3),
x=0(mod5), x =0(mod7), x =1 (mod 6), x =1 (mod 10), x = 1
(mod 14), x =2 (mod 15), x =2 (mod 21), x = 23 (mod 30), x =4
(mod 35), x = 5 (mod 42), x = 59 (mod 70), and x = 104 (mod 105) is a
covering set of congruences.

16. Let m be a positive integer with  prime-power factorization

m = 2a°p7'p;’ cee pf’ . Show that the congruence x> = 1 (mod m) has exactly
27*¢ solutions where e = 0 if ag=0o0r 1,e =1if gy =2, and e = 2 if ag > 2.
(Hint: Use problems 9 and 10 of Section 2.3.)

17. The three children in a family have feet that are 5 inches, 7 inches, and 9 inches
long. When they measure the length of the dining room of their house using
their feet, they each find that there are 3 inches left over. How long is the
dining room?

3.3 Computer Projects

Write programs to do the following:

1. Solve systems of linear congruences of the type found in the Chinese remainder
theorem.

2. Solve systems of linear congruences of the type given in problems 7-10.

3. Add large integers exceeding the word size of the computer using the Chinese
remainder theorem.
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4. Multiply large integers exceeding the word size of the computer using the
Chinese remainder theorem.

5. Find automorphs to the base b, where b is a positive integer greater than one
(see problem 13).

6. Plot biorhythm charts and find triple peaks and triple nadirs (see problem 14).

3.4 Systems of Linear Congruences

We will consider systems of more than one congruence involving the same
number of unknowns as congruences, where all congruences have the same
modulus. We begin our study with an example.

Suppose we wish to find all integers x and y such that both of the
congruences
3x + 4y =5 (mod 13)
2x + 5y = 7 (mod 13)

are satisfied. To attempt to find the unknowns x and y, we multiply the first
congruence by 5 and the second by 4, to obtain

15x + 20y = 25 (mod 13)
8x + 20y = 28 (mod 13).

We subtract the first congruence from the second, to find that
7x = -3 (mod 13).

Since 2 is an inverse of 7 (mod 13), we multiply both sides of the above
congruences by 2. This gives

27 x = ~2-3 (mod 13),
which tells us that

x = 7 (mod 13).

Likewise, we can multiply the first congruence by 2 and the second by 3, to
see that
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10 (mod 13)
21 (mod 13).

6x + 8y
6x + 15y

When we subtract the first congruence from the second, we obtain
7y = 11 (mod 13).

To solve for y, we multiply both sides of this congruence by 2, an inverse of 7

modulo 13 . We get
2:7y = 2-11 (mod 13),

so that
y =9 (mod 13).

What we have shown is that any solution (x,y) must satisfy
x =7 (mod 13), y = 9 (mod 13).

When we insert these congruences for x and y into the original system, we see

that these pairs actually are solutions, since
3x +4y =37+49 =57
2x + 5y =27+59=159

5 (mod 13)
7 (mod 13).

0

Hence, the solutions of this system of congruences are all pairs (x,y) with
x =7 (mod 13) and y = 9 (mod 13).

We now give a general result concerning certain systems of two congruences
in two unknowns.

Theorem 3.8. Let a, b, c,d, e, f, and m be integers with m > 0, such that
(A,m) =1, where A = ad—bc. Then, the system of congruences

ax + by = e (mod m)
cx +dy = f (mod m)

has a unique solution modulo m given by

A (de—bf) (mod m)
A (af —ce) (mod m),

x =
y =

where A is an inverse of A modulo m.

Proof. We multiply the first congruence of the system by d and the second by
b, to obtain
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adx + bdy = de (mod m)
bex + bdy = bf (mod m) .

Then, we subtract the second congruence from the first, to find that

(ad—bc) x = de—bf (mod m),

or, since A = ad—bc,
Ax = de—bf (mod m).
Next, we multiply both sides of this congruence by A, an inverse of A modulo

m, to conclude that
x = A (de—bf) (mod m).

In a similar way, we multiply the first congruence by ¢ and the second by a,

to obtain
ce (mod m)

acx + bey =
af (mod m).

acx + ady =

We subtract the first congruence from the second, to find that

(ad—bc)y = af —ce (mod m)

or
Ay = af —ce (mod m).

Finally, we multiply both sides of the above congruence by A to see that

y = A (af —ce) (mod m).
We have shown that if (x,y) is a solution of the system of congruences,

y = A (af —ce) (mod m).

then _
x = A (de—bf) (mod m) ,

We can easily check that any such pair (x,y) is a solution.
x=A (de—bf) (mod m) and y= Alaf —ce) (mod m), we have

When
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aA (de—bf) + bA (af —ce)
A (ade—abf —abf —bce)

A (ad—bc) e

e (mod m),

ax + by

and

cA (de—bf) + dA (af —ce)
A (cde=bef + adf —cde)

A (ad=be) f

= AAf

= f (mod m).

cx +dy

This establishes the theorem. O

By similar methods, we may solve systems of n congruences involving n
unknowns. However, we will develop the theory of solving such systems, as
well as larger systems, by methods taken from linear algebra. Readers
unfamiliar with linear algebra may wish to skip the remainder of this section.

Systems of n linear congruences involving n unknowns will arise in our
subsequent cryptographic studies. To study these systems when » is large, it
is helpful to use the language of matrices. We will use some of the basic
notions of matrix arithmetic which are discussed in most linear algebra texts,
such as Anton [60].

We need to define congruences of matrices before we proceed.

Definition. Let 4 and B be nxk matrices with integer entries, with (i,j)th
entries a;; and b;; , respectively. We say that 4 is congruent to B modulo m
if a;; = b;; (mod m) for all pairs (i,j) with 1 i <nandl <j <k. We
write 4 = B (mod m) if A4 is congruent to B modulo m.

The matrix congruence 4 = B (mod m) provides a succinct way of
expressing the nk congruences a;; = by (mod m) for 1 <i <n and
1<j <k

Example. We easily see that

15 3] (43

The following proposition will be needed.
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Proposition 3.6. If 4 and B are nxk matrices with 4 = B (mod m), C is
an kXp matrix and D is a pXn matrix, all with integer entries, then
AC = BC (mod m) and DA = DB (mod m).

Proof. Let the entries of 4 and B be a;; and b;;, respectively, for | < i < n
and 1 < j < k, and let the entries of C be c,} for 1 <i < k and

1 < j <p. The (i,j)th entries of AC and BC are E aj;c;; and 2 bicij,

respectively. Since 4 = B (mod m), we know that a,, = by, (mod m) for all

i and k. Hence, from Theorem 3.3 we see that Ea,,c,j =
=1

Y byc,; (mod m). Consequently, AC = BC (mod m).

r=1
The proof that DA = DB (mod m) is similar and is omitted. O

Now let us consider the system of congruences

anx +apx,+ - tay, x, = b; (mod m)
ay X1+ anx,+ -+ +ay, x, = b, (mod m)
an X1+ apx,+ - +a,, x, = b, (mod m).

Using matrix notation, we see that this system of n congruences is equivalent
to the matrix congruence AX = B (mod m),

apapn " Qg X1 by

ay Az " Ay X5 b
where A = : , X= |- ,and B =

auy Qpy ~ " " Ay Xn bn

Example. The system

3x + 4y = 5 (mod 13)
2x + 5y = 7 (mod 13)

can be written as
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BB = B e

We now develop a method for solving congruences of _the form
AX = B (mod m). This method is based on finding a matrix 4 such that

AA =1 (mod m), where I is the identity matrix.

Definition. If 4 and A are nxn matrices of integers and if

- - ot ---0 ) )
A = AA = I (mod m), where I = o is the identity matrix of
00 --- 1

order n, then A is said to be an inverse of A modulo m .

If A4 is an inverse of A and B = A (mod m), then B is also an inverse of
A. This follows from Proposition 3.6, since BA = 44 = I (mod m).

Conversely, if B, and B, are both inverses of A4, then B = B, (mod m). To
see this, using Proposition 3.6 and the congruence B;4 = B,4 = I (mod m),
we have B;AB, = B,AB, (mod m). Since AB; = I (mod m), we conclude
that B; = B, (mod m).

