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Preface

Number theory has long been a favorite subject for students and teachers of
mathematics. It is a classical subject and has a reputation for being the
"purest" part of mathematics, yet recent developments in cryptology and
computer science are based on elementary number theory. This book is the
first text to integrate these important applications of elementary number
theory with the traditional topics covered in an introductory number theory
course.

This book is suitable as a text in an undergraduate number theory course at
any level. There are no formal prerequisites needed for most of the material
covered, so that even a bright high-school student could use this book. Also,
this book is designed to be a useful supplementary book for computer science
courses, and as a number theory primer for computer scientists interested in
learning about the new developments in cryptography. Some of the important
topics that will interest both mathematics and computer science students are
recursion, algorithms and their computationai complexity, computer arithmetic
with large integers, binary and hexadecimal representations of integers,
primality testing, pseudoprimality, pseudo-random numbers, hashing functions,
and cryptology, including the recently-invented area of public-key
cryptography. Throughout the book various algorithms and their
computational complexities are discussed. A wide variety of primality tests are
developed in the text.

Use of the Book

The core material for a course in number theory is presented in Chapters 1,
2, and 5, and in Sections 3.1-3.3 and 6.1. Section 3.4 contains some linear
algebra; this section is necessary background for Section 7.2; these two
sections can be omitted if desired. Sections 4.1, 4.2, and 4.3 present
traditional applications of number theory and Section 4.4 presents an
application to computer science; the instructor can decide which of these
sections to cover. Sections 6.2 and 6.3 discuss arithmetic functions. Mersenne
primes, and perfect numbers; some of this material is used in Chapter 8.
Chapter 7 covers the applications of number theory to cryptology. Sections
7.1, 7.3, and 7.4, which contain discussions of classical and public-key
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cryptography, should be included in all courses. Chapter 8 deals with primitive
roots; Sections 8.1-8.4 should be covered if possible. Most instructors wil l
want to include Section 8.7 which deals with pseudo-random numbers.
Sections 9.1 and 9.2 are about quadratic residues and reciprocity, a
fundamental topic which should be covered if possible; Sections 9.3 and 9.4
deal with Jacobi symbols and Euler pseudoprimes and should interest most
readers. Section 10.1, which covers rational numbers and decimal fractions.
and Sections I 1.1 and I 1.2 which discuss Pythagorean triples and Fermat's
last theorem are covered in most number theory courses. Sections 10.2-10.4
and I 1.3 involve continued fractions; these sections are optional.

The Contents

The reader can determine which chapters to study based on the following
description of their contents.

Chapter I introduces two importants tools in establishing results about the
integers, the well-ordering property and the principle of mathematical
induction. Recursive definitions and the binomial theorem are also developed.
The concept of divisibility of integers is introduced. Representations of
integers to different bases are described, as are algorithms for arithmetic
operations with integers and their computational complexity (using big-O
notation). Finally, prime numbers, their distribution, and conjectures about
primes are discussed.

Chapter 2 introduces the greatest common divisor of a set of integers. The
Euclidean algorithm, used to find greatest common divisors, and its
computational complexity, are discussed, as are algorithms to express the
greatest common divisor as a linear combination of the integers involved. The
Fibonacci numbers are introduced. Prime-factorizations, the fundamental
theorem of arithmetic, and factorization techniques are covered. Finally,
linear diophantine equations are discussed.

Chapter 3 introduces congruences and develops their fundamental
properties. Linear congruences in one unknown are discussed, as are systems
of linear congruences in one or more unknown. The Chinese remainder
theorem is developed, and its application to computer arithmetic with large
integers is described.

Chapter 4 develops applications of.congruences. In particular, divisibil i ty
tests, the perpetual calendar which provides the day of the week of any date,
round-robin tournaments, and computer hashing functions for data storage are
discussed.
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Chapter 5 develops Fermat's l i tt le theorem and Euler's theorem which give
some important congruences involving powers of integers. Also, Wilson's
theorem which gives a congruence for factorials is discussed. Primality and
probabilistic primality tests based on these results are developed.
Pseudoprimes, strong pseudoprimes, and Carmichael numbers which
masquarade as primes are introduced.

Chapter 6 is concerned with multiplicative functions and their properties.
Special emphasis is devoted to the Euler phi-function, the sum of the divisors
function, and the number of divisors function and explicit formulae are
developed for these functions. Mersenne primes and perfect numbers are
discussed.

Chapter 7 gives a thorough discussion of applications of number theory to
cryptology, starting with classical cryptology. Character ciphers based on
modular arithmetic are described, as is cryptanalysis of these ciphers. Block
ciphers based on modular arithmetic are also discussed. Exponentiation
ciphers and their applications are described, including an application to
electronic poker. The concept of a public-key cipher system is introduced and
the RSA cipher is described in detail. Knapsack ciphers are discussed, as are
applications of cryptography to computer science.

Chapter 8 includes discussions of the order of an integer and of primitive
roots. Indices, which are similar to logarithms, are introduced. Primality
testing based on primitive roots is described. The minimal universal exponent
is studied. Pseudo-random numbers and means for generating them are
discussed. An application to the splicing of telephone cables is also given.

Chapter 9 covers quadratic residues and the famous law of quadratic
reciprocity. The Legendre and Jacobi symbols are introduced and algorithms
for evaluating them are developed. Euler pseudoprimes and a probabil istic
primality test are covered. An algorithm for electronically flipping coins is
developed.

Chapter l0 covers rational and irrational numbers, decimal representations
of real numbers, and finite simple continued fractions of rational and irrational
numbers. Special attention is paid to the continued fractions of the square
roots of po"itive integers.

Chapter 1l treats some nonlinear diophantine equations. Pythagorean
triples are described. Fermat's last theorem is discussed. Finallv. Pell 's
equation is covered.

v t l
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Problem Sets

After each section of the text there is a problem set containing exercises of
various levels of diff iculty. Each set contains problems of a numerical nature;
these should be done to develop computational skil ls. The more theoretical
and challenging problems should be done by students after they have mastered
the computational skil ls. There are many more problems in the text than can
be realistically done in a course. Answers are provided at the end of the book
for selected exercises, mostly those having numerical answers.

Computer Projects

After each section of the text there is a selection of computer projects that
involve concepts or algorithms discussed in that section. Students can write
their programs in any computer language they choose, using a home or
personal computer, or a minicomputer or mainframe. I encourage students to
use a structured programming language such as C, PASCAL, or PL/ 1, to do
these projects. The projects can serve as good ways to motivate a student to
learn a new computer language, and can give those students with strong
computer science backgrounds interesting projects to tie together computer
science and mathematics.

Unsolved Problems

In the text and in the problem sets unsolved questions in number theory are
mentioned. Most of these problems have eluded solution for centuries. The
reader is welcome to work on these questions, but should be forewarned that
attempts to settle such problems are often time-consuming and futile. Often
people think they have solved such problems, only to discover some subtle flaw

in their reasoning.

Bibliography

At the end of the text there is an extensive bibliography, split into a section
for books and one for articles. Further, each section of the bibliography is
subdivided by subject area. In the book section there are lists of number
theory texts and references, books which attempt to tie together computer
science and number theory, books on some of the aspects of computer science
dealt with in the text, such as computer arithmetic and computer algorithms,
books on cryptography, and general references. In the articles section of the
bibliography, there are lists of pertinent expository and research papers in
number theory and in cryptography. These articles should be of interest to the

reader who would like to read the original sources of the material and who

wants more details about some of the topics covered in the book.
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Appendix

A set of f ive tables is included in the appendix to help students with their

computations and experimentation. Students may want to compile tables

different than those found in the text and in the appendix; compiling such

tables would provide additional computer projects.

List of Symbols

A list of the svmbols used in the text and where they are defined is
included.
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lntroduction

Number theory, in a general sense, is the study of numbers and their

p roper t ies .  In  th is  book ,  we pr imar i l y  dea l  w i th  the  in tegers ,0 ,  +1 ,  +2 , . . . .

We wil l not axiomatically define the integers, or rigorously develop integer

arithmetic.l Instead, we discuss the interesting properties of and relationships

between integers. In addition, we study the applications of number theory,

particularly those directed towards computer science.

As far back as 5000 years ago, ancient civilizations had developed ways of

expressing and doing arithmetic with integers. Throughout history, different

methods have been used to denote integers. For instance, the ancient

Babylonians used 60 as the base for their number system and the Mayans

used 20. Our method of expressing integers, the decimal system, was first

developed in India approximately six centuries ago. With the advent of

modern computers, the binary system came into widespread use. Number

theory has been used in many ways to devise algorithms for efficient computer

arithmetic and for computer operations with large integers.

The ancient Greeks in the school of Pythagoras, 2500 years ago, made the

distinction between primes and composites. A prime is a positive integer with

no positive factors other than one and the integer itself. In his writ ings,

Euclid, an ancient Greek mathematician, included a proof that there are

infinitely many primes. Mathematicians have long sought formulae that
generate primes. For instance, Pierre de Fermat, the great French number

theorist of the seventeenth century, thought that all integers of the form

22' + 1 are prime; that this is false was shown, a century after Fermat made

this claim, by the renowned Swiss mathematician Leonard Euler, who

demonstrated that 641 is a factor of 22' + | .

The problem of distinguishing primes from composites has been extensively

studied. The ancient Greek scholar Eratosthenes devised a method, now called

l .  Such an axiomat ic development of  the integers and their  ar i thmet ic can be found in Landau

t 6 l l .
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the sieve of Eratosthenes, that finds all primes less than a specified limit. It
is inefficient to use this sieve to determine whether a particular integer is
prime. The problem of efficiently determining whether an integer is prirne has
long challenged mathematicians.

Ancient Chinese mathematicians thought that the primes were precisely
those positive integers n such that n divides 2' - 2. Fermat showed that if n
is prime, then n does divide 2n - 2. However, by the early nineteenth
century, it was known that there are composite integers n such that n divides
2n - 2, such as n : 341 . These composite integers are called pseudoprimes
Because most composite integers are not pseudoprimes, it is possible to develop
primality tests based on the original Chinese idea, together with extra
observations. It is now possible to efficiently find primes; in fact, primes with
as many as 200 decimal digits can be found in minutes of computer time.

The fundamental theorem of arithmetic, known to the ancient Greeks,
says that every positive integer can be written uniquely as the product of
primes. This factorization can be found by trial division of the integer by
primes less than its square-root; unfortunately, this method is very time-
consuming. Fermat, Euler, and many other mathematicians have produced
imaginative factorization techniques. However, using the most efficient
technique yet devised, billions of years of computer time may be required to
factor an integer with 200 decimal digits.

The German mathematician Carl Friedrich Gauss, considered to be one of
the greatest mathematicians of all time, developed the language of
congruences in the early nineteenth century. When doing certain
computations, integers may be replaced by their remainders when divided by a
specific integer, using the language of congruences. Many questions can be
phrased using the notion of a congruence that can only be awkwardly stated
without this terminology. Congruences have diverse applications to computer
science, including applications to computer file storage, arithmetic with large
integers, and the generation of pseudo-random numbers.

One of the most important applications of number theory to computer
science is in the area of cryptography. Congruences can be used to develop
various types of ciphers. Recently, a new type of cipher system, called a
public-key cipher system, has been devised. when a public-key cipher is
used, each individual has a public enciphering key and a private deciphering
key. Messages are enciphered using the public key of the receiver. Moreover,
only the receiver can decipher the message, since an overwhelming amount of
computer time is required to decipher when just the enciphering key is known.
The most widely used public-key cipher system relies on the disparity in
computer time required to find large primes and to factor large integers. In
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particular, to produce an enciphering key requires that two large primes be
found and then multiplied; this can be done in minutes on a computer. When

these large primes are known, the deciphering key can be quickly found. To
find the deciphering key from the enciphering key requires that a large
integer, namely the product of the large primes, be factored. This may take
bil l ions of years.

In the following chapters, we discuss these and other topics of elementary
number theory and its applications.



The Integers

1.1 The Well-Ordering Property

In this section, we discuss several important tools that are useful for proving
theorems. We begin by stating an important axiom, the well-ordering
property.

The Well-Ordering Property. Every nonempty set of positive integers has a
least element.

The principle of mathematical induction is a valuable tool for proving
results about the integers. We now state this principle, and show how to prove
it using the well-ordering property. Afterwards, we give an example to
demonstrate the use of the principle of mathematical induction. In our study
of number theory, we will use both the well-ordering property and the
principle of mathematical induction many times.

The Principle of Mathematical Induction. A set of positive integers that
contains the integer I and the integer n I I whenever it contains n must be
the set of all positive integers.

Proof. Let S be a set of positive integers containing the integer I and the
integer n * | whenever it contains n. Assume that S is not the set of all
positive integers. Therefore, there are some positive integers not contained in
.S. By the well-ordering property, since the set of positive integers not
contained in S is nonempty, there is a least positive integer n which is not in
. S .  N o t e  t h a t n  1 1 ,  s i n c e  l  i s i n S .  N o w s i n c e  n  )  l , t h e i n t e g e r  n  -  1 i s

1
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a positive integer smaller than n, and hence must be in S. But since S

contains n - l, i t must also contain (n-t) + | : n, which is a contradiction,

since n is supposedly the smallest positive integer not in S. This shows that S

must be the set of all positive integers. tr

To prove theorems using the principle of mathematical induction, we must

show two things. We must show that the statement we are trying to prove is

true for l, the smallest positive integer. In addition, we must show that it is

true for the positive integer n * I if it is true for the positive integer n. By

the principle of mathematical induction, one concludes that the set S of all
positive integers for which the statement is true must be the set of all positive

integers. To illustrate this procedure, we will use the principle of
mathematical induction to establish a formula for the sum of the terms of a
geometric progression.

Definition. Given real numbers 4 and r. the real numbers

a ,  a r ,  e r2 ,  o t3 r . . .

are said to form a geometric progression. Also, a is called the initial term
and r is called the common ratio.

Example.  The numbers 5,  -15,45, -135,. . .  form a geometr ic progression
with init ial term 5 and common ratio -3.

In our discussion of sums, we will find summation notation useful. The
following notation represents the sum of the real numbers e1, o2,...,on.

2 o o : e r * a z *  l a n
k- l

k, the index of summation, is a "dummy variable" and
letter, so that

n n

a k :  2  o i
j - t  i - l

We note that the letter
can be replaced by any

5,
k- l

Example. We see that
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)
2 j : I +2+3+4+5 :15 ,
j - r

)
2 t 2 : 2 + 2 + 2 + 2 + 2 : 1 0 ,
j - r

and
)
2 2i : 2 * 22 + 23 + 24 + 2s : 62 .
j - 1

We also note that in summation notation, the index of summation may
range between any two integers, as long as the lower limit does not exceed the
upper limit. If m and h are integers such that z ( n, then

b  o o : a m * a ^ a 1 *  * a n .
k -m

For instance. we have

5

>  k 2 :  3 3  +  4 2  +  5 2 :  5 0 ,
k ; t

>  3 k : 3 0  +  3 t  +  3 2 :  1 3 ,
fr:0

and

I

k - -2

We now turn our attention to sums of terms of geometric progressions. The
sum of the terms e) er,  or2, . . . ,  arn is

n

2 o r i : e * a r * a r 2 +  * a r n ,
j -0

where the summation begins with 7 : g. We have the following theorem.

Theorem l.l. If a and r ^re real numbers and r * l. then
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( 1 . 1 )

Proof. To prove that the formula for the sum of terms of a geometric
progression is valid, we must first show that it holds for n : l. Then, we must
show that if the formula is valid for the positive integer n, it must also be true
for the positive integer n * l.

To start  th ings of f ,  let  n:  l .  Then, the lef t  s ide of  ( t . t )  is  a *  ar ,  whi le
on the r ight  s ide of  (1.1) we have

a r L - a  _  a ? z - t )  _  a b * l ) ( r - 1 )
r - l  r - l  T :  

a ( r * l )  :  a  *  a r

So the formula is valid when n : l.

Now we assume that (1.1) holds
assume that

0.2) a l a r + a r z +

We must show that the formula also holds for the positive integer n * l.
What we must show is that

( t . : )  a * a r + a r 2 + *  arn *  arn* l  : o r@+t )+ t_o

r - l

n ) , , n a r n * l - Q

E ori : a * ar * ar2 + * arn : T .
j : o  

i a r - t  r a r ' ' : T

for the positive integer n. That is, we

' t a r ' - a r n * l - Q
I

ar'+2-e

r - l

To show that (1.3) is valid, we add orn*r to both sides of (1.2), to obtain

( t . + )  ( a * a r * a r 2 + . . . + a r n )  *  a r ' + r  -  a r n + t : o  
+  a r r + t ,

r - l

The left side of (t.+) is identical to that of (1.3). To show that the right sides
are equal, we note that

a rn+ l  - e  ,  o r ' * l  ( r -  I  )
T -

r - l  r - 1
o r n * l - a * a r ' + Z  a r n * l

r - l

impl ies ( t . : ) ,  we can conclude that ( t . t )

a r n * l - a  1  ^ - n r r  _T A r
r -  I

:

Since we have shown that 0.2)
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holds for all positive integers n. tr

Example. Let n be a positive integer. To find the sum

bro : r *2+22+ *2 ' ,
k:0

we use Theorem l.l with e : I and r : 2, to obtain

1 n * l  _  I
.  J -  1 n  :  r n * l _ r

2- l
l +2+22+

Hence, the sum of consecutive nonnegative powers of 2 is one less than the
next largest power of 2.

A slight variant of the principle of mathematical induction is also sometimes
useful in proofs.

The Second Principle of Mathematical Induction. A set of positive integers
which contains the integer 1, and which has the property that if it contains all
the posi t ive integers 1,2, . . . ,  k ,  then i t  a lso contains the integer k + l ,  must
be the set of all positive integers.

Proof. Let T be a set of integers containing I and containing k + I if it
contains 1,2, . . . ,  k.  Let  S be the set of  a l l  posi t ive integers n such that al l
the positive integers less than or equal to n are in Z. Then I is in S, and by
the hypotheses, we see that if k is in S, then k + | is in S. Hence, by the
principle of mathematical induction, S must be the set of all positive integers,

so clearly T is also the set of all positive integers. tr

The principle of mathematical induction provides a method for defining the
values of functions at positive integers.

Definition. We say the function f is defined recursively if the value of f at I

is specified and if a rule is provided for determiningf h*l) from f h) .

If a function is defined recursively, one can use the principle of

mathematical induction to show it is defined uniquely at each positive integer.
(See problem 12 at the end of this section.)

We now give an example of a function defined recursively. We define the

factorial function f fu) : nt . First, we specify that
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f ( r ) :  I  ,

and then we give the rule for findin g f h*1) from f fu), namely

f  h+r) :  (n+r) ' f  fu) .

These two statements uniquely define r!.

To find the value of f G) : 6! from the recursive definition of f h) : nl,

use the second property successively, as follows

f  6)  :6. f  (5) :  6.5. f  (4) :  6.s.4 ' f  (3) :  6 's '4 '3 ' f  (2) :6 's '4 '3 '2f  0).

We now use the first statement of the definition to replace f 0) by its stated
value l. to conclude that

6 l :  6 ' 5 ' 4 ' 3 ' 2 ' l  : 7 2 0  .

In general, by successively using the recursive definition, we see that n! is the
product of the first n positive integers, i.e.

n!  :  l '2 '3 n

For convenience, and future use, we specify that 0! : l.

We take this opportunity to define a notation for products, analogous to
summation notation. The product of the real numbers a1, a2,...,a, is denoted
by

f t  o ,  :  e re2  an
j - r

The letter 7 above is a "dummy variable", and can be replaced arbitrarily.

Example. To illustrate the notation for products we have
)
f I  j : l ' 2 ' 3 ' 4 ' 5 : 1 2 0 .
j - r

5

I I  2 :  2 . 2 . 2 . 2 . 2 :  2 5  :  3 2  .
j - r

5
fI Zi : 2.22.23.24.2s : 2r5
j - r
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We note that with this notation, n ! : fI ,r .j - r

Factorials are used to define binomial cofficients.

Definition. Let m and k be nonnegative integers with k 4 m. The
r )

binomial cofficien, lT I is oenneo uy
( ^  /

r )
l * |  m t
t r t : -

l k  J  k t ( m _ k ) t

l^)
In computing 

lO ,J,

l^)  m;: - -
l k  )  k t @ _ k ) l

k t

fz l
Example. To evaluate the binomial coefficien, 

L, ,J, 
we note that

r \
17  |  7 t  1 .2 .3 .4 .s .6 .7  s .6 .7
f3J  

:  
3 t4 t  

:  
r23 . r234 :E : i ) '

We now prove some simple properties of binomial coefficients.

Proposition 1.2. Let n and k be nonnegative integers with k ( n . Then

( i )  
[ ; ] : [ ; ] : ,

r )  r  )
( i i )  l l l : l ' .1

fk j  
-  

l , - t , ) '

Proof. To see that (i) is true, note that

The Integers

we see that there is a good deal of cancellation, because

t . 2 . 3  . . .  @-k )@-k+ t )  . . .  t u - t )m
k !  t . 2 .3  fu -k )

(m-k  +r )  (m-r )  m
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[;] :# : n ' ' : l
n t

\ : t

and

_ n , . _
n !0!

[;] . lr:,
common denominator f t l (n-k+t) ! .  This gives

+ lr\,

t;]
To verify (i i), we see that

f r l  n ;  n t  l r  l -
l , l :  : - : l  , l  t r
| . k  J  k th -k ) t  t u -k ) r (n -  h -k ) ) t  l n - *  ) '

An important property of binomial coefficients is the following identity.

Theorem 1.2. Let n and k be positive integers with n > k. Then

| ',] , I n I _ |,,*'l
loj  * [o-,J: I  r  )

Proof. We perform the addition

by using the

t.
Uc

n t  h - k  t l )  n t  k
ktfn-k+l\ 

-  
ktJtt-t(+i l

nl((n -k +r) +k)
k t  h - k  + t ) t
n t f u * l )

k l f u - k + r ) t
( n + l ) !

k t h - k  + r ) t

[n+r  I
l l n

f k ) 
u
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Theorem 1.2, we can easily construct Pascal's triangle, which
the binomial coefficients. In this triangle, the binomial coefficient

the (k+t) t t r  number in the (n+l) th row. The f i rst  n ine rows of

t r iangle are displayed in Figure l . l .

I
l l

r 2 l
l 3 3 l

r 4 6 4 1
1 5 1 0 1 0 5 1

1 6 1 5 2 0 1 5 6 1
1 7 2 1 3 5 3 5 2 1 7 1

1 8 2 8 5 6 7 0 5 6 2 8 8 1

Figure 1.1. 

'Plr"urt 

triangle.

We see that the exterior numbers in the triangle are all l. To find an
interior number, we simply add the two numbers in the positions above, and to
either side, of the position being fil led. From Theorem 1.2, this yields the
correct integer.

Binomial coefficients occur in the expansions of powers of sums. Exactly
how they occur is described by the binomial theorem.

The Binomial Theorem. Let x and y be variables and n a positive integer.
Then

-2y ' +

Using
displavs

|,,]
|.r,l 

rs
Pascal's

(x*y)n : [;]".. [T]".- ',. l:)..
+ l,:r)*r.-, + [,:,] '

or using summation notation,

2

+ l:),'y n -
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^  ( n ]
G+y)n  : 2  l ; l * " - t y t

j -0  \J  l

We prove the binomial theorem by mathematical induction. In the proof we

make use of summation notation.

Proof. We use mathematical induction. When n : l, according to the

binomial theorem. the formula becomes

f r l f r l(x*y)r- 
loj" ' .yo + I, ,J"or '

l r l f r l
B u t  b e c a u s e  l n l :  l i l : t , t h i s  s t a t e s  t h a t  ( x + y ) r : x  * y ,  w h i c h  i s

t " J  \ ^  /
obviously true.

We now assume the theorem is valid for the positive integer n, that is, we

assume that

^ fn)
G +y)n :  2  l  , l r ' - i  r i  .

j -0  \ r  )

We must now verify that the corresponding formula holds with n replaced by
n * l, assuming the result holds for n. Hence, we have

(x+y)n+r  -  (x ty ) " (x+y)
' l
l ,  | , , . l  I:  la  l i l " - t ' l  l (x+r)
|.i:o 

\r ) 
J

, lnl , fr)
j -0 \r )  j :0 \J . /

We see that by removing terms from the sums and consequently shifting
indices. that
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2l;).'-'.','21,).'-'."':  I n + l  +

and

Hence, we find that

(x*Y) '+r -  xn+r

By Theorem 1.2, we have

't

I
l xn - i+ t r i  I  yn+t
I

3 l:).'-'''*' :'Al,).'-'''.'
:21'!'1"-'*'

*  y n + t

y j  +  yn * t

n+>
j - r

t;l+ [,1'] 
:

[ ' ; ' ]  
,

so we conclude that

k+y),,'+r - ,,*, + bl':'fx,-i*,ri * yn+r
i - t  I  r  )

n* t  [ n+ r  I
-  S  I  l * n+ t - i r i

t1^  l . j  )

This establishes the theorem. u

We now illustrate one use of the binomial theorem. If we let x : y : l. we
see from the binomial theorem that

^ lrl ,
2n  : ( t + t ) ,  :  )  l  r l t , - r l i  

:  )
j -0  \ r  )  j -o

This formula shows that if we add all elements of the
triangle, we get 2n. For instance, for the fifth row, we

r l
l n l
LJ,l

fu+l)th row of Pascal 's
find that
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[ ; ]  .  [ l ]  .  [ l ]  .  [ l ]  .  [ l ]  
: ,  +4+6+ 4+,: ,6:24

15

l.l Problems

l. Find the values of the following sums

l 0

a )  >2
j - r

l 0

u)  2 i
j - l

i l  r r 2
j - l

)

l 0

c )  2 j '
j -r

t 0

o )  22 i .
j -r

2. Find the values of the following products

5 5

c) r. j'

b )  t r j  0 )  i l 2 i
j - t  j - l

Find n ! for n equal to each of the first ten positive integers.

f ro)  f ro l  f ro l  f ro l  f ro lFind lo, | '  | .  , . l '  I  r . l '  I  tJ '^na l roJ '

Find the binomial coefficients 
| 'qI fgI froI

fnl , fnl f ,ol 
l ' , l '  loJ' 

and 
I o ,J' 

and verirv that

l r j* loj :  loJ
Show that a nonempty set of negative integers has a largest element.

Use mathematical induction to prove the following formulae.

a )  > , i : t + 2 + 3 +  +  , : n ( n l D .
j - l  L

5 .

3 .

4 .

6 .

7 .

U )  2 i ' :  1 2 + 2 2 + 3 2 +  +
j - l

. t  n  ( n + l )  ( 2 n + l )
, a

6
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8 .
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|  1 2

c )  i . r ' :  t ' +  23  +  33  +  *  n3 :  |  
' t ' f t l  

I
i - t t 2 l

Find a formula rcr ft Zi.
j - l

Use the principle of mathematical induction to show that the value at each
positive integer of a function defined recursively is uniquely determined.

what function f (n) is defined recursively by f 0) : 2 and f (n+D : 2f (n)
f o r  n ) l ?

I f  g  is  def ined recurs ive ly  by g( l )  :2  and g(n)  :2sb-D for  n  7  2 ,
wha t  i s  S (02

The second principle of mathematical induction can be used to define functions
recursively. We specify the value of the function at I and give a rule for finding

f h+l) from the values of f at the first n positive integers. Show that the
values of a function so defined are uniquely determined.

We define a function recursively for all positive integers n bV "f 
(l) : l,

f  ( 2 ) : 5 ,  and  f o r  n  2  2 ,  f  h+ t ) : f  h )  +  2 f  ( n - t ) .  Show tha t  f  ( n )  :

2^ + el)n, using the second principle of mathematical induction.

14. a) Let n be a posit ive integer. By expanding ( l+(- l)) 'with the binomial
theorem. show that

r0 .

l l .

t 2 .

t 3 .

, fr)
)  ( - r )o 

l rJ 
:  o.

b) use part (a), and the fact that > f;l :2' , to find
t - o  \ ' '  J

f , l  f , l  l , l
loj * IrJ * loj *

and

[ , l f , l | , , l
['J* l,J * I'J *

c )  F i n d t h e s u m l  - 2 + 2 2 - 2 3  +  + 2 t o o .

15. Show by mathematical induction that if n is a positive integer, then
(2n)t < 22'(nl)z.
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.  [ " ]  [* l  f '+r l
b )  S h o w t h a t  l - l +  1 . , ,  |  :  l - - * ,  l , w h e n e v e r n i s a p o s i t i v e i n t e g e r .

l , ? J  l t ? + r j  l n , ' t

In this problem, we develop the principle of inclusion - exclusion. Suppose

that S is a set with n elements and let Pr, P2,.,., P, be t different properties

that an element of S may have. Show that the number of elements of S

possessing none of the / properties is

n  - ln ( r r )  +  n (p )  +  +  n@) l
+ ln(Pt ,Pz)  + n(Pt ,Pr)  + + n(P,- r ,P, ) l
-  {n(Pr ,Pz,Pt )  *  n(PrPz,Pq)  +  *  n(P, -2 ,P,4,P, ) |

+  +  ( - l ) ' n  (P1 ,P2 , . . . ,P , ) ,

where n(Pi,,Pi,,..., P,,) is the number of elements of S possessing all of the

properties Pi,,P;,,...,P;,. The first expression in brackets contains a term for each

property, the second expression in brackets contains terms for all combinations of

two properties, the third expression contains terms for all combinations of three
properties, and so forth. (Hint: For each element of S determine the number of
times it is counted in the above expression. If an element has k of the

l r l  lpl  l t l
propert ies, show it  is counted t -  

l rJ 
+ 

It l  
-  + (- l) f t  

l rJ 
, i - . t .  This

equals zeroby problem la(a).)

The tower of Hanoi was a popular puzzle of the late nineteenth century. The
puzzle includes three pegs and eight rings of different sizes placed in order of
size, with the largest on the bottom, on one of the pegs. The goal of the puzzle is
to move all the rings, one at a time without ever placing a larger ring on top of a
smaller ring, from the first pbg to the second, using the third peg as an auxiliary
peg.

t7

16. The binomial coefficients 
[;],*nr." 

x is a variable, and n is a positive integer,

can be defined recursively by the equations 
[l ] 

: x and

|  . I  ,_n [ ,1
In+tJ:R l ; l

|.".l x! ,
a ) S h o w t h a t i f x i s a p o s i t i v e i n t e g e r , t h e n [ o J : f f i , w h e r e k i s a n

i n t e g e r w i t h l ( k ( x .

t 7 .

1 8 .
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a) Use mathematical induction to show that the minimum number of moves to
transfer n rings, with the rules we have described, from one peg to another
i s  2 n  -  1 .

b) An ancient legend tells of the monks in a tower with 64 gold rings and 3
diamond pegs. They started moving the rings, one move per second, when
the world was created. When they finish transferring the rings to the second
peg, the world ends. How long will the world last?

19. Without mult iplying al l  the terms, show that

i l  6 !  7 ! :  l 0 !  c )  1 6 ! :  l 4 t  5 t  2 l
b )  l 0 ! : 7 !  5 !  3 !  d )  9 t  -  7 1  3 !  3 !  2 ! .

20. Let an : (af a2l.  ar-1!) - l ,  and on+t :  af.  a2t an_tl ,  where
o1,a2,.. . ,etr-1 or€ posit ive integers. Show that an*1! :  al.  a2t onl.

21.  F ind a l l  pos i t ive  in tegers  x ,  y ,and z  such that  x t  *  y l :  z ! .

l.l Computer Projects

Write programs to do the following:

l. Find the sum of the terms of a geometric series.

2. Evaluate n !

3. Evaluate binomial coefficients.

4. Print out Pascal's triangle.

5. List the moves irr the Tower of Hanoi puzzle (see problem l8).

6. Expand (x*y)", where n is a positive integer, using the binomial theorem.

1.2 Divisibility

When an integer is divided by a second nonzero integer, the quotient may or
may not be an integer.  For instance,24/8:  3 is an integer,  whi le l7/5:3.4
is not. This observation leads to the following definition.

Definition. If a and b are integers, we say that a divides b if there is an
integer c such that b : ac. lf a divides b, we also say that a is a divisor or
factor of b.



1.2 Divisibility

I f  a  d i v i d e s  b  w e w r i t e  a  l b , w h i l e i f  a  d o e s n o t d i v i d e b , w e w r i t e a  t r  U .

Example. The following examples illustrate the concept of divisibility of

in tegers :  13 |  182,  -5  |  90,  t7 l28g,e  t rqq, l  t rso ,  - l  |  :1 ,  and 17 10.

Example. The divisors of 6 are +1, *2, +3, and +6. The divisors of 17 are
t l  a n d  t I 7 .  T h e  d i v i s o r s  o f  1 0 0  a r e  + 1 ,  * 2 , + 4 ,  + 5 ,  + 1 0 ,
+20,  +25,  +50,  and +  100.

In subsequent sections, we will need some simple properties of divisibility.
We now state and prove these properties.

P r o p o s i t i o n  1 . 3 .  I f  a , b , a n d  c  a r e i n t e g e r s w i t h a  l b  a n d  b l r , t h e n  a l c .

Proof. Since a I b and b I c, there are integers e and f with ae : b and
bf : ,. Hence, bf : be)f : aGf) : c, and we conclude that a I c. a

Example.  Since 1l  |  66 and 66 |  t la,  Proposi t ion 1.3 te l ls  us that  11 |  198.

Propos i t ion  1 .4 .  l f  a ,b ,m,  and n  are  in tegers ,  and i f  c  la  and c  lD ,  then
c  |  (ma+nb) .

Proof. Since c I a and c | 6, there are integers e and / such that a : ce and
b: cf .  Hence, ma * nb: mce * ncf  :  c(me+nf) .  Consequent ly,  we see
that c |  fua+nb).  E

Example.  Since 3l2l  and: I  l l ,  Proposi t ion 1.4 te l ls  us that

3 |  6-z l  -  3 .33)  :  lo5  -  99:  6  .

The following theorem states an important fact about division.

The Divisionl$f$* If a and b are integers such that b > 0, then there
are unique integers q and r such that a : bq * r with 0 ( r < b.

In the equation given in the division algorithm, we call q the quotient and r
the remainder.

We note that a is divisible by
algorithm is zero. Before we
following examples.

b if and only if the remainder in the division
prove the division algorithm, consider the

t9
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E x a m p l e .  I f  a - . 1 3 3  a n d  b : 2 1 ,  t h e n  Q : 6  a n d  r : 7 ,  s i n c e
1 3 3 : 2 1 ' 6 + 7 .  L i k e w i s e ,  i f  a :  - 5 0  a n d  b : 8 ,  t h e n  q  - - 7  a n d  r : 6 ,
s i n c e  - 5 0 : 8 ( - 7 )  +  6 .

For the proof of the division algorithm and for subsequent numerical
computations, we need to define a new function.

Definition. Let x be a real number. The greatest integer in x, denoted by
[x ], is the largest integer less than or equal to x.

Example. We have the following values for the greatest integer in
x' .  12.21 :  2,131: 3,  and I- t .s l  :  -2.

The proposition below follows directly from the definition of the greatest
integer function.

Proposition 1.5. If x is a real number, then x-l < [x] ( x.

We can now prove the division algorithm. Note that in the proof we give
explicit formulae for the quotient and remainder in terms of the greatest
integer function.

P r o o f .  L e t  q : l a / b l  a n d  r :  a  -  b l a / b l .  C l e a r l y  a :  b q  *  r .  T o  s h o w
that the remainder r satisfies the appropriate inequality, note that from
Proposition 1.5, it follows that

G / b ) - l  <  t a / b l  4 a / b .

We multiply this inequality by b, to obtain

a  -  b  <  b t a l b l  4  a .

Multiplying by -1, and reversing the inequality, we find that

By adding e, we see that

- a ( - b [ a / b l < b - a .

0  (  r  -  a  -  b la /b l  <  n .

To show that the quotient q and the remainder r are unique, assume that
we have two equat ions  a :  bqr*  r r  and a  :  bqz*  r r ,  w i th  0  (  r r  (  b  and
0 ( rz < b. By subtracting the second of these from the first, we find that
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Hence. we see that

0 : b Q t - q r ) + ( r ; r 2 )

r z  -  r r :  b ( q t - q r )  .

This te l ls  us that  D div ides rz-  r r .  Since 0 (  r r  I  b and 0 (  rz (  b,  we

have -b  <  rz -  r r  1b .  Th is  shows tha t  b  can d iv ide  rz -  11  on ly  i f

r z -  1 1  : 0 ,  o r ,  i n  o t h e r  w o r d s ,  i f  1 1 :  1 2 .  S i n c e  b q t  +  r t :  b Q z *  1 2  a n d

rt :  12 we also see that Qr:  Qz. This shows that the quot ient  q and the
remainder r are unique. tr

E x a m p l e .  L e t  a : 1 0 2 8  a n d  b : 3 4 .  T h e n  a : b q * r  w i t h  0 ( r  < b ,
w h e r e  q  : t t 0 2 8 / 3 4 1 : 3 0  a n d  r  :  1 0 2 8  - 1 1 0 2 8 / 3 4 1 . 3 4 :  1 0 2 8  -  3 0 . 3 4 : 8 .

Wi th  a  :  -380 and b  :75 ,we have a  :  bq  *  r  w i th  0  (  r  <  b ,where
q :  [ -380/751 :  -6and r  :  -380 -  t -380/751 :  -380 -  ( -6)75 :  70.

Given a positive integer d, we can classify integers according to their
remainders when divided by d. For example, with d : 2, we see from the
division algorithm that every integer when divided by 2leaves a remainder of
either 0 or l. If the remainder when n is divided by 2 is 0, then r : 2k for
some positive integer k, and we say n is even, while if the remainder when n
is div ided by 2 is l ,  then n:2k *  I  for  some integer k,and we say n isodd.

Similarly, when d : 4, we see from the division algorithm that when an
integer n is divided by 4, the remainder is either 0,1,2, or 3. Hence, every
integer is of  the form 4k,4k + l ,4k *  2,  or  4k + 3,  where k is a posi t ive
integer.

We will pursue these matters further in Chapter 3.

1.2 Problems

l .  S h o w  t h a t  3  l g g ,  s  I  t + S , 7 l 3 4 3 ,  a n d  8 8 8  |  0 .

2. Decide which of the following integers are divisible by 22

2 l

i l 0
b) 444
c) 1716

d) r92s44
e) -325r6
f )  -195518 .
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remainder in the division algori thm with divisor 17 and

c) -44

d)  -100.

3. Find the quotient and
dividend

a) loo
b) 28e

6.

7 .

8 .

9 .

4. What can you conclude if a and b are nonzero integers such that a I b and
b l a ?

5. Show that i f  a, b, c, and d are integers with a and c nonzero such that a I  b
and c  I  d ,  then ac I  bd.

A r e t h e r e i n t e g e r s  a , b , a n d c  s u c h t h a t a  l b c , b u t a  I  b  a n d a  I  c ) .

Show that  i f  a ,  b ,and c  l0  are in tegers ,  then a I  t  i f  and on ly  i f  ac  I  bc .

Show that if a and b are positive integers and a I D, then a ( D.

Give another proof of the division algorithm by using the well-ordering property.
(Hint: When dividing a by b, take as the remainder the least positive integer in
the set of integers a-qb.)

Show that if a and b are odd positive integers, then there are integers s and ,
such that  a  :  bs  *  / ,  where I  is  odd and l r l  <  n .

When the integer a is divided by the interger b where b > 0, the division
algorithm gives a quotient of q and a remainder of r. Show that if 6 ,f a, when
-a is divided by b, the division algori thm gives a quotient of -(q*l) and a
remainder of b - r, while if 6 | a, the quotient is -q and the remainder is zero.

Show that if a, b, and c are integers with b ) 0 and c ) 0, such that when a
is divided by b the quotient is q and the remainder is r, and when q is divided
by c the quotient is /  and the remainder is s, then when a is divided by bc, the
quotient is I and the remainder is bs * r.

il Extend the division algorithm by allowing negative divisors. In particular,
show that whenever a and b # 0 are integers, there are integers q and r
such that a :  bq * r,  where 0 ( r < lAl .

b) Find the remainder when 17 is divided by -7.

Show that if a and D are positive integers, then there are integers q,r and
e  :  ! . 1  such  t ha t  a :  bq  *  e r  whe re -b /2  <e r4  b /2 .

Show that  i f  a  and b are rea l  numbers,  then la+bl  2 la ]  +  [ r ] .

Show that if a and b are positive real numbers, then labl 2 Laltbl .
What is the corresponding inequality when both a and b are negative? When
one is negative and the other positive?

1 0 .

1 2 .

1 3 .

1 4 .

1 5 .

1 6 .
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21. Show that the integer n is even if and only if n - 2ln /21 : 0.

22. Show that if a is a real number, then [a ] + Ia + %l : l2al .

23. a) Show that the number of positive integers less than or equal to x that are
divisible by the positive integer d is given by [x/dl.

b) Find the number of positive integers not exceeding 1000 that are divisible by
5,  by 25,  by 125,  and by 625.

c) How many integers between 100 and 1000 are divisible by 7? by 49'l

24. To mail a letter in the U.S.A. it costs 20 cents for the first ounce and l8 cents
for each additional ounce or fraction thereof. Find a formula involving the
greatest integer function for the cost of mailing a letter. Could it possibly cost
S 1.08 or ,$ I  .28 to mail  a letter?

25. Show that if a is an integer, then 3 divides a3-a

26. Show that the sum of two even or of two odd integers is even, while the sum of
an odd and an even integer is odd.

27. Show that the product of two odd integers is odd, while the product of two
integers is even if either of the integers is even.

28. Show that the product of two integers of the form 4ft * I is again of this form,
while the product of two integers of the form 4k * 3 is of the form 4ft * L

29. Show that the square of every odd integer is of the form 8k + l.

23

17. What is the value of [a ]  + l-a I  when a is a real number?

18. Show that if a is a real number then

a) -I-a I is the least integer greater than or equal to a.

b) la + %l is the integer nearest to a (when there are two integers equidistant

from a, it is the larger of the two).

19. Show that i f  n is an integer and x is a real number, then [x*n] :  [xl  + n .

20. Show that if m and n \ 0 are integers, then

( r  r
I 1I1 | if m : kn - I for some integer k.

|  *+r1 .JL '  J
I  _  i : l l  I
I  n  I  l l y l * t i f  m : k n - l f o r s o m e i n t e g e r k .

ILn l
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30. Show that the fourth power of every odd integer is of the form l6k + l.

31. Show that the product of two integers of the form 6k * 5 is of the form 6k * L

32. Show that the product of any three consecutive integers is divisible by 6.

33. Let n be a positive integer. We define
f

ln /2  i f  n  is  even
T(n)  :  

1Qn*D/z  i f  n  is  odd.

We then form the sequence obtained by iterating T:
n ,  T(n) ,  T(TQ)) ,  f  ( f ( f  (n) ) ) , . . .  .  For  ins tance,  s tar t ing wi th  n  :  7  we have
7,11,17,26,13,20,10,5,8 ,4 ,2 ,1 ,2 ,1 ,2 ,1 . . .  .  A wel l -known conjecture,  somet imes
called the Collatz coniecture, asserts that the sequence obtained by iterating Z
always reaches the integer I no matter which positive integer n begins the sequence.

a) Find the sequence obtained by i terat ing Z start ing with n :29.

b) Show that the sequence obtained by i terat ing Z start ing with n: (2k-l)/3,
where k is an even positive integer, k > l, always reaches the integer l.

1.2 Computer Projects

Write programs to do the following:

l Decide whether an integer is divisible by a given integer.

2. Find the quotient and remainder in the division algorithm.

3. Find the quotient, remainder, and sign in the modified division algorithm given in
problem 14.

4.  Invest igate  the sequence n,  T(n) ,  T(Th)) ,  f  ( rQ (n) ) ) , . . .  def ined in  prob lem
3 3 .

1.3 Representations of Integers

The conventional manner of expressing numbers is by decimal notation. We
write out numbers using digits to represent multiples of powers of ten. For
instance, when we write the integer 34765, we mea;r

3 . 1 0 4  +  4 . 1 0 3  +  7 . 1 0 2  +  6 . 1 0 1  +  5 . 1 0 0 .

There is no particular reason for the use of ten as the base of notation, other
than the fact that we have ten fingers. Other civilizations have used different
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bases, including the Babylonians, who used base sixty , and the Mayans, who

used base twenty Electronic computers use two as a base for internal

representation of integers, and either eight or sixteen for display purposes.

We now show that every positive integer greater than one may be used as a

base.

Theorem 1.3. Let b be a positive integer with b > l. Then every positive

integer n can be written uniquely in the form

n :  akbk  *  ap-1bk- r  t  *  a1b I  oo ,

where a;  is  an integer wi th 0 (  o;  < b- l  for , /  :0,  1, . . . ,  k and the in i t ia l

coefficient ak I O.

Proof . We obtain an expression of the desired type by successively applying
the division algorithm in the following way. We first divide n by b to obtain

n : b e o * o o ,  0 ( a o < b - 1 .

Then we divide qoby b to find that

e o : b q 1 t a 6  0 ( a r ( 6 - t .

We continue this process to obtain

Q t :  b q 2 t  a 2 ,  0  (  a 2  (  b - 1 ,
q r =  b q 3 l  a 3 ,  0  (  a r  (  b - 1 ,

Qk-z  :  bq* - r  *  ak- r ,  0  (  a1-1  (  b -1 ,

Q k - t  :  b . 0  *  a p ,  0  (  a 1  (  b - t .

The last step of the process occurs when a quotient of 0 is obtained. This is
guaranteed to occur, because the sequence of quotients satisfies

n  )  q o )  q r )  q z >  " ' >  0 ,

and any decreasing sequence of nonnegative integers must eventually
terminate with a term equaling 0.

25
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From the first equation above we find that

n :  b e o *  a o .

We next replace {6 using the second equation, to obtain

n  :  b ( b q f t a 1 )  +  a s  :  b z q r  I  a 1 b  I  a s ,

Successively substituting for qr, Q2, ..., Qk_r, we have

n :  b 3 q z +  a 2 b 2  *  a 1 b  *  o r ,

: = i: ri ::,-'**"::,t{,-'.. **olr'u**ol'
:  a t  bk  +  a1r -1bk- r  *  t  a f t  *  ao .

where 0 (  a;  < b- l  for  7 :  0,1, . . . ,k and a* I  0,  s ince ek :  4r-r  is  the last
nonzero quotient. Consequently, we have found an expansion of the desired
type.

To see that the expansion is unique, assume that we have two such
expansions equal to n, i.e.

n  :  ekbk  +  a1r -ybk- t  *  t  a1b *  ao
: c*bk *  c1r-1bk-r  *  *  cf t  *  ro,

where 0 ( ar (b and 0 ( c1(b (and if necessary we add init ial terms with
zero coefficients to have the number of terms agree). Subtracting one
expansion from the other, we have

( a r , - c ) b k  + ( o , , - r - c 1 , - ) b k - t  *  * ( a ; c r ) b  +  ( a s - c a ) : 0 .

If the two expansions are different, there is a smallest integer j, O ( 
"l < k,

such that ai # ci. Hence,
. f

br l (a*-c*)b(-r  
+

Gr,-c)bk-i +

*  ( a i + r c i + r ) b  *  G 1 - c 1 ) ]  :  o ,

+ (a1+rci+)b r (ai-c1) : O.

so that
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Solving for ai-c; we obtain

aj-c j :  (crr-ar)bk- j  + *  (c7+r-ai+)b

:  b l (c1 , -a1)bk- j - t  +  *  (c7+r -or * , )  
] .

Hence, we see that

b l

But since 0 ( a; < b and 0 ( c;
Consequently, b I h1-c) implies
assumption that the two expansions
6 expansion of n is unique. !

For b - 2 . we see from Theorem 1.3 that the following corollary holds.

Corollary 1.1. Every positive integer may be represented as the sum of
distinct powers of two.

Proof. Let n be a positive integer. From Theorem 1.3 with b : 2, we know
t h a t n : a t r T k  * a 1 r - 1 2 k - t  *  +  a Q *  a s w h e r e  e a c h a i  i s e i t h e r 0 o r  1 .
Hence, every positive integer is the sum of distinct powers of 2. tr

In the expansions described in Theorem 1.3, b is called the base or radix of
the expansion. We call base l0 notation, our conventional way of writ ing
integers, decimal notation. Base 2 expansions are called binary expansions,
base 8 expansions are called octal expansions, and base 16 expansions are
called hexadecimal, or hex for short, expansions. The coefficients ai are
called the digits of the expansion. Binary digits are called bits (binary
digils) in computer terminology.

To distinguish representations of integers with different bases, we use a
special notation. We write (apapa...aps) 6 to represent the expansion
a * b k l a p a b k - r l  t a f t * a o .

Example. To i l lustrate base b notation, note that Q3Ot : 2.72 + 3.7 + 6
a n d  ( 1 0 0 1 0 0 1 1 ) 2  :  1 . 2 7  +  1 . 2 4  +  1 . 2 r  +  1 .

Note that the proof of Theorem 1.3 gives us a method of f inding the base b
expansion of a given positive integer. We simply perform the division
algorithm successively, replacing the dividend each time with the quotient, and

G1-c1).

< b, we know that -b < ai-c1 I b.
that ej : cj. This contradicts the

are different. We conclude that our base
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stop when we come to a quotient which is zero.
remainders to find the base b expansion.

Example. To find the base 2 expansion of 1864,
successively:

We then read up the l ist of

we use the division algorithm

1864 :  2 .932 + 0,
9 3 2 : 2 ' 4 6 6  + 0 ,
4 6 6 : 2 ' 2 3 3  + 0
2 3 3 - 2 ' 1 1 6 + 1 ,
1 1 6  :  2 ' 5 8  +  0 ,
5 8 : 2 ' 2 9  + 0 ,
2 9 : 2 ' 1 4  + 1 ,
1 4 : 2 ' 7  + 0 ,
7 :  2 '3  + 1,
3  :  2 ' l  +  l ,
|  :  2 ' O  +  1 .

To obtain the base 2 expansion of 1984, we simply take the remainders of
these d iv is ions .  Th is  shows tha t  (1864) ro :  (11101001000)2 .

Computers represent numbers internally by using a series of "switches"
which may be either "on" or "off". (This may be done mechanically using
magnetic tape, electrical switches, or by other means.) Hence, we have two
possible states for each switch. We can use "on" to represent the digit I and
"off" to represent the digit 0. This is why computers use binary expansions to
represent integers internally.

Computers use base 8 or base 16 for display purposes. In base 16, or
hexadecimal, notation there are l6 digits, usually denoted by
0,1,2,3,4,5,6,7 ,8,9,A,8, ,C,D,,E and F .  The let ters A,B,C,D,E ,  and F are
used to represent the digits that correspond to 10,11,12,13,14 and l5 (written

in decimal notation). We give the following example to show how to convert
from hexadecimal notation to decimal notation.

Example. To convert (A35B0F) 16 we write

( e l s n o r ) r e  : 1 0 . 1 6 s  +  3 ' 1 6 4  +  5 ' 1 6 3  +  l l ' r c z  +  0 ' 1 6  +  1 5
: ( t o7o5 679) rc.
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A simple conversion
We can write each hex
correspondence given in

is possible between binary and
digit as a block of four binary
Tab le  l . l  .

29

hexadecimal notation.
digits according to the

Hex
Digit

Binary
Digits

Hex
Digit

Binary
Digits

0
I
2
3
4
5
6
7

0000
0001
0010
001 l
0100
0 1 0 1
0 1 1 0
0 l  l 1

8
9
A
B
C
D
E
F

r000
1001
1 0 1 0
1 0 1 1
l  100
I  l 0 l
1 1 1 0
l l l l

Table 1.1. Conversion from hex digits to blocks of binary digits.

Example. An example of conversion from hex to binary is (zFBrrc:
( tOt t  1110110011)2. Each hex digi t  is  converted to a block of  four binary
digits (the init ial zeros in the init ial block (OOIO)2 corresponding to the digit
(2) rc are omitted).

To convert from binary to hex, consider (t t t tOl I I101001)2. We break this
into blocks of four starting from the right. The blocks are, from right to left,
1001, 1110, 1101, and 0011 (we add the in i t ia l  zeros).  Translat ing each block
to hex, we obtain GOng)ru.

We note that a conversion between two different bases is as easy as binary
hex conversion, whenever one of the bases is a power of the other.

1.3 Problems

l. Convert (1999)1s from decimal to base 7 notation. Convert (6tOS)t from base 7
to decimal notation.

2. Convert (tOtOOtOOO), from binary to decimal notat ion and (tgg+),0 from
decimal to binary notation.
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conver t  (10001I  I  l0 l0 l )2  and ( l  I101001110)2 f rom b inary  to  hexadec imal .

convert (ABCDEF)rc, @nrecnD)to, and (9A08)rc from hexadecimal to
binary.

Explain why we really are using base 1000 notation when we break large decimal
integers into blocks of three digits, separated by commas.

a) Show that if D is a negative integer less than -1, then every integer n can
be un iquer ' ; : . ] ) : : ' : : ; '  

.  *  a1b *  oo,

where a1, I  0 and O <a, < lb I  for . /  :  0,1 ,2,. . . ,  k. We write
n : (apa1,-r. . .at a6)6, just as we do for posit ive bases.

b) Find the decimal representation of (tOtOOt)-2 and OZOTD-r.

c) Find the base -2 representations of the decimal numbers -7,-17, and 61.

Show that any weight not exceeding 2k-l may be measured using weights of
1,2,22,.. . ,2ft-1, when al l  the weights are placed in one pan.

Show that every integer can be uniquely represented in the form

e p 3 k * e p - . 3 k - t *  * e f i l e s

where €i :  -1,0, or I  for , / :0,1 ,2, . . . ,  k. This expansion is cal led a
balanced ternary expansion.

9. Use problem 8 to show that any weight not exceeding $k -t) /Z may be
measured us ing weights  o f  1 ,3 ,  3 ' , . . . ,3 f t -1 ,  when the weights  may be p laced in
either pan.

Explain how to convert from base 3 to base 9 notation, and from base 9 to base 3
notation.

Explain how to convert from base r to base rn notation, and from base rn
notation to base r notation, when r ) I and n are positive integers.

Show that  i f  r :  (a*a*-1 . . .aps)6,  then the quot ient  and remainder  when n is
divided by bi are q : (apa1,-1...a)6 and, :  (aj-r. . .apo)t,  respectively.

I f  the base b expansion of n is n :  (apa1,-1...aps)6, what is the base b
expansion of b^ n"l

14. A Cantor expansion of a positive integer n is a sum

f l : o m m t  *  a ^ a ( m - l ) !  +  *  a 2 2 l  * a 1 l !

3 .

4 .

5 .

6 .

7 .

8 .

r0 .

l l .

1 2 .

1 3 .
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where each ai is an integer with 0 ( a; < i .

a) Find Cantor expansions of 14, 56, and 384.

b) Show that every positive integer has a unique Cantor expansion.

15. The Chinese game of nim is played as follows. There are a number of piles of

matches, each containing an arbitrary number of matches at the start of the
game. A move consists of a player removing one or more matches from one of

the piles. The players take turns, with the player removing the last match

winning the game.

A winning position is an arrangement of matches in piles so that if a player can
move to this position, then, no matter what the second player does, the first
player can continue to play in a way that will win the gom€; An example is the
position where there are two piles each containing one match; this is a winning
position, because the second player must remove a match leaving the first player
the opportunity to win by removing the last match.

a) Show that the position where there are two piles, each with two matches, is
a winning position.

b) For each arrangement of matches into piles, write the number of matches in
each pile in binary notation, and then line up the digits of these numbers
into columns (adding initial zeroes if necessary to some of the numbers).
Show that a posit ion is a winning one i f  and only i f  the number of ones in
each column is even (Example: Three piles of 3, 4, and 7 give

0 l l
l l t
1 0 0

where each column has exactly two ones).

16. Let a be an integer with a four-digit decimal expansion, with not all digits the
same. Let a' be the integer with a decimal expansion obtained by writing the
digits of a in descending order, and let a" be the integer with a decimal
expansion obtained by writing the digits of a in ascending order. Define
T (a )  :  a ' -  a " .  Fo r  i ns tance ,  f ( 2318 )  8731  1378  :  7358 .

a) Show that the only integer with a four-digit decimal expansion with not all
d ig i ts  the same such that  T(a)  :  a  is  a  :6174.

b) Show that if a is a positive integer with a four-digit decimal expansion with
not al l  digits the same, then the sequence a, T (d, f  ( f  G)) ,
T'QQ(a))), . . . ,  obtained by i terat ing T, eventual ly reaches the integer
6174. Because of this property, 6174 is called Kaprekar's constant.

3 t
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17. Let b be a positive integer and let a be an integer with a four-digit base b
expansion, with not al l  digits the same. Define TtG) : a'-  a", where a' is the
integer with base D expansion obtained by writing the base 6 digits of a in
descending order, and let d " is the integer with base 6 expansion obtained by
writing the base b digits of a in ascending order.

il Let b : 5. Find the unique integer a6 with a four-digit base 5 expansion
such that TsGl : ao. Show that this integer aq is a Kaprekar constant for
the base 5,  i .e . ,  a  ,  T(a) ,  r ( f  b) ) ,  f  ( f  Q(a) ) ) , . . .  eventua l ly  reaches
40, whenever a is an integer which a four-digit base 5 expansion with not all
digits the same.

b) Show that no Kaprekar constant exists for the base 6.

1.3 Computer Projects

Write programs to do the following:

l. Find the binary expansion of an integer from the decimal expansion of this
integer and vice versa.

2. Convert from base 61 notation to base b2 notation, where D1 and b2are arbitrary
positive integers greater than one.

3. Convert from binary notation to hexadecimal notation and vice versa.

4. Find the base (-2) notation of an integer from its decimal notation (see problem
6 ) .

5. Find the balanced ternary expansion of an integer from its decimal expansion
(see problem 8).

6. Find the Cantor expansion of an integer from its decimal expansion (see problem
1 4 ) .

7 . Play a winning strategy in the game of nim (see problem l5).

8 .  F ind the sequence a,  T(a) ,  T(Tfu) ) ,  r ( rOQ)) ) , . . .  def ined in  prob lem 16,
where a is a positive integer, to discover how many iterations are needed to reach
6174.

9. Let b be a positive integer. Find the Kaprekar constant to the base b, when it
exists (see problem 17).
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1.4 Computer Operations with Integers

We have mentioned that computers internally represent numbers using bits,

or binary digits. Computers have a built-in limit on the size of integers that

can be used in machine arithmetic. This upper limit is called the word size,

which we denote by w. The word size is usually a power of 2, such as 235,

although sometimes the word size is a power of 10.

To do arithmetic with integers larger than the word size, it is necessary to

devote more than one word to each integer. To store an integer n ) l4/, we

express n in base w notation, and for each digit of this_ expansion we use one

computer word. For instance, if the word size is 23s, using ten computer

words we can store integers as large u, 23s0- 1, since integers less than 2350

have no more than ten digits in their base 235 expansions. Also note that to

find the base 235 expansion of an integer, we need only group together blocks

of 35 bits.

The first step in discussing computer arithmetic with large integers is to

describe how the basic arithmetic operations are methodically performed.

We will describe the classical methods for performing the basic arithmetic
operations with integers in base r notation where r ) | is an integer. These
methods are examples of algorithms.

Definition. An algorithm is a specified set of rules for obtaining a desired
result from a set of input.

We will describe algorithms for performing addition, subtraction, and
multiplication of two n-digit integers a : (an4on-z...egi, and
b: (bn-1br-z. . .brbo)r ,  where in i t ia l  d ig i ts of  zero are added i f  necessary to
make both expansions the same length. The algorithms described are used
both for binary arithmetic with integers less than the word size of a computer,
and for multiple precision arithmetic with integers larger than the word size
w, using lr as the base.

We first discuss the algorithm for addition. When we add a and b, we
obtain the sum

a I  b :  5  a i r t  + ' i  u , r t :  5  G i  +  b1) r i .
j-o j-0 j:o

To find the base r expansion of the a * b, first note that by the division
algorithm, there are integers Cs and ss such that
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a o *  b s :  C s r  *  r 0 , 0  (  s o  1  r .

Because as and bo are positive integers not exceeding r, we know that
0 (  ao *  bo( 2r -  2 ,  so that  co:0 or l  ;here c6 is the cany to the next
place. Next, we find that there are integers c1 and s1 such that

a r  *  b r  t  C o :  C {  t  r r , 0  (  s 1  (  r .

S i n c e  0  (  a r t  b r  *  C o  (  2 r  -  1 ,  w e  k n o w  t h a t  C r : 0 o r  l .  p r o c e e d i n g
induc t ive ly ,wef ind in tegersC;  ands ;  fo r  1  (  i  (  n  -  I  by

a i  *  b ;  *  C i - r :  C r r  t r r ,  0  (  s ;  (  r ,

wi th C;:0 or 1.  Final ly,  we let  sr :  Cn; ,  s ince the sum of two integers
with n digits has n * I digits when there is a carry in the n th place. We
conclude that the base r  expansion for the sum is a *  b:  (srsn_,. . .J1.ss)7 .

When performing base r addition by hand, we can use the same familiar
technique as is used in decimal addition.

Example .  To  add (1101)2  and ( l0 l  l )2  we wr i te

I I
1 l 0 l

+ 1 0 0 1

1 0 1 1 0

where we have indicated carries by I's in italics written above the appropriate
column. We found the binary digits of the sum by noting that I * I :

l ' 2 +  0 , 0 + 0 +  1 : 0 ' 2  *  1 ,  I  + 0 f  0 :  O ' 2 +  l , a n d  1 +  l : 1 . 2  * 0 .

We now turn our attention to subtraction. We consider

a - b : ' ;  air i  - ' i  u,rt :  5 Gi - b)r i  ,
j -o j -0 j -0

where we assume that a ) b. Note that by the division algorithm, there are
integers ̂ Bs and ds such that

o s -  b o :  8 6 r  *  d g ,  0  (  d o  (  r ,

and since as and bs are positive integers less than r, we have
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- ( r - l ) < a s - b o ( r - 1 .

W h e n  a o -  b o  )  0 ,  w e  h a v e , 8 6 : 0 .  O t h e r w i s e ,  w h e n  a s -  b o  1 0 ,  w e  h a v e

Bo: - 1;Bo is the borrow from the next place of the base r expansion of a.

We use the division algorithm again to find integers B1 and d1 such that

a 1 - b t +  B o :  B {  *  d r .  0  <  d 1  1  r .

From this equation, we see that the borrow B r : 0 as

> 0 ,  and Bt :  - l  o therw ise ,  s ince  - r  (  a r  -  b r
proceed inductively to find integers B; and d;, such that

a i  -  b t f  B i - r  :  B i r  t  d i .  0  (  d i

long  as  a1  -  b t  +  Bo
* B o  ( r - l . W e

1 r

< t < n - 2. We see that Bn4: 0, since a ) b.

a -  b  :  (dnadn-2. . .d1ds) , .

with B;  :0  or  -1,  for  I
We can conclude that

When performing base r subtraction by hand, we use the same familiar
technique as is used in decimal subtraction.

Example. To subtract ( to t  to)2 f rom ( t  to t  l )2 ,  we have

- t
l l o t l

- 1 0 1 1 0

1 0 1

where the -l in italics above a column indicates a borrow. We found the
binary digits of the difference by noting that 1 - 0 : 0'2 * l,
1 - l : 0 ' 2 * 0 ,  0 - l : - 1 ' 2 + 1 ,  l - 0 - l :  0 ' 2 + 0 ,  a n d  1 - l :

0'2 + 0.

Before discussing multiplication, we describe shifting. To multiply
(on-r...aps)7 by r^ , we need only shift the expansion left m places,
appending the expansion with m zero digits.

Example. To multiply (tOtt01)2 by 2s, we shift the digits to the left f ive
places and append the expansion with five zeros, obtaining (10110100000)2.
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To deal with multiplication, we first discuss the multiplication of an n-place
integer by a one-digi t  integer.  To mult ip ly (an_1.. .or i ; ,  by ( i l , ,  we f i rst
note that

o o b : Q o r * p o , 0 ( p s ( r ,

and 0 (  qo (  r  -  l ,  s ince 0 (  aob (  ( r -1)2.  Next,  we have

a f t + Q o : Q f  * p r , 0 ( p t 1 t ,

and 0 (  qt  (  r -1.  In general ,  we have

a;b  *  7 i - r :  Q i r  I  p i ,  0  (  p ;  -<  r

and 0 ( gr ( r - 1. Furthermore, we have pn: Qn_r. This yields
(or-1. . .a r ,o)  ,  (b)  ,  :  (pnpn-r . . .p g.o) , .

To perform a multiplication of two n-place integers we write
(  n - t  )  n - t

ab :a l>b i r i l : )Gb ) r i .
l i - r  )  i -o

For each -/, we first multiply a by the digit b;, then shift to the left 7 places,
and finally add all of the n integers we have obtained to find the product.

When multiplying two integers with base r expansions, we use the familiar
method of multiplying decimal integers by hand.

Example.  To mult ip ly ( l  l0 l )2 and ( t  t  tO)2 we wri te

l l 0 l
x 1 1 1 0

0 0 0 0
I  l 0 l

1 l 0 l
l 1 0 l

l 0 l l 0 1 l

Note that we first multiplied (1101)2 by each
time by the appropriate number of places, and
integers to find our product.

0

digit of (t t 10)t, shift ing each
then we added the appropriate
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We now discuss integer division.
division algorithm

We wish to find the quotient q in the

31

a : b q

If the base r expansion of q is q

( n-r
a-b l>

[r-o

This tells us that
(L

4 nn  { . t " ' ,
v t-"r f

+  R ,  0  <  R  <  b .

:  (Qn-rQn-2. . .Q 14o)  , , then we have

<b .

To determine the first digit Qrq of q, notice that

a - bqn-1vn-t :  uf ' i  qjr i)+ R.
U-o )

The right-hand side of this equation is not only positive, but also it is less than

brn-t, since 2 qiri g rn-l-l. Therefore, we know that
j -0

0 (  a  -  bqn-(n- l  <  brn- t .

O: Tt,  
- tn. ' l

Qn-r :  la /b rn- r l '

and

f o r  i  :  1 , 2 ,  . . . ,  n .  B y

( r .s)

e i r i l  +R ,0<R

R o :  a

R i : R i - r  -  b q n - t r n - i

mathematical induction, we show that

(n- i - t  I
R i :  |  >  q i r t l b + R .

l j - 0  )

We can obtain Qn-r by successively subtracting br"-l from a until a negative
result is obtained, and then qn-1is one less than the number of subtractions.

To find the other digits of q,, we define the sequence of partial remainders
Ri by

For i : 0, this is clearly correct, since R0 : a : qb + R. Now assume that
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R f t :

Then

Rt+r  :  Rf t  -  bqn-* - r rn-k- l

(n-k- t  .  
' l

:  
I  U  

q i r i l b + R - b q n - * - r v n - k - l
l. .r-o )

f n - ( k + r ) - r  . l: |  >  q i " lb+R '
I j - 0 )

establ ish ing (1.5) .

From ( t .S) ,  we see that  0 (  Ri  < rn- ib ,  for  i  :  1 ,2, . . . ,  f l ,  s ince
n - i  - l

i -0
O ( Ri < rn-tb, we see that the digit qn-i is given by lRi-r/brn-il and can
be obtained by successively subtracting brn-t from Ri-1 until a negative result
is obtained, and then qn-; is one less than the number of subtractions. This is
how we find the digits of q.

E x a m p l e .  T o  d i v i d e  ( t t t O l ) 2  b y  ( t t t ) 2 ,  w e  l e t  q :  ( q r q r q i r .  W e  s u b t r a c t
Z2(t t l )z :  ( t  t  tOO),  once from (t  t  tOt)z to obtain ( l )2,  and once more to
o b t a i n  a  n e g a t i v e  r e s u l t ,  s o  t h a t  Q 2 :  l .  N o w  R l  :  ( t t t O l ) t  -  ( t t t 0 0 ) t :
(1 )2 .  We f ind  tha t  q l :0 ,  s ince  R1 -  2 (1 l l )2  i s  less  than zero ,  and l i kewise

Qz:0.  Hence the quot ient  of  the div is ion is (100)2 and the remainder is ( l )2

We will be interested in discussing how long it takes a computer to perform
calculations. We will measure the amount of t ime needed in terms of
bit operations. By a bit operation we mean the addition, subtraction, or
multiplication of two binary digits, the division of a two-bit integer by one-bit,
or the shifting of a binary integer one place. When we describe the number of
bit operations needed to perform an algorithm, we are describing the
computational complexity of this algorithm.

In describing the number of bit operations needed to perforrn calculations
we will use big-O notation.
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Definition. If f and g are functions taking positive values, defined for all x in

a set S, then we say f is OQ) if there is a positive constant K such that

f  G) < Kg(x) for  a l l  x in the set S.

Proposition 1.6. If / is OQ) and c is a positive constant, then cf is Ok).

Proof . If / is Ok), then there is a constant K such that f G) < Kg(x) for
all x under consideration. Hence cf G) < GK)gG). Therefore, y' is
oQ) .  n

Propos i t ion  1 .7 .  l f  f t  i s  O(gr )  andf2 isOkz) , then " f t+- fz isOQf tg2)
and f Jz i soQe) .

Proof . If / is OQr) and f2 is Okz), then there are constants K1 and K2
such that - f  , (*)  < ,<1g1(x) and " f  z(x)  1 K2g2(x) for  a l l  x under
consideration. Hence

f  1G)  + f2G)  (  Krs r (x )  +  x2g2k)
(  Kkr (x)  +  sz?) )

where K is the maximum of K1 and K2. Hence f r + -f zis Ok, + gz).

Also

-f tk)f z(.x) ( Krsr G) K2s2G)
:  ( K r K 2 ) k t ? ) g 2 ( x ) ) ,

so that " f  f  z is 0(96).  t r

Corol lary 1.2.  I f  /1 and f  2are OG), then - f  r  + - f  z is Ok).

Proof . Proposition 1.7 tells us that "f t + f z is O QS). But if

f  t  + 
" fz 

(  KQs),  then f  t  + 
" fz 

(  (zx)g,  so that - f  r  +. f  z is Ok).  a

Using the big-O notation we can see that to add or subtract two r-bit
integers takes Ofu) bit operations, while to multiply two n-bit integers in the
conventional way takes OGz) bit operations (see problems 16 and 17 at the
end of this section). Surprisingly, there are faster algorithms for multiplying
large integers. To develop one such algorithm, we first consider the
multiplication of two 2n-bit integers, say a : (a2n4a2n_2...eflo)z and
b :  (b2 ,6b ,2n-2 . . .b f t i2 .  We wr i te  a  :2nAt  f  46  and b  :2nBr  t  Bs ,  where

-l

39
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At :  (a2r -1a2n*2 . . .a1711e17)2 ,  Ao:  (an-1an-2 . . .apg)2 ,  B t :  (b2n- f t2 r -z . . .bn+t
br)2, and B0 : (br-t bn-z...brbiz. We wil l use the identity

( t . e )  a b  :  ( 2 2 , + 2 , ) A r B r  r  2 n  ( A r A i ( a o - n r )  +  ( 2 , + l ) A o B 0 .

To find the product of a and 6 using (t.0), requires that we perform three
mult ip l icat ions of  n-bi t  integers (namely ArBr (A, -  Ad(Bo- Br) ,  and
AsBs), as well as a number of additions and shifts. If we let M(n) denote the
number of bit operations needed to multiply two n -bit integers, we find from
(t .0)  t t rat

( r .z)

( 1 . 8 )

M (2n) < ru h) + Cn.

where C is a constant, since each of the three multiplications of n -bit integers
takes M (n) bit operations, while the number of additions and shifts needed to
compute a'b via (t.0) does not depend on n, and each of these operations
takes O (n) bit operations.

From (t.Z), using mathematical induction, we can show that

a(zk )  (  c (3k  -2k ) ,

where c is the maximum of the quantities M Q) and C (the constant in
(t.Z)). To carry out the induction argument, we first note that with k: l,
we have MQ) ( c(3t -2t) : c, since c is the maximum of M(2) and C.

As the induction hypothesis, we assume that

MQk) (  c(3f t  -  2k).

Then, using (1.7),  we have

M (zk+t)  (  3u (zk) + czk
( 3c (lt - 2k) + c2k
(  c a k + t  _  c . 3 . 2 k  *  c 2 k
(  c ( 3 f t + l  -  z k + t ) .

This establishes that (1.8) is valid for all positive integers ft.

Using inequality (t.8), we can prove the following theorem.

Theorem 1.4. Multiplication of two n-bit integers can be performed using

O(nto9'3) bit operations. (Note: log23 is approximately 1.585, which is
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considerably less than the exponent 2 that occurs in the estimate of the

number of bit operations needed for the conventional multiplication

algorithm.)

Proof . From (t.8) we have

M h) : M (ztos'n) ( lzlttloerl+t;

< , (3ttot'nl+t _rltoe'nl+t;

(  3c.r l logrn I  (  3c.3losr,  :3rnto93

(since 3lo8'n : ,'ot").

Hence, Mh) : glnroe'3l. tr

We now state, without proof, two pertinent theorems. Proofs may be found
in Knuth [50] or Kronsji i tSgl.

Theorem 1.5. Given a positive number e ) 0, there is an algorithm for
multiplication of two n-bit integers using O(nr+') bit operations.

Note that Theorem 1.4 is a special case of Theorem 1.5 with e : log23 - l,
which is approximately 0.585.

Theorem 1.6. There is an algorithm to multiply two n-bit integers using
O(n log2n log2log2n) bit operations.

Since log2n and log2log2n are much smaller than n' for large numbers n,
Theorem 1.6 is an improvement over Theorem 1.5. Although we know that
M h) : O (n log2n log2log2n), for simplicity we will use the obvious fact that
M fu) : O (n2) in our subsequent discussions.

The conventional algorithm described above performs a division of a 2n-bit
integer by an n-bit integer with O(n2) bit operations. However, the number
of bit operations needed for integer division can be related to the number of
bit operations needed for integer multiplication. We state the following
theorem, which is based on an algorithm which is discussed in Knuth 1561.

Theorem 1.7. There is an algorithm to find the quotient q:Ia/bl, when
the 2n-bit integer a is divided by the integer b having no more than n bits,
using O(M Q)) bit operations, where M fu) is the number of
bit operations needed to multiply two n-bit integers.

4l



42 The Integers

1.4 Problems

l .  A d d  ( l 0 l l l l 0 l l ) 2  a n d  ( t t o o t l l 0 l l ) 2 .

2 .  Sub t rac t  ( t o t  t  l 0 l 0 l ) 2  f r om (1101101100 )2 .

3 .  Mu l t i p l y  ( t  t  rO r ) ,  and  ( l 10001 )2 .

4.  F ind the quot ient  and remainder  when ( t  to toon l )2  is  d iv ided by (1101)2.

5 .  Add (ABAB)16 and (BABA)rc .

6. Subtract (CAFE)16 from (rnno)ru.

7. Mult iply (FACE) 16 and (BAD)rc.

8. Find the quotient and remainder when Gneono),u is divided by (enn.n)ru.

9. Explain how to add, subtract, and mult iply the integers 18235187 and 22135674
on a computer with word size 1000.

10. Write algorithms for the basic operations with integers in base (-2) notation
(see problem 6 of Section 1.3).

1 1. Give an algorithm for adding and an algorithm for subtracting Cantor
expansions (see problem l4 of Section 1.3).

12. Show that if f 1 and f 2 are O(St) and O(g2), respectively, and c1 and c2 are
constants, then c;f1 * ,zf z is O(g1 * g).

13. Show that i f  f  is O(g), then fr i t  OQk) for al l  posit ive integers k.

14. Show that a function f is O(log2n) i f  and only i f  f  is O(log,n) whenever r ) l .
(Hint: Recall  that logon / log6n: logo6.)

15. Show that the base b expansion of a positive integer n has llog6nl+t digits.

16. Analyzing the algorithms for subtraction and addition, show that with n-bit
integers these operations require O h) bit operations.

17. Show that to multiply an n-bit and an m-bit integer in the conventional manner
requires OQm) bit operations.

18. Estimate the number of bit operations needed to find l+2+ * n

il by performing all the additions.

b)  by us ing the ident i ty  l+2*  I  n :  nh+l ) /2 ,  and mul t ip ly ing and
shifting.
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19. Give an estimate for the number of bit operations needed to find

["1
a) n'. b) 

|.o ,|

43

21.

20. Give an estimate of the number of bit operations needed to find the binary

expansion of an integer from its decimal expansion'

il Show there is an identity analogous to (1.6) for decimal expansions.

b) Using part (a), multiply 73 and 87 performing only three multiplications of

one-digit integers, plus shifts and additions.

c) Using part (a), reduce the multiplication of 4216 and 2733 to three

multiplications of two-digit integers, plus shifts and additions, and then

using part (a) again, reduce each of the multiplications of two-digit

integers into three multiplications of one-digit integers, plus shifts and

additions. Complete the multiplication using only nine multiplications of
one-digit integers, and shifts and additions.

il lf A and B are nxn matrices, with entries aii and bii for I ( i ( n,

I  (  f  (  n, then AB is the nxn matrix with entr ies ci i  :  2 ai*b*j.

Show that n3 multiplications of integers are used to find AB dir:;;ly from
its definition.

b) Show it is possible to multiply two 2x2 matrices using only seven
multiplications of integers by using the identity

o , r f  l b , ,  D ' t l
o,,)  l r , ,  t , , )

r r b r r  *  a n b z t

*  ( as -a2 ) (bzz -bn )  -

a22(b r -bzr -b  e*b22)

w h e r e  x :  a r r b r ,  -  ( a t t  -  c t 2 r -  a 2 ) ( b n -  b p *  b 2 ) .

c) Using an inductive argument, and spl i t t ing 2nx2n matrices into four nxn
matrices, show that it is possible to multiply two 2k x2k matrices using only
7ft multiplications, and less than 7ft+r additions.

22.

lo,,
l a z r

l"

I
l x

I

x  I  ( a 2 1  *  a 2 2 ) ( b n - b , , )  + l
(a r r la 12-a21-a22) b22 

|

x *  (an-azt ) (brr -brr )  + I
( a 2 1  *  a 2 ) ( b r z - b ' , - )  |
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matrices can be multiplied using
of the matrices have less than c

23. A dozen equals 12 and a gross equals 122. Using base 12, or duodecimal.
arithmetic answer the following questions.

il If 3 gross, 7 dozen, and 4 eggs are removed from a total of l l gross and 3
dozen eggs, how many eggs are left?

b) If 5 truckloads of 2 gross, 3 dozen, and 7 eggs each are delivered to the
supermarket, how many eggs were delivered?

c) If I I gross, I 0 dozen and 6 eggs are divided in 3 groups of equal size, how
many eggs are in each group?

24. A well-known rule used to find the square of an integer with decimal expansion
(an-1...apJro with f inal digit  ao:5 is to f ind the decimal expansion of the
product (anan-1...a)rcl(anan-r.. .ar)ro * l l  and append this with the digits
(25)ro. For instance, we see that the decimal expansion of (tOS)2 begins with
16'17 :272, so that (165)2 :27225. Show that the rule just described is val id.

25. In this problem, we generalize the rule given in problem 24 to find the squares of
integers with final base 28 digit 8, where I is a positive integer. Show that the
base 28 expansion of the integer (ana,-1...afl0)z,a starts with the digits of the
base 28 expansion of the integer (anana...af lo)zn l(anan-1...ap0)zn * l l  and
ends with the digits Bl2 and 0 when B is even, and the digits G-l)12 and.B
when I is odd.

1.4 Computer Projects

Write programs to do the following:

l. Perform addition with arbitrarily large integers.

2. Perform subtraction with arbitrarily large integers.

3. Multiply two arbitrarily large integers using the conventional algorithm.

4. Multiply two arbitrarily laige integers using the identity (1.6).

5. Divide arbitrarily large integers, finding the quotient and remainder.

6. Multiply two n xn matrices using the algorithm discussed in problem 22.

d) Conclude from part (c) that two nxn
O(nt"c7) bit operations when all entries
bits, where c is a constant.
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1.5 Prime Numbers

The positive integer I has just one positive divisor. Every other positive

integer has at least two positive divisors, because it is divisible by I and by

itself. Integers with exactly two positive divisors are of great importance in

number theory; they are called primes.

Definition. A prime is a positive integer greater than I that is divisible by no

positive integers other than I and itself.

Example. The integers 2,3,5,13,101 and 163 are primes.

Definition. A positive integer which is not prime, and which is not equal to l,

is called composite.

E x a m p l e .  T h e  i n t e g e r s  4 : 2 ' 2 , 8 : 4 ' 2 ,  3 3  :  3 ' 1 1 ,  1 l l  :  3 ' 3 7 ,  a n d
l00l  :  7 ' l l '  13 are composi te.

The primes are the building blocks of the integers. Later, we will show that
every positive integer can be written uniquely as the product of primes.

Here, we briefly discuss the distribution of primes and mention some
conjectures about primes. We start by showing that there are infinitely many
primes. The following lemma is needed.

Lemma 1.1. Every positive integer greater than one has a prime divisor.

Proof . We prove the lemma by contradiction; we assume that there is a
positive integer having no prime divisors. Then, since the set of positive
integers with no prime divisors is non-empty, the well-ordering property tells
us that there is a least positive integer n with no prime divisors. Since n has
no prime divisors and n divides n, we see that n is not prime. Hence, we can
write n:ab with I 1 a 1 n and | < b 1 n. Because a 1 n. a must have
a prime divisor. By Proposition 1.3, any divisor of a is also a divisor of n, so
that n must have a prime divisor, contradicting the fact that n has no prime
divisors. We can conclude that every positive integer has at least one prime
divisor. tr

We now show that the number of primes is infinite.

Theorem 1.8. There are infinitely many primes.
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Proof . Consider the integer

Q n :  n t  t  l ,  n  2  l .

Lemma 1.1. tells us that Q, has at least one prime divisor, which we denote
by gr. Thus, q, must be larger than n; for if 4, ( n, it would follow that
Qn I n!, and then, by Proposition l.!, Q, | (er-rr) : l , which is impossible.

Since we have found u priJ.''lur*r, tt* r, for every positive integer n,
there must be infinitely many primes. tr

Later on we will be interested in finding, and using, extremely large primes.
We will be concerned throughout this book with the problem of determining
whether a given integer is prime. We first deal with this question by showing
that by trial divisions of n by primes not exceeding the square root of n, we
can find out whether n is prime.

Thedrem 1.9. If n is a composite integer, then n has a prime factor not
exceeding ..1n.

Proof . Since n is composite, we can write n : ab, where a and b are
integers with | 1a ( D < n. we must have a 4 r/i, since otherwise
b 7 a > ,/; and ab > '/ i .,/ i  : n. Now, by Lemma I.l, a must have a
prime divisor, which by Proposition 1.3 is also a divisor of a and which is
clearly less than or equal to ,/i . D

We can use Theorem 1.9 to find all the primes less than or equal to a given
positive integer n. This procedure is called the steve of Eratosthenes. We
illustrate its use in Figure 1.2 by finding all primes less than 100. We first
note that every composite integer less than 100 must have a prime factor less
than J00-: 10. Since the only primes less than l0 are 2,3,4, and 7, we only
need to check each integer less than 100 for divisibility by these primes. We
first cross out, below by a horizontal slash -, all multiples of 2. Next we
cross out with a slash / those integers remaining that are multiples of 3.
Then all multiples of 5 that remain are crossed out, below by a backslash \.
Finally, all multiples of 7 that are left are crossed out, below with a vertical
slash l. ntt remaining integers (other than l) must be prime.
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Figure 1.2. Finding the Primes Less Than 100 Using the Sieve of Eratosthenes.

Although the sieve of Eratosthenes produces all primes less than or equal to
a fixed integer, to determine whether a particular integer n is prime in this
manner, it is necessary to check n for divisibility by all primes not exceeding
G. This is quite inefficient; later on we will have better methods for deciding
whether or not an integer is prime.

We know that there are infinitely many primes, but can we estimate how
many primes there are less than a positive real number x't One of the most
famous theorems of number theory, and of all mathematics, is the
prime number theorem which answers this question. To state this theorem,
we introduce some notation.

Definition. The function r(x), where x is a positive real number, denotes the
number of primes not exceeding x.

Example. From our example illustrating the sieve of Eratosthenes, we see that
o ( t O )  :  4  a n d  z r ( t O O )  : 2 5 .

We now state the prime number theorem.

The Prime Number Theorem. The ratio of zr'(x) to x/log x approaches one as
x grows without bound. (Here log x denotes the natural logarithm of x. In

the language of  l imi ts,  we have l im zr(x) /  +:  l ) .
.  I O B X
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The prime number theorem was conjectured by Gauss in 1793, but it was
not proved until 1896, when a French mathematician J. Hadamard and a
Belgian mathematician C. J. de la Vall6e-Poussin produced independent
proofs. We will not prove the prime number theorem here; the varioui proofs
known are either quite complicated or rely on advanced mathematics. In
Table I .l we give some numerical evidence to indicate the validitv of the
theorem.

x rG) x /log x oG)/*
log x

t i  G) r(x) /ti G)

1 0 3
104
105
106
107
108
l0e
l 0 l 0
l 0 r  I

l 0 l 2
t 0 l 3

168
t229
9592

78498
664579

5761455
50847534

455052512
4 r 1 8 0 5 4 8 1 3

37607912018
346065535898

144.8
1085.7
8685.9

72382.4
620420.7

5428681.0
48254942.4

43429448r.9
39481 31663.7

36191206825.3
t34072678387.r

1 . 1 6 0
1 . 1 3 2
l . 1 0 4
1.085
1 . 0 7 1
1.061
1.054
1.048
1.043
r .039
1.036

1 7 8
-r 1246

9630
78628

664918
5762209

5084923s
45505561 4

4 1 1 8 1 6 5 4 0 1
3760795028r

34606564s8 10

0.9438202
0.9863563
0.9960540
0.9983466
0.9998944
0.9998691
0.9999665
0.9999932
0.999973r
0.9999990
0.9999997

Table l.l. Approximations to rG).

x'A"x
The prime number theorem tells us that x /log x is a good approximation to

rG) when x is large. It has been shown that an even better approximation is
given by

ld' i, ) ' :*4{ =1I ' {-/d X/V614 - L
t i  G) :T O,

", log I

(whe-- T d, -^^-,," J, 
"* 

represents the area under the curve y : lfiog t, and above

the r-axis from t :2 to / : x). In Table l. l , one sees evidence that / i(x) is
an excellent approximation of zr(x).

f r taf t .1 ' ,  I '^  nd r  l '^-  -L-  =O
v  r  y l r  3  

-  
x4G l t l x  

\J
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We can now estimate the number of bit operations needed to show that an

integer n is prime by trial divisions of n by ail primes not exceeding ',,6-. The

prime number theorem tells us that there are approximately',/n 
fioeJ; : 2-/i /log n primes not exceeding -6. To divide n by an integer

m takes O(log2n.log2m) Uit operations. Therefore, the number of bit

operations needed to show that n is prime by this method is at least

Q,/i/togilG log2n) - r,/i (where we have ignored thelog2m term since it

is at least l, even though it sometimes is as large as (log2n)/D . This method

of showing that an integer n is prime is very inefficient, for not only is it

necessary to know all the primes not larger than ..li, but it is also necessary to

do at least a constant multiple of ,/i bit operations. Later on we will have

more efficient methods of showing that an integer is prime.

We remark here that it is not necessary to find all primes not exceeding x
in order to compute zr(x). One way that zr(x) can be evaluated without

finding all the primes less then x is to use a counting argument based on the
sieve of Eratosthenes (see problem l3). (Recently, very efficient ways of
finding r(x) using O (x3/s+c) bit operations have been devised by Lagarias and
Odlyzko t6ql.)

We have shown that there are infinitely many primes and we have discussed
the abundance of primes below a given bound x, but we have yet to discuss
how regularly primes are distributed throughout the positive integers. We first
give a result that shows that there are arbitrarily long runs of integers
containing no primes.

Proposition 1.8. For any positive integer n, there are at least n consecutive
composite positive integers.

Proof. Consider the n consecutive positive integers

h  +  l ) !  +  2 ,  ( n +  1 ) !  +  3 , . . . , h  +  l ) !  +  n  t  l .

W h e n  2 <  j ( n  * l , w e k n o w t h a t T l ( n  + l ) ! .  B y  P r o p o s i t i o n  1 . 4 ,  i t
follows that 7 | (, + t)! +;. Hence, these n consecutive integers are all
composite. tr

Example. The seven consecutive integers beginning with 8! + 2 : 40322 are
all composite. (However, these are much larger than the smallest seven
consecutive composites, 90, 91, 92, 93, 94, 95, and 96.)
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Proposition 1.8 shows that the gap between consecutive primes is arbitrari ly
long. On the other hand, primes may often be close iogether. The only
consecutive primes are 2 and 3, because 2 is the only even prime. Howevei,
many pairs of primes differ by two; these pairs of pri-., are called
twin pr imes. Examples are the pr imes 5 and 7, l l  and 13, l0 l  and 103, and
4967 and 4969. A famous unsettled conjecture asserts that there are infinitelv
many twin primes.

There are a multitude of conjectures concerning the number of primes of
various forms. For instance, it is unknown whether there are infinit l ly many
primes of the form n2 + | where n is a positive integer. Questions such as this
may be easy to state, but are sometimes extremely difficult to resolve.

We conclude this section by discussing perhaps the most notorious
conjecture about primes.

Goldbach's Conjecture. Every even positive integer greater than two can be
written as the sum of two primes.

This conjecture was stated by Christian Goldbach in a letter to Euler in
1742. It has been verif ied for all even integers less than a mill ion. One sees
by experimentation, as the following example i l lustrates, that usually there are
many sums of two primes equal to a particular integer, but a proof that there
always is at least one such sum has not yet been found.