Example. Since

1 3 3416 10| = (10 (mod 5)
2 4 12 10 16 01

and
34 P 3] - 1125 = (10 (mod 5)
1 2 2 4 5 11 01

34 13
we see that the matrix [1 2] is an inverse of [2 4] modulo 5.

The following proposition gives an easy method for finding inverses for 2x2
matrices.

ab

Proposition 3.7. Let A4 = c d] be a matrix of integers, such that

A =det A = ad—bc is relatively prime to the positive integer m. Then, the
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matrix
d —b

A=A—ca

£l

where A is the inverse of A modulo m, is an inverse of 4 modulo m.

Proof. To verify that the matrix A is an inverse of 4 modulo m, we need
only verify that 44 = 44 =I (mod m).

To see this, note that

- lab|-|d-b - ad—bc 0
AA= 18 e o |E 0 —bc+ad
~_[a0]_[ma0 | _fi0
=AOA= o AAl= o1 = J (mod m)
and
- _—|d-b ab___ad—bc 0
A=A_. , cd| =B 0 —betad
_—|ao] _ faa0 | _[ro
= 0al= 1o 32l = lo1 =] (mod m),

where A is an inverse of A (mod m), which exists because (A,m) = 1. O

34
25

3 5 -4 = (10-8| =
-2 3 -4 6

To provide a formula for an inverse of an nxn matrix where n is a positive

integer, we need a result from linear algebra. This result may be found in

Anton [60; page 79]. It involves the notion of the adjoint of a matrix, which
is defined as follows.

Example. Let 4 = . Since 2 is an inverse det 4 = 7 modulo 13, we

have

A
96

10 5] (mod 13).

Definition. The adjoint of an nXn matrix A is the nXn matrix with (i,j)th
entry Cj;, where Cj; is (=1)'*/ times the determinant of the matrix obtained
by deleting the ith row and jth column from 4. The adjoint of 4 is denoted
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by adj(4).
Theorem 3.9. If A4 is an »nXn matrix with det A 0, then
A (adj4) = (det 4) I, where adj A is the adjoint of A.

Using this theorem, the following proposition follows readily.

Proposition 3.8. If A4 is an nXn matrix with integer entries and m is a
positive integer such that (det 4,m) = 1, then the matrix A=A (adj 4) is
an inverse of 4 modulo m, where A is an inverse of A = det 4 modulo m.

Proof. If (det A,m) =1, then we know that det 4 # 0. Hence, from
Theorem 3.9, we have

AadjA=(detA) I =AI.
Since (det A,m) = 1, there is an inverse A of A = det A modulo m. Hence,
A (Aadj4) = 4 (adj A)A = AA = ] (mod m),
and
A (adj A)A = A (adj 4 - 4) = AAT = T (mod m).
This shows that 4 = A - (adj A) is an inverse of 4 modulo m. O

256
Example. Let 4 = |20 2|. Then det 4 = —5. Since (det 4,7) = 1, and an

123
inverse of det 4 = —5 is 4 (mod 7), we find that

_ -2 -3 5 —8—12 20
A=4@djA)=41-5 0 10| = |-20 0 40
4 1-10 0 4-40

626
105]| (mod 7).

242

We can use an inverse of 4 modulo m to solve the system

AX = B (mod m),

where (det A,m) = 1. By Proposition 3.6, when we multiply both sides of this
congruence by an inverse 4 of 4, we obtain
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A (4X) = 4 B (mod m)
(4 A)X = A4 B (mod m)
X = A B (mod m)

Hence, we find the solution X by forming 4 B (mod ).
Note that this method provides another proof of Theorem 3.8. To see this,

ab X e
let AX =B, where A=cd’ X=y’ and B=f. If
A =det 4 = ad — bc is relatively prime to m, then
x _— _—|d-bfle —|de — bf
y =X=A4 B=A - allf =A af — ce (mod m).

This demonstrates that (x,y) is a solution if and only if

x = Alde—bf) (mod m), y = A (af —ce) (mod m).

Next, we give an example of the solution of a system of three congruences
in three unknowns using matrices.

Example. We consider the system of three congruences

2x| + 5x5 + 6x3 = 3 (mod 7)
2x, + x3 = 4 (mod 7)
x1+2x5+ 3x3 =1 (mod 7).

This is equivalent to the matrix congruence

256 X1 3
1 4
201 {xz | (mod 7).
123]|x; 1
626
We have previously shown that the matrix |1 05| is an inverse of
242

256
201]| (mod 7). Hence, we have
123
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X1 626| |3 32 4
xal _ |ros| 4l 18 2 Y (med D)
X3 24210 |1 24 3 ’

Before leaving this subject, we should mention that many methods used for
solving systems of linear equations may be adapted to solve systems of
congruences. For instance, Gaussian elimination may be adapted to solve
systems of congruences where division is always replaced by multiplication by
inverses modulo m. Also, there is a method for solving systems of congruences
analagous to Cramer’s rule. We leave the development of these methods as
problems for those readers familiar with linear algebra.

3.4 Problems

1. Find the solutions of the following systems of linear congruences.

a) x+2y =1 (mod5)
2x + y =1 (mod 5)

b x+3y =1 (mod 5)
3x + 4y = 2 (mod 5)

2 (mod 5)
1 (mod 5).

c) 4x + y
2x + 3y

2. Find the solutions of the following systems of linear congruences.

a) 2x +3y =5(mod 7)
x +5y =6 (mod7)

b) 4x + y =35 (mod 7)
x + 2y =4 (mod 7).

3. What are the possibilities for the number of incongruent solutions of the system
of linear congruences

ax + by = ¢ (mod p)
dx + ey = f (mod p),

where p is a prime and a,b,c.d,e, and f are positive integers?

4. Find the matrix C such that
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21 40
C = 43 21 (modS)

and all entries of C are nonnegative integers less than 5.

5. Use mathematical induction to prove that if 4 and B are nXn matrices with
integer entries such that 4 = B(mod m), then A* = B*(mod m) for all
positive integers k.

6. A matrix 4 # [ is called involutory modulo m if A> =1 (mod m).

411
a) Show that [l 22] is involutory modulo 26.

b) Show that if A4 is a 2x2 involutory matrix modulo m, then
det A = = 1 (mod m).

7. Find an inverse modulo 5 of each of the following matrices

01
a) 10
12
b 134
22
c) 12|

8. Find an inverse modulo 7 of each of the following matrices

110
a) (101
011
123
b) 125
146

1110
1101
9 o1
0111

9. Use the results of problem 8 to find all solutions of each of the following systems

a) x+y =1 (mod 7)

x+z = 2 (mod 7)
y+z = 3 (mod 7)
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b) x+2y+3z =1 (mod 7)
x+3y+5z =1 (mod 7)
x+4y+6z =1 (mod 7)

¢c) x+y +z =1 (mod 7)
x+y +w =1 (mod 7)
x+z +w =1 (mod 7)
y+z 4w =1 (mod 7).

10. How many incongruent solutions does each of the following systems of
congruences have

a) x+ y+ z =1 (mod>5)
2x + 4y + 3z = 1 (mod 5)
b) 2x + 3y + z = 3 (mod 5)
x+2y+3z =1 (mod 5)
2x + z =1 (mod 5)

c) 3x+ y+3z =1 (mod 5)
x +2y +4z = 2 (mod 5)
4x + 3y + 2z = 3 (mod 5)
d)2x+ y+ z =1 (mod 5
x+2y+ z =1 (mod>5)
x+ y+2z =1 (mod 5).

11. Develop an analogue of Cramer’s rule for solving systems of » linear congruences
in n unknowns.

12. Develop an analogue of Gaussian elimination to solve systems of n linear
congruences in m unknowns (where m and n may be different).

13. A magic square is a square array of integers with the property that the sum of
the integers in a row or in a column is always the same. In this problem, we
present a method for producing magic squares.

a) Show that the n? integers 0,1,..,n>~1 are put into the n® positions of an
nxn square, without putting two integers in the same position, if the integer
k is placed in the ith row and jth column, where

i
J

a +ck + elk/n] (mod n),
b+ dk + flk/n] (mod n),

1<i<n1<j<n
(¢f—de,n) = 1.

and ab,c,de,and f/ are integers with

b) Show that a magic square is produced in part (a) if
(c,n) =(@d,n) =(en)=(,n) =1
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¢) The positive and negative diagonals of an nxn square consist of the
integers  in  positions  (i,j), where i+ j =k (modn) and
i —j = k (mod n), respectively, where k is a given integer. A square is
called diabolic if the sum of the integers in a positive or negative diagonal is
always the same. Show that a diabolic square is produced using the
procedure given in vpart (a) if (c+d,n) = (c—d,n) = (e+f,n) =
(e~f,n) =1.