Example. The integers 10,24, and 100 can be written as the sum of two
primes in the following ways:

l 0 : 3 + 7 : 5 t 5 ,
2 4 : 5 + l g : 7 + 1 7 : l l f 1 3 ,

1 0 0 : 3 + 9 7 : l l * g g : 1 7 + 9 3
: 2 9 * 7 1 : 4 1 + 5 9 : 4 7 + 5 3 .

1.5 Problems

l. Determine which of the following integers are primes

a)

b)

l 0 l
1 0 3

c)

d)

l07
l l l

e )  I  1 3
f) tzt.
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Use the sieve of Eratosthenes to find all primes less than 200'

Find atl primes that are the difference of the fourth powers of two integers.

Show that no integer of the form n3 * I  is a prime, other than 2: 13 + l .

Show that if a and n are positive integers such that an -l is prime, then a : 2

and n is prime. (Hint: Use the identi ty ake-l :  Qk-D (aka-t\  +

akQ-D  +  +  ak  + l )  .

In this problem, another proof of the infinitude of primes is given. Assume there

are only finitely many primes p r,Pz,...,Pn Form the integer

Q:  prpz . . .  pn *  l .  Show that  Q has a pr ime factor  not  in  the above l is t .

Conclude that there are infinitely many primes.

Let Qn : ptpz " '  pn t l  where Pt,Pz, . . . ,  Pn are the n smallest primes.

Determine the smallest prime factor of Q^ for n:1,2,3,4,5, and 6. Do you

think Q, is prime infinitely often? (tnis is an unresolved question.)

Le t  p t , p2 , . . . , pnbe  t he  f i r s t  n  p r imes  and  l e t  m  be  an  i n tege r  w i t h  I  1m 1n .

Let Q be the product of a set of z primes in the list and let R be the product of

the remaining primes. Show that Q + R is not divisible by any primes in the
list, and hence must have a prime factor not in the list. Conclude that there are
infinitely many primes.

Show that if the smallest prime factor p of the positive integer n exceeds d6
then n/p must be prime or 1.

il Find the smallest five consecutive composite integers.
b) Find one million consecutive composite integers.

Show that there are no "prime tr iplets", i .e. primes p, p + 2, and p + 4, other

than 3,5, and 7.

12. Show that every integer greater than 11 is the sum of two composite integers.

5 1

2.

3 .

4 .

5 .

6 .

7 .

8 .

9 .

1 0 .

I  l .

13. Use the principle of inclusion-exclusion(problem 17 of Section 1.1) to show that

l-l . + l-ll
lp ,  I  lp ,  l )

o(n):(o(.6-)-r) - n 
t l*

l*l .l*l . +lrnl
where pt,pz,...,p, are the primes less than or equal to ^6 (with r:zr<Jil l .
(Hint: Let property Pi,,...,i, be the property that an integer is divisible by all of



Pi,, . . . ,pi , ,  and use problem 23 of Section 1.2.)

14. Use problem l3 to f ind zr(250).

15' i l  show that the polynomial x2 - x * 4l is prime for al l  integers x with0 ( I < 40. Show, however, that it is composite for x : 4i.
b) Show that i f  f  (x) :  onxn + an-,x;-t  + * a1x r as where thecoefficients are integers, then there is an integer y such that f(y) is composite.(Hint: Assume that f(x) :p is prim., unJsho* p divides f (x+kfl  for ai lintegers ft ' conclude from the faci that a polynomial of degree z takes on eachvalue at most n times, that there is an integer y suctr that f(y) is composite.)

16' The lucky numbers are generated by the following sieving process. Start with
the positive integers. Begin the process by crossing out every second integer in
the l ist '  start ing your count with the integer t .  other than I the smallest integer
left is 3, so we continue by crossing out every third integer left, starting the
count with the integer l. The next integer left is 7, so we cross out every seventh
integer left. Continue this process, where at each stage we cross out every kth
integer left where & is the smallest integer left other than one. The integers that
remain are the lucky numbers.

a) Find all lucky numbers less than 100.

b) show that there are infinitery many rucky numbers.

coefficient 
[;] 

,,
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17. Show that i f  p is prime and I (  t  (  p, then the binomial

divisible by p.

1.5 Computer Projects

Write programs to do the following:

l ' Decide whether an integer is prime using trial division of the integer by all
primes not exceeding its square root.

2. Use the sieve of Eratosthenes to find all primes less than 10000.

3' Find zr(n), the number of primes less than or equal to rz, using problem 13.
4. verify Goldbach's conjecture for all even integers less than 10000.

5. Find all twin primes less than 10000.

6. Find the first 100 primes of the form n 2 + l.

7. Find the lucky numbers less than 10000 (see problem 16).



Greatest Common Divisors

and Prime Factorization

2.1 Greatest Common Divisors

If a and b are integers, that are not both zero, then the set of common
divisors of a and 6 is a finite set of integers, always containing the integers *l
and -1. We are interested in the largest integer among the common divisors
of the two integers.

Definition. The greotest common divisor of two integers a and b, that are
not both zero, is the largest integer which divides both a and b.

The greatest common divisor of a and b is written as (a, b).

Example. The common divisors of 24 and 84 are t l, J.2, +3, 1.4, t6, and
+ 12. Hence Q+, g+) : 72. Similarly, looking at sets of common divisors, we
f i n d  t h a t  ( 1 5 , 8 1 )  : 3 , ( 1 0 0 , 5 )  :  5 ,  ( I 7 , 2 5 )  :  l , ( 0 , 4 4 )  : 4 4 , ( - 6 ,  - 1 5 )  : 3 ,
and (-17, 289) : 17 .

We are particularly interested in pairs of integers sharing no common
divisors greater than l. Such pairs of integers are called relatively prime.

Definition. The integers a and b are called relatively prime if a and b have
greatest common divisor (a, b) : l.

Example. Since Q5,42) : 1,25 and 42 are relatively prime.

5 3
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Note that since the divisors of -c are the same as the divisors of a, it
follows that (a, b) : (lal, la ll (where lc I denotes the absolute value of a
which equals a if a )0 and equals -a if a <0). Hence, we can restrict our
attention to greatest common divisors of pairs of positive integers.

We now prove some properties of greatest common divisors.

Proposition 2.1. Let a, b, and c be integers with G, b) : d. Then

(;)  b/d,  b ld)  :  I
( i i )  (a tcb ,  b )  :  (a ,  b ) .

Proof. (D Let a and b be integers with (a,b) : d. we will show that a /d
and b/d have no common positive divisors other than 1. Assume that e is a
positive integer such that e I Q/d) and e I Qtal. Then, there are integers k
and I with ald : ke and b/d :Qe, such that a : dek and b : de[. Hence.
de is a common divisor of a and b. Since d is the greatest common divisor of
o and b,e must be l . Consequently, G /d , b /d) : l.

(ii) Let a, b, and c be integers. We will show that the common divisors of a
and b are exactly the same as the common divisors of a t cb and b. This
will show that (a *cb , b) : G, b). Let e be a common divisor of a and b .
By Proposition 1.4, we see that e I b*cb), so that e is a common divisor of
a * cb and 6. It,f is a common divisor of a * cb and b, then by Proposition
1.4, we see that/ divides b+cb) - cb : a, so thatf is a common divisor of
a and b. Hence G*cb, b) : (a, b'). a

We will show that the greatest common divisor of the integers a and b, that
are not both zero, can be written as a sum of multiples of a and b. To phrase
this more succinctly, we use the following definition.

Definition. If a and b are integers, then a linear combination of a and b is a
sum of the form ma * nD, where both rn and, n are integers.

We can now state and prove the following theorem about greatest common
divisors.

Theorem 2.1. The greatest common divisor of the integers a and b, that are
not both zero, is the least positive integer that is a linear combination of a and
b .

Proof. Let d be the least positive integer which is a linear combination of a
and b. (There is a least such positive integer, using the well-ordering
property, since at least one of two linear combinations l'a t 0'b and
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GDa + 0'b, where a 10, is positive.) We write

r z . r lR==r*  
?  

d :ma*nb ,

where  m andn arepbf t@in tegers .  Wewi l l show tha td  la  and d  lb .

By the division algorithm, we have

a : d q * r ,  0 ( r < d .

From'n"'o:'1'::^r: 
: ' ;: ; ';::,b) : e-qm) a - qnb

This shows that the integer r is a linear combination of a and D. Since
0 ( r 1d, and d is the least positive linear combination of a and b, we
conclude that r : 0, and hence d I o. In a similar manner, we can show that
d  I  b .

We now demonstrate that d is the greatest common divisor of a and b. To
show this, all we need to show is that any common divisor c of a and D must
d i v i d e d .  S i n c e  d : m a * n b ,  i f  c  l a a n d c l b , P r o p o s i t i o n  l . 4 t e l l s u s t h a t
c I d. tr

We have shown that the greatest common divisor of the integers a and b,
that are not both zero. is a linear combination of a and b. How to find a
particular linear combination of a and D equal to G, D) will be discussed in
the next section.

We can also define the greatest common divisor of more than two integers.

Definition. Let e1, e2,..., en be integers, that are not all zero. The
greatest common divisor of these integers is the largest integer which is a
divisor of all of the integers in the set. The greatest common divisor of
at ,  a2, . . . ,  c,  is  denoted by (a1, a2,, . . . ,  an).

Example. We easily see that 02, 18, 30) :6 and (10, 15, 25) : 5.

To find the greatest common divisor of a set of more than two integers, we
can use the following lemma.

L,emma 2.1. If a1, a2,..., an are integers, that are not all zero, then
(a1 ,  a2 , . . . ,  an -1 ,  an )  :  (a1 ,  a2 r . . . ,  (on - r ,  a ) ) .

Proof. Any common divisor of the n integers ar, e2,..., en_t, en is, in
particular, a divisor of ar-1 and an, and therefore, a divisor of (an_1, an).
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Also, any common divisor of the n-2 integers 4 t, a2,..., on_2, and (an_1,an),
must be a common divisor of all n integers, for if it divides (on-r, an), it must
divide both cr-1 and an Since the set of n integers and the set of the first
n-2 integers together with the greatest common divisor of the last two
integers have exactly the same divisors, their greatest common divisors are
equal. tr

Example. To find the greatest common divisor of the three integers
105, 140, and 350, we use Lemma 2.1 to see that (105, 140. 350) :
( 1 0 5 ,  ( 1 4 0 , 3 5 0 ) )  :  ( l 0 5 , 7 0 )  :  3 5 .

Definition. We say that the integers a1.e2,..., e1 are mutually relatively
prime if (a1, e2,..., an) : l. These integers 4re called pairwise relatively
prime if for each pair of integers 4; and a; from the set, (ai, a1): l, that is,
if each pair of integers from the set is relatively prime.

It is easy to see that if integers are pairwise relatively prime, they must be
mutually relatively prime. However, the converse is false as the following
example shows.

Example. Consider the integers 15, 21, and 35. Since

( 15 ,2 r , 35 ) :  ( t s ,  ( 2 t , 35 ) ) :  ( r 5 ,7 ) :  r ,

we see that the three integers are
are not pairwise relatively prime,
( 2 1 , 3 5 ) : 7 .

mutually relatively prime. However, they
b e c a u s e  ( t S .  z l )  :  3 ,  ( 1 5 , 3 5 )  : 5 ,  a n d

2.1 Problems

l. Find the greatest common divisor of each of the following pairs of integers

i l  1 5 , 3 5
b )  0 ,  l l l
c )  - 1 2 .  t 8

d) 99, 100
e )  1  l ,  l 2 l
f) 100, 102

4.

Show that i f  a and b are integers with (a, b) :  l ,  then (a*b, a-b) :  I  or 2.

Show that if a and b are integers, that are not both zero, and c is a nonzero
in teger ,  then (ca ,  cb)  :  lc lb ,  b \ .

What is (a2+b2,a*b), where a and b are relatively prime integers, that are not

both zero?
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Periodical cicadas are insects with very long larval periods and brief adult lives.

For each species of periodical cicada with larval period of 17 years, there is a

similar species with a larval period of 13 years. If both the l7-year and l3-year

species emerged in a particular location in 1900, when will they next both

emerge in that location?

a) Show that if a and b are both even integers, that are not both zero, then
(a, b) : 2fu /2, b /2).

b) Show that if a is an even integer and b is an odd integer, then

G,  b \  :  G  12 ,  b ) .

Show that  i f  a ,b ,  and c  are in tegers  such that  G,b) :  I  and c  I  G*b) ,  then

k , a ) : ( c , D ) - L

i l  Show that  i f  a ,b ,  and c  are in tegers  wi th  b ,b) :  (a ,  c )  :  l ,  then
(a, bc) :  L

b) Use mathematical induction to show that i f  at,  a2,.. . ,an are integers, and b is

another integer such that (ar b) :  (az, b) :  :  (on, b) - l ,  then
( a p 2 '  '  o n ,  b )  :  l .

Show that  i f  a ,  b ,and c  are in tegers  wi th  c  I  ab,  then c  |  (a ,  c )  (b ,  c ) .

a) Show that if a and b are positive integers with (a , b) : l, then (an , bn) : I

for all positive integers n.

b) Use part (a) to prove that if a and b are integers such that a' I bn where n
is a positive integer, then c I b.

Show that if a, b and c are mutually relatively prime nonzero integers, then

G ,  b d  :  ( a ,  b ) ( a ,  c ) ,

Find a set of three integers that are mutually relatively prime, but not relatively
prime pairwise. Do not use examples from the text.

Find four integers that are mutually relatively prime, such that any two of these
integers are not relatively prime.

Find the greatest common divisor of each of the following sets of integers

a)  8 ,  lo ,  12
b )  5 , 2 5 , 7 5
c) 99, 9999,0

d )  6 ,  1 5 , 2 1
e)  -7 ,28 ,  -35

f )  0 ,0 ,  l00 l  .

Find three mutually relatively prime integers from among the integers
66,  105,  42,70,  and 165.

Show that ar, a2,..., an are integers that are not all zero and c is a positive
integer, then (ca t,  caz,.. . ,  can) - c(a6 a2... ,  an).

57

5.

6 .

7 .

8 .

9 .

1 0 .

l l .

T2,

1 3 .

1 4 .

1 5 .

1 6 .
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Show that the greatest common divisor of the integers at, o2,..., an, that are not
all zero, is the least positive integer that is a linear combination of a t, at,..., an.

Show that if k is an integer, then the six integers 6k-l, 6k +l ,
6k+2, 6k +3, 6k+5, are pairwise relat ively prime.

Show that if k is a positive integer, then 3k *2 and 5k +3 are relatively prime.

t 7 .

r8 .

r9 .

20.

2t .

Show that every positive integer greater than
prime integers greater than I .

a) Show that if a and b are relatively
(a ' - b^ ) l ( a -b ) . a -b )  :  I  o r  n .

six is the sum of two relativelv

prime positive integers, then

b) Show that if o and b are positive integers, then ((an-b'\/G-b), a-b) :
(n (a ,  b ) r - t ,a -b) .

2.1 Computer Projects

l. Write a program to find the greatest common divisor of two integers.

2.2 The Euclidean Algorithm
We are going to develop a systematic method, or algorithm, to find the

greatest common divisor of two positive integers. This method is called the
Euclidean algorithm. Before we discuss the algorithm in general, we
demonstrate its use with an example. We find the greatest common divisor of
30 and 72. First ,  we use the div is ion algor i thm to wr i teT2:30'2 + 12, and
we use Propos i t ion  2 .1  to  no te  tha t  $0 ,7D:  (30 ,  72-  2 .30)  :  (10 ,  t2 ) .
Another way to see that (J,0,7D: (30, 12) is to notice that any common
divisor of 30 and 72 must also divide 12 because 12 : 72 - 30'2. and
conversely, any common divisor of 12 and 30 must also divide 72, since
72:30'2+ 12. Note we have replaced 72by the smal ler  number 12 in our
computations since 02,30): (30, l2). Next, we use the division algorithm
again to write 30 : 2'12 + 6. Using the same reasoning as before, we see that
(30, 12) :  (12,6).  Because 12 :  6 '2 *  0,  we now see that
02, O : (6, 0) : 6. Consequently, we can conclude that (72,30) : 6,
without finding all the common divisors of 30 and 72.

We now set up the general format of the Euclidean algorithm for computing
the greatest common divisor of two positive integer.

The Euclidean Algorithm. Let rs : a and r r : b be nonnegative integers with
b I 0. If the division algorithm is successively applied to obtain
r i :  r i+ tQ i * ,  I  r i+2  w i th  0  1  r i+2  1r i+ t  fo r  7  :0 ,1 ,2 , . . . ,n -2  and r ,  :0 ,

o t  =b t  * f ^  O<r r<b
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then (a , b) -- r,-1, the last nonzero remainder.

From this theorem, we see that the greatest common divisor of c and b is

the last nonzero remainder in the sequence of equations generated by

successively using the division algorithm, where at each step, the dividend and

divisor are replaced by smaller numbers, namely the divisor and remainder.

To prove that the Euclidean algorithm produces greatest common divisors,

the following lemma will be helpful.

Lemma 2.2. If c and d are integers and c : dq * r where c and d ate

integers,  then (c,  d)  :  (d,  r ) .

Proof. If an integer e divides both c and d, then since r : c-dq, Proposition
1 . 4  s h o w s  t h a t  e l r .  I f  e l d  a n d  e l r ,  t h e n  s i n c e  c : d q l r ,  f r o m
Proposition 1.4, we see that e I c. Since the common divisors of c and d are

the same as the common divisors of d and r, we see that k, d) : (d, r). tr

We now prove that the Euclidean algorithm works.

Proof. Let r0: e and rr : b be positive integers with a 7 b. By
successively applying the division algorithm, we find that

59

f g  :  r t Q t * r Z

f  y  :  r 2 Q 2 *  r t

tn-3

f  n -2
I  n- l

: fn-2Qn-Z * fn-t 0
:  fn- lQn-t  *  fn 0
:  lnQn

(  r r - r
( r ,

a remainder of zero since the
) 0 cannot contain more

(a ,  b )  :  ( rs ,  r1 )  :  ( r l ,  rz )  :

r r )  :  ( r r ,0)  :  rn.  Hence

0<
0<

r 2

r 3

We can assume that we eventually obtain
sequence of  remainders a:  ro l r1>. 12>.
than c terms. Bv Lemma 2.2. we see that
(rr., r)
( a , b )  :

(rn-r,  fn-t) :  (rr-r,

We illustrate the use of the Euclidean algorithm with the following example.

Example. To find (252, 198), we use the division algorithm successively to
obtain

r-. the last nonzero remainder. tr
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2 5 2 :  l . 1 g g  +  5 4
1 9 8 : 3 ' 5 4  + 3 6
5 4 : 1 ' 3 6  + 1 8
3 6  :  2 . 1 8 .

Hence QSZ.  198)  :  18 .

Later in this section, we give estimates for the maximum number of
divisions used by the Euclidean algorithm to find the greatest common divisor
of two positive integers. However, we first show that given any positive integer
n, there are integers a and b such that exactly n divisions are required to find
G, b) using the Euclidean algorithm. First, we define a special sequence of
integers.

Definition. The Fibonacci numbers ur, u2, u3,... are defined recursively by
t h e  e q u a t i o n s  a  t :  u 2 :  I  a n d  u n :  u n - t  *  u n - 2 f o r  n  2  3 .

Using the def in i t ion,  we see that u3: t t2 *  yt :  I  t  |  :  2,  u3l  u2
: 2 * I : 3, and so forth. The Fibonacci sequence begins with the integers
1 , 1 , 2 , 3 , 5 ,  8  1 3 , 2 1 , 3 4 , 5 5 ,  8 9 ,  I 4 4 , . . . .  E a c h  s u c c e e d i n g  t e r m  i s  o b t a i n e d
by adding the two previous terms. This sequence is named after the thirteenth
century ltalian mathematician Leonardo di Pisa, also known as Fibonacci, who
used this sequence to model the population growth of rabbits (see problem 16
at the end of this section).

In our subsequent analysis of the Euclidean algorithm, we wil! need the
following lower bound for the nth Fibonacci number.

Theorem 2.2. Let n be a positive integer and let cu : ( l+-.8) /2. Then
u n l a n - 2 f o r n 7 3 .

Proof. We use the second principle of mathematical induction to prove the
desired inequality. We have a 1 2: u3, so that the theorem is true for
n  : 3 .

Now assume that for all integers k with k 4 n, the inequality

ok-2 1 ut

holds.

S ince  a  :  ( l+ r f r /2  i s  a  so lu t ion  o f  x2  -x  -  I  :  0 ,  we have a2 :  a  *  l .
Hence,

o tn - l  :  o2 .on -3 :  (a * l ) .a r -3  :  s1n -2  *  an -3
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By the induction hypothesis, we have the inequalities

an-2 < un, otn-3 1 un-t ,

Therefore, we conclude that

o r ' - l  l u n * u n - l - u n * l

This finishes the proof of the theorem. tr

We now apply the Euclidean algorithm to the successive Fibonacci numbers
34 and 55 to find (34. 55). We have

5 5 : 3 4 ' l + 2 1
3 4 : 2 1 ' l + 1 3
2 l :  l 3 ' l  +  8
1 3 : 8 ' 1  +  5
8  :  5 ' 1  *  3
5 : 3 ' l  *  2
3 : 2 ' l  *  I
2 :  l ' 2 .

We observe that when the Euclidean algorithm is used to find the greatest
common divisor of the ninth and tenth Fibonacci numbers, 34 and 55, a total
of eight divisions are required. Furthermore, (34, 55) : 1. The following
theorem tells us how many divisions are needed to find the greatest common
divisor of successive Fibonacci numbers.

Theorem 2.3. Let unrr and unt2 be successive terms of the Fibonacci
sequence. Then the Euclidean algorithm takes exactly n divisions to show that
(un*r,  ura2) :  l .

Proof. Applying the Euclidean algorithm, and using the defining relation for
the Fibonacci numbers ui : uj-r I ui-z in each step, we see that

l l n * 2 :  U n * t ' l  t  U n ,
U n * l :  U n ' l  +  U n - 1 ,

L t 4 :  u 3 ' 1  *  u 2 '

I t3  :  t t2 '2 .

Hence, the Euclidean algorithm takes exactly n divisions, to show that
(unq2, t lnqr )  :  uz  -  l .  E

6 1
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We can now prove a theorem first proved by Gabriel Lame', a French
mathematician of the nineteenth century, which gives an estimate for the
number of divisions needed to find the greatest common divisor using the
Euclidean algorithm.

Lam6's Theorem. The number of divisions needed to find the greatest common
divisor of two positive integers using the Euclidean algorithm does not exceed
five times the number of digits in the smaller of the two integers.

Proof. When we apply the Euclidean algorithm to find the greatest common
divisor of a : re and b :r 1 with a ) b, we obtain the following sequence of
equations:

f n -2  :  f n - tQn- t  *  r r ,  0  (  rn  1  rn - t ,

f n - l  :  t nQn ,

We have used n divisions. We note that each of the quotients Qt, Q2,..., Qn-l
is greater than or equal to l, and Qn 7 2, since rn 1rn-1. Therefore,

r r 2 l : u r ,
r n - t  2  2 r n  2  2 u 2 :  u 3 ,
rn -z  2  rn - t  *  rn  2  u t  *  u2 :  u4 ,
rn - l  2  rn -z  *  rn - t  2  uq  *  u3 :  t t5 ,

f g  :  r t Q t * r Z ,

f 1  : r Z 4 Z * r t ,

r z ) 1 3 * 1 4

b : ' r 2 r z

0 ( r z 1 r r ,
0 ( 1 3 1 r z ,

7  u n q  *  u n - z :  u *
* r t  7 un * un-t  :  un+l

Thus, for there to be n divisions used in the Euclidean algorithm, we must
have b 7 un+r. By Theorem 2.2, we know that unay ) qn-r for n ) 2 where
a: (l+.,8)/2. Hence, b ) an-r. Now, since loglsa > 1/5, we see that

logrqb > h- l ) loglsa > (CI- l )  /5.

Consequently,

n - l ( S ' l o g l e b .
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Let b have k decimal {igits, so that b < 10ft and loglsb < k. Hence, we see
that n - I < 5k and since /c is an integer, we can conclude that n < 5k.
This establishes Lam6's theorem. tr

The following result is a consequence of Lam6's theorem.

Corollary 2.1. The number of bit operations needed to find the greatest
common divisor of two positive integers a and, yy 

ir;;i.:f$;:ri?',
Proof. We know from Lam6's theorem that O Qogra) divisions, each taking
O(log2a)2) bit operations, are needed to find fu, b). Hence, by Proposition
1.7, (a, b) may be found using a total of O((log2a)3) bit operations. D

The Euclidean algorithm can be used to express the greatest common divisor
of two integers as a linear combination of these integers. We illustrate this by
expressing (252, 198) : l8 as a l inear combination of 252and 198. Referring
to the steps of the Euclidean algorithm used to find (252, 198), from the next
to the last step, we see that

1 8 : 5 4 - l ' 3 6 .

From the second to the last step, it follows that

which implies that

Likewise, from the

so that

3 6 : 1 9 8 - 3 ' 5 4 ,

1 8  :  5 4  -  t . ( 1 9 8 - 3 . 5 4 )  :  4 . 5 4 -  1 . 1 9 8 .

first step we have

5 4 : 2 5 2  -  l ' 1 9 8 .

l 8  -  4 (252-1 .198)  -  1 .198  :  4 .252-  5 .198 .

This last equation exhibits l8 : (252, 198) as a l inear combination of 252 and
l  9 8 .

In general, to see how d : (a, b) may be expressed as a l inear combination
of a and 6, refer to the series of equations that is generated by use of the
Euclidean algorithm. From the penultimate equation, we have

r n :  ( a ,  b )  :  r n - 2 -  r n - r Q n - r  .

This expresses b,b) 'as a l inear combinat ion of  r r -2e,f id rr-1.  The second to
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last equation can be used to express r2-1 &S rn-3 -rn-zen-z . Using this
equation to eliminate rn-1 in the previous expression for (4,6), we find

l n :  l n - 3 -  f n - 2 4 n - 2 ,

so that

b, b) : rn-2- (rn4-rn-zQn-z)en-r
--  ( l+qrnQn-z)rn-z -  Qn-rrn-3,

which expresses b, b) as a linear combination of rn-2 zfid r,4. We continue
working backwards through the steps of the Euclidean algorithm to express
G, b) as a linear combination of each preceding pair of remainders until we
have found (a, b) as a l inear combination of to: a and 11- b. Specifically,
if we have found at a particular stage that

G , b ) : s r i l t r i t ,

then, since

t i :  t i_2-  r i_ tQ i_r ,

we have

b,b) : s (ri-z*ri-g1-r) * tr1-r
:  Q-sq t - ) r i - r  *  s r i -2 .

This shows how to move up through the equations that are generated by the
Euclidean algorithm so that, at each step, the greatest common divisor of a
and b may be expressed as a linear combination of a and b.

This method for expressing G, b) as a linear combination of a and b is
somewhat inconvenient for calculation, because it is necessary to work out the
steps of the Euclidean algorithm, save all these steps, and then proceed
backwards through the steps to write G,b) as a linear combination of each
successive pair of remainders. There is another method for finding b,b)
which requires working through the steps of the Euclidean algorithm only
once. The following theorem gives this method.

Theorem 2.4. Let a and b be positive integers. Then

f u , b ) : s n a + t n b ,

for n:0,1,2,..., where,sn and tn are the nth terms of the sequences defined
recursively by

the
last
that
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S O :  l ,  / 0 : 0 ,

s l  : 0 ,  / l  :  l ,

and

si : Si*z- ?i-tsi-t, t j  : t j-z - Q1-zt1-t

for 7 :2,3, ..., f l , where the q;'s are the quotients in the divisions of the
Euclidean algorithm when it is used to find G,b).

Proof. We will prove that

Q.D ri : sia + tjb

for 7 : 0, I ,..., f l . Since G,b) : r, once we have established (2.2), we wil l
know that

G , b ) : s n a + t n b .

We prove (2.2) using the second principle of mathematical induction. For
:0,  we have a :  r0:  l 'a *  0 'b :  ssa * tsb.  Hence, Q.D is val id for
:0 .  L ikewise ,  b  :  r r :0 'a  +  l 'b :  s lc  +  t f t ,  so  tha t  Q.D is  va l id  fo r
:  l .

Now, assume that

r i : S i a + t j b

for 7 : 1,2,..., k-1. Then, from the kth step of the Euclidean algorithm, we
have

tk : rk-2 - r*_lQt -l .

Using the induction hypothesis, we find that

r1 : (s1- 2a*tp-2b) - (s1raa*t1r-1b) Q*-r
:  (s1-2-s*- tq*-)a *  Qp2-t*-rq*-)b
: S k a + t k b .

This finishes the proof. tr

The following example illustrates the use of this algorithm for expressing
(a,b) as a linear combination of a and b.

Example. Let a :252 and D : 198. Then

l
j
j
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l o : 0 ,
I r  :  1 ,

s o :  l ,
s l  : 0 ,

J 2 : S 0 - s q l : l -  0 ' l : 1 ,  t Z : t O - t t Q t : 0 -  1 . 1  :  - 1 ,
J 3  : S t  -  S Z Q z : 0  -  l ' 3  :  - 3 ,  t 3 :  t t  -  1 Z Q Z :  1  -  ( - l ) 3  :  4 ,
s 4 :  s 2  -  s t Q t :  I  -  ( - l ) ' t  :  4 ,  t q :  t z -  t t Q z :  - l  -  4 . 1  :  - 5 .

S ince  14 :  18 :  (252,198)  and 14 :  s4o  +  t4b ,  we have

18 -  (252,  198)  :  4 .252 -  5 .198 .

It should be noted that the greatest common divisor of two integers may be
expressed in an infinite number of different ways as a linear combination of
these integers. To see this, let d : (a,b) and let d : so I tb be one way to
write d as a linear combination of a and b, guaranteed to exist by the
previous discussion. Then

d :  (s  -  k (b /d ) )a  +  Q -  kb /d) )b

for all integers k.

Example. With a :252 and b : 198, lB: (252, 198) : (+ - t Ik)252 +
(-S - l4k)198 whcnever k is an integer.

2.2 Problems

l. Use the Euclidean algorithm to find the following greatest common divisors

i l  (45,75) c) (ooo, r+r+)
b) 002,22D d) (2078S, 44350).

2. For each pair of integers in problem l, express the greatest common divisor of
the integers as a linear combination of these integers.

3. For each of the following sets of integers, express their greatest common divisor
as a linear combination of these integers

i l  6 ,  10,  l5

b )  70 ,98 ,  105

c )  280 ,  330 ,405 ,490 .

4. The greatest common divisor of two integers can be found using only
subtractions, parity checks, and shifts of binary expansions, without using any
divisions. The algorithm proceeds recursively using the following reduction
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G . b ) :

i f  a : b

if a and 6 are even

if a is even and b is odd

if a and b are odd.

a) Find (2106, 8318) using this algori thm.

b) Show that this algorithm always produces the greatest common divisor of a

pair of positive integers.

5. In problem 14 of Section 1.2, a modified division algorithm is given which says

that if a and 6 > 0 are integers, then there exist unique integers q,r, and e

such that a :  bq * er, where e - t l ,r  )  0, and -blz < er { bl2. We can

set up an algorithm, analogous to the Euclidean algorithm, based on this

modified division algorithm, called the least -remainder algorithm. It works as
follows. Let rs: a and rr: b, where a ) b 7 0. Using the modified division

algorithm repeatedly, obtain the greatest common divisor of a and b as the last

nonzero remainder rn in the sequence of divisions

ro : r tQr * e2r2, -rt lz 1 e2r2 4 ,t lz

rn-Z : ln-tQn-t I enrn, -rn-tl2 I enrn 4, rn-tl2
fn - l  :  7n4n '

a) Use the least-remainder algorithm to find (384, 226).

b) Show that the least-remainder algorithm always produces the greatest

common divisor of two integers.

c) Show that the least-remainder algorithm is always faster, or as fast, as the
Euclidean algorithm.

d) Find a sequence of integers v6, V1, v2,... such that the least-remainder
algorithm takes exactly n divisions to find (vn*,, vn+z).

e) Show that the number of divisions needed to find the greatest common
divisor of two positive integers using the least-remainder algorithm is less
than 8/3 times the number of digits in the smaller of the two numbers, plus

413.

Let m and n be positive integers and let a be an integer greater than one. Show
that  (a^-1,  an- l )  -  a(^ '  n)  -  l .

In this problem, we discuss the game of Euclid. Two players begin with a pair
of positive integers and take turns making moves of the following type. A player
can move from the pair of positive integers {x,y} with x 2 y, to any of the pairs

[x-ty,yl, where / is a positive integer and x-ty 2 0. A winning move

I,
)2k lL,b /2)

l{o/z,t)
[ (a  

-D,b)

6.

7.
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consists of moving to a pair with one element equal to 0.

a) Show that every sequence of moves starting with the pair {a, bl must
eventual ly end with the pair {0, (a, b)}.

b) show that in a game beginning with the pair {a, b},1he first player may
play a winning strategy i f  a - 6 or i f  a 7 b0+ Ji l /z; otherwise the
second player mgr play a winning strategy. (Hint: First show that if
y < x ( y(t+VS)/Z then thge is a unique move from l*,Ol that goes to
a pa i r  l t ,  r |  w i th  y  >  ze+J i l /z . )

In problems 8 to 16, un refers to the nth Fibonacci number.

8. Show that i f  n is a posit ive integer, then rz 1l u2 I I  t tr :  un+z- l .

9. Show that if n is a positive integer, then unapn-r - u] : GD'.

10. Show that i f  n is a pqsit ive integer, then un: (c'n-0\/ ' . . fs, where
o : (t+.,6) /2 and p : Q-'./-il/2.

ll. Show that if m and n arepositive integers such that m I n, then u^ | un.

12. Show that if m and n are positive integers, then (u^, un) : u(m,il.

13. Show that un is even if and only if 3 | n.
( t  ' l

t4 .  Le tu :  l i  i , .
Irn*, I tn I

a) Show that Un : 
lu, u^_r) .

b) Prove the result of problem 9 by considering the determinan t of Un.

15. We define the generalized Fibonacci numbers recursively by the equations
gr-  a ,  E2:  b ,  and gn -  gn- t *  gr -z for  n  2  3 .  Show that  gn:  oun-2*  bun-1
for n )- 3.

16. The Fibonacci numbers originated in the solution of the following problem.
Suppose that on January I a pair of baby rabbits was left on an island. These
rabbits take two months to mature, and on March I they produce another pair of
rabbits. They continually produce a new pair of rabbits the first of every
succeeding month. Each newborn pair takes two months to mature, and
produces a new pair on the first day of the third month of its life, and on the first
day of every succeeding month. Show that the number of pairs of rabbits alive
after n months is precisely the Fibonacci number un, assuming that no rabbits
ever die.

17. Show that every positive integer can be written as the sum of distinct Fibonacci
numbers.
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2.2 Computer Projects

Write programs to do the following:

l. Find the greatest common divisor of two integers using the Euclidean algorithm.

2. Find the greatest common divisor of two integers using the modified Euclidean
algorithm given in problem 5.

3. Find the greatest common divisor of two integers using no divisions (see problem
0 .

4. Find the greatest common divisor of a set of more than two integers.

5. Express the greatest common divisor of two integers as a linear combination of
these integers.

6. Express the greatest common divisor of a
linear combination of these integers.

set of more than two integers as a

7. List the beginning terms of the Fibonacci sequence.

8. Play the game of Euclid described in problem 7.

2.3 The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic is an important result that shows
that the primes are the building blocks of the integers. Here is what the
theorem says.

The Fundamental Theorem of Arithmetic.
written uniquely as a product of primes, with
written in order of nondecreasing size.

Every positive integer can be
the prime factors in the product

Example. The factorizations of some positive integers are given by

2 4 0  :  2 . 2 . 2 . 2 . 3 . 5  :  2 4 . 3 . 5 , 2 8 9  :  1 7 . 1 7  :  1 i 2 . 1 0 0 1  :  7 . 1 1 . 1 3  .

Note that it is convenient to combine all the factors of a particular prime
into a power of this prime, such as in the previous example. There, for the
factorization of 240, all the fdctors of 2 were combined to form 24.
Factorizations of integers in which the factors of primes are combined to form
powers are called prime-power factorizations.

To prove the fundamental theorem of arithmetic, we need the following
lemma concerning divisibility.

Lemma 2.3. lf a, b, and c are positive integers such that (a, b) : I and
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a I  bc,  then a I  c,

Proof. Since G,b): 1, there are integers x and y such that ax * by : y.

Multiplying both sides of this equation by c, we have acx * bcy: c. By
Proposition 1.4, a divides acx * 6cy, since this is a linear combination of a
and bc, both of which are divisible by a. Hence a I c. a

The following corollary of this lemma is useful.

Corollary 2.2. If p dividas ap2 an where p is a prime and c r, a2,..., on
are positive integers, then there is an integer i with I < t ( n such that p
divides a;.

Proof. We prove this result by induction. The case where n : I is trivial.
Assume that the result is true for n. Consider a product of n * t, integers,
ar az aral that is divisible by the prime p. Since p I ar az on*t:
(a1a2 an)ana1, we know from Lemma 2.3 that p I ar az en or
p I ar+r. Now, it p I ar az a' from the induction hypothesis there is an
integer i with 1 < t ( n such Ihat p I ai. Consequently p I a; for some i
w i t h l  < t  <  n * 1 .  T h i s e s t a b l i s h e s t h e r e s u l t .  t r

We begin the proof of the fundamental theorem of arithmetic. First, we
show that every positive integer can be written as the product of primes in at
least one way. We use proof by contradiction. Let us assume that some
positive integer cannot be written as the product of primes. Let n be the
smallest such integer (such an integer must exist from the well-ordering
property) . lf n is prime, it is obviously the product of a set of primes, namely
t h e o n e p r i m e n .  S o n  m u s t b e c o m p o s i t e .  L e t n : a b , w i t h  |  1 a  (  n  a n d
| 1 b I n. But since a and b are smaller than n they must be the product
of primes. Then, since n : ab, we conclude that n is also a product of
primes. This contradiction shows that every positive integer can be written as
the product of primes.

We now finish the proof of the fundmental theorem of arithmetic by
showing that the factorization is unique.

Suppose that there is a positive interger that has more than one prime
factorization. Then, from the well-ordering property, we know there is a least
integer n that has at least two different factorizations into primes:

f l : P t P z  P s : Q t Q z  Q t ,

where  p t ,p2 , . . . ,ps ,Qt , . . . ,4 t  a re  a l l  p r imes,  w i th  p r  (  pz  (  (  p ,  and

{ r ( 4 2 (  ( q ' .
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We wi l l  show that pt :  Qr,p2: Q2,. . . ,  and cont inue to show that each of
the successive p's and q's are equal, and that the number of prime factors in
the two factorizations must agree, that is s : /. To show that pr: Qr,
assume that pr * qy Then, either pr ) 4r or pr 1 Qr By interchanging
the variables, if necessary, we can assume that pr ( qr. Hence, pr 1q; for
i  :  1,2, . . . , t  s ince 41 is the smal lest  of  the q 's.  Hence, pr t r  q i  for  a l l  i .  But,
from Corollary 2.2, we see that pr I qflz et : tt. This is a
contradiction. Hence, we can conclude that pr : Qr and
n/pr:  pz pt  ps :  Qz Qt Qt.  Since nlpl  is  an integer smal ler  than
n, and since n is the smallest positive integer with more than one prime
factorization, nfpl con be written as a product of primes in exactly one way.
Hence, each pi is equal to the corresponding q;, and s : /. This proves the
uniqueness of the prime factorization of positive integers. tr

The prime factorization of an integer is often useful. As an example, let us
find all the divisors of an integer from its prime factorization.

Example. The positive divisors of 120 : 233'5 are those positive integers with
prime power factorizations containing only the primes 2,3, and 5, to powers
less than or equal to 3, 1, and l, respectively. These divisors are

I  3  5  3 ' 5 : 1 5
2 2 '3 :  6  2 '5  :  10 2 '3 '5  :  30
22 : 4 22.3 : 12 22.5 : 20 223.5: 6o
23 :8 z3-3 : 24 23.5 : 40 23.3.s :  l2o .

Another way in which we can use prime factorizations is to find greatest
common divisors. For instance, suppose we wish to find the greatest common
divisor of 720 : 2432'5 and 2100 : 223'52'7. To be a common divisor of both
720 and 2100, a positive integer can contain only the primes 2, 3, and 5 in its
prime-power factorization, and the power to which one of these primes appears
cannot be larger than either of the powers of that prime in the factorizations
of 720 and 2100. Consequently, to be a common divisor of 720 and 2100, a
positive integer can contain only the primes 2,3, and 5 to powers no larger
than2, l, and l, respectively. Therefore, the greatest common divisor of 720
and 2100 is 22.3.5 :  60.

To describe, in general, how prime factorizations can be used to find
greatest common divsors, let min(a, D) denote the smaller or minimum, of the
two numbers d and 6. Now let the prime factorizations of a and b be

o :  pi ,p i2 . .  .  p: . ,  b :  p ' r ,p lz . .  .  p: , ,

where each exponent is a nonnegative integer and where all primes occurring

7 1
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in the prime factorizations of c and of b are included in both products,
perhaps with zero exponents. We note that

fu,b): pl'"k"0,)plinb,'b, p:'n(oro,) ,

since for each prime pi, a and b share exactly min(a;,6;) factors of p;.

Prime factorizations can also be used to find the smallest integer that is a
multiple of two positive integers. The problem of finding this integer arises
when fractions are added.

Definition. The least common multiple of two positive integers a and D is the
smallest positive integer that is divisible by a and b.

The least common multiple of a and b is denoted by Io, bl.

Example. We have the following least common multiples: l l5,2l l: 105,
lZq, Xl  :  72, lZ,  Z0l  :  2A, and [7,  l l l  :  77 .

Once the prime factorizations of a and b are known, it is easy to find

Ia,bl .  I f  a :  p i ,p i ,  p l r .  and, b :  p i ,pur2 . .  .  pun, where pt ,pz, . . . ,pn
are the primes occurring in the prime-power factorizations of a and b, then
for an integer to be divisible by both c and D, it is necessary that in the
factorization of the integer, each p; occurs with a power at least as large as ai
and bi. Hence, [a,b], the smallest positive integer divisible by both a and b
is

la,bl: pl 
*Grb,) 

Omaxb,'b,) pf 
*Gru')

where max(x, /) denotes the larger, or maximum, of x and y.

Finding the prime factorization of large integers is time-consuming.
Therefore, we would prefer a method for finding the least common multiple of
two integers without using the prime factorizations of these integers. We will
show that we can find the least common multiple of two positive integers once
we know the greatest common divisor of these integers. The latter can be
found via the Euclidean algorithm. First, we prove the following lemma.

Iemma 2,4. If x and y are real numbers, then max(x,y) + min(x,y)
: x + y .

P r o o f .  I f  x ) y ,  t h e n  m i n ( x , y ) : y  a n d  m a x ( x , ! ) : x ,  s o  t h a t
m a x ( x , y ) +  m i n ( x , y ) : x * y .  I f  x  < y ,  t h e n  m i n ( x y ) : x  a n d
max(x,y) : y, andagain we find that max(x,y) + min(x,y) - x + y. tr
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To find Ia, b l, once b, b) is known, we use the following theorem.

Theorem 2.5. lf a and b ate positive integers, then la,bl: ab/G,b),,

where Ia, b I and G, b) are the least common multiple and greatest common

divisor of c and b, respectively.

Proof. Let a and b have prime-power factorizations a : p\'pi' pl' and

t : pl'p!2 " ' p:', where the expnents are nonnegative integers and all

primes occurring in either factorization occur in both, perhaps with zero

exponents. Now let M1: max(c;, b;) and ff i i  -min(a1,b1). Then, we have

la ,b lb , i l :pY 'pY'  p{ 'pT 'pT2 ' ' '  p f '
: O{,+^,r{'*^' bY'*^'
: pl'+b'Oo'+b' p:'*o'
: p\'p;' pi'p"' po^'
:  ab .

s ince Mi + f f i j :  max(ay,  b j )  + min(ar ' ,  b) :  a1 *  b1 by Lemma2.4.  t r

The following consequence of the fundamental theorem of arithmetic will be

needed later.

Lemma 2.5. Let m and n be relatively prime positive integers. Then, if d is

a positive divisor of mn, there is a unique pair of positive divisors d 1 of m and

d2of n such that d : diz. Conversely, if dl and d2 are positive divisor of z

andn, respectively, then d : dfl2is a positive divisors of mn.

Proof. Let the prime-power factorizations of m and n be m : pT'pT'

p: '  and n:  q i 'q i2 "  '  q i '  .  Since (m,n) -  l ,  the set  of  pr imes

ptPz,. . . ,Ps and the set of  pr imes Qt,42,. . . ,4t  have no common elements.
Therefore, the prime-power factorization of mn is

mn : pT'pT' p!'qi'qi' q:' .

Hence, if d is a positive divisor of mn, then

d:pi 'piz " '  pi 'q{ 'qI '  q{ '

w h e r e  0 ( e i  ( m i  f o r  i : 1 , 2 , . . . , s  a n d  0 ( f  ( n ;  f o r  7 : 1 , 2 , . . . , t .
Now let
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dt : p't'ptz'

and

dr: q{'qI' q{' .

Clearly d : dfi2and (dr, d) : l. This is the decomposition of d wedesire.
Conversely, let dy and d2be positive divisors of m and n, respectively. Then

dr: p'r'ptr' p:'

where 0 (  e i  (  mi for  i  :  1,2, . . . ,  s,  and

dr: q{'q[' q{'

where 0 < /j ( n; for j : 1,2,..., t. The integer

d : dfi2: p'r'pi, . -. pi,q{,q[, q{'

is clearly a divisor of

mn : p?'pT' p!'qi'qi, ql,,

since the power of such prime occurring in the prime-power factorization of d
is less than or equal to the power of that prime in the prime-power
factorization of mn. tr

A famous result of number theory deals with primes in arithmetic
progressions.

Dirichlet's Theorem on Primes in Arithmetic Progressions. Let a and b be
relatively prime positive integers. Then the arithmetic progression
an * b,  f l  :  1,2,3, . . . ,  contains inf in i te ly many pr imes.

G. Lejeune Dirichlet, a German mathematician, proved this theorem in
1837. Since proofs of Dirichlet's Theorem are complicated and rely on
advanced techniques, we do not present a proof here. However, it is not
difficult to prove special cases of Dirichlet's theorem, as the following
proposition illustrates.

Proposition 2.2. There are infinitely many primes of the form 4n * 3, where
n rs a positive integer.
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Before we prove this result, we first prove a useful lemma.

Lemma 2.6. lf a and b are integers both of the form 4n * l, then the
product ab is also of this form.

Proof. Since a and b are both of the form 4n * l, there exist integers r and

s such that a : 4r * 1 and D : 4s * 1. Hence,

a b :  ( + r + t ) ( 4 s + 1 )  :  1 6 r s  *  4 r  *  4 s  *  l : 4 ( 4 r s + r * s )  *  l ,

which is again of the form 4n * 1. tr

We now prove the desired result.

Proof. Let us assume that there are only a finite number of primes of the
form 4n f  3 ,  say  Po:  3 ,  P t ,  P2 ,  . . . ,  Pr .  Le t

Q : 4 p r p z  P , * 3 .

Then, there is at least one prime in the factorization of Q of the form 4n * 3.
Otherwise, all of these primes would be of the form 4n * 1, and by Lemma
2.6, this would imply that O would also be of this form, which is a
contradiction. However, none of the primes po, Pr,...,,Pn divides 0. The
prime 3 does not divide Q, for if 3 I Q, then I I (0-l l : 4pt pz p,,

which is a contradiction. Likewise, none of the primes p; can divide Q,
because pj I Q implies pi | (Q-4pr pz p) :3 which is absurd. Hence,
there are infinitely many primes of the form 4n * 3. tr

2.3 Problems

L Find the prime factorizations of

a) 36 e) 222 D 5o4o
b) 3e D 2s6 j) sooo
c) 100 d sr5 k) 9s5s
d) 289 h) 989 D 9999.

2. Show that all the powers in the prime-power factorization of an integer n are
even if and only if n is a perfect square.

3. Which positive integers have exactly three positive divisors? Which have exactly
four positive divisors?

4. Show that every positive integer can be written as the product of a square and a
square-free integer. A square-free integer is an integer that is not divisible by
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any perfect squares.

5. An integer n is called powerful if whenever a prime p divides n, p2 divrdes n.
Show that every powerful number can be written as the product of a perfect
square and a perfect cube.

6. Show that if a and b are positive integers and a3 | b2, then a I b.

7. Let p be a prime and n a positive integer. If p' I n, but po*' It n, we say that
po exactly divides n, and we write po ll n.

a) Show that i f  po l l  m and pb l l  n, then po*b l l  mn.

b)  Show that  i f  po l l  m,  then pko l l  mk.

c) Show that i f  po l l  m and pb l l  n, then ominb'b) i l  m+ n.

8. a) Let n be a positive integer. Show that the power of the prime p occurring in
the prime power factorization of n ! is

ln /p l  +  In lpz l  +  ln /p3 l  +

b) Use part (a) to find the prime-power factorization of 20!.

9. How many zeros are there at the end of 1000! in decimal notation? How many
in base eight notation?

10. Find all positive integers n such that n! ends with exactly 74 zeros in decimal
notation.

l l .  Show that i f  n is a posit ive integer i t  is impossible for n! to end with exactly 153,
154, or 155 zeros when it is written in decimal notation.

12. This problem presents an example of a system where unique factorization into
primes fails. Let H be the set of all positive integers of the form 4ft*1, where k
is a posit ive integer.

a) Show that the product of two elements of 11 is also in fI.

b) An element h*l in 11 is called a"Hilbert prime" if the only way it can be
writ ten as the product of two integers in ^FI is h: h' l  :  l ' f t ,  Find the 20
smallest Hilbert primes.

c) Show every element of H can be factored into Hilbert primes.

d) Show that factorization of elements of FI into Hilbert primes is not
necessarily unique by finding two different factorizations of 693 into Hilbert
primes.

13. Which positive integers n are divisible by all integers not exceeding,,/;t

14. Find the least common multiple of each of the following pairs of integers
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a )  8 ,  1 2  d )  l l l , 3 o 3
b) 14, 15 e) 256, 5040
c) 28,35 f)  343,999.

15. Find the greatest common divisor and least common multiple of the following
pairs of integers

a) 22335s11,27355372

b )  2 .3 .5 .7 .1  I ' 13 ,17 . t 9 .23 .29

c)  2357 t t '3 ,2 .3 .5 .1 .1  t . t  3

d)  47t t7gtn l0 l  rmr ,4 l  r r83r r r l0 l  1000.

Show that every common multiple of the positive integers a and b is divisible by

the least common multiple of a and b.

Which pairs of integers a and D have greatest common divisor 18 and least

common multiple 540?

Show that if a and b are positive integers, then (a , il | la, bl. When does

fu, b) :  la, bl?

Show that if a and b are positive integers, then there are divisors c of a and d

o f  b  w i t h  G , d ) :  I  a n d  c d : l a , b l .

Show that if a, b, and c are integers, then [a, Ull c if and only if a I c and
b  I  c .

21. a) Show that i f  a and b are posit ive integers then (a,b) :  (a*b,la,bD.

b) Find the two positive integers with sum 798 and least common multiple
l 0780.

Show that i f  a,b, and c are posit ive integers, then ( la, bl,  t)  :  lG, c), (b, c) l

and l fu, b) ,  cJ :  ( [4, cl ,  lb ,  cl)  .

a) Show that if a,b, and c are positive integers, then

max(a,b,c)  :  a  *  b  *  c  -  min(a,b)  -  min(a,c)  -  min(D,c)
*  min(a,b ,c) .

b) Use part (a) to show that

[a,b,cl la,b,cl :  .  a,brcla 'br 'c.) .
G ,b )  G ,c )  ( b  , c )

General ize problem 23 to f ind a formula for (ay,a2,.. . ,on)'1d1,a2,.. . ,an1 where
a 1.a 2,...,a n are positive integers.

25. The least common multiple of the integers a1,a2,...,an, that are not all zero, is
the smallest positive integer that is divisible by all the integers o1,ct2,...,a,; it is

20.

22.

23.

24.
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denoted by Ia 5a 2,...,an1.

i l  F ind  [6 ,10 ,15 ]  and [7 ,11 ,13 j .

b) Show that laya2,...,an-1,anl : l[,a1,a2,...,an-1l,anl.

26. Let n be a positive integer. How many pairs of positive
I a , b l  :  n ?

integers satisfy

Prove that there are infinitely many primes of the form 6ft * 5, where k is a
positive integer.

Show that if a and b are integers, then the arithmetic progression
a, a*b, a*Zb,... contains an arbitrary number of consecutive composite terms.

Find the prime factorizations of

27.

28.

29.

a) l06- l
b) lo8-l
c)  2r5- l

d) 224-l
e) 230-l
f) 236-t.

30. A discount store sells a camera at a price less than its usual retail price of ,S99.
If they sell 88137 worth of this camera and the discounted dollar price is an
integer, how many cameras did they sell?

31. i l  show that i f  p isa prime and,a is a posit ive integer withp I a2, then p I a.

b) Show that if p is a prime, c is an integer, and n is a positive integer such
t h a t p  l a n , t h e n  p l a .

Show that if a and b are positive integers, then a2 | b2 implies that a I b.

Show that if a,b, and c are positive integers with (a ,b) : I and ab : cn , then
there are positive integers d and, e such that a : dn and b : en .

Show that if aya2,...,an are pairwise relatively prime integers, then
l a 1 , c t 2 , . . . , a n l  :  a p 2 ' ' '  s n .

32.

3 3 .

34.

2.3 Computer Projects

Write programs to do the following:

1. Find all positive divisors of a positive integer

2. Find the greatest common divisor of two

from its prime factorization.

positive integers from their prime
factorizations.

3. Find the least common multiple of two positive integers from their prime
factorizations.

4. Find the number of zeros at the end of the decimal expansion of n ! where n is a
positive integer.
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5. Find the prime factorization of n! where n is a positive integer.

2.4 Factorization of Integers and the Fermat Numbers

From the fundamental theorem of arithmetic, we know that every positive

integer can be written uniquely as the product of primes. In this section, we

discuss the problem of determining this factorization. The most direct way to

find the factorization of the positive integer n is as follows. Recall from

Theorem 1.9 that n either is prime, or else has a prime factor not exceeding

6 . Consequently, when we divide n by the primes 2,3,5,... not exceeding
,/i,*" either find a prime factorpr of n or else we conclude that r is prime.

If we have located a prime factor p r of n, we next look for a prime factor of

nt: nlp1, beginning our search with the prime p1, since n I has no prime

factor less than p1, nnd any factor of n1 is also a factor of n. We continue, if

necessary, determining whether any of the primes not exceeding rlr r divide

n1. We continue in this manner, proceeding recursively, to find the prime

factorization of n.

Example. Let n : 42833. We note that n is not divisible by 2,3 and 5, but

that 7 | n. We have

4 2 8 3 3  -  7  . 6 1 1 9 .

Trial divisions show that 6119 is not divisible by any of the primes
7,11,13,17,I9, and 23. However, we see that

6 l 1 9  : 2 9 ' 2 l l .

Since 29 > ,m, we know that 211 is prime. We conclude that the prime

factorization of 42833 is 42833 - 7 ' 29 ' 2ll.

Unfortunately, this method for finding the prime factorization of an integer
is quite inefficient. To factor an integer N, it may be necessary to perform as
many as r(JF) divisions, altogether requiring on the order of JF bit
operations, since from the prime number theorem zr(JF) is approximately
,N /tog..N : 2,N AogN, and from Theorem 1.7, these divisions take at least
log N bit operations each. More efficient algorithms for factorization have
been developed, requiring fewer bit operations than the direct method of
factorization previously described. In general, these algorithms are
complicated and rely on ideas that we have not yet discussed. For information
about these algorithms we refer the reader to Guy [66] and Knuth [561. We
note that the quickest method yet devised can factor an integer N in

79
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approximately

e*p (@)

bit operations, where exp stands for the exponential function.

In Table 2.1, we give the time required to factor integers of various sizes
using the most efficient algorithm known, where the time for each bit
operation has been estimated as one microsecond (one microsecond is 10-6
seconds).

Number of decimal digits Number of bit operations Time

50

75

100

200

300

500

l . 4 x  1 0 r 0

9 . 0 x  l 0 r 2

2 . 3 x  l 0 r 5

1.2x1023

l . 5 x  l 0 2 e

l . 3 x  l 0 3 e

3.9 hours

104 days

74 years

3.8x l0e years

4.9x1015 years

4.2x102s years

Table 2.1. Time Required For Factorization of Large Integers.

Later on we will show that it is far easier to decide whether an integer is
prime, than it is to factor the integer. This difference is the basis of a
cyptographic system discussed in Chapter 7.

We now describe a factorization technique which is interesting, although it
is not always efficient. This technique is known as Fermat factorization and
is based on the following lemma.

Lemma 2.7. lf n is an odd positive integer, then there is a one-to-one
correspondence between factorizations of n into two positive integers and
differences of two squares that equal n.

Proof. Let n be an odd positive integer and let n : ab be a factorization of n
into two positive integers. Then n can be written as the difference of two
squares, since

,  lo+ul '  lo-u l '
n : a D :  l : l  

-  
l - l

|  2  , l  t  2  ) '
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where G+b)12 and b-b)/2 are both integers since a and b are both odd.

Conversely, if n is the difference of two squares, say n: s2 - /2, then we

can factor n by noting that n : (s-l)(s+t). tr

To carry out the method of Fermat factorization, we look for solutions of

the equation ,, : *2 - yz by searching for perfect squares of the form xz - n.

Hence, to find factorizations of n, we search for a square among the sequence

of integers

t2 -n ,  Q +Dz-n ,  ( t  +2)2-n , . . .

where I is the smallest integer greater than ,/i . This procedure is guaranteed

to terminate, since the trivial factorization n : n'l leads to the equation

fn+r l '  l r - r l 'n: 
I r l- | .  ,  , l

Example. We factor 6077 using the method of Fermat factorization. Since

77 < ffi1 < 78, we look for a perfect square in the sequence

782 -  6077 :7

792 -  6077 :164

802 -  6077 :323

8 1 2 -  6 0 7 7 : 4 8 4 : 2 2 2 .

Since 6077 :812 - 222. we conclude that 6077 : $l-2D(8t+zz) :

5 9 . 1 0 3 .

Unfortunately, Fermat factorization can be very inefficient. To factor n

using this technique, it may be necessary to check as many as

Q + D 12 - ,/n integers to determine whether they are perfect squares.
Fermat factorization works best when it is used to factor integers having two
factors of similar size.

The integers Fn :22' + I are called the Fermat numbers. Fermat
conjectured that these integers are all primes. Indeed, the first few are
pr imes,  namely  Fo:3 ,  F1  :  5 ,  F2 :  17 ,  F3  :  257,  and F+:  65537.
Unfortunately, F5 :22'* 1 is composite as we will now demonstrate.

Proposition 2,3. The Fermat number F5: 22'+ 1 is divisible by 641.

Proof. We will prove that 641 | fr without actually performing the division.
Note that
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6 4 1  : 5 . 2 7  +  l : 2 a  +  5 4 .
Hence.

22'+' 
=Z'ile -?;^i?ii:,:;o,2ii,Ii:, fil 'r'* '

Therefore, we see that 64t I F's. tr

The following result is a valuable aid in the factorization of Fermat
numbers.

Proposition 2.4. Every prime divisor of the Fermat number F, :22' + | is
of the form2n+2k + I.

The proof of Proposition 2.4 is left until later. It is presented as a problem
in Chapter 9. Here, we indicate how Proposition 2.4 is useful in determining
the factorization of Fermat numbers.

Example. From Proposition 2.4, we know that every prime divisor of
F3:22'+ |  :257 must be of  the form 2sk * l :  32.k + l .  Since there
are no primes of this form less than or equal to ,/81, we can conclude that
Ft : 257 is prime.

Example. In attempting to factor F 6 : 22' + l, we use Proposition 2.4 to see
that all i ts prime factors are of the form 28k + l:256.k * l. Hence, we
need only perform trial divisions of Foby those primes of the form 256'k + |
that do not exceed -,,/F u. After considerable ctmputation, one finds that a
pr ime div isor is obtained with k :  l0?l , i .e.  Z74l i ' l :  (256.10?l  + l )  I  F6.

A great deal of effort has been devoted to the factorization of Fermat
numbers. As yet, no new Fermat primes have been found, and many people
believe that no additional Fermat primes exist. An interesting, but
impractical, primality test for Fermat numbers is given in Chapter 9.

It is possible to prove that there are infinitely many primes using Fermat
numbers. We begin by showing that any two distinct Fermat numbers are
relatively prime. The following lemma will be used.

Lemma 2.8. Let F1, :22' * I denote the kth Fermat number, where k is a
nonnegative integer. Then for all positive integers n , we have

FoFf z Fn-t: Fn - 2.

Proof. We will prove the lemma using mathematical induction. For n : 1,
the identity reads
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Fo : Fr - 2 '

This is obviously true since F0 : 3 and Fr : 5. Now let us assume that the
identity holds for the positive integer n, so that

F o F f  z '  '  '  F n - r :  F ,  -  2 .

With this assumption we can easily show that the identity holds for the integer
n * I, since

FoFfz  Fn- rFr :  (FsFf2  " '  F r - )Fn
-  (Fn  -  z )Fn:  (22 '  -  D(22 '  +  t )
- ( 2 2 ' 1 2  - l - 2 2 ' * ' - 2 : F r a 1  - 2 .  t r

This leads to the following theorem.

Theorem 2.6. Let m and n be distinct nonnegative integers. Then the
Fermat numbers F^ and F, are relatively prime.

Proof. Let us assume that m 1 n. From Lemma 2.8, we know that

F f f z ' ' '  F ^ '  "  F r - r  :  F n  -  2 .

Assume that d is a common divisor of F* and Fo. Then, Proposition 1.4 tells
us that 

d I  G, -  FsF.o 2 Fm F,-1) :2.

Hence, either d:l or d:2. However, since F, and Fn are odd, d cannot be
2. Consequently, d:l and (F^,F) : I. tr

Using Fermat numbers we can give another proof that there are infinitely
many primes. First, we note that from Lemma 1.1, every Fermat number Fn
has a prime divisor pr. Since (F*,F): l, we know that p^ # p, whenever
m # n. Hence, we can conclude that there are infinitely many primes.

The Fermat primes are also important in geometry. The proof of the
following famous theorem may be found in Ore [28].

Theorem 2.7. A regular polygon of n sides can be constructed using a ruler
and compass i f  and only i f  n is of  the form n:2opl  " '  pt  where p; ,
i:1,2,...,t are distinct Fermat primes and a is a nonnegative integer.
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2.4 Problems

l. Find the prime factorization of the following positive integers

i l  egzgzt b) 1468789 c) SSOO8OZ9.

2. Using Fermat's factorization method, factor the following positive integers

a)  7709 d)  I  l02 l
b) 73 e) 3200399
c) 10897 f) 24681023.

3. a) Show that the last two decimal digits of a perfect square must be one of the
fol lowing pairs: 00, el,  e4,25, o6, e9, where e stands for any even digit  and o
stands for any odd digit. (Hint: Show that n2, (50+n)2, and (50-n)2 all have
the same final decimal digits, and then consider those integers n with
0 (n<2s . )

b) Explain how the result of part (a) can be used to speed up Fermat's
factorization method.

Show that if the smallest prime factor of n is p, then xz-n will not be a perfect
square for x ) h+pz) lLp .

In this problem, we develop the method of Draim factorization. To search for a
factor of the positive integer n - nr, we start by using the division algorithm, to
obtain

i l 1  : 3 q y * r y ,  0 ( 1 1  ( 3 .

Sett ing ntr - nr, we let

t / 1 2 :  t / l t  -  Z q t ,  f l 2 :  t t t 2 *  1 1 .

We use the division algorithm again, to obtain

f l 2 : 5 q 2 *  1 2 ,  0  (  1 2  (  5 ,

and we let

3:  r t l2  -  2qZ,  f l1  :  t143 *  t2 .

We proceed recursively, using the division algorithm, to write

nx :  (2k+ l )qy *  ry ,  0  (  11 < 2k+1,

and we define

4.

5 .
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f l lk :  m*-t-2Qt-t,  t tk :  t t l*  * rt- t .

We stop when we obtain a remaindet /1 : 0.

a)  Show that  n1 :  knr  -  Qk+l )  (q f t  q2* '  '  '  +  q , - )  and r l tk  :  n1 -

2 ' (q f tq2*  *qo-r ) .

b)  Show that  i f  (z*+t )  I  , ,  then (2k+l )  I  nr  and n: (2k* l )m1,11.

c) Factor 5899 using the method of Draim factorization.

In this problem, we devel<lp a factorization technique known as Euler's method.
It'is applicable when the integer being factored is odd and can be written as the
sum of two squares in two different ways. Let n be odd and let
n : a 2 * b 2 : c 2 + d 2 ,  w h e r e  a  a n d c  a r e  o d d  p o s i t i v e  i n t e g e r s ,  a n d  b  a n d d
are even positive integers.

a)  Let  u :  (a-c ,b-d) .  Show that  u  is  even and that  i f  r :  (a-c) lu  and
s  :  ( d - i l f u , t hen  ( r , s )  :  l ,  r ( a *c )  :  s (d+b ) ,  and  s  I  a+c .

b)  Let  sv  :  a*c .  Show that  rv  :  d  +  b ,e  :  (a+cd+b) ,  and v  is  even.

c) Conclude that n may be factored as n:1fu12)2 + (v/2)zl(r2 + s2).

d)  Use Euler 's  method to  fac tor  221 :102 + l l2 :52 + 142,2501 :502 + 12
: 492 + 102 and 1000009 : 10002 + 32 :9722 + 2352.

Show that any number of the form 2an+2 * I can be easily factored by the use of
the identi ty 4xa + 1 : (2x2+2x+l)(Zx2-Zx+t\.  Factor 218+1 using this
identity.

Show that if a is a positive integer and a^ *l is a prime, then m:2n for some
posit ive integer n. (Hint: Recall  the identi ty a^*l:  (aft  + l)
(ak9-t)-akQ-D + -ae+l) where m:kQ and { is odd).

Show that the last digit in the decimal expansion of F, - 2r + | is 7 if n 7 2.
(Hint: Using mathematical induction, show that the last decimal digit of 22' is
6 . )

10. Use the fact that every prime divisor of Fa:2t + I :65537 is of the form
26k + | - 64k * I to verify that F4 is prime. (You should need only one trial
division.)

I l. Use the fact that every prime divisor of Fz: 22' + | is of the form
21k + | : l28k * 1 to demonstrate that the prime factorization of F5 is
F.  :  641 '6700417.

Find all primes of the form 2T * 5, where n is a nonnegative integer.

Estimate the number of decimal digits in the Fermat number Fn.

7 .

8 .

9 .

r2.

1 3 .
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2.4 Computer Projects

Write programs to do the following:

l. Find the prime factorization of a positive integer.

2. Perform Fermat factorization.

3. Perform Draim factorization (see problem 5).

4. Check a Fermat number for prime factors, using Proposition 2.4.

2.5 Linear Diophantine Equations

Consider the following problem. A man wishes to purchase $510 of
travelers checks. The checks are available only in denominations of $20 and
$50. How many of each denomination should he buy? If we let x denote the
number of $20 checks and y the number of $50 checks that he should buy,
then the equation 20x * 50y : 510 must be satisfied. To solve this problem,
we need to find all solutions of this equation, where both x and y are
nonnegative integers.

A related problem arises when a woman wishes to mail a package. The
postal clerk determines the cost of postage to be 83 cents but only 6-cent and
15-cent stamps are available. Can some combination of these stamps be used
to mail the package? To answer this, we first let x denote the number of 6-
cent stamps and y the number of l5-cent stamps to be used. Then we must
have 6x + I5y : 83, where both x and y are nonnegative integers.

When we require that solutions of a particular equation come from the set
of integers, we have a diophantine equation. Diophantine equations get their
name from the ancient Greek mathematician Diophantus, who wrote
extensively on such equations. The type of diophantine equation ax * by : c,
where a, b, and c are integers is called a linear diophanttne equations in two
variables. We now develop the theory for solving such equations. The
following theorem tells us when such an equation has solutions, and when
there are solutions, explicitly describes them.

Theorem 2.8. Let a and D be positive integers with d : (a,b). The equation
a x * b y : c  h a s  n o  i n t e g r a l  s o l u t i o n s  i f  d l c .  l f  d l c ,  t h e n  t h e r e  a r e
infinitely many integral solutions. Moveover, if x : x0, | - lo is a particular
solution of the equation, then all solutions are given by

x  :  x o +  ( b / d ) n ,  !  :  y o -  f u l d ) n ,
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where n is an integer.

Proof. Assume that x and y are integers such that ax I by : g. Then, since
d l o  a n d d  l b , b y P r o p o s i t i o n  1 . 4 ,  d l t  a s w e l l .  H e n c e , ' r f  d  t r c , t h e r e a r e
no integral solutions of the equation.

Now assume that d | ,. From Theorem 2.1, there are integers s and t with

(2.3) d : a s + b t .

Since d l r, there is an integer e with de : c. Multiplying both sides of (2.3)

bv e. we have

c : d e : ( a s + b t ) e : a ( s e )

Hence, one solution of the equation is given by
-x0 -'Ftf11*}f =7€.

+  b  Q e ) .

To show that there are infinitely many solutions, let x:nfo+ $li ln and
y:Y0- G/d)n,  where n is an integer.  We see that th is pair  (x,y)  is  a
solution, since V rfi"v g rof14

a x  t  b y  :  o x s *  a ( b l d ) n  *  b y o -  b G l d ) i l :  o x s t  b y s :  c .

We now show that every solution of the equation ax * by : c must be of the
form described in the theorern. Suppose that x and y are integers with
ax I bY : c. Since

a x s  *  b y o :  , ,

by subtraction we find that

G x  *  b y )  -  ( a x s +  b y s )  : 0 ,

which implies that

Hence,

a&  -  x /  +  bU  - . yd  : 0 .

a ( x  -  x o ) :  b j o -  y ) .

Dividing both sides of this last equality by d, we see that

Gld) (x -  xs) :  (b ld)  Ut -  y) .

By  Propos i t ion  2 .1 ,  we know tha t  b ld ,b ld ) :  l .  Us ing  Lemma 2 .3 ,  i t

@Io,.wlere
X * S€ r tacl  I  - - te
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follows that Q/d) | 9o- y). Hence, there is an integer n with
G/d)n : lo - l ;  th is  means tha ty  - lo -  G/ i ln .  Now put t ing  th is  va lue
of y into the equat ion a(x -  xd :  bOo- y) ,  we f ind that
aG - xd :  bb/d)n,  which impl ies that  x :  x0 + (bld)n.  D

We now demonstrate how Theorem 2.8 is used to find the solutions of
particular linear diophantine equations in two variables.

Consider the problems of finding all the integral solutions of the two
diophantine equations described at the beginning of this section. We first
consider the equation 6x + I5y : 83. The greatest common divisor of 6 and
15 is (6,15) : 3. Since I / gl, we know that there are no integral solutions.
Hence, no combination of 6- and l5-cent stamps gives the correct postage.

Next, consider the equation 20x t 50y :519. The greatest common
divisor of 20 and 50 is (20,50) : 10, and since l0 | 510, there are infinitely
many integral solutions. Using the Euclidean algorithm, wo find that
20eD * 50 : 10. Multiplying both sides by 51, we obtain
20(-102) + 50(51) : 510. Hence, a particular solution is given by
x0: -  102 and./o:51. Theorem 2.8 te l ls  us that  a l l  integral  solut ions are
of the form x : -102 * 5n and y : 5l - 2n. Since we want both x and y
to be nonnegative, we must have - I02 + 5n ) 0 and 5l - 2n ) 0; thus,
n ) 20 2/5 and n 4 25 l/2. Since n is an integer, it follows that
n :21 ,22 ,23 ,24 ,or  25 .  Hence,  we have the  fo l low ing  5  so lu t ions :  Gy) :
(3 ,9 ) ,  (8 ,7 ) ,  (13 ,5) ,  (19 ,3) ,  and (23 , t ) .

2.5 Problems

l. For each of the following linear diophantine equations, either find all solutions, or
show that there are no integral solutions

a )  2 x  I  5 y  : 1 1

b) l7x *  l3y :  1gg

c) ZIx *  l4y :147

d) 60x * l8y :97

e) t4o2x + t969y : r.

2. A student returning from Europe changes his French francs and Swiss francs
into U.S. money. If he receives $ll.9l and has received I7a for each French
franc and 480 for each Swiss franc, how much of each type of currency did he
exchange?
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3. A grocer orders apples and oranges at a total cost of $8.39. If apples cost him

25c each and oranges cost him 18c each and he ordered rnore apples than

oranges, how many of each type of fruit did he order? l€ I

4. A shopper spends a total of .85.49 for oranges, which cost l8o each, and

grapefruits, which cost 33c each. What is the minimum number of pieces of

fruit the shopper could have bought?

5. A postal clerk has only l4-cent and 2l-cent stamps to sell. What combinations

of these may be used to mail a package requiring postage of exactly

a) .t 3.50 b) $4.00 c) $7.772

6. At a clambake, the total cost of a lobster dinner is $ I I and of a chicken dinner

is ,$8. What can you conclude if the total bill is

a)  $777 b)  $96 c)  $692

7. Show that the l inear diophantine equation af i1* a2x2* I anxn: b has

no solutionsif d / D, where d : (a1,a2,...,a11), and has infinitely many solutions if

d  I  b .

8. Find all integer solutions of the following linear diophantine equations

a )  2 x * 3 y l 4 z : 5

b )  7 x * 2 l y * 3 5 2 : 8

d l0 lx *  102y + 1032 :1 .

9. Which combinations of pennies, dimes, and quarters have a total value 99c?

10. How many ways can change be made for one dollar using

a) dimes and quarters

b) nickels. dimes, and quarters

c) pennies, nickels, dimes, and quarters?

I l. Find all integer solutions of the following systems of linear diophantine equations

a )  x *  y *  z : 1 0 0
x * 8 y * 5 0 2 : 1 5 6

b )  x +  y  +  z : 1 0 0
x  *  6 y  *  2 l z  : 1 2 1

c )  x *  y *  z  +  w - 1 0 0
x t 2 y 1 3 z * 4 w - 3 0 0
x * 4 y * 9 z 1 ' 1 6 w - 1 0 0 0 .

12. A piggy bank contains 24 coins, all nickels, dimes, and quarters. If the total
value of the f,oins is two dollars, what combinations of coins are possible?
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13. Nadir Airways offers three types of tickets on their Boston to New York flights.
First-class tickets are $70, second-class tickets are $55, and stand-by tickets are
$39. If 69 passengers p^y a total of $3274 for their tickets on a particular
flight, how many of each type of tickets were sold?

14. Is it possible to have 50 coins, all pennies, dimes, and quarters worth,$3?

15. Let a and b be relatively prime positive integers and let n be a positive integer.
We call a solution x )) of the linear diophantine equation ax * by : n
nonnegative when both x and y are nonnegative.

il Show that whenever n 2 G-l)(6-l) there is a nonnegative solution of
this equation.

b) Show that if n: ab - a - 6, then there are no nonnegative solutions.

c) Show that there are exactly (a-1)$-D/2 positive integers n such that
the equation has a nonnegative solution.

d) The post office in a small Maine town is left with stamps of only two
values. They discover that there are exactly 33 postage amounts that
cannot be made up using these stamps, including 46c. What are the values
of the remaining stamps?

2.5 Computer Projects

Write programs to do the following:

1. Find the solutions of a linear diophantine equation in two variables.

2. Find the positive solutions of a linear diophantine equation in two variables.

3. Find the solutions of a linear diophantine equation in an arbitrary number of
variables.

4. Find all positive integers n for which the linear diophantine equation
ax * by : n has no positive solutions (see problem I 5).



Congruences

3.1 Introduction to Congruences

The special language of congruences that we introduce in this chapter is
extremely useful in number theory. This language of congruences was
developed at the beginning of the nineteenth century by Gauss.

Definition. lf a and b are integers, we say that a is congruent to b modulo
m i f  m  l ( a - b ) .

I f  a  i s c o n g r u e n t t o D  m o d u l o  m , w e w r i t e  a  = b  ( m o d z ) .  l f  m  I G - b ) ,
we write a # b (mod m), and say that a and b are incongruent modulo m.

Example. We have 22 = 4 (mod 9), since 9 | QZ-D : 18. Likewise
3 = -6 (mod 9) and 200 = 2 (mod 9).

Congruences often arise in everyday life. For instance, clocks work either
modulo 12 or 24 for hours, and modulo 60 for minutes and seconds. calendars
work modulo 7 for days of the week and modulo 12 for months. Utility
meters often operate modulo 1000, and odometers usually work modulo
100000.

In working with congruences, it is often useful to translate them into
equalities. To do this, the following proposition is needed.

Proposition 3.1. If a and b are integers, then a = b (mod m) if and only if
there is an integer k such that a : b * km.
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Proof. If a:- b (mod m), then m I b-b). This means that there is an
integer k with km : a - b, so that A : b * km.

Conversely, if there is an integer /< with a : b * km, then km : a - b.
Hence m I G-b), and consequently, a = b (mod rn ). tr

Example. We have 19 : -2 (mod 7) and 19 : -2 + 3'7.

The following proposition establishes some important properties of
congruences.

Proposition 3.2. Let m be a positive integer. Congruences modulo rn satisfy
the following properties:

(i) Reflexive property. If a is an integer, then a = a (mod m).

(ii) Symmetric property. If a and b are integers such that
a = b (mod m), then b = a (mod rn ) .

(iii) Transitive property. If e, b, and c are integers with
a = b (mod m) and b : -  c (mod m), then a 4 c (mod m ).

Proof.

( i )  We see that a = a (mod m),  s ince m I  G-a) :0.

( i i l  I f  a :  b  (mod m) , thenm I  Q-b) .  Hence,  there  is  an  in teger  f t
w i t h  k m :  a  -  b .  T h i s  s h o w s  t h a t  ( - k ) m :  b  -  a .  s o  t h a t
m |  (b-d.  Consequent ly,  D =a (mod m).

(i i i) If a = b (mod rz) and b =c (mod la), then m I G-b) and
m |  (b-d.  Hence, there are integers k and 0 wi th km: a -  b
and Qm :  b -  c.  Therefore,  e -  c :  (a-D) + (b-c) :

km * Qm :  (k+Dm. Consequent ly,  m I  G-d and
a ? c (mod z).  t r

From Proposition 3.2, we see that the set of integers is divided into m
different sets called congruence classes modulo m, each containing integers
which are mutually congruent modulo m.

Example. The four congruence classes modulo 4 are given by
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Let a be an integer. Given the positive integer m, m ) l, by the division
algorithm, we have a : bm * r where 0 ( r ( ru - 1. From the equation
a: bm f r, we see that a 3 r (mod z). Hence, every integer is congruent
modulo m to one of the integers of the set 0, 1,...,m - l, namely the
remainder when it is dividedby m. Since no two of the integers 0, 1,...,m - |
are congruent modulo m, we have m integers such that every integer is
congruent to exactly one of these ln integers.

Definition. A complete system of residues modulo m is
such that every integer is congruent modulo m to exactly
set.

Example. The division algorithm shows that the
0, 1,2,...,m - | is a complete system of residues modulo rn.
set of least nonnegative residues modulo m.

Example. Let m be an odd positive integer.

a set of integers
one integer of the

set of integers
This is called the

_  m - l
2

Then the set of integers

,  m - 3  m - l
, r . . . t T r T

is a complete system of residues called the set of absolute least residues
modula m.

We will often do arithmetic with congruences. Congruences have many of
the same properties that equalities do. First, we show that an addition,
subtraction, or multiplication to both sides of a congruence preserves the
congruence.

Theorem 3.1. If a, b, c, and m are integers with m ) 0 such that
a = b (mod m ). then

( i l  a * c = b + c ( m o d m ) ,

(iD e - c -- S - c (mod z).

(iiD ac bc (mod m).

Proof. Since a = b (mod m), we know that m I G-b). From the identity
G+d -  (b+d -  a  -  b ,  we see m l l fu+d -  $+c)1,  so that  ( i )  fo l lows.
Likewise, (ii) follows from the fact that fu-c) - (b-c): a - b. To show
that (iiD holds, note that ac - bc : cG-D. Since m I Q-b), it follows
that m I cb-b), and hence, ac = bc (mod m). tr

Example. Since l9 3 (mod 8), it follows from Theorem 3.1 that
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2 6 :  1 9  + 7  =  3  + 7  :  l 0  ( m o d 8 ) ,  1 5  :  1 9  - 4 :  3 -  4 :  - l  ( m o d 8 ) ,

and 38  :  l9 '2  =  3 '2 :  6  (mod 8) .

What happens when both sides of a congruence are divided by an integer?
Consider the following example.

E x a m p l e .  W e  h a v e  1 4 : 7 . 2 : 4 . 2 : 8  ( m o d  6 ) .  B u t  7  *  4  ( m o d  6 ) .

This example shows that it is not necessarily true that we preserve a
congruence when we divide both sides by an integer. However, the following
theorem gives a valid congruence when both sides of a congruence are divided
by the same integer.

Theorem 3.2. If a, b, c and m are integers such that m > 0, d : (c,m),
and ac = bc (mod z), then a :- b (mod m/d).

Proof.  l f  ac = bc (mod m),we know that m I  Gc-bc):  c(a-b).  Hence,
there is an integer k with cb-b): km. By dividing both sides by d, we
have G /i l G-b) : k fu /d). Since (m /d ,c /d) : 1, from Proposition 2.1 it
follows that m/d I Q-b). Hence, a :- b (mod m/il. a

Example. Since 50 = 20 (mod 15) and (10,5) : 5, we see that
50/10 :  20/10 (mod l5/ i l ,  or  5 = 2 (mod 3).

The following corollary, which is a special case of Theorem 3.2, is used
often.

Corol lary 3.1.  I f  a,b,c,  and m are integers such that m 7 0,  (c,m) :  1,
and ac = bc (mod la), then a = b (mod llz).

Example. Since 42 = 7 (mod 5) and (5,7) = 1, we can conclude that
42/7 :7/7 (mod 5),  or  that  6 :  I  (mod 5).

The following theorem, which is more general than Theorem 3.1, is also
useful.

Theorem 3.3. If e, b, c, d, and m are integers such that m ) 0,
a = b (mod nc), and c = d (mod rn ), then

(i) a * c = b + d (modm),

( i i )  a -  c -  
f i  -  d (modm),

( i i i )  ac ? bd (mod m).

Proof. Since a = b (mod m) and c = d (mod m), weknow that m I G-U)
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a n d m l k - d ) .  H e n c e ,  t h e r e  a r e  i n t e g e r s  k  a n d . 0  w i t h k m : a - b  a n d

Q m  :  c  -  d .

T o  p r o v e  ( i ) ,  n o t e  t h a t  ( c + c )  -  ( b + d )  :  f u - b )  +  k - d ) :  k m  *  Q m :
(k+Dm.  Hence,  m l l , (a+c)  -  (U+a) | .  There fore ,  Q *  c  =  b  *

d  (mod m) .

To prove ( i i ) ,  note that  (a-c) -  O-d) :  b-b) -  k-d) :  km - Qm :

& - D m .  H e n c e ,  m l t G - c ) - $ - i l 1 ,  s o  t h a t  a  -  c  
-  $  -  d  ( m o d  m ) '

To prove (i i i), note that ac - bd :ac - bc* bc - bd :

c G - b )  +  O G - d ) :  c k m  t  b Q m :  m k k + b D .  H e n c e ,  m  I  Q c  -  b i l .

Therefore, ac = bd (mod m). tr

Example.  Since 13 = 8 (mod 5) and 7 =2 (mod 5),  using Theorem 3.3 we

s e e  t h a t  2 O - 1 3 + 7  : 8 + 2 : - 0  ( m o d 5 ) ,  6 : 1 3 - 7  
- 8 - 7 = I

( m o d  5 ) ,  a n d  9 l :  l 3 ' 7  :  8 ' 2 : 1 6  ( m o d  5 ) .

Theorem 3.4. If r612,,...,r^ is a complete system of residues modulo m, and if

a is a fositive integer with (a ,fti) : 1, then

ar1  t  b ,  a r2  *  b , . . . ,  a r^  *  b

is a complete system of residues modulo z.

Proof. First, we show that no two of the integers

a r 1 *  b ,  a r 2 *  b , . . . ,  a r ^  *  b

are congruent mod ulo m. To see this, note that if

a r i * b = a r r  * b  ( m o d z ) ,

then, from (i i) of Theorem 3.1, we know that

ari = ar1, (mod m) '

Because (a,m) : 1, Corollary 3.1 shows that

rj : rp (mod m) .

Since ,i # rp (mod m) if i  # k, we conclude that i : k.

Since the set of integers in question consists of m incongruent integers
modulo m, these integers must be a complete system of residues modulo ru. tr



96 Congruences

The following theorem shows that a congruence is preserved when both sides
are raised to the same positive integral power.

Theorem 3.5. rf a, b, k, and m are integers such that k 7 0, m ) 0, and
a = b (mod m), then ak = bk (mod m) .

Proof. Because a = b (mod m), we have ml? - b). Since

ak  -  bk  :  (a -b)  (ak- t+ak-zb+ .  .  .  *abk-216k-11,

we see that G - DlGk - bk). Therefore, from Proposition 1.2 it follows
that mlGk - Uk). Hence, ek : bk (mod m). tr

Example. Since 7 = 2 (mod 5), Theorem 3.5 tells us that 343 : 73
= 23 = 8 (mod 5).

The following result shows how to combine congruences of two numbers to
different moduli.

T h e o r e m  3 . 6 .  l f  a :  b  ( m o d m y ) ,  a = b  ( m o d f f i z ) , . . . ,  a = b ( m o d m 1 , )
where a,b,ml, frt2,...,t/t1, a;fo integers with mt,frl2 ,...,t/r1 positive, then

a =  b  (mod lmpm2, . . . ,mp l ) ,

where Lm1,m2,...,rup1 is the least common multiple of mr,rrr2,...,t/tk.

P r o o f .  S i n c e  a = b  ( m o d z l ) ,  a : - b  ( m o d  f f i z ) , . . . ,  a = b  ( m o d  m t ) ,  w e
know tha t  m,  |  (o  -  D ,mz l  G -  b ) , . . . ,  m*  IG-D.  From prob lem 20 o f
Section 2.3, we see that

[ , m 1 , m 2 , . . . , m * ] l  Q  -  b ) .

Consequently,

a  =  b  (mod Lm1,m2, . . . ,m* l ) .  E

An immediate and useful consequence of this theorem is the following
result.

C o r o l l a r y  3 . 2 .  l f  a :  D  ( m o d z 1 ) ,  a = b  ( m o d  f f i z ) , . . . ,  a = b  ( m o d z 1 )
where a and b are integers and ftt1,r/t2,...,,r,rt1, are relatively prinie positive
integers, then

a =  b  (mod n4r t l t z . "  m) .
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Proof. Since ff i1,f t t2,. . . , t?11, zfa pairwise relat ively prime, problem 34 of Section

2.3 te l ls  us that

l m 1 , m 2 , . . . , m k l  :  f t l i l l 2 ' ' '  m k

Hence, from Theorem 3.6 we know that

a : -  b (mod wtf l tz '  '  '  m).  a

In our subsequent studies, we will be working with congruences involving

large powers of integers. For example, we wil l want to find the least positive

residue o1 26+a modulo 645. If we attempt to find this least positive residue by

first computing 2644,we would have an integer with 194 decimal digits, a most

undesirable thought. Instead, to find 26aa modulo 645 we first express the

exponent 644 in binary notation:

G4qro :  ( l o loooo loo )2 .

Next, we compute the least positive residues of 2,22,24,28 ,...,2tt '  by

successively squaring and reducing modulo 645. This gives us the congruences

2
22
2+
28
216

232

264

2128

22s6

2srz

2
4

1 6
256
3 9 1

1 6
256
3 9 1

l 6
256

(mod 645),
(mod 645),
(mod 649,
(mod 645),
(mod 645),
(mod 645),
(mod 645),
(mod 645),
(mod 649,
(mod 64il.

We can now compute 2644 modulo 645 by multiplying the least positive

residues of the appropriate powers of 2. This gives

26aa - 2512+128+4 : 2512212824 = 256.391. 16
: 1 6 0 1 5 3 6 = I ( m o d 6 4 5 ) .

We have just illustrated a general procedure for modular exponentiation,
that is, for computing 6N modulo m where b, ffi, and N are positive integers.
We first express the exponent N in binary notation, as l{ : (arar-t...apo)2.

We then find the least positive residues of b ,b2,b4,...,b2' modulo rn, by
successively squaring and reducing modulo rn. Finally, we multiply the least
positive residues modulo m of bv for those j with ai : l, reducing modulo rn
after each multiplication.



98 Congruences

In our subsequent discussions, we will need an estimate for the number of
bit operations needed for modular exponentiation. This is provided by the
following proposition.

Proposition 3.3. Let b,m, and ,A/ be positive integerswithD < m.
Then the least positive residue of bN modulo m can be computed using
O (0og2m) 2log2N) bit operations.

Proof. To find the least positive residue of bN (mod rn), we can use the
algorithm just described. First, we find the least positive residues of
b,b2,b4,...,62'modulo m, where 2k < N < 2k*t, by successively squaring and
reducing modulo ru. This requires a total of O(0og2m)2log2N) bit operations,
because we perform [log2lf I squarings modulo m, each requiring o(Iogzm)2)
bit operations. Next, we multiply together the least positive residues of the
integers bl corresponding to the binary digits of N which are equal to one,
and we reduce modulo m after each multiplication. This also requires
O(Qog2m)2log2,n/) bit operations, because there are at most log2N
multiplications, each requiring O((log2m)2) Uit operations. Therefore, a total
of O((log2m)2log2lf) bit operations are needed. tr

3.f Problems

l. For which positive integers m are the following statements true

i l  2 7  : 5  ( m o d  z )

b) 1000 -- 1 (mod rn )

c)  l33 l  :  0  (mod ln)?

2. Show that if a is an even integer, then a2 = 0 (mod 4), and if a is an odd
integer, then a2 = I (mod 4).

3. Show that i f  a is an odd integer, then az = I (mod 8).

4. Find the least nonnegative residue modulo l3 of

a) 22
b) 100
c) i00l

d )  - l

e) - loo
f) -1000.

5 .

6 .

Show that i f  a, b, m, and n are integers such that m ) 0, n ) 0, n I  m, and
a = b (mod rn ),  then a = b (mod n).

Show tha t  i f  a ,b , c ,  and  m  a re  i n tege rs  such  t ha t  c  )  0 ,  m lO ,  and
a = b (mod rn ), then ac J bc (mod mc).
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7 .  S h o w t h a t i f  a , b , a n d c  a r e i n t e g e r s w i t h c  )  0 s u c h  t h a t a  =  b  ( m o d c ) , t h e n

( a , c )  :  ( b d  .

8. Show that i f  ai  =bi (mod z) for j  :  1,2,. . . ,n, where m is a posit ive integer and

Qi ,b i ,  i  :  1 ,2 , . . . ,n '  are  in tegers ,  then

n n

i l  ) a 1  = ) b 1  ( m o d z )
j - t  j - l

n n

b)  f l  a i : -  f l  b ;  (mod rn  ) .
j - l  '  

t - t  
r

In problems 9-11 construct tables for arithmetic modulo 6 using the least

nonnegative residues modulo 6 to represent the congruence classes.

9. Construct a table for addition modulo 6.

10. Construct a table for subtraction modulo 6.

I l. Construct a table for multiplication modulo 6.

12. What time does a clock read

a) 29 hours after it reads I I o'clock

b) 100 hours after it reads 2 o'clock

c) 50 hours before it reads 6 o'clock?

13. Which decimal digits occur as the final digit of a fourth power of an integer?

14. What can you conclude if a2 = 62 (mod p), where a and b are integers and p is

prime?

15.  Show that  i f  ak  = b t  (mod nr )  and ak+t  :  bk+ l  (mod nr ) ,  where a ,b ,k ,  and

m  a r e  i n t e g e r s  w i t h  k > 0  a n d  m ) 0  s u c h  t h a t  ( a , m ) : 1 ,  t h e n

a = b (mod rn ).  I f  the condit ion (a,m): I  is dropped, is the conclusion that

a = b (mod z) still valid?

16. Show that if n is a positive integer, then

i l  t + 2 + 3 +  + ( n - l )  = 0 ( m o d n ) .

b )  1 3 + 2 3  + 3 3 +  +  ( n - l ) 3 = o ( m o d n ) .

17. For which positive integers n is it true that

1 2  + 2 2  + 3 2  +  *  ( n - l ) 2  =  o  ( m o d  n ) ?

18. Give a complete system of residues modulo l3 consisting entirely of odd integers.

19. Show that if n = 3 (mod 4), then n cannot be the sum of the squares of two

integers.

20. il Show that if p is prime, then the only solutions of the congruence

x2 =x (mod p)  arethose in tegers  x  wi th  x  =  0  or  I  (modp) .
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b) Show that if p is prime and ft is a positive integer, then the only solutions of
x2 =x (mod pk) arethose integers x such that x E 0 or I  (modpe).

21. Find the least positive residues modulo 47 of

Let t/t1,t/t2,...,n\r be pairwise relatively prime positive integers. Let
M : mif iz '  '  '  mp and Mj :  M/mi for; -  1,2,.. . ,k. Show that

M ( t r *  M 2 a 2 *  *  M p a p

runs through a complete system of residues modulo M when a1,a2,...,a1, run
through complete systems of residues modulo rn1,nt2,...,r/t1, respectively.

Explain how to find the sum z * v from the least positive residue of u * v
modulo m, where u and. v are positive integers less than z . (Hint: Assume
that u ( v and consider separately the cases where the least positive residue of
u I v is less than a, and where it is greater than v.)

on a computer with word size w, multiplicertion modulo n, where n I w f2, can
be performed as outl ined. Let T:IJn + %1, and t :  T2 - n. For each
computation, show that all the required computer arithmetic can be done without
exceeding the word size. (This method was described by Head t67]).

a) Show that lr  |  < r.

b) Show that if x and y are nonnegative integers less than n, then

x : a T * b ,  y : c T * d

where a,b,c, and d are integers such that 0 ( a ( Z, 0 < , < T,
0 ( c < T, and 0 < d < T.

c) Letz = ad * bc (mod n), with 0 ( z ( z. Show that

d )  L e t  a c : e T * f  w h e r e  e  a n d  f  a r e i n t e g e r s w i t h 0 ( e < T a n d
0 < / ( r .  S h o w t h a t

xy : (z*et)T + ft  * bd (mod n).

e )  L e t v : z *  e r  ( m o d n ) , w i t h 0 ( v  ( n .  S h o w t h a t w e c a n w r i t e

v  :  g T  *  h ,

where g and h are integers with 0 ( g ( f,0 < h < T, and such that

xy :  hT + V+S) t  +  bd (mod n) .

232a) b) 22wc)247

22.

23 .

24.
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f) Show that the right-hand side of the congruence of part (e) can be
computed without exceeding the word size by first finding j with

j = (f  +s)l  (mod n)

and 0 < j < n, and then finding /c with

k = j + D d ( m o d n )

a n d 0 < k < n . s o t h a t

x y : h T + f t ( m o d n ) .

This gives the desired result.

25. Develop an algorithm for modular exponentiation from the base three expansion
of the exponent.

26. Find the least positive residue of

a) 3ro modulo I I

b) 2r2 modulo 13

c) 516 modulo 17

d) 322 modulo 23.

e) Can you propose a theorem from the above congruences?

27. Find the least positive residues of

a) 5! modulo 7

b) 10! modulo 11

c) 12! modulo 13

d) 16! modulo 17.

e) Can you propose a theorem from the above congruences?

28. Prove Theorem 3.5 using mathematical induction.

29. Show that the least nonnegative residue modulo m of the product of two positive
integers less than m can be computed using O(logzm) bit operations.

30. a) Five men and a monkey are shipwrecked on an island. The men have
collected a pile of coconuts which they plan to divide equally among
themselves the next morning. Not trusting the other men, one of the group
wakes up during the night and divides the coconuts into five equal parts with
one left over, which he gives to the monkey. He then hides his portion of
the pile. During the night, each of the other four men does exactly the
same thing by dividing the pile they find into five equal parts leaving one
coconut for the monkey and hiding his portion. In the morning, the men
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gather and split the remaining pile of coconuts into five parts and one is left
over for the monkey. What is the minimum number of coconuts the men
could have collected for their original pile?

b) Answer the same question as in part (a) if instead of five men and one
monkey, there are n men and k monkeys, and at each stage the monkeys
receive one coconut each.

3.1 Computer Projects

Write computer programs to do the following:

l. Find the least nonnegative residue of an integer with respect to a fixed modulus.

2. Perform modular addition and subtraction when the modulus is less than half of
the word size of the computer.

3. Perform modular multiplication when the modulus is less than half of the word
size of the computer using problem 24.

4. Perform modular exponentiation using the algorithm described in the text.

3.2 Linear Congruences

A congruence of the form

ax = b (mod m)'

where x is an unknown integer, is called a linear congruence in one variable.
In this section we will see that the study of such congruences is similar to the
study of linear diophantine equations in two variables.

We first note that if x : xo is a solution of the congruence
ax 7  b  (mod m) ,  and i f  x1  :  r0  (mod m) ,  then ax13 axs-  b  (mod z ) ,
so that x 1 is also a solution. Hence, if one member of a congruence class
modulo m is a solution, then all members of this class are solutions.
Therefore, we'may ask how many of the m congruence classes modulo m give
solutions; this is exactly the same as asking how many incongruent solutions
there are modulo m. The following theorem tells us when a linear congruence
in one variable has solutions, and if it does, tells exactly how many
incongruent solutions there are modulo m.

Theorem 3.7. Let a, b, and m be integers with ru ) 0 and (a,m) : d. lf
d I b, then ax j D (mod rn ) has no solutions. If d I b, then
ax 7 b (mod rn ) has exactly d incongruent solutions modulo z .
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Proof. From Proposition 3.1, the linear congruence ax 7 b (mod m) is

equivalent to the linear diophantine equation in two variables ax - m! : b.

The integer x is a solution of ax 7 b (mod m) if and only if there is an

integer y with ax - my : b. From Theorem 2.8, we know that if d tr b,

there are no solutions, while if d I b, ax - my : b has infinitely many

solutions, given by

x  :  r o  *  ( m / d ) t , l  :  l o +  b / d ) t ,

where x : xo and y : !0 is a particular solution of the equation. The values

of x given above,

x : x o * ' ( m l d ) t ,

are the solutions of the linear congruence; there are infinitely many of these.

To determine how many incongruent solutions there are, we find the

condition that describes when two of the solutions xl : x0 + (m/d)tt and

x2: xo * (mld)tz are congruent modulo m. If these two solutions are

cbngruent, then

ro *  fu/d)tr  z xo *  fu/d)t2(mod m).

Subtracting xo from both sides of this congruence, we find that

fu /d ) t r  j  @/d) t2  (mod m) .

Now (m,m/d) : m/d since @/d) | z, so that by

t  r  z  12  (mod d) .

tt "ore# ,ry*"see that
A=h

This shows that a complete set of incongruent solutions is obtained by taking
x: xo+ (m/d)t, where / ranges through a complete system of residues

modulo d. One such set is given by x : xo + @/d)t where

/  :  0 , 1 , 2 , . . . , d  -  l .  n

We now illustrate the use of Theorem

Example. To find allsolutions of 9x = 12 (mod l5), we first note that since
(9,tS) :3 and I l{hnere are exactly three incongruent solutions. We can
find these solutions by first finding a particular solution and then adding the
appropriate multiples of l5/3 : 5.

To find a particular solution, we consider the linear diophantine equation
9x - l5y : 12. The Euclidean algorithm shows that

A C,q,
r  "v
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1 5  : 9 ' l  +  6
9  : 6 ' 1  +  3

/ '  \  n  6 : 3 ' 2 ,
0.t5) -  , )  )

so tha# s9  : 'e . l  :  9  -  ( tS-q .D :9 -2  -  15 .  Hence 9 .8  -  15 .4 :  12 ,  and
a particular solution of 9x - l5y : 12 is given by 

"o 
: 8 and lo : 4.

From the proof of Theorem 3.7, we see that a complete set of 3 incongruent
solutions is given by t : x0 = 8 (mod l5), x : x0 + 5 = 13 (mod l5), and
x  :  x o  +  5 ' 2 :  1 8  =  3  ( m o d  l 5 ) .

We now consider congruences of the special form ax ? I (mod la). From
Theorem 3.7, there is a solution to this congruence if and only if (a,m): l,
and then all solutions are congruent modulo rn. Given an integer a with
(a,m) : l, a solution of ax 7 I (mod lz) is called an inverse of
a modulo m. /  \

73 ) ly = \ lF ai= F7 r3 ?- 2.5. I  i  =7 - L{a,- '} ' f  .?{ t i 'L
Example. Since the solutions of 7x = I (mod 31) satisfy x = 9 (mod 3l),9,
and all integers congruent to 9 modulo 31, are inverses of 7 modulo 31.
Analogously, since 9'7 = I (mod 3l) , 7 is an inverse of 9 modulo 31.

When we have an inverse of a modulo z, we can use it to solve any
congruence of the form ax 2 b (mod m). To see this, let a be an inverse of
a modulo m , so that aa: I (mod rn ). Then, if ax = D (mod m), we can
multiply both sides of this congruence by a to find that
a Gx) : ab (mod rn ), so that x - 

[[ (mod ln ) .

Example.  To f ind the solut ions of  7x:22(mod 31),  we mult ip ly both s ides
of this congruence by 9,, an inverse of 7 modulo 31, to obtain
9-7x = 9-22 (mod 31).  Hence, x = 198 :  12 (mod 31).

We note here that if (a ,m) : l, then the linear congruence
ax j b (mod m) has a unique solution modulo rn.

Example. To find all solutions of 7x = 4 (mod l2), we note that since
0,t2): l, there is a unique solution modulo 12. To find this, we need only
obtain a solution of the l inear diophantine equation 7x - l2y :4. The
Euclidean algorithm gives

1 2 : 7 '  l  +  5
7 : 5 ' l + 2
5 : 2 ' 2 * l
2 :  1 . 2  .

[  :  5  -  2 . 2 :  5  -  0 - 5 . 1 ) . 2  :  5 . 3  - 2 . 7  :  ( 1 2 - 7 . 1 )  :  3  -  2 . 7  -Hence
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12.3 - 5.7. Therefore, a particular solution to the l inear diophantine equation
is xs : -20 and ys : 12. Hence, all solutions of the l inear congruences are
given by x = -20 = 4 (mod 12).

Later otr, we wil l want to know which integers are their own inverses
modulo p where p is prime. The following proposition tells us which integers
have this property.

Proposition 3.4. Let p be prime. The positive integer a is its own inverse

modulo p i f  and only i f  a = |  (mod p) or e :  - l  (mod p).

Proo f .  l f  a  : l (modp)  o r  a  :  - l (modp) ,  then a2  =  l (modp) ,  so  tha t  a

is its own inverse modulo p.

Converse ly ,  i f  a  i s  i t s  own inverse  modu lo  p ,  then a2 :  a 'o :  I  (modp) .

H e n c e ,  p  I  G z - t ) .  S i n c e  a 2  -  l :  ( a - l ) ( a + l ) ,  e i t h e r  p  I  G - l )  o r
p  I  G+t ) .  There fore ,  e i ther  a  =  I  (mod p)  o r  q : -  -1  (modp) .  E

3.2 Problems

l. Find all solutions of each of the following linear congruences.

a)
b)
c)

3x = 2 (mod 7)
6x = 3 (mod 9)
l 7x  =  14  (mod  2 l )

d) l5x = 9 (mod 25)
e) l28x = 833 (mod 1001)
f) 987x = 610 (mod 1597).

2 .  L e t a , b , a n d  m b e  p o s i t i v e i n t e g e r s w i t h a  7 0 , m  )  0 , a n d  ( a , m ) : L  T h e

following method can be used to solve the linear congruence ax 2 b (mod m).

a) Show that if the integer x is a solution of ax = b (mod m), then x is also
a solution of the linear congruence

ag  -  - b [m /a l  (mod  z r ) .

where c1 is the least posit ive residue of m modulo a. Note that this
congruence is of the same type as the original congruence, with a positive
integer smaller than a as the coefficient of x.

b) When the procedure of part (a) is iterated, one obtains a sequence of
linear congruences with coefficients of x equal to
oo:  cr  )  a1)  a2)  Show that  there is  a  pos i t ive  in teger  n  wi th
d, : l, so that at the nth stage, one obtains a linear congruence
x = B ( m o d n ) .
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c) Use the method described in part (b) to solve the linear congruence
6x = 7 (mod 23).

3. An astronomer knows that a satellite orbits the earth in a period that is an
exact multiple of I hour that is less than I day. If the astronomer notes that
the satellite completes 11 orbits in an interval starting when a 24-hour clock
reads 0 hours and ending when the clock reads l7 hours, how long is the orbital
period of the satellite?

4 .  F o r w h i c h i n t e g e r s c  w i t h 0 ( c  <  3 0 d o e s t h e c o n g r u e n c e l 2 x  = c  ( m o d 3 0 )

have solutions? When there are solutions, how many incongruent solutions are
there?

5. Find an inverse modulo 17 of

4 c ) 7
s d) re.

6. Show that if d'is an inverse of a modulo m and D is an inverse of D modulo m.
then a- i ir un inverse of ab modulo z.

7. Show that the linear congruence in two variables ax * by = c (mod z),
where a,b ,c ,and,  m are in tegers ,  m )  0 ,  w i th  d  :  G,b,m) ,  has exact ly  dm
incongruent solutions ,f d I c, and no solutions otherwise.

8. Find all solutions of the following linear congruences in two variables

* 3 y  :  I  ( m o d 7 )  c )  6 x  *  3 y  = 0  ( m o d 9 )

+ 4v = 6  (mod 8)  d)  lOx *  5v = 9  (mod l5) .

9. Let p be an odd prime and k a
x2 = I (mod pt) has exactly
x E - f l ( m o d p t ) .

10. Show that the congruence x2 = I (mod 2ft) has exactly four incongruent
solut ions, namely x E t l  or +(t+Zk-t) (mod 2ft),  when k > 2. Show that
when k : I there is one solution and when k :2 there are two incongruent
solutions.

I l. Show that if a and m ^re relatively prime positive integers with a ( rn, then
an inverse of a modulo m can be found using O (log m) bit operations.

12. Show that if p is an odd prime and a is a positive integer not divisible by p,
then the congruence x2 = a (mod p) has either no solution or exactly two
incongruent solutions.

3.2 Computer Projects

Write programs to do the following:

a)

b)

a) 2x
b) 2x

positive integer. Show that the congruence
two incongruent solutions, namely
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l .  Solve l inear congruence using the method given in the text.

2. Solve l inear congruences using the method given in problem 2.

3 .

4 .

5 .

Find inverses modulo m of integers relat ively prime to ln where m is a posit ive

integer.

Solve linear congruences using inverses.

Solve linear congruences in two variables.

3.3 The Chinese Remainder Theorem

In this section and in the one following, we discuss systems of simultaneous

congruences. We will study two types of such systems. In the first type, there

are two or more l inear congruences in one variable, with different moduli
(moduli is the plural of modulus). The second type consists of more than one

simultaneous congruence in more than one variable, where all congruences

have the same modulus.

First, we consider systems of congruences that involve only one variable, but

different moduli. Such systems arose in ancient Chinese puzzles such as the

following: Find a number that leaves a remainder of I when divided by 3, a

remainder of 2 when divided by 5, and a remainder of 3 when divided by 7.

This puzzle leads to the following system of congruences:

I  (mod 3).  x 2 (mod 5), x 3 (mod 7)

We now give a method for finding all solutions of systems of simultaneous

congruences such as this. The theory behind the solution of systems of this

type is provided by the following theorem, which derives its name from the

ancient Chinese heritage of the problem.

The Chinese Remainder Theorem. Let rlt1,r/t2,...,trtr be pairwise relatively
prime positive integers. Then the system of congruence

a 1 ( m o d  z 1 ) ,

a2(mod,  m2) ,

ar (mod m, ) ,

x
x

has a unique solution modulo M - t ltf i tz
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Proof. First, we construct a simultaneous solution to the system of
congruences. To do this, let Mk : M/mt : ftt l l l2. . . tytk_rntk+l . mr.
we know that (Mr, mt) : I from problem 8 of Section 2.1, since
(mi, mp) : I whenever i I k. Hence, from Theorem 3.'7, we can find an
inverse ./r of M1 modulo mp, so that Mt lr, = I (mod mt). We now form
the sum

x  :  a t M 0 1 *  a 2 M 2 1 , t 2 * * arMry,

The integer x is a simultaneous solution of the r congruences. To
demonstrate this, we must show that x ? ar, (mod m1) for k : 1,2,...,r.
since mt I Mi whenever j * k, we have Mj :0 (mod nzp). Therefore, in
the sum for x, all terms except the kth term are congruent to 0 (mod m).
Hence, x ? etM*lr: ak (mod m*), since M*t = I (mod m).

We now show that any two solutions are congruent modulo M. Let xs and
x 1 both be simultaneous solutions to the system of r congruences. Then, for
each k, x0 E xr E ar (mod m*), so that mr | (xo-x). Using Theorem 3.7,
we see that M l(xe-x1). Therefore, x0 E x1 (mod M). This shows that the
simultaneous solution of the system of r congruences is unique modulo M. tr

We illustrate the use of the Chinese remainder theorem by solving the
system that arises from the ancient Chinese puzzle.

Example. To solve the system

x  =  I  ( m o d 3 )

x = 2 ( m o d 5 )
x = 3 (mod 7),

we have M -  3 .5 .7  :  105,  Mr :  105/3 :  35 ,  Mz:  IA5/5  :  21 ,  and
Mt:  105/7 :  15.  To determine !r ,  we solve 35yr= I  (mod 3),  or
equivalent ly,2yr = I  (mod 3).  This y ie lds jzr  E 2 (mod 3).  We f ind yzby
solving 2lyz: I (mod 5); this immediately gives lz = I (mod 5). Finally,
wef ind ytby solv ing r5yt= 1 (mod 7).  Thisgives/r  E I  (mod 7).  Hence,

x  E  l ' 3 5 ' 2  +  2 . 2 1 . 1  +  3 . 1 5 . 1
-- 157 = 52 (mod 105).

There is also an iterative method for solving simultaneous systems of
congruences. We illustrate this method with an example. Suppose we wish to
solve the system
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x = l ( m o d
x  = 2  ( m o d

x  = 3  ( m o d

s)
6)
7 ) .

We use Proposition 3.1 to rewrite the first congruence as an equality, namely

x : 5t * l, where / is an integer. Inserting this expression for x into the

second congruence, we find that

5 r + l : 2 ( m o d 6 ) .

which can easily be solved to show that / : 5 (mod 6) Using Proposition

3.1 again, we write t : 6u * 5 where u is an integer. Hence,

x :5(6rz+5) * I : 30u 126. When we insert this expression for x into the

third congruence, we obtain

30u t 26 = 3 (mod 7).

When this congruence is solved, we find that u : 6 (mod 7). Consequently,
Proposition 3.1 tells us thatu -7v * 6, where v is an integer. Hence,

x :  30(7v+6) + 26 :210v + 206.

Translating this equality into a congruence, we find that

x : 2O6 (mod 210),

and this is the simultaneous solution.

Note that the method we have just illustrated shows that a system of
simultaneous questions can be solved by successively solving linear
congruences. This can be done even when the moduli of the congruences are
not relatively prime as long as congruences are consistent. (See problems 7-10
at the end of this section.)

The Chinese remainder theorem provides a way to perform computer
arithmetic with large integers. To store very large integers and do arithmetic
with them requires special techniques. The Chinese remainder theorem tells
us that given pairwise relatively prime moduli r/t1,r/12,...,ffi,, a positive integer
n with n < M : rltiltz' ' ' mr is uniquely determined by its least positive
residues moduli mi for j : 1,2,...,r. Suppose that the word size of a computer
is only 100, but that we wish to do arithmetic with integers as large as 106.
First, we find pairwise relatively prime integers less than 100 with a product

exceed ing  106;  fo r  ins tance,  we can take  mt :99 ,  r / t2 :98 ,  m3:97,  and
mq: 95. We convert integers less than 106 into 4-tuples consisting of their
least positive residues modulo mt, ffi2, n43, a;fid fti4. (To convert integers as
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large as 106 into their list of least positive residues, we need to work with large
integers using multiprecision techniques. However, this is done only once for
each integer in the input and once for the output.) Then, for instance, to add
integers, we simply add their respective least positive residues modulo
tntt, t/t2, rn3, ?,fid ftr4, rrrzking use of the fact that if x = xi (mod m) and
! = li (mod m), then x * y : xi * y; (mod m). We then use the Chinese
remainder theorem to convert the set of four least positive residues for the sum
back to an integer.

The following example illustrates this technique.

Example. We wish to add x : 123684 and y : 413456 on a computer of
word size 100. We have

x = 33 (mod 99),
x ? 8 ( m o d 9 8 ) ,
x : 9 ( m o d 9 7 ) ,
x = 89 (mod 95).

y = 32 (mod 99),
y = 92 (mod 98),
y :  42 (mod 97),
y  = 16 (mod 95) ,

so that

x + Y = 6 5 ( m o d 9 9 )
x + y : 2 ( m o d 9 8 )
x + Y = 51 (mod 97)
x + y : 1 0 ( m o d 9 5 ) .

We now use the Chinese remainder theorem to find x * y modulo
99 '98 '97 '95 .  We have M :99 '98 .97 .95  :  89403930,  Mr :  M/99:903070,
M z :  M l 9 8 : 9 1 2 2 8 8 ,  M t :  M l 9 7 : 9 2 1 6 9 0 ,  a n d  M q :  M l 9 5 : 9 4 1 0 9 4 .
We need to find the inverse of Mi (mod /i) for i : 1,2,3,4. To do this, we
solve the following congruences (using the Euclidean algorithm):

9O307Oy t = 9ly r - 1 (mod 99),
9 1 2 2 8 5 y 2 :  3 y z :  I  ( m o d 9 8 ) ,

921690y3 : 93y3 = I (mod 97),
941094ya = 24yq = I (mod 95).

We find that yr:37 (mod 99), yz = 38 (mod 98), /r 
-- 

24 (mod 97), and

!+= 4  (mod 95) .  Hence,

x * y = 65'903070'37 + 2'912285'33 +51'921690'24 + l0'941094'4
:  3397886480
= 537140 (mod 39403930).

Since 0 ( x * y < 89403930, we conclude that x + y : 537140.
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On most computers the word size is a large power of 2, with 235 a common

value. Hence, to use modular arithmetic and the Chinese remainder theorem

to do computer arithmetic, we need integers less than 235 that are pairwise

relatively prime which multiply together to give a large integer. To find such

integers, we use numbers of the form 2m - l, where m is a positive integer.

Computer arithmetic with these numbers turns out to be relatively simple (see

Knuth t57l). To produce a set of pairwise relatively prime numbers of this

form, we first prove some lemmata.

Lemma 3.1. If a and b are positive integers, then the least positive residue of

Za - I modulo 2b - I is 2' - 1, where r is the least positive residue of a

modulo b.

Proof. From the division algorithm, c : bq * r where r is the

residue of a modulo b. We have (2o -l) :

(Zb_DebQ- t )+r  a  +  2b+,+2, )  +  (2 , - l ) ,  wh ich  shows

remainder when 2a - I is divide d by 2b - I is 2' - l; this is the

residue of 2o - 1 modulo 26 - 1. D

We use Lemma 3.1 to Prove

Lemma 3.2. lf a and b are
divisor of 2o - 1 and 2' - 1 is

least pos'itive
12b++r -1) :

that the
least positive

the following result.

positive integers, then the greatest common

2 k , b )  -  1 .

we

0 ( 1 2 ( 1 1

0 ( r : ( - r z

Proof. When we perform the Euclidean algorithm with a : ro and b -

obtain

f  g  :  r t Q t  *  r Z

f  1  :  r 2 Q 2 - t  r 3

:  l n - 2 Q n - 2 * 0<

where the last remainder, is the greatest common divisor of a and b.

Using Lenrma 3.1. and the steps of the Euclidean algorithm with a : rs

and b : , r, when we perform the Euclidean algorithm on the pair

2a -  I  :  Ro and2b -  I  :  R1, w€ obtain
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R s  : R r Q r * R z

R 1  : R z Q z * R :
R 2  : 2 " - |

R 3  : 2 " - \

Rn-r : Rn-zQn-z * Rn-l ^
Rn-z: Rn-tQn-t. 

--, '-r 
Rn-t : 2r'-t-1

Here the last non-zero remainder, Rn-l : )r '-r - I : 2G'b) - l, is the greatest
common divisor of Ro and R1. tr

From Lemma 3.2, we have the following proposition.

Proposition 3.5. The positive integers 2a - 1 and 2b - I are relatively prime
if and only if a and b are relatively prime.

We can now use Proposition 3.5 to produce a set of pairwise relatively prime
integers, each of which is less than 235, with product greater than a specified
integer. Suppose that we wish to do arithmetic with integers as large as 2186.
W e  p : g k  l f i r : 2 t 5  -  I ,  t l t z : z t o  -  l ,  t / t 3 : 2 3 3  -  l ,  t 7 t 4 -  z t t  -  l ,
tns: 22e - l, and r/t6:22s - l. Since the exponents of 2 in the expressions
for the mi are relatively prime, by Proposition 3.5 the M i's are pairwise
relatively prime. Also, we have M : H!fl2nt3n4qrflsftio 2 2t86. we can now
use modular arithmetic and the Chinese remainder theorem to perform
arithmetic with integers as large as 2186.

Although it is somewhat awkward to do computer operations with large
integers using modular arithmetic and the Chinese remainder theorem, there
are some definite advantages to this approach. First, on many high-speed
computers, operations can be performed simultaneously. So, reducing an
operation involving two large integers to a set of operations involving smaller
integers, namely the least positive residues of the large integers with respect to
the various moduli, leads to simultaneous computations which may be
performed more rapidly than one operation with large integers. Second, even
without taking into account the advantages of simultaneous computations,
multiplication of large integers may be done faster using these ideas than with
many other multiprecision methods. The interested reader should consult
Knuth t561.
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3.3 Problems

l. Find al l  the solut ions of each of the fol lowing systems of congruences.

b )  x  =  l ( m o d 2 )
x = 2(mod 3)
x = 3(mod 5)

x = 0(mod 2)
x  = O(mod 3)
x  E  l (mod  5 )
x = 6(mod 7)

d )  x  : 2 ( m o d  l l )
x  =  3(mod 12)
x  = 4(mod 13)
x  E 5(mod 17)
x  = 6(mod l9) .

A troop of 17 monkeys store their bananas in eleven piles of equal size with a

twelfth pile of six left over. When they divide the bananas into 17 equal groups

none remain. What is the smallest number of bananas they can have?

As an odometer check, a special counter measures the miles a car travels modulo

7. Explain how this counter can be used to determine whether the car has been

driven 49335, 149335, or 249335 miles when the odometer reads 49335 and

works modulo 100000.

4. Find a multiple of I I that leaves a remainder of I when divided by each of the

integers 2,3,5, and 7.

5. Show that there are arbitrarily long strings of integers each divisible by a perfect

square. (Hint: Use the Chinese remainder theorem to show that there is a

simultaneous solution to the system of congruences x 5 0 (mod 4),

x = - l  (mod 9), x: -2 (mod 25),. . . ,  x 
- - ls*l  (mod p|),  where p1, is the

kth prime.)

6" Show that i f  a,b, and c are integers with (a,b) :1, then there is an integer n

such that  Gn*b.c)  :  l .

In problems 7-10 we will consider systems of congruences where the moduli of

the congruences are not necessarily relatively prime.

Show that the system of congruences

x 4 a1 (mod rn 1)
x :- a2 (mod m2)

has a solut ion i f  and only i f  (m6m2) |  Gra). Show that when there is a
solut ion, i t  is unique modulo ( lmvmzl). (Hint: Write the f irst congruence as
x : a, * km, where ft is an integer, and then insert this expression for x into

the second congruence.)

Using problem 7, solve the following simultaneous system of congruences

a )  x : 4 ( m o d l l )  c )
x  =  3(mod 17)

2.

3 .

7 .

8 .
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b)
\ -

a t  x :
y -

4 (mod 6)
1 3  ( m o d  1 5 )

x  = 7  ( m o d  l 0 )
x = 4 ( m o d 1 5 ) .

9. Show that the system of congruences

x  t  a1  (mod  z1 )

x z az (mod m2)

-v, 3 4, (mod ln")

has a solut ion i f  and only i f  (m;,m1) |  G, - a) for al l  pairs of integers ( i ,7)
wi th  I  ( i  < l  ( r .  Show that  i f  a  so lu t ion ex is ts ,  then i t  is  un ique modulo
lm1, m2,.. . ,  f f i , l .  (Hint: Use problem 7 and mathematical induction.)

10. Using problem 9, solve the following systems of congruences

a )  x =  5  ( m o d 6 )

x = 3  ( m o d l 0 )

x = 8  ( m o d 1 5 )

d) .r = 2 (mod 6)
x = 4  ( m o d 8 )

x = 2  ( m o d 1 4 )

x  =  14  (mod  15 )

x = 7  ( m o d 9 )

x = 2 (mod l0)
x = 3  ( m o d 1 2 )

x = 6  ( m o d l 5 ) .

b)

c)

x = 2 (mod 14)
x  = 16 (mod 2 l )  e)
x :  l0 (mod 30)

x = 2  ( m o d 9 )

x = 8  ( m o d 1 5 )

x = l0 (mod 25)

l l .

t2 .

What is the smallest number of eggs in a basket if one egg is left over when the
eggs are removed 2,3,4,5, or 6 at a time, but no eggs are left over when they are
removed 7 ata t ime?

Using the Chinese remainder theorem, explain how to add and how to multiply
784 and 813 on a computer of word size 100.

13. A posit ive integer x * |  with n base b digits is cal led an
automorph to the base b if the last n base b digits of xz are the same as those
o f  x .

a) Find the base l0 automorphs with four or fewer digits.

b) How many base b automorphs are there with n or fewer base b digits, if b

has prime-power factorization 6 : pl' pl' ' ' ' pl,' Z

14. According to the theory of biorhythms, there are three cycles in your life that
start the day you are born. These are the physical, emotional, and intellectual
cycles, of lengths 23,28, and 33 days, respectively. Each cycle follows a sine
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curve with period equal to the length of that cycle, start ing with ampli tude zero,

cl imbing to ampli tude I one quarter of the way through the cycle, dropping back

to amplitude zero one half of the way through the cycle, dropping further to

ampli tude minus one three quarters of the way through the cycle, and cl imbing

back to amplitude zero at the end of the cycle.

Answer the fol lowing questions about biorhythms, measuring t ime in quarter

days (so that the units wi l l  be integers).

a) For which days of your l i fe wi l l  you be at a tr iple peak, where al l  of your

three cycles are at maximum ampli tudes?

b) For which days of your life will you be at a triple nadir, where all three of

your cycles have lowest amPlitude?

c) When in your l i fe wi l l  al l  three cycles be a neutral posit ion (ampli tude 0) ?

15. A set of congruences to dist inct moduli  greater than one that has the property

that every integer satisfies at least one of the congruences is called a covering set

of congruences.

a) Show the set of congruences x = 0 (mod 2), x = 0 (mod 3),

x = |  (mod 4), x = I (mod 6), and x = l l  (mod 12) is a covering set of

congruences.

b) Show that the set of congruences x = 0 (mod

x  =  0  (mod  5 ) ,  x  =  0  (mod7 ) ,  x  =  I  (mod6 ) ,  x
( m o d  l 4 ) ,  x  = 2  ( m o d  l 5 ) ,  x  = 2  ( m o d  2 l ) ,  x  7

(mod 35) ,  x  =  5  (mod 42) ,  x  =  59 (mod 70) ,  and x

covering set of congruences.

3.3 Computer Projects

Write programs to do the following:

l .  Solve systems of l inear congruences of the type found

theorem.

x = 0 ( m o d 3 ) ,
( m o d l 0 ) ,  x = l
( m o d 3 0 ) ,  x - 4

104  (mod  105 )  i s  a

Let m be a positive integer with prime-power factorization

^ : zo'p'r'pi' p:' . Show that the congruence x2 = 1 (mod m) has exactly

2 '+ '  so lu t ions where e :  } i f  a6 :  0  or  l ,  €  :  I  i f  a6 :  2 ,  and e :  2  i f  as}  2 .
(Hint: Use problems 9 and l0 of Section 2.3.)

The three chi ldren in a family have feet that are 5 inches, 7 inches, and 9 inches

long. When they measure the length of the dining room of their house using

their feet, they each find that there are 3 inches left over. How long is the

dining room?

) ,
r l

2)

it

the Chinese remainder

2. Solve systems of l inear congruences of the type given in problems 7-10.

3. Add large integers exceeding the word size of the computer using the Chinese

remainder theorem.
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4. Mult iply large integers exceeding the word size of the computer using the
Chinese remainder theorem.

5. Find automorphs to the base D, where b is a posit ive integer greater than one
(see problem 13).

6. Plot biorhythm charts and find triple peaks and triple nadirs (see problem l4).

3.4 Systems of Linear Congruences

We will consider systems of more than one congruence involving the same
number of unknowns as congruences, where all congruences have the same
modulus. We begin our study with an example.

Suppose we wish to find all integers x and y such that both of the
congruences

3 x  *  4 y  : 5  ( m o d  1 3 )
2x t 5y = 7 (mod 13)

are satisfied. To attempt to find the unknowns x and |, we multiply the first
congruence by 5 and the second by 4, to obtain

I 5x * 20y = 25 (mod 13)
8x * 20y :- 28 (mod 13).

We subtract the first congruence from the second, to find that

7x =  -3  (mod l3 ) .

Since 2 is an inverse of 7 (mod 13), we multiply both sides of the above
congruences by 2. This gives

2 '7  x  :  -2 '3  (mod 13) ,

which tells us that

x  =  7  ( m o d  l 3 ) .

Likewise, we can multiply the first congruence by 2 and the second by 3, to
see that
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6x * 8y = l0 (mod 13)
6x * l5y -- 2l (mod l3).

When we subtract the first congruence from the second, we obtain

7 y  =  1 1  ( m o d  1 3 ) .

both sides of this congruence by 2, an inverse of 7

Z " l y  : 2 ' l l  ( m o d  l 3 ) ,

v  =  9  (mod l3 ) .

What we have shown is that any solution (xy) must satisfy

x = 7 (mod l3), y = 9 (mod l3).

When we insert these congruences for x and y into the original system, we see

that these pairs actually are solutions, since

Hence, the solutions of this system of congruences are
x = 7 (mod 13) and v = 9 (mod l3) .

l 3 )
I  3 ) .

al l  pairs G,y) with

We now give a general result concerning certain systerns of two congruences
in two unknowns.

Theorem 3 .8 .  Le t  a ,b ,c ,d ,€ , f  ,and m be in tegers  w i th  m )  0 ,  such tha t
(L,m) :  l ,  where A: ad-bc.  Then, the system of congruences

a x * b y : e ( m o d m )
c x * d y : f ( m o d m )

has a unique solution modulo m given by

" 
= 4 @e-bfl (mod ln)

y = L Gf -ce) (mod m),

where A ir un inverse of A modulo m.

Proof. We multiply the first congruence of the system by d and the second by
b. to obtain

1 1 7

To solve for y, we multiply
modulo 13 . We get

so that

3x * 4y : 3'7 + 4'9 :  57 =5 (mod
2x  *  5v  =  2 '7  +5 '9  :  59  :  7  (mod
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adx * bdy = de (mod m)
bcx * bdy = bf (mod m) .

Then, we subtract the second congruence from the first, to find that

Gd-bc) x = de-bf  (mod m),

or ,  s ince  A:  ad-bc ,

Ax = de-bf (mod rn ).

Next, we multiply both sides of this congruence by A, an inverse of A modulo
m, to conclude that

x = A @e-bfl (mod la).

In a similar way, we multiply the first congruence by c and the second by a,
to obtain

acx * bcy = ce (mod m)
acx * ady = af (mod m).

We subtract the first congruence from the second, to find that

Gd-bc)y : of -ce (mod z)

or

Ly : af -ce (mod na).

Finally, we multiply both sides of the above congruence by r to see that

y = I bf -cd (mod z).

We have shown that if (x,y) is a solution of the system of congruences,
then

x = A @e-bf)  (mod z) ,  y = L bf  -ce) (mod z).

We can easily check that anX such pair G,y) is a solution. When
x=A @e-bfl (mod m) and y: ibf -tri (mod m), we have



3.4 Systems of  L inear Congruences 1 1 9

a x * b y gE @r-bn + bA Gf -ce)

L bde-abf -abf -bce)

L, fud-bc) e
e (mod m),

and

cx * dy : 4 tat-bn + dE Gf -ce)
:- L Gde-brf + adf -cde)
= a bd-bdf
= A'L,f
:  /  ( m o d  m ) .

This establishes the theorem. tr

By similar methods, we may solve systems of r congruences involving n

unknowns. However, we wil l develop the theory of solving such systems, as
well as larger systems, by methods taken from linear algebra. Readers

unfamiliar with linear algebra may wish to skip the remainder of this section.

Systems of r l inear congruences involving n unknowns wil l arise in our

subsequent cryptographic studies. To study these systems when r is large, it
is helpful to use the language of matrices. We will use some of the basic
notions of matrix arithmetic which are discussed in most l inear algebra texts,
such as Anton t0Ol.

We need to define congruences of matrices before we proceed.

Definit ion. Let A and B be nxk matrices with integer entries, with (i,/)th

entries aii and br7 , respectively. We say that A is congruent to B modulo m

i f  a i i -  b i j  ( m o d  m ) f o r  a l l p a i r s ( i , 7 ) w i t h  I  <  t  (  n  a n d t  ( , r  <  k .  W e
write A - B (mod m) if I is congruent to B modulo m.

The matrix congruence A = B (mod m) provides a succinct way of
expressing the nk congruences o,j = bi1 (mod m) for I ( i ( rz and
I  (  7  <  / c .

Example. We easily see that

f" 3l
L8  12 )

(q  3 l
l :  rJ  (mod r r ) '

needed.The following proposition be
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Proposition 3.6. lf A and B are nxk matrices with A : B (mod m), C is
an kxp matr ix and D is a pxn matr ix,  a l l  wi th integer entr ies,  then
AC = ^BC (mod m) and DA = DB (mod m).

Proof. Let the entries of A and B be a;i and b,7, respectively, for I ( i ( n
a n d  l ( 7 < k ,  a n d  l e t  t h e  e n t r i e s  o f  C  b e  c i i n f o r  l < i  < k  a n d

1 ( 7 ( p. The (i,/)th entries of AC and BC are ) ai1c1i and 2 bi,c,j,

respect ively.  Since A --B (mod m),weknow thuto, , ' - -Lb; ,  (mod ,) j ' rc,  ut t

i and k. Hence, from Theorem 3.3 we see that b o,,r, j z

n  
' : l

2 bnc,i (mod ne). Consequently, AC --- 
BC (mod la).

t : l

The proof that DA : DB (mod m) is similar and is omitted. tr

Now let us consider the system of congruences

Q n r  X t  *  a n Z  X Z  *

*er, xn --- b1 (mod m)
*?r, x, 2 b2 (mod m)

lann xn : bn (mod rn ).

Q t t X t l  a n x z *

A Z t  X t  *  a Z Z  X Z  t

Using matrix notation, we see that
to the matrix conqruence AX = B

this system of /, congruences
(mod lz ).

is equivalent

Q t t  a n

azt  azz

Q l n

Q 2 n

X 1

X 2

xn

b y

b z

bn

where A :

A n l  A n 2  O n n

, a n d B :, X :

Example. The system

3 x * . 4 y
2 x t 5 y

(mod 13)
(mod l3)

: {

can be wri t ten as



3.4 Systems of Linear Congruences 121

b 4l  f ' l  fs l
|  |  |  [  -  L l  ( m o d l 3 ) .
12 sJ  ly j  L7J

We now develop a method for solving congruences of- the form

AX = B (mod m). This method is based on finding a matrix I such that

7Z - 1 (mod m), where 1 is the identity matrix.

Definition. lf A and ,q are nxn matrices of integers and if

f 'o ol
l l

t ra  - ,q I : /  (mod z ) ,  where  I  :  lo  
t  

. . .  
o l  

i s  the  ident i t y  mat r ix  o f
l l
100  t , l

order n, then 7 is said to be an inverse of A modulo m .

If A is an inverse of A and B : 7 (moO rn ), then ^B is also an inverse of

A. This follows from Proposition 3.6, since BA = AA = I (mod m).

Converse ly ,  i f  81  and 82are  bo th  inverses  o f  A , then Br=  82(modm) .  To

see this, using Proposition 3.6 and the congruence B1A = BzA = I (modm),

w e  h a v e  B A B I :  B 2 A B r  ( m o d  l c l ) .  S i n c e  A B t : 1  ( m o d  m ) ,  w e  c o n c l u d e

that Bt Z Bz (mod ln).

Example. Since

:;l [t :): [t, [] 
= 

[; ?] (m.d 5,

and

1,r 4l Ir 3.l :  f" xl :  | ,r ol (mod5),
| . 12 )  l .24 )  15 i l , l  l 0 rJ

we see tha t  the  1-^+r iv  [ '  
o l  

, .  ^  [ r  l ]
natr ix 

l ,  r ,J is an inverse of  
l ,  o)modulo 5.

The following proposition gives an easy method for finding inverses for 2x2
matrices.

Proposition 3.7. Let A - 
t: ') 

be a matrix of integers, such that

A : det A : ad -bc ts relatively prime to the positive integer m . Then, the
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matr ix

r =f o-ul:  o  
l - .  o) '

where a is the inverse of  A modulo m, isan inverse of  I  modulo m.

Proof. To verify that tbg matrix 7 ir an invers e of A modulo ra, we need
only verify that AA = AA =I (mod z).

To see this, note that

f  "  u) - l  a  -o l  - fad-bc o l
A A :  |  , l 4 l  l : n l  . l

Va) - l - c  oJ - - l  0  - bc+ad )

- faol  faao I  f ro l=  ̂ | -ooj=l  o ooj= lo ' , l :  1 (mod z)

and

-f a -n) (" ol - fad-bc o I
A A = L I  |  |  - t :  A  I  I- - f - .  

a ) l r d )  a l 0  - b c + a d )

[aol  faaol  l , r  o l: A 
fo oJ : I o lo,l = 

[o ' , l  
:  I  (mod m)'

where f ir un inverse of A (mo d m), which exists because (a,.d : l. tr

i r  + l
Example. Let A : 

l r  r ,J. Since 2 is an inverse det A:7 modulo 13, we

have

t r_2 1. s _+l :  | , ro_sl = | ' rosl  (moar).
l -23 )  l -46 )  l .e6J

To provide a formula for an inverse of an nxn matrix where n is a positive
integer, we need a result from linear algebra. This result may be found in
Anton [60; page 791. It involves the notion of the adjoint of a matrix, which
is defined as follows.

Definition. The adjoint of an nxn malrix A is the n\n matrix with (i,;)th
entry Cyi, where Cii is (-l)t+i t imes the determinant of the matrix obtained
by deleting the ith row and 7th column from A. Thg adjoint of I is denoted
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by ad j ( l ) .

Theorem 3.9. If A is an nxn matrix with det A* 0, then
A GdjA) : (det A) I , where adj A is the adjoint of A.

Using this theorem, the following proposition follows readily.

Proposition 3.8. If A is an n\n matrix with integer entries and rn is a
posi t ive integer such that (det 'q,U) :1,  then the matr ix A :  A (adj  A) is

an inverse of I modulo m, where A is an inverse of A : det A modulo m.

Proof. If (det A,m) : l, then we know that det A * 0. Hence, from
Theorem 3.9. we have

A a d j A : ( d e t n l : A 1 .

Since (det Z,nl) : l , there is an inverse A of A : det I modulo z. Hence,

A (A adj A) = A ' {.zLdj nE - afl = I (mod m),

and

e tuol ilA - [ (uoj A ' A) - aar : 1 (mod rn ).

This shows that 7 :^ ' (adj l) is an inverse of I modulo ru. tr

fz s ol
Example .  Le t  A  :  

120 
2 | . .  Then de t  A :  -5 .  S ince  (de t  A ,7)  :1 ,  and an

u 2  3J
inverse of det A : -5 is 4 (mod 7), we find that

I : 4 ( . : , d j A ) : 4

-2-3 s l  l -a- tz2ol  fezel-s  o to l :  l - ro  o ool -  l tos l (modi) ,
4  r - r 0J  t  0  4 -40 )  1242 )

We can use an inverse of I modulo m to solve the system

AX :  B (mod m),

where (det A,m) : l. By Proposition 3.6, when we multiply both sides of this
congruence by an inverse A of A, we obtain
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A Ux ) :  LB  (modm)
( ,q ,4x  -  4B  (modm)

X :  A  B (mod n) .

Hence, we find the solution X by forming A B (mod m ).

Note that this method provides another proof of Theorem 3.8. To

ret  AX :  B, where A :  
l : ' ) ,  

x :  
t ; ]  

and B -

A : det A : ad - bc is relatively prime to ln, then

f"l -f a -t) f, l - fa, - nrl
l . .  l :X=A  B -A i_ ,  | |  | - ^ , , _ ) , 1 (modm) .
l y j  

- 1 ' - 1 ' " - - l - .  
" ) l f ) - u l o ,  

. . r

This demonstrates that (x,y) is a solution if and only if

x = A,(de-bfl (mod z), y = I bf -ce) (mod lz).

Next, we give an example of the solution of a system of three congruences
in three unknowns using matrices.

Example. We consider the system of three congruences

2 x 1  *  5 x 2  t  6 x t :  3  ( m o d  7 )
2x1 * xt  j  4 (mod 7)

x r  *  2 x 2 *  3 x : :  I  ( m o d  7 ) .

This is equivalent to the matrix congruence

see this,

[;] 
If

lz s ol [",] f ,l
12 o I  I  l " ' l  = lalr .noo r l .
lr z r,l l",j 

- 
I' J 

'^'^"-

we have previously shown that the matrix ll 3 :

lzsel  
| .242

l? : lJ 
tmoo z) Hence' we have

is an inverse of
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[*,1 fozellr l  [r ' l  lol
l", l  lrosl l . l  :  l t l :  I ' l(mod7)l - l : l ^ . ^ l l l : l - . 1 :
l ' ,J lz+zj L'J lro) lr j

Before leaving this subject, we should mention that many methods used for

solving systems of linear equations may be adapted to solve systems of

congruences. For instance, Gaussian elimination may be adapted to solve

systems of congruences where division is always replaced by multiplication by

inverses modulo ru. Also, there is a method for solving systems of congruences

analagous to Cramer's rule. We leave the development of these methods as

problems for those readers familiar with l inear algebra.

3.4 Problems

l. Find the solutions of the following systems of linear congruences.

a )  x * 2 y
2 x *  y

b )  x * 3 y
3 x t 4 y

d 4 x
2x

I (mod 5)
I (mod 5)

I (mod 5)
2 (mod 5)

(mod 5)
(mod 5).

(mod 7)
(mod 7)

+ y
+ 3 v

Z. Find the solutions of the following systems of linear congruences.

a )  2 x * 3 y
x * 5 y

b )  4 x *  y = 5  ( m o d 7 )

x * 2 y = 4 ( m o d 7 ) .

3. What are the possibilities for the number of incongruent solutions of the system
of linear congruences

a x * b y : c ( m o d p )

dx * ey : f (mod fl,

where p is a prime and a,b,c d,e, and f are posit ive integers?

4. Find the matrix C such that
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5 .

fz ' l  f+ol
Q- lo r , l  l l J  

(mod5)

and all entries of C are nonnegative integers less than 5.

Use mathematical induction to prove that if A and B are nxn matrices with
integer entr ies such that A = B(mod m ), then Ak : Bk(modm) for al l
posit ive integers k.

A matrix A * I is called involutory modulo m if 42 = 1 (mod z).

14 n l
a) Show that 

| | 22) is involutory modulo 26.

b) Show that if A is a 2x2 involutory matrix modulo m, then
d e t A : t l ( m o d r n ) .

Find an inverse modulo 5 of each of the. following matrices

fo  r l
i l  l r  o l

i' ,ib) |., oJ
lz  z)c)  l t  ,J

Find an inverse modulo 7 of each of the following matrices

f r ro l
a)  l t  0  t  I

[ 0  1  l J

f  r  z: l
b)  l r2s l

u  4  6J
r )
l r  r  r  0 l
l l  l 0 l l

^) |  |v '  
l l 0 r l l '
l0  r  r  r ,J

Use the results of problem 8 to find all solutions of each of the following systems

a) x+y : I  (mod 7)
x * z z 2 ( m o d 7 )

Y * z = 3 ( m o d 7 )

6 .

7 .

8 .

9 .
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b)  x*2y*32 :  I  (mod 7)
x * 3 y * 5 2 = l ( m o d 7 )
x * 4 y l 6 z = l ( m o d 7 )

(mod 7)
(mod 7)
(mod 7)
(mod 7).

How many incongruent solutions
congruences have

a )  x *  y *  z  i

2 x * 4 y * 3 2 :

b )  2 x * 3 y *  z
x * 2 y * 3 2

2 x *  z

c )  3 x *  y * 3 2  =  I  ( m o d 5 )
x * 2 y t 4 z  : 2 ( m o d 5 )

4 x  * 3 y  * 2 2 : 3  ( m o d 5 )
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does each of the following systems of1 0 .

c) x*y *z =

x*y  *w :

x t z  i w  :

Y *z  *w  =

i l 2 x * y * z
x  * 2 y  *  z
x  *  y  * 2 2

I (mod 5)
I (mod 5)

3 (mod 5)
I (mod 5)
I (mod 5)

(mod 5)
(mod 5)
(mod 5).

t 2 .

1 3 .

Develop an analogue of Cramer's rule for solving systems of n linear congruences
in n unknowns.

Develop an analogue of Gaussian elimination to solve systems of n linear
congruences in z unknowns (where m and n may be different).

A magic square is a square array of integers with the property that the sum of
the integers in a row or in a column is always the same. In this problem, we
present a method for producing magic squares.

a) Show that the n2 integers 0,1,.. . ,n2-l  are put into the n2 posit ions of an
n x/, square, without putting two integers in the same position, if the integer
k is placed in the i th row and 7th column, where

i = a * c k * e { k l n l  ( m o d n ) ,
j = b + d k + f l k / n l  ( m o d n ) ,

I  <  t  (  n ,  1  (  /  (  n ,
kf  -de,n) :  l .

and a,b,c d,e, and f are integers with

Show that a magic square
(c  ,n)  :  (d  ,n)  :  (e  ,n)  :  (7  ,n)  :  l .

b) produced part (a)
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c) The positive and negative diagonals of an nxn square consist of the
integers in posit ions (t1), where i  + j  = k (mod n) and
t -  j  = f t  (modn ) , respec t i ve l y ,  whe re  k  i sa  g i ven  i n tege r .  Asqua re i s
called diabolic if the sum of the integers in a positive or negative diagonal is
always the same. Show that a diabolic square is produced using the
procedure given in part (a) i f  Gtd,n) :  (c-d,n) :  G*f ,n) :

G - f  , n )  :  l .

3.4 Computer Projects

Write programs to do the following:

l. Find the solutions of a system of two linear congruences in two unknowns using
Theorem 3.8.

2. Find inverses of 2x2 matrices using Proposition 3.7.

3. Find inverses of nxn matnces using Theorem 3.9.

4. Solve systems of n linear congruences in n unknowns using inverses of matrices.

5. Solve systems of n linear congruences in n unknowns using an analogue of
Cramer's rule (see problem l l) .

6. Solve system of n linear congruences in m unknowns using an analogue of
Gaussian el imination (see problem l2).

7. Produce magic squares by the method given in problem 13.
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4.1 Divisibility Tests

Using congruences, we can develop divisibility tests for integers based on

their expansions with respect to different bases'

We begin with tests which use decimal notation. In the following discussion

l e t  n :  ( o o o o - r . . . a p o ) r c .  T h e n  f l : Q k l O f t  +  a r r - J 0 t - l +  *  4 1 1 0  *  o o ,

w i th  0  (  o . r  (  9  fo r , t :0 ,1 ,  2 , . . . , k .

First, we develop tests for divisibility. by powers.. of 2. Since

l0 = 0 (mod 2), Theorem 3.5 tells us that 10/ :0 (mod 2r) for all positive

integers 7. Hence,

n = (a) 1s (mod 2),
n  =  (a rao) ro  (mod 22) ,
n 3 (azarao)ro (mod 23),

( a i - f i i - 2 .  .  . a z a r a o )  t o  ( m o d  2 / )

These congruences tell us that to determine whether an integer n is divisible

by 2, we only need to examine its last digit for divisibil i ty by 2. Similarly, to

determine whether n is divisible by 4, we only need to check the integer made

up of the last two digits of n for divisibility by 4. In general, to test n for

divisibility by 2i, we only need to check the integer made up of the last 7
digits of n for divisibil i ty by 2i .

n :

r29
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E x a m p l e .  L e t  n : 3 2 6 8 8 0 4 8 .  w e  s e e  t h a t  2 l n  s i n c e  z l g ,  a l ,  s i n c e
4  |  4 9 , 8  l ,  s i n c e  s  |  + a ,  1 6  |  n s i n c e  t 6  |  g 0 4 g ,  b u t  3 2  / r  s i n c e ' l z  i  g s o + g . -

To develop tests for divisibility by powers of 5, first note that since
l0 = 0 (mod 5),  we have lY :0 (mod 5/) .  Hence, div is ib i l i ty  tests for
powers of 5 are analogous to those for powers of 2. We only need to check the
integer made up of the last 7 digits of n to determine whether n is divisible bv
5 i .

Example .  Le t  n :  15535375.  S ince  s  I  s ,  5  |  n ,  s ince  zs  l l s ,25  |  n ,  s ince
125 |  375,  125 |  n ,  bu t  s ince  625 |  s l l s ,625 I  n .

Next, we develop tests for divisibil i ty by 3 and by 9. Note that both the
congruences l0 : I (mod 3) and l0 = I (mod 9) hold. Hence,
10e : I (mod 3) and (mod 9). This gives us the useful congruences

(apa1r -1 . . .aps)  :  ek l0& +  a*_ t l0k - l  +  *  a lO *  a6
:  e k  *  a p 4  * '  .  .  +  a r  * a s  ( m o d  3 )  a n d  ( m o d  9 ) .

Hence, we only need to check whether the sum of the digits of n is divisible by
3, or by 9, to see whether n is divisible by 3, or by 9.

Example. Let n : 412783s. Then, the sum of the digits of n is
4+  |  +2+  7  +  8  +  3  +  5 :30 .  S ince  I  l r obu t  9  l t } , 3 l  nbu tg  l n .

A rather simple test can be found for divisibility by I L Since
l0  :  - l  (mod I  l ) ,  we have

(a1ra1r -1 . . .aps) t0 :  ak lOk +  a1r -110k- r  *  *  a lO *  as
:  a k ( - l ) f t  *  a * - r ( - t ) t - t  +  - a t  *  a s  ( m o d  I  l ) .

This shows that (apap-1....aps) rc is divisible by I l, i f and only if
os- at  *  o2- + (- I )kap, the integer formed by al ternately adding
and subtracting the digits, is divisible by I l.

Example. We see that 723160823 is divisible by 11, since alternately adding
a n d  s u b t r a c t i n g  i t s  d i g i t s  y i e l d s  i - z + g - 0 + 6 - l + 3 - z * 7 : 2 2
which is divisible l l. On the other hand, 33678924 is not divisible bv 11.
s ince  4  -  2  +  9  -  8  +  7  -  6  +  3  -  3  :4  i s  no t  d iv is ib le  by  l l .

Next, we develop a test to simultaneously test for divisibility by the primes
7 , l l ,  a n d  1 3 .  N o t e  t h a t  7 ' l l ' 1 3  :  l 0 0 l  a n d  1 0 3 :  1 0 0 0  :  - l  ( m o d  l 0 0 l ) .
Hence.
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( a 1 , a 1 r - r . . . a d r o :  a k l O k  +  a * - J O f t - l  +  *  a l O  *  c 6
:  ( a o  *  l 0 a r  *  1 0 0 a )  +  1 0 0 0 ( a r  *  1 } a a *  1 0 0 4 5 )  *

( tOOO) ' (ou  +  l0a7 t  100a6)  r
=  ( 1 0 0 a 2 *  1 0 c r  +  a 0 )  -  ( l 0 0 a r  *  l } a a *  a )  *

( t 0 0 a r  *  l 0 a 7  +  a )  -

= (a2a,as), .  -  (o 5aaa3),s *  (a sa7a6)rc-  (mod 1001).

This congruence tells us that an integer is congruent modulo l00l to the

integer formed by successively adding and subtracting the three-digit integers

with decimal expansions formed from successive blocks of three decimal digits

of the original number, where digits are grouped starting with the rightmost

digit. As a consequence, since 7,11, and l3 are divisors of 1001, to determine

whether an integer is divisible by 7,11, or 13,we only need to checkwhetherthis

al ternat ing sum and di f ference of  b locks of  three digi ts is div is ib leby 7,11, or

1 3 .

Example. Let n - 59358208. Since the alternating sum and difference of the

integers formed from blocks of three digits, 208 - 358 + 59 : -91, is

divisible by 7 and 13, but not by 11, we see that r is divisible by 7 and 13, but

n o t b y I L
-----*?.ll 

of theTvisibility tests we have developed thus far are based on decimal

representations. We now develop divisibility tests using base b

representations, where b is a positive integer.

Divisibility Test 1. If d I b and 7 and k are positive integers with i < k,

then (a1 . . .aps)6 is div is ib leby di  i f  and only i f  (a1-r . . .apo)u is div is ib le by

4 i .

Proof. Since b = 0 (mod d), Theorem 3.5 tells us

Hence,

( a p a 1 r - 1 . . . a p s ) 6 :  a r r b k  *  "  ' +  a l b l  +  a i - f t i - l
= a j - f t j - r + " ' + a 1 b * a s
: (ai - t . . .aPs)6 (mod d/) .

t h a t  b j  : 0  ( m o d  d / ) .

+  " ' +a f t *as

Consequent ly,  d I  Q1,a1r-1. . .aps)6 i f  and only i f  d I  G1-t . . .aps)6.  -

Div is ib i l i ty  Test 2.  l f  d |  (b- t ) ,  then n:  (ap.. .aps)6 is div is ib leby d i f  and

on ly  i f  ap  t  '  ' '  +  a r  t  as  i s  d iv is ib le  by  d .

Proof. Since d | $-l), we have b = I (mod d), so that by Theorem 3.5 we

know that bj  -  I  (mod d) for  a l l  posi t ive integers b.  Hence, (ap.. .af lo)r :
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a l r b k  I  t  a f t  I  a o z  a t  *
d l n i f a n d o n l y i f d l ( a * +

Example. Let n :  (1001001 I l l )2.
t h a t  3 l r ,  s i n c e  n  =  |  -  1 +  1 -  I
a n d  3 l ( z + t )  .

.  
Oppl icat ions of  Congruences

*  a 1 t  a 6  ( m o d  d ) .  T h i s  s h o w s  t h a t
*  a 1 t  a s ) .  t r

Then, using Divisibil i ty Test 3, we see
+ 0 - 0 + 1 -  0 + 0 - l : 0 ( m o d 3 )

Divisibil i ty Test.3. lf d | (b + l), then n : (ap...aps)6 is divisible by d if
and only i f  ( - I )kap * -ar *  a6 is div is ib le by d.

Proof.  Since d I  f t  + 1),  we have g:  - l  (mod d).  Hence, bi  = (- l ) /
(mod d),  and consequent ly,  n :  (a1,  . . .aps)b :  ( - t )k a1, + -  o1
* ao (mod d).  Hence, d I  n i f  and only i f  d |  ( ( - l )o oo + -a1

*  a s ) .  n

Example. Let n: (7F28A6)16 ( in hex notat ion). Then, since zl te, from
Divisibility Test l, we know that 2 | n, since zl e. Likewise, since 4 | 16, we
s e e  t h a t  a l n ,  s i n c e  4 t r 6 .  B y  D i v i s i b i l i t y  T e s t  Z ,  s i n c e  3 l ( f 6 - l ) ,
5 l ( t 6 - 1 ) ,  a n d  1 5  l ( 1 6 - t ) ,  a n d  7 + F + 2 + 8  + A  * 6 : ( 3 0 ) , u ,  w e
know that 3 |  n, since I |  ( :O)16, while 5 tr,  and I 5 I  n, since 5 / (30)ro and
ts / (30)ro. Furthermore, by Divisibility Test 3, since 17 | (16 + l) and
n  = 6 -  A  + 8  - 2 *  F  - 7 :  ( , q ) r u  ( m o d  l 7 ) ,  w e c o n c l u d e  t h a t  l 7  t r r ,

since 17 I (D rc.

4.1 Problems

l. Determine the highest power of 2 dividing each of the following positive integers

a) 201984
b) 1423408

c) 89375744
d) 4t578912246.

2. Determine the highest power of 5 dividing each of the following positive integers

112250 c) 235555790
4860625 d) 48126953125.

3. Which of the following integers are divisible by 3? Of those that are, which are
divisible by 9?

18381 c) 987654321
65412351 d) 78918239735

a)

b)

a)

b)
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4. Which of the following integers are divisible by I I

a) 10763732 c) 674310976375
b) 108632001s d) 89243t00645372

5. A repunit is an integer with decimal expansion containing al l  l 's.

a) Determine which repunits are divisible by 3; and which are divisible by 9.

b) Determine which repunits are divisible by I l.

c) Determine which repunits are divisible by 1001. Which are divisible by 7?

b y  1 3 ?

d) Determine which repunits with fewer than l0 digits are prime.

6. A base b repunit is an integer with base b expansion containing all 1's.

il Determine which base D repunits are divisible by factors of 6 - l.

b) Determine which base b repunits are divisible by factors of b * l.

7. A base b palindromic integer is an integer whose base 6 representation reads
the same forward and backward.

il Show that every decimal palindromic integer with an even number of digits
is divisible by I l .

b) Show that every base 7 palindromic integer with an even number of digits is
divisible by 8.

8. Develop a test for divisibility by 37, based on the fact that 103 = I (mod 37).
Use this to check 443692 and I 1092785 for divisibility by 37.

9. Devise a divisibility test for integers represented in base b notation for divisibility
by n where n in a divisor of b2 + l .  (Hint: Spl i t  the digits of the base b
representation of the integer into blocks of two, starting on the right).

10. Use the test you developed in problem 9 to decide whether

i l  ( to t  t  101 lo)2 is  d iv is ib le  by 5 .

b) (12100122)3 rs divisible by 2, and whether i t  is divisible by 5.

c) (36470124$8 is divisible by 5, and whether it is divisible by 13.

d) (SS:ZO+t 320219)ro is divisible by 101.

ll. An old receipt has faded. It reads 88 chickens at a total of $x4.2y where x and
y ^re unreadable digits. How much did each chicken cost?

12. Use a congruence modulo 9 to find the missing digit, indicated by a question
mark: 89878'58965 : 5299?56270.

13. We can check a multiplication c : ab by determining whether the congruence
c 2 ab (mod rn ) is valid. where m is anv modulus. If we find that
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c # ab (mod z), then we know an error has been made. When we take m :9
and use the fact that an integer in decimal notation is congruent modulo 9 to the
sum of its digits, this check is called casting out nines. Check each of the
following multiplications by casting out nines

i l  875961-2753 : 2410520633

b) t4789.23567 : 348532367

c) 24789'43717 : 1092700713.

d) Are your checks foolproof?

14. What combinations of digits of a decimal expansion of an integer are congruent
to this integer modulo 99? Use your answer to devise a check for multiplication
based on casting out ninety nines. Then use the test to check the
mult ipl icat ions in problem 13.

4.1 Computer Projects

Write programs to do the following:

1. Determine the highest powers of 2 and of 5 that divide an integer.

2. Test an integer for divisibi l i ty by 3,7,9, l l ,  and 13. (Use congruences modulo
l00l for divisibi l i ty by 7 and 13.)

3. Determine the highest power of each factor of b that divides an integer from the
base b expansion of the integer.

4. Test an integer from its base b expansion, for divisibility by factors of b - I and
of b + L

4.2 The Perpetual Calendar

In this section, we derive a formula that gives us the day of the week of any
day of any year. Since the days of the week form a cycle of length seven, we
use a congruence modulo 7. We denote each day of the week by a number in
t h e  s e t  0 ,  I , 2 , , 3 ,  4 , 5 , 6 ,  s e t t i n g  S u n d a y : 0 ,  M o n d a y  :  l ,  T u e s d a y  : 2 ,

Wednesda! : 3, Thursday : 4, Fridey :5, and Saturday : $.

Julius Caesar changed the Egyptian calendar, which was based on a year of
exactly 365 days, to a new calendar with a year of average length 365 V4 days,
with leap years every fourth year, to better reflect the true length of the year.
However, more recent calculations have shown that the true length of the year
is approximately 365.2422 days. As the centuries passed, the discrepancies of
0.0078 days per year added up, so that by the year 1582 approximately l0
extra days had been added unnecessarily as leap years. To remedy this, in
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1582 Pope Gregory set up a new calendar. First, l0 days were added to the
date,  so that October 5,  1582, became October 15, 1582 (and the 6th through
the l4th of October were skipped). It was decided that leap years would be
precisely the years divisible by 4, except those exactly divisible by 100, i.e.,
the years that mark centuries, would be leap years only when divisible by 400.
As an example, the years 1700, 1800, 1900, and 2100 are not leap years but
1600 and 2000 are. With this arrangement, the average length of a calendar
year is 365.2425 days, rather close to the true year of 365.2422 days. An
error of 0.0003 days per year remains, which is 3 days per 10000 years. In
the future, this discrepancy will have to be accounted for, and various
possibilities have been suggested to correct for this error.

In dealing with calendar dates for various parts of the world, we must also
take into account the fact that the Gregorian calendar was not adopted
everywhere in 1582. In Britain, the Gregorian calendar was adopted only in
1752, and by then, it was necessary to add I I days. Japan changed over 1873,
the Soviet Union and nearby countries in 1917. while Greece held out unti l
1923.

We now set up our procedure for finding the duy of the week in the
Gregorian calendar for a given date. We first nrust make some adjustments,
because the extra day in a leap year colmes at the end of February. We take
care of this by renumbering the months, starting each year in March, and
considering the months of January and February part of the preceding year.
For instance, February 1984, is considered the 12th month of 1983, and May
1984, is considered the 3rd month of 1984. With this convention, for the day
of interest, let k : day of the month, z : month, and N : year, with
N : 100C + IZ, where C : century and Y : particular year of the century.
F o r  e x a m p l e ,  J u n e  1 2 ,  1 9 5 4 ,  h a s  k : 1 2 , f r 7 : 4 , N : 1 9 5 4 , C : 1 9 ,  a n d
Y  : 5 4 .

We use March 1, of each year as our basis. Letdy represent the day of the
week of March 1, in year I{. We start with the year 1600 and compute the
day of the week March l, falls on in any given year. Note that between
March I of year l/ - I and March I of year ly', if year N is not a leap year,
365 days have passed, and since 365 : I (mod 7), we see that du : dN_,
* I (mod 7), while if year l/ is a leap year, since there is an extra day

between the consecutive firsts of March, we see that dy = dx_r + 2 (mod 7).
Hence, to find dys from drooo, we must find out how many leap years have
occurred between the year 1600 and the year N (not including 1600, but
including N). To compute this, we first note that there are [(nrr - 160c)/41
years divisible by 4 between 1600 and N, there are [Or-t600)/1001 years
divisible by 100 between 1600 and N, and there are ICnr - 1600)/4001 years
divisible by 400 between 1600 and N. Hence, the number of leap years
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between 1600 and N is

t0,r - rc00D/41- tor - 1600)/1001 + tcnr - 1600)/4001
: lN /41- 400 - lX /t001 + t6 + Ir{ /4001 - 4
: lN /41 - lw /tool + It//4ool - 388.

(We have used Proposition 1.5 to simplify this expression). Now putting this
in terms of C and Y , we see that the number of leap years between 1600 and
l/ is

lzsc + v/Dl - tc + v/r0o)l+ 1,rc/0 + v/400)l- ras
: 25C +  IY  /41  -  C  +  tC  /41 -  388
= 3C + lC/41 + lY/41-  3 (mod 7) .

Here we have again used Proposition 1.5, the inequality Y/100 ( 1, and the
equation |,rc /4 + V /4001 : lc /+l (which follows from problem 20 of
Section 1.2, since Y/400 < l lq.

We can now compute d1y from drcoo
year that has passed, plus an extra day
N. This gives the following formula:

d x = d r c o o + 1 0 0 c + Y - 1 6 0 0 +

by shifting drcoo by one day for every
for each leap year between 1600 and

3C + IC/41 + lY l4 l -  3  (mod 7) .

Simplifying, we have

dx : drcoo - 2c + y + tc/41 + ly/41 (mod 7).

Now that we have a formula relating the day of the week for March l, of any
year, with the day of the week of March 1, 1600, we can use the fact that
March |, 1982, is a Monday to find the day of the week of March I , 1600.
F o r  1 9 8 2 ,  s i n c e . l y ' :  1 9 8 2 , w e  h a v e  C  :  1 9 ,  a n d Y  : 8 2 ,  a n d  s i n c e  d p t z :  l ,
it follows that

| = drcoo- 38 + 82 + [19/41 + ts2/41 :- drcoo- 2 (mod 7).

Hence, drcoo:3,  so that March 1,  1600, was a Wednesday. When we insert
the value of d16ss, the formula for d1,, becomes

du :  3 -  2C + Y + lC/41 + IYl4l  (mod 7).

We now use this formula to compute the day of the week of the first day of
each month of year l{. To do this, we have to use the number of days of the
week that the first of the month of a particular month is shifted from the first
of the month of the preceding month. The months with 30 days shift the first
of the following month up 2 days, because 30 : 2 (mod 7), and those with 31
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days shift the first of the following month up 3 days, because 31 : 3 (mod 7) '

Therefore, we must add the following amounts:

from March l, to APril l : 3 daYs

from April l , to May I : 2 daYs

from May l, to June l: 3 daYs

from June l, to July I : 2 daYs

from July 1, to August 1: 3 daYs

from August 1, to September l: 3 daYs

from September 1, to October I : 2 daYs

from October l, to November l: 3 days

from November 1, to December 1: 2 days

from December l, to January l: 3 daYs

from January 1, to February 1: 3 daYs.

We need a formula that gives us the same increments. Notice that we have

1l increments totaling 29 days, so that each increment averages 2.6 days. By

inspection, we find that the function lZ.6m - 0.21- 2 has exactly the same

increments as rn goes from I to I l, and is zero when m : l. Hence, the day

of the week of the first day of month m of year N is given by by the least

positive residue of dy + [2.6m - 0.21 - 2 modulo 7.

To find W, the day of the week of day k of month m of year.ly', we simply

add k-l to the formula we have devised for the day of the week of the first

day of the same month. We obtain the formula:

w - k + 12.6m - o.2l - 2C + Y + IYl4l + lcl4l (mod 7).

We can use this formula to find the day of the week of any date of any year

in the Gregorian calendar.

Example. To find the duy of the week of January 1, 1900, we have

c  :  18 ,  I r :  99 ,  m:  l l ,  and  k  :  |  (s ince  we cons ider  January  as  the

eleventh month of the preceding year). Hence, we have

w 
- 

I + 28 - 36 + 99 + 4 + 24 :- I (mod 7), so that the first day of the

twentieth century was a Monday.

4.2 Problems

l. Find the day of the week of the day you were born, and of your birthday this

Year.
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2. Find the day of the week of the following important dates in U. S. history (use
the Julian calendar before 17 52, and the Gregorian calendar from I 7 52 to the
present)

il October 12, 1492 (Columbus sights land in the Caribbean)
b) May 6, 1692 (peter Minuit buys Manhattan from the natives)
c) June 15, 1752 (Benjamin Frankl in invents the l ightening rod)
d July 4, 1776 (U. S. Declaration of Independence)
e) March 30, 1867 (U. S. buys Alaska from Russia)
f) March 17, 1888 (Great blizzard, in the Eastern u. s.)
d February 15, 1898 (U. S. Batt leship Maine blown up in Havana Harbor)
h) July 2, 1925 (Scopes convicted of teaching evolution)
i) July 16, 1945 (First atomic bomb exploded)
j) July 20, 1969 (First man on the moon)
k) August 9,1974 (Nixon resigns)
l) March 28, 1979 (Three Mile Island nuclear mishap).

3' To correct the small discrepancy between the number of days in a year of the
Gregorian calendar and an actual year, it has been suggested that the years
exactly divisible by 4000 should not be leap years. Adjust the formula for the
day of the week of a given date to take this correction into account.

4. Which of your birthdays, until your one hundredth, fall on the same dav of the
week as the day you were born?

5. Show that days with the same calendar date in two different years of the same
century, 28, 56, or 84 years apart, fall on the identical day of the week.

6. A new calendar called the International Fixed Calendar has been proposed. In
this calendar, there are 13 months, including all our present months, plus a new
month, called So/, which is placed between June and July. Each month has 28
days, except for the June of leap years which has an extra day (leap years are
determined the same way as in the Gregorian calendar). There is an extra day,
Year End Day, which is not in any month, which we may consider as December
29. Devise a perpetual calendar for the International Fixed Calendar to give day
of the week for any calendar date.

4.2 Computer Projects

Write programs to do the following:

l .  To give the day of the week of any date.

2. To print out a calendar of any year.

3. To print out a calendar for the International Fixed Calendar (See problem 6).
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4.3 Round-Robin Tournaments

Congruences can be used to schedule round-robin tournaments. In this
section, we show how to schedule a tournament for I/ different teams, so that

each team plays every other team exactly once. The method we describe was

developed by Freund t65].

First note that if N is odd. not all teams can be scheduled in each round,
since when teams are paired, the total number of teams playing is even. So, if
N is odd, we add a dummy team, and if a team is paired with the dummy
team during a particular round, it draws a bye in that round and does not
play. Hence, we can assume that we always have an even number of teams,
with the addition of a dummy team if necessary.

Now label  the N teams with the integers 1,2,3, . . . , I f -1,  N. We construct
a schedule, pairing teams in the following way. We have team i, with i * N,
play team j, with j I N and j # i, in the kth round if
i + j: k (mod /V-l). This schedules games for all teams in round k,
except for team N and the one team i for which 2i : k (mod li-l). There
is one such team because Theorem 3.7 tells us that the congruence
2x :- k (mod /V-l) has exactly one solution with I ( x < .A/-1, since
(2, N-l) : 1. We match this team i with team ̂ A{ in the kth round.

We must now show that each team plays every other team exactly once.
We consider the first tr/-l teams. Note that team i, where I < t <,Af-l,
plays team l/ in round k where 2i : k (mod lf-l), and this happens exactly
once. In the other rounds, team i does not play the same team twice, for if
team i played team 7 in both rounds k and k', then i + j = k (mod l/-l),
and i + j = k' (mod N-l) which is an obvious contradiction because
k # k'(mod N-l). Hence, since each of the first lf- l teams plays .Af-l
games, and does not play any team more than once, it plays every team
exactly once. Also, team I{ plays N-l games, and since every other team
plays team N exactly once, team N plays every other team exactly once.

Example. To schedule a round-robin tournament with 5 teams, labeled
I,2,3,4,  and 5,  we include a dummy team labeled 6.  In round one, team I
p l a y s  t e a m T  w h e r e  |  +  j  =  l ( m o d  5 ) .  T h i s  i s t h e t e a m  j : 5  s o t h a t  t e a m  I
plays team 5. Team 2 is scheduled in round one with team 4, since the
s o l u t i o n  o f  2 +  j  = l  ( m o d 5 )  i s  7 : 4 .  S i n c e  i : 3  i s  t h e  s o l u t i o n  o f  t h e
congruence 2i = 1 (mod 5), team 3 is paired with the dummy team 6, and
hence, draws a bye in the first round. If we continue this procedure and finish
scheduling the other rounds, we end up with the pairings shown in Figure 4.1,
where the opponent of team i in round k is given in the kth row and i th
column.



Team

Round

I 2 3 4 5

I 5 4 bye 2 I

2 bye 5 4 3 2

3 2 I 5 bye 3

4 3 bye I 5 4

5 4 3 2 I bye
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Figure 4.1. Round-Robin Schedule for Five Teams.

4.3 Problems

1. Set up a round-robin tournament schedule for

a) 7 teams c) 9 reams
b) 8 teams d) 10 teams.

2. In round-robin tournament scheduling, we wish to assign a home team and an
away team for each game so that each of n teams, where n is odd, plays an
equal number of home games and away games. Show that if when i + j is odd,
we assign the smaller of i and 7 as the home team, while if i + 7 is even, we
assign the larger of f and 7 as the home team, then each team plays an equal
number of home and away games.

3. In a round-robin tournament scheduling, use problem 2 to determine the home
team for each game when there are

a) 5 teams b) 7 teams c) 9 teams.

4.3 Computer Projects

Write programs to do the following:

l. Schedule round-robin tournaments.
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2. Using problem 2, schedule round-robin tournaments for an odd number of teams,

specifying the home team for each game.

4.4 Computer File Storage And Hashing Functions

A university wishes to store a file for each of its students in its computer.

The identifying number or key for each file is the social security number of

the student enrolled. The social security number is a nine-digit integer, so it is

extremely unfeasible to reserve a memory location for each possible social

security number. Instead, a systematic way to arrange the files in memory,

using a reasonable amount of memory locations, should be used so that each

file can be easily accessed. Systematic methods of arranging files have been

developed based on hashtng functions . A hashing function assigns to the key

of each file a particular memory location. Various types of hashing functions

have been suggested, but the type most commonly used involves modular

arithmetic. We discuss this type of hashing function here. For a general

discussion of hashing functions see Knuth [52] or Kronsji i t581.

Let k be the key of the file to be stored; in our example, k is the social

security number of a student. Let m be a positive integer. We define the

hashing function h (k) by

h ( k )  = k  ( m o d , m ) ,

where 0 < ft(k) < m,so that h(k) is the least positive residue of k modulo

m. We wish to pick n intell igently, so that the fi les are distributed in a

reasonable way throughout the z different memory locations 0, 1,2,..., m-|.

The first thing to keep in mind is that z should not be a power of the base

b which is used to represent the keys. For instance, when using social security
numbers as keys, ra should not be a power of 10, such as 103, because the
value of the hashing function would simply be the last several digits of the
k"y; this may not distribute the keys uniformly throughout the memory
locations. For instance, the last three digits of early issued social security
numbers may often be between 000 and 099, but seldom between 900 and
ggg. Likewise, it is unwise to use a number dividing 6t * a where k and a

are small integers for the modulus rn. In such a case, h (k) would depend too
strongly on the particular digits of the key, and different keys with similar, but
rearranged, digits may be sent to the same memory location, For instance, if
m :  l l l ,  t h e n ,  s i n c e  l l l  |  ( t O 3  - l )  : 9 9 9 ,  w e  h a v e  1 0 3  =  1  ( m o d  1 1 1 ) ,  s o
that the social security numbers 064212 848 and 064 848 212 are sent to the
same memory location, since

t4l
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h @ 6 4  2 r 2  S 4 $  =  0 6 4  2 r 2  8 4 8  =  0 6 4  +  2 r 2 +  8 4 8  =  l l 2 4  :  1 4  ( m o d  1 1 1 ) ,

and

h(0648482rD  =  064  848  2 r2 :064  +  848  +  2 r2=  r r24 :  14  (mod  l l l ) .

To avoid such difficulties, z should be a prime approximating the number
of available memory locations devoted to file storage. For instance, if there
are 5000 memory locations available for storage of 2000 student files we could
pick m to be equal to the prime 49G9.

We have avoided mentioning the problem that arises when the hashing
function assigns the same memory location to two different files. When this
occurs, we say the there is a collision. We need a method to resolve collisions,
so that files are assigned to different memory locations. There are two kinds
of collision resolution policies. In the first kind, when a collision occurs. extra
memory locations are linked together to the first memory location. When one
wishes to access a file where this collision resolution policy has been used, it is
necessary to first evaluate the hashing function for the particular key involved.
Then the list linked to this memory location is searched.

The second kind of collision resolution policy is to look for an open memory
location when an occupied location is assigned to a file. Various suggestions,
such as the following technique have been made for accomplishing this.

Starting with our original hashing function ho(k): h(k), we define a
sequence of memory locations ft1(ft),h2(k),... . We first attempt to place the
fi le with key ft at location hs(k). If this location is occupied, we move to
locat ion ht(k) .  I f  th is is occupied, we move to locat ion h2&),  etc.

We can choose the sequence of functions hj(k) in various ways. The
simplest way is to let

h j ( k )  =  h ( k )  *  7  ( m o d  m ) , 0  (  f t ;  ( k )  <  m .

This places the fi le with key ft as near as possible past location h &). Note
that with this choice of h1(k), all memory locations are checked, so if there is
an open location, it wil l be found. Unfortunately, this simple choice of h1(k)
leads to diff iculties; f i les tend to cluster. We see that if kt * k2 and
h i (k ) :  h1(k )  fo r  nonnegat ive  in tegers  i  and 7 ,  then h ;q , (k ) :  h i+1 , (k2)
for k : 1,2,3,..., so that exactly the same sequence of locations are traced out
once there is a collision. This lowers the efficiency of the search for files in the
table. We would like to avoid this problem of clustering, so we choose the
function h1(k) in a different way.
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To avoid clustering, we use a technique called double hashtng. We choose,

as before,

h ( k )  = k  ( m o d m ) ,

with 0 < ft (/c) < m, where m is prime, as the hashing function. We take a

second hashing function

g ( k ) :  k  +  I  ( m o d  m - 2 ) ,

where  0  <  g (k )  <  m -  l ,  so  tha t  G(k ) ,  m)  :  l .
probing sequence

h j ( k )  -  h ( k )  +  i  s ( k )  ( m o d  z ) ,

where 0 (  f t ; (k)  < m. Since Q(k),  tn)  :  l ,  as 7 runs through the integers
0, 1,2, . . . ,  m -  1,  a l l  memory locat ions are t raced out.  The ideal  s i tuat ion
would be for m-2 to also be prime, so that the values g(ft) are distributed in
a reasonable way. Hence, we would like m-2 and m to be twin primes.

Example. In our example using social security numbers, both m : 4969, and
m-2 : 4967 are prime. Our probing sequence is

hj(k)  -  h(k)  + i  s(k)  (mod 4e6e),

w h e r e  0 <  h j  ( k ) < 4 9 6 9 ,  h ( k ) = k  ( m o d 4 9 6 9 ) ,  a n d  s ( k ) = k + l
(mod 4967).

Suppose we wish to assign memory locations to files for students with social
securitv numbers:

kt :  344 401 659 k6 :  3J2 500 191
kz:  325 510 778 k7 :  034 367 980
kt:2t2 228 844 ks : 546 332 t90
kq: 329 938 t57 ks : 509 496 993
ks :047  900  l5 l  k rc :  132  489  973 .

Since kt = 269, kz = 1526, and k3 : 2854 (mod 496r, we assign the first
three files to locations 269, 1526, and 2854, respectively. Since kq =
1526 (mod 4969), but location 1526 is taken, we compute h1 (k) = h(k) +
S(k) : 1526 + 216 : 1742 (mod 4969, since S(k) : I + kq =
216 (mod 496D. Since location 1742 is free, we assign the fourth file to this
location. The fifth, six, seventh, and eighth files go into the available locations
3960, 4075,2376, and 578, respectively, because ks = 3960, ko = 4075,
k.t = 2376, and frs - 578 (mod 4969). We find that ks = 578 (mod 496il:

We take as a
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because loca t ion  578 is  occup ied ,  we compute  h1(kq)  +  s&) :57g +  2002
: 2580 (mod 4969), where S(k) : I * ks = 2002 (mod 4g6D. Hence, we
assign the ninth fi le to the free location 2580. Finally, we find that kro E
1526 (mod 4967),  but  locat ion 1526 is taken. we compute hr (krd = h(Lrc)
+  g(k ,o )  :  1526 +  216:  1742 (mod 496r ,  because S: ( /c ro )  : '  k rc :  216
(mod 4967), but location 1742 is taken. Hence, we continue by finding
h 2 ( k r c ) _  h ( k r c )  +  2 g ( k d :  l 9 5 g  ( m o d  4 9 6 q i )  a n d  i n  t h i s  a v a i l a b l e
location, we place the tenth fi le.

Table 4.1 l ists the assignments for the fi les of students by their social
security numbers. [n the table, the fi le locations are shown in boldface.

344 40r 659
325 510 778
2r2 228 844
329 938 ts7
047  900  l5 l
372  500  l9 l
034 367 980
546 332 r90
509 496 993
t32 489 973

269
r526
2854
1526
3960
4075
2376
s78
578
r526

1742

2580
t 7  4 2 1958

We
Hence,

( 4 . 1 )

and

(4.2)

Table 4.1. Hashing Function for Student Fi les.

wish to find conditions where double hashing leads to clustering.
we find conditions when

h i ( k )  :  h 1 ( k 2 )

h i + t ( k 1 ) :  h i + r ( k ) ,

so that the two consecutive terms of two probe sequences agree. If both (+.t)
and @.D occur, then

h ( k )  +  i g ( k 1 )  =  h ( k )  +  j g ( k 2 )  ( m o d  z )

Social Security
Number h  1 ( k ) h 2 ( k )
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and

h ( k ) + ( t + l ) g ( k r )

Subtracting the first of these two

=  h & )  +  ( j  +  r ) g ( k )  ( m o d  z ) .

congruences from the second, we obtain

:  g(k2) (mod rn ) ,g ( k )

so that

k r  =  kz  (mod m-2) '

Since S(k) : g(k), we can substitute this into the first congruence to obtain

h ( k )  :  h ( k z )  ( m o d  r n  ) ,

which shows that

k r  =  k 2  ( m o d  m ) .

Consequently, since (m-2, m) : 1, Theorem 3.6 tells us that

k t  =  k 2  ( m o d  m ( m - D ) .

Therefore, the only way that two probing sequences can agree for two

consecutive terms is if the two keys involved, k1 and k2,lre congruent modulo

m(m-Z). Hence, clustering is extremely rare. Indeed, rf m(m-z) > k for

all keys k, clustering wil l never occur.

4.4 Problems

l. A parking lot has l0l parking places. A total of 500 parking stickers are sold

and only 50-75 vehicles are expected to be parked at a time. Set up a hashing

function and collision resolution policy for assigning parking places based on

license plates displaying six-digit numbers.

2. Assign memory locations for students in your class, using as keys the day of the

month of birthdays of students with hashing function hG) = K (mod l9),

a) with probing sequence h1(K) - h(K) + 7 (mod l9).

b)  w i th  prob ing sequence h jK)  =  h(K)  +  i ' s ( r<) ,0  (  . l  (  16,  where
g ( r ) :  I  + K ( m o d  l 7 ) .

3. Let the hashing function be ft(rK) = K(mod rn ),  with 0 < ft( f)  < m, andlet

the probing sequence for collision resolution be lr; (f ) = h K) + jq (mod m) ,
0  (  f t ; ( f )  <  m,  for  j  :1 ,2 , . . . ,  m-1.  Show that  a l l  memory locat ions are
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probed

a) i f  ln is prime and I (  q ( m -1.

b) i f  m :2'  and q is odd.

4. A probing sequence for resolving collisions where the hashing function is
h&) = K(mod z), 0 < l ,  (K) < m, is given by nifn = hG)
+ jQh ( f )  +  1)  (mod m),  O < l i j (K)  <  m.

il Show that if z is prime, then all memory sequences are probed.

b) Determine conditions for clustering to occur, i.e., when hj(K) : h1(K) and
hi*,(K) :  hi+,(K) for r :  I ,2,. . .