3.4 Computer Projects

Write programs to do the following:

1.

AR

Find the solutions of a system of two linear congruences in two unknowns using
Theorem 3.8.

Find inverses of 2X2 matrices using Proposition 3.7.
Find inverses of #Xn matrices using Theorem 3.9.
Solve systems of n linear congruences in n unknowns using inverses of matrices.

Solve systems of n linear congruences in n unknowns using an analogue of
Cramer's rule (see problem 11).

Solve system of # linear congruences in m unknowns using an analogue of
Gaussian elimination (see problem 12).

Produce magic squares by the method given in problem 13.




4

Applications of Congruences

4.1 Divisibility Tests

Using congruences, we can develop divisibility tests for integers based on
their expansions with respect to different bases.

We begin with tests which use decimal notation. In the following discussion
let n = (@gas_;...a1ag)1o. Then n =a; 10 + ;) 107"+ - -+ + 4,10 + a,,
with 0 < a; < 9 for j=0.1, 2,...k.

First, we develop tests for divisibility by powers of 2. Since
10 = 0 (mod 2), Theorem 3.5 tells us that 10/ = 0 (mod 2/) for all positive
integers j. Hence,

n = (a,)p (mod 2),

n = (aa9) 1o (mod 22),

n = (a,a,aq) 10 (mod 23),

n = (aj_1a;-3...a2a1a0) 1o (mod 27) .

These congruences tell us that to determine whether an integer n is divisible
by 2, we only need to examine its last digit for divisibility by 2. Similarly, to
determine whether n is divisible by 4, we only need to check the integer made
up of the last two digits of n for divisibility by 4. In general, to test n for
divisibility by 2/, we only need to check the integer made up of the last j
digits of n for divisibility by 2/.

129
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Example. Let n = 32688048. We see that 2 | n since 2 | 8, 4] n since
4| 48,8 | n since 8 | 48, 16 | n since 16 | 8048, but 32 } n since 32 1 88048.

To develop tests for divisibility by powers of 5, first note that since
10 =0 (mod 5), we have 10/ =0 (mod 5/). Hence, divisibility tests for
powers of 5 are analogous to those for powers of 2. We only need to check the

integer made up of the last j digits of n to determine whether » is divisible by
5.

Example. Let n = 15535375. Since 5| 5,5 | n, since 25 |'75, 25 | n, since
125 | 375, 125 | n, but since 625 | 5375, 625 [ n.

Next, we develop tests for divisibility by 3 and by 9. Note that both the
congruences 10 =1 (mod3) and 10=1(mod9) hold. Hence,
10¥ = 1 (mod 3) and (mod 9). This gives us the useful congruences

(agag—;...a1a) = a; 108 + Q10571+ -+ a;10 + a
Sarta+ - +a + ay(mod 3) and (mod 9).

Hence, we only need to check whether the sum of the digits of # is divisible by
3, or by 9, to see whether 7 is divisible by 3, or by 9.

Example. Let n = 4127835. Then, the sum of the digits of n is
4+1+24+7+8+3+5=30. Since3|30but9/30,3|nbut9/n.

A rather simple test can be found for divisibility by 11. Since
10 = —1 (mod 11), we have

(akak_l,..alao)m = akIOk + ak_llok“ + -+ a110 + ap
Saq D+ g (-D* '+ - —a, + a4 (mod 11).

This shows that (aya;_..a1ap)jo is divisible by 11, if and only if
ag—ay+a;— -+ + (=1)*a, the integer formed by alternately adding
and subtracting the digits, is divisible by 11.

Example. We see that 723160823 is divisible by 11, since alternately adding
and subtracting its digits yields 3—2+8—-0+6—-1+3—-2+7 =22
which is divisible 11. On the other hand, 33678924 is not divisible by 11,
since4 —2+9—8 +7—6+3—3=4is not divisible by 11.

Next, we develop a test to simultaneously test for divisibility by the primes
7,11, and 13. Note that 7-11:13 = 1001 and 10* = 1000 = —1 (mod 1001).
Hence,
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(akak_l...ao)w = akIOk + ak_llo"_' + -+ a110 + ayp
= (a() + 10a, + 10002) + 1000(03 + 10a4 + 10005) +
(1000)%(ag + 10a; + 100ag) + - - -
= (100a, + 10a, + ao) — (100as + 10a,4 + 03) +
(100ag + 10(17 + (16) -
= (020100)10 - (050403)10 + (aga7a(,)10 - (mod 1001)

This congruence tells us that an integer is congruent modulo 1001 to the
integer formed by successively adding and subtracting the three-digit integers
with decimal expansions formed from successive blocks of three decimal digits
of the original number, where digits are grouped starting with the rightmost
digit. As a consequence, since 7, 11, and 13 are divisors of 1001, to determine
whether an integer is divisible by 7, 11, or 13, we only need to check whether this
alternating sum and difference of blocks of three digits is divisible by 7, 11, or
13.

Example. Let n = 59358208. Since the alternating sum and difference of the
integers formed from blocks of three digits, 208 — 358 + 59 = -91, is
divisible by 7 and 13, but not by 11, we see that n is divisible by 7 and 13, but
not by 11.

T \_‘\”—v‘:‘ \. S .

All of the divisibility tests we have developed thus far are based on decimal
representations. We now develop divisibility tests using base b
representations, where b is a positive integer.

Divisibility Test 1. If 4 | » and Jj and k are positive integers with j < k,
then (ay...a,aq), is divisible by d’ if and only if (a;_;...a;ap), is divisible by
d’.

Proof. Since b = 0 (mod d), Theorem 3.5 tells us that 5/ = 0 (mod d’).
Hence,

(agag_i...arap)p = agb* + ot ab/ +a, b+ - +ab +ag
aj_|b"1 + -+ alb + ag
(aj-y...a1a0)p (mod d’).

U

Consequently, d | (axay_y...a1a0)p if and only if d | (a;_;...a1a¢)p. O

Divisibility Test 2. If d | (b—1), then n = (a;...a;a¢), is divisible by 4 if and
only if az + -+ -+ a, + aq is divisible by 4.

Proof. Since d | (6—1), we have b = 1 (mod d), so that by Theorem 3.5 we
know that 5/ = 1 (mod d) for all positive integers b. Hence, (a;...a,a¢)y =
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ab* + - +ab+ag=ar+ - +a,+a, (mod d). This shows that
d|nifandonlyifd | (g + -+ +a, +ap. O

Divisibility Test 3. If d | (b + 1), then n = (a;...a,ay), is divisible by d if

and only if (=D*a;, + --- —a, + aq is divisible by d.

Proof. Since d | (b + 1), we have b = —1 (mod d). Hence, b/ = (—=1)J
(mod d), and consequently, n = (a; ..ajap)y, = (-D* a, + - —a
+ag (mod d). Hence, d | n if and only if d | (D% g + -+ —aq,
+ay). O

Example. Let n = (7F2846) 5 (in hex notation). Then, since 2 | 16, from
Divisibility Test 1, we know that 2 | n, since 2 | 6. Likewise, since 4 | 16, we
see that 4 [n, since 4 /6. By Divisibility Test 2, since 3| (16 — 1),
5/(6—1), and 15| (16 — 1), and 7T+ F +2+8 + A4 + 6 = (30), we
know that 3 | n, since 3 | (30) 4, while 5 / n and 15 | n, since 5 ] (30) 5 and
15 [ (30) 4. Furthermore, by Divisibility Test 3, since 17 | (16 + 1) and
n=6-A4+8 —2+F —7= (A4);5 (mod 17), we conclude that 17 | n,
since 17  (4) 6. ‘

Example. Let n = (1001001111),. Then, using Divisibility Test 3, we see
that 3[n, since n = 1-1+4+1—-1 +0—-0+1— 0+0—1=0 (mod 3)
and 3| 2+1) .

4.1 Problems

1. Determine the highest power of 2 dividing each of the following positive integers

a) 201984 c) 89375744
b) 1423408 d)  41578912246.