5. Using the hashing function and probing sequence of the example in the text, find
open memory locations for the files of students with social security numbers:
k r r :  137612044 ,k12  :  505576452 ,  kn :  157170996 ,  k ro :  131220418 .  ( eaa
these to the ten files already stored.)

4.4 Computer Projects

Write programs to assign memory locations to student files, using the hashing
function h(k) = ft(modl02l),  0 < l ,(k) < l}2l,  where the keys 

"r.  
the social

security numbers of students.

l. Linking files together when collisions occur.

2 .  Us ing h j (D = h(k)  *  7  (mod l02 l ) ,  - /  :  0 ,  1 ,2 , . . .  as  the prob ing sequence.

3 .  U s i n g  h j ( k )  =  h ( k \  +  j ' S & ) ,  j : 0 ,  1 , 2 , . . .  w h e r e  g ( k )  :  |  +  k  ( m o d  l 0 l 9 )
as the probing sequence.
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5.1 Wilson's Theorem and Fermat's Little Theorem

In this section, we discuss two important congruences that are often useful

in number theory. We first discuss a congruence for factorials called Wilson's

theorem.

Wilson's Theorem. If p is prime, then (p-t)t = -t (mod p).

The first proof of Wilson's Theorem was given by the French mathematician

Joseph Lagrange in 1770. The mathematician after whom the theorem is

named, John Wilson, conjectured, but did not prove it. Before proving

Wilson's theorem, we use an example to i l lustrate the idea behind the proof.

Example .  Le t  p :7 .  We have (7 - l ) !  :6 !  :  l ' 2 '3 '4 '5 '6 .  We wi l l  rear range
the factors in the product, grouping together pairs of inverses modulo 7. We
note that 2'4 - I (mod 7) and 3'5 = I (mod 7). Hence,
6 !  :  1 .O.4 . (g .S) .6=  1 .6  =  - l  (mod 7) .  Thus ,  we have ver i f ied  a  spec ia l
case of Wilson's theorem.

We now use the technique il lustrated in the example to prove Wilson's
theorem.

Proof.  When p:2,  we have Q-l) t  = t  :  - l  (mod 2).  Hence, the theorem
is true for p:2. Now, let p be a prime greater than 2. Using Theorem 3.7,
fo r  each in teger  a  w i th  I  (  a  {  p - I ,  there  is  an  inverse  t ,  I  <  a  4  p -1 ,
wi th aa: 1 (modp).  From Proposi t ion 3.4,  the only posi t ive integers less
than p that are their own inverses are I and p-1. Therefore, we can group

l4'I
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the integers from 2 to p-2 into Q4)/2 pairs of integers, with the product of
each pair congruent to I modulo p. Hence, we have

2 . 3  Q - ) . Q - D  =  r  ( m o d  p ) .

We conclude the proof by multiplying both sides of the above congruence by I
and p-l to obtain

b -1 ) !  : 1 . 2 .3 '  .Q -3 )b -Db - l )  =  t . ( p - r )  =  - r  (modp ) .  t r

An interesting observation is that the converse of Wilson's theorem is also
true, as the following theorem shows.

Theorem 5.1.  I f  n is a posi t ive integer such that h- l ) t  = - l  (mod n),  then
n is prime.

Proof. Assume that n is a composite integer and that (n-l)! = -l (mod n).
since n is composite, we have n:ob, where | 1 a I n and | < b 1 n.
Since a 1n, we know that a I  h- l ) ! ,  because a is one of  the n- l  numbers
mult ip l ied together to form (n- l ) ! .  Since h- l ) t  = - l  (mod n),  i t  fo l lows
that n I  t ( r - l ) !  + l l .  This means, by the use of  Proposi t ion 1.3,  that  a also
div ides h- l ) t  + t .  From Proposi t ion 1.4,  s ince a |  (n-Dl  and
a l [ h - l ) !  + l l ,  w e c o n c l u d e  t h a t a l t ( : n - l ) !  +  I  ] -  ( n - l ) !  :  l .  T h i s  i s
an obvious contradiction, since a ) l. tr

We il lustrate the use of this result with an example.

Example. Since (6-l)! : 5! : 120 = 0 (mod 6) ,
obvious fact that 6 is not prime.

As we can see, the converse of Wilson's theorem
To decide whether an integer n is prime,
h- l ) !  :  -1 (mod n ) .  Unfortunately,  th is is an
n - 1 multiplications modulo n are needed to
O h (log2n)z) bit operations.

When working with congruences involving exponents, the following theorem
is of great importance.

Fermat's Little Theorem.
then aP-t = I (mod p).

C , ( P S 6 ' " , " 1  , )
Proof. Con'sider 'the p - |
are divisible by p, for if p

Theorem 5.1 verif ies the

gives us a primality test.
we determine whether
impractical test because
find (rr'-l)|, requiring

If p is prime and a is a positive integer

integers a,2a, . . . ,  (p- l )a.  None of  these integers
I  ia,  then by Lemma 2.3,  p I  j ,  s ince p t r  a.  This

'(-o,r),=L

with p I a,
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is impossible because I ( 7 ( p-1. Furthermore, no two of the integers

a, 2a, . . . ,  (p-Da are congruent modulo p.  To See this,  assume that

ja = ka (mod fl. Then, from Corollary 3.1, since (a,p) : l, we have

j = k (modp). This is impossible, since 7 and k are positive integers less

t h a n p  -  I  .

Since the integers a,  2a,  . . . ,  (p- l )a are a set  of  p- l  integers al l

incongruent to zero, and no two congruent modulo p, we know that the least

positive residues of c, 2e,..., (p-l)a, taken in some order, must be the

integers 1,2,  . . . ,  p-1.  As a consequence, the product of  the integers

a,2a,. . . ,  (p- l )a is congruent modulo p to the product of  the f i rst  p- l

positive integers. Hence,

a '2a  Q- I )a  
:  l ' 2 (p-r )  (mod p) .

Therefore,

S i n c e  ( p - l ) ! ,  p )  :

a P - t ( p - l ) !  :  ( p - l ) !  ( m o d p )  .

l ,  using Corol lary 3.1,  we cancel  Q- l ) !  to obtain

aP-t  = I  (mod p).  t r

We il lustrate the ideas of the proof with an example.

Example.  Let p:7 and a:3.  Then, l '3 = 3(mod 7),  2 '3 = 6 (mod 7),

3.3 = 2 (mod 7),  4 '3 = 5 (mod 7),  5 '3 = I  (mod 7),  and 6'3 = 4 (mod 7).

Consequently,

( t . l ) .  Q. r . ( r . r ) . (+ .1) . (5 .3) . (6 .3)  =  3 .6 .2 .s .1 .4  (mod 7) ,

so tha t  36 .1 .2 .3 .4 .5 .6  =  3 .6 .2 '5 ' l ' 4  (mod 7) .  Hence,  36 '6 !
therefore. 36 = I (mod 7).

On occasion, we would like to have a congruence
theorem that holds for all integers a, given the prime p.
the following result.

= 6! (mod 7), and

like Fermat's l i tt le
This is supplied by

Theorem 5.2. If p is prime and a is a positive integer, then
e P :  a  ( m o d p ) .

Proof.  l f  p I  a,by Fermat 's l i t t le theorem we know that ap-t :  I  (modp).

Multiplying both sides of this congruence by a, we find that ap = a (mod p).
l f  p l  a , t h e n  p l a p  a s w e l l , s o t h a t  a P  = a = O  ( m o d p ) .  T h i s f i n i s h e s t h e
proof, since aP = a (mod p) it p I a and if pla. tr
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Fermat's l i tt le theorem is useful in finding the least positive residues of
powers.

Example. We can find the least positive residue of 3201 modulo I I with the
help of  Fermat 's l i t t le theorem. We know that 310: I  (mod l l ) .  Hence.
3 2 o r  :  ( 3 r o ) 2 0 .  3 =  3  ( m o d  l l )  .

A useful application of Fermat's l i tt le theorem is provided by the following
result.

Theorem 5.3. If p is prime and a is an
inverse of c modulo p.

Proof. If p tr a, then Fermat's
a'aP-2 :  sP-t  = I  (mod p).  Hence, aP-2

Example. From Theorem 5.3, we know

integer with p I a, then aP-2 is an

litt le theorem tells us that
is an inverse of a modulo p.

t h a t  2 e : 5 1 2  =  6  ( m o d  l l )  i s  a n
inverse of 2 modulo I 1.

Theorem 5.3 gives us another way to solve l inear congruences with respect
to pr ime modul i .

Corollary 5.1. lf a and b are positive integers and p is prime with p I a,
then the solutions of the l inear congruence ax = 6 (mod p) are the integers
x such that x = aP-2b (mod p).

Proof. Suppose that ax = b (mod p). Since p I a, we know from Theorem
5.2 that aP-2 is an inverse of  c (mod i l .  Mult ip ly ing both s ides of  the
original congruence by sP-z, we have

aP-2ax = aP-2b(mod p) .

Hence,

x 7 aP-2b (mod p). tr

5.1 Problems

l .  Us ing Wi lson 's
modulo 7.

2. Using Fermat's
t 1 .

theorem, find the

little theorem, find

least positive

the least positive

res idue  o f  8 ' 9 ' 10 .  I  l .  12 .  I  3

residue oP 2toooooo modulo
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4.

5 .

5.1 Wi lson's Theorem and Fermat 's Li t t le Theorem 1 5 1

Show that  31s :  I  (mod I  l2 ) .

Using Fermat's l i t t le theorem, f ind the last digit  of the base 7 expansion of 3r00.

Using Fermat's l i t t le theorem, f ind the solut ions of the l inear congruences

a)  7x = 12 (mod 17) b )  4 x = l l ( m o d l 9 ) .

6 .  Show that  i f  n  isacomposi te  in tegerwi th  n  *  4 , then h -  \ ) t  =  O (mod n) .

7 .  Show that  i f  p  is  an odd pr ime,  then 2Q -  3) !  :  - l  (modp) .

8 .  Show that  i f  n  is  odd and 3 /n ,  then n2 = |  (mod 24) .

9. Show that 42 | h' - n) for all positive integers n.

10.  Show that  i f  p  and q are d is t inc t  pr imes,  then pe- t  *  qP-r :  I  (mod pq) .

I  l .  Show that p is prime and a and b are integers such that ap = bP (mod p), then

aP  =  bP  (modp2 ) .

12. Show that i f  p is an odd prime, then 1232 (p-42(p-2)2 =

1-11b+t)/z (mod p).

1 3 .  S h o w t h a t i f  p  i s p r i m e  a n d p  = 3  ( m o d 4 ) , t h e n  { ( p - t \ l Z l l =  *  I  ( m o d p ) .

14. a) Let p be prime and suppose that r is a positive integer less then p such that
( - l ) ' r !  _  - l  (mod  p ) .  Show tha t  Q - r * l ) !  

:  - l  (mod  p ) .

b)  Us ing par t  (a) ,  show that  6 l !  =  63!  =  - l  (mod 71) .

15. Using Wilson's theorem, show that i f  p is a prime and p = I (mod 4), then the
congruence x2 

- - l  (mod p) has two incongruent solut ions given by
x E t l (p-)/zl l  (modp).

1 6 .  S h o w  t h a t  i f  p  i s  a  p r i m e  a n d  O 1 k < - p ,  t h e n  Q - k ) ! ( k - l ) !
=  ( - l ) e  (mod  p ) .

17 .  Show tha t  i f  p  i s  p r ime  and  a  i s  an  i n tege r ,  t hen  p l l ap  +  Q- l ) !  a l .

18. For which posit ive integers n is na * 4n prime?

19. Show that the pair of posit ive integers n and n * 2 are twin primes i f  and only i f
4 l (n- l ) l  +  t l  +  n  = 0  (mod n(n *  2) ) ,  where n  I  l .

2 0 .  S h o w t h a t  t h e p o s i t i v e i n t e g e r s n  a n d  n * k , w h e r e  n )  k  a n d  k  i s a n  e v e n
posit ive integer, are both prime i f  and only i f  (k!) 'z[(n-t)t  + t ]
+  n ( k !  -  l ) ( k  -  l ) !  =  0  ( m o d  n ( n  +  k ) ) .

lzo)
21.  Show that  i f  p  is  pr ime,  then l l  |  =  2  (mod p) .

l p  )

22. a) In problem 17 of Section 1.5, we showed that the binomial coeff icient 
[ ' ) ,

where I < k ( p - l ,  is divisible by p when p is prime. Use this fact and the
binomial theorem to show that i f  a and b are integers, then
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(a  + b)p = ap *  6z (mod p) .

b) Use part (a) to prove Fermat's little theorem by mathematical induction.
(Hint: In the induction step, use part (a) to obtain a congruence for fu + l)p.)

23. Using problem 16 of Section 3.3, prove Gauss' generaltzation of Wilson's
theorem, namely that the product of all the positive integers less than m that are
relatively prime to rn is congruent to I (mod z), unless ffi : 4,p,, or 2p, where
p is an odd prime and I is a positive integer, in which case, it is congruent to
-l  (mod rn ).

24. A deck of cards is shuffied by cutting the deck into two piles of 26 cards. Then,
the new deck is formed by alternating cards from the two piles, starting with the
bottom pile.

a) Show that if a card begins in the cth position in the deck, it will be in the
Dth posit ion in the new deck where b = 2c (mod 53) and I < 6 <52.

b) Determine the number of shuffies of the type described above that are
needed to return the deck of cards to its original order.

25. Let p be prime and let a be a positive integer not divisibleby p. We define the
Fermat quotient qob) by qp(a): (ap-t- l) /p. Show that i f  a and, b are
positive integers not divisible by the prime p, then
qGb)  :  

e r (a )  +  qo$ )  (mod  p ) .

26. Let p be prime and let a1,a2,.. . ,ap and b ,,b2,.. . ,b, be complete systems of residues
modulo p Show that a1bya2b2,...,aobo is not a complete system of residues
modulo p.

5.1 Computer Projects

Write programs to do the following:

l. Find all Wilson primes less than 10000. A Wilson prime is a prime p for which
(p -  l ) !  :  - l  (mod p2) .

2. Find the primes p less than 10000 for which Zp-t = I  (mod p2).

3. Solve linear congruences with prime moduli via Fermat's little theorem.

5.2 Pseudoprimes

Fermat's l i tt le theorem tells us that if n is prime and b is any integer, then
bn = b (mod n). Consequently, if we can find an integer b such that
b' + b (mod n ), then we know that n is composite.

Example. We can show 63 is not prime by observing that



5.2 Pseudopr imes 153

263 :2eo.2t : (26)ro.23 :64to23 -__ 
23 = g + 2 (mod 63).

Using Fermat's l i tt le theorem, we can show that an integer is composite. It

would be even more useful if it also provided a way to show that an integer is

prime. The ancient Chinese believed that if 2'= 2 (mod n ), then n must be

prime. Unfortunately, the converse of Fermat's little theorem is not true, as

the following example shows.

Example.  Let n -  341: 11.31. By Fermat 's l i t t le theorem, we see that 210

= I  (mod l1) ,  so that  23ao: (2t0;3+ -  t  (mod l1) .  Also 23a0: (25)68 =

(32)6s = t  (mod 3l) .  Hence, by Theorem 3.1,  we have 2340: I  (mod 341).

By multiplying both sides of this congruence by 2, we have

2341 
- 

2 (mod 341), even though 341 is not prime.

Examples such as this lead to the following definition.

Definition. Let b be a positive integer. If n is a composite positive integer

and b' = b (mod n), then n is called a pseudoprime to the base b.

Note that i f  (b,n):  1,  then the congruence bn = b (mod n) is equivalent

to the congruence bn-t :  I  (mod n ) .  To see this,  note that  by Corol lary 3.1

we can divide both sides of the first congruence by b, since (b,n) : l, to

obtain the second congruence. By Theorem 3.1, we can multiply both sides of

the second congruencs by b to obtain the first. We will often use this

equivalent condition.

Example.  The integers 341 :  I  l '31,  561 :  3 ' l  1 '17 and 645 :  3 '5 '43 are

pseudoprimes to the base 2, since it is easily verified that 2340 : I (mod 341),

256o 
-- I (mod 561). and 26aa = I (mod 645).

If there are relatively few pseudoprimes to the base b, then checking to see

whether the congruence b' = D (mod n) holds is an effective test; only a

small fraction of composite numbers pass this test. In fact, the pseudoprimes

to the base b have been shown to be much rarer than prime numbers. In
particular, there are 455052512 primes, but only 14884 pseudoprimes to the
base 2, less than 1010. Although pseudoprimes to any given base are rare,
there are, nevertheless, infinitely many pseudoprimes to any given base. We

will prove this for the base 2. The following lemma is useful in the proof.

Lemma 5.1. lf d and n are positive integers such that d divides rz, then
2d - 1 divides 2n - l.

Proof. Since d I n, there is a positive integer / with dt : n. By setting
x : 2 d  i n  t h e  i d e n t i t v  x t  -  I  -  ( x  -  1 )  ( x t - l + x t - z +  +  l ) ,  w e  f i n d



1 5 4 Some Special  Congruences

1 2 d Q - r )  +  2 d o - D a  + 2 d  + l ) .  C o n s e q u e n t l y ,t h a t  2 n - t : ( 2 d - l )
Od -  t )  |  Q '  -  D .  t r

We can now prove that there are infinitely many pseudoprimes to the base
2 .

Theorem 5.4. There are infinitely many pseudoprimes to the base 2.

Proof. We wil l show that if r is an odd pseudoprime to the base 2, then
m : 2' - I is also an odd pseudoprime to the base 2. Since we have at least
one odd pseudopr ime to the base 2,  namely f ls :341, we wi l l  be able to
construct infinitely many odd pseudoprimes to the base 2 by taking ns: 341
and n1ra1 :2n ' -  I  fo r  k  :0 ,  1 ,2 ,3 , . . . .  These odd in tegers  a re  a l l  d i f fe ren t ,
s i n c e  n o  I  n t  1  n z  1  . '  .  1 n *  (  n 1 1 1  (

To continue the proof, let n be an odd pseudoprime, so that n is composite
and 2n-t = I (mod n). Since n is composite, w€ have n : dt with
1 1 d 1 n  a n d  l < / 1 n .  w e  w i l l  s h o w  t h a t  m : 2 n - r  i s  a l s o
pseudoprime by first showing that it is composite, and then by showing that
2^- t  =  I  (mod z ) .

To see that m is composite, w€ use Lemma 5.1 to note that
Qd -  t )  |  (Z '  -  l ) :  m.  To  show tha t  2^ - t :  I  (mod re ) ,  we f i rs t  no te
tha t  s ince  2n  :2  (mod n) ,  there  is  an  in teger  k  w i th  2n  -  2 :  kn .  Hence,
2^-t  :  22'-2 :  2kn. By Lemma 5.1,  we know that
m :  (2n  -  l )  |  (2kn  -  l )  :  2^ - l  -  l .  Hence,  2m- t  -  I  :  0  (mod z ) ,  so
that 2^-t = I (mod re). We conclude that z is also a pseudoprime to the
base 2. rl

If we want to know whether an integer n is prime, and we find that
2n-t : I (mod n), we know that n is either prime or n is a pseudoprime to
the base 2. One follow-up approach is to test n with other bases. That is, we
check to see whether bn-r : I (mod n) for various positive integers 6. If we
f ind any values of  b wi th (b,n):  I  and bn-r  # |  (mod n),  then we know
that n is composite.

Example. We have seen that 341 is a pseudoprime to the base 2. Since

7 3  : 3 4 3  =  2  ( m o d  3 4 1 )

and

zto : 1024 : I (mod 341) .
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we have

73a0 -  03) t t3 l  =  2 t137 :  (210)1t .23.7
:  8 .7  = 56 # I  (mod 341) .

Hence, we see that 341 is composi te,  s ince Tzto 1l  (mod 341).

Unfortunately, there are composite integers r? that cannot be shown to be

composite using the above approach, because there are integers which are
pseudoprimes to every base, that is, there are composite integers n such that

b ' - t  =  I  (mod n) ,  fo r  a l l  b  w i th  (b ,n ) :  l .  Th is  leads  to  the  fo l low ing

definit ion.

Definit ion. A composite integer which satisfies bn-t : I (mod n) for all
positive integers b with (b,i l : I is called a Carmichael number.

Example .  The in teger  561 :3 '11 '17  is  a  Carmichae l  number .  To  see th is ,
no te  tha t  i f  (b ,  561)  :  l ,  then  (b ,3 )  :  (b , l  l )  :  (b ,17)  :  l .  Hence,  f rom
Fermat's l i tt le theorem, we have b2 = I (mod 3), 610 : I (mod I l), and
616 

- -  I  (mod 17) .  Consequent ly ,  b560:  (b2)280:  I  (mod 3) ,  bs60:  (b10)56

= I  (mod l l ) ,  and 6560:  (b l6 )35  =  I  (mod l7 ) .  There fore ,  by  Theorem

3.1 ,  b560 =  I  (mod 561)  fo r  a l l  b  w i th  (b ,n )  :  L

It has been conjectured that there are infinitely many Carmichael numbers,

but so far this has not been demonstrated. We can prove the following

thecrem, which provides conditions which produce Carmichael numbers.

Theorem 5.5.  I f  n:  Qt Qz q1, where the qi 's  are dist inct  pr imes that
satisfy Qi - 1) | (,4 - l) for all j , then n is a Carmichael number.

Proof.  Let  b be a posi t ive integer wi th (b,n) :  l .  Then (b,q1):  I  for
j  :1 ,2 , . . . , k ,  and hence,  by  Fermat 's  l i t t le  theorem,  bQt - r  

-  I  (mod Q)  fo r
j  : 1 , 2 , . . . ,  k .  S i n c e  Q i  -  l )  |  ( n  -  l )  f o r  e a c h  i n t e g e r  j  : 1 , 2 , . . . ,  k ,
there are integers.  / ;  wi th r ; (q,  -  l )  :  n -  L Hence, for  each / ,  we know
that b ' - t  :  6\Q'-r) t t ' - t  t -oO qr l .  Therefore,  by Corol lary 3.2,  we see that
bn-t : I (mod n), and we conclude that n is a Carmichael number. D

Example.  Theorem 5.5 shows that 6601 :7 '23'41 is a
because J,  23,  and 4I  are al l  pr ime, 6 :

Ql - t)  |  oooo, and 4o: (+t - t)  |  oooo.

The converse of Theorem 5.5 is also true, that is, all
are of the form Q flz Q* where the Q j 's are

Qi- l )  |  t r - l )  for  a l l  j .  We prove this fact  in Chapter

Carmichael number,
Q -  t )  |  oooo ,  22 :

Carmichael  numbers
distinct primes and
8 .
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Once the congruence bn-r : I (mod n ) has been verif ied, another possible
approach is to consider the least positive residue oS 6h-D/2 modulo r. We
note that i f  x :  6( , - t ) /2,  then x2: bn-t :  I  (mod r) .  r f  n is pr ime, by
Proposition 3.4, we know that either x = I or x = -l (mod n).
Consequently, once we have found that b"-t: I (mod n), we can check to
see wheth", 6tu-t)/2 = + I (mod n). If this congruence does not hold. then
we know that n is composite.

Example .  Le t  b :5  and le t  n :561,  the  smal les t  Carmichae l  number .  we
f ind that 5(561-t) /2:5280 = 67 (mod 561).  Hence,56l  is  composi te.

We continue developing primality tests with the following definit ions.

Definit ion. Let n be a positive integer with n-l : 2't, where s is a
nonnegative integer and / is an odd positive integer. We say that n passes
Miller's test for the base b if either bt = I (mod n) or b/' : - l (mod n)
f o r s o m e T w i t h 0 < l ( s - 1 .

We now show that if n is prime, then /, passes Miller's test for all bases D
with n I b.

Theorem 5.6. lf n is prime and b is a positive integer with n I b, then n
passes Miller's test for the base D.

Proof. Let n-l :2"/, where s is a nonnegative integer and I is an odd
p o s i t i v e  i n t e g e r .  L e t  x 1 r : 6 { J . - t ) / z ' - 6 ? : - ' t , f o r  k : 0 ,  l , 2 , . . . , s . S i n c e  n  i s
pr ime, Fermat 's l i t t le theorem tel ls us that  x0:  bn-t  :1 (mod n).  By
Proposition 3.4,, since x? : 16{n-r)/z1z: xo E I (mod n ), either
x t  i  - l  (mod n)  o r  r r  E  I  (mod n) .  I f  r r  E  I  (mod n) ,  s ince
x?,  :  x r  E  I  (mod n) ,  e i ther  xz?  - l  (mod n  )  o r  xz71 (mod ru ) .  In
general ,  i f  we have found that xs:  x l  :  x27 :  xk = I  (mod n),
with k ( s, then, since x?+t : x* 3 I (mod n), we know that either
x*+r 7 - l  (mod n) or xr+r t  1 (mod n ) .

Continuing this procedure for k : l, 2,..., s, we find that either
x*  ?  I  (mod n) ,  fo r  k  :0 ,  1 , . . . ,  s ,  o r  x t7  - l  (mod n)  fo r  some in teger  /c .
Hence, n passes Miller's test for the base b. n

If the positive integer n passes Miller's test for the base 6, then either
bt  = I  (mod n) or bvt  :  - l  (mod n) for  some 7 with 0 < j  (  s -1,  where
n -  |  :2 ' t  and r  i s  odd.

In either case, we have bn-t = I (mod n ), since bn-\ - 162tt12'-t for

J :0 ,  1 ,2 , . . . ,  s ,  so  tha t  an  in teger  n  tha t  passes  Mi l le r ' s  tes t  fo r  the  base b
is automatically a pseudoprime to the base b. With this observation, we are
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led to the following definition.

Definit ion. lf n is composite and passes Miller's test for the base 6, then we

say n is a strong pseudoprime to the base b.

Example .  Le t  n  :2047 :23 '89 .  Then 220a6 : ' (21r )186:  (ZO+A)186 :  1
(mod 204D, so that 2047 is a pseudoprime to the base 2. Since 22046/2 :

2to23 : (2t l)e3 : (zo+g)e3 : I (mod 2047), 2047 passes Miller's test for

the base 2. Hence, 2047 is a strong pseudoprime to the base 2.

Although strong pseudoprimes are exceedingly rare, there are still infinitely
many of them. We demonstrate this for the base 2 with the following
theorem.

Theorem 5.7. There are infinitely many strong pseudoprimes to the base 2.

Proof. We shall show that if n is a pseudoprime to the base 2, then
N :2 ' - l  is  a strong pseudopr ime to the base 2.

Let n be an odd integer which is a pseudoprime to the base 2. Hence, n is
composite, and Zn-r : I (mod n). From this congruence, we see that
2'-r -l : nk for some integer k; furthermore, k must be odd. We have

,Af -  I  :  2n-2 :  2(2n-r- l )  :  Ztnk;

this is the factorization of /V-l into an odd integer and a power of 2.

We now note that

2?v-r)/2 :2nk : (Zn)k = I (mod /V)

b e c a u s e  2 n : ( z n - t )  +  t : I { *  I  =  I  ( m o d , n { ) .  T h i s d e m o n s t r a t e s t h a t N
passes Miller's test.

In the proof of Theorem 5.4, we showed that if n is composite, then
N : 2'-l also is composite. Hence, N passes Miller's Test and is
composite, so that N is a strong pseudoprime to the base 2. Since every
pseudoprime n to the base 2 yields a strong pseudoprime 2n-1 to the base 2
and since there are infinitely many pseudoprimes to the base 2, we conclude
that there are infinitely many strong pseudoprimes to the base 2. tr

The following observations are useful in combination with Miller's test for
checking the primality of relatively small integers. The smallest odd strong
pseudoprime to the base 2 is 2047, so that if n 1 2047, r is odd, and n passes
Miller's test to the base 2, then n is prime. Likewise, 1373653 is the smallest
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odd strong pseudoprime to both the bases 2 and 3, giving us a primality test
for integers less than 1373653. The smallest odd strong pseudoprime to the
bases 2,3, and 5 is 25326001, and the smallest odd strong pseudoprime to all
the  bases  2 ,3 ,5 ,  and 7  is  3215031751.  A lso ,  less  than 25 .10e,  the  on ly  odd
in teger  wh ich  is  a  pseudopr ime to  a l l  the  bases  2 ,3 ,5 ,  and 7  is  3251031751.
This leads us to a primality test for integers less than 25.10e. An odd integer
n is pr ime i f  n < 25'10e, n passes Mi l ler 's test  for  the bases 2,3,5,  and 7,
a n d  n  I  3 2 1 5 0 3 1 7 5 1 .

There is no analogy of a Carmichael number for strong pseudoprimes. This
is a consequence of the following theorem.

Theorem 5.8. If n is an odd composite positive integer, then r passes Miller's
test  for  at  most Q-l) /4 bases b wi th I  < b (  n -  l .

We prove Theorem 5.8 in Chapter 8. Note that Theorem 5.8 tells us that if
t? passes Miller's tests for more than (n-l)/4 bases less than n, then n must
be prime. However, this is a rather lengthy way, worse than performing trial
divisions, to show that a positive integer n is prime. Miller's test does give an
interesting and quick way of showing an integer n is "probably prime". To see
this, take at random an integer b with I < D ( n - I (we wil l see how to
make this "random" choice in Chapter 8). From Theorem 5.8, we see that if n
is composite the probability that r? passes Miller's test for the base b is less
than I/4. If we pick k different bases less than n and perform Miller's tests
for each of these bases we are led to the following result.

Rabin's Probabilistic Primality Test. Let n be a positive integer. Pick k
different positive integers less than n and perform Miller's test on n for each
of these bases. If n is composite the probability that n passes all k tests is
l e s s  t h a n  0 / 4 k .

Let n be a composite positive integer. Using Rabin's probabil istic primality
test, if we pick 100 different integers at random between I and n and, perform
Miller's test for each of these 100 bases, then the probabil ity than n passes all
the tests is less than 10-60, an extremely small number. In fact, it may be
more l ikely that a computer error was made than that a composite integer
passes all the 100 tests. Using Rabin's primality test does not definitely prove
that an integer n that passes all 100 tests is prime, but does give extremely
strong, indeed almost overwhelming, evidence that the integer is prime.

There is a famous conjecture in analytic number theory called the
generalized Riemann hypothesis. A consequence of this hypothesis is the
following conjecture.
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Conjecture 5.1. For every composite positive integer n, there is a base b with

b < 70 (log2n)2, such that n fails Miller's test for the base b.

If this conjecture is true, as many number theorists believe, the following

result provides a rapid primality test.

Proposition 5.1. If the generalized Riemann hypothesis is valid, then there is

an algorithm to determine whether a positive integer n is prime using
O ((log2n)5) Uit operations.

Proof. Let b be a positive integer less than n. To perform Miller's test for

the base b on n takes O (logzn)3) bit operations, because this test requires
that we perform no more than log2n modular exponentiations, each using

O(logzb)2) Ult operations. Assume that the generalized Riemann hypothesis
is true. lf n is composite, then by Conjective 5.1, there is a base 6 with

| < b < 70 (log2n)2 such that n fails Miller's test for b. To discover this b
requires less than O(log2n)3)'O((togzn)z) : O((log2n)5) Uit operations, by
Proposition 1.7. Hence, after performing O((log2n)s) bit operations, we can
determine whether n is composite or prime. I

The important point about Rabin's probabil istic primality test and
Proposition 5.1 is that both results indicate that it is possible to check an
integer n for  pr imal i ty using only O(( log2n)f t )  b i t  operat ions,  where k is a
positive integer. This contrasts strongly with the problem of factoring. We
have seen that the best algorithm known for factoring an integer requires a
number of bit operations exponential in the square root of the logarithm of the
number of bits in the integer being factored, while primality testing seems to
require only a number of bit operations less than a polynomial in the number
bits of the integer tested. We capitalize on this difference by presenting a
recently invented cipher system in Chapter 7.

5.2 Problems

Show that 9l is a pseudoprime to the base 3.

Show that 45 is a pseudoprime to the bases 17 and 19.

Show that the even integer n : 161038 :2'73' l  103 satisf ies the congruence
2n = 2 (mod n). The integer 161038 is the smallest even pseudoprime to the
base 2.

Show that every odd composite integer is a pseudoprime to both the base I and
the  base  -1 .

Show that if n is an odd composite integer and n is a pseudoprime to the base a,
then n is a pseudoprime to the base n - a.

l .

2 .

3 .

4 .

5 .
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6 ,  S h o w t h a t i f  n : ( a z p  - - l ) / G 2  - l ) , w h e r e a  i s a n i n t e g e r ,  a  )  l , a n d p  i s a n
odd prime not dividing a(a2 - l) ,  then n is a pseudoprime to the base a.
Conclude that there are infinitely many pseudoprimes to any base a. (Hint: To
establish that ao-t = I (mod n), show that 2p | (, - 1), and demonstrate that
a2P  :2  (mod  n ) . )

7. Show that every composite Fermat number F^ : 22' + I is a pseudoprime to the
base 2.

8. Show that if p is prime and the Mersenne number Mo : 2P - I is composite,
then Mo is a pseudoprime to the base 2.

Show that if z is a pseudoprime to the bases a and b, then n is also a
pseudoprime to the base aD.

Show that if n is a pseudoprime to the base a, then n is a pseudoprime to the
base a-, where d' is an inverse of a modulo n.

a) Show that if n is a pseudoprime to the base c, but not a pseudoprime to the
base 6, then n is not a pseudoprime to the base aD .

b) Show that if there is an integer b with (b,n) : I such that n is not a
pseudoprime to the base D, then n is a pseudoprime to less than or equal 6 Ah)
dif ferent bases a with I  (  a ( n. (Hint: Show that the sets c t ,  o2,.. . ,  a, and
ba1,ba2,.. . ,  ba, have no common elements, where ot, o2, . . . ,  ar are the bases less
than n to which n is a pseudoprime.)

12. Show that 25 is a strong pseudoprime to the base 7.

13. Show that 1387 is a pseudoprime, but not a strong pseudoprime to the base 2.

14. Show that 1373653 is a strong pseudoprime to both bases 2 and,3.

15. Show that25326001 is a strong pseudoprime to bases 2,3, and 5.

Show that the following integers are Carmichael numbers

i l  2821 :7 '13 '31

b)  10585 :  5 .29 '73

c) 29341 :  l3 '37'61

d)  314821 :  13 .6r .397

e) 27845 : 5'17'29.113

f )  1 7 2 0 8 1  : 7 - 1 3 . 3 1 . 6 1

g) 564651361 : 43.3361.3907.

Find a Carmichael number of the form7.23.q where g is an odd prime.

a) Show that every integer of  the form (6m+l)( l2m+l)( tg,n +t) ,  where m isa
posi t ive integer such that 6m*l , l2ml l ,  and l8m*l  are al l  pr imes, is a
Carmichael number.

1 6 .

1 7 .

1 8 .
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b) Conclude from part (a)
:  2 t  1 . 4 2 1 . 6 3 1 .  I 1 8 9 0 1 5 2 1
Carmichael numbers.

19. Show that i f  n is a posit ive
O ((logzn)2) bit operations.

1 6 1

that 1729 -  7 '13' l  9,  294409 :  37'73'  109, 55164051
:  271 '541 '81 l .  and 72947529 -  307 '613 '919 are

with n = 3 (mod 4), then Mil ler 's test takes

5.2 Computer Projects

Write programs to do the following:

I . Given a positive integer n, determine whether n satisfies the congruence

bn-t = I (mod n) where b is a positive integer less than n; if it does, then n is
either a prime or a pseudoprime to the base D.

2. Given a positive integer integer n, determine whether n passes Miller's test to the
base b; if it does then n is either prime or a strong pseudoprime to the base b.

3. Perform a primality test for integers less than 25'l0e based on Miller's tests for
the bases 2,3,5, and 7. (Use the remarks that fol low Theorem 5.7.)

4. Perform Rabin's probabilistic primality test.

5. Find Carmichael numbers.

5.3 Euler's Theorem

Fermat's l i tt le theorem tells us how to work with certain congruences
involving exponents when the modulus is a prime. How do we work with the
corresponding congruences modulo a composite integer? For this purpose, we
first define a special counting function.

Definition. Let n be a positive integer. The Euler phi-function Qh) is
defined to be the number of positive integers not exceeding n which are
relatively prime to n.

In Tabte 5.1 we display the values of  @(n) for  I  (  r  (  12.  The values of
d(,n) for I ( n < 100 are given in Table 2 of the Appendix.

Table 5.1. The Values of Euler 's Phi-function for I  (  n < 12.

n 2 3 4 5 6 7 8 9 l 0 il I2

6h ) I 2 2 4 2 6 4 6 4 l 0 4
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In Chapter 6,  we study the Euler phi- funct ion fur ther.  In th is sect ion,  we
use the phi-function to give an analogue of Fermat's l i tt le theorem for
composite moduli. To do this, we need to lay some groundwork.

Definit ion. A reduced residue system modulo n is a set of Ofu) integers
such that each element of the set is relatively prime to n, and no two different
elements of the set are congruent modulo n.

Example .  The se t  1 ,3 ,5 ,7  i s  a  reduced res idue sys tem modu lo  8 .  The se t
- 3 ,  - 1 ,  l ,  3  i s  a l s o  s u c h  a  s e t .

we wil l need the following theorem about reduced residue systems.

Theorem 5.9.  l f  r1,r2, . . . ,  t6G) is a reduced residue system modulo n,  and i f
a is a posi t ive integer wi th (a, f l )  :  l ,  then the set et1,  et2,  . . . ,  ot6h) is also a
reduced residue system modulo r.

Proof. To show that each integer ari is relatively prime to n, we assume that
(ar1,n) )  l .  Then, there is a pr ime div isor p of  (ar i ,n) .  Hence, ei ther
p I  a or p I  11.  Thus, we ei ther have p I  a and p I  n, 'o,  p I  r i  and p I  n.
However, we cannot have both p I r; and p I n, since r; is a member of a
reduced residue modulo n, and both p I a and p I n cannot hold since
(a,n): l. Hence, we can conclude that ar1 and n are relatively prime for
j  :  l ,  2 ,  . . ' ,  Q h )  .

To demonstrate that no two ari 's are congruent modulo n, we assume that
ar j = ar1, (mod n), where j and k are distinct positive integers with
1 <  j  ( d ( n )  a n d  I  <  k  ( d ( n ) .  S i n c e  ( a , n ) : l , b y C o r o l l a r y 3 . l  w e s e e
that r; : rk (mod n). This is a contradiction, since r7 and r,1 coffie from the
original set of reduced residues modulo r?, so that ri # rr (mod n). tr

We il lustrate the use of Theorem 5.9 by the following example.

Example.  The set 1,3,5,7 is a reduced residue system modulo 8.  Since
( 3 , 8 )  :  l ,  f r o m  T h e o r e m  5 . 9 ,  t h e  s e t  3 ' l  : 3 , 3 ' 3  : 9 ,  3 . 5 :  1 5 ,  3 ' 7  : 2 1  i s
also a reduced residue system modulo 8.

We now state E,uler's theorem.

Euler's Theorem. If m is a positive integer and
(a,m) :  l ,  then sotu) = I  (mod rn ) .

Before we prove Euler's theorem, we il lustrate the
with an example.

a is an integer with

idea behind the proof
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Example. We know that both
reduced residue systems modulo

residues modulo 8. Therefore,

(3 .  l ) .  (3 .3 ) .  (3 .s ) .  (3 .7 ):  l '3 '5 '7  (mod 8) ,

l '3 '5'7 (mod 8).3 4 ' l ' 3 ' 5 ' 7  =

8) :  l ,  we conclude that

3+ _ 3d(a) :  I  (mod g).

We now use the ideas i l lustrated by this example to prove Euler's theorem.

Proof. Let rr,rZ, ..., ro(^) denote the reduced residue system made up of the

positive integers not exceeding m that are relatively prime to m. By Theorem

5.9 ,  s ince  (a ,m)  :  l ,  the  se t  Qt1 ,  a ty , . . . ,  a r6 (m)  i s  a lso  a  reduced res idue

system modulo lz.  Hence, the least  posi t ive residues of  ar1,  Qr2,. . . ,  or6(m)

must be the integers 11, 12,. . . ,  r6(m) in some order.  Consequent ly,  i f  we

multiply together all terms in each of these reduced residue systems, we obtain

16(^)  (mod la)  .

r  o(m) (mod z ) .

Since (rg2 ra(^) ,  m) :  l ,  f rom Corol lary 3.1,  we can conclude that

oo(m)  =  I  (mod m) .  D

We can use Euler's Theorem to find inverses modulo m. lf a and m are

relatively prime, we know that

s ' t6(m)-t  :  44(m) -  1 (mod rn ) .

Hence, o6(m)-t  is  an inverse of  a modulo m.

Example. We know that 20@-t - 26-t : 25 : 32:5 (mod 9) is an inverse
of 2 modulo 9.

We can solve l inear congruences using this observation. To solve
ax j  D (mod z ) ,  where (a ,m) :  I  ,  we mult ip ly both s ides of  th is

t h e  s e t s  l ,  3 ,  5 ,  7  a n d  3 ' 1 ,  3 ' 3 ,  3 ' 5 , 3 ' 7  a r e

8. Hence, they have the same least positive

Thus,

ar pr2

a6(^ )  r  {z

aryfu't -- r| rz

'  r6 (m)  j  r (z
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congruence by aah)- l  to obtain

oo(m)-t  o*

Therefore, the Solutions
y  :  o f (m) - tb  (mod m) .

Example. The solutions
x = 3d(10)-1.7 -  

33.J :9 (mod

Some Special  Congruences

- :  qQ(m)- tb  (mod m) .

are those integers

of 3x = 7 (mod l0)
l 0 ) ,  s i n c e  d ( I 0 )  :  4 .

such that

are given by

5.3

l .

Problems

Find a reduced residue system modulo

a ) 6
b )e
c )  l o

d )  t 4
e )  1 6
f)  17.

2.

3 .

4 .

Find a reduced residue system modulo 2^ , where m is a positive integer.

Show if  c t ,  c2, . . . ,  c6(m) is a reduced residue system modulo m , then
c 1 *  c 2 *  *  , o h ) :  0  ( m o d  l n ) .

Show that if m is a positive integer and a is an integer relatively prime to m,
then I  I  a  *  a2 *  I  o fh) - t  =  0  (mod m).

Use Euler's theorem to find the least positive residue o1 3100000 modulo 35.

Show that i f  a is an integer, then a7 = a (mod 63).

Show that i f  a is an integer relat ively prime to 32760, then
a t 2 = l ( m o d 3 2 7 6 C D .

Show that cd(b) I 6ab) : I (mod ab), if a and b are relatively prime positive
integers.

Solve the following linear congruences using Euler's theorem

il 5x = 3 (mod 14)

b) 4x = 7 (mod 15)

c)  3x = 5  (mod 16) .

Show that the solutions to the simultaneous system of congruences

5 .

6 .

7 .

8 .

9 .

1 0 .
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x i  ar (mod rn r)
* 

= 
o, (mod mz)

x ? a, (mod m),

where the mi are pairwise relatively prime, are given by

x j  a ,u l ' ^ )  +  a2M!@) a + a ,M! t^ ' )  (mod u) '

w h e r e  M  :  m 1  m 2  m ,  a n d  M j :  M / m i  f o r T :  1 , 2 , . . . , r .

I  l .  Using Euler 's theorem, f ind

a) the last digit  in the decimal expansion o1 7t000

b) the last digit  in the hexadecimal expansion oP 51100$000.

12.  F ind @(n)  for  the in tegers  n  wi th  13 (  n  <  20.

13. a) Show every posit ive integer relat ively prime to l0 divides inf initely many
repunits (see problem 5 of Section 4.1). (Hint: Note that the n -digit  repunit
l i l  . . .  l l  :  ( t o ' - t ) / q . )

b) Show every posit ive integer relat ively prime to b divides inf initely many base
b repunits (see problem 6 of Section 4.1).

14. Show that i f  m isa posit ive integer, m ) 1, then o^ = am-6(m) (mod rn ) for al l
posit ive integers a.

5.3 Computer Projects

Write programs to do the fol lowing:

l .  Solve l inear congruences using Euler 's theorem.

2. Find the solut ions of a system of l inear congruences using Euler 's theorem and
the Chinese remainder theorem (see problem l0).



Multiplicative Functions

6.1 The Euler Phi-function

In this chapter we study the Euler phi-function and other functions with
similar properties. First, we present some definitions.

Definition. An arithmetic function is a function that is defined for all positive
integers.

Throughout this chapter, we are interested in arithmetic functions that have
a special property.

Definition. An arithmetic function f is called multiplicative if

f fun) : f (m)f fu) whenever m and n are relatively prime positive integers.

Example. The function f h) : I for all n is multiplicative because

f ( m n ) : 1 ,  f ( m ) : 1 ,  a n d  f ( n ) : 1 ,  s o  t h a t  f h n ) : f ( m ) f h ) .
Similarly, the function g(n) : n is multiplicative, since
g ( m n )  : m n  :  g ( m ) e f u ) .  N o t i c e  t h a t  f f u n )  : 1 ( m ) f h )  a n d
g(mn):  g(m)Sh) for  a l l  pairs of  integers m and n,  whether or not
(m,n) : l. Multiplicative functions with this property are called completely
mult ip licative functions.

If / is a multiplicative function, then we can find a simple formula for f fu)
given the prime-power factorization of n.

Theorem 6.1.  I f  /  is  a mult ip l icat ive funct ion and i f  n:  p i 'p i ,  . . .  p i ' i t

1 6 6
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the prime-power factorization of the

f tu): f Qi)f Qi) " "f Qi).

Proof. Since f is multiplicative and Qi',pi' ' ' ' p!) : l, we see that

f  tu)  :  f  b i 'p i '  " 'p : )  :  f  Qi ' '  Q? " 'p i ) ) :  f  Qi ) - f  Qi 'p \ '  " 'p : ' ) .
Since  b i '  ,  p \ ' " '  p ! ' ) : 1 ,  we  know tha t  f  b i '  p \ ' " '  p ! ' ) :  f  b i ' )

- f  Qi ' . . .  p l ' ) ,  ro that f (n):  - f  Qi ' )  f  Qi)  f  Qi '  p:) .  cont inuing

in this way, we find that f h) : f Qi) f bi) .f (p\')

We now return to the Euler phi'function. First, we
primes and then at prime powers.

f Q?) a
consider its values at

Theorem 6.2. If p is prime. then 0b) : p - l. Conversely, if p is a

positive integer with d(p) - p - l, thenp is prime.

Proof. If p is prime then every positive integer less than p is relatively prime

to p. Since there are p - I such integers, we have QQ) : p - l.

Conversely, i f  p is composi te,  thenp has a div isor d wi th |  < d 1p,and,

of course, p and d are not relatively prime. Since we know that at least one

of the p - | integers | ,2, ..., p - l, namely d, is not relatively prime to p,

d 0 )  (  p - 2 .  H e n c e , i f  0 Q ) : p  -  l , t h e n p  m u s t b e p r i m e .  t r

We now find the value of the phi-function at prime powers.

Theorem 6.3. Let p be a prime and a a positive integer. Then

6e\ :po-po- t .  =  f  
o - ' fp_D

' zZ\
Proof. The positive integers'less-than po that are not relatively prime to p are

those integers not exceeding po that are divisible by p. There are exactly po-l

such integers, so there are po - po-r integers less than po that are relatively
pr ime to po. Hence, 6b")  :  po -  Po-r .  n

Example. Using Theorem 6.3, we find that d(53) : 53 - 52 : 100,

O ( z t } )  : 2 t 0  -  2 e  : 5 1 2 ,  a n d  d ( t t 2 )  :  1 1 2  -  1 1  :  1 1 0 .

To find a formula for @(n), given the prime factorization of n, we must
show that d is multiplicative. We illustrate the idea behind the proof with the
following example.

Example .  Le t  m:4  and n :9 ,  so  tha t  mn:36.  We l i s t  the  in tegers  f rom
I to 36 in a rectangular chart, as shown in Figure 6.1.

positive integer n, then
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Now suppose r
( m , r ) : d ) 1 .

since anv element

Multiplicative Functions

OOe@@2,@@33

,O@,5@@27@@

221 8t 4l 0

32282420l 6t2

34

36

Figure 6.1.

Neither the second nor fourth row contains integers relatively prime to 36,
since each element in these rows is not relatively prime to 4, and hence not
relatively prime to 36, We enclose the other two rows; each element of these
rows is relatively prime to 4. Within each of these rows, there arc 6 integers
relatively prime to 9. We circle these; they are the 12 integers in the list
relatively prime to 36. Hence OGO : 2.6 - OU)O(il.

We now state and prove the theorem that shows that @ is multiplicative.

Theorem 6.4. Let m and n be relatively prime positive integers. Then
Qfun)  :  Q(m) th) .

Proof. We display the positive integers not exceeding mn in the following
way.

I  m * l  2 m * l  . . .  6 - l ) m * l

2  m * 2  2 m * 2  h - l ) m * 2

3  m * 3  2 m * 3  h - I ) m * 3

2m 3m

not exceeding m. Suppose
row is relatively prime to mn,

km * r, where k is an integer

l s a
Then no
of this

posltlve lnteger
number in the rth

row is of the form



6.1 The Euler PhFfunction 169

with I < t < n - l, and d | &m*r), since d | * and d I r.

Consequently, to find those integers in the display that are relatively prime
to mn, we need to look at the rth row only if (m,r) : l . If fuI) :1 and
I ( r ( m, we must determine how many integers in this row are relatively
prime to mn. The elements in this row are r , m * r ,
2m * r,..., h-l)m * r. Since (r,m) : l, each of these integers is
relatively prime to m. By Theorem 3.4, the n integers in the rth row form a
complete system of residues modulo r. Hence, exactly Qh) of these integers
are relatively prime to n. Since these d(n) integers are also relatively prime
to m, they are relatively prime to mn.

Since there are S(m) rows, each containing d(n) integers relatively prime
to mn, we can conclude thal Q(mn) : O(m)efu). tr

Combining Theorems 6.3 and 6.4, we derive the following formula for 0Q).

Theorem 6.5. Let n : por'pi' . . . pir' be the prime-power factorization of
the positive integer n. Then

6h) :n0- l t t r -  l )  t r - . ! l  .
Pr  Pz  Pt

Proof. Since @ is multiplicative, Theorem 6.1 tells us that if the prime-power

factorization of n is n : pl,pl, pf,,, th"n

0h) : o?i)obi,) oht') .
In addition, from Theorem 6.3 we know that

Obi') - pf' - p?-t : p;,(l - +)Pi

forT : 1,2,.. . ,k. Hence,

Qh) :  pi 'T -  L)r i , ( l  -  I )
P r  P z

pi,'o - t )
P*

pi:o- 
f t t -  

Lt ( r - ! )
P*

:  n (L  -  I l ( l  -  ! )
P r  Pz

This is the desired formula for d(n). D

( l - I ) .
Pr,
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we illustrate the use of rheorem 6.5 with the following example.

Example. Using Theorem 6.5, we note that

d(roo) : o(22s2): loo(l - il(l 
- 

+) 
: 4o .

and

0020 : o(2432s) : t2oe - ilrr 
- 

|l tr -

We now introduce a type of summation notation which

l .

= ) - 1 9 2 .)

is useful in working
with multiplicative functions.

Let f be an arithmetic function. Then

2, f (d)
d l n

represents the sum of the values of f at all the positive divisors of n.

Example. If / is an arithmetic function, then

> f U) : f (r) + f Q) + f 0) + f U) + f (O + f 0D .
d l t 2

For instance.

>  d2 :  12  +  22  +  32  +  42  +  62  +  122
d l t 2  

: l *  4 + g + 1 6 + 3 6 +  1 4 4 : Z l O .

The following result, which states that n is the sum of the values of the
phi-function at all the positive divisors of n, will also be useful in the sequel.

Theorem 6.6. Let n be a positive integer. Then

2A@l :n '
d l n

Proof. We split the set of integers from I to n into classes. Put the integer m
into the class Ca if the greatest common divisor of m and n is d. We see that
m is in C4, i .e.  (m,n) :  d, i f  and only i f  fu/d,n/d) :  l .  Hence, the number
of integers in Ca is the number of positive integers not exceedingn/d that are
relatively prime to the integer n/d. From this observation, we see that there
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are gh/d) integers in C1. Since we divided the integers I to n into disjoint

classes and each integer is in exactly one class, n is the sum of the numbers of

elements in the different classes. Consequently, we see that

As d runs through the positive integers that divide n, nfd also runs through

these divisors, so that

This proves the theorem. tr

Example. We illustrate the proof of Theorem 6.6 when n : 18. The integers
from I to 18 can be split into classes C4 where d I 18 such that the class C7

contains those integers m with (m,18) : d . We have

c 1  :  { 1 ,  5 , 7 , l l ,  1 3 ,  1 7 }  C 6  :  { 6 ,  1 2 }
c2 :  {2 ,4,  8 ,  10,  14,  16}  Cg :  {g}
C 3  :  { 3 ,  1 5 }  C r r :  { t g }  .

We see that the class Ca contains 0081d) integers, as the six classes
conta in d(18)  :  6 ,  O(9)  :  6 ,  0(6)  :2 ,  O(3)  :2 ,  0(2)  :  l ,  and d(1)  :  I
integers, respectively. We note that 18 : d(18) + O(g) + ,O(0) + ,0(3) +

QQ)+d(1) :2a ta l .
d  l l 8

6.1 Problems

l. Find the value of the Euler phi-function for each of the following integers

1 7 1

n : > Qhld)
d l n

n:>0fu1d) -DfU)
d l n  d l ,

a) 100
b) 2s6
c)  l00 l

i l l
b ) 2
c ) 3

d) 2.3.5.7 ' r r .13
e) lo!
f) 20t .

2. Find all positive integers n such that d(n) has the value

d ) 6
e) 14
f) 24.
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3. For which positive integers n is 6fu)

a) odd
b) divisible by 4
c) equal to n/2 ?

4. Show that if n is a positive integer, then

fa@ if n is odd
QQn) : 

lrrh) if n is even .

5' Show that if z is a .positive integer having k distinct odd prime divisors, then
d(n) is divisible by 2k.

6. For which positive integers n is Qh) a power of 2?

7. Show that if n and k are positive integers, then Q(mk) : mk-16(m) .

8. For which positive integers lz does Qfu) divide m ?

9. Show that if a and b are positive integers, then

Qbb) : (a,b)6G)O$)lOKa,i l)  .

10. Show that if m and, n are positive integers with nr I n, then Qfu) | oh).

11. Prove Theorem 6.5, using the principle of inclusion-exclusion (see problem lZ of
Section 1 l).

12. show that a positive integer n is composite if and only if oh) ( n - .,,6-.

13. Let n be a positive integer. Define the sequence of positive integers fl1,n2,13,...
recursively by nr: Qh) and n1.,1 :  6(n*')  for f t  :  r ,2,3,. . .  .  show that there is
a positive integer r such that n, - 1.

14. Two arithmetic functions / and I may be multiplied using the Dirichlet product
which is defined bv

V*s)(n) : 2f @)shli l  .

a) Show that f*g : g*.f .

b) Show that (/*g) *h : f* Q*h) .

c) Show that if r is the multiplicative function defined by

| , r  i f  n :  l
, { n ) :  

l o  i f  n  )  l ,

then rf - f*t : f for all arithmetic functions /.
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d) The arithmetic function g is said to be the inverse of the arithmetic functton

.f it f*S : g*-f : ,. Show that the arithmetic function / has an inverse if

and only if f 0) I 0. Show that if / has an inverse it is unique. (Hint:

When f 0) # 0, find the inverse .f-t of/ by calculating/(n) recursively,

using the fact that '(n) - 
> f U)f-tfuld).)
d l n

Show that if f and g arc multiplicative functions, then the Dirichlet product /*g
is also multiplicative.

Show that the Miibius function defined by

t
I t  i f  n  -  I

l(-t)' if z is square-free with prime factorization
p . \ n ) : 1  n : p r p z . . . p s

I

lO if n has square factor larger than I
t

is multiplicative.

Show that if n is a positive integer greater than one, then ) p@) :0.
d l n

Let f be an arithmetic function. Show that if F is the arithmetic function

defined by

F(n)  :  > f  @) ,
'  d l n

then

f  h ) : 2 p @ ) F h l d ) .
d l n

This result is called the Miibius inversion formula.

Use the Mobius inversion formula to show that if f is an arithmetic function and

F is the arithmetic function defined by

F(n)  :  > f  @) ,
d l n

then if F is multiplicative, so is /.

Using the Mobius inversion formula and the fact that n - > 0h /il , prove that

a) Q(p') : p' - p'- ' ,where p is a prime and t is . *rr;:, integer.

1 7 .

1 8 .

1 9 .

20.
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b) d(n ) is multiplicative.

21. Show that the function f (n):ne is completely multiplicative for every real
number k.

22. a) we define Liouville's function r(n) by I(r) : l and for n ) | by
\(n) : (-l)4'|+4r+"'+a', if the prime-power factorization of n is
n: pi 'pi '  . ' .  p: ' .  Show that tr(n) is completely mult ipl icat ive.

b) Show that if n is a positive integer then ) tr(n) equals 0 if z is not a

perfect square, and equals I if n is a perfect square.

23. a) Show that it f and g are multiplicative functions then fg is also
multiplicative.

b) Show that if f and g arc completely multiplicative functions then /g is also
completely multiplicative.

24. Show that tf f is completely multiplicative, then f (il : f @r)",.f (pr)o,
' 

f (p^)"' when the prime-power factorization of n is n : pi'pi' . . . p:"..

25. A function f that satisfies the equation f (mn) :7(m) + "f 
(n ) for all relatively

prime positive integers m and n is called additive, and if the above equation
holds for all positive integers m and n, f is called completely additive.

a) Show that the function -f (n) : log n is completely additive.

b) Show that if <^r(n) is the function that denotes the number of distinct prime
factors of n, then <^r is additive, but not completely additive.

c) Show that i f  /  is an addit ive function and i f  g(n):zfb), then g is
multiplicative.

6.1 Computer Projects

Write programs to do the following:

l. Find values of the Euler phi-function.

2. Find the integer r in problem 13.

6.2 The Sum and Number of Divisors

We will also study two other arithmetic functions in some detail. One of
these is the sum of the divisors function.

Definition. The sum of the divisors function, denoted by o, is defined by
setting o(n ) equal to the sum of all the positive divisors of n.
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In Table 6.1 we give oh) for  1 (  n < 12 The values of  o(n) for

I ( n < 100 are given in Table 2 of the Appendix'

Table 6.1. The Sum of the Divisors for I ( n ( 12 .

The other function which we will study is the number of divisors.

Definition. The number of divisors function, denoted by r, is defined by setting

r(n) equal to the number of positive divisors of n.

In Table 6.2 we give ,h) for I ( n ( tZ. The values of ,Q) for

1 ( n < 100 are given in Table 2 of the Appendix.

Table 6.2. The Number of Divisors for I ( n ( 12 '

Note that we can express o(n) and z(n) in terms of summation notation. It

is simple to see that

oh ) :Dd
d l n

and

, (n ) :>1.
d l n

To prove that o and r are multiplicative, we use the following theorem.

Theorem 6.7. If / is a multiplicative function, then the arithmetic function

F (n )
d l n

Before we prove the theorem, we illustrate the idea behind its proof with the
following example. Let "f be a multiplicative function, and let

Ffu)
d l n

n I 2 3 4 5 6 7 8 9 r0 l l t2

o Q ) I a
J 4 7 6 t2 8 l 5 l 3 1 8 t2 28

n I 2 3 4 5 6 7 8 9 1 0 l l t2

r h ) I 2 2 3 2 4 2 4 3 4 2 6
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r(60) : r(4)F(15). Each of the divisors of 60 may be written as the
product of  a div isor of  4 and a div isor of  15 in the fo l lowing way: l :1.1,
2 : 2 ' 1 ,  3  :  1 . 3 ,  4 : 4 . 1 ,  5  -  1 . 5 ,  6 : 2 . 3 ,  I 0 : 2 . 5 ,  1 2  -  4 . 3 ,  1 5  :  1 . 1 5 .
20 :4'5, 30 : 2'15, 60 : 4-15 (in each product, the first factor is the divisor
of 4 , and the second is the divisor of I 5). Hence,

F(60) :  f ( r )  + /o + f$)  + f (q)  + f$)  + f6)  +/(10)  + f02)
+ f (rs) +/(zo) + f Q0 +/(60)

: . f  ( r '1 )  +  f  Q.D + f  0 .3 )  +  f  u .D + f  0 .5 )  +  f  o .3 )
+ fQ. i l  + f (4. ,  + f ( r . ls)  + f (4. i l  + fQ. l5)  + fQ.rs):f  ( t) f( l)  + f  Q)f(r) + f  ( l)7(:) + f  @)f(r) + f  ( fDj6)
+f Q)f(r) + f  Ql|(s) + f (Df(g) + f ol7(rs) + f @f 6)
+ f Q)f (rs) + f Q)f 0s)

:  ( / ( t )  +  fQ)  +  7Q)) ( / ( r l  +  fG)  +  f$ )  + / ( l s ) )
:  F ( 4 ) F ( r S ) .

we now prove Theorem 6.7 using the idea illustrated by the example.

Proof. To show that F is a multiplicative function, we must show that if m
and n are relatively prime positive integers, then F (md : F (m) r 0). So let
us assume that (m,n) : l. We have

F (mn) : 
02,^n"f 

u) '

By Lemma2.5, since (m,n): l , each divisor of mn can be written uniquely
as the product of relatively prime divisors dlof m andd2of n, and each pair
of divisors d1 of m and d2 of n corresponds to a divisor d - dfi2 of mn.
Hence, we can write

F(mn) :

Since/ is multiplicative and since (dbd): l, we see that

> f  U td2)
dr l ^

dr ln
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F (mn) :

Now that we know o and r are multiplicative, we can derive formulae for

their values based on prime factorizations. First, we find formulae for o(r)

and rh) when n is the power of a prime.

Lemma 6.1. Let p be prime and a a positive integer. Then

o ( p o )  :  ( t + p + p 2 +  * p o )  :  P o * ' - l
p - l

and

r ( p o ) : a * 1 .

are l, p, p' ,..., po-t, po. Consequently, po has
so that r(po) : a * l. Also, we note that

* pa-t * po : 
#, 

where we have used

Lemma 6.1 wi th p :5 and a:  3,  we f ind that
s4- I

f i : 156andz (53 ) - l * 3 :4 .

The above lemma and the fact that o and r ate multiplicative lead to the
following formulae.

Theorem 6.8. Let the positive integer n have prime factorization

n : p i ' p i 2 . . .  p : ' .  T h e n

2 f Q)f @z)
drln
drln

2fQ)Z fVz)
drl^ drl,

Ffu)Ffu). tr

Proof. The divisors of po
exact ly a* l  d iv isors,

o ( p o ) : 1 * p + p z +

Theorem 1.1. tr

Example. When we apply

o ( 5 3 ) : 1 * 5 + 5 2 + 5 3 :

o(n):ry
P t - r

p l ' * ' - l
Pz-l

p!'*'-l : i
P,- l  j - r

pl'*'-l
Pi- l
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r(n) :  (c1+l)  (az+D (c,* t)  :  
r I ,  

G1+D .

Proof. Since both o and r are multiplicative, we see that o(n) :

o(pi' p3' pi) : obi)obi) o(pi) and r(n) : ,ei,pi,
' ' ' p:') : ,(p1') ,Qi') ,Qi'). Inserting the values for oe!,) and

,Qi) found in Lemma 6.1, we obtain the desired formulae. D

we illustrate how to use Theorem 6.8 with the following example.

Example. Using Theorem 6.8, we find that

o(200) : o(2352) : r!-,, g : 15.31 : 4652- t  5- l

and

r(2oo) :  
" (2352):  

(3+t)  Q+D :  12.

Also

o( lz0  :  o (2a .32 .s )  :  T - ,1  .  32- l  .  52- l  :31 .  13 .6 :241g
2- l  3 - l  5 - l

and

r (24.32. i l :  (4+ l ) (z+t ) ( t+ t )  :  3o .

6.2 Problems

l. Find the sum of the positive integer divisors of

a)  35
b) te6
c) looo
d) 2r0o

e) 2'3'5'7' l l
f) 2s345372t1
g) lo!
h) 201.

2. Find the number of positive integer divisors of

i l  3 6  d )  2 . 3 . s . 7 . 1 1 . 1 3 . 1 7 . 1 9
b )  99  e )  2 i 2 . s3 .74 .115 .134 .17s .19s
c) r44 f) 20t.

3. Which positive integers have an odd number of positive divisors?
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4. For which positive integers n is the sum of divisors of n odd?

5. Find all positive integers n with a(n) equal to

a)  12
b )  l 8
c) 24

d) 48
e) 52
f) 84

6. Find the smallest positive integer n with r(n) equal to

a ) l  d ) 6

b ) 2  d t 4
c )  3  f )  100 .

7. Show that if k > | is an integer, then the equation rh) : ft has infinitely many

solutions.

8. Which positive integers have exactly

a) two positive divisors

b) three positive divisors

c) four positive divisors?

g. What is the product of the positive divisors of a positive integer n ?

10. Let o1,h) denote the sum of the kth powers of the divisors of n, so that

o1,h) :  2 dk. Note that o1h) :  sfu).
d l n

a) Find or(4), or(6) and o{12).

b) Give a formula for o1(p), wherep is prime'

c) Give a formula for o1(po), wherep is prime, and a is a positive integer.

d) Show that the function op is multiplicative'

e) Using parts (c) and (d), find a formula for o;(n), where n has prime-power

factorization n : pi'pi' . . . p:;.

11. Find al l  posit ive integers n such that d(n) + oQ):2n.

12. Show that no two positive integers have the same product of divisors.

13. Show that the number of pairs of positive integers with least common multiple

equal to the positive integer n is r(nz).

14. Let n be a positive integer. Define the sequence of integers fl1,tr2,rt3,... b!

n1:  r (n)  and n1. ,1  :  r (n* )  for  f t  :1 ,2 ,3 , . . . .  Show that  there is  a  pos i t ive

integer r such that 2 : f,r : flr1t : rlr+2 :

15. Show that a positive integer n is composite if and only if o(n) > n + ,/i.
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16. Show that if n is a positive integer then r(n)z : 
)r(d)3
d l n

6.2 Computer Projects

Write programs to do the following:

l. Find the number of divisors of a positive integer.

2. Find the sum of the divisors of a positive integer.

3. Find the integer r defined in problem 14.

6.3 Perfect Numbers and Mersenne Primes

Because of certain mystical beliefs, the ancient Greeks were interested in
those integers that are equal to the sum of all their proper positive divisors.
These integers are called perfect numbers.

Definition. If n is a positive integer and o(n) : 2n, then n is called a perfect
number.

Example .  S ince  o(6) :  l+2  +  3  +6 :12 ,  we see tha t  6  i s  per fec t .  we
a l s o  n o t e  t h a t  o ( 2 8 ) : 1  + 2 + 4 + 7  + 1 4 * 2 8 : 5 6 .  s o  t h a t  2 8  i s  a n o t h e r
perfect number.

The ancient Greeks knew how to find all even perfect numbers. The
following theorem tells us which even positive integers are perfect.

Theorem 6.9. The positive integer n is an even perfect number if and only if

n  : 2 m - r ( 2 ^ - l )

where m is a positive integer such that 2^-l is prime.

Proof. First, we show that if n:2m-r(2^-l) where 2^-l is prime, then n
is perfect. We note that since zn-l is odd, we have (2m-r,2m-l) : 1. Since
o is a multiplicative function, we see that

o(n) -  o(2^-t)o(2^- l )  .

Lemma 6 .1  te l l s  us  tha t  o (2^- r ) :2^ - l  and o(2^- l ) :2^ ,  s ince  we are
assuming that 2m -l is prime. Consequently,
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o(n)  :  Q^- l )2^  :2n  ,

demonstrating that n is a perfect number.

To show that the converse is truen let n be an even perfect number. Write

n :2'l where s and t are positive integers and f is odd. Since (2t,t) : 1, we

see from Lemma 6.1 that

o(n)  :  o (2 ' : )  :  o (2 ' )o ( t )  :  (2 '+ t - t )o ( l )(6.1)

Since n is perfect, we have

G'D o(n) :  2n :  2s+r1

Combining (6.1) and (6.2) shows that

(6.3) (2 '+r-1)o ( i  :  2s+t1

Since (2s+r,2s+t- l ) :  l ,  f rom Lemma2.3 we see that 2 '+1 lo(r) .  Therefore,

there is an integer q such that o(t) - 2'+rQ. Inserting this expression for o(t)

into (6.3) tells us that

(2s+r_l)2s*rq -  2 '*r t  ,

(2'+t-l)q : 1 .

and, therefore,

(6.4)

Hence, q I t and q # t.

When we replace / by the expression on the left-hand side of (6.4), we find

that

( 6 . 5 )  t  + q :  ( 2 s + t - t ) q  + q : 2 ' + r q : o Q ) .

We will show that q : 1. Note that if q * l, then there are at least three

distinct positive divisors of t , namely 1, q, and t . This implies that

oQ) 2 t + q -| 1, which contradicts (6.5). Hence, 4: I and, from (6.4), we

conclude that / :2s+l-1. Also, from (6.5), we see that oQ): t + l, so that

t must be prime, since its only positive divisors are I and t. Therefore,

n :2t  (2r+l-1),  where 2s+l-1 is pr ime. t r

From Theorem 6.9 we see that to find even perfect numbers, we must find

primes of the form 2t-1. In our search for primes of this form, we first show

that the exponent ru must be Prime.

Theorem 6.10. If la is a positive integer and2^-l is prime, then m must be
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pnme.

Proof. Assume that m is not prime, so that m : ab where | 1 a 1 m and,
|  <  b  1 m .  T h e n

2m -l : 2ab -, - (Zo -l) 12a(b-D a2a(b-D q...q1o +l) .

Since both factors on the right side of the equation are greater than I, we see
that 2m-l is composite if m is not prime. Therefore, if 2^-l is prime, then
nr must also be prime. tr

From Theorem 6.10 we see that to search for primes of the form 2^-1, we
need to consider only integers m that are prime. Integers of the form 2m-l
have been studied in great depth; these integers are named after a French
monk of the seventeenth century, Mersenne, who studied these integers.

Definit ion. If m is a positive integer, then M^:2^-I is called the mth
Mersenne number, and, if p is prime and Mp:2p-l is also prime, then M,
is called a Mersenne prime.

Example. The Mersenne number M7:27-I is prime, whereas the Mersenne
number Mn:2rr- I  :2047 :  23.89 is composi te.

It is possible to prove various theorems that help decide whether Mersenne
numbers are prime. One such theorem will now be given. Related results are
found in the problems of Chapter 9.

Theorem 6.11. rf p is an odd prime, then any divisor of the Mersenne
number Mp :2p-l is of the form 2kp + I where k is a positive integer.

Proof. Let q be a prime -dividing Mp - 2p - I. From Fermat's little
theorem, we know thatql(ze-t-t). Also, from Lemma 1.2 we know that

(6 .6 )  (T  - t ,  2c - t - t )  :  2$ t -D -  f .  l l \

Since q is a common divisor of zp-l and zc-t-L we know that
Qp-t ,24-t- l )  > l .  Hence, (p,q- l ) :  p,  s ince the only other possibi l i ty ,
namely (p,q-l) : I, would imply from (6.6) that (Zp-t,2Q-t-l) : l .
Hence p | (q-t), and, therefore, there is a positive integer m with
q - | : mp. Since q is odd we see that m must be even, so that m : Zk.
wherek  isapos i t i ve in teger .  Hence,  q :mp *  I  -  2kp+1 .  t r

We can use Theorem 6.1 I to help decide whether Mersenne numbers are
prime. We illustrate this with the following examples.
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Example. To decide whether MB:2r3-l: 8191 is prime, we only need look

for a prime factor not exceeding lml : 90.504... . Furthermore, from

Theorem 6.11, any such prime divisor must be of the form 26k + L The only

candidates for primes dividinB Mnless than or equal to1fTp are 53 and79.

Trial division easily rules out these cases, so that M s is prime.

Example.  To decide whether Mzt:223-r :8388607 is pr ime, we only need

to determine whether M zt is divisible by a prime less than or equal to

ffi: 2896.309... of the form 46k + l. The first prime of this form is 47.

A trial division shows that 8388607 :47'178481, so that M4is composite.

Because there are special primality tests for Mersenne numbers, it has been

possible to determine whether extremely large Mersenne numbers are prime.

Following is one such primality test. This test has been used to find the

largest known Mersenne primes, which are the largest known primes. The

proof of this test may be found in Lenstra [7t] and Sierpifiski [351.

The Lucas-Lehmer Test. Let p be a prime and let Mo : 2! -l denote the pth

Mersenne number. Define a sequence of integers recursively by setting tr:4,

a n d f o r k > 2 ,

r*  ? r tq -2 (mod M),  0 (  r r  I  Mo .

Then, M, is prime if and only if rp-1 - 0 (mod M) .

We use an example to illustrate an application of the Lucas-Lehmer test.

Example.  consider the Mersenne number M5:25 -  I  -  3 l '  Then r , :  4,

r z z 4 2 - 2 : 1 4  ( m o d 3 l ) ,  r t 4  A 2  - 2 -  8  ( m o d 3 1 ) ,  a n d  r + 2

82 -  2 :0  (mod 31) .  S ince  r t t  0  (mod 31) ,  we conc lude tha t  M5:31 is

prime.

The Lucas-Lehmer test can be performed quite rapidly as the following

corollary states.

Corollary 6.1. Let p be prime and let Mp : 2p - | denote the pth Mersenne
number. It is possible to determine whether Mo is prime using OQ3) bit
operations.

Proof. To determine whether Mp is prime using the Lucas-Lehmer test

requires p - | squarings modulo iV* each requiring O((log M)2): O(p2)
bit operations. Hence, the Lucas-Lehmer test requires O Q3) bit

operations. tr
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Much activity has been directed toward the discovery of Mersenne primes,
especially since each new Mersenne prime discovered has become the largest
prime known, and for each ngw Mersenne prime, there is a new perfect
number. At the present time, a total of 29 Mersenne primes are known and
these include all Mersenne primes Me with p ( 62981 and with
75000 < p < 100000. The known Mersenne primes are listed in Table 6.3.

I
2
2
6
+
2

1'2
9a'zz
i g
zf)q+
8t )
72
2 h
^ l-7s

3b

Lbb
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5
7
l 3
I 1
t 9
3 l
6 l
89
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4253
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1603
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1961
1961
I 963
I 963
1963
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I  978
r979
1979
1983
I  983
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Computers were used to find the 17 largest Mersenne primes known. The

discovery by high school students of the 25th and 26th Mersenne prime

received much publicity, including coverage on the nightly news of a major

television network. An interesting account of the search for the 27th

Mersenne prime and related historical and computational information may be

found in [77]. A report of the discovery of the 28th Mersenne prime is given

in [64]. It has been conjectured but has not been proved, that there are

infinitely many Mersenne primes.

We have reduced the study of even perfect numbers to the study of

Mersenne primes. We may ask whether there are odd perfect numbers. The

answer is still unknown. It is possible to demonstrate that if they exist, odd

perfect numbers must have certain properties (see problems 1l-14, for

example). Furthermore, it is known that there are no odd perfect numbers

less than 10200, and it has been shown that any odd perfect number must have

at least eight different prime factors. A discussion of odd perfect numbers

may be found in Guy [17], and information concerning recent results about

odd perfect numbers is given by Hagis [681.

6.3 Problems

Find the six smallest even perfect numbers.

Show that if n is a positive integer greater than l, then the Mersenne number

Mn cannot be the power of a positive integer.

If n is a positive integer, then we say that n is deficient if ofu) 1 2n , and we

say that n is abundant if oh) ) 2n. Every integer is either deficient, perfect,

or abundant.

a) Find the six smallest abundant positive integers.

b) Find the smallest odd abundant positive integer.

c) Show that every prime power is deficient.

d) Show that any divisor of a deficient or perfect number is deficient.

e) Show that any multiple of an abundant or perfect number is abundant.

f) Show that if n -2m-t(2^-l) , where ra is a positive integer such that

2 -l is composite, then n is abundant.

4. Two positive integers m and n are called an amicable pair

o(m\ : o(n) : m * n. Show that each of the following pairs of integers

amicable pairs

l .

2 .

3 .

if
are
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5. a)

a)
b)
c)

Multiplicative Functions

220,294
1 1 8 4 ,  l 2 1 0
797 5A, 98730.

Show that if n is a positive integer with n ) 2, such that3.2n-t-1,3.2n-1,
and 32'22n-r-1 are all prime, then 2n (3'2'-t-DQ.2'-l) and 2n(32.22n't-l)

c) Mn
d) Mzs.

6.

form an amicable pair.

b) Find three amicable pairs using part (a).

An integer n is called k-perfect if o(il: kn. Note that a perfect number is
2-perfect.

a) Show that 120 : 23.3.5 is 3-perfect.

b) Show that 30240 : 2s32.5., is 4-perfect.

c) Show that 14182439040 - 27.34.5.7.n2.17.19 is 5-perfect.

d) Find al l  3-perfect numbers of the form n -2k.3.p, where p is an odd
prime.

e) Show that if n is 3-perfect and 3 I n, then 3n is 4-perfect.

A positive integer n is called superperfect if oGh)) : Zn.

a) Show that 16 is superperfect.

b) Show that if n : 2e where 2q+t-l is prime, then n is superperfect.

c) Show that every even superperfect number is of the form n : 2q where
zq+t- l  is prime.

d) Show that if n : p2 where p is an odd prime,'then n is not superperfect.

Use Theorem 6.ll to determine whether the following Mersenne numbers are
pnme

a) M7

b) Mn

a) M3

b )  M 7 .

c) Mn
d Mn.

7 .

8 .

9' Use the Lucas-Lehmer test to determine whether the following Mersenne
numbers are prime

10. a) Show that if n is a positive integer and 2n i L is prime, then either
Qn+l) | M^ or Qn+D | (a,+D. (Hint: Use Fermat's little theorem to
show that Mn(Mn+z) = O (mod 2z+l).)

b) Use part (a) to show that Ms and My are composite.
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a) Show that if n is an odd perfect number, then n : po m2 where p is an odd

p r i m e a n d p  7 a z  I  ( m o d 4 ) .

b) Use part (a) to show that if n is an odd perfect number, then

n = l ( m o d 4 ) .

Show that if n - po m2 is an odd perfect number where p is prime, then

n = p ( m o d 8 ) .

:** 
that if n is an odd perfect number, then 3, 5, and 7 are not all divisors of

Show that if n is an odd perfect number then n has

a) at least three different prime divisors.

b) at least four different prime divisors.

Find all positive integers n such that the product of all divisors of n other than n

is exactly n 2. (These integers are multiplicative analogues of perfect numbers.)

Let n be a positive integer. Define the sequenca fl1,tt2,rt3,..., recursively by

n1 :  o(n)  -  n  and f lk+r :  oQ)  -  np fo t  k  -  1 ,2 ,3 , . . .  .

a) Show that if n is perfect, then n : nt : fi2: tt3 :

b) Show that i f  n and m are an amicable pair,  then n1 : f t t ,  t tz- t t ,  t t3: t / t ,

n4: n,... and so on, f.e., the sequence fl1,tt2,t13,... is periodic with period 2.

c) Find the sequence of integers generated i f  n :12496:24' l l '71.

It has been conjectured that for all
n 1,n2,n3,... is pefiodic.

6.3 Computer Projects

Write programs to do the following:

l. Classify positive integers according to
abundant (see problem 3).

n, the sequence of integers

whether they are deficient, perfect, or

2. Use Theorem 6.ll to look for factors of Mersenne numbers.

3. Determine whether Mersenne numbers are prime using the Lucas-Lehmer test.

4. Given a positive integer n, determine if the sequence defined in problem 16
peric.ic.

5. Find amicable pairs.

t 2 .

1 3 .

14 .

1 5 .

1 6 .
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7.1 Character Ciphers

From ancient times to the present, secret messages have been sent.
Classically, the need for secret communication has occurred in diplomacy and
in military affairs. Now, with electronic communication coming into
widespread use, secrecy has become an important issue. Just recently, with
the advent of electronic banking, secrecy has become necessary even for
financial transactions. Hence, there is a great deal of interest in the
techniques of making messages unintelligible to everyone except the intended
receiver.

Before discussing specific secrecy systems, we present some terminology.
The discipline devoted to secrecy systems is called cryptology. Cryptography
is the part of cryptology that deals with the design and implementation of
secrecy systems, while cryptanalysis is aimed at breaking these systems. A
message that is to be altered into a secret form is called plaintext. A cipher is
a method for altering a plaintext message into ciphertext by changing the
letters of the plaintext using a transformation. The key determines the
particular transformation from a set of possible transformations that is to be
used. The process of changing plaintext into ciphertext is called encryption or
enciphering, while the reverse process of changing the ciphertext back to the
plaintext by the intended receiver, possessing knowledge of the method for
doing this, is called decryption or deciphering. This, of course, is different
from the process someone other than the intended receiver uses to make the
message intelligible through cryptanalysis.

1 8 8



7.1 Character Ciphers

In this chapter, we present secrecy systems
The first of these had its origin with Julius
system we will discuss was invented in the late
start by translating letters into numbers. We
the letters of English and translate them into
shown in Table 7.1.
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based on modular arithmetic.

Caesar. The newest secrecy
1970's. In all these systems we
take as our standard alphabet
the integers from 0 to 25, as

letter A B C D E F G H I J K L M N o P a R S T I I V w X Y Z

numerical
equivalent

0 I 2 3 4 5 6 7 8 9 l 0 l l t 2 l 3 t 4 l 5 l 6 t 7 l 8 l 9 20 2 l 22 23 24 25

Table 7.1. The Numerical Equivalents of Letters.

Of course, if we were sending messages in Russian, Greek, Hebrew or any
other language we would use the appropriate alphabet range of integers. Also,
we may want to include punctuation marks, a symbol to indicate blanks, and
perhaps the digits for representing numbers as part of the message. However,
for the sake of simplicity, we restrict ourselves to the letters of the English
alphabet.

First, we discuss secrecy systems based on transforming each letter of the
plaintext message into a different letter to produce the ciphertext. Such
ciphers are called character or monographic ciphers, since each letter is
changed individually to another letter by a substitution. Altogether, there are
26! possible ways to produce a monographic transformation. We will discuss
a set that is based on modular arithmetic.

A cipher, that was used by Julius Caesar, is based on the substitution in
which each letter is replaced by the letter three further down the alphabet,
with the last three letters shifted to the first three letters of the alphabet. To
describe this cipher using modular arithmetic, let P be the numerical
equivalent of a letter in the plaintext and C the numerical equivalent of the
corresponding ciphertext letter. Then

C:P+3 (mod26 ) ,  0<C<25 .

The correspondence between plaintext and ciphertext is given in Table 7.2.
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Table 7.2. The Correspondence of Letters for the Caesar Cipher.

To encipher a message using this transformation, we first change it to its
numerical equivalent, grouping letters in blocks of five. Then we transform
each number. The grouping of letters into blocks helps to prevent successful
cryptanalysis based on recognizing particular words. We illustrate this
procedure by enciphering the message

THIS MESSAGE IS TOP SECRET.

Broken into groups of five letters, the message is

THISM ESSAG EISTO PSECR ET.

Converting the letters into their numerical equivalents, we obtain

1 9  7  8 1 8 1 2  4  l 8  1 8 0 6  4  8 1 8 1 9 1 4
1 5  l 8  4  3  1 7  4  1 9 .

Using the Caesar transformation Q 
-

P*3 (mod 26), this becomes

2 t  3  9  7  1 1  2 1  2 2  1 72 2  l 0  1 1
1 8  2 t  7

2 t  1 5  7 2 1
6 2 0 7 2 2

Translating back to letters, we have

WKLVP HVVDJ HLVWR SVHGU HW.

This is the message we send.

The receiver deciphers it in the following manner. First, the letters are
converted to numbers. Then, the relationship P = C-3 (mod 26),
0 < P ( 25, is used to change the ciphertext back to the numerical version

of the plaintext, and finally the message is converted to letters.

We illustrate the deciphering procedure with the following message
enciphered by the Ceasar cipher:

plaintext
A

0
B
I

c
2

D
3

E
4

F

5
G
6

H I
8

J
9

K
l 0

L
l l

M
t 2

N
l 3

o
l 4

P
l 5

a
l 6

R
t 7

S
l 8

T
t 9

U
20

V
21

w
22

X
23

Y
24

Z
25

ciphertext
3
D

4
E

5
F

6
G

7
H

8
I

9
J

l 0
K

l l

L
t 2
M

l 3
N

t 4
o

l 5
P

l 6
a

t 7
R

1 8
S

l 9
T

20
U

2 l
V

22
w

23
X

24
Y

25
z

0
A

I
B

2
c
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WKLVL VKP.ZZ HGHFL SKHU.

First, we change these letters into their numerical equivalents, to obtain

2 2 | 0 l l 2 l l 1 2 1 l 0 | 7 2 5 2 5 7 6 7 5 | | 1 8 1 0 7 2 0 .

Next, we perform the transformation P : C-3 (mod 20 to change this to

plaintext, and we obtain

1 9 7 8 1 8 8  1 8 7 1 4 2 2 2 2  4 3 4 2 8  1 5 7 4 1 7 .

We translate this back to letters and recover the plaintext message

THISI SHOWW EDECI PHER.

By combining the appropriate letters into words, we find that the message

reads

THIS IS HOW WE DECIPHER.

The Caesar cipher is one of a family of similar ciphers described by u

shft transformation

C:P+k  (mod26 ) ,0<C<25 ,

where k is the key representing the size of the shift of letters in the alphabet.

There are 26 different transformations of this type, including the case of

k = 0 (mod 26), where letters are not altered, since in this case

C 
- P (mod 26).

More generally, we will consider transformations of the type

( z . t )  C - a P * b  ( m o d 2 6 ) ,  0 < C < 2 5 ,

where a and b are integers with (a,26) : l. These are called

ffine transformations. Shift transformations are affine transformations with

a:1. We require that G,26): 1, so that as P runs through a complete

system of residues modulo 26, C also does. There are O(2O : 12 choices for

a, and 26 choices for b, giving a total of 12'26:312 transformations of this

type (one of these is C = P (mod 26) obtained when a:l and D-0). If the

rliationship between plaintext and ciphertext is described by (7.1), then the

inverse relationship is given bY
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P = arc-b) (mod 26), 0 < P < 25.

where a is an inverse of a (modZO.

As an example of such a cipher, let a:7 and b:r}, so that
c = 7P + l0 (mod 26).  Hence, p = l5(c-10) = l5c+6 (mod 26).  s ince
15 is an inverse of 7 modulo 26. The correspondence between letters is given
in Table 7.3.

Tabfe 7.3. The Correspondence of Letters for the Cipher with C = 7p+10 (mod 26).

To illustrate how we obtained this correspondence, note that the plaintext
letter L with numerical equivalent 1l corresponds to the ciphertext letter J,
since 7'll + l0:87 = 9 (mod 26) and 9 is the numerical equivalent of J.

To illustrate how to encipher, note that

PLEASE SEND MONEY

is transformed to

LJMKG MGXFQ EXMW.

Also note that the ciphertext

FEXEN XMBMK JNHMG MYZMN

corresponds to the plaintext

DONOT REVEA LTHES ECRET.

or combining the appropriate letters

plaintext

A B C D E F G H I J K L M N o P a R S T U V w X Y Z

0 2 3 4 5 6 I 8 9 l 0 l l t 2 l 3 1 4 1 5 l 6 t 7 l 8 l 9 20 2 l 22 23 24 25

ciphertext

r0 t 7 24 5 t2 l 9 0 7 T4 2 l 2 9 l 6 23 4 l l l 8 25 6 l 3 20 8 l 5 22 3

K R Y F M T A H o V c J a X E L S z G N v B I P w D
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DO NOT REVEAL THE SECRET.

We now discuss some of the techniques directed at the cryptanalysis of

ciphers based on affine transformations. In attempting to break a

monographic cipher, the frequency of letters in the ciphertext is compared

with the frequency of letters i; ordinary text. This gives information

concerning the .orr"rpondence between letters. In various frequency counts of

English text, one findi the percentages listed in Table 7.4 fot the occurrence of

tne Ze letters of the alphabet. Counts of letter frequencies in other languages

may be found in [48] and [52].

Table 7.4. The Frequencies of Occurrence of the Letters of the Alphabet.

From this information, we see that the most frequently occurring letters are

E,T,N,O, and A, in that order. We can use this information to determine

which cipher based on an affine transformation has been used to encipher a

message.

First, suppose that we know in advance that a shift cipher has been

employed io encipher a message; each letter - of the message has been

transformed by ; correspondence C - P+k (mod 26),0 < C < 25. To

cryptanal yze the ciPhertext

Y F X M P  C E S  P Z  C  J  T D F  D P Q F W  Q Z C P Y
N T A S  P  C T Y R X  P D D L R  P D  ,

we first count the number of occurrences of each letter in the ciphertext. This

is displayed in Table ?.5.

letter A B c D E F G H I J K L M N o P a R S T U V w X Y z

frequency
(in Vo)

7 I 3 4 l 3 3 2 3 8 < l < l 4 3 8
'l 3 < l 8 6 9 3 I <1 z < l
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Table 7.5. The Number of Occurrences of Letters in a Ciphertext.

We notice that the most frequently occurring letter in the ciphertext is p with
the letters c,D,F,T, and y occurring with relatively high frequency. our
initial guess would be that P represents E, since E is the -ort frequently
occurr ing let ter  in Engl ish text .  I f  th is is so,  then 15:4fk (mod i6) ,  s;
that ft = I I (mod 26) Consequently, we would have C = p+11 (mod 26)
and P : c-l1 (mod 26). This correspondence is given in Table 7.6.

Table 7.6. correspondence of Letters for the Sample ciphertext.

Using this correspondence, we attempt to decipher the message. we obtain

N U M B E  R T H E O  R Y I  S U  S E F U L  F O R E N
C I P H E  R I N G M  E S S A G  E S .

This can easily be read as

NUMBER THEORY IS USEFUL FOR
ENCIPHERING MESSAGES.

Consequently, we made the correct guess. If we had tried this transformation,
and instead of the plaintext, it had produced garbled text, we would have tried
another likely transformation based on the frequency count of letters in the
ciphertext.

letter A B C D E F G H I J K L M N o P a R S T U V w X Y Z

number of
occurrences

I 0 4 5 I 3 0 0 0 0 I 0 2 2 a

J 0 0 I I 3 2

ciphertext

A B C D E F G H I J K L M N o P a R S T U V w X Y Z

0 I 2 3 4 ) 6 7 8 9 l 0 l l l 2 l 3 t 4 l 5 l 6 1 1 l 8 t 9 20 21 22 23 24 25

plaintext

l 5 l 6 t 7 l 8 l 9 20 2 l 22 23 24 25 0 I 2 3 4 5 6 I 8 9 l 0 il t2 l 3 t 4

P a R S T U V w Z Y z A B C D E F G H J K L M N o
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Now, suppose we know that an affine transformation of the form

C : a p+i (mod 26), 0 < C < 25, has been used for enciphering' For

instance, suppose we wish to cryptan alyze the enciphered message

U S  L E L
E L Y U S
Q L  L Q L
R Y Z D G
F A L G U
S L J F E

J  U T C C
LRYXD
Y X S  R V
HRGUS
P  T G V T
O L P U .

Y R T P S
J  U R T U
L  B R Y Z
L  J  L L M
J  U L Y U

U R K L T
U L V C U
C Y R E K
L Y P D  J
S  L D A L

Y G G F V
U R J R K
L V E X B
L J T J U
T J R W U

The first thing to do is to count
displayed in Table 7.7

the occurrences of each letter; this count is

Table 7.7. The Number of Occurrences of Letters in a Ciphertext.

With this information, we guess that the letter L, which is the most frequently

occurring letter in the ciphertext, corresponds to E, while the letter U, which

occurs with the second highest frequency, corresponds to T. This implies, if

the transformation is of the form C 
-- aP*b (mod 26), the pair of

congruences

4a*b 
-- 11 (mod 26)

l9a+b : 20 (mod 26).

By Theorem 3.8, we see that the solution of this system is a E 11 (mod 26)

and b : 19 (mod 26).

If this is the correct enciphering transformation, then using the fact that 19 is

an inverse of I I modulo 26, the deciphering transformation is

p --_ 19 (C-19) :  t9C-361 = 19C + 3 (mod 26),  0 < P < 25.

This gives the correspondence found in Table 7.8.

letter A B c D E F G H I J K L M N o P a R S T U v w X Y z

number of

occurrences
2 2 4 4 5 3 6 0 l 0 3 22 I 0 I 4 2 t 2 5 8 l 6 J I 3 l 0 2
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With this correspondence,
becomes
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we try to read the ciphertext. The ciphertext

Table 7.8. The correspondence of Letters for the Sample ciphertext.

T H E B E
B  E R T H
V E  E V E
O R K I N
UDENT
H E  S U B

S T A P P
E O R Y  I
RYHOM
GONTH
CANMA
J E C T .

ROACH
S  T O A T
EWORK
E S E E X
S T E R T

T O L  E A
T E M P T
P R O B  L
E R C I S
H E I D E

RNNUM
T O S O L
EMBYW
E S A S T
A S O F T

We leave it to the reader to combine the appropriate letters into words to see
that the message is intelligible.

7.1 Problems

1 .

2.

3 .

4.

5 .

using the caesar cipher, encipher the message ATTACK AT DAWN.

Decipher the ciphertext message LFDpH LVDZL FRerx HUHG that has
been enciphered using the Caesar cipher.

Encipher the message SURRENDER IMMEDIATELY using the affine
transformation C = l lp+18 (mod 26).

Decipher the message RToLK TOIK, which was enciphered using the affine
transformation C = 3p+24 (mod 26).

If the most common letter in a long ciphertext, enciphered by a shift
transformation C = P+k (mod 26) is Q, then what is the most likely value of
k 1

ciphertext

A B C D E F G H I J K L M N o P a R S T U V w X Y z

0 I 2 3 4 5 6 ,7 8 9 l 0 l l t2 l 3 t 4 l 5 l 6 t 7 r 8 l 9 20 21 22 23 24 25

plaintext

3 22 l 5 8 I 20 l 3 6 25 l 9 l l 4 23 t6 9 2 2 l r4 0 t 9 t2 5 24 t 1 t 0

D w P I B U N G z S L E X a J C V o H A T M P Y R K
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If the two most common letters in a long ciphertext, enciphered by an affine

transformation C = aP*b (mod 26) are W and B, respectively, then what are

the most likely values for a and b?

Given two ciphers, plaintext may be enciphered by using one of the ciphers, and

by then using the other cipher. This procedure produces a product cipher '

a) Find the product cipher obtained by using the transformation C : 5P +13

(mod 26) followed by the transformation c = l7P+3 (mod 26).

b) Find the product cipher obtained by using the transformation C : aP+b

(mod 26) followed by the transformation C = cP*d (mod 26), where

Q , 2 6 ) : ( c , 2 6 ) * 1 .

A Vignbre cipher operates in the following way. A sequence of letters

Qr!r,...,0r, with numerical equivalents k1,k2,..., kn, serves as the key. Plaintext

messages are split into blocks of length n. To encipher a plaintext block of

letters with numerical equivalents PbPz,..., P, to obtain a ciphertext block of

letters with numerical equivalents cr,cz,...,cn, we use a sequence of shift ciphers

with

ci 7 pi * k; (mod 26), 0 ( ci ( 25,

for i : 1,2,...,n. In this problem, we use the word SECRET as the key for

a Vigndre cipher.

a) Using this Vigndre cipher, encipher the message

DO NOT OPEN THIS ENVELOPE.

b) Decipher the following message which was enciphered using this
Vigndre cipher:

WBRCSL AZGJMG KMFV.

c) Describe how cryptanalysis of ciphertext, which was enciphered
using a Vigndre cipher, can be carried out.

7.1 Computer Projects

Write programs to do the following:

l. Encipher messages using the Caesar cipher.

2. Encipher messages using the transformation C : P+k (mod 26), where k
is a given integer.

3. Encipher messages using the transformation C = aP+6 (mod 26), where
a and b are integers with (a ,26) : I.

8 .
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Decipher messages that have been enciphered using the caesar cipher.

Decipher messages that have been enciphered using the transformation
C = P+k (mod 26), where ft is a given integer.

Decipher messages that have been enciphered using the transformation
c = aP+6 (mod 26), where a and b are integers with (a,26) : r.

Cryptanalyze, using frequency counts, ciphertext that was enciphered
using a transformation of the form c = p+k (mod 26) where k is an
unknown integer.

cryptanalyze, using frequency counts, ciphertext that was enciphered
using a transformation of the form c = ap*D (mod 26) where a and b
are unknown integers with (a,26) - l.

Encipher messages using vigndre ciphers (see problem g).

Decipher messages that have been enciphered using vigndre ciphers.

7.2 Block Ciphers

We have seen that monographic ciphers based on substitution are vulnerable
to cryptanalysis based on the frequency of occurrence of letters in the
ciphertext. To avoid this weakness, cipher systems were developed that
substitute for each block of plaintext letters of a specified length, a block of
ciphertext letters of the same length. Ciphers of this sort are called block or
polygraphic ciphers. In this section, we will discuss some polygraphic ciphers
based on modular arithmetic; these werO developed by Hill [87] around 1930.

First, we consider digraphic ciphers; in these ciphers each block of two
letters of plaintext is replaced by a block of two letters of ciphertext. We
illustrate this process with an example.

The first step is to split the message into blocks of two letters (adding a
dummy letter, say X, at the end of the message, if necessary, so that the final
block has two letters). For instance, the message

is split up as

THE GOLD IS BURIED IN ORONO
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Next, these letters are translated into

previously done) to obtain

1 9  7  4  6  1 4  1 1  3 8

1 3  1 4  1 7  1 4  1 3  1 4 .

199

their numerical equivalents (as

l 8 r  2 0 t 7  8 4  3 8

Each block of two plaintext numbers P,Pz is converted into a block of two

ciphertext numbers C 1C2:

Cr = 5Pr + lTPz (mod 26)
C z =  4 P t  +  l S P z  ( m o d  2 6 ) .

For instance, the first block l9 7 is converted to.6 25, because

Cr  =  5 '19  +  l7 '7  :  6  (mod 26)
C z =  4 ' 1 9  +  1 5 ' 7 : 2 5  ( m o d  2 6 ) .

After performing this operation on the entire message, the following ciphertext

is obtained:

6 2 5  t 8 2  2 3  1 3  2 1  2  3  9  2 5 2 3  4  r 4 2 r  2 1 7  2  1 l  l 8  l 7  2 .

When these blocks are translated into letters, we have the ciphertext message

GZ SC XN VC DJ ZX EO VC RC LS RC.

The deciphering procedure for this cipher system is obtained by using

Theorem 3.8. To find the plaintext block Pfz corresponding to the ciphertext
block CrCz, we use the relationship

Pr = lTCt t  5Cz (mod 26)
Pz = l8Cr *  23Cz (mod 26).

The digraphic cipher system we have presented here is conveniently
described using matrices. For this cipher system, we have

/  ' r  /  ) r  )
l c ,  l  l s  17 l lP ,  l
I  l= t  t l  l (mod26) .
lc , )  L4 ts j  lP, j

In  5 ' l
From Proposition 3.7, we see that the matrix | | is an inverse of

6 r7 ' |  
l t s  n)

| | modulo 26. Hence, Proposition 3.6 tells us that deciphering can be
l+  lsJ

done using the relationship



ln general, a Hill cipher system may be obtained
blocks of n letters, translating the letters into their
forming ciphertext using the relationship

Q - AP (mod 20.
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Since det A = 5 (mod 26),
block of length three, we use

Cryptology

(mod 26).

by splitting plaintext into
numerical equivalents, and

[ ; ; ]  

=  

[ :  ; ]  
[ : ; ]

C 1

C2

P 1

P2

where A is an nxn matrix with (det A,26) : I, C : a n d  P :

and where C1C2...C, is the ciphertext block that corresponds to the plaintext
block P1P2...Pn Finally, the ciphertext numbers are translated back to letters.
For deciphering, we use the matrix A, an inverse of A modulo 26, which may
be obtained using Proposition 3.8. Since AA : / (mod 26), we have

Zc = Z<,qn = (2,4p -p (mod 26).

Hence, to obtain plaintext from ciphertext, we use the relationship

P : ZC ( JrrlOd 2f.).

We illustrate this procedure usi and the enciphering matrix

cn Pn

A :

l 9

25

I

n g n : 3

[ " 2

ls  23

lro 7
we have (det A,26)
the relationship

: l. To encipher a plaintext
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STO PPA YME NTX.

We translate these letters into their numerical equivalents

1 8 1 9 1 4  1 5 1 5 0  2 4 1 2 4  1 3 1 9 2 3 .

We obtain the first block of ciphertext in the following way:

[. ' l  [" z 'nl ["] [ ' ]t l l l l . l l . l
1. ,  l : ls n r t l  | tnl- l tnl  

(mod26).
I t l l l l l ^ l
[., j [ro 7 t J |.toj U3 ,;

Enciphering the entire plaintext message in the same manner, we obtain the
ciphertext message

8 1 9 1 3  1 3 4 1 5  0 2 2 2  2 0 1 1 0 .

Translating this message into letters, we have our ciphertext message

TTN NEP ACW ULA.

takes a

[c' ) [" ' l
I t t t
lcrl = e lP'l (mod 26).

[',1 [",J
To encipher the message STOP PAYMENT, we first split the message into

blocks of tht"" letters, adding a final dummy letter X to fill out the last block.

We have plaintext blocks

The deciphering process for this polygraphic cipher system

ciphertext block and obtains a plaintext block using the transformation

f"'l [.'lt t_ t l
lprl = 7 lrrl (mod 26)
r r l l
L",J lt'j

where
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6  - 5  l l

Z: - l  - 1 0

is an inverse of I modulo 26, which may be obtained using proposition 3.g.
Because polygraphic ciphers operate with blocks, rather than with individual

letters, they are not vulnerable to cryptanalysis based on letter frequency.
However, polygraphic ciphers operating with blocks of size n are vulnerable to
cryptanalysis based on frequencies of blocks of size n. For instance, with a
digraphic cipher system, there are 262 : 676 digraphs, blocks of length two.
Studies have been done to compile the relative fiequencies of digraphs in
typical English text. By comparing the frequenciis of digraphs in the
ciphertext with the average frequencies of digraphs, it is ofGn possible to
successfully attack digraphic ciphers. For example, according to some counts,
the most common digraph in English is TH, followed closely by HE. If a Hill
digraphic cipher system has been employed and the most common digraph is
KX, followed by YZ, we may guess that the ciphertext digraphs KX and vZ
correspond to TH and HE, respectively. This would mean that the blocks
19 7 andT 4 are sent to 1023 and21 25, respectively. If A is the enciphering
matrix, this implies that

, l rn ?l_
t a  

I z  4 )  :
l 0  2 l

23 25
(mod 26).

is an inverse 
"t [? l) (mod 26) , wefind that

whichrgives

12eA-  
[ s  23

possible key. After attempting to decipher the ciphertext using

to transform the ciphertext, we would know if our guess was

lzt r 7'): 
l t t  2) (mod 26)'

n correspondences between plaintext blocks of size n
size n, for instance if we know that the ciphertext
1,2,...,n, correspond to the plaintext blocks
respectively, then we have

correct.

In general, if we know
and ciphertext blocks of
blocks C1iC2i...Cni,j :
PryP2 i . . .Pn i ,  j  :  1 ,2 , . . . ,n ,
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(mod 26),

for  7 -  1,2 , . . . ,  f l .

These n congruences can be succinctly expressed using the matrix congruence

A P = C  ( m o d 2 6 ) ,

where P and C arc nxn matrices with ryth entries Pl; and Cii, respectively.

If (det p,26): l, then we can find the enciphering matrix A via

A = CF (mod 26),

where P is an inverse of P modulo 26.

Cryptanalysis using frequencies of polygraphs is only worthwhile for small

values of n, where n is the size of the polygraphs. When n:10, for example,

there are 26t0, which is approximately l.4x10la, polygraphs of this length.

Any analysis of the relative frequencies of these polygraphs is extremely

infeasible.

7.2 Problems

l. Using the digraphic cipher that sends the plaintext block Pf2to the ciphertext

block CrCz with

Cr = 3Pt + I0P2 (mod 26)

Cz = 9Pt  +  7P2 (mod 26) ,

encipher the message BEWARE OF THE MESSENGER.

2. Decipher the ciphertext message UW DM NK QB EK, which was enciphered

using the digraphic cipher which sends the plaintext block Pfz into the

ciphertext block CrCz with

Cr = 23Pt + 3Pz (mod 26)

Cz = IOP | + 25P2 (mod 26).

3. A cryptanalyst has determined that the two most common digraphs in a

ciphertext message are RH and NI and guesses that these ciphertext digraphs

correspond to the two most common diagraphs in English text, TH and HE. If

,[:] il
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the plaintext was enciphered using a Hill digraphic cipher described by

Cr = aP1* bP2 (mod 26)
Cz = cP1 * dP2 (mod 26).

what are a,b,c, and, d2

How many pairs of letters remain unchanged when encryption is performed using
the following digraphic ciphers

il Cr E 4pt + 5p2 (mod 26)
Cz = 3Pt + P2 (mod 26)

b) Cr = lpt + I7p2 (mod 26)
Cz = Pt + 6Pz (mod 26)

c) Cr = 3Pt + 5Pz (mod 26)
Cz = 6Pt + 3P2 (mod 26)?

5. Show that if the^enciphering matrix A in the Hill cipher system is involutory
modulo 26, i.e, 42 = 1 (mod 26), then A also serves as a deciphering matrix for
this cipher system.

A cryptanalyst has determined that the three most common trigraphs (blocks of
length three) in a ciphertext are, LME, wRI and zyC and gu"rr", that these
ciphertext trigraphs correspond to the three most common trigraphs in English
text, THE, AND, and THA. If the plaintext was enciphered using a Hill
trigraphic cipher described by C = AP (mod 26), what are the entries of the
3x3 enciphering matrix A?

Find the product cip^her. obtained by using the digraphic Hill cipher with
encipherins matrix 

.[f lij followed by using the digraphic Hill cipher with

encipherins ."tri* 
[r5, \)

Show that the product cipher obtained from two digraphic Hill ciphers is again a
digraphic Hill cipher.

Show that the product cipher obtained by enciphering first using a Hill cipher
with blocks of size m and then using a Hill cipher with blocks of size n is again
a Hill cipher using blocks of size lm,nl.

Find the 6x6 enciphering matrix corresponding to the product cipher obtained by
first using the Hill cipher with enciphering matrix 

t} | J, rotto*"d by using the

Hill cipher with enciphering.",r,* fl A ?l
[ 0  I  l J

A transposition cipher is a cipher where blocks of a specified size are enciphered
by permuting their characters in a specified manner. For instance, plaintext
blocks of length five, P1P2P3PaP5, may be sent to ciphertext blocks
c1c2c3cac5: P4PIPIPP3. Show that every such transposition cipher is a

6 .

7.

8 .

9 .

10 .

1 1 .
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Hill cipher with an enciphering matrix that contains only 0's and I's as entries

with the property that each row and each column contains exactly one 1.

7.2 Computer Proiects

Write programs to do the following:

l. Encipher messages using a Hill cipher.

2. Decipher messages that were enciphered using a Hill cipher.

3. Cryptanalyze messages that were enciphered using a digraphic Hill cipher, by

analyzing the frequency of digraphs in the ciphertext.

7.3 Exponentiation Ciphers

In this section, we discuss a cipher, based on modular exponentiation, that

was invented in 1978 by Pohlig and Hellman [9t1. We wil l see that ciphers

produced by this system are resistant to cryptanalysis.

Let p be an odd prime and let e, the enciphering key, be a positive integer

with (e,p-l) : l. To encipher a message, we first translate the letters of the

message into numerical equivalents (retaining initial zeros in the two-digit

numerical equivalents of letters). We use the same relationship we have used
before. as shown in Table 7.9.

Table 7.9. Two-digit Numerical Equivalents of Letters.

Next, we group the resulting numbers into blocks of 2m decimal digits,

where 2m is the largest positive even integer such that all blocks of numerical

equivalents corresponding to m letters (viewed as a single integer with 2m

d e c i m a l d i g i t s )  a r e l e s s t h a n p , e . g .  i f  2 5 2 5  <  p  < 2 5 2 5 2 5 , t h e n  m : 2 .

For each plaintext block P, which is an integer with 2m decimal digits, we

form a ciphertext block C using the relationship

C = P e  ( m o d p ) , 0 ( C < p .

The ciphertext message consists of these ciphertext blocks which are integers

letter A B c D E F G H I J K L M N o P a R S T U V w X Y z

numerical
equivalent

00 0r 02 03 04 05 06 0'l 08 09 l 0 l l t2 l 3 t 4 l 5 l 6 t 7 l 8 l 9 20 2 l 22 23 24 25
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we illustrate the enciphering technique with the followingless than p.
example.

Example' Let the prime to be used as the modulus in the enciphering
procedure be p : 2633 and let the enciphering key to be used as the .*ponrni
in the modular exponentiat ion be e :29, so thai (r,p-l)  -  (2g,2$;):  l .
To encipher the plaintext message,

THIS IS AN EXAMPLE OF AN EXPONENTIATION CIPHER,

we first convert the letters of the message into their numerical equivalents, and
then form blocks of length four from these digits, to obtain

1907 0818 0818 0013 0423
0012 l5 l  I  0414 0500 1304
2315  l4 l3  0413  1908  0019
0814 1302 081 s 07a4 nn .

Note that we have added the two digits 23, corresponding to the letter X, at
the end of the message to fill out the final block of fbur digits.

We next translate each plaintext block P into a ciphertext block C using
the relationship

C = p z s  ( m o d 2 6 3 r , 0 <  C  < 2 6 3 3 .

For instance, to obtain the first ciphertext block from the first plaintext block
we compute

C : 19072e = 2199 (mod 263i.

To efficiently carry out the modular exponentiation, we use the algorithm
given in Section 3.1. When we encipher the blocks in this way, we find that
the ciphertext message is

2199
2425
to72
2064

t745
t729
l 5 4 l
l 3 5 l

1745
1 6 1 9
1 7 0 1
t704

r206
0935
I  553
1 8 4 1

2437
0960
0735
r459

To decipher a ciphertext block c, we need to know a deciphering key,
namely an integer d such that de = | (mod p-l), so that d is an inverse of
e (mod p-l), which exists since (e,p-l): l. If we raise the ciphertext
block C to the dth power modulo p,wa recover our plaintext block p, since
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Cd = (p")d :  ped = pkQ-t)+t  = (pp-t)k p = P (mod p),

where de : ki-l) + l, for some integer k, since de = I (mod p-l) '

(Note that we have used Fermat's little theorem to see that

pn- t  -  I  (modp) . )

Example. To decipher the ciphertext blocks generated using the prime

moduius p : 2633 and the enciphering key e : 29, we need an inverse of e

modulo j-t : 2632. An easy computation, as done in Section- 3.2, shows that

d : 2269 is such an inverse. To decipher the ciphertext block C in order to

find the corresponding plaintext block P, we use the relationship

P : 9226e (mod 263i.

For instance, to decipher the ciphertext block 2199, we have

P = 2lgg226e: 1907 (mod 263r.

Again, the modular exponentiation is carried out using the algorithm given in

Section 3.2.

For each plaintext block P that we encipher by computing P' (mod p), we

use only O(tog2il3) bit operations, as Proposition 3.3 demonstrates. Before

we decipher we need to find an inverse d of e modulo p-1. This can be done

using O(log il bit operations (see problem ll of Section 3.2), and, this needs

to be done only once. Then, to recover the plaintext block P from a ciphertext

block C, we simply need to compute the leait positive residue of Cd modulop;

we can do this using OKlog2p)3) bit operations. Consequently, the processos

of enciphering and deciphering using modular exponentiation can be done

rapidly.

On the other hand, cryptanalysis of messages enciphered using modular

exponentiation generally cannot be done rapidly. To see this, suppose we

know the prime p used as the modulus, and moreover, suppose we know the

plaintext block P corresponding to a ciphertext block C, so that

C =  P '  (mod p) .0.2)

For successful cryptanalysis, we need to find the enciphering key e. When the

relationship Q.D holds, we say that e is the logarithm of C to the base
p modulo p. There are various algorithms for finding logarithms to a given

base modulo a prime. The fastest such algorithm requires approximately

.*p(.,,6Ep log-mgp) bit operations (see [81]). To find logarithms modulo a

prime with n decimal digits using the fastest known algorithm requires

approximately the same number of bit operations as factoring integers with



208
Cryptology

the same number of decimal digits, when the fastest known factoring
algorithm is used. Consulting Table 2.1, we see that finding logarithms
modulo a prime p requires an extremely long time. For instance, when p has
100 decimal digits, finding logarithmr rnodulo p requires approximately
74yearc, whereas when p has 200 decimal digiis, approxim"i"ry 3.gxl0!
years are required.

we should mention that for primes p where p-l has only smalr prime
factors, it is possible to use special techniques to find logarithms modulo p
using o (logzp) bit operations. Clearly, this sort of prime should not be used
as a modulus in this cipher system. Taking a prime p : 2q * l, where q is
also prime, obviates this difficulty.

- 
Modular exponentiation is useful for establishing common keys to be used

by two or more individuals. These common keys may, for instance, be used as
keys in a cipher system for sessions of data communication, and should be
constructed so that unauthorized individuals cannot discover them in a feasible
amount of computer time.

Let p be a large prime and let a be an integer relatively prime to p. Each
individual in the network picks a key k that is an integei relatively prime top-l ' When two individuals with keys &1 and k2 wisi to exchange a key, the
first individual sends the second the inieger-71, where

. / r  E  a t ' ( m o d p ) ,  0  <  y r  (  p ,

and the second individual finds the common key K by computing

K :  y f ' = a & ' & ' ( - o d p ) ,  o  < K  < p .

similarly, the second individual sends the first the integer y2 where

lz  = ak '  (mod p) ,  o  1 yz 1 p,

and the first individual finds the common key K by computing

K :  y l '  =o&'& '  ( *od p) ,  o  < K < p.

We note that other individuals in the network cannot find this common key
K in a feasible amount of computer time, since they must compute logarithmi
modulo p to find K.

In a similar manner, a common key can be shared by any group of z
individuals. If these individuals have keys k t,k2, ..., kn, ihey can share the
common key
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K - ak'k""4 (mod P)'

We leave an explicit description of a method used to produce this common key

K as a problem for the reader.

An amusing application of exponentiation ciphers has been described by

Shamir, Rivest, una eat.man [961. They show that by using exponentiation

ciphers, a fair game of poker may be played by two players communicating via

computers. Suppose Alex and Betty wish to play poker. First, they jointly

chooie a large pii-" p. Next, they individually choose secret keys e1aJrd €2'

to be used as exponents in modular exponentiation. Let Er, and Er, represent

the corresponding enciphering transformations, so that

8",(M) = M" (mod p)

Er,(M) = M" (mod p),

where M is a plaintext message. Let dl and d2be the inverses of el and e2

modulo p respectively, and let Dr, and D", be the corresponding deciphering

transformations, so that

D",(C) = cd.' (mod p)

D,: , (c)  = cd'(mod p),

where C is a ciphertext message.

Note that enciphering transformations commute, that is

E r , (E 
" , (M)) 

:  E r , (E r , (M)),

slnce

To play electronic
messages

(M")', :_ (M',)', (mod p).

poker, the deck of cards is represented by the 52

M r : 
.TWO OF CLUBS'

, r : . "THREE oF CLUBS"

M sz: "ACE OF SPADES."

When Alex and Betty wish to play poker electronically, they use the

following sequence of steps. We suppose Betty is the dealer.
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Betty uses her enciphering transformation to encipher the 52 messages
for the cards. She obtains Er,(M 1), Er,(Mr),...,er, (arl.-- Betty
shuffies the d".,k, by randomly riordering the enciphered messages.
Then she sends the 52 shuffied enciphered messages to Alex.

Alex selects, at random, five of the enciphered messages that Betty has
sent him. He returns these five messages to Betty and she deciphers
them to find her hand, using her deciphering transformation Drr, since
D,,(E",(M)) : M for all messages M. Alex cannot determine which
cards Betty has, since he cannot decipher the enciphered messages
Er , (M) ,  j  :  1 ,2 , . . . ,52 .

Alex selects five other enciphered messages at random. Let these
messages be C1, Cz, Cl, Ca, and C5, where

C j : Err(Mi,),

i : r,2,3,4,5. Alex enciphers these five previously enciphered messages
using his enciphering transformation. He obtains the fivi messages

Cjr : E r,(C) : E r,(E r,(1,t,,))

i : 1,2,3,4,5. Alex sends these five messages that have been enciphered
twice (first by Betty and afterwards by Alex) to Betty.

Betty uses her deciphering transformation D", to find

D",(C;*) : D",(E 
",(n ",(*t,))): Drr(Er,(Er,(M,,)))

-  Eer(Mi, ) ,

since Er,(Er,(M)) :8",(Er,(M)) and Dr.(Er,(M)) - M for all
messages M. Betty sends the fives message E",(Mi) back to Alex.

v. Alex uses his deciphering transformation Dr, to obtain his hand, since

D",(E",(M;,)) : M;,.

When a game is played where it is necessary to deal additional cards,
such as draw poker, the same steps are followed to deal additional cards
from the remaining deck. Note that using the procedure we have
described, neither player knows the cards in the hand of the other
player, and all hands are equally likely for each player. To guarantee
that no cheating has occurred, at the end of the game both players
reveal their keys, so that each player can verify that the other player was

lv .
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actually dealt the cards claimed.

A description of a possible weakness in this scheme, and how it may

be overcome, may be found in problem 38 of Section 9.1.

7.3 Problems

Using the prime p - l0l and enciphering key e : 3, encipher the message

GOOD MORNING using modular exponentiation'

What is the plaintext message that corresponds to the ciphertext

l2t3Og02053g 120g 1234 1103 1374 produced using modular exponentiation

with modulus p : 2591 and enciphering key e : 13 2

3. Show that the enciphering and deciphering procedures are identical when

enciphering is done using modular exponentiation with modulus P - 3l and

enciphering key e : ll

With modulus p - 29 and unknown enciphering key e, modular exponentiation

produces the ciphertext 04 19 19 ll 04 24 09 15 15. Cryptanalyze the

ubou" cipher, if it is also known that the ciphertext block 24 corresponds to the

plaintexi letter U (with numerical equivalent 20). (Hint: First find the

iogarithm of 24 to the base 20 modulo 29 using some guesswork.)

Using the method described in the text for exchanging common keys, what is the

"o..on 
key that can be used by individuals with keys kt:27 and kr:31

when the modulus is p : l0l and the base is a : 51'

6. What is the group key K that can be shared by four individuals with

k1  :  l l ,  k2 :12 ,  k3 :17 ,  kc :19  us ing  t he  modu lus  P  *  1009  and

a : 3 1 .

7. Describe a procedure to allow n individuals to share the comrnon key described

in the text.

7.3 Computer Proiects

Write programs to do the following:

l. Encipher messages using modular exponentiation.

2. Decipher messages that have been enciphered using modular exponentiation.

3. Cryptanalyze ciphertext that has been enciphered using modular exponentiation

when a correspondence between a plaintext block P and a ciphertext block C is

known.

4. Produce common keys for individuals in a network.

l .

2.

4 .

5 .

keys
base
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5. Play electronic poker using encryption via modular exponentiation.

7.4 Public-Key Cryptography
If one of the cipher systems previously described in this chapter is used to

establish secure communications within a network, then each pair of
communicants must employ an enciphering key that is kept secret from the
other individuals in the network, sincl once the enciphering key in one of those
cipher systems is known, the deciphering key can be fiund using a small
amount of computer time. Consequently, to maintain secrecy the enciphering
keys must themselves be transmitted ovei a channel of secure communications.

To avoid assigning a key to each pair of individuals that must be kept secret
from the rest of the network, a new type of cipher system, called a
public-key cipher system, has been recentiy introduced. In ttris type of
cipher system, enciphering keys can be made- public, since an unrealistically
large amount of computer time is required to find a deciphering
transformation from an enciphering transformation. To use a public-key
cipher system to establish secret communications in a network of n
individuals, each individual produces a key of the type specified by the cipher
system, retaining certain private information that went into the construction of
the enciphering transformation E (D, obtained from the key ft according to a
specified rule. Then a directory of the n keys k1, k2,...,k, is published. wtrn
individual i wishes to send a message to individual ], the letters of the
message are translated into their numerical equivalents and combined into
blocks of specified size. Then, for each plaintlxt block p a corresponding
ciphertext block c - E1,, (p) is computed using the enciphering
transformation Ekt. To decipher the message, individual 7 applies the
deciphering transformation D1r, to each ciphertext block C to find p, i.e.

Dk,(C) - Pkt(Eo,(r)) : f.

Since the deciphering transformation Do, cannot be found in a realistic
amount of time by anyone other than individual -/, no unauthorized individuals
can decipher the message, even though they know the key k;. Furthermore,
cryptanalysis of the ciphertext message, even with knowiedge of ki, is
extremely infeasible due to the large amount of computer time needed.

The Rfl cipher system, recently invented by Rivest, Shamir, and
tgl? Adleman lgl], is a puitic-key cipher system based on modular exponentiation

where the keys are pairs (e,n), consisting of an exponent e and a modulus n
that is the product of two large primes, i.e. n: pq, where p and. q are large
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primes, so that G,Q(il): l . To encipher a message, we first translate the

ietters into their numerical equivalents and then form blocks of the largest

possible size (with an even number of digits). To encipher a plaintext block

P, we form a ciphertext block C bY

E @ )  : C  z P '  ( m o d n ) ,  0  1  C  1  n .

The deciphering procedure requires knowledge of an inverse d of e modulo

Qh), which exists since G,Qh)) : l. To decipher the ciphertext block C, we

find e"l- | - ri 4{")

D (O = Cd :  (P')d :  Ped :  Pkdh) +t
_ (poft) ;kp = p (mod n),

where ed: kth) * I for some integer k, since ed = I (mod Ob)), and by
Euler's theorem, we have pa(fi) -- 1 (mod n), when (P, n) : | (the

probability that P and n are not relatively prime is extremely small; see
problem 2 at the end of this section ) . The pair (d, n) is a deciphering key.

To illustrate how the RSA cipher system works, we present an example
where the enciphering modulus is the product of the two primes 43 and 59
(which are smaller than the large primes that would actually be used). We
have n : 43 ' 59 : 2537 as the modulus and e - 13 as the exponent for the
RSA cipher. Note that we have (e, Qh)) : (13, 42' 58) : l. To encipher
the message

PUBLIC KEY CRYPTOGRAPHY.

wq first translate the letters into their numerical equivalents, and then group
these numbers together into blocks of four. We obtain

1520 01 I  l  0802 1004
2402 1724 l5l9 1406
1700 1507 2423,

where we have added the dummy letter X : 23 at the end -of the passage to
fill out the final block.

We encipher each plaintext block into a ciphertext block, using the
relationship

C = Prt (mod 2537)

For instance, when we encipher the first plaintext block 1520, we obtain the
ciphertext block
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C = (1520)13 = 95 (mod 253D.

Enciphering all the plaintext blocks, we obtain the ciphertext message

0095 1648 l4 l0 t299
081 I 2333 2132 0370
I 185 1457 1084.

In order to decipher messages that were enciphered using the RSA cipher,
we must find an inverse of e : 13 modulo oesli l : o(43. 5i) :
42' 58 : 2436- A short computation using the Euclidean algorithm, as done
in section 3.2, shows that d :937 is an inverse of 13 modulo 2436.
Consequently, to decipher the cipher text block C, we use the relationship

P -  ge37 (mod 253D,0 <p < 2532,

which is valid because

ge37 : (pr3)e37 - (p2az6)sp = p (mod 2537):

note that we have used Euler's theorem to see that

pQQs37) - p2436 - t (mod 2537),

when (P, 2537) : | (which is true for all of the plaintext blocks in our
example).

To understand how the RSA cipher system fulfills the requirements of a
public-key cipher system, first note that each individual can find two large
primes p and q, with 100 decimal digits, in just a few minutes of computer
time. These primes can be found by picking odd integers with 100 digits at
random; by the prime number theorem, the probability that such an integer is
prime is approximately 2tog 10100. Hence, we expect to find a prime after
examining an average of l/OAog 10100), or approximately ll5, such integers.
To test these randomly chosen odd integers for primality, we use Rabin's
probabilistic primality test discussed in Section 5.2. For each of these 100-
digit odd integers we perform Miller's test for 100 bases less than the integer;
the probability that a composite integer passes all these tests is less than 10-60.
The procedure we have just outlined requires only a few minutes of computer
time to find a 1OO-digit prime, and each individual need do it only twice.

Once the primes p and q have
should be chosen with (e,e(pq)) :
take any prime greater than both p
should be true that 2' > fl : pQ,

been found, an enciphering exponent e
l. One suggestion for choosing e is to

and q. No matter how e is found, it
so that it is impossible to recover the



plaintext block P, P # O or 1, just by taking the eth root of the integer C

w i t h C = P , ( m o d n ) , 0 1 C 1 n . A s l o n g a s 2 , } | | , e v e r y m e s s a g e o t h e r
than p : 0 and l, is enciphered by exponentiation followed by u reduction

modulo n.

We note that the modular exponentiation needed for enciphering messages

using the RSA cipher system can be done using only a few seconds of

computer time when th; modulus, exponent, and base in the modular

exponentiation have as many as 200 decimal digits' Also, using the Euclidean

algorithm, we can rapidly find an inverse d of the enciphering exponent e

rnldulo 6(r) when the primes p and q are known' so that

0 h )  : 6 ( P q )  :  ( P - l ) ( q - l )  i s  k n o w n '

To see why knowledge of the enciphering key (e, n) does not easily lead to

the deciphering key (d] n), note that to find d, an inverse of e modulo 6h),

requ i res  tha t  we f i rs t  f ind  Qh) :OQq) :  (p - l ) (q - l ) '  Note  tha t  f ind ing

Q0) is not easier than factoring the JIlSgg-t? . To se7-y!5 no.!1 that

i  i  n  :  n  -  o0 )  + l  and  p  -  q  : ' /mq  : !Q+d ' -4n '  so

7.4 Publ ic-KeY CrYPtograPhY
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if ,u,  p :  t /2 lQ+Q + Q-i l \  and q :  Vzl |+q) + (p-q) | ,  and consequent ly

p and q can easi ly U" found when n :  pq and 6h) :  b- l )Q- l )  are

known. Note that when p and q both have around 100 decimal digits,

n - pq has around 200 decimal digits. From Table 2.1, we see that using the

fastest factorization algorithm known, 3.8xlOe years of computer time are

required to factor an inleger of this size. Also, if the integer d is known, but

o(n) is not, then n may also be factored easily, since ed - I is a multiple of

eh) and there are special algorithms for factoring an integer n using any

multiple of 6h) (see Mill.r t72D. It has not been proven that it is impossible

to decipher messages enciphered using the RSA cipher system without

factoring n, but so far no such method has been discovered' As yet,all

decipherlng methods suggested that work in general are equivalent to factoring

n, and as we have remarked, factoring large integers Seems to be an

intractable problem, requiring tremendous amounts of computer time.

A few extra precautions should be taken in choosing the primes p and q to

be used in the RSA cipher system to prevent the use of special rapid

techniques to factor n : pq. For example, both p - | and q - I should have

large pri-. factors, (p - l, q - l) should be small, and p and q should have

decimal expansions differing in length by a few digits'

For the RSA cipher system, once the modulus n has been factored, it is

easy to find the deciphering transformation from the enciphering

transformation. It may be possible to somehow find the deciphering

transformation from the enciphering transformation without factoring n,

although this seems unlikely. Rabin [92] has discovered a variant of the RSA
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cipher system for which factorization of the modulus n has almost the samecomputational complexity as obtaining the deciphering transformation fromthe enciphering transformation. To describe Rabin,s cipher system, retn : pq, where p and q are odd primes, and let b be an integer with0 < 6 1 n. To encipher the plaintexi message p, we form

e :  p@+b)  (mod n  ) .

We will not discuss the deciphering procedure for Rabin ciphers here, because
it relies on some concepts we havi not yet developed (see problem 36 in
Section 9'l). However, we remark that there are foui possible ualue, of p for
each ciphertext c such that e - p(p+b) (mod n), an ambiguity which
complicates the deciphering process. when p and q are known, the
deciphering procedure for a Rabin cipher can be carriei out rapidly since
O(log n ) bit operations are needed.

Rabin has shown that if there is an algorithm for deciphering in this cipher
system, without knowledge of the primes p and q, that ."qui.", f hf ait
operations, then there is an algorithm for the factorization of n requiiing only
2$ (n) * log n ) bit operations. Hence the process of deciphering messages
enciphered with a Rabin cipher without knowledge of p and-q is a problern of
computational complexity similar to that of factori zation.

Public-key cipher systems can also be used to send signed messages. When
signatures are used, the recipient of a message is sure that the message came
from the sender, and can convince an impartial judge that only the sender
could be the source of the message. This authentication is needed for
electronic mail, electronic banking, and electronic stock market transactions.
To see how the RSA cipher system can be used to send signed messages,
suppose that individual i wishes to send a signed message to individ ual j. itr.
first thing that individual i does to a plaintext block p is to compute

S - Do, (P) = pd' (mod n;),

where (di, n) is the deciphering key for individual f , which only individual i
knows. Then, if ni t n1, where (ei, n) is the enciphering key ior individual
7, individual i enciphers S by forming

, : E k t ( S ) = S ' ,  ( m o d n ; ) ,  0 < C  1 n j .

wh..l ni I n; individual i sprits ,s into blocks of size less than nj and
enciphers each block using the enciphering transformation 81r,.

For deciphering, individual 7 first uses the private deciphering
transformation Dp, to recover S, since
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D1,,(C) - PktGp, (S)) : s.

To find the plaintext messa ge P , supposedly sent by individual i, individual 7
next uses the pubtic enciphering transformation Eq, since

81,(s) - f i,kt(Dr,(P)) : P.

Here, we have used the identity Ep,(Dp,(P)) : P, which follows from the fact

that  

Ep,(Dp,(P))  = (Pd')"  -  Pd'e '  :  P (mod n;) '

since

diei :- I (mod Oh)).

The combination of the plaintext block P and the signed version S convinces
individual 7 that the message actually came from individual i. Also,
individual i cannot deny sending the message, since no one other than
individual f could have produced the signed message S from the original
message P.

The RSA cipher system relies on the difference in the computer time needed
to find primes and the computer time needed to factor. In Chapter 9, we will
use this same difference to develop a technique to "flip coins" electronically.

7.4 Problems
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l .

2.

Find the primes p and q if n : PQ - 4386607 and d(n) : 4382136.

Suppose a cryptanalyst discovers a message P that is not relatively prime to the
enciphering modulus n : pq used in a RSA cipher.

a) Show that the cryptanalyst can factor n. fP," ) . p or 
1

b) Show that it is extremely unlikely that such a message can be discovered by
demonstrating that the probability that a message P is not relatively prime

to  n  i ,  !+  1 - ! ,  
and i f  p  andq are  bo th  la rger  than l0 rm,  th is

p q p q
probability is leis thin 10-s.

What is the ciphertext that is produced when the RSA cipher with key
(e,n) : G,266il is used to encipher the message BEST WISHES?

If the ciphertext message produced by the RSA cipher with key
(e,n) : (s,zggt) is 0504 1874 0347 0515 2088 2356 0736 0468, what is the

3.

4 .
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plaintext message?

5. Harold and Audrey have as their RSA keys (3,23.4D and (7,31.59),
respectively.

a) Using the method in the text, what is the signed ciphertext sent by Harold
to Audrey, when the plaintext message is cHEERs tranorot

b) Using the method in the text, what is the signed ciphertext sent by Audrey
to Harold when the plaintext message is SINCERELY AUDREY?

In problems 6 and 
'7, 

we present two methods for sending signed messages using the
RSA cipher system, avoiding possible changes in block sizes.

6. Let H be a fixed integer. Let each individual have two pairs of enciphering keys:
k - (e,n) and k* - (e,n*) with n < H <n*, where n and n* are both the
product of two primes. Using the RSA cipher system, individual f can send a
signed message P to individual T by sending E*.(D1,,(p)).

il Show that is is not necessary to change block sizes when the transformation
Eor. is applied after Dp, has been applied.

b) Explain how individual 7 can recover the plaintext messa ge P, and why no
one other than individual l' could have sent the message.

c) Let individual f have enciphering keys (3,11.71) and Q2}.4D so that
781 : 1l '71 < 1000 < l l89 - 29'41, and let individual j  have enciphering
keys (7 ,19.47)  and,  (7 ,31.3D,  so that  g93:  lg .4 j  <  1000 < I I47:31.37.
What ciphertext message does individual f send to individual 7 using the
method given in this problem when the signed plaintext message is HELLO
ADAM? What ciphertext message does individual j send to individual f
when the signed plaintext message is GOODBYE ALICE?

7 . il Show that if individuals f and y have enciphering keys k; - (ei,n) and
ki : (ei,n), respectively, where both n; and ni are products of two distinct
primes, then individual i can send a signed message P to individual 7 without
needing to change the size of blocks by sending

Er,(Dr,(P)) if n, < n,

Dp,(Ep,@)) if ni ) ni .

b) How can individual T recover p?

c) How can individual j/ guarantee that a message came from individual i ?

d) Let ki - (11,47.61) and ki - (13,43.59). Using the method described in part
(a), what does individual f send to individual 7 if the message is REGARDS
FRED, and what does individual 7 send to individual i if the message is
REGARDS ZELDA?
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8. Encipher the message SELL NOW using the

C = P(r+s) (mod 2573).

Rabin ciPher

?.4 Computer Projects

Write programs to do the following:

1. Encipher messages with an RSA cipher'

2. Decipher messages that were enciphered using an RSA cipher.

3. Send signed messages using an RSA cipher and the method described in the text'

4. Send signed messages using an RSA cipher and the method in problem 6'

5. Send signal messages using an RSA cipher and the method in problem 7'

6. Encipher messages using a Rabin cipher'

7.5 Knapsack Ciphers

In this section, we discuss cipher systems based on the knapsack problem.

Given a set of positive integers Qr,a2,..., an and a Sum S of a subset of these

integers, the knapsack problem asks which of these integers add together to

give S. Another way to phrase the knapsack problem is to ask for the values

of xyx2,..., xn, each either 0 or 1, such that

( 7 . 3 )  S : a r x r * a 2 x 2 *  l a r x n '

We use an example to illustrate the knapsack problem.

Example. Let (a1,o2,o3,aa,a5) : (2,'7,8,11,12). By inspection, w€ see that

there are two subsets of these five integers that add together to give 21,

namely 2l -- 2+8+l | : 2*7*12. Equivalently, there are exactly two

so lu t ions  to  the  equat ion  2x1*  7x2*  8x3  *  l l xa  *  l2x5 :21 ,  w i th  I i  :0

or  I  fo r  i  :  1 ,2 ,3 ,4 ,5 ,  namely  x r  :  x3 :  x4 :  l ,  x2 :  15  :  0 ,  and

X l :  X Z :  X 5 :  l ,  X 3 :  I +  :  0 .

To verify that equation (7.3) holds, where each.x, is either 0 or 1, requires

that we perform at most n additions. On the other hand, to search by trial

and error for solutions of (2.3), may require that we check all 2n possibilities

for (x1, x2,..., rn). The best method known for finding a solution of the

knapsack problem requires O(2n/2) bit operations, which makes a computer

solution of a general knapsack problem extremely infeasible even when

n :  100.
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certain values of the integers e1, a2,..., en make the solution of the
knapsack problem much easier than the- solutlon in the general case. For
instance, if ai : )i-1, to find the solution of
S  -  A r  x r  *  a 2 x 2 - l  " :  I  a n  x r ,  w h e r e  r i : 0  o r  I  f o r  i :  1 , 2 , . . . , f t ,
simply requires that we find the binary expansion of S. We can also produce
easy knapsack problems by choosing the integers d1, oz,...,cn so that the sum
of the first 7-l of these integers is alwayrl.r, than the Tiir int"ger, i.e. so
that

j -r

2o , {o i ,
i - l

If a sequence of integers d1, e2,..., an
sequence super -increasing.

Example. The sequence 2, 3,7, 14, 27 is super-increasing because
3 > 2,7 > 3+2, 14 > 7+3+2, and 27 > l4+i+3+2.

To see that knapsack problems involving super-increasing sequences are easy
to solve, we first consider an example.

Example. Let us find the integers from the set 2,3,7,14,27 that have 37 as
their sum. First, we note that since 2+ 3 + 7 + 14 < 27, a sum of integers
from this set can only be greater than 27 if the sum contains the integer 27.
Hence,  i f  2x1*  3x2*  7x3  *  l4xa*  27x5 -  37  w i th  each .x ;  :0  o r  l ,  we
m u s t  h a v e  1 5  :  I  a n d  2 x 1 *  3 x 2 *  7 x 3  |  l 4 x a :  1 9 .  S i n c e  1 4  >  1 0 ,  x 4
must be 0 and we have 2x1* 3x2* 7x3: 10. Since 2 + 3 (  7,  we must
have x,  :  1 and therefore 2x1l3x2:3.  Obviously,  we hava x2: I  and
rr - 0. The solution is 37 - 3 + 7 + 27.

In general, to solve knapsack problems for a super-increasing seeuolco 41,
a2,. . . ,  an,  i .e.  to f ind the values of  xt ,  x2,  . . . ,  xn wi th ,S :  atx l  *  a2x2*

*  e n x n  a n d  x ; : 0  o r  I  f o r  i : 1 , 2 , . . . ,  n  w h e n . S  i s  g i v e n ,  w e  u s e  t h e
following algorithm. First, we find x, by noting that

[ r  i r  S  Z  an
r , : t o i f  S (an .

Then, we find xn-r, xn-2,..., x1, in succession, using the equations

j  :  2 ,3,  . . . ,n .

satisfies this inequality, we call the



7.5 Knapsack Ciphers

x j -

for  7  :  n- l ,n-2, . . . ,1 .

To see that this, algorirhm works,

n

s-
t- i+l
n

.s-
;- ;+l
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if

f irst note that if xn :0 when S 7 an,

n

i - j+1

t h e n  ) o r r r (  2 o ,  l e n  < S , c o n t r a d i c t i n g
i - l  i - l

the condition ! o1*i : S
,  

j - '  
j - r

Similarly, if xy : 0 when S -
; - j+ l

7 oj, then ) a;x; ( 2 *, +
i - l  t - l

a j *
r- i+ l

Using this algorithm, knapsack problems based on super-increasing
sequences can be solved extremely quickly. We now discuss a cipher system
based on this observation. This cipher system was invented by Merkle and
Hellman [90], and was considered a good choice for a public-key cipher
system until recently. we will comment more about this later.

The ciphers that we describe here are based on transformed super-increasing
sequences. To be specific, let or, a2,..., an be super-increasing and let m be a
positive integer with lz ) 2ao. Let w be an integer relatively prime to m
with inverse w modulo m. We form the sequence b1, b2,..., b, where
b j : wai (mod m) and 0 < bi 1 m. we cannot use a special technique to

solve a knapsack problem of the type ^g : b b,", where ,S is a positive
i - l

integer, since the sequence
when fr is known. we can find

is not super-increasing. However,

(7.4) wT : i fr|,r, : h o,r, (mod lz)
j - l  i - l

since fibi =ai (mod m). From (7.0 we see that

So : Zo,r,
t - l

where Ss is the least positive residue of frS modulo z. We can easilv solve
the equation



222
Cryptology

So : D o,r, ,
i - l

since er, e2,..., an is super-increasing. This solves the knapsack problem

s : !, b,r,,
i - l

since bi = wa; (mod m) and 0 ( D; I m. We illustrate this procedure with
an example.

Example. The super-increasing sequence (oya2,a3,a4,a5) :(3,5,9,20,44) can
be transformed into the sequence (b3 b2, by bq, b5): (23,6g,69,5,11) by
taking bi = 67a1 (mod 89), for 7 : 1,2,3,4,5. To solve the knapsack problem
23x1+ 68 xz*  69  x3*  Sxa *  l l x5 :84 ,  we can mul t ip ly  bo th  s ides  o f  th is
equation by 4 , an inverse of 67 modulo 89 , and reduce modulo 89, to obtain
the congruence 3x1 * 5x2 * 9x3 * 20xa * 44x5 = 336 = 69 (mod g9).
s i n c e  8 9 > 3 + 5 + 9 + 2 0 + 4 4 ,  w e  c a n  c o n c l u d e  t h a t  3 x 1  * 5 x 2 *
9x3 * 20xa * 44x5: 69. The solution of this easy knapsack problem is
xs : x4: x2: I and x3 : rr : 0. Hence, the original knapsack problem
has as its solution 68 * 5 + 1l : 84.

The cipher system based on the knapsack problem works as follows. Each
individual chooses a super-increasing sequence of positive integers of a
specified length, say N, e.g. ar, a2,..., aN, as well as a modulus m with
m ) 2ay and a multiplier w with (m,w) :1. The transformed sequence
b1, b2,. . . ,  by,  where bi  = wai  (mod m),  0 < bi  1 m, for  j  -  1,2, . . . ,N, is
made public. When someone wishes to send a message P to this individual,
the message is first translated into a string of 0's and I's using the binary
equivalents of letters, as shown in Table 7.10. This string of zeros and ones is
next split into segments of length N (for simplicity we suppose that the length
of the string is divisible by N; if not, we can simply fill out the last block with
all l 's). For each block, a sum is computed using the sequence bvbz,...,bxi
for  instance, the block x1x2.. .x11 gives S: Drxr *  b2x2* *  byxy.
Finally, the sums generated by each block form the ciphertext message.

We note that to decipher ciphertext generated by the knapsack cipher,
without knowledge of m and w, requires that a group of hard knapsack
problems of the form

(7.s) S  :  b r x r  f  b 2 x 2 *  *  b y x y

be solved. on the other hand, when m and w are known, the knapsack
problem (z.s) can be transformed into an easy knapsack problem, since
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letter
binary

equivalent letter
binary

equivalent

A
B
C
D
E
F
G
H
I
J
K
L
M

00000
00001
00010
0001 I
00100
00101
0 0 1 r 0
0 0 1 1 1
01000
0100r
0 1 0 1 0
0 1 0 1 1
0 l 1 0 0

N
o
P
a
R
S
T
U
V
w
X
Y
Z

0 1 1 0 1
0 l l l 0
0 l l l l
10000
10001
10010
l00l  I
10100
l 0 l 0 l
1 0 1 1 0
l 0 l  l 1
l 1000
1 1 0 0 1

7.5 Knapsack Ciphers

Table 7.10. The Binary Equivalents of Letters.

wIS : frbp1 * frb2x2 I
z  a t x l  *  a 2 x 2 *

' * wbyx7,1

*  ayxy (mod m ) ,

where frbj: a; (mod 22), where w- is an inverse of w modulo m, so that

(7 .6 )  So -  a f i1  *  a2x2 l  *  a1vx1v ,

where Ss is the least positive residue of wlS modulo rn. We have equality in
(7.6), since both sides of the equation are positive integers less than m which

are congruent modulo ltt.

We illustrate the enciphering and deciphering procedures of the knapsack

cipher with an example. We start with the super-increasing sequence
(a1,a2,a3,Q4,Q5tA6,A7,Qg,Qg,,Ato) : (2,1I '14'29'58'lI9'24I'480'959'1917)' We

take m: 383? as the enciphering modulus, so that m ) 2a1s, ?fld w : l00l

as the multiplier, so that (m,w):1, to transform the super-increasing

sequence into the sequence (2002,3337,2503,2170, 503,172,3347,855,709,417).

To encipher the message

REPLY IMMEDIATELY,
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we first translate the letters of the message into their five digit binaryequivalents, as shown in Table 7.10,, and thenlroup these digits into blocks often, to obtain

1 0 0 0 1 0 0 1 0 0  0 l l l t O l 0 l l  1 1 0 0 0 0 1 0 0 0
0110001100 0010000011 0100000000
1 0 0 1 1 0 0 1 0 0  0 1 0 1 I 1 1 0 0 0 .

For each block of ten binary digits, we form a sum by adding together the
appropriate terms of the sequence (2002, 3337, 2503, 2170, sd:, t 72, 3347,
855,709, 417) in the slots corresponding to positions of the block containing a
digit equal to l. This gives us

3360 12986 8686 10042 3629 3337 5530 s72s.

For instance, we compute the first sum, 3360, by adding 2002,503, and g55.

To decipher, we find the least positive residue modulo 3837 of 23 times each
sum' since 23 is an inverse of 1001 modulo 3837, and then we solve the
corresponding easy knapsack problem with respect to the original super-
increasing sequence (2,11,14,29,59,119,241,4g0,959,lglT). For example, to
decipher the first block, we find that 3360.23:540(mod 3837), and then note
that 540 : 480 + 58 + 2. This tells us that the first block of plaintext binary
digi ts is 1000100100.

Recently, Shamir [g+] tras shown that knapsack ciphers are not satisfactory
for public-key cryptography. The reason is that there is an efficient algorithm
for solving knapsack problems involving sequences b1, b2,..., b, with
bi: wai (modm), where w and m are relatively prime poritiue integers and
ar, o2,..., an is a super-increasing sequence. The algorithm found by Shamir
can solve these knapsack problems using only O @ hD bit operations, where
P is a polynomial, instead of requiring exponential time, 

"r 
ir required for

general knapsack problems, involving sequences of a general nature.

There are several possibilities for altering this cipher system to avoid the
weakness found by Shamir. One such possibility is to choose a sequence of
pairs of relatively prime integers (w1,m1),, (w2,m2) ,..., (w,mr), and then
form the series of sequences
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7 w 1 a i ( m o d  z r )
:rrijt' (mod m z)

bj') =w,b j'-rt (mod z"),

for j : l, 2, ..., n. We then use the final sequ ence b[') , b$') ,..., bl') as the

enciphering sequence. As of mid-1983, no efficient algorithm had been found

for solving knapsack problems involving sequences obtained by iterating

modular multiplications with different moduli (although there are several

promising methods for the production of such algorithms).

b9)
;;,,

7.5 Problems

l. Decide whether each of the following sequences is super-increasing

a) (3,5,9,19,40)
b) (2,6,10,15,36)

c) (3,7,17,30,59)

d  ( l  l , 2 l , 4 l , 8 l , l 5 l ) .

2.

3 .

4.

5 .

Show that if 41, a2,..., dn is a super-increasing sequence, then c; 2 A-r for
j  -  1 ,2 ,  . " ,  f , '

Show that the sequence a1, a2,..., a21 is super-increasing if ai+r ) 2ai for
j  -  1,2,  . . . ,  f l - l ' .

Find all subsets of the integers 2,3,4,7, 11, 13, 16 that have 18 as their sum.

Find the sequence obtained from the super-increasing sequence
(1,3,5,10,20,41,80) when modular multiplication is applied with multiplier
w : 17 and modulvs m : 162.

Encipher the message BUY NOW using the knapsack cipher based on the
sequence obtained from the super-increasing sequence (17,19,37,81,160), by
performing modular multiplication with multiplier w :29 and modulus
m  : 3 3 1 .

Decipher the ciphertext 402 105 150 325 that was enciphered by the knapsack
cipher based on the sequence (306,374,233,L9,259). This sequence is obtained
by using -modular multiplication with multiplier w : 17 and modulus m : 464,
to transform the super-increasing sequence (I8,22,4I,83,179).

Find the sequence obtained by applying successively the modular multiplications
with multipliers and moduli (7,92), (11,95), and (6,101), respectively, on the
super-increasing sequence (3,4,8,I7,33,67) .

6 .

7 .

8 .
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7.5 Computer Projects

Write programs to do the following:

1. Solve knapsack problems by trial and error.

Cryptology

What process can be employed to decipher messages that have been enciphered
using knapsack ciphers that involve sequences arising from iterating modular
multiplications with different moduli?

A multiplicative knapsack problem is a problem of the following type: Given
positive integers aya2,...,an and a positive integer P, find the subset, or subsets,
of these integers with product P, or equivalently, find all solutions of

P - ai'ai' ." oi'

where xj - 0 or I for j : 1,2,...,n.

il Find all products of subsets of the integers 2,3,5,6, and l0 equal to 60.

b) Find all products of subsets of the integers 8,13,17,21,95,121 equal to 15960.

c) Show that if the integets a1,a2,...,an are mutually relatively prime, then the

mul t ip l ica t ive knapsack prob lem P:a i 'a i ' " 'o I ' ,  r j -0  or  I  for
j : I,2,...,n, is easily solved from the prime factorizations of the integers
P,ayo2,...,an, and show that if there is a solution, then it is unique.

d) Show that by taking logarithms to the base b modulo m,where (b,m): I
and 0 < b < m, the multiplicative knapsack problem

P-a i ' a i ' " ' o l '

is converted into an additive knapsack problem

S -  a1x1  *  a2x2  * *  anxn

where S, @1, e20... ;dn ate the logarithms of
modulo m, respectively.

e) Explain how parts (c) and (d) can be used to produce ciphers where
messages are easily deciphered when the mutually relatively prime integers
a1, a2t...; an are known, but cannot be deciphered quickly when the integers
d\, dzr..., an Are knOwn.

to the base 6

2 .

3 .

Solve knapsack problems involving super-increasing sequences.

Encipher messages using knapsack ciphers.

Decipher messages that were enciphered using knapsack ciphers.

Encipher and decipher messages using knapsack ciphers involving sequences
arising from iterating modular multiplications with different moduli.
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6. Solve multiplicative knapsack problems involving sequences of mutually relatively

prime integers (see Problem 10).

7.6 Some Applications to Computer Science

In this section we describe two applications of cryptography to computer

science. The Chinese remainder theorem is used in both applications.

The first application involves the enciphering of a database. A database is

a collection of computer files or records. Here we will show how to encipher

an entire databasi so that individual files may be deciphered without

jeopardizing the security of other files in the database'

Suppose that a database B contains the n fi les Fv Fz,,-.-, Fn' Since each

file is a string of 0's and I's, we can consider each file to be a binary integer.

We first choose n distinct primes rltr, t7r2, ...1 r/tn with m1 ) F1 for

j  :1,2, . . . , f r .  As the c iphertext  we use an integer C that is congruent to F;_

modulo mi for  j  :1,2, . . . ,n;  the existence of  such an integer is guaranteed

by the ihin.t" remainder theorem. We let M - fttr trtz mn and

f u i :  M / r y  f o r T  : 1 , 2 , . . . , n .  F u r t h e r m o r e ,  l e t  , i -  
! i . ' - l f  

w h e r e y ;  i s  a n

inverse of Ml modulo rz;. For the ciphertext, we take the integer C with

C:b r , r , (modM) ,  0<C  <M.
j-r

The integers e r, €2, ..., €n serve as the write subkeys of the cipher.

To retrieve the 7th file F; from the ciphertext C, we simply note that

F i = C ( m o d m ) , 0 ( F ; 1 m i .

We call the moduli my r/121 ...r mn the read subkeys of the cipher. Note that

knowledgeof mi permits access only to file7; for access to the other files, it is

necessary to know the moduli other than mi.

We illustrate the enciphering and deciphering procedures for databases with

the following examPle.

Example. Suppose our database contains four files Fr, Fz, F3,lfid Fa,

represented by ih" binu.y integers (01I l )2,  (1001)r ,  ( t  t00)2,  i IDd ( t  t  t  t )2,  or

in  dec ima l  no ta t ion  Fr :7 ,  Fz :9 ,  F t :  12  and Fq:  15 '  We p ick  four

pr imes,  f i l r :  11 ,  m2:  13 ,  t r l3 :  17 ,  and t r l4 :  19 ,  g rea ter  than the

corresponding integers representing the files. To encipher this database, we
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use the chinese remainder theorem to find the ciphertext c which is thep o s i t i v e  i n t e g e r  w i t h  C = 7 ( m o d l t ) ,  C = 9 ( m o i t 3 ) ,  C =  1 2 ( m o d l 7 ) ,
and c = 15 (mod l9) ,  less than M: l l . l3 . l7 . l9 :461g9.  To compute cwe f i rs t  f ind Mr - .  13.17.19 :  4199,  Mz:  1 l  . l7 . lg :  3553,M t :  l 1 ' 1 3 ' 1 9 : 2 7 1 7 ,  a n d  M t -  l l . l 3 .  1 7 : 2 4 3 1 .  W .  e a s i l y  f i n d  t h a t
l r -7 ,y2 :  l 0 , .p r :  l l  and  /+ :  l g  a re  inverses  o f  M i  modu lo  m j  fo rj :1 ,2 ,3 ,4 .  Hence ,  the  wr i te  subkeys  a r ta  e1 :  4199 . i :  29393 ,  e2 :3553'10:  35530,  e3 -  27 l7. l l  :  2ggg7,  and,  eo:  243l . lg :  4375g.  Toconstruct the ciphertext, we note that

Q  :  e 1 F 1 l  e 2 F 2 *  e 3 F 3  *  e q F c
= 29393.7 + 35530.9 + 29887.12 + 43758.15
= 1540535
= 16298 (mod 46189),

so that c:16298. The read subkeys are the integers mi, j - 1,2,3,4. To
recover the file F7 from C, we simply find the least positive residue of C
modulo rn7. For instance, we find F1 by noting that

F r = 1 6 2 9 8 = 7 ( m o d t l ) .

We now discuss another application of cryptography, namely a method for
sharing secrets. Suppose that in a communications network,- there is some
vital, but extremely sensitive information. If this information is distributed to
several individuals, it becomes much more vulnerable to exposure; on the other
hand, if this information is lost, there are serious consequences. An example
of such information is the master key K used for access to the password file
in a computer system.

In order to protect this master key K from both loss and exposure, we
construct shadows kv kz, ..., k, which are given to r different individuals.
We will show that the key K can be produced easily from any s of these
shadows, where s is a positive integer less than r, whereas the knowledge of
less than s of these shadows does not permit the key K to be found. Because
at least s different individuals are needed to find K, the key is not vulnerable
to exposure. In addition, the key K is not vulnerable to loss, since any .t
individuals from the r individuals with shadows can produ ce K. Schemes with
the properties we have just described are called (s,r) threshold schemes.

To develop a system that can be used to generate shadows with these
properties, we use the chinese remainder theorem. we choose a prime p
greater than the key K and a sequence of pairwise relatively prime integeis
rTtb ftiz, ..., ffir that are not divisible by p, such that
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m t 1 m z 1  1 l t t r ,

and

0.7) tTlt l l lz ff i, ) Pffirff ir-t frlFs*z

Note that the inequality (7.7) states that the product of the s smallest of the

integers n; is g."utr.- than the product of p and the s-l largest of, the

intelgers m'1. nt-om Q.l), we see ttrat if M - tttttTtz n' then A/p is

greater than the product of any set of s-l of the intege$ mi.

Now let I be a nonnegative integer less than M /p that is chosen at random.

Let

K o :  K  *  t P '

s o t h a t 0 (  K o (  M - l  ( s i n c e 0 (  K o : K * t p <  p + t p : ( l + l ) p (

( M / p ) p :  M ) .

To produce the shadows kr kz, ..., kr, we let k1 be the integer with

ki = Ks (mod rn;), 0 ( k; I mi,

for 7 : 1,2,...,r. To see that the master key K can be found by any s

individuals possessing shadows, from the total of r individuals with shadows,

suppose that the s shadows ki,,ki,,..., ki, are available. Using the Chinese

remainder theorem, we can easily find the least positive residue of Ks modulo

Mi where Mi: Hj,ffij, ftri,. Since we know that 0 ( Ko < M 4 Mi,

we can determine Ks, and then find K : Ko - tp.

On the other hand, suppose that we know only the s - 1 shadows

kr,, k,r, ..., k,,-r. By the Chinese remainder theorem' we can determine the

least positive residue a of Ks modulo M; where Mi : ffii,ffii, Hi,-,' With

these shadows, the only information we have about Ks is that a is the least

positive residue of Kq modulo Mi and 0 ( Ko < M - Consequently, we only

know that

K o : a * x M ; ,

where 0 ( x < M/Mt From 0.1), we can conclude that M /Mi ) p, so

that as .r ranges through the positive integers less than M lM, o x takes every

value in a fu l l  set  of  residues modulo p.  Since (m1,P):  I  for  i  :  1,2,  . . . ,  s ,

we know that (Mi,p) : l, and consequently, a * xMi runs through a full set

of residues modulo p as x does. Hence, we see that the knowledge of s-l

shadows is insufficient to determine Ko, as Ks could be in any of the p
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congruence classes modulo p.

we use an example to illustrate this threshold scheme.

Example. Let K :4 be the master key. we will use a (2,3) threshold
scheme o f  the  k ind  jus t  descr ibed w i t i r  p  -7 ,  r11 :  l l ,  f t r2 :12 ,  and
t r t 3 : 1 7 ,  s o  t h a t  M  :  D t i r t 2 : 1 3 2  )  p m t :  l l 9 .  W e  p i c k  t  : i q r a n d o m l y
from among the positive integers less than M /p : 132/7. This gives us

K o :  K  i  t p  : 4  *  1 4 . 7  : 1 0 2 .

The three shadows kvkz, and ft3 are the least positive residues of Ks modulo
l7lt, f/12, and m3, i.e.

= 3 (mod l l )
= 6 (mod 12)
= 0 (mod l7),

so that the three shadows are kl : 3, kz:6, and kr : 0.

We can recover the master key K from any two of the three shadows.
Suppose we know that kr: 3 and kr : 0. Using the Chinese remainder
theorem, we can determine Ks modulo n7t/tt: l l . l j  - lg7, i.e. since
Ko = 3 (mod ll) and Ko = 0 (mod 17) we have ko = 102 (mod 1g7).
Since 0 (  Ko < M :132 < 187, we know that K6 :102, and consequent ly
the master key is K : Ks - tp : lO2 - 14.7 : 4.

We will develop another threshold scheme in problem 12 of Section g.2.
The interested reader should also consult Denning [47] for related topics in
cryptography.

7.6 Problems

l. Suppose that the database I contains four f i les, F1 :4, Fz- 6, Ft: 10, and
F+:  13.  Let  ml  :  5 ,  n tz :7 ,  f t i3  -  l l ,  and ma -  16 be the read subkevs of  the
cipher used to encipher the database.

il What are the write subkeys of the cipher?

b) what is the ciphertext c corresponding to the database?

2. When the database I with three files Fr Fz, and ^F3 is enciphered using the
method described in the text, with read subkeys ft:1 : 14, fir2: 15, and
nt3:19, the corresponding ciphertext is c:619. I f  f i le F3 is changed from
Fr - ll to F3 : 12, what is the updated value of the ciphertext c?

kr = 102
kz = 102
kt = 102
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3. Decompose the master key K : 3 into three shadows using a (2'3) threshold

scheme of the type described in the text with p - 5'  mr :  8'  t / tz: 9'  m3 : l l

and with t  -- 13.

4. Show how to recover the master key K

found in Problem 3.

from each of the three pairs of shadows

7.6 Computer Projects

Write programs to do the following:

l. Using the system described in the text, encipher databases and recover files from

the ciphertext version of databases'

2. Update files in the ciphertext version of databases (see problem 2)'

3. Find the shadows in a threshold scheme of the type described in the text.

4. Recover the master key from a set of shadows'
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8.1 The Order of an Integer and primitive Roots
From Euler's theorem, if m is a positive integer and if a is an integer

relatively prime to m, then s6(m) = | (mod m). Therefore, at least one
positive integer x satisfies the congruenee a* = 1 (mod rz). Consequently, by
the well-ordering property, there is a least positive integer x satiifying this
congruence.

Definition. Let a and m be relatively prime positive integers. Then, the least
positive integer x such that e* = I (mod z) is called the order of a
modulo m.

We denote the order of a modulo m by ord_a.

Example. To find the order of 2 modulo 7, we compute the least positive
residues modulo 7 of powers of 2. We find that

2t = 2 (mod 7), 22 4 (mod 7), 23 I (mod 7).

Therefore, ord,72 :

Similarly, to find

3 .

the order of 3 modulo 7 we compute

3 (mod 7), 32 : 2 (mod 7), 33 = 6 (mod 7)
4 (mod 7) , 3s = 5 (mod 7) , 36 = I (mod 7).

3 t
3e

We see that ord73 : 6.
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In order to find all solutions of the congruence a* = I (mod m), we need

the following theorem.

Theorem 8.1. lf a and n ate relatively prime integers with n > 0, then the

positive integer x is a solution of the congruence a' = I (mod n) if and only

if  ord,a I x.

Proof. If ordra I x, then x : k'ordnc where k is a positive integer' Hence,

a *  - o k ' o r d ' a : ( a o ' d ' o ) k  = l  ( m o d n ) .

Conversely, if a* =

x

I (mod n ), wo first use the division algorithm to write

: q'ordna * r, 0 ( r ( ordra.

From this equation, we see that

a, :  oa 'ord.a*r  -  (aord,o)e gr  -  a,  (mod n).

Since a' = I (mod n), we know that a' = I (mod n). From the inequality

0 ( r ( ord, Q, we conclude that r:0, since, by definition, y : ordna is the

least positive integer such that.av = I (mod n). Because f :0, we have

x : a'ordna. Therefore, ordna I x. D

This theorem leads to the following corollary'

Corollary 8.1. lf a and n are relatively prime integers with n ) 0, then

ordna  I  O fu ) .

Proof. Since (a,n) : 1, Euler's theorem tells us that

qb( ' \ :  l  (modn) .

Using Theorem 8.1, we conclude that ordra I O(n )' n

We can use Corollary 8.1 as a shortcut when we compute orders. The

following example illustrates the procedure.

Example. To find the order of 5 modulo 17, we first note that 0(ll7) : 16.

sinceihe onty positive divisors of 16 are 1,2,4,8, and 16, from corollary 8.1

these are the only possible values of ord175. Since

5 r  =  5  ( m o d  l 7 ) , 5 2  =  8  ( m o d  l 7 ) , 5 4 : 1 3  ( m o d  l 7 ) ,

58 = 16 (mod 17),  516 = I  (mod l7) ,

we conclude that ord175 - 16.
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0, then
only if

The following theorem will be useful in our subsequent discussions.

Theorem 8.2. rf a and n are relatively prime integers with n )
ai = aj , (mod n) where r and 7 are nonnegative integers, if and
i = j (mod ordna).

Proof. Suppose that i = j (mod ordna), and 0 < j < t.
i : j * k'ordra, where k is a positive integer. Hence,

ai :  ojrk'ord'a :  aj(ao'd.o)o = a/ (mod n ).

Then, we have

s i n c e o o r d ' a = l ( m o d n ) .

Conversely,  assume that ai  = ar (mod n) wi th i  > j .  Since (a,n):  l ,  we
know that (ai,n) : 1. Hence, using Corollary 3.1, the congruence

ai = ai ai-i = ai (mod n)

implies, by cancellation of a/, that

a i - j :  I  ( m o d n ) .

From Theorem 8.1, it follows that ordra divides i - j, or equivalently,
i = j (mod ord,a). tr

Given an integer n, we are interested in integers a with order modulo n
equal to Qfu). This is the largest possible order modulo r.

Definition. If r and n are relatively prime integers with n ) 0 and if
ordrr :6h), then r is called a primitive root modulo n.

Example. We have previously shown that ord73 : 6 : 00). Consequently, 3
is a primitive root modulo 7. Likewise, since ord75 : 6, as can easily be
verified, 5 is also a primitive root modulo 7.

Not all integers have primitive roots. For instance, there are no primitive
roots modulo 8. To see this, note that only integers less than 8 and relatively
p r i m e  t o  8  a r e  1 , 3 , 5 ,  a n d 7 ,  a n d  o r d 3 l  :  l ,  w h i l e  o r d s 3 :  o r d s 5 :  o r d s 7 : 2 .
Since d(8) : 4, there are no primitive roots modulo 8. In our subsequent
discussions, we will find all integers possessing primitive roots.

To indicate one way in which primitive roots are useful, wo
following theorem.

Theorem 8.3. lf r and n are relatively prime positive integers with n ) 0
and if r is a primitive root modulo n, then the integers

the
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t l  ,  f 2 '  " ' '  ' 6 b )

form a reduced residue set modulo n.

Proof. To demonstrate that the first @(r) powers of the primitive root r form

a reduced residue set modulo n, we only need to show that they are all

relatively prime to n, and that no two are congruent modulo n.

S ince  G,n) :1 ,  i t  fo l lows f rom prob lem 8  o f  Sec t ion  2 '1  tha t  ( rk ,n ) :1

for any positive integer k. Hence, these powers are all relatively prime to n '

To show that no two of these powers are congruent modulo n, assume that

ri = r/ (mod n ) .

From Theorem 8.2, we see that i = i (mod Qfu))' However' for

I < t ( O(n) and 1 < j < 0h), the congruence i = / (mod d(n)) implies

that i : j . Hence, no i*o of these powers are congruent modulo n. This

shows that we do have a reduced residue system modulo r. D

Example. Note that 2 is a primitive root modulo 9, since

22 = 4,2t = g, and 26 = I (mod 9). From Theorem 8.3, we see that the first

OO) :6 powers of 2 form a reduced residue system modulo 9. These are

Zt = 2 (mod 9), 22 = 4 (mod 9), 23 = 8 (mod 9), 24 = 7 (mod 9),

2s = 5 (mod 9), and 26 = 1 (mod 9).

When an integer possesses a primitive root, it usually has many primitive

roots. To demonstrate this, we first prove the following theorem'

Theorem 8.4. If ord-a : / and if r,l is a positive integer, then

ord- (a")  :  t  lQ,D .

P r o o f .  L e t  J : o r d - ( a " ) ,  v : ( t , u ) ,  t : t v v ,  a n d  u : t l t v '  F r o m

Proposition 2.1, we know that (r yu1) : l.

Note that

(a" ) t ' :  (a r ' , )Q lv )  :  (a t )u ' :  I  (mod rn  ) ,

since ord.^a : t. Hence, Theorem 8.1 tells us that s I tr '

On the other hand, since

(a\ t  :  eus = I  (mod rn ) ,

we know that I I zs. Hence, tp I u1vs, slld consequently, tt | ,tt. Since
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Q 6 u ) :  l ,  u s i n g  L e m m a  2 . 3 , w e  s e e  t h a t  / ,  |  
" .

Now,  s ince  s  I  t r  and t ,  I  r ,  we conc lude tha t ,s  :  I  t :  t / v  :  t / ( t ,u ) .  Th is
proves the result. tr

We have the following corollary of Theorem g.4.

Corollary 8.2. I et r be a primitive root modulo z where m is an integer,
m 2 r. Then r' is a primitive root modulo m if and,only if (u,o(d ) : l:

Proof. From Theorem 8.4, we know that

ord,^r' : ord^rf (u,ord*r)
:  Q(m) / fu ,0@D .

consequently, ord- ru : efu), and ru is a primitive root modulo m, if and
on ly  i f  (u ,Q(m))  :  t .  D

This leads immediately to the following theorem.

Theorem 8.5' If the positive integer m has a primitive root, then it has a
total of Q@fu)) incongruent primitive roots.

Proof. Let r be a primitive root modulo rn. Then Theorem 8.3 tells us that
the integers r, 12,...,vbh) form a reduced residue system modulo ,,. From
Corollary 8.2, we know that r" is a primitive root modulo rn if and only if
(u,a(*)) :  l .  s ince there ut"  r*"" i ly  o@@)) such integers a,  there are
exactly 0@@)) primitive roots modulo ru. tr

Example. Let m: 11. A l itt le computation tells us that 2is a primitive root
modulo 11. s ince l l  has a pr imit ive root,  we know that 11 has a@ol))  :4
incongruent primitive roots. It is easiry seen that 2, 6,7, and g are four
incongruent primitive roots modulo I l.

8.1 Problems

1. Determine the

a) order of 2
b) order of 3

modulo 5 c)
modulo l0 d)

order of l0 modulo 13
order of 7 modulo 19.
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2. Find a primitive root modulo

d )  1 3
e) 14
f)  18.

3. Show that the integer 12 has no primitive roots'

4. How many incongruent primitive roots does 13 have? Find a set of this many

incongruent primitive roots modulo 13.

5. Show that i f  dis an inverse of c modulo n, then ordna: ordnd.

6. Show that if n is a positive integer and a and 6 are integers relatively prime to n

such that (ordna, ordnD) : l ,  then ord'(ab) :  ordna'ordnb'

7. Find a formula for ordn Gil if a and b are integers relatively prime to n when

ordna and ordrb are not necessarily relatively prime'

g. Decide whether it is true that if n is a positive integer and d is a divisor of Qh),

then there is an integer a with ordna : d.

g. Show that if a is an integer relatively prime to the positive integer m and

ord^a : s/, then ord^at : s .

10. Show that if m is a positive integer and a is an integer relatively prime to z

such that ord^a - tlt - 1, then rr is prime.

I 1. Show that r is a primitive root modulo the odd prime p if and only if

,e_D/e *  I  (modp)

for all prime divisors q of P-1.

Show that if r is a primitive root modulo the positive integer m, then i is also a

primitive root modulo m, if i is an inverse of r modulo m '

Show that ordp 2 ( 2'*1, where Fn : 2T * I is the nth Fermat number.

Let p be a prime divisor of the Fermat number Fn:2v * l'

a) Show that ordo2 :Zn*r.

b) From part (a), conclude that 2n+r | (p-1), so that p must be of the form

z"+ rk  +  l .

15. Let m: an - 1, where a andn are posit ive integers. Show that ordra : n and

conclude that n I O@).

16. a) Show that if p and q are distinct odd primes, then pq is a pseudoprime to

the base 2 if and only if ordo2 | 0-t) and ordo 2 | Q-D.

b) Use part (a) to decide which of the following integers are pseudoprimes to

the base 2: 13'67, 19'73,23'89,29'97.

i l 4
b ) 5
c) l0

12.

1 3 .

14 .
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Show that if p and q are distinct odd primes, then pq is a pseudoprime to thebase 2 i f  and only i f  MoMo: (2p-r)ei-D ir" prrr iJoprime to the base 2.
There is a method for deciphering messages that were enciphered by an RSA
cipher, without knowledge of the deciphering key. This method is based oniteration. Suppose that the public key ie,il ir"o ro. enciphering is known, but
the deciphering key (d,il is not. To decipher a ciphertext block C, we form as e q u e n c e  C t , C z , C 3 , . . . s e t t i n g C r  =  C "  ( m o d n ) , 0  <  C 1  1 n  a n d C ; + 1  E
C7Y (mod n), 0 < Ci+t 1 n for j  -  1,2,3,.. .  .

a) Show that C1 = Cd (mod n), 0 1 C1 1 n.

b) Show that there is an index 7 such that C1: C and C j_t : p, where p is
the original plaintext message. Show that this indei 7' is a divisor of
ord,61n,1e

c) Let n:47'59 and e :17. Using i terat ion, f ind the plaintext corresponding
to the ciphertext 1504.

(Note: This iterative method for attacking RSA ciphers is seldom successful in areasonable amount of time. Moreover, the primes p and q may be chosen so
that this attack is almost always futile. See pioblem l3 of Section g.2.)

8.1 Computer Projects

Write projects to do the following:

238

l. Find the order of c modulo rn, when a and m are relatively

2.

3 .

lntegers.

Find primitive roots when they exist.

Attempt to decipher RSA ciphers by iteration (see problem r g).

8.2 Primitive Roots for primes

In this section and in the one following, our objective is to determine which
integers have primitive roots. In this ,..tion, we show that every prime has aprimitive root. To do this, we first need to study porynomial congru"nces.

Let f (x) be a polynomial with integer coefficients. We say that an integer
c is a root of f (x) modulo m it f(c) = 0 (mod z). It i , *ryio rr. that if
c is a root of f (x) modulo m, then every integer congruent to c modulo m is
also a root.

Example. The polynomial f (i : x2 * x * t has exactly two incongruent
roots modulo T,namely x = 2 (mod 7) andx = 4 (mod 7).

1 7 .

1 8 .
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Example. The polynomial gG) : x7 * 2 has no roots modulo 5.

Example. Fermat's little theorem tells us that if p is prime, then the

polynomial hQ) - rP-t - t has exactly p-l incongruent roots modulo p,

n a m e l y  x  =  I  , 2 , 3 ,  . . . ,  P - l  ( m o d  P ) .

We will need the following important theorem concerning roots of

polynomials modulo p where p is a prime.

Lagrange's Theorem. Let f (x) : arxn + an4xn-r * + afi * cs be a

potyno.nial of degree n with integer coefficients and with leading coefficient an

noi Oiuirible by p. Then f k) has at most n incongruent roots modulo p.

Proof. To prove the theorem, we use mathematical induction' When rt : l'

*e  haue f  ( ; :  a tx  I  aowi thp  f  c1 .  A  roo t  o f  /G)  modu lo  p  rsa  so lu t ion

of the l inear congruence a 1x 2 -as (mod p). By Theorem 3'7, since

(a1,p): l, this l inear congruence has exactly one solution, so that there is

exactly one root modulo p of f G). Clearly, the theorem is true for n : l '

Now suppose that the theorem is true for polynomials of degree n - l' and

let fk) U" a polynomial of degree n with leading coefficient not divisible by

p. Assume that ihe polynomial f G) has n f I incongruent roots modulo p '

s?r!  cs,cr , , . . ,cn,  so that f  k)  = 0 (modp) for  k :0,1, , . . . , , f l .  We have

rG) - rGo) =i:l:'_-,iirr;.,:,;'y,"_;,;;q ]] i .,a_ii',[.,,",
"+ 

ar)y (x-cs) (xn-z * x'-3cg* + xcfi-3 + c6-2')

+  *  a1(x -cs)
:  (x-cs)g (x) ,

where g(x) is a polynomial of degree n - | with leading coefficient a,. we

now show that c r,cz,....,cn are all roots of g(x) modulop. Letk be an integer,

1 < k ( r. Since f G) : f (c) : 0 (mod p), we have

f Gr,) - f (rr) : (ct -co)skt) = 0 (mod P) '

From Corollary 2.2, we know that gk) : 0 (mod p), since

c1, - co# 0 (modp). Hence, c1 is a root of g(x) modulo p' This shows

that the polynomial g(x), which is of degree n - | and has a leading

coefficient not divisible by P, has n incongruent roots modulo p' This

contradicts the induction hypothesis. Hence, f G) must have no more than n

incongruent roots modulo p. The induction argument is complete' tr

We use Lagrange's theorem to prove the following result.
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Theorem 8.6. Let p be prime and let d be a divisor of p-1. Then the
polynomial xd - I has exactly d incongruent roots modulo p.

Proof. Let p-l : de. Then

xP- r  -  |  :  (xd-1 ;1"d(e- t )  a  rdG-D I  *  x ,  *  l )
:  (xd- l )g (x )  .

From Fermat's little theorem, we see that xP-r - I hasp-l incongruent roots
modulo p. Furthermore, from Corollary 2.2, we know that any root of
xP-t - I modulo p is either a root of x7 - I modulo p or u rooi of g(x)
modulo p.

Lagrange's theorem tel ls us that  g(x) has at  most dG-l) :  p -  d -  |
roots modulo p. Since every root of xP-r - I modulo p that is not a root of
g(x) modulo .p must be a root of xd - I modulo p, we know that the
polynomial  xd -  |  has at  least  Q-D -  Q-d-r) :  d incongruent roots
modulo p. On the other hand, Lagrange's theorem tells us that it has at most
d incongruent roots modulo p. Consequently, xd - I has precisely d
incongruent roots modulo p. tr

Theorem 8.6 can be used to prove the following result which tells us how
many incongruent integers have a given order modulo p.

Theorem 8.7. Let p be a prime ancl let d be a positive divisor of p-1. Then
the number of incongruent integers of order d modulo p is equat to o@).

Proof. For each positive integer d dividing p-1, let F@) denote the number
of positive integers of order d modulo p that are less than p. Since the order
modulo p of an integer not divisible byp dividesp-1, it follows that

p - l  :
d  l p - l

From Theorem 6.6, we know that

p - l  :
d l p - r

We will show that F(d) < O@) when d I e-D. This inequality, together
with the equality

d l p - r  d l p - r
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implies that F (d) : O@) for each positive divisor d of p-1.

L e t  d l
there is an

b-l).  I f  F(d) :0, i t  is clear that F(d) < O@). Otherwise,

integer a of order d modulo p. Since otdra : d, the integers

a ,  a 2 t  . " ,  Q d

7
l 3
t 7

are incongruent modulo p. Furthermore, each of these powers of a is a root

of *d -1 modulo p, since bk)d 
- (ad)k = | (modp) for all positive

integers k. From Theorem 8.6, we know that xd - I has exactly d

incongruent roots modulo P, So every root modulo p is congruent to one of

these powers of a. However, from Theorem 8.4, we know that the powers of

a with order d are those of the form a& with (kd): l '  There are exactly

O@) such integers k with I < k < d, and consequently, if there is one

element of order d modulo p, there must be exactly 0U) such positive

integers less than d. Hence, FU) < 'd(d).

Therefore, we can conclude that F (d) : OU), which tells us that there are

precisely O@) incongruent integers of order d modulo p ' D

The following corollary is derived immediately from Theorem 8'7'

Corollary 8.3. Every prime has a primitive root'

Proof. Let p be a prime. By Theorem 8.7, we know that there ate |Q-l)

incongruent integers of order p-l modulo p. Since each of these is, by

definition, a primitive root, p has 6Q-l) primitive roots.

The smallest positive primitive root of each prime less than 1000 is given in

Table 3 of the APPendix.

8.2 Problems

1. Find the number of primitive roots of the following primes:

1 9
29
47.

2. Let r be a primitive root of the prime p with p = | (mod 4)' Show that -r is

also a primitive root.

3. Show that if p is a prime and p : I (mod 4), there is an integer x such that

x2 = -l (modp). (Hint: Use Theorem 8.7 to show that there is an integer x

of order 4 modulo P.)

d)
e)
f)

a)

b)
c)
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a) Find the number of incongruent roots modulo 6 of the polynomialx2 - x.

b) Explain why the answer to part (a) does not contradict Lagrange's theorem.

il Use Lagrange's theorem to show that if p is a prime and /(x) is a
polynomial of degree n with integer coefficients and more than n roots
modulo p, then p divides every coefficient of /(x).

b) Let p be prime. Using part (a), show that every coefficient of the
polynomia l  f  (x )  :  (x - l )  (x -D . . .  ( * -p+ l )  -  xp- t  +  I  is  d iv is ib teby p.

c) Using part (b), give a proof of Wilson's theorem. (Hint: Consider the
constant term of f (x).)

Find the least positive residue of the product of a set of d(p_t) incongruent
primitive roots modulo a prime p.

A systematic method for constructing a primitive root modulo a prime p is
outlined in this problem. Let the prime factorization of ee) : p-l be
p-l :  q\ 'q' ;  q' , ,  where Qr, ez, . . . ,  qt areprime.

a) Use Theorem 8.7 to show that there are integers d1, a2,.. . ,a, such that
ordrat  :  q ' i ,  o rdra2:  q | ,  . . . ,  ordoa,  :  q : , .

b) Use problem 6 of section 8.1 to show that a : aflz-.. a, is a primitive root
modulo p.

c) Follow the procedure outlined in parts (a) and (b) to find a primitive root
modulo 29.

Let the posit ive integer n have prime-power factorization n: pl,pi, . . .p?.
Show that the number of,incongruent bases modulo n for *tti.tt n is a
pseudoprime to that base is I (n -1, pi-D .

Use problem 8 to show that every odd composite integer that is not a power of 3
is a pseudoprime to at least two bases other than i l.