2. Determine the highest power of 5 dividing each of the following positive integers

a) 112250 c) 235555790
b) 4860625 d) 48126953125,

3. Which of the following integers are divisible by 3? Of those that are, which are
divisible by 9?

a) 18381 c) 987654321
b) 65412351 d) 78918239735
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Which of the following integers are divisible by 11

a) 10763732 c) 674310976375

b) 1086320015 d)  8924310064537?

A repunit is an integer with decimal expansion containing all 1’s.

a) Determine which repunits are divisible by 3; and which are divisible by 9.
b) Determine which repunits are divisible by 11.

¢) Determine which repunits are divisible by 1001. Which are divisible by 7?
by 13?7

d) Determine which repunits with fewer than 10 digits are prime.

A base b repunit is an integer with base b expansion containing all 1’s.
a) Determine which base b repunits are divisible by factors of b —1.
b) Determine which base b repunits are divisible by factors of b + 1.

A base b palindromic integer is an integer whose base b representation reads
the same forward and backward.

a) Show that every decimal palindromic integer with an even number of digits
is divisible by 11.

b) Show that every base 7 palindromic integer with an even number of digits is
divisible by 8.

Develop a test for divisibility by 37, based on the fact that 10° = 1 (mod 37).
Use this to check 443692 and 11092785 for divisibility by 37.

Devise a divisibility test for integers represented in base b notation for divisibility
by n where n in a divisor of >+ 1. (Hint: Split the digits of the base b
representation of the integer into blocks of two, starting on the right).

Use the test you developed in problem 9 to decide whether

a) (101110110), is divisible by 5.

b) (12100122); is divisible by 2, and whether it is divisible by 5.
c) (364701244), is divisible by 5, and whether it is divisible by 13.
d) (5837041320219), is divisible by 101.

An old receipt has faded. It reads 88 chickens at a total of $x4.2y where x and
y are unreadable digits. How much did each chicken cost?

Use a congruence modulo 9 to find the missing digit, indicated by a question
mark: 89878-58965 = 52992 56270.

We can check a multiplication ¢ = ab by determining whether the congruence
¢ =ab (mod m) is valid, where m is any modulus. If we find that
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¢ # ab (mod m), then we know an error has been made. When we take m = 9
and use the fact that an integer in decimal notation is congruent modulo 9 to the
sum of its digits, this check is called casting out nines. Check each of the
following multiplications by casting out nines

a) 875961-2753 = 2410520633
b) 14789-23567 = 348532367
¢)  24789-43717 = 1092700713.
d) Are your checks foolproof?

14. What combinations of digits of a decimal expansion of an integer are congruent
to this integer modulo 99? Use your answer to devise a check for multiplication
based on casting out ninety nines. Then use the test to check the
multiplications in problem 13.

4.1 Computer Projects

Write programs to do the following:

1. Determine the highest powers of 2 and of 5 that divide an integer.

2. Test an integer for divisibility by 3, 7,9, 11, and 13. (Use congruences modulo
1001 for divisibility by 7 and 13.)

3. Determine the highest power of each factor of b that divides an integer from the
base b expansion of the integer.

4. Test an integer from its base b expansion, for divisibility by factors of & — 1 and
of b + 1.

4.2 The Perpetual Calendar

In this section, we derive a formula that gives us the day of the week of any
day of any year. Since the days of the week form a cycle of length seven, we
use a congruence modulo 7. We denote each day of the week by a number in
the set 0,1, 2, 3, 4,5, 6, setting Sunday = 0, Monday = 1, Tuesday =2,
Wednesday = 3, Thursday = 4, Friday = 5, and Saturday = 6.

Julius Caesar changed the Egyptian calendar, which was based on a year of
exactly 365 days, to a new calendar with a year of average length 365 % days,
with leap years every fourth year, to better reflect the true length of the year.
However, more recent calculations have shown that the true length of the year
is approximately 365.2422 days. As the centuries passed, the discrepancies of
0.0078 days per year added up, so that by the year 1582 approximately 10
extra days had been added unnecessarily as leap years. To remedy this, in
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1582 Pope Gregory set up a new calendar. First, 10 days were added to the
date, so that October 5, 1582, became October 15, 1582 (and the 6th through
the 14th of October were skipped). It was decided that leap years would be
precisely the years divisible by 4, except those exactly divisible by 100, i.e.,
the years that mark centuries, would be leap years only when divisible by 400.
As an example, the years 1700, 1800, 1900, and 2100 are not leap years but
1600 and 2000 are. With this arrangement, the average length of a calendar
year is 365.2425 days, rather close to the true year of 365.2422 days. An
error of 0.0003 days per year remains, which is 3 days per 10000 years. In
the future, this discrepancy will have to be accounted for, and various
possibilities have been suggested to correct for this error.

In dealing with calendar dates for various parts of the world, we must also
take into account the fact that the Gregorian calendar was not adopted
everywhere in 1582. In Britain, the Gregorian calendar was adopted only in
1752, and by then, it was necessary to add 11 days. Japan changed over 1873,
the Soviet Union and nearby countries in 1917, while Greece held out until
1923.

We now set up our procedure for finding the day of the week in the
Gregorian calendar for a given date. We first must make some adjustments,
because the extra day in a leap year comes at the end of February. We take
care of this by renumbering the months, starting each year in March, and
considering the months of January and February part of the preceding year.
For instance, February 1984, is considered the 12th month of 1983, and May
1984, is considered the 3rd month of 1984. With this convention, for the day
of interest, let k = day of the month, m = month, and N = year, with
N =100C + Y, where C = century and Y = particular year of the century.
For example, June 12, 1954, has k =12, m =4, N = 1954, C = 19, and
Y = 54.

We use March 1, of each year as our basis. Let dy represent the day of the
week of March 1, in year N. We start with the year 1600 and compute the
day of the week March 1, falls on in any given year. Note that between
March 1 of year N — 1 and March 1 of year N, if year N is not a leap year,
365 days have passed, and since 365 = 1 (mod 7), we see that dy = dy_,
+ 1 (mod 7), while if year N is a leap year, since there is an extra day
between the consecutive firsts of March, we see that dy = dy_; + 2 (mod 7).
Hence, to find dy from de0, we must find out how many leap years have
occurred between the year 1600 and the year IV (not including 1600, but
including V). To compute this, we first note that there are [(N — 1600)/4]
years divisible by 4 between 1600 and N, there are [(N—1600)/100] years
divisible by 100 between 1600 and N, and there are [(N — 1600)/400] years
divisible by 400 between 1600 and N. Hence, the number of leap years
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between 1600 and NV is

[(NV - 1600)/4] — [(W — 1600)/100] + [(V — 1600)/400]
= [N/4] — 400 — [N/100] + 16 + [N/400] — 4
= [N/4] — [N/100] + [V /400] — 388.

(We have used Proposition 1.5 to simplify this expression). Now putting this
in terms of C and Y, we see that the number of leap years between 1600 and
N is
[25C + (Y/4)] — [C + (Y/100)] + [(C/4) + (Y /400)] — 388
=25C +[Y/4] — C + [C/4] — 388
=3C +[C/4] + [Y/4] — 3 (mod 7).

Here we have again used Proposition 1.5, the inequality Y /100 < 1, and the
equation [(C/4) + (Y/400)]1 = [C/4] (which follows from problem 20 of
Section 1.2, since Y /400 < 1/4).

We can now compute dy from digy by shifting dg99 by one day for every
year that has passed, plus an extra day for each leap year between 1600 and
N. This gives the following formula:

Simplifying, we have
dN = d1600 -2C+Y + [C/4] + [Y/4] (mod 7)

Now that we have a formula relating the day of the week for March 1, of any
year, with the day of the week of March 1, 1600, we can use the fact that
March 1, 1982, is a Monday to find the day of the week of March 1, 1600.
For 1982, since N = 1982, we have C = 19, and Y = 82, and since d o5, = 1,
it follows that

1 =dgpo— 38 +82+ [19/4] + [82/4] = d 600 — 2 (mod 7).
Hence, d¢00 = 3, so that March 1, 1600, was a Wednesday. When we insert
the value of d 409, the formula for dy becomes

dy =3-2C+Y +I[C/4] + [Y/4] (mod 7).