Show that if p is prime and p :2q 
! l, where q is prime and a is a positive

integer with I 1 a I p-1, then p -a2 is a primitive root modulo p.

il Suppose that /(x) is a polynomial with integer coefficients of degree n-1.
Let x1,x2,...,xn be n incongruent integers modulo p. Show that for all
integers x, the congruence

.f k)
i-t 

i-_t,

t^rold^s' 
-.*h"1". F is an inverse of xj-xi (mod n ). This technique

for finding f (x) modulo p is called Lagrange interpolation.

6 .

7 .

4 .

5 .

8 .

9 .

1 0 .

I  l .
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b) Find the least positive residue of /(5) modulo 1l if /(x) is a polynomial of

degree 3 wi th  f  0)  
- -  S, f  Q)  =  2 ,andf  G)  = 4  (mod l1) .

12. In this problem, we develop a threshold scheme for protection of master keys in a

computer system, different than the scheme discussed in Section 7.6. Let f (x)

be a randomly chosen polynomial of degree r-1, with the condition that K, the

master key, is the constant term of the polynomial. Let p be a prime, such that

p > K and p ) s. The s shadows krkz, ..., k, are computed by finding the

least posit ive residue of f  G) modulo p for i  :1,2,. . . ,  s where xt,xz,.. . , .xr are

randomly chosen integers incongruent modulo p, i.e.,

k i  =  f ( x ; )  (modp ) ,  o  (  k ;  (  p ,

f o r ;  -

a) Use Lagrange interpolation, described in problem I l, to show that the

master key K can be determined from any r shadows.

b) Show that the master key K cannot be determined from less than r

shadows.

c )  L e t  K : 3 3 ,  p : 4 7 ,  t : 4 ,  a n d  s : 7 .  L e t  f G ) :  4 x 3 + x z +

3lx + 33. Find the seven shadows corresponding to the values of /(x) at

1 ,2 ,3 ,4 ,5 ,6 ,  and 7.

d) Show how to find the
and / (4) .

key from the four shadows f 0), f Q), f Q),

13. Show that an RSA cipher with enciphering modulus n: pq is resistant to attack

by  i t e ra t i on  ( see  p rob lem 18  o f  Sec t i on  8 .1 )  i f  p :2p '+  I  and  q :2q ' *  l ,

where p' and q' are primes.

8.2 Computer Projects

Write programs to do the following:

1. Find a primitive root of a prime using problem 7.

2. Implement the threshold scheme given in problem 12.

8.3 The Existence of Primitive Roots

In the previous section, we showed that every prime has a primitive root. In

this section, we will find all positive integers having primitive roots. First, we

will show that every power of an odd prime possesses a primitive root. We

begin by considering squares of primes.

Theorem 8.8. If p is an odd prime with primitive root r, then either r or
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r * p is a primitive root modulo p2.

Proof. Since r is a primitive root modulo p, we know that

Let n : ordozr, so that

o r d r r : 0 Q ) : p - 1 .

r ' =  I  ( m o d p 2 ) .

since a congruence modulo p'obviously holds modulo p, wa have

r n  =  I  ( m o d p ) .

From Theorem 8.1, it follows that

p - l :  o r d r r l  n .

On the other hand, Corollary g.l tells us that

n l O Q 2 ) : p ( p - t ) .

Since n I p(p-t) and p-l  I  n,,  either n :  p-l
n : p (p-l), then r is a primitive root modulo p2,
Otherwise, we have n : p-1, so that

r P - t = 1 ( m o d p 2 ) .

Let s : r+p. Then, since s E r (mod p), s is also a primitive root modulo
p. Hence, ordo"r equals either p-l or p (p-l). we wil l show that
ordo,r * p-1. The binomial theorem tells us that

. rp-r  :  ( r tp)o-r  :  7p-t  + Q_Dro-rp *  1p;I ) r r_rp,  +

z v4-t  + (p-Dp.rP-2 (mod p2).

Hence, using (S.t), we see that

sP- r  =  I  +  (p - l )p .70-2 :  l  -  p rp-z  (modp2) .

From this last congruence, we can conclude that

o r  n : p ( p - l ) .  I f
since ordrrr : Q(pz).

(s .1 )

s p - t #  l  ( m o d p 2 ) .

To see this, note that if 5P-l : l^(mod p2), then prp-z = 0 (modp2). This
last congruence implies that rp-2 = 0 (mod p), which is impossible, since
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p tr , (remember r is a primitive root of p). Hence, ordrus : p (p -l) :

O $\. Consequently, s : r*p is a primitive root of p' '  a

Example. The prim e p :7 has r : 3 as a primitive root. From the proof of

Theorem 8.8,  we see that r  :  3 is also a pr imit ive root modulo p2 :49'  s ince

rP-t - 36 + I (mod 49) '

We note that it is extremely rare for the congruence

rP- t  =  I  (modp2)

to hold when r is a primitive root modulo the prime p. Consequently, it is

very seldom that a primitive root r modulo the prime p is not also a primitive

root modulo p'. The smallest prime p for which there is a primitive root that

is not also a primitive root modulo p2 is p : 497. For the primitive root l0

modulo 487, we have

10486: 1 (mod 4872).

Hence, l0 is not a primitive root modulo 4872, but by Theorem 8.8, we know

that 497: 10 + 487 is a primitive root modulo 4872.

We now turn our attention to arbitrary powers of primes.

Theorem 8.9. Let p be an odd prim e, then pk has a primitive root for all

positive integers ft . Moreover , if r is a primitive root modulo p2, then r is a

primitive root modulo po, for all positive integers k.

Proof. From Theorem 8.8, we know that p has a primitive root r that is also

a primitive root modulo P2, so that

(8.2) rp - t  #  1  (modp2) .

Using mathematical induction, we wil l

yn'- '$-t) 1

prove that for this primitive root r,

I  (mod pf t )(8 .3 )

for all positive integers k. Once we have established this congruence, we can

show that r is also a primitive root modulo pk by the following reasoning. Let

n : ord6r.

From Theorem 6 .8 ,  we know tha t  n  I  OQ\ :  O*- r (p - l ) .  On the  o ther

hand, s ince
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7 n  -  I  ( m o d p k ) ,

we also know that

r n  =  I  ( m o d p ) .

From Theorem 8.1,  we see that p- l  :  6e) |  n.  Because e-Dl r ,  and
n I  o* - rQ- I ) ,  we know tha t  n : 'p ' (p - l ) ,  wh 'e re  l  i s  an  in teger  such tha t
0  (  r  (  k - t .  I f  n :  p ' ( p - l )  w i t h  /  <  k - 2 ,  t h e n

7p'-2(p-t) : (7p'@-t)1r'-rn : l (mod pk),

which would contradict  (8.3).  Hence, ordotr  :  pk-t  b-D :  oeo).
Consequently, r is also a prirnitive root modulo pk.

All that remains is to prove (8.3) using mathematical induction. The case
of k:2 follows from (8.2). Let us assume the assertion is true for the positive
i n t e g e r k > 2 . T h e n

7nt- t ( t_t)  # l  (modpk).

since G,p) : l, we know that (r,pk-t) : 1. consequently, from Euler's
theorem, we know that

Therefore, there

where p tr d, since
power of both sides

yP ' - ' (P- l )  -

We take the pth
binomial theorem,

*  (dpk- t1n

0 + dp*-t1o

|  +  p@pt - r ,  *  ( | )o 'Urk - t )2  +

| * dpk (mod po*').

conclude that

v P L - 2 ( o - D  :  , Q ( P k - t t

an integer d such that

yo'- 'Q-t) :  I  *  dpk-t ,

by hypothesis yP'-'(P-t) * t (moA pk).
of the above equation, to obtain, via the

Since p I d, we can

,.P^-'(P-r) # I (mod po*t).

completes the proof by induction. tr

Example. From a previous example, we know that r : 3 is a primitive root
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modulo 7 and 72. Hence, Theorem 8.9 tells us that r : 3 is also a primitive

root modulo 7k for all positive integers k.

It is now time to discuss whether there are primitive roots modulo powers of

Z. We first note that both 2 and 22: 4 have primitive roots, narnely 1 and 3,

respectively. For higher powers of 2, the situation is different, as the following

theorem shows; there are no primitive roots modulo these powers of 2.

Theorem 8.10. If a is an odd integer, and if k is an integer, k ) 3, then

aOQL)/2 :  e2'- ' :  1 (mod 2k).

proof. We prove this result using mathematical induction. If a is an odd

integer, then a : 2b t 1, where b is an integer. Hence,

a 2  :  ( 2 b +  1 ) 2  :  4 b 2  +  4 b  *  I  :  4 b $  +  1 )  +  1 .

Since either b or b * 1 is even, we see that 8 | 4b (b + l), so that

a2 :- I (mod 8).

This is the congruence of interest when k :3.

Now to complete the induction argument, let us assume that

a2'-' = I (mod 2k) .

Then there is an integer d such that

e 2 ' - ' :  l + d ' z k .

Squaring both sides of the above equality, we obtain

e2'- '  :  |  + d2k+r q 422zk.

This yields

e2 ' - '=  1  (mod zk+r ) ,

which completes the induction argument. n

Theorem 8.10 tells us that no power of 2, other than 2 and 4, has a

primitive root, since when a is an odd integer, ord2ta # OQk) , since

a6Q') lz : 1 (mod 2k) .

Even though there are no primitive roots modulo 2k for k > 3, there always

is an element of largest possible order, namely OQ\ I 2, as the following

theorem shows.
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Theorem 8.11. Let k 7 3be an integer. Then

ord2.5  :  O(Zk)D:2k-2 .

Proof. Theorem 8.10 tells us that

52'-' = I (mod 2k ).

for k 2 3. From Theorem 8.1, we see that ordr.S I Z*-2. Therefore, if we
show that ordr.5 | 2l"-t , we can conclude that

ord2.5 - 2k-2.

To show that ordr,S tr 2k-3, we will prove by mathematical induction that
f o r k ) 3 ,

52,-' = | + 2k_t * I (mod 2k).

For k : 3. we have

Now assume that

5 : l + 4 ( m o d 8 ) .

5 2 ' - ' :  l + z k - I  ( m o d 2 f t ) .

This means that there is a positive integer d such that

S 2 ' - ' _ ( 1  + 2 k - r ) + d Z k .

Squaring both sides, we find that

52'-' : (l + 2k-t)2 + 20 + zk-t) dZk + (dzk)z

so that

52,-, = 0 + 2k-r)2 : | + 2k + 22k-2 : I + 2t (mod Zk+\ .

This completes the induction argument and shows that

ordr'5 : O(2k) /2' tr

We have now demonstrated that all powers of odd primes possess primitive
roots, while the only powers of 2 having primitive roots are 2 and 4. Next, we
determine which integers not powers of primes, i.e. those integers divisible by
two or more primes, have primitive roots. We will demonstrate that the only
positive integers not powers of primes possessing primitive roots are twice
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powers of odd primes.

We first narrow down the set of positive integers we need consider with the

following result.

Theorem 8.12. If r is a positive integer that is not a prime power or twice a

prime power, then n does not have a primitive root.

Proof. Let n be a positive integer with prime-power factorization

, - p \ , p ' i . . . p ' ; .

Let us assume that the integer n has a primitive root r. This means that

(r ,n)  :  I  and ordnr :6h).  Since (r ,n)  :  l ,  we know that (r ,p ' )  :  l ,

wheneverpt is one of the prime powers occurring in the factorization of r. By

Euler's theorem, we know that

ro@') : I (mod P) .

Now let U be the least common multiple of Q(p'r), OQ'il,..-,0(p';), i-e.

u : [oQ\'), aQ'i l , . ..,0b'i l1.

Since Obh I U, we know that

ru = t (modP,l')

for i : l, 2 ,..., m . From this last congruence, we see that

o r d r r : 6 Q ) < U .

From Theorem 6.4, since @ is multiplicative, we have

Qh) :  o i \ 'p? ' ' '  p ' ; )  :  6(p ' t ' )o7 ' i l  ob ' ; l '

This formula for d(n ) and the inequality $fu) < U imply that

oQ\')  o, ' i l ' ' '  oa' i l  (  td(p'r ' ) ,oQ';) ' . . . ,  ob' i l \ .

Since the product of a set of integers is less than or equal to their least

common multiple only if the integers are pairwise relatively prime (and then

the less than or equal to relation is really just an equality), the integers

Q(p'r'),0$';),..., OQ';) must be pairwise relatively prime'
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We note that e(pt) : rt-r(p-l), so that ee,) is even if p is odd, or if
p : 2 and t > Z. Hence, the numbers e(p'r'), Oe'il,..., Oe,;\ are not
pairwise relat ively pr ime unless m: I  and n is a pr imspower o,  * :2 and
the factorization of n is n : 2p', where p is an odd prime and / is a positive
integer. tr

We have now limited consideration to integers of the form n : 2p,, where
p is an odd prime and r is a positive integer. We now show that all such
integers have primitive roots.

Theorem 8.13. rf p is an odd prime and r is a positive integer, then 2pt
possesses a primitive root. In fact, if r is a primitive root modulopt, then if r
is odd it is also a primitive root modulo 2pt, while if r is even, r * pt is a
primitive root modulo 2pt.

Proof. If r is a primitive root modulo pt , then

rob ' )  =  I  (modp, ) ,

and no positive exponent smaller than 6(pt) has this property. From Theorem
6.4, we note that O(zp') : 0Q) 66t7 : e(p,), so that ,6(2n') --

1 (mod p') .

If r is odd, then

,o(zp') = I (mod 2).

Thus, by corollary 3.2, we see that rQQp';: I (mod 2p,). since no smaller
power of r is congruent to I modulo 2pt , we conclude that r is a primitive
root modulo 2pt .

On the other hand, if r is even, then r

(r + P'10{zP')

* p ' Hence,

Since r * p' = r (mod p'), we see that

I (mod 2)

I  (mod p')G *  p t  )QQP')

Therefore, (r + ot1oQfl: I (mod 2p'), and as no smaller power of r *pr is
congruent to 1 modulo 2pt , we conclude that r * p' is a primitive root modulo
2p' .  r t

Example. Earlier this section we showed that 3 a primitive root modulo
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7t for all positive integers /. Hence, since 3 is odd, Theorem 8.13 tells us that

3 is also a primitive root modulo 2'7t for all positive integers /. For instance,

3 is a primitive root modulo 14.

Similarly, we know that 2 is a primitive root modulo 5' for all positive

integers /. Hence, since 2 + 5t is odd, Theorem 8.13 tells us that 2 * 5t is a

primitive root modulo 2.5t for all positive integers f. For instance,2T is a

primitive root modulo 50.

Combining Corollary 8.3 and Theorems 8.9, 8.12,8.13, we can now describe

which positive integers have a primitive root.

Theorem 8.14. The positive integer n possesses a primitive root if and only if

f r  : 2 , 4 ,  p ' ,  o r  2 p t ,

where p is an odd prime and / is a positive integer.

8.3 Problems

l. Which of the integers 4,10,16,22 and 28 have a primitive root?

2. Find a primitive root modulo

a)  l f  c )  r72

b) B2 d) D2.

3. Find a primitive root, for all positive integers k, modulo

a) 3k c) l3k

b )  l l e  d )  n k .

4. Find a primitive root modulo

a ) 6 c ) 2 6
b )  18  e )  338 .

5. Find all the primitive roots modulo 22.

6. Show that there are the same number of primitive roots modulo 2pt as there are

of p' , where p is an odd prime and r is a positive integer.

7. Show that if rn has a primitive root, then the only solutions of the congruence

x2 = I (mod m) are x E t I  (mod z).
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8. Let n be a positive integer possessing a primitive root. Using this primitive root,
prove that the product of all positive integers less than n and relatively prime to
n is congruent to -l modulo n. (When n is prime, this result is Wilson's
Theorem.)

9. Show that although there are no primitive roots modulo 2& where k is an integer,
k > 3, every odd integer is congruent to exactly one of the integers (-1)"50,
where a:0 or I  and B is an integer satisfying 0 < B ( 2ft-2-1.

8.3 Computer Projects

Write computer programs to do the following:

l. Find primitive roots modulo powers of odd primes.

2. Find primitive roots modulo twice powers of odd primes.

8.4 Index Arithmetic

In this section we demonstrate how primitive roots may be used to do
modular arithmetic. Let r be a primitive root modulo the positive integer m
(so that m is of the form described in Theorem 8.14). From Theorem 8.3, we
know that the integers

r ,  1 2 ,  1 3

form a reduced system of residues modulo nr. From this fact, we see that if a
is an integer relatively prime to m, then there is a unique integer x with
1 ( x 4 6 @ ) s u c h t h a t

r ' a  (mod m) .

This leads to the following definition.

Definition. Let m be a positive integer with primitive root r. If a is a positive
integer wi th (a,m):  l ,  then the unique integer x wi th I  (x(d(z) and
r* = a (mod m) is called the index of a to the base r modulo m. With
this definition, we have a - ,ind'a (mod m ).

If x is' the index of a to the base r modulo m, rhen we write x : indra,
where we do not indicate the modulus m in the notation, since it is assumed"to
be fixed. From the definition, we know that if a and b are integers relatively
prime lo m and a = b (mod m), then ind,a : indrb.

Example. Let m : 7. We have seen that 3 is a primitive root modulo 7 and
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tha t  3 r  =  3  (mod 7) ,32  =  2  (mod 7) ,33  =  6  (mod 7) ,34  =4  (mod 7) ,

35= 5 (mod 5).  and 36 = I  (mod 7).

Hence, modulo 7 we have

ind3l  :  6,  indt2 :  2,  indl3 :  1,

ind34 :  4,  indr5 :  5,  indr6 :  3.

With a different primitive root modulo 7, we obtain a different set of indices.

For instance, calculations show that with respect to the primitive root 5,

ind5l  :  6,  inds2 :  4,  inds3 :  5,

ind54 : 2, ind.55 : l, inds6 : 3.

We now develop some properties of indices. These properties are somewhat

similar to those of logarithms, but instead of equalities, we have congruences

modulo 6@).

Theorem 8.15. Let m be a positive integer with primitive root r, and let a

and b be integers relatively prime to m. Then

( i )  ind, l  =0 (mod Qfu)) .
(i i) ind,Gb) = ind,a * ind,b (mod O@))

(i i i) ind,ak 
-- la. ind,a (mod 6h)) if k is a positive integer.

Proof of G). From Euler's theorem, we know that ,6(m): I (mod z).

Since r is a primitive root modulo m, no smaller positive power of r is

congruent to 1 modulo rn. Hence, ind,l : 6(m) = O (mod Qfu)) .

To prove this congruence, note that from the definition ofProof of (ii).

indices,

and

Hence,

,ind,Gb) = 7ind,a 
* ind,D (mod rn ).

Using Theorem 8.2, we conclude that

ind,(ab) :  ind,a *  ind,b (mod 6@)).

,ind'Qil : ab (mod ,,, )

,ind,a*ind,b - ,ind,o ,ind,b = Ab (mOd ,, ).
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Proof of Gii). To
definition, we have

and

Hence,

Using Theorem 8.2,
namely

ind,ak - ft. ind,a (mod 6fuD, a

Example. From the previous examples, we see that modulo 7 , ind52: 4 and
ind53:5 .  S ince  AQ)  :6 ,  par t  ( i i )  o f  Theorem 8 .15  te l l s  us  tha t

i n d 5 6  -  i n d s 2 . 3 :  i n d s 2  t  i n d 5 3  : 4  t  5 : 9  =  3  ( m o d  6 ) .

Note that this agrees with the value previously found for ind56.

From part (i i i) of Theorem 8.15, we see that

ind53a = 4'inds3 = 4.5 : 20 = 2 (mod 6).

Note that direct computation gives the same result, since

ind53a -  indsSl -  inds4 :  2.

Indices are helpful in the solution of certain types of congruences. Consider
the following examples.

Example. We will use indices to solve the congruence 6xr2 : I 1 (mod 17).
We find that 3 is a primitive root of 17 (since 38 = -l (mod l7)). The
indices of integers to the base 3 modulo l7 are given in Table 8.1.

Table 8.1. Indices to the Base 3 Modulo 17.
Taking the index of each side of the congruence to the base 3 modulo 17,

we obtain a congruence modulo d(t7) : 16, namely

prove the congruence of interest, first note that, by

,ind',ar -: ak (mod m )

,k ' ind 'a = (r ind 'o)P :  ak (mod rn) .

,ind,aL = rk' 
ind'o (mod rn ).

this leads us immediately to the congruence we want,

a I 2 3 4 5 6 7 8 9 1 0 1 l t 2 1 3 l 4 t 5 1 6
ind3a 1 6 1 4 I r2 5 l 5 l l l 0 2 3 7 l 3 4 9 6 8
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ind3(6xr2) = ind3l  |  : ' l  (mod 16).

Using (i i) and (i i i) of Theorem 8.15, we obtain

ind3(6xr2) -  ind36 * ind3(x12) : ,  15 + 12' ind3x (mod 16).

Hence,

1 5 + 1 2 ' i n d 3 x = 7 ( m o d 1 6 )

or

255

1 2 ' i n d 3 x = 8 ( m o d 1 6 ) .

Using Corollary 3.1, upon division by 4 we find that

ind3x : 2 (mod 4).

Hence,

ind3x  :  2 ,6 ,  10 ,  o r  14  (mod 16) .

consequently, from the definition of indices, we find that

x  2  32 ,36 ,  3 to  o r  3 la  (mod 17) ,

(note that this congruence holds modulo 17) ' Since

3 2 : -  9 , 3 6  :  1 5 , 3 1 0  
-  8 ,  a n d  3 1 4 :  2  ( m o d  l 7 ) ,  w e  c o n c l u d e  t h a t

x  3  9 , 1 5 ,  8 ,  o r  2  ( m o d  1 7 ) .

Since each step in the computations is reversible, there are four incongruent

solutions of the original congruence modulo l7'

Example. We wish to find all solutions of the congruence 7'= 6 (mod 17).

When we take indices to the base 3 modulo 17 of both sides of this

congruence, we find that

ind3(7')  :  ind36 :  15 (mod 16).

From part (i i i) of Theorem 8.15, we obtain

ind3(7 ' )  :  x ' ind37 :  l l x  (mod 16) .

Hence.
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l l x  :  1 5  ( m o d  1 6 ) .

Since 3 is an inverse of I I modulo 16, we
congruence above by 3, to find that

x  =  3 . 1 5  : 4 5  :  1 3

All steps in this computation are reversible.

Primitive Roots

multiply both sides of the linear

(mod 16).

Therefore, the solutions of

1 7 )7* = 6 (mod

are given by

x  =  t3  (mod 16) .

Next, we discuss congruences of the form xk = a (mod m), where m is a
positive integer with a primitive root and (a,m) : l. First, we present a
definition.

Definition ' lf m and k are positive integers and a is an integer relatively
prime to ffi, then .we say that a is a kth power residue if * if the
congruence xk = a (mod, m) has a solution.

When z is an integer possessing a primitive root, the following theorem
gives a useful criterion for an integer a relatively prime to m to be a kth
power residue of m.

Theorem 8.16. Let m be a positive integer with a primitive root. If k is a
positive integer a1d o is an integer relatively prime to m, then the congruence
xk = a (mod m) has a solutioriif and only-ii

o Q h ) l d = l ( m o d l n )

where d : (k,6(m)). Furthermore, if there are solutions of
xk : a (mod m)' then there are exactly d incongruent solutions modulo rn.

Proof. Let r be a primitive root modulo the positive integer 17. We note that
the congruence

x k (mod z)

holds if and only

( 8 .  1 ) k '  ind,x ind,a (mod 6@)).

Now let  d:  (k,e(m)) and y :  ind,x,  so that  x (mod z ). From
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Theorem 3.?, we note that it d tr indra, then the l inear congruence

(8.2) ky :  ind"o (mod Qfu))

has no solutions, and hence, there are no integers x satisfying (8 
l). If

d l ind'a, then there are exactly d integers y incongruent modulo d(z) such

that (8.2) holds, and hence, exactly d integers x incongruent modulo z such

rhat (8.1) holds. Since d I ind,a if and only if

@@)/il ind,a = o (mod Q(m)),

and this congruence holds if and only if

o o h ) / d : 1 ( m o d r z ) .

the theorem is true. tr

We note that Theorem 8.16 tells us that if p is a prime, k is a positive

integer, and a is an integer relatively prime to p, then a is a kth power

residue of p if and only if

o Q - D / d :  1  ( m o d p ) ,

where d : (k,p-l). We il lustrate this observation with an example.

Example. To determine whether 5 is a sixth power residue of 17, i.e. whether

the congruence

x6 = 5 (mod 17)

has a solution, we determine that

5t6/(6,16) :  58 = - l  (mod l7) .

Hence, 5 is not a sixth power residue of 17.

A table of indices with respect to the least primitive root modulo each prime

less than 100 is given in Table 4 of the Appendix.

We now present the proof of Theorem 5.8. We state this theorem again for

convenience.

Theorem 5.8. If n is an odd composite positive integer, then r passes Miller's

test  for  at  most fu- l ) /4 bases b wi th I  < ,  1n-1.

We need the following lemma in the proof of Theorem 5.8.



Lemma 8.1. Let p be an odd prime and let e and q be positive integers.
Then the number of incongruent solutions of the congruence
xe- t  = I  (mod pr)  is  (q,pr- re-D.

Proof' Let r be a primitive root of p' . By taking indices with resp ect to r,
we see that x4: I  (modp,) i f  and only i f  qy = 0 (mod 6e,D where
y : ind'x . using Theorem 3.j, we see that there are exactli e,6er))incongruent solutions of gy :0 (mod |e"D. consequently, there are
Q,6Q")) :  (q,p'-tb-l)) incongruent solut ions of xe = 1 {-oAp').  tr

We now proceed with a proof of Theorem 5.g.

Proof. Let n-l : 2't, where s is a positive integer and, t is an odd positive
integer. For n to be a strong pseudoprime to the base D, either
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bt : I (mod n )

b2tt : -1 (mod n)

f o r s o m e i n t e g e r T w i t h 0  ( 7  (  s  -  l .  I n e i t h e r c a s e , w e h a v e

b n - t =  I  ( m o d n ) .

Let the prime-power factori zation of n be n : pi,pi, . . . p',,. From Lemma
8.1, we know that there are (n-r,  p' /Qi- l))  :  h- l ,pi- l)  incongruent
solut ions of xn-r: I  (mod p7) ,  j  :1,2,. . . ,r .  Consequently, the Chinese
remainder theorem tells us that there are exactlv fI h-\,p1-l) incongruent

solutions of x'-l = I (mod n ).
j - r

To prove the theorem, we first consider the case where the prime-power
flactorization of n contains a prime power p[. with exponent e* 2 2. Since

bo-D /pt : t/p't-t - t/p't < z/g

(the largest possible value occurs when pj :3 and ei :2), we see that
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r

fI
; : l

tu-r ,pj-r)  < f I  Q;t)
j - r

l i - l
l l**

"+"
l+,r)

Since 0n-l) for n > 9 , we see that

(n-l ,p,-l) ( (r -r)14.

Consequently, there are at most Q-Dla integers b, I < 6 ( n , for which n

is a strong pseudoprime to the base b.

The o ther  case to  cons ider  i s  when n :  PPz" 'P .  where  Pt ,Pz , . - . ,Pr  a re

distinct odd primes. Let

pt  -  |  :  2t ' t r ,  i  :  1,2, . . . , r ,

where s; is a positive integer and /; is an odd positive integer. We reorder the

primes pr,p2,...,p,, (if necessary) so thatsr ( sz ( ( s, '  We note that

h - l , p i - l )  :  2 * i n k ' )  ( t , t , ) .

The number of incongruent solutions of x' = I (mod pi) is T : (t,t;). From

problem 15 at the end of this section, there are 2il; incongruent solutions of

*y ' '= - l  (modp;)  when O (  f  (  s i - I ,  and no solut ions otherwise. Hence,

using the Chinese remainder theorem, there are TrTz" '7,  incongruent

solutions of xt : I (mod n), and 2i' TrTz"'7, incongruent solutions of

x/ ,  = -1 (mod n) when 0 (  7 (  s1-1.  Therefore,  there area total  of

[ ,,- ' I I Z"'-t I
TrTz" '  T ,  l t *  >  2 t ' l  -  T rTz" '  T , l t  +  . ; ;  I

l , r - o J t L )

integers b with 1< D ( n-1, for which n is a strong pseudoprime to the

Uase tr. (We have used Theorem l.l to evaluate the sum in the last formula.)

Now note that

?"*f
r

u
j : r
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6h)  :  (p r - l )  (pz - l )

We will show that

( p r - l )  :  t i z  t r 1 t ' * s ' *  
" '  * s ,

W h e n  s r : J 2 ,  w e  h a v e  ( n - l , p r l ) : 2 ' T r  a n d  ( n - l , p z - l ) : 2 t T z .  L e t
us  assume tha t  p r  )  pz .  Note  tha t  T1  *  t1 ,  fo r  i f  T r :  t r ,  then

r r rz '  "  r , [ ,*ro]  * , , r , ro,
|  2 ' , - t  )

which proves the desired result. Because TrTz. . . 7, ( r1r, tr, we can
achieve our goal by showing that

(8.3) [,*l '-t lrr ',*',*' '  
*r, < r/4.

| z',-t )
Since sr ( sz ( ( s, , we see that

f, * Uf ,r',*',* ' as, ( f ,* ''.'-t f ,r,,,
|  2 ' - t  ) '  l .  

^  
2 ,  - l  J ' '

I  2 " r - l- -
2", 2"r(2, -l)

: l++- l
2"t 2,- l  2rtr(2, - l)

|  2' ,-2
I -

2' - l  2" ' (2 ' - l )

- < l- 
2r-r

From this inequality, we conclude that (s.r) is valid when r ( 3.

W h e n  r : 2 ,  w e  h a v e  n :  p p 2  w i t h  p r | : 2 t r t 1  a n d  p z - l : 2 t r t z ,  w i t h
rr ( sz. If s1 ( s2, then (S.f) is again valid, since

I  r t ' , - ,  I  -L.  (  ' ' "  I  r  ^ )

[t . ?)/2',*',: [ ' . +]/lz",z',-',)
:[+. #),,"-"*+
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(pt - l )  I  (n- l ) ,  so that

n  :  p r p z Z  p z =  1  ( m o d  p r - l ) ,

261

we know that
t2l3 . Hence,

which implies that P2 ) Pr,
T r  (  t r  /  3 .  S im i la r l v , l f  

7
TrTz  4  t12 /3 ,and  s ince  l rt

a contradict ion.  Since T1# t '1 ,

t 1 pz then T2 # tr, so that 7"2 (
^2s,  ,  I

*  2 ' " : t  
l / r " ' *  ;  ,  we have

3 )

|  - ,2r ,  ,  l
TtTzlr + f  |  < r t222"16 : 6h)16,

l r )

which proves the theorem for this final case' since

oh) /6 ( (n -r) /6 < (/,-r) /4. tr

By analyzing the inequalities in the proof of Theorem 5.8, we can see that

the probability that n is a strong pseudoprime to the randomly chosen base D,

1 < b ( n-1, is close to ll4 only for integers n with prime factorizations of

the  fo rm n  :  p rp2wi th  Pr :  |  +  2q1 and Pz :  I  t  4q2 ,  where  {1  and Q2are

odd pr imes,  o r  n  :  q f l zQt  w i th  Pr :  |  +  2qr ,  P2:  |  *  2q2,  and

pz: I  t  2q3,where Qr,ez,and q3are dist inct  odd pr imes (see problem 16).

8.4 Problems

l. Write out a table of indices modulo 23 with respect to the primitive root 5.

2. Find all the solutions of the congruences

a) 3xs = I (mod 23) b) 3xta = 2 (mod 23).

3. Find all the solutions of the congruences

il 3' :- 2 (mod 23) b) 13" = 5 (mod 23)'

4. For which positive integers a is the congruence axa = 2 (mod 13) solvable?

5. For which positive integers 6 is the congruence 8x7 : b (mod 29) solvable?

6. Find the solutions of 2x = x (mod 13), using indices to the base 2 modulo 13.

7 . Find all the solutions of x' : x (mod 23).

8. Show that if p is an odd prime and r is a primitive root of p, then ind,(p-|) :

(p-r) /2.
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Let p be an odd prime. Show that the congruence x4 = _l(modp) has a
solution if and only if p is of the form gfr + l.

Prove that there are infinitely many primes of the form 8ft*1. (Hint: Assume
that p6p2,...,pn are the only primes of this form. Let e - (ppz. . . p)a+l .
Show that Q must lave an odd prime factor different than j1p2,...,pn, and by
problem 9, necessarily of the form 8k+l .)

From problem 9 of Section 8.3, we know that if a is a positive integer, then there
are unique integers a and B with a : 0 or I and 0 < B ( Z*-i-t such that
a = (-l)" 5p (mod 2ft). Define the index system of a modulo 2k to be equal
to the pair (a,B).

a) Find the index systems of 7 and 9 modulo 16.

b) Develop rules for the index systems modulo 2& of products and powers
analogous to the rules for indices.

c) Use the index system modulo 32 to find all solutions of j xs = I I (mo d 32)
and 3' = 17 (mod 32).

12. Let n : 2"p\'pj ' ' ' ph be the prime-power factorization of n. Let a be an
integer relatively prime to n. Let r1,r2,...,r^ be primitive roots of pti,p'i,..., p';,
respectively, and let 71 : ind", a (mod p'1), 72 : ind", a (mod ptl),

. . . ,1m:ind,.a (mod p' i l .  rc /o ( 2, let rs be a primit ive root of 2t, ,  and let
7e : ind,. a (mod 2t).  I f  ls 2 3, let (a,p) be the index system of c modulo 2k,
so that a = (-l)'5P (mod 2t). Define the index system of a modulo n to be
(1o,1r ,72,  . . . ,  y )  i f  to  (  2  and (a ,8 ,7 t ,^12, . . . ,1^)  i f  to  Z 3 .

a) Show that if n is a positive integer, then every integer has a unique index
system modulo n.

b) Find the index systems of 17 and 4l (mod lZ0) (in your computations, use
2 as a primitive root of the prime factor 5 of 120).

c) Develop rules for the index systems modulo n of products and powers
analogous to those for indices.

d) Use an index system modulo 60 to find the solutions of
I lx7 : 43 (mod 60).

Let p be a prime, p ) 3. Show that if p =2 (mod 3) then every integer not
divisible by 3 is a third-power, or cubic , residue of p, while if p : I (mod 3), an
integer a isa cubic residue of p i f  and only i1 o@-t)/3: I  (modp).

Let e be a positive integer with e 7 2.

il Show that if ft is a positive integer, then every odd integer a is a kth power
residue of 2" .

b) Show that if /c is even, then an integer a isa /<th power residue of 2" if and
only if a ? | (mod (4k ,2')).
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c) Show that if /< is a positive integer, then the number of incongruent kth

power residues of 2" is

2"-r

b.2) h,2"-2) 
'

(Hint: Use problem I 1.)

Let N - 2ju be a positive integer with 7 a nonnegative integer and a an odd

posit ive integer and let p-l :2"/,  where s and t are posit ive integers with I

odd. Show that there aie 2j (t,u) incongruent solutions of xN 
- -l (modp) if

0 ( ,l ( s-1, and no solutions otherwise'

a) Show that the probability that n is a strong pseudoprime for a base b

randomly chosen with I < 6 < n-l is near (n-l)/4 only when n has a

prime factorization of the form n : ptPz where Pr: |  * Zqr and

pz :  |  *  4qz  w i t h  q1  and  q ,  p r ime  o r  n :  PP tP t  whe re  P t :  |  *  Zq r ,

pz: |  * 2qz, pt :  |  * 2q3 with q r,Tz,Qt dist inct odd primes.

b) Find the probability that n : 49939'99877 is a strong pseudoprime to the

base b randomly chosen with 1 < b < n - l'

8.4 Computer Projects

Write programs to do the following:

l. Construct a table of indices modulo a particular primitive root of an integer.

Z. Using indices, solve congruences of the form axb = c (mod nr) where

a,b,c,andm are integers with c ) 0, m ) 0, and where z has a primit ive

root.

3. Find kth power residues of a positive integer m having a primitive root, where k

is a positive integer.

4. Find index systems modulo powers of 2 (see problem l1)'

5. Find index systems modulo arbitrary positive integers (see problem l2).

8.5 Primality Tests Using Primitive Roots

From the concepts of orders of integers and primitive roots, we can produce

useful primality tests. The following theorem presents such a test.

Theorem 8.f 7. If n is a positive integer and if an integer x exists such that

xn-t = I (mod n)

and
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* G - t ) / a # l ( m o d n )

for all prime divisors q of n - 1, then n is prime.

Proof. Since xn-r: I (mod n), Theorem g.l tells us that ord,x | (n -l).
we wil l show that ordrx : n - r. Suppose that ord,,x # n - l. Since
ordrx | (n -t), there is an integer k with n - | : k.ordrx and since
o r d r x  l n -  l , w e k n o w t h a t k  >  l .  L e t q  b e a p r i m e d i v i s o r o f  k .  T h e n

*h-r)h : *klqord,r : (xord.xS&/d = I (mod n).

However, this contradicts the hypotheses of the theorem, so we must have
ordnx : n - l. Now, since ordnx ( O(n) and 6h) ( n _ l, i t follows that
Qh) : n - l. Recall ing Theorem 6.2,we know that n must be prime. tr

Note that Theorem 8.17 is equivalent to the fact that if there is an integer
with order modulo n equal to n-\ , then n must be prime. We illustrate the
use of Theorem 8.17 with an example.

Example.  Let n:1009. Then l l r008: I  (mod 1009).  The pr ime div isors
of 1008 are 2,3,  and 7 .  we see that r l t008/2:11504 -  - i  (mod 1009),
111008/3  :  11336 =  3 :4  (mod 1009) ,  and 11 l00 t f  :  11144 _  934 (mod l00g) .
Hence, by Theorem 8.17 we know that 1009 is prime.

The following corollary of Theorem 8.17 gives a slightly more efficient
primality test.

Corollary 8.4. If n is an odd positive integer and if x is a positive integer
such that

and

* h - D / 2  - - l  ( m o d r u )

, h _ r ) / c * l ( m o d n )

for all odd prime divisors q of n - l, then n is prime.

Proof. Since *b-r)/2: - I (mod n), we see that

xr-r  :  1*b-D/212 = (- l )2 = |  (mod n).

Since the hypotheses of Theorem 8.17 are met, we know that n is prime. D

Example.  Let n :2003. The odd pr ime div isors of  n- l  :2002 are 7, l l ,
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and 13. Since 52002/2:  51001 = -1 (mod 2003),  52002/t  =.5T 
u:874

(mod 2003),  lzooz,tr  -  5183 -  886 (mod 2003),  and 52oo2/13 :  5154

: 633 (mod 2003), we see from Corollary 8.4 that 2003 is prime.

To determine whether an integer n is prime using either Theorem 8.17 or

Corollary 8.4, it is necessary to know the prime factorization of n - l '  As we

have remarked before, finding the prime factorization of an integer is a time-

consuming process. Only when we have some a priori information about the

factorization of n - | are the primality tests given by these results practical.

Indeed, with such information these tests can be useful. Such a situation

occurs with the Fermat numbers; in Chapter 9 we give a primality test for

these numbers based on the ideas of this section.

It is of interest to ask how quickly a computer can verify primality or

compositeness. We answer these questions as follows.

Theorem 8.18. If n is composite, this can be proved with O(logzilz) bit

operations.

Proof. If n is composite, there are integers a and b with | 1 a 1 fi,

| < b 1 n, and n - ab. Hence, given the two integers a and b, we multiply

a and, b and verify that n : ab. This takes O (logzn)2) bit operations and

proves that n is comPosite. tr

We can use Theorem 8.17 to estimate the number of bit operations needed

to prove primality when the appropriate information is known.

Theorem 8.19. If n is prime, this can be proven using O((logzn)a) bit

operations.

Proof. We use the second principle of mathematical induction. The induction

hypothesis is an estimate for f h), where f h) is the total number of

multiplications and modular exponentiations needed to verify that the integer

n is prime.

We demonstrate that

f b) ( 3 (log nltosD - 2.

First, we note that / (2) : l. We assume that for all primes Q, with

q < n,  the inequal i ty

holds.

f  (q)  (  3  ( loe q l tosD -2
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To prove that n is prime, we use Corollary 8.4. Once we have the numbers
2o, qr,..., Qt, and x that supposedly satisfy

( i )  n - l : 2 o q f l 2 . .  Q t ,
(i i) q; is prime for i : L, 2,..., t,

( i i i )  * G - t ) / 2  - - l  ( m o d n ) ,

and

(iv) r(/.-t)/L = I (mod n), for i : l , 2,... t,

we need to do I multiplications to check (i), t * 1 modular
check (iii) and (iv), and -f (q) multiplications and modular
check (i i), that q; is prime for i : I ,2,..., t. Hence.

fh ) : t * ( r+ t )+ i fQ, )
,  

t - '

( 2l + I  + ) (( l  tog q;f iogD - 2)

: t * ( f n o g D t o e Q f l z . . . Q )

:  G f l o g 2 ) l o g 2 q f l z . . . q )  -  2

( (3/og z)log(Z'qf l2. .  .  q) - 2

: 3(log ntog D - 2 .

Now each multiplication requires O ((logzil2) bit operations and each
modular exponentiation requires O(logzd3) bit operations. Since the total
number of multiplications and modular exponentiations needed is
f h) : o (log2n), the total number of bit operations needed is
oKlogzn)(log2n)3) : o((logzn )a). n

Theorem 8.19 was discovered by Pratt. He interpreted the result as
showing that every prime has a "succinct certification of primality." It should
be noted that Theorem 8.19 cannot be used to find this short proof of
primality, for the factorization of n - | and the primitive root x of n are
required. More information on this subject may be found in Lenstra [Zt].

Recently, an extremely efficient primality test has been developed by
Adleman, Pomerance, and Rumely. We will not describe the test here
because it relies on concepts not developed in this book. We note, that to

exponentlatrons to
exponentiations to
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determine whether an integer is prime using this test requires less than

(log2n;c log,logrlog,n bit operations, where c is a constant. For instance, to

determine whether a too-digit integer is prime requires just 40 seconds and to

determine whether a 200-digit integer is prime requires just l0 minutes' Even

a 1000-digit integer may be checked for primality in a reasonable amount of

time, one week. Fo, more information about this test see [63] and [74].

8.5

l .

2 .
a
J .

Problems

Show that

Show that

Show that

and

l0 l  is  pr ime us ing Theorem 8.17 wi th  x  :2 '

257 rs prime using Corol lary 8.4 with x :  3'

if an integer x exists such that

x2r  :1  (mod F")

* ' r - l *  I  (mod F, ) ,

then the Fermat number Fn :2Y * I  is prime.

4. Let n be a positive integer. Show that if the prime-power factorization of n - |

i s  n  -  l :  p i ' p i ' . . '  p i '  a n d  f o r  7 :  1 , 2 , . . . , / ,  t h e r e  e x i s t s  a n  i n t e g e r  x y  s u c h

that

* | n - ' t ' ,  *  1 (modn )

x i - t =  I  ( m o d n ) ,

then n is prime.

Let n be a positive integer such that

n - l :m i rn i '
j - r

where m is a posi t ive integer,  ot ,  a2, . . . ,  ar  Are poSi t ive integerS, and qt ,  Q2,. . . ,  Qr

are re lat ively pr ime integers greater  than one.  Furthermore,  let  br ,  b2," ' ,  b,  be

posi t ive integers such that  there exist  integers xt ,  xz," ' ,  x ,  wi th

and

5 .

and

x,!-r 
-- I (mod n )
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6'! ' - t) /e'- l ,n) :  I

for ; :  1 ,2 , . . . , r ,  where every  pr ime factor  o f  q ;  is  greater
f o r  ;  :  1 ,2 , . . . ,  r ,  and

<(r+ f iu?1, .
j -1

Show that n is prime.

8.5 Computer Projects

write programs to show that a positive integer n is prime using
l .  Theorem 8.17.

2. Corollary 8.4.

3. Problem 4.

4. Problem 5.

Primitive Roots

than or equal to b;

8.6 Universal Exponents

Let n be a positive integer with prime-power factori zation

, : p\,p,i p,; .

If a is an integer relatively prime to n, then Euler's theorem tells us that
aAQ' )  =  I  (modpt )

whenever pt is one of the prime powers occurring in the factorizatron of n
As in the proof of Theorem 8.1 2, let

u : l6Qi'), 07,i l ,  ..., ob,;) l ,

the least common mult iple of the integers OQ! ),  i  :  1,2,. . . ,  m. Since

ohhlu
for  i  :  1,2, . . . ,n,  using Theorem 8.1 we see that

au = t (modp,1')

for i : 1,2, ..., m. Hence, from Corollary 3.2, it follows that
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aU =  I  (mod n) .

This leads to the following definition.

Definition. A universal exponent of the positive

U such that

au = I  (mod n ) ,

for all integers a relatively prime to n.

integer n is a Positive integer

Example. Since the Prime Power
that  u :  lOQ3),  O(: ) ,  d(52) l  :

600.

From Euler's theorem, we know that d(n) is a universal exponent. As we

have already demonstrated, the intege r (J - IAQ\),,0|' i l ,...,ybh)l is also a

universal exponent of n: p'ip'; p';. We are interested in finding the

smallest positive universal exponent of n.

Definition. The least universal exponent of the positive integer n is called the

minimal universal exponent of n, and is denoted by I(n)'

We now find a formula for the minimal universal exponent l,(n), based on

the prime-power factorization of n.

First, note that if n has a primitive root, then tr(n) - 6fu). Since powers

of odd primes possess primitive roots, we know that

I (p ' )  :  6 (p ' ) ,

whenever p is an odd prime and / is a positive integer. Similarly, we have

t r (2 ) :  b (2) :  I  and t r (4 ) :  O(4) :2 ,  s ince  bo th  2  and 4  have pr im i t i ve

roots. On the other hand, if t 2 3, then we know from Theorem 8.10 that

a2'-' : 1(mod 2t)

and ord, a : 2'-2, so that we can conclude that X(2t) : zt-z 1f t > 3.

We have found tr(r) when n is a power of a prime. Next, we turn our

attention to arbitrary positive integers n '

Theorem 8.20. Let n be a positive integer with prime-power factorization

factorization of 600 is 23'3'52, it follows

12, 2,201 : 20 is a universal exponent of
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, : 2'"p\'p'i
I

r m .

Then \(n ), the minimal universar exponent of n, is given by

tr(n ) :  h(2'.)  ,  eb'r,) , . . . ,  Oe';) l  ,

Moreover, there exists an integer a such that ord,na: ), (r), the largest
possible order of an integer modulo n.

Proof. Let a be an integer with (a , n) : l. For convenience, let

M - tr(zt) , o(p' i), o7'i l , . . ., Qbil l  .

Since M is div is ib le by al l  of  the integers X(2/g ,  e(p ' r , )  :  x(pl , ) ,
6Q';l : ^(p';),..., QQil : xb'i l , and since oxb') : t (moo p,) for all
prime-powers in the factorization of n, we see that

a M  =  l  ( m o d p , ) ,

whenever p' is a prime-power occurring in the factorization of n.

Consequently, from Corollary 3.2, we can conclude that

a M  =  I  ( m o d  n ) .

The last congruence establishes the fact that M is a universal exponent.
We must now show that M is the least universal exponent. To do this, we
find an integer a such that no positive power smaller than the Mth power of a
is congruent to I modulo n. With this in mind, let r; be a primitive root of

Pi

We consider the system of simultaneous congruences

x = 3 ( m o d 2 " )

x  j 1 1  ( m o d p l ' )

x : 12 (moa p';)

r- (mod p';).

By the Chinese remainder theorem, there is a simultaneous solution a of this
system which is unique modulo n : 2'"p'ip' i p';: we wil l show that
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ordn a - M. To prove this claim, assume that .l{ is a positive integer such

that

a N  =  I  ( m o d n ) .

Then, if pt is a prime-power divisor of n, we have

a N  =  1 ( m o d p ' ) ,

so that

ordo,c | .lf.

But, since a satisfies each of lhe m * I congruences of the system, we have

ordo,a :  X(pt) ,

for each prime power in the factorization. Hence, from Theorem 8'1, we have

\b,) | r{

for all prime powers p' in the factorization of n. Therefore, from Corollary

3.2. we know that M: [ t r (2") , \ (p1') ,  x(pt i )  , . . . ,xb' ; ) l  |  / { '

S i n c e  a M  =  I  ( m o d n )  a n d  M I N  w h e n e v e r  a N  =  1 ( m o d n ) ,  w e  c a n

conclude that

ordna : M.

This shows that M - \(n) and simultaneously produces a positive integer a

with ord, a : )r(n). tr

Example. Since the prime-power factorization of 180 is 2232'5, from Theorem

8.20 it follows that

x (180) :  Io(22) ,  o(32),  d(5) |  :  1.2,  6,  4 l  :  12.

To find an integer a with ordlsga : 12, first we find primitive roots modulo 32

and 5. For instance, we take 2 and 3 as primitive roots modulo 32 and 5,

respectively. Then, using the Chinese remainder theorem, we find a solution

of the system of congruences

1=iiililil
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obtaining a = 83 (mod 180). From the proof of Theorem g.20, we see that
ord1ss83 - 12.

Example.  Let n :26325.7.13.17.19-37.73. Then. we have

\ (n )  :  [x(26),  a(32), .d(5),  oOD, d(I9) ,  o(37),  o(7r l: [,24, 2.3, 22, 24, 2.32, 2232, 23321
: 2 4 . 3 2
: 144.

Hence, whenever a is a positive integer relatively prime to
26'32'5 '17'17'rg '37.73 we know that at44 :  r  (moo 26.32.5.17.rg.37.37.7r.

We now return to the Carmichael numbers that we discussed in Section 5.2.
Recall that a Carmichael number is a composite integer that satisfies
bn-r : I (mod n) for all positive integers D with (b, n) : r-. we proved that
if rt : Q.r4z 4k, where Qv Q2,..., e* are distinct primes satisfying
@i - 1) | tn-l) for i : r,2,...,,k, ih.n i i t u carmichaer number. Here, we
prove the converse of this result.

Theorem 8.21. rf n ) 2 is a carmichael number, then n : Qtez Qk,
yh.r-. ^the - 

q;'s are distinct primes such that (qi - r) ' l '(n-rl i ;;
j  :  1 , 2 , . . . ,  k .

Proof. If n is a Carmichael number, then

br-t : I (mod n )

for all positive integers 6 with (b,n): l. Theorem 8.20 tells us that there is
an integer a with ordna : X(n), where I(n) is the minimal universal
exponent, and since an-r = I (mod re), Theorem g.l tells us that

r (n ) l (n_ l ) .

Now n must be odd, for if n was even, then n-l would be odd, but tr(n ) is
even (since n ) 2), contradicting the fact that ),(n ) | (r-l).

We now show that n must be the product of distinct primes. Suppose r has
a prime-power factor pt with t>2. Then

r Q ' )  : 0 ( p ' )  :  p t - t  ( p - l )  |  x ( n )  :  n - t .

This implies that p | (n-l), which is impossible since p I n.Consequently, n
must be the product of distinct odd primes, say
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t t  :  Q tQz  Qtc '

We conclude the proof by noting that

\ (q i )  :  O(q)  :  (q i -D I  r (n )  :  n - l '  E

We can easily prove more about the prime factorizations of Carmichael

numbers.

Theorem 8.22. A Carmichael number must have at least three different odd

prime factors.

proof. Let n be a carmichael number. Then n cannot have just one prime

factor, since it is composite, and is the product of distinct primes. So assume

that n : pq, where p and q are odd primes with p>q' Then

n - l :  p q - l :  ( p - D q  +  Q - 1 )  =  q - l  +  0  ( m o d  p - l ) '

which shows that (p-l) I (n -l) Hence, n cannot be a Carmichael number

if it has just two different prime factors. E

8.6 Problems

l. Find tr(n ).  the

il 100
b) r44
c) 222
d) 884

2. Find all

a ) l
02
c ) 3

3. Find the largest

4. Find an integer

a)  12
b)  l s
c) 20

minimal universal exponent of n, for the following values of n

e) 2n3t '52'7
f )  2s32 '52 '73 ' l  l2 '13 '  17 '19

e) 1o!
h) 20!.

positive integers n such that tr(n) is equal to

d ) 4
e ) 5
C I 6 .

integer n with tr(z) : 12.

with the largest possible order modulo

d) 36
e) 40
f) 63.
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Show that if m is a positive integer, then tr(rr) divides 6fu) .

show that if m and n are rerativery prime positive integers, then
|r(mn) :  [ tr(re), tr(n )] .

Let n be the largest positive integer satisfying the equation ),(n ) : a, where c is
a fixed positive integer. Show that if la is another solution of tr(z) : a,then m
divides n.

Show that if n is a positive integer, then there are exactly d(I(n)) incongruent
integers with maximal order modulo z.

Show that if a and m are relatively prime positive integers, then the solutions of
the congruence ax = b(mod m) are the integers x such that
x = at'(m)-tb (mod m ).

show that if c is a positive integer greater than one, then the integers
l' ,2' ,-.-, (m-l)' form_a complete system of residues modulo m if and, only if z
is square-free and (c,tr(m )) : l.

a) Show that if c and m are positive integers then the congruence
x" = r (mod m) has exactly

fI (l + (c-t , Obi))
j - l

incongruent solutions, where m has prime-power factorization
m : pi 'pi, . .. p:..

b) Show that x' = x(mod z) has exactly 3, solutions if and only if
( c - 1 ,  6 ( m ) )  : 2 .

Use problem l1 to show that there are always at least 9 plaintext messages that
are not changed when enciphered using an RSA cipher.

Show that there are no carmichael numbers of the form 3pq where p and q are
primes.

Find all carmichael numbers of the form 5pq where p and q are primes.

Show that there are only a finite number of carmichael numbers of the
fl : pqr, where p is a fixed prime, and q and r are also primes.

Show that the deciphering exponent d for an RSA cipher with enciphering
(e,n) can be taken to be an inverse of e modulo ),(n) .

8.6 Computer Projects

Write programs to do the following:

l. Find the minimal universal exponent of a positive integer.

5 .

6.

7.

8 .

9 .

1 0 .

l l .

12.

1 3 .

t4 .

1 5 .

1 6 .

form

key
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2. 
;j"O "" 

integer with order modulo n equal to the minimal universal exponent of

3. Given a positive integer M, find all positive integers n with minimal universal

exponent equal to M.

4. Solve linear congruences using the method of problem 9'

8.7 Pseudo-Random Numbers

Numbers chosen randomly are often useful in computer simulation of

complicated phenomena. To perform simulations, some method for generating

random numbers is needed. There are various mechanical means for

generating random numbers, but these are ineffficient for computer use'

Instead, a systematic method using computer arithmetic is preferable' One

such method, called the middte ' square method, introduced by Von

Neumann, works as follows. To generate four-digit random numbers, we start

with an arbitrary four-digit number, say 6139. We square this number to

obtain 37687321', and *. tuk. the middle four digits 6873 as the second

random number. We iterate this procedure to obtain a sequence of random

numbers, always squaring and removing the middle four-digits to obtain a new

random number from the preceding one. (ttre square of a four-digit number

has eight or fewer digits. Those with fewer than eight digits are considered

eigtrt-digit numbers by adding initial digits of 0')

Sequences produced by the middle-square method are' in reality, not

randomly chosen. When the initial four-digit number is known, the entire

,"qu.n.. is determined. However, the sequence of numbers produced appears

to be random, and the numbers produced are useful for computer simulations.

The integers in sequences that have been chosen in some methodical manner,

but appear to be random, are called pseudo-random numbers.

It turns out that the nriddle-square method has some unfortunate

weaknesses. The most undesirable feature of this method is that, for many

choices of the initial integer, the method produces the same small set of

numbers over and over. For instance, starting with the four-digit integer 4100

and using the middle-square method, we obtain the sequence

8100, 6100, 2100, 4100, 8100, 6100, 2100,. . .  which only gives four di f ferent

numbers before rePeating.

The most commonly used method for generating pseudo-random numbers is

called the linear congruential method which works as follows. A set of

integers t/t, e, c, and xs is chosen so that m ) 0, 2 < a 4' m, 0 < c 4 m'

and 0 ( xo ( z. The sequence of pseudo-random numbers is defined
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recursively by

xn+r 3 axn * c (mod m), 0 ( xr+r 1 r/t,

for  f t  :0,  1,2,3 , . . .  .  We cal l  m the modulus,  a the mult ip l ier ,  c theincrement, and xs the seed of the pseudo-random number generator. The
following examples illustrate the lineai congruential method.

E x a m p l e .  W i t h  m : 1 2 ,  a - 3 ,  c : 4 ,  a n d  r 0 : 5 ,  w e  o b t a i n
x t  E  3 ' 5  +  4 = 7  ( m o d  1 2 ) ,  s o  t h a t  x r :  j .  S i m i l a r l y ,  w e  f i n d  t h a t  x 2 :  1 ,s i n c e  x z = 3 . 7  +  4 :  I  ( m o d  I 2 ) , x 3 : 7 ,  s i n c e x :  E  3 . 1  +  4 = 7  ( m o d  l 2 ) ,
and so on' Hence, the generator produces just three different integers before
repeating. The sequence of pseudo-iandom numbers obtained is
5 , 7 , I , 7 , 1 , 7 , 1 , . . . .

With frt : 9, e : '1, 
c : 4, and x0 : 3, we obtain the sequence

3, 7, 8, 6, l, 2, 0, 4, 5,3,... . This sequence contains g different numbers
before repeating.

The following theorem tells us how to find the terms of a sequence of
pseudo-random numbers generated by the linear congruential method directly
from the multiplier, the increment, and the seed.

Theorem 8.24. The terms of the sequence generated by the linear
congruential method previously described are given by

a k x o +  c ( a k - l )  / ( a - l )  ( m o d  l a ) ,  0  (  x r  1  m .

Proof. We prove this result using mathematical induction. For k : l, the
formula  is  obv ious ly  t rue ,  s ince  r r  E  axs*  c  (mod m) ,0  (  x r  1m.
Assume that the formula is valid for the ftth term. so that

x*  z  akxo +  c (ak- l ) /b_ l )  (mod t? t ) ,  0  (  x r  I  m.

xk+t * c  ( m o d z ) ,  0 ( x r + r  1 t / t ,

we have

x r + r  s  a ( a k x s +  c ( a k - l ) / f u - l ) )  +  c
=  a k + t x o  *  c ( a G k - l ) / G - t )  +  t
=  a k + l x o  *  c ( a k + r - D / G - D  ( m o d  z ) ,

which is the correct formula for the (k+t)ttr term. This demonstrates that
the formula is correct for all positive integers k. tr

X1,
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The period length of a linear-congruential pseudo-random number generator

is the maximum length of the sequence obtained without repetition. We note

that the longest possible period length for a linear congruential generator is

the modulus m. The following theorem tells us when this maximum length is

obtained.

Theorem 8.25. The linear congruential
period length m if and only if (c, m) :

dividing m, and a = | (mod 4) if a | ^.

generator produces a sequence of
l, a = 1 (mod p) for all primes p

Because the proof of Theorem 8.25 is complicated and quite lengthy we

omit it. For the proof, the reader is referred to Knuth t561.

The case of the linear congruential generator with c : 0 is of special

interest because of its simplicity. In this case, the method is called the pure

multiplicative congruential method. We specify the modulus la, multiplier a,

and seed xs. The sequence of pseudo-random numbers is defined recursively

by

xnal - axo (mod m), 0 1 xn+t 1 m.

In general, we can express the pseudo-random numbers generated in terms of

the multiplier and seed:

xn 
--- 

a'xo (mod m), 0 1 xn+t 1 m.

If { is the period length of the sequence obtained using this pure multiplicative
generator, then f is the smallest positive integer such that

xs:-  a[xs (mod la) .

If (xo, m) : l, using Corollary 3.1, we have

o I = 1  ( m o d z ) .

From this congruence, we know that the largest possible period length is tr(lrr),

where X(rz) is the minimal universal exponent modulo z.

For many applications, the pure multiplicative generator is used with the

modulus m equal to the Mersenne prime M3r:23r - l. When the modulus
m is a prime, the maximum period length is rn -1, and this is obtained when

a is a primitive root of rn. To find a primitive root of M 31 that can be used
with good results, we frrst demonstrate that 7 is a primitive root of M t.

Proposition 8.1. The integer 7 is a primitive root of M31 :23r-1.



Proof. To show that 7
show that

278

is a primitive root of M31 - )31

, w t ' - D h  1 y  ( m o d  M t )

for all prime divisors q of Mt-r. with this information,
that ord2r,,7 : My-|. To find the factorization of M31_1,

Primitive Roots

it is sufficient to

we can
we note

conclude
that

My- l  :  231 -  2 :  2 (230- l )  :  2 (215- t ) (Z l5+ t )
: z(zs-t) (2to+2s+t) (zs+t ) (210-zs+t)
:  2 .32 -7 .1  1 .3  l .  I  51 .33  1 .

If we show that

, (Mr r_ t ) /q  q -

f o r  q  : 2 , 3 , 7 ,  I l ,  3 1 ,  l 5 l ,  a n d  3 3 1 ,
of M31 - 214748364j. Since

I (mod M y)

then we know that 7 is a primitive root

I (mod M y)
1 (mod M t)
1 (mod M t)
I (mod M y)
I (mod M y)
1 (mod M z)
I (mod M y)

we see that 7 is a primitive root of M31. E

In practice' we do not want to use the primitive root 7 as the generator,
since the first few integers generated are imall. Instead, we find a larger
primitive root using Corollary 8.2. We take a power of 7 where the exponent
is relat ively pr ime_ to M3;r .  For instance, s ince (s,  Mrr-1):  l ,  corol lary
8 .2  te l l s  us  tha t  75 :16807 is  a lso  a  p r im i t i ve  roo t .  s ince  ( l3 ,Mr r -  l )  :  l ,
another possibility is to use 7t3 : 2s22462g2 (mod Mt) as the multiplier.

We havely touched briefly on the important subject of pseudo-random
numbers' For a thorough discussion of the generation and statistical
properties of pseudo-random numbers see Knuth tse t.

7{Mil-t)/2

7(Mrrt)13

7(M\-Dn

7(Mr 
t ) / r r

7(Mrfr)/3r

7(M,t-r) /rsl

7(Mrft)/33r

2147483646 +
rsr347773s +
12053628s +

1969212174 +
st2  +

s35044134 +
176188s083 +

8.7 Problems

l Find the sequence of
middle-square method,

two-digit pseudo-random numbers generated using the
taking 69 as the seed.



8.7 Pseudo-Random Numbers 279

Find the first ten terms of the sequence of pseudo-random numbers generated by

the linear congruential method with x0 : 6 and xn+r z 5x, * 2 (mod 19)'

What is the period length of this generator?

Find the period length of the sequence of pseudo-random numbers generated by

the linear congruential method with x6 :2 and xn+t 7 4xn * 7 (mod 25)'

Show that if either a : 0 or a - I is used for the multiplier in the generation of

pseudo-random numbers by the linear congruential method, the resulting

."qu.n"" would not be a good choice for a sequence of pseudo-random numbers'

Using Theorem 8.25, find those integers a which give period length .m, 
where

(r, i) : l, for the linear congruential generator xnal 
-:axn I c (mod m),

where

2.

3 .

4 .

5 .

6 . Show that every linear congruential pseudo-random number generator can be

simply expressed in terms of a linear congruential generator with increment

c : 1 and seed 0, by showing that the terms generated by the linear congruential

generator xn+r7 axn * c (mod lrt), with seed xe, can be expressed as xn =

6 y ,  +  xo (mod m),  where b : -  (a-1)  xo *  c  (mod m),  yo:0 '  and ln+t  ?

a l n *  I  ( m o d l n ) .

Find the period length of the pure multiplicative pseudo-random number

generator xn Z cxn-r (mod 231-l) when the multiplier c is equal to

a )  m : 1 0 0 0
b) nr - 30030

a ) z
b ) 3

c) m : 106-l
d )  m  :225 -1 .

7 .

c)  4  e)  13.

d ) s

8 .

9 .

Show that the maximal possible period length for a pure multiplicative generator

of the form xnal 
-3 QXn (mod 2"), e 2 3, is 2'-2. Show that this is obtained

when a 
-:  t3 (mod 8).

Another way to generate pseudo-random numbers is to use the

Fibonacci generator. Let m be a positive integer. Two initial integers x6 and x1

less than m are specified and the rest of the sequence is generated recursively by

the congruolce.r2al :- xn * xn-1 (mod rn), 0 ( xn+r 1 m'

Find the first eight pseudo-random numbers generated by the Fibonacci

generator  wi th  modulus n  :  3 l  and in i t ia l  va lues x0:  I  and x t :24.

Find a good choice for the multiplier a in the pure multiplicative pseudo-random

number generator xn+rZ axn (mod l0l).  (Hint: Find a primit ive root of 101

that is not too small.)

Find a good choice for the multiplier c in the pure multiplicative pseudo-random

number generator xn i axn-r (mod 22s-1). (Hint: Find a primitive root of

10.

l l .
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225-l and then take an appropriate power of this root.)

12. Find the multiplier a and increment c of the linear congruential pseudo-random
number generator xn+rt axn * c (mod 1003), 0 ( xn+r < 1003, i f  xs: l ,
x 2 : 4 O 2 ,  a n d  x 3 : 3 6 1 .

13. Find the multiplier a of the pure multiplicative pseudo-random number
generator xnal- QXn (mod 1'000), 0 ( xn11 < 1000, if 313 and 145 are
consecutive terms generated.

8.7 Computer Projects

Write programs to generate pseudo-random numbers using the following generators:

l. The middle-sequence generator.

2. The linear congruential generator.

3. The pure multiplicative generator.

4. The Fibonacci generator (see problem 9).

8.8 An Application to the Splicing of Telephone Cables

An interesting application of the preceding material involves the splicing of
telephone cables. We base our discussion on the exposition of Ore [28], who
relates the contents of an original article by Lawther [70], reporting on work
done for the Southwestern Bell Telephone Company.

To develop the application, we first make the following definition.

Definition. Let m be a positive integer and let a be an integer relatively prime
to m. The + I - exponent of a modulo ru is the smallest positive integer x
such that

+ I (mod rn ).

We are interested in determining the largest possible + 1 - exponent of an
integer modulo m; we denote this by },s(rn). The following two theorems
relate the value of the maximal + I - exponent trs(z) to }.(m ), the minimal
universal exponent modulo rz.

First, we consider positive integers that possess primitive roots.

Theorem 8.26. lf m isa positiveinteger, m ) 2, with aprimitive root, then
the maximal *l - exponent trs(rn ) equals 0@) / 2: )r@) / 2.

e t



8.8 An Application to the Splicing of Telephone Cables 281

Proof. We first note that if m has a primitive root, then \(z) : 6(m).
From problem 5 of Section 6.1, we know that g(m) is even, so that 0@) I Z
is an integer, if m ) 2. Euler's Theorem tells us that

ootu) :1oatu) lz lz -  I  (mod lz) ,

for all integers a with (a,m) : 1. From problem 7 of Section 8.3, we know
that when m has a primitive root, the only solutions of x2 = I (mod m) are
x = - t l  ( m o d r u ) .  H e n c e ,

s f h )  l 2 :  t  |  ( m o d  z ) .

This implies that

\ s ( r , ) ( d ( z ) l z .

Now let r be a primitive root of modulo m with f I - exponent e. Then

re = t  |  (mod la) ,

so that

r 2 ' =  1  ( m o d z ) .

Since ord^r : 6(m), Theorem 8.1 tells us that 6fu) | 2e, or equivalently,
that (6(m) /D I e. Hence, the maximum +l - exponent L6(z) is at least

Q@) / Z. However, we know that l(rn ) 4 6fu) /2. Consequently,
l , s ( r z r ) :  6 fu )  / 2 : \ f u )  / 2 .  t r

We now will find the maximal + I - exponent of integers without primitive

roots.

Theorem 8.27. lf m is a positive integer withciut a primitive root, then the
maximal +1 - exponent \6(rn) equals I(m), the minimal universal exponent
o f  m .

Proof. We first show that if a is an integer of order )t(m) modulo z with + I
- exponent e such that

ottu)/2 # _t (mod z),

then e : X(z). Consequently, once we have found such an integer a, we will
have shown that ),q(tn ) : tr(lz).

Assume that a is an integer of order xfu) modulo m with + I - exponent e
such that
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o)'tu)/2 # -r (mod ru).

Since o" = + I (mod rn ), it follows that az, = I (mod z). From
Theorem 8 .1 ,  we know tha t  > r fu )  l2e .  s ince  x@) l2e  and e  (  \ (z ) ,
e i t h e r  e : t ( m ) / 2  o r  e : x ( m ) .  T o  s e e  t h a t  e r \ , ( m ) / 2 ,  n o t e  t h a t
ae :-  +1 (mod ln) ,  but  o) ,@)/2 *  I  (mod rn),  s ince ord^o:\(m),  and
o>'(-)/z # -t (mod z) , by hypothesis. Therefore, we can conclude that if
ord.  a :  ) r (m),  a has +l  -  exponent e,  and a,  = _l  (mod z),  then
e :  h , (m) .

We now find an integer a with the desired properties. Let the prime-power
factorization of m be m - 2'o p'r' p'; . . . p'r'. we consider several cases.

We first consider those rn with at least two different odd prime factors.
Among the prime-powers p!' diriding ffi,, let pl be one with the smallest power
of 2 dividi"g Obh. Let ri be a primitive root of p',, for i: 1,2,...,s. Let a
be an integer satisfying the simultaneous congruences

Q : 5 (mod 2')
(mod pj') for all i with i # j
(moa p!).

Such an integer a is guaranteed to exist by the
Note that

ord.a : [I(2tg , Ob','),..., Oe!)

and, by

\ , (m) .

,!(P'j '  -' l

our choice we know that this
(mod p!),

/  2  , . . . ,6Qb1,

least common multiple equals

know that otb/) / '  =

a l r i
)o - r i

^  , .
or pl,

)
e : r j - we

remainder theorem.

where
When

I (modp!). Because Oeh / z I x@) / z,we know that

It(d /2 - t (mod p!),

so that

otr(*) /' * -t (mod rn ).

Consequently, the + I - exponent of a is I(z).

The next case we consider deals with integers of the form rn - 2toott
p  i s  an  odd pr ime, t r2 l  and to )  2 ,  s ince  m has  no  pr im i t i ve  roo ts .
to :  2  o r  3 ,  we have
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x( ,n)  :12,  eQ\ ' ) l  :  dQi ' ) .

Let. a be a solution of the simultaneous congruences

a = l  ( m o d 4 )

a t r (mod p'i),

where r is a primitive root of p'1'. We see that ord- a : lr(m) ' Because

ox@) /2 -  1 (mod 4),

we know that

ox(n) /2 + _l(mod ru).

Consequently, the +1 - exponent of a is f (z)'

When ts 2  ,, let a be a solution of the simultaneous congruences

a = 3  ( m o d 2 t ' )

a 
-: r (mod p'il;

the Chinese remainder theorem tells us that such an integer exists. We see

that ord- " 
: ^::,:; 

,:':',i :i:':';:,*ll;:'l 
',::';, ""n"'

Thus,

ox('.'.) /2 + _t (mod rc),

so that the 1l - exponent of a is tr(rn ).

F inal ly ,  when m:2 'o wi th ts2 3,  f rom Theorem 8. t l  we know that

ord-5 : X(na), but

5r(nr) /2 = 152)0(m) /4 - 1 (mod 8).

Therefore, we see that

5r(m )  / ,  +  _1 (mod ru) ;

we conclude that the +1 - exponent of 5 is l( lz)'

This finishes the argument since we have dealt with all cases where m

not have a primitive root. tr
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We now develop a system for splicing telephone cables. Telephone cables
are made up of concentric layers of insulated copper wire, as illustrated in
Figure 8.1, and are produced in sections of specified length.

Figure 8.1. A cross-section of one layer of a telephone cable.

Telephone lines are constructed by splicing together sections of cable. When
two wires are adjacent in the same layer in multiple sections of the cable,
there are often problems with interference and crosstalk. Consequently, two
wires adjacent in the same layer in one section should not be adjacent in the
same layer in any nearby sections. For practical purpose, the splicing system
should be simple. We use the following rules to describe the system. Wires in
concentric layers are spliced to wires in the corresponding layers of the next
section, following identical splicing direction at each connection. In a layer
with m wires, we connect the wire in position j in one section, where
I < i ( rn to the wire in position S(j) in the next section, where S(i) is the
least positive residue of I + (j-l)s modulo m. Here, s is called the spread
of the splicing system. We see that when a wire in one section is spliced to a
wire in the next section, the adjacent wire in the first section is spliced to the
wire in the next section in the position obtained by counting forward s modulo
m from the position of the last wire spliced in this section. To have a one-to-
one correspondence between wires of adjacent sections, we require that the
spread s be relatively prime to the number of wires z. This shows that if
wires in positions j and k are sent to the same wire in the next section, then
.S (j) : S (k) and
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I  +  ( j - l ) s  :  I  +  ( k - l ) s  ( m o d  z ) ,

so that js = ks (mod m ). Since (m, s) : l, from Corollary 3.1 we see that

j = k (mod z ), which is imPossible.

I  * l
4 - 7
7  - 4

This is illustrated in figure 8.2.

Example. Let us connect 9 wires with

correspondence

2 - 3
5 * 9
8 * 6

a spread of 2. We have the

3 * 5
6 - 2
9 - 8 .

Figure 8.2. Splicing of 9 wires with spread of 2.

The following proposition tells us the correspondence of wires in the first

section of cable to the wires in the n th section.

Proposition 8.2. Let S'(7) denote the position of the wire in the nth section

spliced to the 7th wire of the first section. Then

.S ' ( j )  =  I  +  (7 - l )s ' - r  (mod z ) .

Proof. For n : 2, by the rules for the splicing system, we have

s2( j )  :  I  + (r- l )s (mod rn ) ,

so the proposition is true for n : 2. Now assume that

S ' ( j )  :  I  +  (7 -1)sn- r  (mod la ) .

the next section, we have the wire in position S'(7) spliced to theThen,
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wire in position

gn+r(r) = I  + (,Sr(,r)-t) ,

= li f1;i)',* dm)
This shows that the proposition is true. D

In a splicing system, we want to have wires adjacent in one section
separated as long as possible in the following sections. After n splices,
Proposition 8.2 tells us that the adjacent wires in the 7th and j+l th positions
are connected to wires in positions Sr(j) = I + (7_l)s, (mod rn ) and
,s'(j+l): I t jsn (mod m), respectively. These wiies are adjacent in the
n th section if, and only if,

.S ' ( i )  -  S' in( i+t)  :  r  |  (mod m).

or equivalently,

( t  +  ( j - l ) s ' )  -  ( l+7sn)  =  +  I  (mod ln ) ,

which holds if and onlv if

s n :  t l  ( m o d m ) .

We can now apply the material at the beginning of this section. To keep
adjacent wires in the first section separated as long as possible, we should pick
for the spread s an integer with maiimar + l - .^ponrnt \o(n).

Example. with 100 wires, we should choose a spread s so that the f I
exponent of s is ro(too) : ^,(100) : 20. The appropriate computations sho-
that s : 3 is such a spread.

8.8 Problems

l. Find the maximal t I - exponent of

a)
b)
c)

t 7
22
24

d) 36
e) 99
f) 100.

2. Find an integer with maximal * I - exponent modulo

i l  1 3 i l 2 s
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e)
f)

b)  14
c)  t5

36
60.

3. Devise a splicing scheme for telephone cables containing

a) 50 wires b) 76 wires c) 125 wires.

4. Show that using any splicing system of telephone cables with ln wires arranged

in a concentric layer, adjacent wires in one section can be kept separated in at

most [ @-l) / 2] successive sections of cable. Show that when lz is prime this

upper limit is achieved using the system developed in this section.

8.8 Computer Projects

Write programs to do the following:

1.  F indmaximal  t l  -exPonents .

2. Develop a scheme for splicing telephone cables as described in this section.



Quadratic Residues

9.1 Quadratic Residues

Let p be an odd prime and
chapter, we devote our attention
p? We begin with a definit ion.

a an integer relatively prime to p. In this
to the question: Is a a perfect square modulo

Definition. If m is a positive integer, we say that the integer a is aquadratic residue of m if (a,/k) : I and the ctngruence ,, = a (mod m)
has a solution. If the congruen ce x2 = a (mo a d has no solution, we say
that a is a quadratic nonresidue of m.

Example. To determine which integers are quadratic residues of I l, we
compute the squares of  the ^ integers r ,2,  3, . . . , r0.  we f ind that12 :102 :  t  (mod  t t ) ,  22  =  92 :  i t , noO- i i i ,  

'  
32 :  g2  -  9  (mod  l l ) ,42: '12:5 (mod l l ) ,  and 52: 62 = t  f rnoJ rr l .  Hence, the quadrat ic

residues of  I  I  are I ,  3,  4,  5,  and 9;  the integers 2,  6,7,  g,  and 10 are
quadratic nonresidues of I l.

Note that the quadratic residues of the positive integer m arejust the ftthpower residues of m with /<:2, as defined in Section 8.4. We will show that if
p is an odd prime, then there are exactly as many quadratic residues as
quadratic nonresidues of p among the integlrs r,2,...,p - r. To demonstrate
this fact, we use the following lemma.

Lemma 9.1. Let p be an odd prime and a
Then, the congruence

an integer not divisible by p.

288
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x 2 =  a  ( m o d p )

has either no solutions or exactly two incongruent solutions modulo p.

Proof. lf x2 : c (mod p) has a solution, say x : xo, then we can easily

demonstrate that x : -r0 is a second incongruent solution. Since
(-xo) ' :  *& = c (mod p),  we see that -xs is a solut ion.  We note that

xo # -xs (mod p),  for  i f  xo E

2xo:0 (mod p).  This is imPossible
x& = a  (modp)  and p  t ra) .

To show that there are no more than two

x : xo and x : xt are both solutions of

x& =  x?  =  a  (mad p) ,  so  tha t  x& -  x?

H e n c e ,  p l ( x s + x 1 )  o r  p l ( x o - x r ) ,

xr E xe (mod p). Therefore, if there is a

are exactly two incongruent solutions. tr

This leads us to the following theorem.

Definition. Let p

Legendre symbol

f , l
IrJ

-xs (mod p), then we have

since p is odd and p tr xo (since

incongruent solutions, assume that
x2 = a (mod p). Then, we have
: (xo*x r) (xo-x r) = 0 (mod p).

so that x | :- -xe (mod P) or

solution of x2 = a (mod p), there

Theorem 9.1. If p is an odd prime, then there are exactly Q-l)12 quadratic

residues of p and Q-l) /2 quadratic nonresidues of p among the integers

1 , 2 , ' . ' , p  - l '

Proof. To find all the quadratic residues of p among the integers 1,2,...,p-l

we compute the least positive residues modulo p of the squares of the integers

1,2,...,p - l. Since there are p - | squares to consider and since each

congruence x2: c (mod p) has either zero or two solutions, there must be

exactly Q-D/2 quadratic residues of p among the integers 1,2,...,p-1. The

remaining p-l - (p-l)/z- Q-l)lZ positive integers less than p-l are

quadratic nonresidues of p. tr

The special notation associated with quadratic residues is described in the

following definition.

b e a

f r l
L'J
_ {

l.

n odd prime and a an integer not divisible by p. The

is defined by

I if a is a quadratic residue of p
-l if a is a quadratic nonresidue of p.

Example. The previous example shows that the Legendre symt I o I' o rs  
I t t  ,J '
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Q :  l ,

Proof. First, assume that

has a solution, say x : ro.

ob-r)/2 -

Hence, if

lal :fgl :f ' l-f ' l-f 'ol ,[, ' ,l- [u ,J: [" ,l: l" ,J: l" ,l 
:-r

we now present a criterion for deciding whether an integer is a quadratic
residue of a prime. This criterion is useful in demonstrating properties of theLegendre symbol.

Euler's criterion' Let p be an odd prime and let a be a positive integer notdiv is ib le by p.  Then 

r  I

l g l =  ob -D /27^odp ) .
lp  )

Quadratic Residues

[+] : [#] :'

r l
l* | : t Then, the congruence x2 : a (mod p)
l p  )
Using Fermat's little theorem, we see that
G l1<n- r t t ' :  *B - t  =  t (modp) .

know that -  
ob-t) /2(mod p).

2,...,10, have the following values:

lrl :lrl :fol-[",l-[,,l:[,J:

Now consider the case where 
l* I 

: - t Then, the congruence
x.2 = a (mod p) has no solutions. o-i?{.orem 3.7, for each integer i suchthat I  S t < p-1, there is a unique integer 7 with I  < j  (  p_1, such thatii - c(mod p). Furthermore, sin-ce the ioniruence *i L otiroo pl has nosolut ions, we know that i  * j .  Thus, *. ." i  group the integers r,Z,.. . ,p- li.nto (r -l) /2 pairs each with product c. Multipiying these pairs together, wefind that

(p - l ) t  =  ah- t ) /21-od  p) .

Wi lson's theorem tel ls us that  (p- l ) t  = _l  (modp),  we see that
- l  = ob-t) /2(modp).
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and

Hence.

[a )  =  GDe- t ) /2  (mod p) .
I p  )

-  o$-t) /z6b-r) /z :  (ab1e-t) /z :  l t l  (mod p).
l p  )

291

In  th is  case,  we a lso have | , " ]  
-  

o$- t ) /2(modp) .  D
l .p  J

Example.  Lel  p :23 and c :5.  Since 5l l  :  - l  (mod 23),  Euler 's cr i ter ion

r s ' l
re l ls us that  

l ; l  

:  -1.  Hence, 5 is a quadrat ic nonresidue of  23.

We now prove some properties of the Legendre symbol.

Theorem 9.2. ilet p be an odd prime and a and b integers not divisible by p .

Then

( i )  i r  a  =D (mod p) ,  then 
[ ; ]  

:  
t ; ]

( i i) ["] fbI-f4)
l p ) lp )  Lp  )

( i i i )  f4l  : ,
I p  )

Proof of  0.  l f  a = D (modp),  then x2=a (modp) 
l tut . ,u 

solut ion i f  and

only if x2 = b (mod p) has a solution. Hence, l* I : l+ |
l p  )  l p  )

Proof of (iil. By Euler's criterion, we know that

f al = o(o-r)/z (mod p), Iql = 6b-D/z (mod p),
l . p J - -  

\ ' ^ ! v s r l '  
V ) - "

Since the only possible values of a Legendre symbol are * I, we conclude that
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[;] itl :l+)
Proof of Gii). since f:l : *r , from part (ii) it follows that

lp  )

lo r )  r - l r  )

l,): tfl t?):,tr
Part (i i) of Theorem 9.2 has the following interesting consequence. Theproduct of two quadratic residues, or of two quadratic nonresidues, of a prime

is a quadratic residue of that prime, whereas the product of a quadratic
residue and a quadratic nonresidue is a quadratic nonresidue.

using Euler's criterion, we can classify those primes having _ l as aquadratic residue.

Theorem 9.3. If p is an odd prime, then

r ) (
l - r l  J r i f  p :  l (mod4)
l - ,  :  I

f  p  J  t - r  i f  p  - - l  (mod4) .

Proof. By Euler's criterion, we know that

[  - '  ]
I  

'  
|  =  ( -1 ) ( r - t ) /21 -odp) .

[ r  )
If p : I (mod 4), then p :4k * I for some integer ft. Thus,

( 1 ) { o - D t z :  ( _ l ) 2 k  :  l ,

r )
so  tha t  l + f  :  r .  r f  p  =  3  (mod4) ,  t hen  p :4k *3  fo r  some in tege r  f r .l p  )
Thus.

1-9{o-D/ t :  ( - l )zk+ t  -  -1 .

(  - ,  l
s o t h a t  |  

^  
|  = - t .  t r

Lp )
The following elegant result of Gauss provides another criterion to

determine whether an integer a relatively prime to the prime p is a quadratic
residue of p.



Gauss'
is the
Q ,  2 A ,

I r l
l - l =
l p  )
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Lemma. LeI p be an odd prime and a an integer with (a ,p) : l. Ii s

number of least positive residues modulo p of the integers

3e,...,((p-D/Da that are greater than p/2, then the Legendre symbol

=  ( - l ) ' .

proof. Let u1, u2,...,1ts represent the least positive residues of the integers

a, 2a, 3o,. . . , ( (p-D /Da that are greater than p /2,  and let  v 1,  v2, . . . ,v;  be the

least positive residues of these integers that are less than p 12. Since

Qa,p) :  I  fo ra l l  7  w i th  t  ( , r  (  b - l ) /2 ,  a l lo f  these leas tpos i t i veres idues

a r e  i n  t h e  s e t  1 , 2 , . . . , P  -  l .

We w i l l  show tha t  p -u t ,  P-u2 , . . . ,  P-ur ,  v1 ,v2 , . ' . , v1  compr ise  the  se t  o f

integers 1,2,...,(p-D/2, in some order. To demonstrate this, it suffices to

show that no two of these integers are congruent modulo p, since there are

exactly Q-l)/2 numbers in the set, and all are positive integers not exceeding

(p-D /2 .

It is clear that no two of the ai's are congruent modulo p and that no two

of the v;'s are congruent modulo p;if a congruence of either of these two sorts

held, wb would have ma z na (mod p) where m and n are both positive

integers not exceeding Q-D12. Since p tr a, this implies that

7n - n (mod p) which is impossible.

In addition, one of the integers P - 4 cannot be congruent to a, vit for if

such a congruence held, we would have ma 3 p - na (modp), so that
l )

so

ma t -na (mod il. Since p tr a, this implies that m -- -n (mod p) . This

is impossible because both m andn are in the set l, 2,...,(p-l)/2.

Now that we know that
integers l ,  2, . . . , (p- l )  12,  in

( P - ' ) ( P - u z )  '  '

p  -  U l ,  P  
-  112 , . . . 'P  -  U r ,  V l ,  V2 , ,  . . . ,  V t  a fe  the

some order. we conclude that

(p-u)v 1v2 vt :- (mod p ),t+l
which implies that

(e . l  ) ( - t ) ' u l t z '  u r v 1 v 2 vt (mod p ) .[n:i,
f z )

BUt,  s inCe l l1 ,  l l2 , . . . r l l s ,  v l ,  VZ, . . . rv t  are

a ,2a , . . . , ( ( p - t ) /Da ,  we  a l so  know tha t

the least positive residues of
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u tuz '  L t , v t v2 - . . v t  z  a .2a . . . 1+1 "
l z  )

p - r (  ):  oT l+lr  (moo p).
l . -  )

Hence, f rom (9.1) and (9.2),  we see that
p - t (  I  r  l(-r) 'a '  l f  l r= l+lr(moap).

l L  j  l t  )

Because (p,((p-D/DD: l, this congruence implies that

( - t ) ,a+ : l  (modp) .

By multiplying both sides by (-l) ' , we obtain
p- l

a  2  :  ( - t ) ' ( m o d p ) .

Since Euler's criterion tells

establishing Gauss

p - t r )
u s t h a t a  2  :  

l i l  ( m o d  p ) , i t f o l l o w s t h a r
l p  )

r)
l *  |  =  ( - l ) '  (mod p) ,
tp  )

tr

Exampte. Let o:5 and p: l l .  To f ind t+l  by Gauss. lemma, we
compute the least posit ive residues of r.5, 2.5: l lsl o s,and 5.5. These are5, 10, 4,9, and 3, respectively. Since.,exactly two of these are greater than
l l /2 ,  Gauss ' lemma te l ls  us  rhat  l+  |  :  ( - l )2 :  l .

l  r r  J
Using Gauss' lemma, we can characterize all primes that have 2 as aquadratic residue.

Theorem 9.4. If p is an odd prime, then
r )

lZ l : ( -1)g , - rvs .
[p  J
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Hence, 2 is a quadratic residue
quadratic nonresidue of all primes p

all primes p : + I (mod 8) and a
+ 3 (mod 8).

Proaf. From Gauss' lemma, we know that if s is the number of least positive
residues of the integers

r )
1.2, 2.2, 3.2, . . . ,  l+1. '\ -  )

r l
that are greater than pl2,then l+ | : (-l)'. Since all these integers are less

l p  )
than p, we only need to count those greater than p /2 to find how many have

least positive residue greater than p /2.

The integer 2j ,  where I  (  7 (  b- l ) /z,  is  less than pl2when i  4 pla.

Hence, there are Ip /41 integers in the set less than p /2. Consequently, there
n - l

are s
L

that

of

To prove the theorem,

: I (mod 2).

Now consider + - b /ql. rf p
l '

integer k and

:  (-D+-tP/al

we must show that

+ - el = {p'-1)/8 (mod 2).
2  

' 4 -

To establish this, we need to consider the congruence class of p modulo 8,

since, as we will see, both sides of the above congruence depend only on the

congruence class of p modulo 8.

We f i rs t  cons ider  b ' - l ) /5 .  I f  p  =  + l (mod 8) ,  then p :8k  + l  where  f t

is an integer, so that

( p ' - l ) / 8  -  ( ( s k + t ) 2 - t ) / 8 :  G + k 2 + r 6 k ) / 8 : 8 k 2  +  2 k : 0  ( m o d  2 ) .

If p : + 3 (mod 8), then P : 8k + 3 where k is an integer, so that

(p ' - l ) /8  :  ( (s t  +  i z -D/s :  (64k2 +  48k  +  8) /8  :8k2  +  6k + l

for someI (mod 8) ,  then p :8k + |
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l f p

i f p

d
2  

-  - t p /+ l : 4k  - l z t c  +  t / 41  :2k  =  0  (mod  2 ) ;

i f  p :3 (mod 8),  then p :  gk *  3 for  some integer k,  and

+ 
-b /q l  :  4k+ I  -  t2*  +  3 /41  :  2k  + l  =  I  (mod 2) ;

= 5 (mod 8), then p : Bk f 5 for some integer k, and
n - l

T 
-tp/ql  :  4k + 2 -  [ztc + S/4] :  2k +l  = I  (mod 2);

= 7 (mod 8), then p : Bk * 7 for some integer k, and
n - l

T 
- lp/ql :4k + 3 -  Izn + 7/41 :2k + 2 = 0 (mod 2).

Hence, (Z) :  1-1y(r,-r)/8 .p

From the computations of the congruence class of (pz_l) /g
t h a t  l 3 l : l  i f  p : + l ( m o d 8 ) ,  w h i l e

lp  )
p = r 3 (mod 8). tr

Example. From Theorem 9.4, we see that

[+] : [+] - [*):[+] :,

Comparing the congruence classes modulo Z of * 
- Ip /41 and (pz-D /A

for the four possible congruence classes of the odd irime p modulo g, we see
that we alwavs nar" 

* 
- 

b/ql = {pr-1)/8 (mod 2).

, (mod 
2),  we see

l?): 
-, if

while

f+l :f+l :fal :fzl :
[3J [sJ I t ' . l  I r , l -

We now present an example to show how to

( " . l
I  

L  
l : _ . 1

[2eJ

Legendre symbols.

Theorem 9.2 to obtain

[+] :
evaluate

Exampte. To evaluate f+1, we use part (i) of
Iu ) '
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lg: 
L'

To evaluate

In the next section, we state and prove a theorem of fundamental

importance for the evaluation of Legendre symbols. This theorem is called

the law of quadratic reciProcitY.

The difference in the length of time needed to find primes and to factor is

the basis of the RSA cipher discussed in Chapter 7. This difference is also the

basis of a method to "flip coins" electronically that was invented by Blum [821.

Results about quadratic residues are used to develop this method.

Suppose Ihat n : pq, where p and q are distinct odd primes and suppose

tha t  the  congruence x2  =  a  (modn) ,  O 1a  1 t t ,  has  a  so lu t ion  x  :  x0 .

We show that there are exactly four incongruent solutions modulo n. To see

t h i s ,  l e t  x o E x l ( m o d p ) ,  0 ( x t  1 p ,  a n d  l e t  x o E x 2 ( m o d q ) ,

0 ( x2 < q. Then the congruence x2 = a (mod p) has exactly two

incongruent solut ions,  namely x z x '  (modp) 
'and 

x = P -x1 (modp).

Similarly the congruence x2 : c (mod g) has exactly two incongruent

solutions, namely x 2 xz (mod q) and x = Q - x2 (mod g).

From the Chinese remainder theorem, there are exactly four incongruent

solutions of the congruence x2 = a (mod n) ; these four incongruent solutions

are the unique solutions modulo pq of the four sets of simultaneous

congruences

r t 2
=  |  3  |  :  t . s i n c e  3 1 7  = 9  ( m o d  1 l ) .

l i l J

Iesl
l i i l, 

since 8e : -2 (mod 13)' we have

t1l [U l .  Because t3 = I (mod 4), Theorem e.3
.  L 13 , l  I  t3  J
I

| 
: t. Since 13 = -3 (mod 8), we see from Theorem 9.4

,n  
. ,  fq l  :_1.Consequently, 

[ ,, t

(mod p)
(mod q)

x1 (mod p)

Q -  xz (mod q)

We denote solutions of (i) and (ii)

and (iv) are easily seen to be n-y

-  x1  (mod p)
(mod q)

-  x1 (mod p)
-  x2  (mod q) .

by x and y, respectively. Solutions of (i i i)

and n-x, respectively.

(i i)

(ii i) x = p
x z x z

x
x

x
x

x
x

(iv)
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We also note that when p = q = 3 (mod 4), the solutions ofx2:  a (modp) and of  x2:  a (mod q) ur"  ,  -  ; 'o<i*r \ to (modp) andx = t oQ+1)/4 (mod g), respectively. ny eut.r,, criterion, we know that
oQ-D /2 -  l : l :  I  (mod  p )  andoe -D /z -  l + l : l  (modq )  ( r eca l l  t ha t

l p )  
r  

l q )  
^ \ r r r v u Y /

we are assuming that x2 : a (mod pq) hur' 
" 

solution, so that a is aquadratic residue of both p and q) . Hence.

1oV+r ) / t72  :  eQ+D/2  -  ob-D/z .a  =a  (mod p)

and

1oQ+t ) / t12  :  eQ+o/z  :  oe-D lz .a  =a  (mod q) .

Using the chinese remainder theorem, together with the explicit solutionsjust constructed' we can easily find the four incongruent solutions ofx2 = a (mod n) . The following example illustrates this procedure.

Example' Suppose we know a priori that the congruence

x2 =  860 (mod I  l02 t )

has a solut ion'  s ince 11021 :103'107, to f ind the four incongruent solut ionswe solve the congruences

x 2  : 8 6 0  =  3 6  ( m o d  1 0 3 )

and

x 2 : g 6 0 : 4 ( m o d l 0 7 ) .

The solutions of these congruences are

;  :  + 3 6 ( r o : + D / q -  + 3 6 2 6 = + 6 (mod 103)

and

r = + 4Qo7+D/a = t 427: * 2 (mod 107),

respectively. Using the chinese remainder theorem, we obtain x 4 *. 2r2,* 109 (mod ll02l) as the solutions of the four systems of congruencesdescribed by the four possible choices of signs in the system of congruencesx = + 6 (mod 103),  x = + 2 (mod 107).

we can now describe a method for electronicaily flipping coins. supposethat Bob and Alice are communicating electronically. etice !i.t, two distinct
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large primes p and q, with p = q = 3 (mod 4). Alice sends Bob the integer

n : pq. Bob picks, at random, a positive integer x less than n and sends to

Al ice the integer a wi th x2 :  a (mod n),0 (  a I  n.  Al ice f inds the four

solut ions of  x2 = a (mod n),  namely x,  ! ,  f r -x,  and n-y.  Al ice picks one of

these four solutions and sends it to Bob. Note that since x + y : 2* t #

0  (modp)  and x  +  y  =  0  (mod q) ,  we have G+y,n) :  q ,  and s imi la r ly

G+h-y),  n)  :  p.  Thus, i f  Bob receives ei ther y or n-y,  he can rapidly

factor n by using the Euclidean algorithm to find one of the two prime factors

of n. On the other hand, if Bob receives either x or n-x, he has no way to

factor n in a reasonable length of time.

Consequently, Bob wins the coin flip if he can factor n, whereas Alice wins

if Bob cannot factor n. From previous comments, we know that there is an

equal chance for Bob to receive a solution of x2 = a (mod n) that helps him

rapidly factor n, or a solution of x2 = a (mod r) that does not help him

factor n. Hence, the coin flip is fair.

9.1 Problems

l. Find all the quadratic residues of

a )  3  c ) 1 3

b )s d)  te .
r . t

2. Find the value of  the Legendre symbols 
l+ I , for7 

:  1,2,3,4,5,and 6.

3. Evaluate the Legendre symbol

il using Euler's criterion.

b)  us ing Gauss ' lemma.

4. Let a and b be integers not divisible by the prime p. Show that there is either

one or three quadratic residues among the integers a, b , and ab .

5. Show that i f  p thenis an odd prime,
(
l l

- 1

l - r
i f p

i t p

I or 3 (mod 8)
- l  or  -3  (mod 8) .

) r

Pn

6. Show that if the prime-power factorization of n is

n : p?"*t pl"*t ' " pi"*t pili'

and q is a prime not dividing n, then
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lor l
t7l

Show that  i f  p  is  pr ime and p -  3  (mod 4) ,  then te_0/Z l l  =  (_ t ) ,  (modp) ,
where I is the number of positive integers less than p /2 that are quadratic
residues of p.

show that if b is a positive integer not divisibre by the prime p, then

i*l . l+1. i+l . + f"'-pol :o
l p )  l p )  [pJ  I  p  )  "

Let p be prime and a a quadratic residue of p. Show that if p = | (mod 4),then -a is also a quadratic residue of p, whili it p = 3 (mod i), th"n _a is aquadratic nonresidue of p.

Consider the quadratic congruence ax2 * bx * c = 0 (modp), where p isprime and a,b, and c are integers with p I a.

il Let' p :2. Determine which quadratic congruences (mod 2) havesolutions.
b) Let p be an odd prime and let d : b2 - 4ac. show that the congruence

axz + bx * r 
= 0 (mod p) is equivarent to the congruence

y2 = d  (modp) ,  where y  :2ax t  b .  Conc lude that  i f  d  =0 (modp) ,
then there is exactly one solution x modulo p, if d is a quadratic residue ofp, then there are two incongruent solutions, while if d is a quadratic
nonresidue of p, then there are no solutions.

Find all solutions of the quadratic congruences

a )  x 2 +  x * l = 0 ( m o d 7 )
b )  x 2 + 5 x + l : 0 ( m o d 7 )
c )  x 2 + 3 x + l = 0 ( m o d 7 ) .

Show that if p is prime and p 2 7, then

a) there are always two consecutive quadratic residues of p (Hint: First show
that at least one of 2,5,and r0 is a quadratic residu. oip.)

b) there are always two quadratic residues of p that differ by 2.
c) there are always two quadratic residues of p that differ by 3.

7.

8 .

9 .

1 0 .

12.

1 3 . Show that if a is a quadratic residue of the
x2 = a (mod p) are

i l  x  E  - F  a n + l  ( m o d  p ) , i f  p  : 4 n  *  3 .

b)  x  E *  22n+ron+r  (mod p) ,  i f  p  :gn *  5 .

p, then the solut ions of
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| 4 . S h o w t h a t i f p i s a p r i m e a n d p : 8 n * l , a n d r i s a p r i m i t i v e r o o t m o d u l o p ,
then the solutions of x2 = I 2 (mod p) are given by

x E t  ( r1n t  r ' )  (mod p) ,

where the * sign in the first congruence corresponds to the + sign inside the

parentheses in the second congruence.

15. Find al l  solut ions of the congruence x2 = I (mod l5).

16. Let p be an odd prime, e a positive integer, and a an integer relatively prime to

p .

a) Show that the congruence x2: a (modp"), has either no solut ions or

exactly two incongruent solutions modulo p".

Show that there is a solution to the congru ence x2 = a (mod p'*') if and

only i f  there is a solut ion to the congruence x2 = a(mod p"). Conclude

that the congruence x2 = c(modp") has no solut ions i f  a is a quadratic

nonresidue of p, and exactly two incongruent solutions modulo p if a is a

quadratic residue of p.

Let n be an odd integer. Find the number of incongruent solutions modulo

n of the congruence x2 = a(mod n), where n has prime-power factorization
|  ! - l  lg ln : p' ipt i  '  .  '  p ' ; ,  in terms of the Legendre symbols l-' a - - -  J  
[ p ,  j " " ' ,  l o .  ) '

Find the number of incongruent solutions of

i l  x2 : 3l (mod 75)

b)  x2 :  16 (mod 105)

c)  x2 :  46 (mod 231)

d) x2 = l156 (mod 32537stt6).

Show that the congruence x2 = a(mod 2"), where e is an integer, e 2 3, has

either no solutions or exactly four incongruent solutions. (Hint: Use the fact that
( *x)2  :  (2e- t  *x)2  (mod 2") . )

Show that there are infinitely many primes of the form 4k * l. (Hint: Assume

that  p t ,p2, . . . ,pn are the on ly  such pr imes.  Form N :4(ppz" 'P)2 *  l ,  and

show, using Theorem 9.3, that N has a prime factor of the form 4k * I that is

not one of p1,p2,.. . ,pn.)

Show that there are infinitely many primes of the form

a )  8 k - l  b )  8 & + r  c )  8 f r + 5 .

(Hint: For each part, assume that there are only finitely many primes Pr,P2,...,Pn
of the part icular form. For part (a) look at @ppz"'P)2 - 2, for part (b),

l ook  a t  ( p rp r " ' p )2  *  2 ,  and  f o r  pa r t  ( c ) ,  l ook  a t  ( ppz " ' p , ) z  +  4 .  I n  each

b)

c)

t 7 .

1 8 .

20.
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part' show that there is a prime factor of this integer of the required form notamong the primes pr,p2,...,pn use Theorems 9.3 and 9.4.)
21. Show that i f  p is an odd prime,.then the congruence x2 = a (modpn) has asolution for all positive integers n if and only if a" is a quadratic residue of p.
22' show that if p is an odd prime with primitive root r , and a is a positive integernot divisibleby p, then a is a quadratic residue of p if and onty irino"a is even.
23' Show that every primitive root of an odd primep is a quadratic nonresidue of p.
24. Let p be an odd prime. Show that there are (p-D/z _ 6e_D quadraticnonresidues of p that are not primitive roots of p.

25' Let p and' q :2p * I both be odd primes. Show that the p-l primitive rootsof q are the quadratic residues of g, other than the nonresidue 2p of q .
26' show that i! p and' q - 4p 

.* 
I are both primes and if a is a quadraticnonresidue of q with ordoa * 4,thena is a primit ive root of q.

27 ' Show that a prime p is a Fermat prime if and only if every quadratic nonresidueof p is also a primit ive root of p. 
J -- -  ' - 'J 1-*uras1 

.

28. Show that a prime divisor p of the Fermat number Fn : 22. * I must be of theform 2n+2k + r. (Hint, show that irioz - 2n+1. Then show that2$-tt tz = I (mod p) using Theorem 9.4. conclude that 2n+tle-D/2)
a) Show that i f  p isa primeof the form4ft * 3 and q :Zp * I  is prime, thenq divides the Mersenne number Mo : 2p-L (Hint: Consider thl Legendre

s y m b o l  l : 1 . )
l q )

b) From part (a), show that nl Mr,47l M23, and 503 1 Mrr.
Show that i f  n is a posi t ive integer and 2n*r is pr ime, and i f  n s0 or3(mod 4),  then 2n * |  d iv ides the Mersenne number Mo:2n_1, whi te i fn  j l  o r 2  ( m o d 4 ) , t h e n  

r 2 n  
*  I  d i v i d e s  M n * 2 : 2 n  t  L  ( H i n t :  C o n s i d e r t h e

Legendre symbol l+ | "na 
use Theorem 9.4.)

l z n + r  )
Show that if p is an odd prime, then

p - 2  ( . ' .  - '  l' >  
l / ( i+ l )  l : _ , .

t-"- [ p ) 
'

(Hint: First show thar f+l : 
[+l *n".r7-is an inverse of 7 modulo

p ) .  I  P  J  t  P  )  
- "

29.

30.

32' Let p be an odd prime. Among pairs of consecutive positive integers less than p,let (RR), (RN), (NR), ano (Nu) denote the number of pairs of two quadratic
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residues, of a quadratic residue followed by a quadratic nonresidue, of a

quadratic nonresidue followed by a quadratic residue, and of two quadratic

nonresidues, respectively.

il Show that

(RR) + (RN) :

(NR) + (NN) :

(RD + (NR) :

(RN) + (NN) :

lU-'-t-17{n-r\/21

lb 
-'*t-11{r-D/21

l<n-r>'r
lr-u

3 3 .

34 .

b) Using problem 30, show that

^ (  ' t
, i l  

l  t(t+l) | : (no + (NN) - (RN) - (NR) : -r.
t:' I P ) 

-

c) From parts (a) and (b), find (RD, (RN), (NR), and (NN).

Use Theorem 8.15 to prove Theorem 9.1.

Let p and q be odd primes. Show that

a) 2 is a primit ive root of q, i f  q :  4p * 1.

b )  2  i s  a  p r im i t i ve  roo to f  q , i f  p  i so f  t he  f o rm  4 /<  *  I  and  Q :2p  *  l .

c )  -2 is  a  pr imi t ive root  o f  q , i f  p  is  o f  the form4k -  I  and Q :2p *  l .

d) -4 is a primitive root of q, if q : 2p * | '

35. Find the solut ions of x2 = 482 (mod 2773) (note that 2773:41'59).

36. In this problem, we develop a method for deciphering messages enciphered using

a Rabin cipher. Recall that the relationship between a ciphertext block C and

the corresponding plaintext block P in a Rabin cipher is

C = P Q+O) (mod n), where n: pq, p and q are dist inct odd primes, and b

is a positive integer less than n.

a )  Show tha t  C  *a  3  ( f +6 )2 (modn ) ,  whe re  a  = ( lD2  (modn ) ,  and  2  i s

an inverse of 2 modulo n.

b) Using the algorithm in the text for solving congruences of the type

x2 = a (mod n), together with part (a), show how to find a plaintext block

P from the corresponding ciphertext block C. Explain why there are four

possible plaintext messages. (This ambiguity is a disadvantage of Rabin

ciphers.)

c) Using problem 35, decipher the ciphertext message 1819 0459 0803 that

was enc iphered us ing the Rabin c ipher  wi th  D -  3  and n:47 '59:2773.
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37 ' Let p be an odd prime and let c be the ciphertext obtained by modular
exponentiation, with exponent e and modulus p, from the plaintext p, Le.,
c  =  p '  (modp ) ,0  <  c  (  n ,  whe re  (e ,p - l )  : 1 .  show  tna l  c  i s  a  quad ra t i c
residue of p if and only if p is a quadratic residue of p .

38' a) Show that the second player in a game of electronic poker (see Sectio n 7.3)
can obtain an advantage by noting which cards have numerical equivalents
that are quadratic residues modulo p . (Hint: Use proble m 37.)

b) Show that the advantage of the second player noted in part (a) can be
eliminated if the numerical equivalents of cards thai are quadratic
nonresidues are all multiplied by a fixed quadratic nonresidue.

39' Show that if.the probing sequence for resolving collisions in a hashing scheme is
h1(K)  =  h(K)  +  a i  *  b iz  (modn) ,  wherJ  n<x> i r  u  6ur t ing*  funct ion,  z  is
a positive integer, and a and 6 are integers with (b ,m) : l, thJn only half thepossible file locations are probed. This is called the quadratic search.

9.1 Computer Projects

Write programs to do the following:

l. Evaluate Legendre symbols using Euler's criterion.

2. Evaluate Legendre symbols using Gauss' lemma.

3' Flip coins electronically using the procedure described in this section.
4' Decipher messages that were enciphered using a Rabin cipher (see problem 35).

9.2 The Law of Quadratic Reciprocity

f 
Ol elegrant., theorem of Gauss relates

| 9 I "'o | * I, where p and, q are both odd
lq )  l p )

the law of quadratic reciprocity, tells us
x2 : p (mod q) has solutions, once we know
the congruence x2 = p(mod q), where the roles

the two Legendre symbols

This theorem, called

whether the congruence
whether there are solutions of
of p and q are switched.

We now state this famous theorem.

The Law of Quadratic Reciprocity. Let p and q be odd prirnes. Then
f  ) f  , l  

p - t . q - l

lz l le_l _ eD-, 
^,  

.
tq  )  l p  )
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Before we prove this result, we will discuss its consequences and its use. We

first note that the quantity Q-D/2 is even when p =-l(mod 4) and odd

when p = i(mod 4). Consequently, we see that 
+ + 

is even if

p =t (mod 4) or q = | (mod 4), while + + 
is odd if

p = q = 3 (mod 4). Hence, we have

f o l I n l  J r  r f  p : l (mod4 )o rq= t (mod4 )  ( o rbo th )

| . ; l  F ) - -  l - t  i rP :q=3 (mod4 ) '

Since the only possible values 
" 

l+'l uno [+ 

.| 

"r. 
t l, we see that

l q )  l p )
{ r  )

I  l " l  t t  p  = t (mod 4)  or  q  = t (mod 4)  (or  both)

[n-l :. lt ' .o'.,
lq , |  l - [ " I  uo  =q=3(mod4) .

I  tp  J

This means that if p and q areodd primes, then [+l : [*'l ""t.ss 
both

l q , )  . ,  lP  J ,

p and q arecongruent to 3 modulo 4,andin that.ur., 
[t] 

: -[;]

Example .  Le t  p :  13  and q :17 .  S ince  
,P  

=rq  =  |  (mod 4) ,  the  law o f

quadratic reciprocity tells us that 
| # I 

: 
I i+ l. 

From part (i) of rheorem

e.2 ,weknowt l  .  I t t ' l  l q  \  
'  \  ' '

, ;i l1l; r i:11 ;:il ;:.'il.":'_. 1""""-f o l l ows tha t  
l " , J :  | . , ,  j :/ \ \

t ha t  l * l  :  t
I  I /  J

Example. Let P : 7 and Q : 19-

quadratic reciprocity, we know

Theorem 9.2, we see that t+ I
l . /  )

3 (mod 4) , from the law of
r )
I 12 l. From Dart (i) of
L7 )

using the iaw of quadratic

Sincerp 
= 

q =

that l i l 
:-

: 
l+l Again'
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reciprocity, since 5 = l(mod 4) and 7 = j(mod 4),

f-T 
part ., (i) of Theorem 2.2 and Theorem

l+l - l?l : - ' Hence [+l : ,[ 5 J  [ 5 J  
r '  r r v ' , ' l v u t r l

we can use the law of quadratic reciprocity and Theorems 9.2 and 9.4 toevaluate Legendre symbols. Unfortunately, 
"pii.. 

factorizations must becomputed to evaluate Legendre symbols in this wav.

Example. We wil l  calculate l:rt I

73 : 23 3"";;,;,"_ ,"Jm,::""::1,:'j:;:"'""" 
, we factor

[+l :[+l :l-,' lfg-lI rooeJ troor J- [ t*n,Ji ,*r ,J
To evaluate the two l-sgsndre symbors on the right side of this equarity, weuse the law of quadratic reciprocity. Since tOoq i I (mod 4), ;. see that

Izt ]  frooeI Ir '  l : [1ql
Irooej:tr , | ' l rootj  

= 
l3r )

Using Theorem 9.2, paft (i), we have

I rooql  lzol
lx ,l:t",l

By parts (ii) and (iii) of Theorem 9.2.

lpl :lzri :l
123) [zr  ) -  t

The law of quadratic reciprocity, part
tell us that

[+] :[+]

Quadratic Residues

we have

9.4, we

and Theorem 9.4

:  - 1

+J : [+]
know that

[ ' l-
IzrJ-

( r t l
ITj 

: : t+]
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where

Proof. Consider the
a ,  2 a , . . . , ( ( p - l )  l D a ;  l e t
v t, v2,..., v, be those less

where the remainder is
equations of this sort, we

r )
l g l :  1 -11 rb ' i l ,
l p )

(P-r) /2
T b,p)

j - r

least positive residues
u1, 112,..., It, be those greater

307

of the integers
than p /2 and let

tells us that

Likewise, using the law
9.4, we find that

lul : fll :
| .r '  , |  

-  
| .  t t  . |  

:

lzl :
l3 J

of quadratic reciprocity, Theorem 9.2, and Theorem

[+] : [+] [+] - [+] :
:-[+):-' [+] : [+]

consequently, 
[*] 

:

( -  \
Therefore, l  # I : t-r)(- l) : t

[ , 0 0 9  )

We now present one of the many possible approaches for proving the law of

quadratic reciprocity. Gauss, who first proved this result, found eight different

iroofs, and an article published a few years ago offered what was facetiously

ialled the l52nd proof of the law of quadratic reciprocity. Before presenting

the proof, we give a somewhat technical lemma, which we use in the proof of

this important law.

an odd prime and a is an odd integer not divisible by p,Lemma
then

r f p

than p /2. The division algorithm

ja : pljo lpl + remainder,

one of the uj's or vj 's. By adding the Q-l)/Z
obtain



308

(e.3)

(e.4)
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@-D lz b-D /2 r ,

.Z  ia :  a  p f , ia /p l  * iu i+ iv1 .
r - '  J - t  j : l  j : l

As we showed in the proof of Gauss' lemma, the integers p _ ur,..., p _ us,vt, . . . ,vt are precis.ely the integers 1,2,.. . ,  b- l) /2, i i  some o.j . . .  Hence,summing all these integers, we obtain
b-r)/2 s 1

Z i :  \  Q-u)+ )  v i :ps-  i  q+ ! , r1 .j : r  j : r  j _ r  j : l  t * l

Subtracting (9.4) from (9.3), we find that
g_r)/z (p_D/2 (p_D/2 r

j : t  j - t  j _ t  j  _ l

or equivalently, since T(a,p) : t ' ) ' '  I ja/pl,

.  (p- t )  /2 
i ' l

( a - l )
j :  I  j : r

Reducing this last equation modulo 2, since a and, are odd, yields

o = T(a,p) - s (mod

Hence,

T ( a , p )  = s  ( m o d 2 ) .

To finish the proof, we note that from Gauss, lemma

| , )tL l :  ( - t ) ' .
t p  )

Consequently,

p

D.

(-t)" : (-1)r6,e), it follows that
r )
l g l : 1 -1 ; r ( a , r ) .  g
l p  )

Although Lemma 9.2 is used primarily as a tool in the proof of the law ofquadratic reciprocity, it can also be used to evaruate Legend^re symbols.

Example. To find |'+ I , using Lemma 9.2, weevaluate the sum
l ' ^  J
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17 j / r r l  :  I7  lu l  +  t  r4 / r t l  +  I2r l t l l  +  [28/ l l ]  +  t3s / l1 l

: 0+  I  +  I  +2+3 :7 .

( t l
Hence,  l+ l  :  ( - l )7 :  -1 .

L "  J  
r  )

Likewise, to find I + t, we note that
l . /  )

3

)  t r  r i l l l  :  l r r l7 l  + t22l7l  + l33l7l :  1 *  3 *  4 -  8,
j : l

r )
so  thar  t+  |  :  ( - l )8 :  l .

L/  )
Before we present a proof of the law of quadratic reciprocitY, we use an

example to illustrate the method of proof.

Let p : 7 and Q : ll. We consider pairs of integers k ,y) with
7 - l  :3  and  I  (  v  <  

l l l l  : 5 .  There  a re  15  such  pa i rs '  Wel ( x < ; : 3 a n d l ( Y ' -  2
note that no-n. of these pairs satisfy llx : 7y, since the equality llx :7y

i.pf i"r that 1t l1y, so t irat either i t  I  Z, which is absurd, or 11 ly, which is

impossible because t ( y ( 5.

We divide these 15 pairs into two groups, depending on the relative sizes of

llx and 7y.

The pairs of integers G,y) with I ( x < 3, I ( y { 5, and llx > 7y

urc pr..isely those pairs satisfying I ( x ( 3 and 1 ( y ( 11xl7. For a

fixed integer x with 1 ( x ( 3, there are lttx/ll allowable values of y.

Hence, the total number of pairs satisfying I ( x < 3, 1 ( / ( 5, and

l l x  )  1y  i s
3

2 t t  t lTl  :  t t t / t l  + 122/71 + I33l7l :  I  *  3 + 4 :  8;
j : 1

these eight pairs are ( l , l ) ,  (2,D, (2,2),  (2,3),  (3,1),  (3,2),  (3,3) and (3,4) '

The pairs of integers G,y) with I ( x < 3, I ( y ( 5, and llx 1 7y

*r. pr..isely those pairs satisfying I ( y ( 5 and 1 ( x 4 7y /tt. For a

fixed integer y with I ( y ( 5, there are l ly/tt l allowable values of x.

Hence, the total number of pairs satisfying I ( x < 3, I ( y ( 5, and

l l x  (  7 y  i s

5

j - 1
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+ [ tL l t r ]  + [2r / r t l  + I28ln ]  + [3s l l  1 ]

+  1+  2*3 :7 .

(1 ,3 ) ,  (1 ,4 ) ,  (1 ,5 ) ,  (2 ,4 ) ,  (2 ,5 ) ,  and  (3 ,5 )

5

j - r
lt j /tt l : I j lrrl

: 0 * l

These seven pairs are (l,2) ,

Consequently, we see that

1 l - 1  7 - l
T; :5 '3 :

3 5
15 :  )  t r r j l l l +  >  l t j l t l l  :  8  *  7 .

j - r  j - r

Hence,

r r-l .7-l i ,rrrr,r, * i , rt inl
( _ t )  2  2 : ( _ l ) ; * '  i - l

3 5

2 ln i / t l  ) I t i / r r l
(- I ) i- '  (- I )r- '

3

Since Lemma g .2  te l l s  r . ^  +L^+ |  r r  I  Z , ' r j / t l
rs that 

17 |  
:  ( -1;r- t  and

5 t /

( t  
' l  

. . I t t r r " t  l t  l f r r l  
t - ' r r - r

l # l  : ( - 1 ) i - t , w e s e e t h a t  I  l l  "  |  : ( - t )  2  2

r , ' J  [11J | .7  )
This establishes the special case of the law of quadratic reciprocity when

p : 7 a n d q : l l .

We now prove the law of quadratic reciprocity, using the idea illustrated in
the example.

Proof. We consider pairs of integers (x,y) with I ( x ( Q -l) /2 and

I (  y (  (q -D/2.  There ur"  2- l  o- l
; T 

such pairs. We divide t-hese pairs

into two groups, depending on the relative sizes of qx and py.

First, we note that qx I py for all of these pairs. For if qx : py, then
q l p y ,  w h i c h  i m p l i e s  t h a t  q l p o r q l y .  H o w e v e r ,  s i n c e  q  a n d  p  a r e
dist inct  pr imes, we know that q lp,and since I  (  y (  (q- i12,  we know
that  q  I  y .

To enumerate the pairs of  integers (xy) wi th I  (  x (  Q-I) /z,
1 ( y ( (q -l) /2, and qx > py, we note that these pairs are precisely those
where  I  (x  (  (p - l ) /2and I  (y  4qx /n .  For  each f i xed  va lue  o f  the
integer x, with 1 ( x 4 b-1012, there are Iqx/pl integers satisfying
I ( y 4 qx /n. Consequently, the total number of pairs of integers G,y)



Q-t)t2

w i t h l  ( x  (  Q - D / 2 , t  ( v  (  Q - D / 2 , a n d q x >  P v i s  
? ,  

I q i l p l '

We now consider the pairs of integers G,il with 1 ( x ( b -l) 12,

1 ( y ( (q -D 12, and qx < py . These pairs are precisely the pairs of

i n t e g l r s  G , i l  w i t h  1 ( y  (  ( q - D / Z a n d  1 ( x  4 p y l q .  H e n c e , f o r e a c h

fixed value of the integer y, where I ( y ( (q -1) 12, there are exactly

lpy lql integers x satisfying I ( x 4 py lq. This shows that the total

nurnu..of pairsel i l / r .g"rt  ( i ,y) with I  (  x ( b-D/2,1 (y ( (q-t)/z,

and qx < py is
j - r

Adding the numbers of pairs in these classes, and recalling that the total

number of  such pairs , ,  
'=r t  '+,we see that

') ' ' hilpt *'ni' ' ,r,,d: +'+ ,
j - |  i -r

or using the notation of Lemma 9.2,

T ( q , p )  +  T Q , q )  -

Hence,

9.2 The Law of Quadratic Reciprocity 3 1 1

Lemma : [" . |  Hence
l q )

This concludes the proof of the law of quadratic reciprocity. n

The law of quadratic reciprocity has many applications. One use is to prove

the validity of the following primality test for Fermat numbers.

Pepin's Test. The Fermat number F^ : 22' + I is prime if and only if

3G'-r)12: - l  (mod F-) .

proof. We will first show that F* is prime if the congruence in the statement

of the theorem holds. Assume that

p - l  . q - l
2 2

p - l  . q - r
2 2

,-t1rQ'il+r@,q) : (- 11r(e'n) 1-11r{n'c) : (-t)

9.2 tel ls us that 1-1yr(a,r) :  [" ' l  ."0 1-gr{o.o)
lp  J

f  l f  \  P - t . q - l

l z l l4 l : ( - t )  2  2
l .q  J l .p  J



3G^-r)/2: -l (mod F*).

Then, by squaring both sides, we obtain

3F.-1 = I (mod F*).

From this congruence, we see that if p is a prime dividing F*,then

3F. - l  =  I  (modp) ,

and hence,

ordo3 | {f ^-I) : 22'.

Consequently, ordr3 must be a power of 2. However,

ordo3 tr2''- ': (F^-D/2,

since 3G^-t)/2 - -l (mod F*) . Hence, the only
o1do3 :22^ :  F^ -  l .  Since ordo3 :  Fm-t  (  p -  I
that p : F^, and consequently, F^ must be prime.

Converse ly , i f  F r :22 ' *  I  i s  p r ime fo r  m )  l ,  then
reciprocity tells us that

312

(e.5)

since F^ = |

Now, using

(e.6)

This finishes the proof.

E x a m p l e .  L e t m : 2 .

:[+J :[+]
= 2 (mod 3).

we know that

Quadratic Residues

possibil i ty is that
and p I F*, we see

the law of quadratic

we conclude that

t*l
(mod 4) and F^

Euler's criterion,

t*l3G'- t ) / ' ( -od F-) .

From the two equations involving I I I

[". j '
3(J'._r)/2 _ _1

(9.5) and (s.e),

(mod F).

tr

Then F2:

aFr-t)lz _

2 2 ' + l : 1 7 a n d

38 :  -1  (mod l7 ) .
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By Pepin's test, we see that F2 : l7 is prime'

Le t  m :5 .  Then Fs :22 '  +  l :232 t  I  :  4294967297-  We note  tha t

3G,-D/2 : 12" : 32t41483648 - 10324303 * -l (mod 4294967297).

Hence, by Pepin's test, we see that F5 is composite'

9.2 Problems

l. Evaluate the following Legendre symbols

a ,  
[ * ]

u, [+l
c, t*l

2. Using the law of quadratic reciprocity, show that if p is an odd prime, then

3 1 3

d)

e)

[-u]
[64r  .J

f:ul
leer  J

I ros ]
l*' l

[ ; ]  
:

3. Show that if p is an odd Prime, then

p  =  t l  (mod  12 )

p = t5  (mod 1 2) .

i f p = t ( m o d 6 )

i f  p  =  - l  (mod 6) .

{lii

[ -r  I
[7J 

: {l
4.

5 .

6 .

Find a congruence describing all primes for which 5 is a quadratic residue'

Find a congruence describing all primes for which 7 is a quadratic residue.

Show that there are infinitely many primes of the form 5Ic * 4' (Hint: Let n be

a positive integer and form Q : 5(tnr'\2 + 4' Show that Q has a prime divisor of

the form 5k + 4 greater than n. To do this, use the law of quadratic reciprocity

to show that i f  a primep divides Q, then | ? |  
-  t  I

t ) l
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Use Pepin's test to show that the fol lowing Ferntat numbers are primes

a )  F r  :  5  b )  F3  -  z5 i  c )  F4 :  65537 .

From Pepin's test, conclude that 3 is a primit ive root of every Fermat prime.

In this problem, we give another proof of the law of quadratic reciprocity. Let p
and q be dist inct odd primcs. Let R be the interior of the rectangle with vert ices
o :  (o ,o ) ,  A :  b /2 ,0 ,  B :  Q /2 ,0 ,  and  C :  b /2 ,q /D .
a) Show that the number of latt ice points (points with integer coordinates) in

R  i ,  P - l  . q - l
2 2

b) Show that there are no latt ice points on the diagonal connecting O and C.

c) Show that the number of latt ice points in the tr iangle with vert ices O, A, C
Q - D / 2

is
i - l

d) Show that the number of latt ice points in the tr iangle with vert ices O, B,
Q_r) /2

and C is
j - l

e) Conclude from parts (a), (b), (c), and

Q-t ) /2  Q-D/2

j - t  j - l

Derive the law of quadratic reciprocity using this equation and Lemma

9.2 Computer Projects

Write programs to do the fol lowing:

l .  Evaluate Legendre symbols, using the law of quadratic reciprocity.

2. Determine whether Fermat numbers are prime using Pepin's test.

9.3 The Jacobi symbol

In th is sect ion,  we def ine the Jacobi  symbol.  This symbol is a general izat ion
of the Legendre symbol studied in the previous two sections. Jacobi symbols
are useful  in the evaluat ion of  Legendre symbols and in the def in i t ion of  a
type of  pseudopr ime.

Definit ion. Let n be a positive integer with prime factorization

n:p' ipt i  'p;  and let  a be a posi t ive integer relat ively pr ime to n.  Then,

8 .

9 .

(d)  that
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of the equality are Legendre

the Jacobi

where the
symbols.

Example.

and

; I 
t' denned bY

l: [*]'
t-hand side

p\'p'; " ' p';

on the righ

t
I

S

t;l lh)'
symbol

[ . ]  :
l ,  , |

symbol

From the definition of the Jacobi symbol, we see that

[ ' l: lzl : lz)'let
l45,1 1."i j  

: l i l  
l ; l  

:(-r)2(-r):-r '

#l :[+*l :[+l [+l [+] :[+l
: 

[+]'[+l'[+] 
: '- D2 t2(-'l): -r

When r is prime, the Jacobi symbol is the same as the Legendre symbol'

However, when n is composite, the value of the Jacobi symbol lq I Oott nor'  
l r )

tell us whether the congruence x2 = a (mod n) has solutions.., *. do know

that if the congruence x2 = a (mod n) has solutions, then l* | 
- t To see

l n )
th is,  note that  i f  p is a pr ime div isor of  n and i f  x2 =a (modn) has

solutions, then the congruence x2 = a (mod p) also has solutions. Thus,
r  I  f  - l  m  (  ^  ) t
I i | : t Consequently, | + I : II | * I 

: l. To see that it is possible
l p ) . .  

'  
l n )  i - 1  lP i )

t l

that I 
g 

| : 1 when there are no solutions to xz : a (mod n), let a : 2 and

l n  )

n: t5. Nore that [+l :  t+.|  t?l  :  (-r)(-1): r .  However, there are
t ^- r t - J l. ) ,l

no solutions to x2 i 2 (mod i S), rin* the congruences x2 = 2 (mod 3) and

x2 = 2 (mod 5) have no solutions.

We now show that the Jacobi symbol enjoys some properties similar to those

of the Legendre symbol.

[+l l*l
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Theorem 9.5. Let n be an odd positive integer and let a and b be integers
relatively prime to n. Then

ll: l*)i f  a :  D  ( m o d n ) , t h e n

lol: ["] fql
I  n  )  l n  )  l n  )

r )
|  

- t  
|  :  t_  11h-D/z

f tr ) 
'

/ )

I  L l  :1-1) (n ' : -r) /a .
l n  )

[+):l*)"[#]" l*)'-: [; ] " l*)" {t)" [*] " l*)'- l*)''
:  

[ ; ]  [ * ]

(i)

(ii)

(iii)

(iv)

Proof- In the proof of all four parts of this theorem we use the prime
factorization n : p\,p'i . . p';.

Proof of (i). we know that if p is a rrime.,dividinqn, then a =b (modp).

Hence, from Theorem g.z G\ we have l* | : l+ | consequentry, we see

t h a t  
I D J  l p )

i*l : f*l"l+J" [-tL'- lo )"l o l" I o l' ': falf , ,J lo,Jlp,) lo^,|  
: l r ' l  

lo,t  lp^): l ; j

Proof of (i). From Theorem 9.2 (ii), we know that fq) : | 
, I i a I

Hence.  

rv " '  r r rvv rwt t t  7 'L  \ I r ' f '  ws  K l luw 
lo ,  , l  l t l  F ) '
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of Gril. Theorem 9.3 tells us that if p is prime' then

- (-11 Q-r)/2. ConsequentlY,

f -r  I  l ' - r  l " l -r  
' l "  

.  [ - '  ]"
l - l :  l l _  l " ' r l l
l n , |  LP , ) lP rJ  tP^ )

:  (-  ,1tJn;t\ /2+ 
t ' (p'- t) /Z + '"  + t^(p^-r)/2

Proof

t+l

From the prime

n -

Since Qi- l )  is

and

factorization of n, we have

( r  +  Q r - l ) ) " ( l  +  bz - l ) ) " ' ' '  ( t  *  ( p ^ - l ) ) ' '

even. it follows that

( t  +  (p i - l ) ) "  =  |  +  t ib , - t )  (mod 4)

( l  +  r , ( p i - l ) ) ( r  +  r ,  Q i - D ) :  I  +  t i Q l - t )  +  t i b i - l )  ( m o d  4 ) .

Therefore,

n  =  1 +  t l p r - t )  +  t 2 ( p 2 - i  +  ' ' ' +  t ^ ( p ^ - l )  ( m o d  4 ) '

This impl ies that

Q-D/2 = tJprD12 * tz(pz-D12 + + t^(p*-D12 (mod 2) .

r'
Combining this congruence for (n-1) lZ witttthe expression for 

l+J 
'no*t

/ ) n - l
r l r -

t h a t  |  
- '  

|  :  ( - l )  2

l , r  )
r )

Proof  of  ( i i l  . I f  p  is  pr ime,  then l+ l  
:  ( -1 ; ( r ' l - r ) /8  '  Hence'

l p )

Iz l  :  I l "  [z]  t+ ' l t  :  (_ l ) , ,b i_t , t ts+t ,gt-r) /8+ +t^Qi-r \ t t
L,J lp 'J lp,)  lp^)

As in the proof of (iii), we note that

n2 :  ( r+  (p?- r ) "  0  +  @?- l ) ) "  " '  ( t  +  bT- l ) ) " .
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Since pl-I = 0 (mod 8), we see that

0 + Q?-l)) ' , = | + t ie?-l) (mod 64)

and

( l+r ,b?- l ) ) ( l  + 4el - t ) )  = |  *  t ;e?_D + t ,A? t )  (mod 64).
Hence,

n2: t+ tJp?-D+tze?-D+ + t^(pT- l )  (mod 64) .

This implies that

(n2 - t ) / 8 :  t Jp? -D /B  +  t ze? -D /s  + . . .  +  t * (p3 ,_ l ) / 8  (mod  s ) .

combining this congruence for (n2 - l)/g with the expression for [el teils
f  
" ' l  

l n  )
u s  t h a t  l L l  : 1 - 1 ; ( n ' - t ) / 8  .  D

l n  )
We now demonstrate that the reciprocity law holds for the Jacobi symbol as

well as the Legendre symbol.

Theorem 9.6. Let n and m be relatively prime odd positive integers. Then
f  l f  I  m - t  n - l

l r l -  |  lL l :  (_  t )  ,  ,  .
lm  ) l  n  )

Proof. Let the prime factorizations of rn and
n :  q l 'q! ,  .  .  .  qor, .  we see that

and

l*):

n be m : pl,pl, .

w)'"'
" p!' and

lr):,4 tt)':,q,s
t  (  n  l 4 /  s  r

I I l ; l  :r trt
j - t  I  I 'J  )  j - t  i - t It)"''

Thus,
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From

Hence,

3 1 9

q' l
h )

at

f n,-, I
l r  l
t - )

l+l [*] :,g
the law of quadratic reciProcit

t*l tr)
|  ̂ ) [ , I
[7J l;):

We note that

,s ti*l t
y, we know th

[o , - ,1
: ( - r l l r j

10tu'

l

r

f |  f f ( - l )  
(  '  r  \  " ) :  ( - l ) ' - ' l - '  \  /

t - l  j - l

t,p, ",1+l ',[+] :z ",1+] ,.a''t+]
As we demonstrated in the proof of Theorem 9.5 (iii),

Doif+]  =* (mod2)
j - t ( o ) z

and

5u,[+] =n - l
2

(mod 2).

Thus,

r  s  ^ f r , - t l  ^ [Qr- t l  = . - l  + (mod2) .(e.8)
i - t  i - r  J  \

Therefore, from (g.Z) and (9.8), we can conclude that

f  ) f  )  m - l  n - l

lL l la l : (_ r )  2  2  t r
I  n  ) lm  )

We now develop an efficient algorithm for evaluating Jacobi symbols. Let a

and b be relatively prime positive integers with a < b. Let Ro : Q and

R r : D Using the division algorithm and factoring out the highest power of

two dividing the remainder, we obtain
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R o :  R f l r + 2 t ' R 2 , ,

where s1 is a nonnegative integer and R2 is an odd positive integer less than
R I ' When we successively use the division algorithm, and factor out the
highest power of two dividing remainders, we obtain

R r :  R z e z + 2 " ' R 3
* r :  R f l t + 2 " R a

Rr-r : Rn_2Qn_2 * 2t.-rRn_1
Rn-z:  Rn-tQr-,  + 2t . - t .  I  ,

where s; is a nonnegative integer and R; is an odd positive integer less than
&-r for i : 2,3,...,n-l Note that the number of division, ,"qu-ir"d to reach
the final equation does not exceed the number of divisions requiied to find the
greatest common divisor of a and b using the Euclidean algorithm.

we illustrate this sequence of equations with the following example.

E x a m p l e .  L e t a : 4 0 1  a n d b :  l l l .  T h e n

4 0 1  : 1 1 1 . 3  +  2 2 . n
l l l -  1 7 . 6 + 2 0 . 9

1 7 : 9 . 1 + 2 3 . 1 .

Using the sequence of equations we have described, together with the
properties of the Jacobi symbol, we prove the following theorem, which gives
an algorithm for evaluating Jacobi symbols.

Theorem 9.7. Let a and b be positive integers with a > b . Then

f  ^ ' l  n i - r  & ! a ! * * f ,  R , - r  
+ . . . + R " _ , - t R . _ r _ r

l + l : ( - l ) ' '  t  + " ' + s ' - r -  
8 - r  z  2  2  2

l b  )  
'

where the integers R; and s;,,t :1,2,...,n-l , are as previously described.

Proof. From the first equation and (i), (ii) and (iv) of Theorem 9.5. we have

fgl-
la,|-i+l:[+] : :  ( - 1 )
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using Theorem 9.6, the reciprocity law for Jacobi symbols, we have

t*l :'-')+ + t#l
so that

f  ^  I  
R , - l  R , - l  n i - t -  

[  n ,  I
l+l:(-r)T
LDJ IR ,J

Similarly, using the subsequent divisions, we find that

lgl :,-,rT ry*n#i+l
[  ^, , |  

' /  
1R;+r J

forT :2,3, . . . ,n- t \  *nen we combine al l  the equal i t ies,  we obtain the desired

expression for l+ I tr'  
[b  , l

The following example illustrates the use of Theorem 9.7.

Example. To evaluate 
[++], 

we use the sequence of divisions in the

previous example and Theorem 9.7. This tells us that

[+or l : , - , l t  F*o'" l t* '  
n ' t ' . t t r ! : r  +*!+ +:r .

l . 111  J

The following corollary describes the computational complexity of the

algorithm for evaluating Jacobi symbols given in Theorem 9.7 .

Corollary 9.1. Let a and D 
,,be 

relatively prime positive integers with a > b '

Then the Jacobi symbol l+ | can be evaluated using O(loezb)3) bit
"  

l b )
operations.

r t
Proof. To find lf I uting Theorem9.7, we perform a sequence of O1ogzb)

t .D  J
divisions. To see this, note that the number of divisions does not exceed the

number of divisions needed to find G,b) using the Euclidean algorithm.

Thus, by Lam6's theorem we know that O (log2b) divisions are needed. Each
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division can be done using o ((lo^gzD2) 
.bit operations. Each pair of integers

fl.u.nd si can be found using o(logzb) bit operations on"" ih" appropriatedivision has been carried out.

consequently, o((log2D)3) bit operations are required to find the integersR;,s7, i  :1,2," ' ,n-t 
l r .T 

a and b. Finai ly, to evaluate the exponent of - l

in the expression for l+l in Theorem 9.7, we use the last three bits in the
l D  )

binary expansion: of Ri,i : r,2,...,,n-r and the last bit in the binaryexpansions of sy,,r : r,,2,...,n-r. Therefore, we use 0(lo926) additional bit
operations to find I+l Since o((log2D)3) + ooog2b) : o(tog2,D2) , the

l D  )
corollarv holds. tr

9.3 Problems

I. Evaluate the following Jacobi symbols

2 .

a, t+] b, [*]
b, [*] , lx)
c, [*] 'tml
For which positive integers n that are relatively

symbor 
t*l 

equar r?

For which positive integers n that are relatively

symbor 
|.+l 

equar r?

5. Let n be an odd square-free., positive integer.

such that (a,n):  I  and 
l ; ,J 

:  - t

3 .

4 .

to 15 does the Jacobi

to 30 does the Jacobi

positive and
Let a and b be relatively prime integers such that b is odd and
a : (-l)'2'q where q is odd. Show that

b-l br-l

:  ( - l ) - - ' r  
+ 

l - ' ' ["1
l b  )

Show that there is an integer a
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Let n be an odd square-free positive integer'

r \

a )  S h o w  t h a t  ) l + l : 0 ,  w h e r e  t h e s u m  i s t a k e n  o v e r a l l  k  i n a  r e d u c e d  s e t

l n  )
of residues modulo n. (Hint: Use problem 5')

b) From part (a), show 
11"\ 

,n. number of integers in a reduc?O"ti'of residues

modulo n such ttut I 
O 

| : I is equal to the number *itn l* I 
: -t.

l r j  
" - - - r - -  

l ' J

Let a and b:ro be relatively prime odd positive integers such that

A  :  l O Q t  *  e 1 r 1

t O :  r l Q 2  I  e 2 r 2

f n - l :  f n - t Q n - t *  e n f n

where q; is a nonnegative even integol, €; : t l, r; iS a positive integer with

ri 1 ri t, for t : 1 ,2,...,frj , and rn : l. These equations are obtained by

successively using the modified division algorithm given in problem l0 of Section

t . 2 .

f ^ ' l
a) Show that the Jacobi symbol |  * I  i ,  given by-  

l . D  J

7 .

l++*++:. *t-f '+l
: ( - l ) [  t  2  2  2  2  2  )

b) Show that the Jacobi symbol [+.| t, given bv
l D  )

t ' ^ l
l+  |  :  ( - r ) r '
l b ;

where T is  the number  o f  in tegers  i ,  I  < ,  (  n ,  w i th  r i - r  7  c i r i  =  3

(mod 4) .

8. Show that i f  a and b are odd integers and (a,b): l ,  then the fol lowing

reciprocity law holds for the Jacobi symbol:

I  a - t  b - t

(  
"  l t  b  l - l - ( - r ) ; - ;  

i r a<oandb<o

lr;l-l l l; l-J 
: 

l,_ a-'b-'
' )  \ ' - - ' J  

[ ( - l ) 2  
2  o t h e r w i s e .

f " l
Irl
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In problems 9- 15 we deal with the Kronecker symbol which is defined as follows.
1 P" 

u positive integer that is not a perfect ,quu." such that a E0 or I (mod 4).oenne

Let
We

l ")
t t t :
\ l

Show that if

flt 7 nz (mod

i f a = l ( m o d 8 )
- l i f a = 5 ( m o d 8 ) .i'

[ ; ) : the 
Legendre symbo'  

[ ; ]  
i f  p  is  an odd pr ime such that  p /a

[ ; ]  
: ,q [ f ] "  i r  (o " t ) :  I  andn

9. Evaluate the following Kronecker symbols

a ,  
[ * ]  

b ,  
[ * ]  

c ,  
[ * ]

For problems 10-15 let a be a positive integer that is not a perfect square such that
a= 0 or  I  (mod 4) .

("1 ( z l  "l0' Show that 
[;] 

: 
tftl 

it zla, where the svmbol on the right is a Jacobi
symbol.

[ * ) :

: IIpi is the prime factorization of n.
./- I

Show that i f  n1and, n2t,re posit ive integers and i f  (app2) :

Show that if n is a positive integer relatively prime to a and if a is odd, thenr l  r  )
I L I :  I  n  I
f  ;J 

:  
[ l ]J '  

whi le i f  a is even, and a :2 ' t  where t  is  odd, then

r - l . z - l  f  )(_r) 2 2 
tTrll

1 3 .

[ ' l
l;J

tt1 and

I  a l ) ,  then

,? uti positive., integers relatively prime to a and

ls l :  lL l .
f ' t  , J  l n z  )

, l- t -
n )

Show that if alo, then there exists a positive integer n with
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15.  Show that  i f  a  10.  then

9.3 Computer Projects

Write programs to do the following:

l .  Evaluate Jacobi symbols using the method of Theorem 9.7.

2. Evaluate Jacobi symbols using problems 4 and 7.

3. Evaluate Kronecker symbols (defined in the problem set).

a l
IFJ 

: Jr
[- r

i f  a  >  0

i f  a  < 0 .

and let b be an integer not divisible by p.

( ' t

_ l4 l (modp) .
lp  )

Hence, if we wish to test the positive integer n for primality, we can take an

integer b, with (b , i l  : l , and determine whether

r , ' l
6h-D/2 :  lg  I  (mod n) ,

l n  )

9.4 Euler Pseudoprimes

Let p be an odd prime number
By Euler's criterion, we know that

6b- t ) l z

where the symbol on the right-hand side of the
symbol. If we find that this congruence fails, then r

Example. Let n :341 and b :2. We calculate

Since 341 : -3 (mod 8), using Theorem 9.5 (iv),

congruence is the Jacobi
is composite.

that  2r7o = 1 (mod 341).
( t  I

w e  s e e  t h a t  |  - .  I  :  - 1 .

l .34r  . l
Conseque ntly, 2t7o g 

[+
(mod 341). This demonstrates that 341 is not

prime.

Thus, we can define a type of pseudoprime based on Euler's criterion.

Definition. An odd, composite, positive integer n that satisfies the congruence



6h_D/2 __ f 
ql ,_" d n),

l "  )
where 6 is a positive integer is called an Euler pseudoprime to the base b.

An Euler pseudoprime to the base b is a composite integer that
masquerades as a prime by satisfying the congruence given in the definition.

E x a m p l e .  L e t n : 1 1 0 5  a n d b : 2 .  w e c a l c u l a t e t h a t  2 s . s 2 -  I  ( m o d  l l 0 5 ) .

Since '1105 = I  (mod 8),  we see that l+]  :  t .  Hence,
r  I  l l l o s )  

-

2552 -- 
I + | (-oa l 105). Because I r 05 is composite, it is an Eulerl -  1105 , l

pseudoprime to the base 2.
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The following proposition shows that everv Euler pseudoprime to the base D
is a pseudoprime to this base.

Proposition 9.1. If n is an Euler
pseudoprime to the base D.

pseudoprime to the base b, then n is a

Proof. If n is an Euler pseudoprime to the base 6, then

6G-t)/2 - f al (mod n).
l n  )

Hence, by squaring both sides of this congruence, we find that
(  \ 2

16b -D /212 -  l q l  (modz ) .
l r )

( .  )
S i n c e  l g l :  t  l ,  w e  s e e  t h a t

l ,  )
pseudoprime to the base D. tr

= I (mod n ). This means that n

Not every pseudoprime is an Euler pseudoprime. For example, the integer
341 is not an Euler pseudoprime to the base 2, as we have shown. but is a
pseudoprime to this base.

we know that every Euler pseudoprime is a pseudoprime. Next, we show
that the converse is true, namely that every strong pseudoprime is an Euler
pseudoprime.
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Theorem 9.8. lf n is a strong pseudoprime to the base b, then n is an Euler

pseudoprime to this base .

Proof. Let n be a strong pseudoprime to the base b. Then if n - | : 2't '

where / is odd, eithe-r bt : I (mod n) or b2" = -1 (mod n) where

0 (  r  (  s-1.  Let  n:  f I  p i 'be the pr ime-power factor izat ion of  n '

f : l

First, consider the case where b' = I (mod n)' Let p be a prime divisor of

n.  Since b,  = l (modp),  we know that ordo6lr .  Because r  is  odd, we see

that ordob is also odd. Hence, ordrb I b-l)12,since ordob is an odd divisor

of the even integ er 6Q) - p -1. Therefore,

6Q-r ) /2  =  I  (modP) '

Consequently, by Euler's criterion 
f a l

,  we have 
|-; j  

:  t

r \

To compute the Jacobi symbol I + I' we note that
l n  )

p dividing n. Hence,
lil :'for all primes

lnl : l+] -ftInr 
lfrrl 

=t

Since bt =1 (mod n), we know that b'-r :

we have

I l lo ' :r .
IP 'J

(b')2' = I (mod n). Therefore,

|r
b , - t : [ a [ = t ( m o d n ) .

l n  )

We conclude that n is an Euler pseudoprime to the base b.

Next. consider the case where

6r t  :  - l  (mod n)

for some r with 0 ( r ( s - 1. If p is a prime divisor of n, then

b 2 ' t  =  - l  ( m o d p ) .

Squaring both sides of this congruence' we obtain
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b2" ' ,  =  l  (modp) .

This implies that ordob | 2'+rv, but that ordob I z,t. Hence,

where c is an
2'+t l (p- l ) .

Therefore, we

we have

Because c is odd, we

(e.e)

r e c a l l i n g t h a t d : ( p
pr : 2'rrdi + l, i t fol

Quadrat ic Residues

ordrb :  2 '*rc,

odd integer. Since ordobl(p-l) and 2,+tlordrb, it follows that

havep :2r+rd *  l ,  where d is an integer.  Since

6(ord,b)/2 - -l (mod p),

r \

I A | = 6Q-D/z : 66rd,b/z)((p-D/ord,b)
l p  )

- (- r!Q-l)/otd,u : (-11Q-r)/2*', (mod p).

know that (-t) '  :  -1. Hence,
r )

l+ |  :  ( -1)rr-r)rz '* '  :  ( - l )d,
lp )

-I) /2'+t. Since each prime p; divid ing n is of the form
lows that

m

n : fI pj'.
t - l

m
: fI (2'+td, + l)o,

,;,

:  
f I  ( l  + 2'+raid;)
t - l

m
= I + 2'+t > aidi (mod 22r+2).

m
) r s

Z/
i - l

Therefore.

t2 ' - t  :  h-D/2 a;d i  (mod 2 '+ t ) .
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This congruence imPlies that

12s-t-r = i aidi (mod 2)
i - l

and

(9.10) 66-r\/2 : (6rt7z:-'- : (-t) ' .*

On the other hand, from (9.9), we have

lnl : ft [+.|. : fr ((-r)d,).,
I nJ  , . : r  | . p , J  i _ r

Therefore, combining the previous equation

6(n-t)/z - [ql
l n )

2 o'd'
:  ( -1) t - t  (mod n) .

m  ^ )  . f o , o ,
: fI el)"'"' : (-1)i-t

t - l

with (9.10),  we see that

(mod n).

Consequently, n is an Euler pseudoprime to the base D' tr

Although every strong pseutloprime to the base D is an Euler pseudoprime

to this base, note that not every Euler pseudoprime to the base b is a strong

pseudoprime to the base b, as the following example shows.

Example. We have previously shown that the integer 1105 is an Euler

pseudoprime to the base 2. However, 1105 is not a strong pseudoprime to the

base 2 since

2( l los - l ) /2  :2552:  I  (mod 1105) ,

while

20t0s- r ) /22  :2276:  7g l  +  t  1  (mod l l05) .

Although an Euler pseudoprime to the base b is not always a strong

pseudoprime to this base, when certain extra conditions are met, an Euler

pseudoprime to the base D is, in fact, a strong pseudoprime to this base. The

following two theorems give results of this kind.

Theorem 9.9. If n : 3 (mod 4) and n is an Euler pseudoprime to the base

b, then n is a strong pseudoprime to the base b.
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Proof. From the congruence n = 3 (mod 4), we know that n-l : 22.t where
t : (n-l)/z is odd' Since n is an Euler pseudoprime to the base b, it follows
that

bt : 6..'-t)/2 - f 
ql (mod n).

ln  )
r \
t b lDrnce l- |  :  +1, we know that either bt = l  (mod n) or
l n  )

b' = -l (mod n). Hence, one of the congruences in the definition of a strong
pseudoprime to the base b must hold. consequently, n is a strongpseudoprime to the base b. tr

Theorem 9.10. If n is an Euler pseudoprime to the base 6 and lal : -r.
l n l

then n is a strong pseudoprime to the base b. 
\ '/

Proaf. We write n-l : 2't , where / is odd and s is a positive integer. Since
n is an Euler pseudoprime to the base b, we have

br-,t : 6,.'-r)/2 - fa l (mod n).
ln )

r )
But  s ince l4  I  :  - t ,  we see that

l n )
b'r- '  = - l  (mod r) .

This is one of the congruences in the definition of a strong pseudoprime to the
base b. Since n is composite, it is a strong pseudoprime to ihe base ,. tr

Using the concept of Euler pseudoprimality, we will develop a probabilistic
primality test. This test was first suggested by Solovay and Stiassen [7g].

Before presenting the test, we give some helpful lemmata.

b ' r - '  = - l  (mod r) .

Lemma 9.3. If n is an odd positive integer that is not a

there is at least one integer b with | < b I ft,(b ,n) :

perfect sguare, then

r ,  and l4  |  :  - , ,
l n  )

where is the Jacobi symbol.
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Proof. If n is prime, the existence of such an integer b is guaranteed by

Theorem 9.1. If n is composite, since n is not a perfect square, we can write

n:  rs where (r ,s)  :  I  and r :  p ' ,  wi th p an odd pr ime and e an odd

positive integer.

Now let / be a quadratic nonresidue of the prime p; such a / exists by

Theorem 9.1. We use the Chinese remainder theorem to find an integer b

with 1 < b 1 n, (b ,n) : 1, and such that b satisfies the two congruences

Then,

b = t (mod r)
b  =  |  (mod s ) .

fal  (ul  
| ,bl"-(_r),-_r,f;J 

: 
l7): tp )

and 
[*] 

: ,  Since 
[*] 

: 
i i ]  t1], ' ,  

ro,,ows that 
[*] 

: - '  r

Lemma 9.4. Let n be an odd composite integer. Then there is at least one
integer D with |  < b I n, (b,n) :  1, and

r \
6 6 - D / z  1  l 4  |  ( m o d  n ) .

l n )

integers not exceeding n and relatively

r )

l 4  |  (mod n) .
ln )

Proof. Assume that for
prime to n, that

( e . 1  l )

positive

6h-t)/2 :

Squaring both sides of this congruence tells us that

r  t 2
l A l

b , - t  :  l 3  I  =  ( +  l ) z  :  I  ( m o d  n ) ,
l n  )

i f  (b,n) : I Hence, n must be a Carmichael number. Therefore, from
Theorem 8 .21 ,  we know tha t  n :  Qt4z" 'e ,  ,  where  Qt ,Qz, . . . ,Qr  a re  d is t inc t
odd primes.

We will now show that
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6 h - t ) / 2  =  1 ( m o d n )

for all integers b with I ( b ( n and (b,n) :1. Suppose that b is aninteger such that

6h-r) /2:  - l  (mod n).

we use the chinese remainder theorem to find an integer a with
|  1  a  {  f l ,  ( a , n ) :  l .  a n d

a = b ( m o d q 1 )
a  : -  |  (mod QzQs.  .  .  q , ) .

Then, we observe

o.r2)

while

(e .13 )

From congruences

that

o G - 1 ) / 2  -  
6 b - D / z :  _ l  ( m o d  q 1 ) ,

o ( n - r ) / Z  =  I  ( m o d  e z Q t . . . Q , ) .

O. lD  and (9 .13) ,  we see tha t

o h _ t ) / 2  *  +  1 ( m o d n ) ,

contradicting congruence (q.tt). Hence, we must have

6(,- t ) /2 = I  (modn),

for all D with I < , ( n and (b,n) - r. Consequentry, from the definit ion
of an Euler pseudoprime, we know that

6".-t)/2: |,a j : I (mod n )
l ,  )

for all D with I < b ( n and (b,n) : r. However, Lemma 9.3 tells us that
this is impossible. Hence, the original assumption is false. There must be at
least  one integer 6 wi th |  < b 1 f l ,  (b, ,D: l ,  and

|r
6G-D/z  1  l4  |  (mod n  ) .  t r

l n  )

We can now state and prove the theorem that
probabilistic primality test.

the basis of the
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Theorem 9.11. Let n be an odd composite integer. Then, the number of
positive integers less then n, relatively prime to n , that are bases to which n is

an Euler pseudoprime, is less than 6fu) /2.

Proof. From Lemma 9.4, we know that there is an integer b with

I  <  b  1  n ,  ( b , n ) :  l ,  a n d

(s.rq 6b-r)/2 l f 
ql (mod n ).

lnJ

Now, let e1,e2,...,e^ denote the positive integers less than n satisfying
1 (  a;  (  n,  (a i ,n)  :  l ,  and

r )
(e.ls) afn-rtrz - lLl (mod n),

I n  )

f o r ;  :  1 , 2 , . . . , m .

Let rr{2,...,rm be the least positive residues of the integers bayba2,...,ba^
modulo n. We note that the integers rj are distinct and (ri,n): I for
j : 1,Z,...,frt. Furthermore,

(e.16)

For, if it were true that

then we would have

, (n- , ) t21 
[+ ]  

(mod n) .

,e-,)/2 - 
[+] 

(mod n ),

$a)(n-,)/2 - 
l+l r-"0,r

This would imply that,

6h-t)/2o(n-t)/2 : t+l
I r 1  J

and since (9.14) holds. we would have

[+](mod n ),
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6."-t\/2 _ fqI
l ,  ) '

contradict ing (9.14).

Since aj ,  j  :1,2, . . . ,m, sat isf ies the congruence (9.15) whi le
r j ,  j  :1,2, . . . ,n,  does not,  as (g. to)  shows, we know these two sets of  integers
share no common elements. Hence, looking at the two sets together, we have
a total of 2m distinct positive integers less than n and, relativ-ely prime to n.
Since there are Qh) integers less than n that are relatively prime to /r, we
can conclude that 2m < qfu), so that m < eh)/2. 

-f i l is 
proves the

theorem. tr

From Theorem 9.1 l, we see that if n is an odd composite integer, when an
integer b is selected at random from the integers 1,2,,....,n-1, th; probabil ity
that n is an Euler pseudoprime to the base 6 is less than I/2. This leads to
the following probabilistic primality test.

The Solovay-Strassen Probabilistic Primality Test. Let n be a positive integer.
Select, at random, ft integers bpb2,...,bo Lorr the integers i,2,...,r-r. For
each of these integers bj, j : 1,2,...,k, determine whether

t+] (modn)6Q- t ) / 2

If any of these congruences fails, then n is composite. If n is prime then all
these congruences hold. If n is composite, the probability that all k
congruences hold is less than l/2k. Therefore, if n passes this test n is ,,almost
certainly prime."

Since every strong pseudoprime to the base b is an Euler pseudoprime to
this base, more composite integers pass the Solovay-Strassen probabilistic
primality test than the Rabin probabilistic primality test, altirough both
require O(kQag2n )3) bit operations.

9.4 Problems

l. Show that the integer 561 is an Euler pseudoprime to the base 2.

2. Show that the integer 15841 is an Euler pseudoprime to the base
pseudoprime to the base 2 and a Carmichael number.

3. Show that if n is an Euler pseudoprime to the bases a and 6. then n
pseudoprime to the base a6.

2, a strong

is an Euler



4 .

5 .
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Show that i f  n is an Euler pseudoprime
pseudoprime to the base n-b.

Show that i f  n= 5 (mod 8) and n is an
is a strong pseudoprime to the base 2.

6. Show that i f  n = 5 (mod 12) and n is an Euler pseudoprime to the base 3, then

n is a strong pseudoprime to the base 3.

7. Find a congruence condit ion that guarantees that an Euler pseudoprime to the

base 5 satisfying this congruence condition is a strong pseudoprime to the base 5.

n have prime-power factorization

z fq i  f o r  i : 1 ,2 , . . . , f f i ,  whe re
| * 2k q. Show that n is an Euler

6" II  ((n-l) /2, p1-t)
j - l

l < b ( n , w h e r e

i f  k r :  1 ,

/Z if kj < k and a; is odd for some j

otherwise.

9.4 Computer Projects

Write programs to do the following:

Determine if an integer passes the test for Euler pseudoprimes to the base b.

Perform the Solovay-Strassen probabilistic primality test.

to the base b, then n is also an Euler

Euler pseudoprime to the base 2, then r

8. Let the composite positive integer

, : pl,pi, . . . ph, where pi : | *
k r  (  k z  (  <  k - ,  a n d  w h e r e  n :
pseudoprime to exactly

different bases b with

(
12

D r : 1 1
I t
t
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Decimal Fractions and
Gontinued Fractions

10.1 Decimal Fractions
In this chapter, we will discuss rational and irrational numbers and their

representations as decimal fractions and continued fractions. we begin with
definitions.

Definition. The real number a is called rational
are integers with b * 0. If a is not rational. then

The following theorem tells
quotient (when the divisor is
rational.

a - a /b, where a and b
say that u is irrational.

If a is a rational number then we may write a as the quotient of two
integers in infinitely many ways, for if ot : a f b, where o uni b are integers
with b ;t' 0, then a : ka f kD whenever fr is a nonzero integer. It is easy to
see that a positive rational number may be written uniquely as the quotient of
two relatively prime positive integers; when this is done we say that the
rational number is in lowest terms.

Example. We note that the rational number ll/Zl is in lowest terms. We
also see that

-tt/-21 - tt/2r : 22/42: 33/63 :

us that the sum, difference, product, and
not zero) of two rational number is again
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Theorem 10.1. Let a and B be rational numbers. Then a + 0, a - 0' a9'

and a/0 (when P+0 are rational'

Proof. Since a and p are rational, it follows that a : alb and B : cld' where

e, b, c, and d are integers with b * 0 and d * O' Then' each of the

numbers

a * B :  a/b + c ld :  (ad*bc)/bd'

a  -  0 :  a /b  -  c /d  :  (ad-bc) lbd '

a 0 - b / b ) ' k / d ) - a c f b d ,
a/0 : b /b) lG ld) : ad lbc @*0 '

is rational, since it is the quotient of two integers with denominatcr different

from zeto. D

The next two results show that certain numbers are irrational' We start by

considerin g ,/T

Proposition 10.1. The number '/T is irrational'

Proof. Suppose that .,,6 : a lb, where c and b are relatively prime integers

with b I 0. Then, we have

2 :  a 2 l b 2 ,

so that

2b2 : a2.

Since 2lor,problem 3l of Section 2.3 tells us that2la. Let q :2c, so that

b 2  : 2 c 2 .

Hence, 21b,,  and by problem 3l  of  Sect ion 2.3,2 also div ides 6.  However,

s ince  G,b) ' :1 ,  we^know tha t  2  cannot  d iv ide  bo th  a  and b '  Th is

contradiction shows that .6 is irrational' B

We can also use the following more general result to show that .6 it

irrational.

Theorem 10.2. Let o( be a root of the polynomial x' * cnlxn-t *

* cp * cs where the coefficients ca, ct,...,cn-r, are integers with cs * 0.

Then a is either an integer or an irrational number'

Proof. Suppose that a is rational. Then we can write ot: alb whete a and b
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are relatively prime integers with b - o. Since ot is
x '  + cr-1xn- l  *  *  cp *  ,0,  we have

b / b ) ,  r c , _ t G / 6 y , - t  *  + c J a / D  * c a : 0 .

Multiplying by bn , we find that

an  +  cn_pn- tb  +  *  cpbo- r  +  csbn :  0 .

Since

x,'-::'il ^:,,;;'i-. , ,n*' u * * , 
' '!n',*n', 

u'^o!,', u"rli-" o;ui, or p
Since p I b and b I an , we know that p I a, Hence, by problem 3l ofSect ion 2.3,  w: see that pla.  Howiver,  s ince (a,  b)  :  l ,  th is is a
contradiction which shows that b : t 1. Consequently, if a is rational then
d : * o, so that a must be an integer. tr

we il lustrate the use of Theorem 10.2 with the following example.

Example' Let a be a positive integer that is not the mth power of an integer,
so that "\/i it not an integer. ThJn x/i i, irrationat by Theorem 10.1, since
"</7 it a root of xm - a. consequently, such 

";;.^ ur'^.,8,-18,-r:g'fr:";;
are irrational.

The numbers zr and e are both irrational. We will not prove that either of
these numbers are irrational here; the reader can find proofs in Itg].

We now consider base 6 expansions of real numbers, where b is a positive
integer,  b > l .  Let  a be a real  number,  and ret  a: Ia l  be the integer part
o f  a ,  so  tha t  r :o - - [a ]  i s  the  f rac t iona l  par t  o f  a  and o t :a  *7  w i th
0 < 7 < I ' From Theorem 1.3, the integer a has a unique base b expansion.
We now show that the fractional part ̂ y also has a unique base 6 expansion.

Theorem 10.3. Let 7 be a real number with 0 ( y ( l, and let b be a
positive integer, b > | . Then T can be uniquely written as

r :  ;  c i /b i
j - r

a root of

where the coefficients c;
the restriction that for
n 2 N a n d c ,  l b - 1 .

are integers with 0 ( c;
every positive integer l/

< 6- l  for  j  :  1 ,2, . . . ,  wi th
there is an integer n with
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In the proof of Theorem 10.3, we deal with infinite series' We wil l use the

following formula for the sum of the terms of an infinite geometric series'

Theorem 10.4. Lets and r be real nurnbers with lr[ < t. Then

V or i  :  a /0 - ' ) .
j -0

For a proof of Theorem 10.4, see [62]. (Most calculus books contain a proof')

We can now Prove Theorem 10'3'

Proof. We first let

c 1 :  I b T l  ,

so that  0 (  cr  (  b_1, s ince 0 < b7 < b.  In addi t ion,  let

^ f  r :  b l  -  c r :  b ^ Y  -  l b l l  '

s o t h a t 0 ( ? r ( l a n d
c 1  ,  7 l^ Y :  
b  

1  
b  

'

and ^yg for k :  2,3,. . . ,  bY

ck  :  [ b f r - r ]

We recursivelY define c1

and

nlk-t:+.+'

s o  t h a t  0 ( c r  ( b - t ,  s i n c e  0 ( b z t - r 1 b ,  a n d  0 ( r t  <  I '  T h e n '

follows that

C 1  C " t  C n  
+ ^ Y ,7:T*  Ur *  

*  
n ,  b ,

Since 0 (  ln (  l ,  we see that a 4lr /bn < l /bn.  consequent ly,

) t gn tO '  
: 0 .

Therefore. we can conclude that
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so that

(  1 0 . 1 )

Since c;

(10 .2)

while

( 1 0 . 3 )
j :k+t

Decimal Fractions and Continued Fractions

To show that this expansion is unique, assume that

r : ;  c 1 / b i : ;  d j / b i ,
j  - l  j : l

where o 
5 r, < b-l and 0 ( d, < b-1, and, for every positive integer.v,there are integers n and m with i, * D-l and d* r b-1. Assume that k isthe smallest index- for which cr, * d1r, and assume that c1, 7 dr, (the casecr 4 dp is handled by switching the rores of the two expansions). Then

o : ; k1-d1) lbi : (c*-d) /bk * 
,i', 

ki-d) /bj ,
j  _ k + l

7 :  l i m
n < 6

6

:  
' )  

r ,
.{,t " J

j : l

G1,-d1) /bk : ; e1-c1) /bi
j - k + t

) d*, we have

b*-d) /bo > , /uo .

j - k + l
l  l L K + l

: ( b - l )  " u  ,
|  _  t /b

:  l /bk ,

where we have used Theorem 10.4 to evaluate the sum on the right-hand side
of the inequality. Note that equality holds in (10.3) if and only if
d j  -  c. i :  b- l  for  a l !  i  wi th 7 )  t  1t ,  and this occurs i f  and only i f
d j  : .b- l -and ci :0 for  i  2 k+t.  However,  such an instance is excluded by
the hypotheses of the theorem. Hence, the inequality in (tO.:) is strict, and
therefore, (to.z) and (10.3) contradict (to.t). ttr is shows that the base b
expansion of a is unique. tr \
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The unique expansion of a real number in the form ). c1/bi is called the
J - t

base b expansion of this number and is denoted by kp2ca..)6.

To find the base b expansion (.cp2ca..)6 of a real number 7, wo can use

the recursive formula for the digits given in the proof of Theorem 10.3,

namely

ck : lbt*-J ,

for k :  1,2,3,.. .

^fk :  by*- t  -  lb l t  -J ,

where ̂ Yo: ^Y,

Example. Let ( .cp2ca..)  6 be the base 8 expansion of  l /6.

-  t -
c 1  :  [ 8  '  ; l :  1 , ,

o

_  l _
c 2 : [ 8 ' ; ' l : 2 ,

J

_  ) _
c a : [ 8 ' ] l - 5 ,

J

_  t -
c a : [ 8 ' T l : 2 ,

J

cs: [8 '?t : t ,

^yt :8 
+ 

- l  :

^y2:s 
+ 

-2:

^y3:B 
+ 

-5 -

74:8 + 
-2 -

^ys-s +-s:

Then

I

T,
2
t'
I
T'
2
T'
I
T,

and so on. We see that the expansion repeats and hence,

t /6 :  (1252525..)8.

We will now discuss base b expansions of rational numbers. We will show
that a number is rational if and only if its base D expansion is periodic or
terminates.

Definition. A base D expansion (.cp2ct..)r is said to terminate if there is a
positive integer n such that c, - cn*l - cn+z: : 0.

Example. The decimal expansion of l/8, (.125000...)ro : (.125)ro, terminates.
Also, the base 6 expansion of 419, (.24000...)o - (24)6, terminates.

To describe those real numbers with terminating base b expansion, we prove
the following theorem.



342

Theorem 10.5. The real number a, 0 <
expansion if and only if a is rational and a

Decimal Fractions and Continued Fractions

q I 1, has a terminating base D
: r/s, where 0 ( r ( s and every

prime factor of s also divides D.

Proof. First, suppose that a has a terminating base 6 expansion,

(c 1c2...c) 6 .d :

Then

Q :

b '

so that a is rational, and can be written with a denominator divisible only by
primes dividing b.

Conversely, suppose that 0 ( a ( l, and

a :  r f s  .

where each prime dividing s also divides 6. Hence, there
bN, that is divisible by s (for instance, take N to be the
the prime-power factorization of s). Then

b N o t : b * r / t : e r ,

where sa : bN ,, and a is a positive integer since slbr. Now let
(a*a^-1...aps)6 be the base b expansion of or. ln"n

a^b^*o^- tb^ - r  +  .  .  .  *  a tb*ag

is a power of D, say
largest exponent in

a :  a r / b N  :

:  d *b - -N  +  am_tbm- l - f l

:  ( . 0 0 . . . a  
m o m - t . . . a  , a s )  y  .

6u

+  * a 1 b | - t r +  a o b - N

Hence, a has a terminating base 6 expansion. D

Note that every terminating base b expansion can be written as a
nonterminating base 6 expansion with a tail-end consisting entirely of the digit
b - 1 ,  s i n c e  ( . c p 2 . . .  c ^ ) r -  ( c p 2 . . .  c m - l b - l b -  i . . . l u  p i r
instance, (12)to:  ( . t t l l l . . . ) ro .  This is why we require in Theorem 10.3
that for every integer N there is an integer n, such that n ) N and
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cn# b-l; without this restriction base b expansions would not

A base b expansion that does not terminate may be periodic,

I  1 3  :  ( . 3 3 3 . . . )  1 s  '
|  /6  :  ( .1  666. ' . )  to  '

and

| /7 : (.t+ztst 142857 142857 ..) rc'

be unique.

for instance

expanslon

Definition. A base b expansion (.cp2ca..)6 is called periodic if there are

positive integers N and k such that cn11 : cn for n 7 N '

W e d e n o t e b y ( c p 2 . . . c v 1 - , ' ] ] - " * 1 - ' ) 6 t h e p e r i o d i c b a s e b
(.c p 2...c 7,1- r clr...cry+ t -( t t...c N+t-rc.nv "') a' For instance' we have

r/3 : (.J)_.,0 ,
716  :  ( . 16 )  ro  ,

and

l l7 :  ( .  taxsz) ro .

Note that the periodic parts of the decimal expansions of 1/3 and l/7 begin

immediately, while in the decimal expansion of l/6 the digit I proceeds the

periodic pirt of the expansion. We call the part of a periodic base b

L*punsion preceding the periodic part the pre-period, and the periodic part

thi period, where we take the period to have minimal possible length'

Example. The base 3 expansion of 2/45 is (.ootorzr)r. The pre-period is

(001)3 and the per iod is (Ot2l)3.

The next theorem tells us that the rational numbers are those real numbers

with periodic or terminating base b expansions. Moreover, the theorem gives

the lengths of the pre-period and periods of base b expansions of rational

numbers.

Theorem 10.6. Let b be a positive integer. Then a periodic base b expansion

represents a rational number. Conversely, the base b expansion of a rational

number either terminates or is periodic. Furthero if 0 < a ( 1, a: rfs,

where r and J are relatively prime positive integers, and s : T(J where every

prime factor af T divides 6 and (U ,b) : 1, then the period length of the base

b 
""punrion 

of a is ordy b, and the pre-period length is .l/, where N is the

smaliest positive integer such that TlbN.
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Proof. First, suppose that the base D expansion of a is periodic, so that
a:  ( . c r r r . . . r * f f i )o

c 1  c t
I - J -

b 6 2

C 1  C ' ;
I - J -

b 6 2

where we have used Theorem 10.4 to see that
€ l
s ^ _

t"^ ojo
6tc

,  I  b k - lr - . _
b k

Since a is the sum of rational numbers, Theorem l0.l tells us that a is
rational.

Conversely, suppose that 0 ( a ( l, a : r /s, where r and s are relatively
prime positive integers, s : T(J , where every prime factor of T divides b,
Ql,b): 1, and I/ is the smallest integer such-that Tlb*

Since Tlb*, we have aT: bN, where c is a positive integer. Hence

(10.4) b N a : b N  L -  o r
T U U

Furthermore, we can write

( r0.5)  ar  c
i :n* i ,

where A and C are integers with

0 < I  < 6N, 0 < c < u.

and (c,u): l. (the inequality for A follows since 0 ( bNa : + < bN.
U

which results from the inequality 0 ( a ( I when both sides are multiplied
by bN) . The fact that (C,tl): I follows easily from the condition (r,s) : l.
From Theorem 1.3,  A has a base b expansion A :  (anan_t. . .epo)u.

lf U : l, then the base b expansion of a terminates as shown above.
Otherwise, Iet v : ord,ub. Then,
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b' #:
Qu +t )  c

U

(mod U).

C j- +
6 2

where (cp2ca...)6 is the base b expansion o' 
t ,so 

that

where To :

(10 .8)

ck :  lb l t  -J ,  ^yk -  b 'yt  - r  -  lb l*-J

fo r  k  :1 ,2 ,3 , . . . .  F rom (10 .7)  we see tha t

*  r " ]  t  ru .

(tO.S), noting that 0 ( T, ( l ,

(10.6)

where / is an

(10.7)

Equating the
we find that

(ro.s)

+t,
However, we also have

+ c'  *  al .
b '  b ' )

integer, since b' = |

( -  ( t

b'+:b ' l ]+
U  L A

C
T,

( - (
b '  * :  l r , b u - t  +  c 2 b ' - z  +

U \

fractional parts of (10.6) and

C
4 t : -I v  

u '

ConsequentlY, we see that

^Yv: 
":  t '

so that from the recursive definit ion of c1,c2,... we can conclude Ihzt cpau: c1,

for k : 1,2,3,.,.. Hence 
$ 

nuta periodic base b expansion

c  -  (n - rc r -Q6.
U

Combining (tO.+) and (10.5), and inserting the base b expansions of A and

9. *. huu,
U '

bN a  :  ( anan -1 . . . a tao  .  c  p2 . . . cv )  6 .

Dividing both sides of (10.9) by bN, we obtain

a  :  ( . 0 0 .  . . a n a n - r . . . o p o f f i )  u ,

(where we have shifted the decimal point in the base b expansion of brya N
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spaces to the left to obtain the base b expansion of a). In this base D
expansion of a, the pre-period (.00...a, an-t... ipo)a is of length N, beginning
with.A/ - h*1) zeros, and the period f.ngit, ir r.

We have shown that there is a base b expansion of a with a pre-period of
length r/ and a period of length v. To finish the proof, we must ,t o* that we
cannot regroup the base b expansion of a, so that either the pre-period has
length less than ry', or the period has length less than v. To do this, suppose
that

q :  ( . c r r r . . . t r f f i ) u

C 1  C t:  
b  

* ; * ,  cM+k-;m*#*(*)la.
k  f t M - t  + c  2 b M - 2 q +cM)(bk- t )  +  Gyar6k- t+ f  cTaap)

bM (bk -t)

S ince  q . :  r f s ,  w i th  ( r ,s )  :  l ,  we see tha t  s lbM$k_D.  Consequent ly ,  T lbM
uTd u l ( tk -o .  Hence,  M >  N,  and v lk  ( f rom Theorem g . l ,  s ince
bk = I (mod tD and v : ord,ub). Therefore,'the pre-period length cannot be
less than ,^/ and the period length cannot be less than v. D

We can use Theorem 10.6 to determine the lengths of the pre-period and
per iod of  decimal expansions. Let a:  r /s,  0 < a (  l ,  and ,  :2",  5r , ,  ,where (1,10) : l. Then, from Theorem 10.6 the pre-period has length
max (s1,s2) and the period has length ord,l0.

Example. Let ot:5/28. since 2g - 22.7,,Theorem 10.6 tells us that the pre-
rylt:d has length 2 and the period has length ord710 : 6. Since
5/28 : (f iasll4z), we see that these lengths are correct.

Note that the pre-period and period lengths of a rational numb er r f s, in
lowest terms, depends only on the denominator s, and not on the numerator /.

we observe that from Theorem r 0.6, a base b expansion that is not
terminating and is not periodic represents an irrational number.

Example. The number with decimal expansion

o r  :  . 1 0 1 0 0 1 0 0 0 1 0 0 0 0 . . . ,

consisting of a one followed by a zero, a one followed by two zeros, a one
followed by three zeroes, and so on, is irrational because this decimal
expansion does not terminate, and is not periodic.
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The number d in the above example is concocted so that its decimal

expansion is clearly not periodic. To show that naturally occurring numbers

such as e and 7( are irrational, we cannot use Theorem 10.6, because we do

not have explicit formulae for the decimal digits of these numbers' No matter

how many decimal digits of their expansions we compute, we still cannot

conclude that they are irrational from ihis evidence, because the period could

be longer than the number of digits we have computed'

10.1 Problems

l .

2.

3 .

Show that dE is irrational

a) by an argument similar to that given in Proposit ion l0' l '

b) using Theorem 10.2.

Show that :/i + ..6 is irrational.

Show that

a) log23 is irrational.

b) logob is irrational, where p is a prime and b is a positive integer which

is not a Power of P -

show that the sum of two irrational numbers can be either rational or

irrational.
4.

5. Show that the product of two irrational numbers can be either rational or

irrat ional.

6. Find the decimal expansions of the following numbers

a) 2/5
b)  s l t2
c) r2113

7. Find the base

a) r l3
b)  r l4
c)  r ls

d) 8lrs
e )  l l l l l
f )  1 /1001.

8 expansions of the following numbers

d) r16
e) rlrz
f) r122.

8. Find the fraction, in lowest terms, represented by the following expansions

a )  . r z  b )  . i  c )  n .
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9' Find the fraction, in lowest terms, represented by the following expansions

a) (.rzi, c) (.iT),,
b) (.oar6 d) (M),6.

l0' For which positive integers D does the base 6 expansion of l r/zro terminate?
I l ' Find the pre'period and period lengths of the decimal expansions of the

following rational numbers

i l 7 /t2 d) rc/23
b) tt/30 e) B/s6
c) t /7s f) t /6t.

12' Find the pre'period and period lengths of the base 12 expansions of the
following rational numbers

a) t/+ d) s/24
b) r/B e) 17 h32
c)  7/ ro f )  7860.

13' Let b be a positive integer. Show that the period length of the base 6expansion of l/m is m - I if and only if z is piime and , i, 
" 

primitive root
o f  m .

14. For which primes p does the decimal expansion of l/p have period length of

a ) l  d ) 4
b ) 2  e ) 5
c ) 3  f )  6 ?

15. Find the base b expansions of

a) r / (b-r)  b) r /6+D .

16. Show that the base D expansion of t/G-1)z;, 1.9ffirJp1;u.
17. Show that the real number with base 6 expansion

(otzt.,.o-t lol rr2..)t ,

constructed by successively listing the base b expansions of the integers, is
irrational.

18. Show that

+.#.#.#.#
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r9 .

20.

is irrational, whenever D is a positive integer larger than one.

Let byb2,fur... !s an infinite sequence of positive integers greater than one'

Show that every real number can be represented as

,o*?.#+#;+,

where cs,c1,cz,c!,... are integers such that 0 ( ct ( bp for k : I'2'3'""

a) Show that every real number has an expansion

C r C t r t +
t o + l !  *  

z l *  3 !

where cs,c1,c2,c!,-.- are integers and 0 ( ct ( k for k : l '2'3'""

b) show that every rational number has a terminating expansion of the type

described in Part (a).

Zl. Suppose that p is a prime and the base b expansion of llp is ('t,tr'-oJ"

so that the period length of the base b expansion of llp is p - l. show that

if z is a positive integer with I ( ln ( p, then.

m /p : ( .cya1...coac ( 2.. .c1sacP) 6 '

where k : indtm modulo P.

Show that if p is prime and l/p - ('ffi)6 has an even period length'

k  : 2 t ,  t hen  c i  *  c i + t :  b - l  f o r . , ; r  :  1 ,2 , " ' , t

The Farey series Fn of order n is the set of fractions hlk whete h and' k

are integers, 0 ( f t  < k ( n, and (h,k): 1, in ascending order'  Here, we

include 0 and I in the forms i and I respectively' For instance, the Farey
I

series of order 4 is

a) Find the Farey series of order 7.

b) Show that if a/b and c/d are successive terms of a Farey series' then

b d  -  a c  : 1 .

c) Show that if a/b, c/d, and e/f are successive terms of a Farey series,

then

c  a * e

7- E7'

22.

23.

0 l 1 1 2  3 l
T'T,T 'T '7,7,  T
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d) Show that if a/b and, c/d are successive
order  n ,  then b*d )  n .

terms of the Farey series of

24. Let n be a positive integer, n ) l. Show that I
not an integer.

l0.l Computer Projects

Write computer programs to do the following:

I ' Find the base 6 expansion of a rational number, where b is a positive integer.
2' Find the numerator and denominator of a rational number in lowesr rerms

from its base b expansion.

3' Find the pre-period and period lengths of the base D expansion of a rational
number, where b is a positive integer.

4' List the terms of the Farey series of order n where n is a positive integer (see
problem 23).

10.2 Finite Continued Fractions
Using the Euclidean algorithm we

continued fractions. For instance, the
following sequence of equations:

6 2 : 2 . 2 3  +  l G
2 3 :  l . 1 6  +  7
1 6  : 2 - 7  +  2
7 : 3 - 2  +  l .