We now use this formula to compute the day of the week of the first day of
each month of year N. To do this, we have to use the number of days of the
week that the first of the month of a particular month is shifted from the first
of the month of the preceding month. The months with 30 days shift the first
of the following month up 2 days, because 30 = 2 (mod 7), and those with 31
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days shift the first of the following month up 3 days, because 31 = 3 (mod 7.
Therefore, we must add the following amounts:

from March 1, to April 1: 3 days
from April 1, to May 1: 2 days
from May 1, to June 1: 3 days
from June 1, to July 1: 2 days
from July 1, to August 1: 3 days
from August 1, to September 1: 3 days
from September 1, to October 1: 2 days
from October 1, to November 1: 3 days
from November 1, to December 1: 2 days
from December 1, to January 1: 3 days
from January 1, to February 1: 3 days.

We need a formula that gives us the same increments. Notice that we have
11 increments totaling 29 days, so that each increment averages 2.6 days. By
inspection, we find that the function [2.6m — 0.2] — 2 has exactly the same
increments as m goes from 1 to 11, and is zero when m = 1. Hence, the day
of the week of the first day of month m of year N is given by by the least
positive residue of dy + [2.6m — 0.2] —2 modulo 7.

To find W, the day of the week of day k of month m of year N, we simply
add k—1 to the formula we have devised for the day of the week of the first
day of the same month. We obtain the formula:

W=k +[26m—02]-2C+Y +I[y/4]l +[C/4] (mod 7).

We can use this formula to find the day of the week of any date of any year
in the Gregorian calendar.

Example. To find the day of the week of January 1, 1900, we have
C=18,Y =99, m =11, and kK =1 (since we consider January as the
eleventh month of the preceding year). Hence, we  have
W=1+28—-36+99+4+24 =1 (mod 7), so that the first day of the
twentieth century was a Monday.

4.2 Problems

1. Find the day of the week of the day you were born, and of your birthday this
year.
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Find the day of the week of the following important dates in U. S. history (use
the Julian calendar before 1752, and the Gregorian calendar from 1752 to the
present)

a) October 12, 1492 (Columbus sights land in the Caribbean)

b) May 6, 1692 (Peter Minuit buys Manhattan from the natives)
¢) June 15, 1752 (Benjamin Franklin invents the lightening rod)
d) July 4, 1776 (U. S. Declaration of Independence)

€) March 30, 1867 (U. S. buys Alaska from Russia)

f) March 17, 1888 (Great blizzard in the Eastern U. S.)

g) February 15, 1898 (U. S. Battleship Maine blown up in Havana Harbor)
h) July 2, 1925 (Scopes convicted of teaching evolution)

) July 16, 1945 (First atomic bomb exploded)

7 July 20, 1969 (First man on the moon)

k) August 9, 1974 (Nixon resigns)

1) March 28, 1979 (Three Mile Island nuclear mishap).

To correct the small discrepancy between the number of days in a year of the
Gregorian calendar and an actual year, it has been suggested that the years
exactly divisible by 4000 should not be leap years. Adjust the formula for the
day of the week of a given date to take this correction into account.

Which of your birthdays, until your one hundredth, fall on the same day of the
week as the day you were born?

Show that days with the same calendar date in two different years of the same
century, 28, 56, or 84 years apart, fall on the identical day of the week.

A new calendar called the International Fixed Calendar has been proposed. In
this calendar, there are 13 months, including all our present months, plus a new
month, called Sol, which is placed between June and July. Each month has 28
days, except for the June of leap years which has an extra day (leap years are
determined the same way as in the Gregorian calendar). There is an extra day,
Year End Day, which is not in any month, which we may consider as December
29. Devise a perpetual calendar for the International Fixed Calendar to give day
of the week for any calendar date.

4.2 Computer Projects

Write programs to do the following:
1.
2.
3.

To give the day of the week of any date.
To print out a calendar of any year.

To print out a calendar for the International Fixed Calendar (See problem 6).
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4.3 Round-Robin Tournaments

Congruences can be used to schedule round-robin tournaments. In this
section, we show how to schedule a tournament for N different teams, so that
each team plays every other team exactly once. The method we describe was
developed by Freund [65].

First note that if N is odd, not all teams can be scheduled in each round,
since when teams are paired, the total number of teams playing is even. So, if
N is odd, we add a dummy team, and if a team is paired with the dummy
team during a particular round, it draws a bye in that round and does not
play. Hence, we can assume that we always have an even number of teams,
with the addition of a dummy team if necessary.

Now label the N teams with the integers 1, 2, 3,...,N—1, N. We construct
a schedule, pairing teams in the following way. We have team i, with i & N,
play team j, with j# N and j # i, in the kth round if
i +j =k (mod N—1). This schedules games for all teams in round k,
except for team NV and the one team i for which 2i = k (mod N—1). There
is one such team because Theorem 3.7 tells us that the congruence
2x = k (mod N—1) has exactly one solution with 1 € x < N—1, since
(2, N—1) = 1. We match this team i with team N in the kth round.

We must now show that each team plays every other team exactly once.
We consider the first N—1 teams. Note that team i, where 1 < i < N—1,
plays team N in round k where 2i = k (mod N—1), and this happens exactly
once. In the other rounds, team i does not play the same team twice, for if
team i played team j in both rounds k and k', then i + j = k (mod N—1),
and i +j = k' (mod N—1) which is an obvious contradiction because
k # k' (mod N—1). Hence, since each of the first N—1 teams plays N—1
games, and does not play any team more than once, it plays every team
exactly once. Also, team N plays N—1 games, and since every other team
plays team N exactly once, team /N plays every other team exactly once.

Example. To schedule a round-robin tournament with 5 teams, labeled
1, 2, 3,4, and 5, we include a dummy team labeled 6. In round one, team 1
plays team j where 1 + j = 1(mod 5). This is the team j = 5 so that team 1
plays team 5. Team 2 is scheduled in round one with team 4, since the
solution of 2 + j = 1(mod 5) is j = 4. Since i =3 is the solution of the
congruence 2i = 1 (mod 5), team 3 is paired with the dummy team 6, and
hence, draws a bye in the first round. If we continue this procedure and finish
scheduling the other rounds, we end up with the pairings shown in Figure 4.1,
where the opponent of team i in round k is given in the kth row and ith
column.
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Team |, 2 0 3 | 4 | s
Round

1 S 4 bye 2 1

2 bye 5 4 3 2

3 2 1 5 bye 3

4 3 bye 1 5 4

5 4 3 2 1 bye

Figure 4.1. Round-Robin Schedule for Five Teams.

4.3 Problems

1. Set up a round-robin tournament schedule for

a) 7 teams c) 9 teams
b) 8 teams d) 10 teams.

In round-robin tournament scheduling, we wish to assign a home team and an
away team for each game so that each of n teams, where n is odd, plays an
equal number of home games and away games. Show that if when i + j is odd,
we assign the smaller of / and j as the home team, while if i + j is even, we
assign the larger of i and j as the home team, then each team plays an equal
number of home and away games.

3. In a round-robin tournament scheduling, use problem 2 to determine the home
team for each game when there are

a) 5 teams b) 7 teams c¢) 9 teams.

4.3 Computer Projects
Write programs to do the following:

1.

Schedule round-robin tournaments.
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2. Using problem 2, schedule round-robin tournaments for an odd number of teams,
specifying the home team for each game.

4.4 Computer File Storage And Hashing Functions

A university wishes to store a file for each of its students in its computer.
The identifying number or key for each file is the social security number of
the student enrolled. The social security number is a nine-digit integer, so it is
extremely unfeasible to reserve a memory location for each possible social
security number. Instead, a systematic way to arrange the files in memory,
using a reasonable amount of memory locations, should be used so that each
file can be easily accessed. Systematic methods of arranging files have been
developed based on hashing functions . A hashing function assigns to the key
of each file a particular memory location. Various types of hashing functions
have been suggested, but the type most commonly used involves modular
arithmetic. We discuss this type of hashing function here. For a general
discussion of hashing functions see Knuth [57] or Kronsjo [58].

Let k be the key of the file to be stored; in our example, k is the social
security number of a student. Let m be a positive integer. We define the
hashing function & (k) by

h(k) = k (mod m),

where 0 < h (k) < m, so that k (k) is the least positive residue of k modulo
m. We wish to pick m intelligently, so that the files are distributed in a
reasonable way throughout the m different memory locations 0, 1, 2,..., m—1.

The first thing to keep in mind is that m should not be a power of the base
b which is used to represent the keys. For instance, when using social security
numbers as keys, m should not be a power of 10, such as 103, because the
value of the hashing function would simply be the last several digits of the
key; this may not distribute the keys uniformly throughout the memory
locations. For instance, the last three digits of early issued social security
numbers may often be between 000 and 099, but seldom between 900 and
999. Likewise, it is unwise to use a number dividing b* + a where k and a
are small integers for the modulus 7. In such a case, h (k) would depend too
strongly on the particular digits of the key, and different keys with similar, but
rearranged, digits may be sent to the same memory location, For instance, if
m = 111, then, since 111 | (10> —1) = 999, we have 10° =1 (mod 111), so
that the social security numbers 064 212 848 and 064 848 212 are sent to the
same memory location, since
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h (064 212 848) = 064 212 848 = 064 + 212 + 848 = 1124 = 14 (mod 111),

and

h (064 848 212) = 064 848 212 = 064 + 848 + 212 = 1124 = 14 (mod 111).

To avoid such difficulties, m should be a prime approximating the number
of available memory locations devoted to file storage. For instance, if there
are 5000 memory locations available for storage of 2000 student files we could
pick m to be equal to the prime 4969.

We have avoided mentioning the problem that arises when the hashing
function assigns the same memory location to two different files. When this
occurs, we say the there is a collision. We need a method to resolve collisions,
so that files are assigned to different memory locations. There are two kinds
of collision resolution policies. In the first kind, when a collision occurs, extra
memory locations are linked together to the first memory location. When one
wishes to access a file where this collision resolution policy has been used, it is
necessary to first evaluate the hashing function for the particular key involved.
Then the list linked to this memory location is searched.

The second kind of collision resolution policy is to look for an open memory
location when an occupied location is assigned to a file. Various suggestions,
such as the following technique have been made for accomplishing this.

Starting with our original hashing function hy(k) = h(k), we define a
sequence of memory locations h;(k),h,(k),... . We first attempt to place the
file with key k at location ho(k). If this location is occupied, we move to
location A, (k). If this is occupied, we move to location h,(k), etc.

We can choose the sequence of functions k;(k) in various ways. The
simplest way is to let

hi(k) = h(k) + j (mod m), 0 < h;(k) < m.

This places the file with key k as near as possible past location 4 (k). Note
that with this choice of h; (k), all memory locations are checked, so if there is
an open location, it will be found. Unfortunately, this simple choice of &; (k)
leads to difficulties; files tend to cluster. We see that if k, = k, and
hi(k\) = h;(kj) for nonnegative integers i and j, then h;yy (k1) = hjuy (k)
for k =1, 2,3,..., so that exactly the same sequence of locations are traced out
once there is a collision. This lowers the efficiency of the search for files in the
table. We would like to avoid this problem of clustering, so we choose the
function h; (k) in a different way.
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To avoid clustering, we use a technique called double hashing. We choose,
as before,

h(k) = k (mod m),

with 0 < h (k) < m, where m is prime, as the hashing function. We take a
second hashing function

gk) =k +1 (mod m—2),

where 0 < g(k) < m—1, so that (g(k),m)=1. We take as a
probing sequence

hi(k) = h(k) + j g(k) (mod m),

where 0 < h;(k) < m. Since (g(k), m) =1, as j runs through the integers
0,1, 2,..,m — 1, all memory locations are traced out. The ideal situation
would be for m—2 to also be prime, so that the values g (k) are distributed in
a reasonable way. Hence, we would like m—2 and m to be twin primes.

Example. In our example using social security numbers, both m = 4969, and
m—2 = 4967 are prime. Our probing sequence is

hi(k) = h(k) + j g(k) (mod 4969),

where 0 < h; (k) < 4969, h(k) =k (mod 4969), and g(k) =k + 1
(mod 4967).

Suppose we wish to assign memory locations to files for students with social
security numbers:

ky, =344 401 659 k¢ = 372 500 191
ko, =325510778 k; = 034 367 980
ky=212228 844 kg = 546 332 190
ky=329938 157 ko = 509 496 993
ks =047 900 151 ko = 132 489 973.

Since k| = 269, k, = 1526, and k; = 2854 (mod 4969), we assign the first
three files to locations 269, 1526, and 2854, respectively. Since k4, =
1526 (mod 4969), but location 1526 is taken, we compute h, (ks = h(k,) +
g(ky) = 1526 + 216 = 1742 (mod 4969), since gk =1+ k=
216 (mod 4967). Since location 1742 ts free, we assign the fourth file to this
location. The fifth, six, seventh, and eighth files go into the available locations
3960, 4075, 2376, and 578, respectively, because ks = 3960, ks = 4075,
k, = 2376, and kg = 578 (mod 4969). We find that ko = 578 (mod 4969);
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because location 578 is occupied, we compute h; (ko) + g (ko) = 578 + 2002
= 2580 (mod 4969), where g (ko) = 1 + k9 = 2002 (mod 4967). Hence, we
assign the ninth file to the free location 2580. Finally, we find that k,, =
1526 (mod 4967), but location 1526 is taken. We compute by (ko) = h(k,o)
+ g(kip) = 1526 + 216 = 1742 (mod 4969), because glkig) = ko = 216
(mod 4967), but location 1742 is taken. Hence, we continue by finding
hylki) = h(ky) + 2g(k,y) = 1958 (mod 4969) and in this available
location, we place the tenth file.

Table 4.1 lists the assignments for the files of students by their social
security numbers. In the table, the file locations are shown in boldface.

Social Security

Number h(k) | hi(k) | hy(k)

344 401 659 269
325 510 778 1526
212 228 844 2854
329 938 157 1526 1742
047 900 151 3960
372 500 191 4075
034 367 980 2376
546 332 190 578
509 496 993 578 2580
132 489 973 1526 1742 1958

Table 4.1. Hashing Function for Student Files.

We wish to find conditions where double hashing leads to clustering.
Hence, we find conditions when

(41) h,(k]) =h_,(k2)

and

(42) h,‘+1(k1) = hj+l(k2)’

so that the two consecutive terms of two probe sequences agree. If both (4.1)
and (4.2) occur, then

hiky) +iglk) = hky) + jg(k,) (mod m)
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and

h(k]) + G+ l)g(kl) = h(kz) + (j + 1)g(k2) (mod m)

Subtracting the first of these two congruences from the second, we obtain

gk, = g(ky) (mod m),

so that
ki, = k, (mod m-2).

Since g(k;) = g(k,), we can substitute this into the first congruence to obtain

h (k) = h(k,) (mod m),

which shows that
ki = k, (mod m).

Consequently, since (m—2, m) = 1, Theorem 3.6 tells us that

kl = kz (mod m(m—2))

Therefore, the only way that two probing sequences can agree for two
consecutive terms is if the two keys involved, k, and k,, are congruent modulo
m (m—2). Hence, clustering is extremely rare. Indeed, if m(m—2) > k for
all keys k, clustering will never occur.

4.4 Problems

1. A parking lot has 101 parking places. A total of 500 parking stickers are sold
and only 50-75 vehicles are expected to be parked at a time. Set up a hashing
function and collision resolution policy for assigning parking places based on
license plates displaying six-digit numbers.

2. Assign memory locations for students in your class, using as keys the day of the
month of birthdays of students with hashing function 2 (K) = K (mod 19),

a) with probing sequence A;(K) = h(K) + j (mod 19).

b) with probing sequence h;(K) = h(K) + jg(K),0< j <16, where
g(K) =1+ K(mod 17).

3. Let the hashing function be #(K) = K(mod m), with 0 < h(K) < m, and let
the probing sequence for collision resolution be h;(K) = h(K) + jq (mod m),
0 < k;(K) < m, for j =1,2,.,m—1. Show that all memory locations are
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probed
a) if misprimeand 1 < g < m —1.
b) if m =2 and ¢ is odd.

4. A probing sequence for resolving collisions where the hashing function is
h(K) = K(mod m), 0<h((K)<m, is given by h;(K) = h(K)
+j(2h(K) + 1) (mod m), 0 < hi(K) < m.

a) Show that if m is prime, then all memory sequences are probed.

b) Determine conditions for clustering to occur, i.c., when k ;(Ky) = h;(K,) and
hj+r (K]) = hj+,- (Kz) for r = 1,2,... .

5. Using the hashing function and probing sequence of the example in the text, find
open memory locations for the files of students with social security numbers:
kip = 137612044k, = 505576452, k3 = 157170996, k,, = 131220418. (Add
these to the ten files already stored.)

4.4 Computer Projects

Write programs to assign memory locations to student files, using the hashing
function h (k) = k(mod1021), 0 < h(k) < 1021, where the keys are the social
security numbers of students.

1. Linking files together when collisions occur.
2. Using h;(k) = h(k) + j (mod 1021), j = 0, 1, 2,... as the probing sequence.

3. Using kj(k) = h(k) + jg(k),j =0,1,2,. where g(k) =1+ k (mod 1019)
as the probing sequence.
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Some Special Congruences

5.1 Wilson's Theorem and Fermat's Little Theorem

In this section, we discuss two important congruences that are often useful
in number theory. We first discuss a congruence for factorials called Wilson’s
theorem.

Wilson’s Theorem. If p is prime, then (p—1)! = —1 (mod p).

The first proof of Wilson’s Theorem was given by the French mathematician
Joseph Lagrange in 1770. The mathematician after whom the theorem is
named, John Wilson, conjectured, but did not prove it. Before proving
Wilson’s theorem, we use an example to illustrate the idea behind the proof.

Example. Let p=7. We have (7—-1)! = 6! = 1:2:3-4-5:6. We will rearrange
the factors in the product, grouping together pairs of inverses modulo 7. We
note that 24 =1 (mod7) and 35 =1 (mod7). Hence,
6! = 1-(24) (356 =16 = —1 (mod 7). Thus, we have verified a special
case of Wilson's theorem.

We now use the technique illustrated in the example to prove Wilson's
theorem.

Proof. When p=2, we have (p—1)! = 1 = —1 (mod 2). Hence, the theorem
is true for p=2. Now, let p be a prime greater than 2. Using Theorem 3.7,
for each integer @ with 1 < a < p—1 , there is an inverse a, 1 < a < p—1,
with aa = 1 (mod p). From Proposition 3.4, the only positive integers less
than p that are their own inverses are 1 and p—1. Therefore, we can group

147
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the integers from 2 to p—2 into (p—3)/2 pairs of integers, with the product of
each pair congruent to 1 modulo p. Hence, we have

23 -+ (p=3)(p=2) =1 (mod p).

We conclude the proof by multiplying both sides of the above congruence by 1
and p—1 to obtain
(p-D!'=123- (p=-3)(p-22(p—1) = 1-(p—1) = —1 (mod p). O

An interesting observation is that the converse of Wilson's theorem is also
true, as the following theorem shows.

Theorem S5.1. If n is a positive integer such that (n—1)! = —1 (mod n), then
n is prime.
Proof. Assume that n is a composite integer and that (n—1)! = —1 (mod n).

Since n is composite, we have n=ab, where | <a <n and 1 < b < n.
Since a < n, we know that @ | (n—1)!, because a is one of the n—1 numbers

multiplied together to form (n—1)!. Since (n—1)! = —1 (mod n), it follows
that n | [(n—1)! + 1]. This means, by the use of Proposition 1.3, that a also
divides (n—1)!'+ 1. From Proposition 1.4, since a | (n—1)! and

a | [(n—1)! + 1], we conclude that a | [(n—1)'+ 1 1 = (n—1)! = 1. This is
an obvious contradiction, since @ > 1. O

We illustrate the use of this result with an example.

Example. Since (6—1)! = 5!= 120 = 0 (mod 6) , Theorem 5.1 verifies the
obvious fact that 6 is not prime,

As we can see, the converse of Wilson’s theorem gives us a primality test.
To decide whether an integer n is prime, we determine whether
(n—1)! = —1 (mod 7). Unfortunately, this is an impractical test because
n — 1 multiplications modulo » are needed to find (n—1)!, requiring
0 (n(logyn)?) bit operations.

When working with congruences involving exponents, the following theorem
is of great importance.
/(a_, r‘)"—i

Fermat’s Little Theorem. If p is prime and a is a positive integer with p [ a,
then a”~! = 1 (mod p). .

4° = g mod
Proof. Consider 'the p—1 integers a, 2a, ..., (p—1)a. None of these integers
are divisible by p, for if p | ja, then by Lemma 2.3, p | j, since p la. This
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is impossible because 1 < j < p—1. Furthermore, no two of the integers
a,2a,.. (p—1)a are congruent modulo p. To see this, assume that
ja = ka (mod p). Then, from Corollary 3.1, since (a,p) =1, we have
j = k (mod p). This is impossible, since j and k are positive integers less
thanp — 1.

Since the integers a, 2a, .., (p—1)a are a set of p—1 integers all
incongruent to zero, and no two congruent modulo p, we know that the least
positive residues of a, 2a, ..., (p—1)a, taken in some order, must be the
integers 1,2, ..,p—1. As a consequence, the product of the integers
a,2a, .., (p—1)a is congruent modulo p to the product of the first p—1
positive integers. Hence,

a2a -+ (p—=Na =12 --- (p—1) (mod p).

Therefore,
a? Yp—D! = (p—1)! (mod p) .

Since ((p—1)!, p) = 1, using Corollary 3.1, we cancel (p—1)! to obtain

a? ' =1 (mod p). O
We illustrate the ideas of the proof with an example.

Example. Let p=7 and a=3. Then, 1:3 = 3(mod 7), 2:3 =6 (mod 7),
33=2(mod7), 43 =5 (mod 7), 53 =1 (mod 7), and 6:3 = 4 (mod 7).
Consequently,

(1-3)-(2:3)-(3-3)-(4:3)-(5:3)-(6:3) = 3-6-2:5:1-4 (mod 7),
so that 3%1-2:3:4-56 = 3-6:2:5-1-4 (mod 7). Hence, 356! = 6! (mod 7), and
therefore, 3 = 1 (mod 7).

On occasion, we would like to have a congruence like Fermat's little
theorem that holds for all integers a, given the prime p. This is supplied by
the following result.

Theorem 5.2. If p is prime and a is a positive integer, then
a? = a (mod p).

Proof. If p | a, by Fermat's little theorem we know that a?~! = 1 (mod p).
Multiplying both sides of this congruence by a, we find that a”? = a (mod p).
If p | a, then p | a” as well, so that @» = a = 0 (mod p). This finishes the
proof, since @” = a (mod p) if p [ a and if pla. O
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Fermat’s little theorem is useful in finding the least positive residues of
powers.

Example. We can find the least positive residue of 32°! modulo 11 with the
help of Fermat’s little theorem. We know that 3! =1 (mod 11). Hence,
3200 = (31920 3= 3 (mod 11) .

A useful application of Fermat’s little theorem is provided by the following

result.

Theorem 5.3. If p is prime and a is an integer with p [ a, then a?~2 is an
inverse of a modulo p.

Proof. If pla, then Fermat’s little theorem tells wus that
a-aP? = gP™!' = 1 (mod p). Hence, a?~2 is an inverse of @ modulo p.

Example. From Theorem 5.3, we know that 2° = 512 = 6 (mod 11) is an
inverse of 2 modulo 11.

Theorem 5.3 gives us another way to solve linear congruences with respect
to prime moduli.

Corollary 5.1. If a and b are positive integers and p is prime with p /a,
then the solutions of the linear congruence ax = b (mod p) are the integers
x such that x = a”~2b (mod p).
Proof. Suppose that ax = b (mod p). Since p | a, we know from Theorem
5.2 that a?”% is an inverse of a (mod p). Multiplying both sides of the
original congruence by a”~2, we have

aP~%2ax = a”?~%b(mod p).

Hence,

x = a”™% (mod p). O

5.1 Problems

1. Using Wilson’s theorem, find the least positive residue of 8:9-10-11:12-13
modulo 7.

2. Using Fermat’s little theorem, find the least positive residue of 2!%%0% modulo
17.
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wos W

17.
18.
19.

20.

21.

22.

Show that 3' = I (mod 11?).
Using Fermat’s little theorem, find the last digit of the base 7 expansion of 3'®.
Using Fermat’s little theorem, find the solutions of the linear congruences

a) 7x =12 (mod 17) b)  4x = 11 (mod 19).

Show that if n is a composite integer with n = 4, then (n — 1)! = 0 (mod n).
Show that if p is an odd prime, then 2(p — 3)! = —1 (mod p).

Show that if n is odd and 3 | n, then n? = 1 (mod 24).

Show that 42 | (n” — n) for all positive integers n.

Show that if p and ¢ are distinct primes, then p?~' + ¢?' = 1 (mod pgq).

Show that p is prime and a and b are integers such that @’ = b” (mod p), then
a® = b" (mod p?).

Show that if p is an odd prime, then 1232 --- (p—4)(p-2)? =
(=1)%*Y72 (mod p).

Show that if p is prime and p = 3 (mod 4), then {(p—1)/2)! = = | (mod p).

a) Let p be prime and suppose that r is a positive integer less then p such that
(—=D7r' = —1 (mod p). Show that (p—r+1)! = —1 (mod p).

b) Using part (a), show that 61! = 63! = —1 (mod 71).

Using Wilson’s theorem, show that if p is a prime and p = 1 (mod 4), then the
congruence x2 = —1 (mod p) has two incongruent solutions given by

x = = [(p—1)/2]! (modp).

Show that if p is a prime and 0 < k <p, then (p — &)k —1)!
= (-1)* (mod p).

Show that if p is prime and a is an integer, then p | [a? + (p—1)!al.

For which positive integers n is n* + 4" prime?

Show that the pair of positive integers n and n + 2 are twin primes if and only if
4f(n—1)!'+ 114+ n =0 (mod n(n + 2)), where n = 1.

Show that the positive integers n and n + k, where n > k and k is an even
positive integer, are both prime if and only if *DA((—D!+ 1]
+nlk!— 1Dk = 1D!'=0 (mod n(n + k)).

2p
Show that if p is prime, then [p ] = 2 (mod p).
a) In problem 17 of Section 1.5, we showed that the binomial coefficient {i],

where 1 < k < p — 1, is divisible by p when p is prime. Use this fact and the
binomial theorem to show that if @ and b are integers, then
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(@ +5)” = a” + b? (mod p).

b) Use part (a) to prove Fermat’s little theorem by mathematical induction.
(Hint: In the induction step, use part (a) to obtain a congruence for (a + 1)?.)

23. Using problem 16 of Section 3.3, prove Gauss' generalization of Wilson's
theorem, namely that the product of all the positive integers less than m that are
relatively prime to m is congruent to 1 (mod m), unless m = 4,p', or 2p' where
p is an odd prime and ¢ is a positive integer, in which case, it is congruent to
—1 (mod m).

24. A deck of cards is shuffled by cutting the deck into two piles of 26 cards. Then,

the new deck is formed by alternating cards from the two piles, starting with the
bottom pile.

a) Show that if a card begins in the cth position in the deck, it will be in the
bth position in the new deck where & = 2¢ (mod 53) and 1 € b <52.

b) Determine the number of shuffles of the type described above that are
needed to return the deck of cards to its original order.

25. Let p be prime and let @ be a positive integer not divisible by p. We define the
Fermat quotient q,(a) by g,(a) = (a?™'~1)/p. Show that if @ and b are
positive integers not divisible by the prime D, then
gy (ab) = q,(a) + g, () (mod p).

26. Let p be prime and let ay,a,,...,a, and by by,...,b, be complete systems of residues
modulo p . Show that a,b),a3b,,....a,b, is not a complete system of residues
modulo p.

5.1 Computer Projects

Write programs to do the following:

1. Find all Wilson primes less than 10000. A Wilson prime is a prime p for which
(@ — D!'= ~1 (mod p?).

2. Find the primes p less than 10000 for which 2! = | (mod p?).

Solve linear congruences with prime moduli via Fermat'’s little theorem.

5.2 Pseudoprimes

Fermat's little theorem tells us that if n is prime and b is any integer, then
b" = b (mod n). Consequently, if we can find an integer b such that
b" # b (mod n), then we know that #n is composite.

Example. We can show 63 is not prime by observing that
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263 = 260.23 = (26)10.23 = 641023 = 23 = 8 % 2 (mod 63).

Using Fermat'’s little theorem, we can show that an integer is composite. It
would be even more useful if it also provided a way to show that an integer is
prime. The ancient Chinese believed that if 2" = 2 (mod ), then n must be
prime. Unfortunately, the converse of Fermat's little theorem is not true, as
the following example shows.

Example. Let n = 341 = 11-31. By Fermat’s little theorem, we see that 210
=1 (mod 11), so that 234 = (2193 =1 (mod 11). Also 23 = (2% =
(32)%® = 1 (mod 31). Hence, by Theorem 3.1, we have 2**° = 1 (mod 341).
By multiplying both sides of this congruence by 2, we have
2341 = 2 (mod 341), even though 341 is not prime.

Examples such as this lead to the following definition.

Definition. Let # be a positive integer. If n is a composite positive integer
and " = b (mod n), then n is called a pseudoprime to the base b.

Note that if (b,n) = 1, then the congruence 5” = b (mod n) is equivalent
to the congruence "' = 1 (mod n). To see this, note that by Corollary 3.1
we can divide both sides of the first congruence by b, since (b,n) =1, to
obtain the second congruence. By Theorem 3.1, we can multiply both sides of
the second congruence by b to obtain the first. We will often use this
equivalent condition.

Example. The integers 341 = 11-31, 561 = 3-11-17 and 645 = 3:5-43 are
pseudoprimes to the base 2, since it is easily verified that 23 = 1 (mod 341),
2560 = | (mod 561), and 2°** = 1 (mod 645).

If there are relatively few pseudoprimes to the base b, then checking to see
whether the congruence b" = b (mod n) holds is an effective test; only a
small fraction of composite numbers pass this test. In fact, the pseudoprimes
to the base b have been shown to be much rarer than prime numbers. In
particular, there are 455052512 primes, but only 14884 pseudoprimes to the
base 2, less than 10'°. Although pseudoprimes to any given base are rare,
there are, nevertheless, infinitely many pseudoprimes to any given base. We
will prove this for the base 2. The following lemma is useful in the proof.

Lemma 5.1. If d and n are positive integers such that 4 divides n, then
24 — 1 divides 2" — 1.

Proof. Since d | n, there is a positive integer ¢ with dt = n. By setting
x = 2% in the identity x* —1=( —1) '+ x"24+ --- + 1), we find
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that 2" — 1 = (29 — 1) (47D 4 24¢=2 4 ... 429 4 1) Consequently,
Q-] @"-1. 0

We can now prove that there are infinitely many pseudoprimes to the base
2.

Theorem 5.4. There are infinitely many pseudoprimes to the base 2.

Proof. We will show that if n is an odd pseudoprime to the base 2, then
m = 2" — 1 is also an odd pseudoprime to the base 2. Since we have at least
one odd pseudoprime to the base 2, namely ny = 341, we will be able to
construct infinitely many odd pseudoprimes to the base 2 by taking ny = 341
and mgy =2"—1fork =0, 1, 2, 3,.... These odd integers are all different,
sincenyg < ny < ny << <y < -

To continue the proof, let #n be an odd pseudoprime, so that # is composite
and 2"7' =1 (mod n). Since n is composite, we have n =dr with
1 <d<n and 1<t <n We will show that m =2" —1 is also
pseudoprime by first showing that it is composite, and then by showing that
2"~ =1 (mod m).

To see that m is composite, we use Lemma 5.1 to note that

QY =1D]@"=1)=m. To show that 2"~' = 1 (mod m), we first note
that since 2" = 2 (mod n), there is an integer k with 2" — 2 = kn. Hence,
2=l = P22 _ pkn By Lemma 5.1, we know that
m=1@Q" -1 ] Q" ~1)=2""~1. Hence, 2" =1 =0 (mod m), so
that 27! = 1 (mod m). We conclude that m is also a pseudoprime to the
base 2. O

If we want to know whether an integer n is prime, and we find that
2""' =1 (mod n), we know that n is either prime or n is a pseudoprime to
the base 2. One follow-up approach is to test n with other bases. That is, we
check to see whether "' = 1 (mod n) for various positive integers b. If we
find any values of b with (b,n) =1 and "' # 1 (mod n), then we know
that n is composite.

Example. We have seen that 341 is a pseudoprime to the base 2. Since
73 =343 = 2 (mod 341)