When we divide both sides of each equation by the divisor of that equation, we
obtain

6 2 : r * 1 6 : , ) r  I
23  23  

L  
n l r6

? 3 - : t + L : t *  I
1 6  1 6  1 6 / 7
1 6  :  I  +  Z :  r  +  I
7 7 7/2

+:3 + ! .
2  2 '

By combining these equations, we find that

can express rational numbers as
Euclidean algorithm produces the
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6 2  : 2 +
23

: 2 +

: 2 *

: 2 *

1
23116

t
I

I  - L :r '  r c17
I

1+h
I

1+
2++-

3 * ;

The final expression in the above string of equations is a continued fraction

expansion of 62123.

We now define continued functions'

Definition . A finite continued fraction is an expression of the form

I
a o t

a t l

ctz *

1+-
an-r  t  L

an

where Qg,a1,a2,...,an ale real numbers with Q1,Q2,Q3',"' '  an positive' The real

numbers ej,a2,..., Q'n are called lhe partial quotients of the continued fraction'

The continued fraction is called simple if the real numbers as,c r,..., an are all

integers.

Because it is cumbersome to fully write out continued fractions, we use the

notation Lso;a1,e2,...,Ctn| to represent the continued fraction in the above

definition.

We will now show that every finite simple continued fraction represents a

rational number. Later we will demonstrate that every rational number can

be expressed as a finite simple continued fraction'
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Theorem l0'7 ' Every finite simple continued fraction represents a rationalnumber.

Proof' we will prove the theorem using mathematical induction. For n : 1we have

[ a o ; a r l : o o +  I  * a o a r * l
a l  o g

which is rational. Now assume. that for the positive integer k the simple
continued fraction [ag;at,e2,...,ekl is rational whlnevst as,or,...,ok are integers
with a r,...,ak positive. Let as,at,...,ek+t be integers with er,...,ek+t positive.
Note that

[ a g . a 1 , . . . , a k + t l  :  a g  +
Ia ;a2, . . . ,  a1r .a1ra1 l

By the induction hypothesis, [a ria2,..., ek,ek+r] is rational; hence, there are
integers r and s, with s*0, such that this continued fraction equals r/s.
Then

l ao ;a1 , . . . ,  ak ,ok+ t l  :  ag  +
agr *S

which is again a rational number. tr

We now show, using the Euclidean algorithm, that every rational number
can be written as a finite simple continued fraction.

Theorem 10.8. Every rational number can be expressed by u finite simple
continued fraction.

Proof .  Le tx :a /b  where  a  andb are in tegerswi thb  >  0 .  Le t rs -a  and
r't : b. Then the Euclidean algorithm prodr.", the following sequence of
equations:

I
r/s
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r O  :  r 1 Q 1 *  1 2

r |  :  r 2 Q 2 *  1 3

1 2 :  r 3 Q t l  1 4

:
l n - 3  :  f n ' Z Q n - Z *  f r - t

f n - Z :  f n - 1 Q n - 1 * f n

fn - l  :  tnQn

In the above equations 4z,Qt,.",Qn
equations in fractional form we have

L :  
l o  :

b  / 1
t t :

r2
r Z :

r 3

Substituting
we obtain

( l  0 .10 )

Similarly, substituting
we obtain

353

Q  1 r 2  (  t t ,

0 ( 1 3 1 r r ,

0 ( r a 1 1 3 ,

0 ( r n - 1 1 t n - z ,

0 ( r n l r n - t

are positive integers. Writing these

t t  I
Qr* ; : q t+  6

.  1 3  I
q 2 + ; : Q 2 . T r t

ta, I
n r * ; : e t *  r r t ^

ln-3 
: 

tn-l -L I
: Qn-2 

-t -

rn-2 tn-2 rn-2/rn-t

l n - 2 :  -  L  
, n  - n - - . + 4

r n - l '  
Q n - l  t  

;  

:  q n - l  - , n - r , / r ,

f n - l  
: , Q N

rn

the value of r1/r2from the second equation into the first equation'

a l
T : 4 t t  ,  t

4z  r  
, r l ry

the value of r2fr3 from the third equation into (10.10)
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Q z *

Cont inu ing in  th is  manner ,  we f ind that
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Q r  *
c

b

T :  
q ' t  +

Q z *

Q t *

*  Q n - t

Hence 
t : rn r iQz , . . . ,  

qn l .  Th is  shows tha t  every
written as a finite simple continued fraction. !

We note that continued fractions for rational
From the identity

Qt* +
ri lrt

I

, l

Qn

rational number can be

numbers are not unique.

every rational number can be written as a
exactly two ways, one with an odd number
number (see problem 8 at the end of this

an : Gn-l) +

we see that

[ag ;a  1 ,e2 , . . . ,  en_ t ,on l  :  Iag ;a1 ,c t2 , . . . ,  en_ t ,en

whenever a, ) L

Example. We have

1

#  :  [ o ;  I  , l  , l  , 3 1  :  [ o ; l  , l  , l  , 2 ,  I  ] .I I

In fact, it can be shown that
finite simple continued fraction in
of terms, the other with an even
sect ion).

Next, we wil l discuss the numbers obtained from a finite continued fraction
by cutting off the expression at various stages.

Definit ion. The continued fractions [as;a1,o2,..., a1l, where ft is a nonnegative
integer less than n, is called the kth convergenr of the continued fraction



For k : l, we see that

Cr :  lao;a1l  :  as +

Hence. the theorem is valid for k : 0

Now assume that the theorem is

2 < k  1 n  T h i s m e a n s t h a t

( 1 0 . 1 1 )  C k  :  [ ' a o ; a r , . . . ,  Q k l :
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[ao;a1,e2,..., Qnl The kth convergent is denoted by Ct '

In our subsequent work, we will need some properties of the convergents of

a continued fraction. We now develop these properties, starting with a

formula for the convergents.

Theorem 10.9. Lel ag,a1,e2,..., an be real numbers, with a 1;a/;..., a, positive'

Let the sequences P0,Pt,..., Pn and qs,qt," ', Qn be defined recursively by

P o :  a O  Q o :  I

P t  :  a s o l * l  q 1  :  a r

and

:  okPk - t

Then the

t  P*-z Q k :  a p Q t - t  t  q * - z

for  /c :  2,3, . . . , kth convergent Ck :  I 'ao;at , . ' . ,  okl  is  g iven by

Cp -- P*lqr'

proof. we will prove this theorem using mathematical induction. For k : 0

we have

Co:  lae l  :  as l l  :  Po lqo .

P*

n .

! :  
a o a t * l  : P t

a 1  a 1  Q t

a n d k : l

true for the positive integer k where

P k : a * P x - r * P t - z

Q* atrQt - t  *  qtr-z '

Because of the way in which the p;'s and 4y's are defined, we see that the real

numbers p*-r,p*-z,Qk-1, and Q*-z depend only on the partial quotients

e0,er,..., ak-r . Conr"quently, we can replace the real number ap by

a*  *  l la *+ t  in  ( t0 ' l  I ) ,  to  ob ta in
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Ct+r  :  [ag ;a t , . . . ,ok ,ok+r l  :  Iao :a1 , . . . ,  ( t k_ t ,ok

+ l
o k + t

.  
* ) n r - , * q * - z

["^

Cont inued Fract ions

+! l
ap

P*- r  t  p* -z

l"r
a*n(arp* - r  *  p* -z )  *  p1 , -1

a p a l ( a l r Q r r - t  *  Q t _ )  *  q t _ t

_ o*+Pt *  P*-r
a*+f i*  *  q*-r

_  P*+ t

Q*+t

This finishes the proof by induction. D

we il lustrate how to use Theorem 10.9 with the following example.

Example.  we have 173/55: [3;6,r ,71 .  we compute the sequences p1 and q,
f o r  j  : 0 , 1 , 2 , 3 , b y

P o :  3
P t : 3 ' 6 + l :  1 9
P z :  l ' 1 9 + 3 : 2 2
P t : 7 ' 2 2 + 1 9  :  1 7 3

Q o :  I

Q l : 6

Q z :  l ' 6 * l  :  7

4 3  -  7 ' 7 + 6 :  5 5 .

Hence, the convergents of the above continued fraction are

Co :  po /qo :  3 / l  :  3
C t : P t / q t : 1 9 / 6
Cz: pz/qz :  22/7
C t :  p J q t :  1 7 3 / 5 5 .

We now state and prove another important property of the convergents of a
continued fraction.

Theorem 10.10. Let k be a positive integer, k 2 | Let the /cth convergent
of the continued fraction las;ar,...,onl be c1 : p*/qt, where pt< and, q1, ai as
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defined in Theorem 10.9. Then

P r r T * - r '  P * - t 4 t '  :  ( - l ) k - l '

Proof. We use mathematical induction to prove the theorem' For k : I we

have

P t Q o -  P o T 1 :  ( a s a l + l ) ' l  -  a s a t  :  l '

Assume the theorem is true for an integer k where I < ft I tt , so that

Pt  Q*- r  -  P* - rQt  :  ( - l ) t - l '

Then, we have

Pt+rQt  
-  P*Qt  + t (arr+rpt  *  pr-)qr,  -  P*(arr t tQ* *  Qr-)

P t - t Q t  
-  P t  q * - t :  -  ( - l ) k - t :  ( - 1 ) k '

so that the theorem is true for k + l. This finishes the proof by induction. tr

we illustrate this theorem with the example we used to illustrate Theorem

1 0 . 9 .

Example. For the continued fraction [3;6,1,71 we have

P o Q t  
-  P r Q o :  3 ' 6  -  1 9 ' l  :  - l

P r Q z -  P z Q l  :  1 9 ' 7  -  2 2 ' 6  :  I

P z Q t  
-  P t Q z :  2 2 ' 5 5  -  1 7 3 ' 7  :  - 1 '

As a consequence of Theorem 10.10, we see that the convergents pt lqx for

k:1,2, . . .  are in lowest terms. Corol lary 10.1 demonstrates th is.

Corollary 10.1. Let C*: p*lqr, be the kth convergent of the simple

continued fraction las;ar,...,8211, where the integers Pt and qp are as defined in

Theorem 10.9. Then the integers Pr, and qy are relatively prime.

Proof. Let d : (p*,q*). From Theorem 10.10, we know that

P * Q * - r  
-  Q * P * - r :  ( - l ) k - l '

Hence, from ProPosition 1-2 we have

d I  e l )k - r .

Therefore, d : l. B
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we also have the foi lowing usefur coroi lary of  Theorem r0.10.

corollary 10.2- L?t ck : pr/qp be the kth convergent of
cont inued fract ion lao:a1,e2,. . . ,  e11l  Then

the  s imp le

for all inregers k with I < ft

C p -

{  - ) * - r
C1, - Cr-r :

Qt rQ*_r

n Also,

^  a l r G ) k
- x - 2 :

Q tQ t - z

for  a l l  integers k wi th 2 < k (  n .

Proof.  From Theorem 10.10 we know that plrQ*_t -  Q*pr_r:  (_ l )k- l

We obtain the f i rst  ident i tv.

n r  p r _ r  ( _ t ) k - l
Ck - Cft-r :  ' 'n -

Q r  Q t - r  Q tQ*_ r

by div id ing

To obtain

both s ides by qrQ*_r .

the second identity, note that

r . - r  - P t '  P t ' - z  P * Q r - z - P * - z Q *L t  - L k - z : -  : -
Q* Q*-z Q *Q *-z

since Pk :  at  p*-r  *  p*-z and q2 :  okek-r  *  q*-2,  we see that the numerator
of the fraction on the right is

P*Q*-z -  prr-zQ* :  (a*p*_t  *  p*_z)qk_2 -  p*_z(arQr,_r *  Qr_z)-  at(Ptr- tQtt-z -  p*-zQ*-)
:  arr(- l )k-  2,

where we have used Theorem
Pr-tQt,-z -  Pt-zQ*-r  :  ( -  Dk-z.

Therefore, we find that

C p  -  C k - z :
a 1 , G D k

Q *4 tr-z

is the second identi ty of the corol lary. tr

10 . r0 that
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Using corol lary 10.2 we can prove the fol lowing theorem which is useful

when developing infinite continued fractions'

Theorem l0. l l .  Let  c1 be the kth convergent of  the f in i te s imple cont inued

fract ion lag:at ,Q2,. . . ,  Qnl .  Then

C r ) C l ) C s )  '
Co ( Cz 1 Cq 1 '

and every odd-numbercd convergent Cr i*r  '  i  :0 ' l '2""  is  greater than every

even numbered convergent Czi , - l  :  0,1.2," '

Proof.  Since Corol lary 10.2 te l ls  us that ,  for  k :  / '3 ' " ' ' r t '

C1r-C*-z :# '

we know that

Cp 1 C*-z

C* ) C*-z

C t  7  C t  )  C s

when k is odd, and

when k is even. Hence

and

Co ( Cz 1 Cq 1

To show that every odd-numbered convergent is greater than every even'

numbered convergent, note that from Corollary 10.2 we have

C z ^ - C z r  ' -  
( - l ) 2 - - r ' o '

n - l  -  

Q z ^ Q z ^ ' t

so that Cz^-t  7 Cz^.  To compare C21, and Cri-r ,  we see that

Cz j - r )  Cr j *z* - l  >  Cr j * ro  )  Cz* '

so that every odd-numbered convergent is greater than every even -numbered

convergent. tr
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Example. Consider the
convergents are
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finite simple continued fraction 12:3,1,1,2,41. Then

C o -  2 / l - 2
C 1  -  7 / 3 : 2 . 3 3 3 3 . . .
C z -  9 / 4 : 2 . 2 5
C :  :  1 6 / 7  : 2 . 2 8 5 7 . . .

C + :  4 l / l S : 2 . 2 7 7 7 . . .
Cs :  f tA/79 :  2.2784.. .  .

the

We see that

C o  :  2  1  C z :  2 . 2 5  I  C a  :  2 . 2 7 7 7 . . .
(  C s  : 2 . 2 7 8 4 . . .  (  C r  : 2 . 2 9 5 7 . . .  (  C r  : 2 . 3 3 3 3 . . .

10.2 Problems

l ' Find the rational number, expressed in lowest terms, represented by each of the
following simple continued fractions

a) IZ;ll e) [ r ;r ]
b )  [ t ; z , z ]  f )  [  l ;  l , l  ]
c )  [0 ;5,0]  e)  [  I  ; t , l  , l  ]
d )  [ 3 ; 7 , 1  5 , 1  ]  h )  [  l ;  I  , l  , l , l  ] .

2' Find the simple continued fraction expansion not terminating with the partial
quotient one, of each of the following rational numbers

il 6/s d) slsss
b) 22t7 e) -4311001
c) t9/29 f) 873/4867.

Find the convergents of each of the continued fractions found in problem

Let up denote the kth Fibonaccci number. Find the simple continued
terminating with the partial quotient of one, of u1,-,1fup, where ft is a

2 .

fraction,
positive

lnteger.

5. Show that i f  the simple
a ,  a . )1 ,  i s  [ a6 ;a t , . . . , ak l ,

continued fraction expression of the rational number
then the simple continued fraction expression of l/a is

l};a o,a r,. . .,a k'l.

6 .  Show that  i f  ae * 0, then
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P * / p * - r  :  I o o i a * - t ,  .  -  . , a 1 , a s l

and

q * /  q tr-r :  I 'a u:a r-r," ' ,a 2,a 11,

where Ck-r: p*-t/qrr-r and C* : pt lq*,k ) l ,are successive convergents of the

continued fract ion la6;a1,.. . ,an1 (Hint: Use the relat ion P* : a*P*-1 * pp-2 to

show that  p t  /p* - r :  ar  *  I / (px- t /p* - ) .

Show that q1, ) u1, for k:1,2,.. .  where c*: p*lqr is the kth convergent of the

simple continued fraction las;a1,...,an1 and all denotes the kth Fibonacci number'

Show that every rational number has exactly two finite simple continued fraction

expansions.

Let lao;ar,a2,...,a211 be the simple continued fraction expansion of rls where

(r,s): I  and r) l  Show that this continued fract ion is symmetric, i 'e.

os :  a21 ta t  :  an - td2 :  an -2 , . . . ,  i f  and  on l y  i f  s  l ( r 2+ t )  i f  n  i s  odd  and  s  l ( r 2 - t )  i f

n is even. (Hint: Use problem 6 and Theorem 10.10).

10. Explain how finite continued fractions for rational numbers, with both plus and

minus signs allowed, can be generated from the division algorithm given in

problem 14 of section 1.2'

l l .  Let as,ar,a2,.. . ,ak be real numbers with a r,o2,.. .posit ive and let x be a posit ive

real number. Show that Ias;a1,. ' . ,ar, l  1 lao;a6--.,a1,*xl i f  k is odd and

Ias;a1, . . . ,a t1  > [ao;a1, . ' . ,o1r*x ]  i f  t  i s  even.

10.2 Computer Projects

Write programs to do the following:

l. Find the simple continued fraction expansion of a rational number

2. Find the convergents of a finite simple continued fraction.

10.3 Infinite Continued Fractions

Suppose that we have an infinite sequence of positive integers Qo,Qt,ay,... .

How can we define the infinite continued fraction Las,at,a2,... l? To make

sense of infinite continued fractions, we need a result from mathematical

analysis. We state the result below, and refer the reader to a mathematical

analysis book, such as Rudin lezl, for a proof.

Theorem ll. l2. Let xs,x r,x2,... be a Sequence of real numbers Such that

xo (  xr  (  xz ( . . .  and x7, < u for  k :  0,1,2, . . .  for  some real  number u,  or

x o 2  x r 2  x z 7  . . .  a n d  x t 2  L  f o r  k : 0 , 1 , 2 , . . .  f o r  s o m e  r e a l  n u m b e r  l .

7 .

8 .

9 .
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Then the terms of the sequence xu,xr,x2,... tend to a l imit x, i.e. there existsa real number x such that

14to : " '
Theorem 10'12 tells us that the terms of an infinite sequence tend to a l imit

in two special situations, when the terms of the sequence are increasing and allless than an upper bound, and when the terms of the sequence are decreasing
and all are greater than a lower bound.

We can now define infinite continued fractions as l imits of f inite continued
fractions, as the following theorem shows.

Theorem 10.13. Let as,e 1,ct2,... be an infinite sequence of integers with
ar,Qz,... positive, and let ck : lag;a1,a2,...,e1a1 Then the convergents cp
tend to a l imit ot. i.e

J4to:" '
Before proving Theorem l0.l 3 we note that the l imit a described in the
statement of the theorem is called the value of the infinite simple continued
fraction [as;a t,o 2,...1 .

To prove Theorem 10.13, we wil l show that the infinite sequence of even-
numbered convergents is increasing and has an upper bound and that the
infinite sequence of odd-numbered convergents is decreasing and has a lower
bound. We then show that the l imits of these two sequences, guaranteed to
exist by Theorem 10.12, are in fact equal.

We now wi l l  prove Theorem 10.13.

Proof. Let m be an even positive integer.

c r  )  c t )  c s  )
ca1cz1cq1

and C2i 7 Czn+t whenever 2j 4 m and
possible values of m, we see that

C r  )  C t > .  C s  )
c o ( c z l c + (

From Theorem 10.1 l, we see that

)  C^- t
1 C ^ ,

2k + | <. m . By considering all

)  Czn-t  )  Czn+,
1 Czn-z 1 C2n I

and czi ) Cz**t for all positive integers j and k. we see that the
hypotheses of Theorem rc.12 are satisfied for each of the two sequences
C1,C3,C2,. . .  and Cs,Cz,C4,. . .  .  Hence, the sequence C1,C3,C5,. . .  tends to a
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l imit d1 and the sequence Cs,C2,C4,"' tends to a l imit a2 ' i 'e'

) i * c " * r  
:  d r

and

) * c "  
:  o ( 2 '

Our goal is to show that these two limits a1 and oQ are equal' Using

Corollary 10.2 we have

Czn+r  -  C tn  :  l zn* t  -  Pzn -  ( - l ) (z '+ t l - t
*  z n  

Q z n + t  Q z n  Q z n + l Q z ,  Q z n + l Q z n

Since e* 2 k for all positive integers /c (see problem 7 of Section 10.2), we

know that

and hence

I

e z n + r Q z n  
-  

( z n + l ) Q n )

Czn*t  -  Cz,
Qzn+tQzn

tends to zero, i.e.

nl im 
(Czra1 -  C2n) :  0.

Hence, the sequences C1 ,C3,Cs,. . .  and Cg,C2,C4,. . .  have the Same l imit ,  s ince

j* (cr, *t - cz) : 
, lg 

Czn*t - , lg 
cz, : o.

Therefore ayr : aq, z11d we conclude that all the convergents tend to the limit

d : (rr : dz. This finishes the proof of the theorem' D

Previously, we showed that rational numbers have finite simple continued

fractions. Next, we wil l show that the value of any infinite simple continued

fraction is irrational.

Theorem 10.14. Let os, ,o1,e2,. . .  be integers wi th a1,Q2,. . .  posi t ive.  Then

Ia o;a r , ,a 2, . . .1 is i r rat ional .

Proof. Let a : las;at,ctz,... l  and let
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denote the /c th
shows that C2,

However, from

Cr : pr/qp :

convergento f  a .  When
(  a  (  C z r + t ,  s o  t h a t

0 ( a - Czn I

Corollary 10.2, we know

Czn*t - C2n :

Decimal Fractions and Continued Fractions

[ao ;a  t , . . . ,ak l

n is a positive integer, Theorem 10. I I

Czn*t - Czo .

that

I

4 z n + t Q z n  
'

this means that

0 ( a - C z n : a -

and therefore, we have

Pzn 
a

4 zn Q zn+tQzn

0 1 aq2, -  pzn 1 l /qzr+t  .

Assume that a is rational, so that ot : e /b where a and b are
b + A. Then

o a o Q r "  - p z n <  I  
,b  Qzr+ t

and by multiplying this inequality by b we see that

0 1 a q 2 n - b p z n
Q  z n + t

integers with

Note that aq2, - bpzn is an integer for all positive integers n. However, since
Qzr+r )  2n*I ,  there is an integer n such that Qzn+t > b,  so that
b/Qzr+t < I . This is a contradiction, since the integer aQzn - bprn cannot be
between 0 and I . We conclude that a is irrational. n

We have demonstrated that every infinite simple continued fraction
represents an irrational number. We wil l now show that every irrational
number can be uniquely expressed by an infinite simple continued fraction, by
first constructing such a continued fraction, and then by showing that it is
unique.
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Theorem f0.15. Let a: cvO be an irrational number and define the sequence

Q0, Qt,  Q2, ' . .  reCufsivelY bY

c r k + l  : I / b t - a )

the value of the infinite, simple continued

Proof. From the recursive definition given above, we see that ap is an integer

for every k. Further, we can easily show using mathematical induction that

a7, is irrational for every k. We first note that d0 : a is irrational' Next, if

we assum e that a1, is irrational, then we can easily see that a,p1' is also

irrational, since the relation

d k + r : l / ( a t - a * )

I
o t k : A * * L s

q k + l

then by Theorem 10.1,
and ap is an integer, we

a p l a t l a p * | ,

0 ( a 1 - a p < 1 .

a ( k + t :  1 l @ *  -  a p )  )  l ,

a k + r :  [ a r + r l  )  1

fsr k : 0, I , 2, ... . This means that all the integers

Note that by repeatedly using (tO.t2) we see that

Qk : lapl,

for  k :  0,  l ,  2, . . .  .  Then a is

fract ion Lag; ar,  az,- . .1.

implies that

( 1 0 . 1 2 )

and if d;611 were rational,

Now, since a7, is irrational

so that

Hence,

and consequently,

a7. would also be rational'

know that 47, I at, and
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Q : d 0 : a o *

a o *

Decimal Fractions and

I

I  :  [as ;a l
u l

l . :  Ia6;a1,a2l
a t - f L

a2

Continued Fractions

:  Iag;a  l ,o  z , . . . ,c tk ,a t r+ l l .
:  Q o *

a t  i

az -f

* a 1 r *  
I

otk+l

what we must now show is that  the value of  las;at ,o2, . . . ,ek,c,k+1] tends to a
as ft tends to infinity, i.e., as k grows without bound. From Theorem 10.9, we
see that

a  :  f ag ;a r , . . . , ok ,ak+ l l  :
a*+tP*  *  p t+t

at+rT*  *  q* - r

where Cj : pi/qi is the 7th convergent of las;afl2,...1. Hence

a-Cp :
a*+rPr *  p*- t  pt

dtc+tQ* *  q*- t  Q*
- (P rq r r - t  -  

P r r - tQ* )

(ar+gr, * q*-)q*

( - t ) t
(ar+g* *  q*r)qt  '

where we have used Theorem 10.10 to simplify the
hand side of the second equality. Since

a*+rQ* *  qt-r  )  at+f l t  *  q*-r  :

we see that

numerator

Q k + | ,

on the right-
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lo -c*L  ' *
QtrQx+t

Since Qr,2 k ( f rom problem 7 of  Sect ion 10.2),  we note that  l lq*qn*t  tends

to zero as k tends to infinity. Hence, Cp tends to a as k tends to infinity' or

phrased differently, the value of the infinite simple continued fraction

l a s ; a 1 , a 2 , . . . 1 i s  a .  t r

To show that the infinite simple continued fraction that represents an

irrational number is unique, we prove the following theorem.

Theorem 10.16. If the two infinite simple continued fractions las;at,a2,...1

and lbo;br,bz,... l represents the same irrational number, then ar: bx for

k  : 0 , 1 , 2 , . . .

Proof. Suppose that a: lag;at,a2,...1. Then, since Co : 4o and

C t :  a o  *  l / a t ,  T h e o r e m  1 0 . 1 1  t e l l s  u s  t h a t

a o  1 a  1 a g *  I f a 1 ,

so that ao: lc-l. Further, we note that

[ a g ; a 1 , a 2 , . " 1  :  a o

since

a :  la s;a r ,a 2, . . .1 :  
o lg l [aoia 

1,a 2, . . . ,apl

: l i m ( a o + ,  I  
, )

/<  - -  l q  1 ia  2 ,Q  3 , . . . , ap  I

:  d o *

:  a o l

l i m  I a  1 , o 2 , . . . , a p l
/< --

I
--.
l O  1 i O  2 , O  3 , .  . .  I

Suppose that

Our remarks show that

la  s ;a  1 ,a  2 , . . .1  :  lb  o ib  r ,b  2 , . . .1 .

a O :  b O :  l o l
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and that

ao* +:boIo  1 ;a2 , . . .1  "  Ib  , .bz , . . . l  
'

so that

I a ; a 2 , . . . !  :  [ b t i b z , . . . l  .

Now assume tha t  a1r :  bk ,  and tha t  lap t l ;a1ra2 , . . .1  : [bn* r ;b t+2 , . . .1 .  Us ing  the
same argument, we see that apal : bpa1, o.1d,

a*+ r l  + -  :  bk - t+  '  
I

Lapa2 io1ra3, . . . l  lb * * t ;b*+ t , . .1  '

which implies that

['a p,z;a 1ra3,... ] : lb 1ra2;b 1ra3,... I .

Hence, by mathematical induction we see that a2 : b1, for k :0,1,2,... . D

To find the simple continued fraction expansion of a real number, we use
the algorithm given in Theorem 10.15. We il lustrate this procedure with the
following example.

Example. Let a : G. We find that

ao : l r f i l : 2 ,  an t ,  t  "E+Z:G5:T
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Since d3 :

ez :  [ Jo+z l  :  q

: J6+2

{e+z _

Qt : r * r : 2 , I
s . ) _ _

(J6,*2 )-z' 2 '

I
q {  E  . . . . . . . . : - :-  

Qo+D-4
d 1

2

n Hencew e  S e e  t h a t  a 3 :  o t ,  a 4 :  e 2 , . . . ,  a n d  s O  O

^f6 : 12;2,4,2,4,2,4,.. .1.

The simple continued fraction of -,.6' is periodic. We will discuss
simple continued fractions in the next section.

The convergents of the infinite simple continued fraction of an irrational
number are good approximations to a. In fact, if p*/qt, is the 7th convergenr
of this continued fraction, then, from the proof of Theorem 10.15, we know
that
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so that

l " - p o l q o l  <  l l q * q x + t

lo  -  po lqx l  < t lq? ,

since Qt I  Q*+r.

The next theorem and corollary show that the convergents of the simple

continued fraction of a are the best rational approximations to a, in the sense

that prrlql is closer to a than any other rational number with a denominator

less than q1.

Theorem 10.17. Let a be an

the convergents of the infinite

integers with s ) 0 such that

i rrat ional number and let n1le1, i  :1,2," ' ,  be

simple continued fraction of a' If r and s are

lso-r l  < lqo"-pol

then  s  7  q r * t .

proof. Assume that lso-r | < lqr,o-pnl, but that 1 ( s I q*+r. We

consider the simultaneous equations

P t x * P t + r l : r
Q t x * Q * + t ! : 5 .

By multiplying the first equation by Q* and the second by px, and then

subtracting the second from the first' we find that

(Pt +rqr-PxQt +)Y - tQk - sP* '

From Theorem 10.10, we know thar ppag* - Pt Qt +l : (-l)fr, so that

y : (-l)k (rq1,-sP).

Similarly, multiplying the first equation by Qlray and the second by ppal and

then subtracting the first from the second, we find that

x  :  ( - l )k (sppa; rQ*+) .

W e n o t e t h a t  x # O  a n d  y # Q .  I f  x : 0 t h e n s P t + t : r 4 k + t ' S i n c e
(px*t,qrr*) : l , Lemma 2.3 tells us that q*+tls, which implies that

Qt +t  )  s,  contrary to our assumption. I f  y :0,  then r  :  pkx and s :  Qkx'

so that
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lso-rl : l" l lqp-pr,l ) lqro-p*l ,
since Irl > l, contrary to our assumption.

we will now show that x and y have opposite signs. First, supposey  < 0 .  S i n c e  Q k x : s  - Q t < + t l , w e k n o w t h a t x  )  0 , b e c a u s e { 1 x  )  0
Q* ) 0. When / ) 0, since Qtc+r! 2 q1ra1 ) s, we see

that
and
that

Q k x  :  s  -  Q * + r !  (  0 , s o t h a t x  (  0 .

From Theorem l0. l  l ,  we know that ei ther
Pt+t/q*+r ( a ( Pr/q1r. In either case. we
Qr+p - p*+r have opposite signs.

Pt/qt  (  a (  p*+r/qx+t or that
easily see that Qtea - pt, and

From the simultaneous equations we started with, we see that

lso-r  |  :  lQor Iq l , lp)a -  (po*+p** t ) l
: lx(qp-pr) + yQ1,ap-p;-;it

combining the conclusions of the previous two paragraphs, we see that
x(qpa-pr) and !(Q*+p-p,t*r) have the same sign, so that

lso-rl : l{ l lqoo-pol + lyllq**p-pr,+rl
2 lxllqoo-pnl
) lqt o-pr,l,

since l* l>t.  This contradicts our assumption.

We have shown that our assumption is false, and consequently, the proof is
complete. tr

be an  i r ra t iona l  number  and le t  p i /q i ,  j :1 ,2 , . . .  be
infinite simple continued fraction-of *. lf r/s is a

r and .r are integers with s ) 0, such that

lo-r/t l  < l"-p*/qol ,

Corollary 10.3. Let q
the convergents of the
rational number, where

then s )  q*.

Proof. Suppose that s ( qt and that

lo-r/sl < l"-pr,lqr,l.
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By multiplying these two inequalit ies, we find that

sla-r lsl < qol"-Polqol

so that

l s a - t l  <  l q o d - P x l  ,

violating the conclusion of Theorem l0'17' tr

Example. The simple continued fraction of 7( is

o : l i ; j ,15 ,1 ,292,1 ,1 ,1 ,2 ,1 , j , . . .1 .  Note  tha t  there  is  no  d iscern ib le  pa t te rn  in

the sequence of partial quotients. The convergents of this continued fraction

are the best rational approximations to r. The first f ive are 3, 22/7 ' 3331106'

3351113, and 103993/33102. We conclude from Corol lary 10.3 that  2217 is

the best rational approximation of t with denominator less than 106, that

31.5ll l3 is the besi rational approximation of zr with denominator less than

33102.  and so  on .

we conclude this section with a result that shows that any

close rational approximation to an irrational number must be a

of the infinite simple continued fraction expansion of this number.

Theorem 10.18. lf a is an irrational number and if r ls is a rational number

in lowest terms, where r and s are integers with s ) 0, such that

lo - r /s l  <  t /2s2 ,

then r/s is a convergent of the simple continued fraction expansion of a.

proof. Assume that r/s is not a convergent of the simple continued fraction

expansion of a. Then, there are successive convergents pxlqx and ppallqp*t

such that Qn 4 s I  Qrr+t  From Theorem 10.17, we see that

lqoo-pol  < I t  " . - r l :  
s lq-r /s l  < t /zs '

Dividing by qr we obtain

lo-polqol  < 1 l2sq*.

Since we know that \tpo-rqol > t (we know that sP*-rQr is a nonzero

integer since r ls #pplqr), it follows that

Final ly,
sufficiently
convergent
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(where we have used
above). Hence, we see

Consequently,

|  -  lspt-rq*l- x

sQ* , sQ*

: lor 
'- 

t l
l qo  s l
l l

I  q r l

. l * l
2tq* 2s2

the triangle inequality
that

t/2sqp I t/2s2

Decimal Fractions and Continued Fractions

to obtain the second inequality

F :l

Zsqp ) 2s2,

which implies that q1, ) s, contradicting the assumption. tr

10.3 Problems

L Find the simple continued fractions of the following real numbers

a) ,rf2

b) ^f3

c) -,/i

d) r+.6 .

2' Find the first five partial quotients of the simple continued fractions of the
following real numbers

a) 1/,
b) 2r

Find the best rational approximation to zr with a denominator less than 10000.

The infinite simple continued fraction expansion of the number e is

e  :  l 2 ; 1 , 2 , 1 , 1 , 4 ,  l ,  1 , 6 ,  1 ,  1 , g , . . . 1 .

the first eight convergents of the continued fraction of e

c)  (e - l ) / (e+ l )
d) (e2-t)  / (e2+D.

a)



5 .

6 .
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b) Find the best rational approximation to e having a denominator less than

100.

Let d be an irrational number with simple continued fraction expansion

o : loo;ot,a2,...f Show that the simple continued fraction of -ot is

[ - a s - l ; 1 , a , - l , a s , a 3 , . . . l i f  a 1 2  I  a n d  [ - a s - l ; a 2 l l d v " ' l i f  a t :  1 '

Show that if p*lqx and, p1,a/q1a1 2f€ consecutive convergents of the simple

continued fraction of an irrational number a, then

lo-  pr /qr l  < t lzqo'

lo -  po*r /qo*,1 (  l /2qla.

(Hint :  First  show that lo -  pr*r /q**,1 + lo-  polqol  -  lpo*r /q&+r -  pr , /qt l :

l /q*q**t using Corol larY 10.2.)

7. Let a be an irrational number , a ) I

simple continued fraction of l/a is the

the simple continued fraction of a .

Let a be an igational number, and let pllei denote the jth convergent of the

simple continued fraction expansion of a. Show that at least one of any three

consecutive convergents satisfies the inequality

la- pileil < t/G/-sqil.

Conclude that there are infinitely many rational numbers plq, where p and q

are integers with q # O, such that

l ' ' -  p l q l< r lG6q \ .

Show that i f  a - ( l  +lf9/2, then there are only a f ini te number of rat ional

numbers plq , where p and q are integers, q # 0, such that

l o - p l q l < t / ( , / - s q 2 ) .

(Hint: Consider the convergents of the simple continued fraction expansion

or..6.)

10. If a and B are two real numbers, we say that p is equivalent to a if there are

integers a,b,c, and d ,such that ad - bc : i l  and 0 : #

a) Show that a real number a is equivalent to itself.

b) Show that if a and p are real numbers with p equivalent to a , then a is

equivalent to B Hence, we can say that two numbers a and B are

equivalent.

. Show that the kth convergent of the

reciprocal of the (k-t)th convergent of

8 .

9 .
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c) Show that if a,S, and l, are real numbers such that a and B are equivalent
and B and l, are equivalent, then a and l, are equivalent.

d) Show that any two rational numbers are equivalent.

e) Show that two irrational numbers a and p are equivalent if and only if the
tails of their simple continued fractions agree, i.e.
a  :  Iag;a1,a2, . . . ,a i ,c1,c2,c3, . . .1  and g :  [bo:b1,b2, . . . ,b1r ,c1,c2,ca, . . .1 .  where
ai,t :0,1,2,.. . j ,  b1,i :0,1,2,.. . ,k and c;,  j  :  1,2,3,.. .  are intejers, al l  posit ive
except perhaps as and bs .

I I ' Let a be an irrational number, and let the simple continued fraction expansion of
a be a : Ias;aba2,.-.1. Let p*/q* denote, as usual, the &th convergent of this
continued fraction. We define the pseudoconvergnts of this continued fraction to
be

P*t/q*.,  :  ( tP*-r + pr-)/QQ*t * Q*-z),

where k is a positive integer, k > 2, and t is an integer with 0 < r I at, .

a) Show that each pseudoconvergent is in lowest terms

b) Show that the sequence of rational numbers pt ,z/q*,2,..., pk,o,-,/Qk,a,_,, p*/e*
is increasing if k is even, and decreasing if ft is odd

c) Show that if r and r are integers with s ) 0 such that

l o - r l s l  (  l "  - p * . , / q * . , |

w h e r e  k  i s  a  p o s i t i v e  i n t e g e r  a n d  0 < r  1 a k ,  t h e n  s l q t  , ,  o r
rfs : p*_t/q*_r.

d) Find the pseudoconvergents of the simple continued fraction of zr for
k  - 2 .

10.3 Computer Projects

Write programs to do the following:

l. Find the simple continued fraction of a real number.

2. the best rational approximations to an irrational number.

10.4 Periodic Continued Fractions

We call the infinite simple continued fraction [as;at,az,... l periodic if there
are positive integers N and k such that an : ara1, for all positive integers n
with n > N. We use the notation
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lag;at ,o2, . . . ,oN-r ,m

to express the periodic infinite simple continued fraction

I  a  o :a  l , a  2 , . . . ,Q  N  -  l , a  N  rQ  N  +  1 ,  " ' , a  N  +  k  -1 '41y '41y  1  1 '  " '  l '
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For instance, tt;Z,lAl denotes the infinite simple continued fraction

I  I  ;2 ,3 ,4 ,3 ,4 ,3 ,4 , . . .1 .

In Section 10.1, we showed that the base b expansion of a number is

periodic if and only if the number is rational. To characterize those irrational

numbers with periodic infinite simple continued fractions, we need the

following definition.

Definition. The real number a is said to be a quadratic irrational if a is

irrational and if a is a root of a quadratic polynomial with integer coefficients,

i .e.

A a 2 + B a * C : 0 ,

where A,B, and C are integers.

Example. Let a :2 * ,/7. Then a is irrational, for if a were rational, then

by Theorem 10.1,  a -2- . , ,6would be rat ional ,  contradict ing Theorem 10.2.

Next, note that

a2 - 4a t | : (7+4,fi - 4Q+,/t * I : o.

Hence a is a quadratic irrational.

We will show that the infinite simple continued fraction of an irrational

number is periodic if and only if this number is a quadratic irrational. Before

we do this, we first develop some useful results about quadratic irrationals.

Lemma 10.f . The real number a is a quadratic irrational if and only if there

are integers a,b, and c with , > 0 and c 10, such t"hat b is not a perfect

square and

:  :  (a+Jt)  lc.

Proof. If a is a quadratic irrational, then a is irrational, and there are

integers A,B, and C such that Aaz + Ba t  C :0.  From the quadrat ic

formula. we know that
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-B*GQAC
( I : -

2A

Since a is a real number, we have 82 - 4AC ) 0, and since a is irrational,
82 - 4AC is -not a perfect square and A r^0. By either taking
e :  - B , b :  8 2  -  4 A C ,  c  : 2 4  o ,  o :  b ,  b  :  g 2  _  4 ; t ,  

- r ^ :  
_ Z U ,  w O

have our desired representation of a.

Conversely, if

where a,b, andc are inte*.r-, ;; 

'r" 

,ti"i:O, and 6 not a perrect square,
then by Theorems 10.1 and 10.2, we can easily see that a is irrational.
Further, we note that

c o 2 - 2 a c a + ( a 2 - b 2 ) : 0 .

so that c is a quadratic irrational. tr

The following lemma will be used when we show that periodic simple
continued fractions represent quadratic irrationals.

Lemma 10.2. If a is a quadratic irrational and if r,s ,t, and u are integers,
then (ra*s)/(to*u) is either rational or a quadratic irrational.

Proof. From Lemma 10.1, there are integers a,b, and, c with b > 0. c # 0.
and b not a perfect square such that

a :  (a+Jb) /c .

fur*cl)+rJb
(at rcu) +t Jt
I Gr + cil + r JF lI ht + cil -t.'.6 |
IGt *cu) +t .,/b lt(at +cu) -t ./n I
lGr *cs\ (at *cu) -rtblt[r (at tcD -t Gr *cl)l../T

(at *cu)2-t2b
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Hence, f rom Lemma l0. l  ( ra*s)/Qa+d is a quadrat ic i r rat ional '  unless the

;;;d;i";, 
"t 

G is zero, which would imply that this number is rational' tr

In our subsequent discussions of simple continued fractions of quadratic

irrationals we *ii l  use the notion of the conjugate of a quadratic irrational'

Definition. Let a -- (a+JD lc be a quadratic irrational' Then the coniugate

of a,  denoted by o ' ,  is  def ined by a '  :  (a-Jb) lc '

Lemma 10.3. If the quadratic irrational d. is a root of the polynomial

Axz + Bx * C : 0, then the other root of this polynomial is a', the conjugate

of a.

Proof. From the quadratic formula, we see that the two roots of

A x z + B x * C : 0 a r e

_B*[EW
ZA

If a is one of these roots, then a' is the other root, because the sign of

tr4AC is reversed to obtain a' from a. tr

The following lemma tells us how to find the conjugates of arithmetic

expressions involving quadratic irrationals'

Lemma 10.4.  I f  a '  :  (af tbf fd) /c1 and , ,2:  (a2*bzJd)f  cz are quadrat ic

irrationals, then

(i) (a1+a2)' -- al t a'2

( i i )  (a;c.2) '  :  o| -  d'2

( i i i )  (ap) '  :  d ' td2

( iv )  (c" r lc . ) ' :  a ' t /o .z .

The proof of ( iv) wi l l  be given here; the proofs of the other parts are easier.

These appear at the end of this section as problems for the reader'

Proof of (iv). Note that
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t G ftbr.'./Z) /r,
v l l q )" . '  Gr+bz , / c l ) / cz

_ c r(a ,+b r/7) G 2-.b z,/T)_

: lb2)''/7
, ,

,  t  ,  G;brE)/cz
. ^ l r s l - - - 7- " -- " (or-brrE) /cz

cz(arbtQ)Gr+br , /V)

c {a 2- b 2,/7 ) (a z+ b 2,/7 )

_ kzapz-czbftzd) -  (czazbrczaft) f i

Hence (at/a)' : or'r/a'2. D

The fundamental result about periodic simple continued fractions is
Lagrange's Theorem. (Note that this theorem is different than Lagrange,s
theorem on polynomial congrunces discussed in Chapter 8. In this chapter we
do not refer to that result.)

Lagrange's Theorem. The infinite simple continued fraction of an irrational
number is periodic if and only if this number is a quadratic irrational.

We first prove that a periodic continued fraction represents a quadratic
irrational. The converse, that the simple continued fraition of a quadratic
irrational is periodic, will be proved after a special algorithm for obtaining the
continued fraction of a quadratic irrational is developed.

Proof. Let the simple continued fraction of a be periodic, so that

a : la g;a t,,e 2,..,,a N -r,ff i |

Now let

Then

0 : la1s;aN+r,...,41r+ft l
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and from

( 1 0 . 1 3 )

where p*lq* and p1r-r/Q1r-1 ata convergents of Ia11;av"1'"' 'oru+kl' Since the

simple continued f.u.tlon of p is infinite, B is irrational, and from (tO't3) we

have

qr,02 t Qr,-r-P)0 - P*-r : a'

so that p is a quadratic irrational. Now note that

a :  lag;a 1,Q2,. . . ,Q N-r,01,

so that from Theorem 10'9 we have

0pr,r-ftPN-z'a;;:fr; '
where pN-t/qN-1 and pr,t-zlqN-2ute convergents of [ao;a t.a2'"' 'o7'1-11' Since B

is a q*Oruii. irrational, Lemma 10.2 tells us that a is also a quadratic

irrational (we know that at is irrational because it has an infinite simple

continued fraction exPansion). D

To develop an algorithm for finding the simple continued fraction of a

quadratic irrational, we need the following lemma'

Lemma 10.5. If a is a quadratic irrational, then d. can be written as

: @+,/V)/Q,

w h e r e  P , Q , a n d d  a r e  i n t e g e f s , Q  * O , d  >  O , d  i s  n o t a  p e r f e c t  s q u a r e ,  a n d

Q I Q - P 2 )  .

Proof. Since a is a quadratic irrational, Lemma 10.1 tells us that

,  :  (a+Jb) lc,

where a,b, and c are integers, b > 0 , and c # 0 . We multiply both the

numerator and denominator of this expression for q by Itl to obtain

g  :  la l ;aN* I , . . . ,4N * * ,01 ,

Theorem 10.9, it follows that

^ 1P*tP*-t
t )  -  

oq* tq* - r '
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a . -

(where we have used the fact that lr l :  - , tr \ .  Now let p :  alcl ,  e: clcl ,a n d  d : b c 2 .  T h e n  p , e ,  a n d  d  a r e  i n t e g e r s ,  e  l 0  s i n c e  , 7 0 , d  > O(since 6 > 0), d is not iperfect lQuare since b is not a perfect square, andf ina l l y  e l@-p \  s ince  d -p2 :6 rz 'o i r z  : ; rb jo i f : ;T ' ( i l o r l .  n
We now present an algorithm for finding the sample continued fractions ofquadratic irrationals.

Theorem 10.19. Let a be a quadratic irrational, so
are integers Ps,Qs, and d such that

@o+,/7) /Qo ,

that  by Lemma 10.5 there

where Q0*0,d > 0, d is not a perfect square, and eel @-p&). Recursively
define

d k : ( r o + , / 7 ) / Q r ,
Ctk :  [a1] ,
P k + r : a t Q t - P k ,

Q**r : (d-roL*t)/Q*,

fo r  k  :  0 ,1 ,2 , . . .  Then a  :  fag ;a t ,a2 , . . .1 .

Proof. using mathematical induction, we will show that pk and e* are
in tegers  w i th  Q1,  *  0  and e* l@-rp ,  fo r  k :0 , r ,2 , . . . .  F i rs t ,  no te  tha t  th is
assertion is true for k : 0 from the hypotheses of the theorem. Now assume
that P1 and Qp are integers with e* * 0 and e*l@_p?i. Then

P k + r :  a * Q t  -  P p

is also an integer. Further,

Q*+r : @ -rf *r1 1qo
: [d-(o*Q,,-pr)2]/e*
: @-rfi/Qo + (2a1,P1,-a?er).

Since Qrl@-pil, by the induction hyporhesis, we see
and since d is not a perfect square, we see
Q*+t : @-rf*;/Qo t o . Since

that Qpal is an integer,
that d I Pi, so that

Q* : U-rf*1/Qo*t
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we can conclude that Q1,ql@-pt*t) . This finishes the inductive argument.

To demonstrate that the integers es,a1,a2,... are the partial quotients of the

simple continued fraction of a', we use Theorem 10.15. If we can show that

o(k+ t  :  l l b r -ap) ,

then we know that a :  fas;a1,a2,. . .1.  Note that

Pk + ,/7
a p - a k :  

A f  

- a p

: l^/7 - G*Qr, - P)llQ*

: G/7 - pt +) lQ*

: G/V - P**')(JV + P*+)/er,G/T + P**r)

: @-rl*)/Q*QI + Pr*r)

: Q*Qr,n/Qr,G/7 + Pt*,)

: Q**r/('/i + Pr,*)

:  l la*+r  ,

where we have used the defining relation for Qp* to replace d-Ppzar with
QtQ**r. Hence, we can conclude that a :  las;a1,e2,.. . f  .  D

We illustrate the use of the algorithm given in Theorem 10.19 with the
following example.

Example. Let a : Q+J1)/2 . Using Lemma 10.5, we write

: G+.,/N) /4

f o r k :

where we set Po :  6,  Q.o:  4

P r  :  2 ' 4 - 6 : 2 ,

Qr  :  (28-22) /4 :6 ,

P 2  :  l ' 6 - 2 : 4 ,

Qz :  Og -+2 ) /o :2 ,

,  and d :  28.  Hence oo: [a]  :  2,  and

a 1

O 1

ot2

A 2

Q + ..E)/e,
IQ+,/z$/61 : r,

G+,,/Tg/2,
t
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P3 -  4 '2 - ! :4 ,  d3  :  e+ . ,m) /6 ,
Qt  :  Qg-+2) /2 :6  o3  :  tG+6>J i l : r ,

P4 :  l '6-4:2,  d4 :  e+rFZ$/q,
Qq -  (28-22) /6:4,  a4 :  t7+. ' -z$/ i l :  t ,

Ps - l '4-2:2, a5 : e+r/-Z$/6,
Qs  -  Q8-22) /4 :6 ,  a5  :  t ( z+ , , /N) /61  :  l ,

and so, with repeti t ion, since pr: p5 and er: es. Hence, we see that

G+.n)  /2  :  I2 ;1,4,1,1, r ,4 , r ,  1 , . . .  I
:  I 2 ; 1 , 4 , 1 , 1 1 .

We now finish the proof of Lagrange's Theorem by showing that the simple
continued fraction expansion of a quadratic irrational is periodic.

Proof (continued). Let a be a quadratic irrational, so that by Lemma 10.5
we can write a as

o : (po + .,8) /eo .

Furthermore, by Theorem 10.19 we have o: lao;ar,ez,.. . l  where

dk : (r1, + ,,/7)/Q* ,
ap : [ap l ,

P w r  :  a t Q * - P k * t ,
Q*r :  Q -rf  *1 /Qo*r,

f o r k :

Since a

Taking
see that

( ro.r+)

: I a s;a' " " )'lrl,o; ]:ffi _ll;l Ijl "_
conjugates of both sides of this equation,

o' : (pr,-p'* * p*-) /(qt,-p'n

(tO.t4) for ol1, , ws find that

that

*  q* - ) .

and using Lemma 10.4,

*  q* - ) .

When we solve



( P*-z I
,  -ex- , l "  

-  
t r -  |dk :  qk^  t  ,  p * t  t
,*t l

Note that the convergen ts p*-z/Q1r-2 and p*-rlqrr-t tend to a as k tends to

infinity, so that

t fr '  - 
P*-t

I  Q* - t
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|  ,  P*-z
la. -

I  Q*-z

tends
o ' t > -

to 1. Hence, there is an integer N such that

0 for k > l, we have

383

a'*  10 for  k  > N.  Since

Zf i  r0 .
Qr

ly',

<d.

otk-Otk :
Pp + Jd Po-Jd

Q* Q*

s o t h a t Q * >  0 f o r k > N .

Since Q*Qrr*, - d - P?*r, we see that for k 2

0t  (  Q*Q**r- -  d  -  P?*t

A l s o f o r k > N , w e h a v e

P l * ,  ( d :  P l * t - Q * Q x * r ,

so that
- ,/7 I P*+r < -,/7.

From the inequalities 0 ( 0r ( d and - -,[d < P*+r <-r/7, that hold for

k > N , we see that there are only a finite number of possible values for the

pair of integers Px,Qx for k > N . Since there are infinitely many integers k

w i t h  k  >  N , t h e r e a r e t w o i n t e g e r s i  a n d T  s u c h t h a t P i : P i  a n d Q i : Q i

with i < j . Hence, from the defining relation for cu;. , we see that o(i : di

conseque 
"t'*:;:;,";:"',i: ,-,,i:"',oi,*,'lo,ol,.;:,,':,.:,: i:i-,, , 

Hence

:  I a  g ;a  l , o  2 , . . . , a i - 1 ,Q i , o  i  +1 , . . . , a  i  - t l  .

This shows that a has a periodic simple continued fraction. D



384 Decimal Fractions and Continued Fractions

Next, we investigate those periodic simple continued fractions that arepurely periodic, i.e. those without a pre_period.

Definit ion. The continued fraction [as;at,ez,...f is called purely periodic ifthere  is  an  in teger  n  such tha t  a1r :  en tk ,  fo r  k  :0 ,1  ,2 , . . . , so  tha t

l ag ;a t ,az , . . . l : I f f i .

Example' The continued fraction tl; j l : (t+.1:) /2 is purely periodic while
[2;2,41 : JA is not.

The next definit ion and theorem describe those quadratic irrationals withpurely periodic simple continued fractions.

Definition. A quadratic irrational at if called reduced if a ) I and- l  (  a '  (  0,  where a ' is  the conjugate of  a .

Theorem 10.20. The simple continued fraction of the quadratic irrational a is
purely periodic iI-and only if a is reduced. Further, if a is reduced and
a: l,as;at,e2,...,enl then the continued fraction of - l/oi i, to;o,,_ffi

Proof. First, assume that a is a reduced quadratic irrational. Recall from
Theorem 10.15 that the partial fractions of the simple continued fraction of a
are given by

f o r k : where

ek :  lap l ,  o tk+t  :  l /@tr -o*) ,

ato: d We see that

l / q t + t : e k - a k ,

using Lemma 10.4, we see that

l / a ' *+ t :  c , ' k  -  a1 r .

we can prove, by mathematical induction, that - I ( a1 ( 0 for
k :0 ,1 ,2 , . . . .  F i rs t ,  no te  tha t  s ince  c .0 :  a  i s  reduced,  - l  l  ao  <  0 .  Now
assume that -r  1 a '1,  < 0 .  Then, s ince a* 21 for k :0,1,2,- . . .  (note that
ao2 I  s ince  a  >  1) ,  we see f rom ( tO. t5 )  tha t

l /o t t  + r  <  -1 ,

so that -l 1 a'k+t < 0 . Hence, -l < a) 10 for /c :

and taking conjugates,

(ro. r s)
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Next. note that from ( to . t5 )  we have

d ' k : a * * l l a ' * + t

1 a'* < 0 , it follows that

- l  1 a * * l f a ' 1 r a 1

t

<0 .
and since -l

Consequently,

so that

Since
there
with
o i - l

we
di-z

( 1  0 . 1  6 )

- l  -  l / a ' *+ t 1 ax 1 -lf a'rr+r ,,

e k :  [  -  1 / o r * r ]  .

a is a quadratic irrational, the proof of Lagrange's Theorem shows that

u.. nonn.gative integers i and i '  i ,< 7, such that ai 7-oi, and hence

- 1 /u ' ; :  - l / a j .  S ince  a i - t : l - t / a i i l  anO o i - t  : I - t /a , |  ,  we see tha tj t  ,j - l

:  ej- ' . .  Furthermore, since ot i- t :  ai-t  I  l lai  and , dj-:  :  oj-t  + l lai

a l s o s e e t h a t a i - 1 : o  i - r C o n t i n u i n g t h i s a r g u m e n t ' w € s e e t h a t
: o(j-z)ai-3: aj-30.. ' ,  and f inal ly, that ag : aj- i  '  Since

d0 :  a  :  Iag;a1, . . . ,o i - i - t ,a i - i l

:  la o;a 1,.. . ,e i  - i  -1,041

: loo.gr,Gl,

we see that the simple continued fraction of a is purely periodic.

To prove the converse, assume that a is a quadratic irrational with a purely

p e r i o d i c c o n t i n u e d f r a c t i o n o : | f f i o | . S i n c e a : | a g ; a 1 , Q 2 , , . . . , a 2 , o t | ,
Theorem 10.9 tells that

aP* * P*-ta:f f i ,

where pr,_tlq*_r and p1rlq1, 3;fe the (k-l)th and kth convergents of the

continued fraction expansion of a . From (tO.t6), we see that

(10.17) er,a2 * (q*-rP)o -  Pt-r  :  0.

Now, let p be the quadratic irrational such

with the period of the simple continued

0 :  lo* iek-r , . . . ,at ,ao,Al ,  so that  by Theorem

t h a t  g  : l a t i a t c - l , . . . , a t , a o l  ,  i . e .

fraction for a reversed. Then

10.9, it follows that
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D opi + pi-,
P - - . _ -

Fqr * q*-r

where pi-t/qL and pr,/q* are the (ft-l)th and kth convergents of thecontinued fraction expansion of B . Note, however, from probremi of section10.2.  that

Pt /p1r-1 : lanian-1,...,et,eol : pi/qi

and

Qt /q2-1 : farion-r,...,a2,e l! : pL /qi_t.

Since pi-t /qi-, ?d pi/qi are convergents, we know that they are in lowest
terms' Also, P*/pp-, and qp/q1-1 i lre in lowest terms, since Theorem 10.10
tells us that ppqp-r - p*-rQk : (-t)e-t . Hence,

pi - p*, Qt : pk-r

and

Pk-t  -  4t<,  Qt<-t  :  ek-t .

Inserting these values into (l0.lg). we see that

p, : 0p* * qr

1p*-r * qrt

Therefore, we know that

P r $ 2 * ( q * t - p r ) | - Q * : o

( ro. rs)

This implies

(ro. r q)

From (to. tz)

that

er,Gt/i lz * (q*-r - pt) Gtlp) - pk_t :

and (10.19),  we see that the two roots of  the

4*x2 * (q*-r  -  p)x -  p*- t  :  0

quadratic equation

: -t/8. Since
s 7 ' : - l / p < 0 .

are a and -1/0, so that by the quadratic equation, we have a
0  :  lan ian- t , . . . ,a t ,ao l ,  we see tha t  p  >  I ,  so  tha t  - l  <
Hence, a is a reduced quadratic irrational.

Furthermore, note that since fi : -l/ot,. it follows that
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- l /o ' : f f io l '  t r

We now find the form of the periodic simple continued fraction of '/D ,

where D is a positive integer that is not a perfect square' Although \6 is not

reduced, since its conjug-ate -,/D is not between -l and 0, the quadratic

r.*,o*r"i6-t; .6-ii r.duced, since its conjugate, l,/Dl - '[5 ' does lie

between -1 and 0. Therefore, from Theorem 10.20, we know that the

continued fraction or [.lill +.,/D is purely periodic. Since the initialpartial

quotient of the simple continued fraction of tJD | + "/D 
is

i f  fa f  + , /Dl :21, /Dl :2a0,  where ao: I . . /Dl  '  we can wr i te

I , /DI+- , /D: tml -
:  I2a  o ;a  t ,Q 2 , . . . ,a  n ,2Q g ,a  l , . . . ,Q r l '

Subtracting ao : ,/6 from both sides of this equality, we find that

. /  D :  la g;a 3a 2, . . . ,2ag,,a 1,a 2, . . .2a 0, . . .1

: log;orro'zmol.

To obtain even more information about the partial quotients of the

continued fraction of ,/D, we note that from Theorem 10.20, the simple

continued fraction expansion of -l /$'IDl - 
"/D) can be obtained from that

for t.,6l + ..lD , by reversing the period, so that

r /G/D-t .D1) : t f f i .

But also note that

6 - t -6- l : lo ;orprGol ,

so that by taking reciprocals, we find that

| / G/ D - t.D-l) - to r;o rGrl -

Therefore, when we equate these two expressions for the
fraction of llG/D - t.D]) , we obtain

A l :  Q n r Q 2 :  C l n - y s . . . ; O n :  O l ,

so that the periodic part of the continued fraction for ..lD

the first to the penultimate term.

simple continued

is symmetric from

In conclusion, we see that the simple continued fraction of 16 has the form

.. ld:loo;ff i .
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We il lustrate this with some examples.

Example. Note that

8-
.16l
,Fqe -
,,/Te :

and

Decimal Fractions and Continued Fractions

[ 4 ; l  , 3 ,1  ,8 ]
ts,ffi i.rol
16 ; l  ,2 ,1  ,1 ,2 ,6 ,2 ,1  , l  , 2 ,1  , l 2 l
[ 8 ; 1 , 2 ,  l ,  I , 5 , 4 , 5 ,  1 , 1 , 2 , 1 ,  I  6 l

- , / r i :  tq;ml,
where each continued fraction has a pre-period of rength l and a period
ending with twice the first partial quotient which is symmetric from the first to
the next to the last term.

The simple continued fraction expansions of ,E fo, positive integers d such
that d is not a perfect square and d < 100 can be found in Table 5 of the
Appendix.

10.4 Problems

l. Find the simple continued fractions of

a) Jt d) ,/41
b) Jr r e) 6
c) Jzt r) ,/-gq.

2.

3 .

Find the simple continued fractions of

il o+,fi /z
b) Qq+,81) lt

c) (t t- .E)t.

Find the quadratic irrational with simple continued fraction expansion

i l  [z; t ,5]
b)  tz ; rSI
c) t2J JI.

4 .  i l  L e t d  b e a p o s i t i v e
,,/N isla:Tdl.

Show that the simple continued fraction of
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b) Uggrrt (a) to find the simple continued fractions oi tffit't'fZgg' and

J22r0.

5. Let d be a integer, d 2 2'

a) Show that the simple continued fraction of ,/F is [d-l ;@l'

b) show that the simple continued fraction of JFd is [d- t;zla-zl.

c) Ugparts (a) and (b) to find the simple continued fractions of rfg9' tffg'

,lnz. and ..G60'

Shory lhat if d ,l un int"g.t, d > 3 , then the simple continued fraction of

, tm is  [d-1 ' lH, l2d-21.

Show that if d is a positive integer, then the simple continued fraction of

'/fu. rsld;c$71.

Find the simple continued fraction expansions of ,/6,.6f , anO -l,ft-gt

be an odd positive integer'

a)6.

b)

c)

7. Let d

a) fraction of JF+ is

8 .

9 .

Show that the simple continued

l d ; f f i l , i r d> l '

b) Show that thr __qgple continued fraction of J d2-q

l a - lM ,zd -z i , \ f  d>3 .

Show that the simple continued fraction of Ji , where d is a positive integer,

has period length one if and only if d : a2+l *here a is a nonnegative integer.

Show that the simple continued fraction of Jd , where d is a positive integer,

has period length two if and only if d : a2 + b where a and b are integers,

b  >  l ,  a n d  b l \ a  .

prove that  i f  6 ,1 :  (ar+brJr l ) lc t  and a2--  (a2*urJd) /c ,  ^ re  quadrat ic

irrationals, then

a)  (a1*42) '  :  c , ' t  *  o ' '2

b) (a1-a2)'  :  d'r  -  d2

c) (c' 'c.z) '  :  ot ' t 'or2 .

Which of the following quadratic irrationals have purely periodic continued

fractions

10.

1 1 .

a )  l + . 6
b) 2 + ,/-B
c )  4+ ' ,m

c) (tt - ,/-toltg
d) e + ,f?l)/z
e) (tz + -'.ft-g)l: t

12. Suppose that a :  G+JF)/c, where 4,b, and c are integers, b ) 0, and b is

noi u perfecl square. Show that is a reduced quatratic irrational if and only if

o l a  < J U  a n d J b - a  1 c  1 ' J b  * a  1 2 J b
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13. Show that i f  
1 

ir-u reduced quadratic jrrat ional, then _ l /a, is also a reducedquadratic irrational.

14' Let k be a positive integer. Show that there are infinitely mgy positive integersD, such that the simple continued fraction expansion of ,/6 h., , period ofl eng th  k .  (H in t :  Le t  a t : 2 ,  e2 :5 ,  and  f o r  k  >  3  l e t  a1 , : 2ak_ t  I  a *_zShow that i f  p :  ( tar + l)2 * 2a1,-1 * r,  where / is a nonnegative integer,
then rD has a period of length k + l.)

15' Let k be a 
lgsit iu: 

iF:r.  Let Dk - (3k+t)2 + 3 Show that the simple
continued fraction of JOp has a period of length 6ft.

10.4 Computer Projects

Write computer programs to do the following:

1' Find the quadratic irrational that is the value of a periodic simple continued
fraction.

2' Find the periodic simple continued fraction expansion of a quadratic irrational.



11
some Nonlinear Diophantine
Equations

11.1 Pythagorean TriPles

The Pythagorean theorem tells us that the sum of the squares of the lengths

of the legs of a right triangle equals the square of the length of the

hypothenrur.. Conversely, any triangle for which the sum of the squares of

the lengths of the two shortest sides equals the square of the third side is a

right triangle. Consequently, to find all r ight triangles with integral side

lengths, we need to find all triples of positive integ ers x ,y ,z satisfying the

diophantine equation

( r r . t ) x 2 + ! 2 : 2 2

Triples of positive integers satisfying this equation are called

Pythagorean triPles.

Example. The triples 3,4,5; 6,8,10; and 5,12,,13 are Pythagorean triples

because 32 + 42 :  5 ' .62 + 82: 102, and 52 + 122 :  132.

Unlike most nonlinear diophantine equations, it is possible to explicit ly

describe all the integral solutions of (l l . l). Before developing the result

describing all Pythagorean triples, we need a definit ion.

Definit ion. A Pythagorean triple x,!,2 is called primitive if (x,y,z) : l.

Example. The Pythagorean triptes 3,4,5 and 5,I2,I3 are primitive' whereas

3 9 1
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the Pythagorean triple 6,g,10 is not.

Let x,!,2 be a pythagorean triple with (x,y,z) : d . Then, there areintegers xr ,  t ,zr  wi th x :  dxi ,y :  dyt , ,  J i r ,  
""A 

" i - r ' r , , r1,21):  
l .Furthermore, because

we have

x 2 + y 2 : 2 2 ,

G / d ) 2 + ( y / i l 2 : ( z / d ) 2 ,

so that

x?+y? : r? .

Hence, xt,!t,21 is a primitive pythagorean triple, and the original triple x,!,2
is simply an integral multiple of this primitive pytgagorean triple.

Also, note that any integral multiple of a primitive (or for that matter any)
Pythagorean triple is again a pythagorean triple. If x1 ])t,zt is a primitive
Pythagorean triple, then we have

x?  +  y?  :  r? , ,

and hence.

@ x ) 2 + ( d y r ) r : ( d z ) 2 ,

so that dx 1,dy 1,dz 1 is a Pythagorean triple.

Consequently, all Pythagorean triples can be found by forming integral
multiples of primitive Pythagorean triples. To find all primitive pythago*un
triples, we need some lemmata. The first lemma tells us that any two integers
of a primitive Pythagorean triple are relatively prime.

Lemma 11.1 .  I f  x , ! , z  i s  a
G,y)  :  (x  ,z )  :  (y ,z )  :  l .

primitive Pythagorean triple, then

Proof. suppose x ,! ,z is a primitive pythagorean triple and (x ,y) > l. Then,
there is a pr imep such tha,t  p^l  (xy),  sothat p I  x and p I  y.  Since p I  x
andp l . -y ,  * .  know tha t  p  |  ( r '+  y ' )  :22 .  Because p  l ; r , ' * . .un  conc lude
that p I z (using problem 32 of Section 3.2). This is a contradiction since
(x ,y ,z) : l. Therefore , (x g) : l. In a similar manner we can easilv show
that (x ,z)  :  (y ,z)  :  l .  D
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Next, we establish a lemma about the parity of the integers of a primitive

Pythagorean triPle.

Lemma 11.2. If x,y,z is a primitive Pythagorean triple, then x is even and y

is odd or x is odd and Y is even'

Proof. Let x ,!,z be a Primitive
that (x ,y\ : 1, so that x and

both be odd. If x and Y were

we would have
)x -

Pythagorean triple. By Lemma 1 l '1, we know

y cannot both be even. Also x and y cannot

both odd, then (from problem 2 of Section 2'1)

= vz = I  (mod 4),

so that

2 2 : x 2 * y 2

This is impossible (again from problem

and y is odd, or vice versa. E

The final lemma that we need is a consequence of the fundamental theorem

of arithmetic. It tells us that two relatively prime integers that multiply

together to give a square must both be squares'

Lemma 11.3. If r,s, and t are positive integers such that (r,s) : I and

; : t2, then there are integers z and n such that r : m2 and s : n2.

Proof. If r :1 or s : l, then the lemma is obviously true, so we may

,upptr. that r ) I and s ) 1. Let the prime-power factorizations of r,,s, and

l b e

, :p1 ,p i2 . . .  p : " ,
s : p:,i\ p:,it p:"

and

t : ql' ql' quo'.

Since (r,s ) : l, the primes occurring in the factorizations of r and s are

distinct. Since rs : t2, we have

pi'pi' pi"pi,+ipi,n pl,' : q?"q'ru' qiur'

From the fundamental theorem of arithmetic, the prime-powers occurring on

= 2(mod 4).

2 of Section 2.1). Therefore, x is even
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the two sides of the above equation are the same. Hence, each pi must beequal to Qi for some j with matching exponents, so that a; : 2bi.consequently, every exponent a; is even, and therefore ai/2 is an integer. wesee that r - m2 and , : 12, where m and n arethe integers

and

We can now prove the desired result that describes all primitive
Pythagorean triples.

Theorem ll. l . The positive integers x,l,z form a primitive pythagorean
triple, with y even, if and only if there are relatively prime positive integers 172
and n, |/t ) n, with m odd and n even or m even and, n odd, such that

x  :  m2-n2

' r7- '#ir '

Prot{. Let x ,y ,z be a primitive Pythagorean triple. Lemma I 1.2 tells us that
x is odd and y is even, or vice versa. Since we have assumed that y is even,
x and z are both odd. Hence, z*x and z-x are both even, so that there are
posi t ive integers r  ands with r  :  (z+i /2and s :  (z- i l /2.

S i n c e  x 2 + y 2 : 2 2 ,  w e  h a v e  y 2 :  z 2 - x 2 :  ( z * x ) G - x ) .  H e n c e .

a./2 a-/z
m  :  p t '  P 2 '

n : pi,r('pi,C'

a / 2
Pu"

a / 2
Pr "  !

I r ) '  lz+x]  f  , - "1
lr): I , .l t ' J:"

w e  n o t e  t h a t  ( r , s ) : 1 .  T o  s e e  t h i s ,  l e t  ( r , s ) :  d .  S i n c e  d  l ,  a n d  d  l s ,
d l G + s ) -  z  a n d , d l ( r - s ) : x .  T h i s  m e a n s  t h a t d l ( * , r ) : 1 ,  s o t h a t
d  : 1 .

Using Lemma I 1.3, we see that there are integers la and n such that
r  :  m2 and, s :  n2.  Wri t ing x,y,andz in termsof m and n we have

x : r - . s : m 2 - n 2 .
y : rM : r f f i : 2mn .
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z : r * s : m 2 + n 2 .

we see also that (m ,n) : 1, since any common divisor of m and n must also

Oi" iO" 
-x 

:  m2-n2' ,  y :2mn, and z :  * '+r ' ,  and we know that (x,y,z)  :  l '

We also note that rn and n cannot both be odd, for if they were' then x y '

and z would all be even, contradicting the condition (x,y ,z) : l '  Since

(m,n) : I and m and n cannot both be odd, we see m is even and n is odd,

or vice versa. This shows that every primitive Pythagorean triple has the

appropriate form.

To see that everY triPle

x  :  m2-n2
y : 2 m n
: 2 m 2 * n 2 ,

where m and n are positive integers, m ) n, (m,n) : 1, and

m * n (mod 2), forms a primitive Pythagorean triple, first note that

x2  +  y2  :  (m2-n2)2  +  (2mn)2
: (ma-2m2n2+n4) *  4m2n2
:  ^ 4  *  2 m 2 n 2  t  n a
: (m2+n2)2
:  22 .

To see that these values of x,y, and z are mutually relatively .prime, assume

that  (x ,y ,z ) :  d  )  ! .  Then,  there  is  a  p r imep-such tha t  p  l ^ (x ,y ,z )^ .  We

note that p * 2, since x is odd (because x: m2-n2 where mz and n2 have

ofpor i t "  par i ty) .  Also,  note that  because p I ,x and p l  t ,  p I  G+i:2m2

an 'd  p  l i t - ; :2n2 .  Hence p  I  m and p  In ,  con t rad ic t ing  the  fac t  tha t

(* , i )  :1.  Therefore,  ( r ,y,z)  :  l ,  and xoy,z is a pr imit ive Pythagorean

triple. This concludes the proof. D

The following example i l lustrates the use of Theorem I I . l  to produce

Pythagorean triPles.

E x a m p l e .  L e t  m : 5  a n d  n : 2 ,  s o  t h a t  ( m , n ) :  I ,  f f i  *  n  ( m o d  2 ) ,  a n d

m ) n. Hence, Theorem 1 I .1 tells us that

x : m 2 - n 2 : 5 2 - 2 2 : 2 1

Y : 2 m n : 2 ' 5 ' 2 : 2 0
z : m 2 + n 2 : 5 2 + 2 2 : 2 9

is a primitive Pythagorean triple.
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We list the primitive pythagorean
rn :< 6 in Table I  l . l .
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triples generated using Theorem I l. l  with

Table 11.1. Some Primit ive pythagorean Triples.

m n x  :  m2 -n2 y : 2 m n t  :  m2+n2

2
3
4
4
5
5
6
6

I
2
I
3
2
4
I
5

3
5
1 5
7
2 l
9
3 5
1 l

4
t 2
8

24
20
40
r2
60

5
l 3
l 7
25
29
4 l
37
6 t

I l.l Problems

l .  F ind a l l

2.

3 .

4 .

5 .

6 .

i l primitive Pythagorean triples x,l,z with z

b) Pythagorean triples x,!,2 with z < 40.

Show that if x,!,2 is a primitive pythagorean
divisible by 3.

Show that if x ,!,z is a Pythagorean triple, then
divisible by 5.

Show that if x,l,z is a Pythagorean triple, then
divisible by 4.

Show that every positive integer greater than
Pythagorean triple.

L e t  x l  -  3 ,  l t :  4 ,  z t :  5 ,  a n d  l e t
recursivelv bv

< 40.

tr iple, then either x or y is

exactly one of x,y , and, z is

at least one of x,y, and z is

three is part of at least one

for  n  :2 ,3 ,4 ,  . . . ,  be def ined
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x n t l -  3 x n * Z z n * l

! n + r - 3 x n * 2 z o * 2
z n + t - 4 x n * 3 z n * 2 '

Show that xnln,zn is a Pythagorean triple'

7 .  Showtha t  i f  x , ! , 2  i sa  Py thago rean  t r i p l e  w i t hy : x  +  l ,  t hen  x , l , Z  i soneo f

the Pythagorean triples given in problem 6'

g. Find all solutions in positive integers of the diophantine equation x2 I 2y2 : t2'

g. Find all solutions in positive integers of the diophantine equation x2 * 3y2: t2-

10. Find all solutions in positive integers of the diophantine equation

w 2 + x z r y ' : t ' .

Find all Pythagorean triples containing the integer 12.

Find formulae for the integers of all Pythagorean triples x,l,z with z - y*l

Find formulae for the integers of all Pythagorean triples x,l,z with z - y * 2'

Show that the number of Pythagorean triples x,-y,z (with x2 + y2 : z2) with a

fixed integer x is (rk2)-l)/2if x is odd, and (r!2l4-1)/2 if x is even.

Find all solutions in positive integers of the diophantine equation *' * py' : 22,

w h e r e p  i s a p r i m e .

I  l .

12.

1 3 .

1 4 .

1 5 .

11.1 Computer Projects

Write programs to do the following:

l .  Find al l  Pythagorean tr iples xJ,z with xy,and z less than a given bound.

2. Find all Pythagorean triples containing a given integer'

ll.2 Fermat's Last Theorem

In the previous section, we showed that the diophantine equation

x2 + y2 : z2 has infinitely many solutions in nonzero integers x, !, z . What

happens when we replace the exponent two in this equation with an integer

grrut.. than two? Next to the discussion of the equation xz + y2 : z2 in his

copy of the works of Diophantus, Fermat wrote in the margin:

"However, it is impossible to write a cube as the sum of two cubes, a fourth

power as the sum of two fourth powers and in general any power the sum of

two similar powers. For this I have discovered a truly wonderful proof, but

the margin is too small to contain it."
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Since Fermat made this statement many people have searched for a proof ofthis assertion without success. Even trrouitr no ,or...t proof has yet beendiscovered, the foilowing conjecture is knowi as Fermat,s rast theorem.

Fermat's Last Theorem. The diophantine equation

x ' + l n : z n

has no solutions in nonzero integers x, r, z when n is an integer with n D 3.

Currently' we know that Fermat's last theorem is true for all positive integers
n with 3 (  n <125000. In th is sect ion,  we wi l l  show that the special  case of
Fermat's last theorem with n: 4 is true. That is, we wil l ,ho* that the
diophantine equation

x a + ! 4 : 2 4

has no solutions in nonzero integers x, !, z. Note that if we could also show
that the diophantine equations

x P  +  Y P  : 7 P

has no solutions in nonzero integers x,!,2 whenever p is an odd prime, then
we would know that Fermat's last theorem is true (see probl em 2 at the end of
this section).

The proof we will give of the special case of n - 4 uses the
method of infnite descent devised by Fermat. This method is an offshoot of
the well-ordering property, and shows that a diophantine equation has no
solutions by showing that for every solution there is a "smaller', solution.
contradicting the well-ordering property.

Using the method of infinite descent we will show that the diophantine
equation xa + !4 : 22. has no solutions in nonzero integers x, !, and z. This
is stronger than showing that Fermat's last theorem is true for n: 4, because
any so lu t ion  o f  xa  +  y4 :  ta :  (22)2  g ives  a  so lu t ion  o f  xa  *  va :22 .

Theorem 11.2. The diophantine equation

has no solutions in nonzer" ,",.*1, 

**',ro,r: t'

Proof. Assume that the above equation has a solution in nonzero integers
x,l,z. Since we may replace any number of the variables with their negatives
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without changing the validity of the equation' we

positive integers'

We may also suppose that (x,y) : 1' To see

x :  dx1 and y = dY,,  wi th (xvYt)  :  1 '  where x1

since xa + Y4 : '2 ' vte have

( d x ) 4 + ( d Y r ) 4 : 2 2 ,

so that
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may assume that x,Y,z are

this, let (x,Y) : d. Then

and y 1 itro Positive integers'

that  d '  I  t .

da(x f  +  Y f )  : ' 2 '

Hence do | , ' , and, by problem 32 of Section 2'2' we know

Therefore , z : d'r r, where z 1is a positive integer' Thus'

d a ( x f  +  y f ) :  ( d 2 t r ) ' :  d o r ? ,

so that

x f+y l : t? .

This gives a solut ion of  xa + ya:  '2 in posi t ive integers x :  xt ' !  :  l r 'z  :  zr

w i th  (x r ,y r )  :  1 .

So,  suppose tha t  x :  x , , l  :10 ,  z  :  z . ' i s  a .so lu t ion  o f  xa  +  y4 :  z2 '  where

xo, lo, and zsare positive integers with (xe,-/o) : 1 ' We wil l show that there

is another solut ion in posi t ive integers x :  xr , !  :  l t ,  z :  zt  wi th (xr 'y l )  :  1 '

such that 21 1 zs.

S ince  xd  +  y t  :  z l ,we have

Gi lz  +  (y&)2 :  zE ,

so that x&, y&, ,o is a Pythagorean triple. Furthermore, we have

l-f i ,  r&> - i ,  ro. i f  p is a prime such that p I  x3 and p I y&' then p I xs

;; ' ; ' l ' ro, contradict ing the fact that (xq,lrq): l .  Hence, *3,yE, zs is a

prim-itive iythagorean triple, and by Theorem- 11.1, we know that there afe

positive integers z and n with (z ,n), m # rl (mod 2) ' and

x& :  m2-n2
!& : Zmn
zo :  m2+n2,

where we have interchanged x62 and yfr, if necessary' to make yfr the even

integer of this Pair.



From the equation for xfr, we see that

x & + n 2 : m 2 .

Since (m,n) : l, i t foilows that x,s,n,m is a primitive pythagorean tripre.Again using Theorem I I .1, we see that there are fositive integers r and s with( r , s )  :  l ,  r  #  s  ( m o d  2 ) .  a n d

ro  :  ,2 -s2
n : 2 r s

m -  r2+s2.

Since m is odd and (m,n) :  l ,  we know that (m,2d :  l .  We note thatbecause y&: (2dm, Lemma l l .3 te l ls  us that  there are posi t ive integers z1a n d w  w i t h  m : t ?  a n d 2 n : w 2 .  S i n c e  w  i s  e v e n ,  w : 2 v  w h e r e  v  i s  apositive integer, so that

v 2  :  n / 2 :  r s .

s ince (r ,s) :  I  ,  Lemma 11.3 te l ls  us that  there are posi t ive integers x1 erdy1 such that r  :  x l  and s :  y? .  Note that  s ince (r ,s)  :  l ,  i t  easiry fo lowsthat (x l , -yr)  :  l .  Hence.
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x{+y f :

where x t,! t,z 1 ?re positive integers with
z t  I  26 ,  because

z r ( z f : m 2 < m 2 + n 2 - r o .

To complete the proof, assume that xa * y4 : z2 has at least one integral
solution' By the well-ordering property, we know that among the solutions inpositive integers, there is a solution with the smallest value is of the variable
z However, we have shown that from this solution we can find another
solution with a smaller value of the variable z, leading to a contradiction.
This completes the proof by the method of infinite descent. n

Readers interested in the history of Fermat's last theorem and howinvestigations relating to this conjecture led to the genesis of the theory ofalgebraic numbers are encouraged to consult the books of Edwards Il4l andRibenboim Irt]. A great deal of research relating to Fermat's last theorem isunderway. Recently, the German mathematician Faltings established a result
that shows that for a fixed positive integer n, n > 3, the diophantine equation
xn + yn : z' has at most a finite number of solutions where x g, and, z areintegers and (x,-y) : l.

- 2z l

(r r,y1) : l. Moreover, we have
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ll.2 Problems

l. show that if x,! ,z is a Pythagorean triple and n is an integer n ) 2' then

x " * y n # z n .

2.. Show that Fermat's last theorem is a consequence of Theorem I l '2' and the

assertion that xP * yp : zP has no solutions in nonzero integers when p is an

odd prime.

3. Using Fermat's little theorem, show that if p is prime and

a) if xp-l * yn-t : zP-r, then p | *yt .

b) i f  xP + lP : zP, then p |  (x+Y-z).

4. Show that the diophantine equation xo-yo: z2 has no

integers using the method of infinite descent'

5 . U s i n g p r o b l e m 4 , s h o w t h a t t h e a r e a o f a r i g h t t r i a n g l e
never a Perfect square.

6. Show that the diophantine equation xa + 4ya - z2 has no solutions in nonzero

integers.

i. Show that the diophantine equation x' - 8y4 : z2 has no solutions in nonzero

integers.

l .

Show that the diophantine equation xa + 3ya : z4 has infinitely many solutions'

Show that in a Pythagorean triple there is at most one perfect square'

Show that the diophantine equation xz + y2: z3 has infinitely many integer

solutions by showing that for each positive integer k the integers

x : 3k2-1, |  -  k(k2-3), z :  k2 * I  form a solut ion.

Computer Proiects

Write a computer program to search for solutions of diophantine equations such

a s x n  * Y n : z n .

11.3 Pell's Equation

In this section, we study diophantine equations of the form

x 2 - d y ' , : r ,

solutions in nonzero

with integer sides is

8 .

9.

1 0 .

tt.2

(1  1 .2 )

where d and n are fixed integers. When d <0 and n (0, there are no

solutions of (11.2). When d < 0 and n ) 0, there can be at most a finite
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number of solutions, since the equation x2 - dyr: n implies that l"l < fi

il* 
lrl < JM. Also, note that when d is a perfect ,quur., say d : D2,

x2 -  dy ' :  x2 -  Dry :  G+Df l (x-Dy)  -  n

Hence, any solution of Qt.D, when d is a perfect square, corresponds to asimultaneous solution of the equations

::'d=; ,
where a and b are integers such that n : ab. In this case, there are only afinite number of solutions, since there is at most one solution in integers ofthese two equations for each factorization n : ab

For the rest of this section, we are interested in the diophantine equation
x2 - dy':n, where d and n are integers and d is a positive integer which is
not a perfect square. As the following theorem shows, the simpL continued
fraction of -,/v is very useful for the study of this equation.

Theorem 11.3. Let d and n be integers such that d > 0, d is not a perfect
square, and lrl < r/7. . lf x2 - dyI: n, then xfy is a convergent of the
simple continued fraction of ^/7.

Proof. First consider the case where n ) A. Since x2 _ dyr: n,wesee that
( t  r . : ) G +y./7) G -y,/V) : n

From (tt.:), we see that x - y.,/7 ) 0, so that x > yrT. consequently,

>0 ,

and since 0 1 n < ,8, we see that

ta G -,/7v)
Y W

v
:  x2-dY2

y G + y,/7)

*  _, /7
v



1 1.3 Pel l 's  Equat ion

Since 0 <

convergent

When n

- f r\  
YQYJA)

fi
t

\ q I 1

Zy'rld

: l
) rr2L!

1

.,17 < +, Theorem 10.18 tells
2v '-r 

1 fraction of JLslmple contlnueo
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us that x ly must be ax _

v
of the

( 0. we divide both sides of x2 - dy' : n by -d, to obtain

v2 - ,fr*': -3

By a similar argument to that given when n ) 0 o we see that y /x is a

convergent of the simple continuid fraction expansion of ll.r/7' Therefore'

from problem 7 of Slction 10'3, we know tB *l!,:1l, j.,/x) must be a

converyent of the simple continued fraction of './d : l/( l/{cl ) '  u

we have shown that solutions of the diophantine equation x2 - dy': n,

*h;; 
^1"1 

. .n, are gifn by the convergents of the simple continued

fraction expansion of fi. The next theorem will help us use these

convefgents to find solutions of this diophantine equation'

Theorem 11.4. Let d be a positive integer that is not ^ perfect square'

i l ; dk : (io + ',/hlQr, oo: [47.1, P*+r --!*Q! - 'o' '  and

O; ' ; - r :  ( ; " -  pt* 'J lQ*,  t*  L :0,1,2, . . .  where ao: Jd '  Furthermore'  Iet

;J;r denote tie kth convergent of the simple continued fraction expansion of

Jd .  Then

p t -dq t : ( - 1 )& - rgp *1 .

Before we prove Theorem 1 1.4, we prove a useful lemma.

L e m m a  1 1 . 4 .  L e t  r * s r / V : t + r t / l  w h e r e  r , s , t ,  a n d  u  ^ t e  r a t i o n a l

numbers and d is a positive integer that is not a perfect square. Then r : t

a n d s : u .

proof. Since r * s,/7 : t * u,/7, *"see that if s # u then

,/7 - r-t
u -s
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By Theorem 10.1,  ( r - t ) / (u-s)  is rat ional ,  and by Theorem r0.2 Jv i ,irrational. Hence, s : u, and consequently r : t. A
We can now prove Theorem I 1.4.

Proof. Since ̂ E : o,0: Ias;ar, e2,...,ek, otk+tL, Theorem 10.9 tells us that

tj ott+tp* I p*_t-vs  
, r t " r rqk  +  qr r '

Since dk+t : (pt *, + ,/7)/er+r

JV:
(P**t

we have

+ ,8)p* * e*+pr,_t
(P**, + ,/V)qr * et +rQ*_t

Therefore, we see that

dqt t (Pt+flt, I Qt +rQtr-r)f i : (pr,+tpr, * e*+rpt,-r) + p*fi.

From Lemma 11.4, we find that dqr,
Pt+f l*  f  Qt+rQn-t :  pk When we mult ip ly t t .
by qt and the second by pt, subtract the first
simplify, we obtain

p t  -  dq i  :  (p t  q t  - t  -  p r - tQ*)eo* , :  ( -  l )o - teo* r ,

where we have used rheorem 10.10 to complete the proof. tr

The special case of the diophantine equation x2 _ dy, : , with n : I is
called Pell 's equation. we wil l use Theorems ll.3 and rr.4 to find allsolutions of Pell 's equation and the related equation x2 - dy, : -t.

Theorem 1l'5' Let d be a positive integer that is not a perfect square. Letpx/qt denote the kth convergent of the simple continued fraction of .8,
k : 1,2,3,"' and let n be the period length of this continued fraction. Then,
y.!"n ,r, 

even, the positive solutions of the diophantine equation
x-  -  ay"  :  I  a re  

r *  
:  

l i n -  t ,  !  
:  Q i r - t ,  j  :  1 ,2 ,3 , . . . ,  and  the  d iophant ine

equation x2 - dy' : - l has no solutions. when n is odd, the positive
s o l u t i o n s  o f  x 2  -  d ! ' : 1  a r e  x  :  p 2 j n - r , !  :  Q z i n _ r ,  j  : 1 , 2 , 3 , . . .  a n d  t h e
so lu t ions  o f  xz  -  dy ' :  - l  a re  x  :  pe i_Dn_r , l  :  Qe i_r )n_r ,  j  -  1 ,2 ,3 , . . . .

Pyoof. Theorem 1r.3 tells us that if xo,ro is a positive solution of
x2  -  dy ' :  t l ,  then  x0 :  p*2 !o :  Q*  where  p* /q1 ,  i s  a  convergent  o f  the
simple continued fraction of ,/7 . On the other hand, from Theorem I 1.4 we
know that

: P*+tPt, * Q*+et -r and
first of these two equations
from the second, and then



1 1.3 Pel l 's  Equat ion
405

p t - d q ? : ( - l ) f t - r 2 1 * 1 ,

w h e r e Q x * t i s a s d e f i n e d i n t h e s t a t e m e n t o f T h e o r e m l l . 4 .

Because the period cf the continued expansion oL"/j is n, we know that

Qjn :  Qo:I  for 7 :  1,2,3," ' ,  ( ' int"  J ' l  :  
" t f  

'  Hence'

pk-, - d q?^-t : (- l)i'Qni : (- I )/n '

This equation
x 2 - d y z : l
o f  x 2  -  d y ' :
j  :  1 , 2 , 3 , . . .

To show that the diophantine equations

have no solutions other than those already

implies that n lk and that Q1 # -l for 7 :

We f i rst  note that  i f  Qt*t :  l ,  then

c,k+l: P1ra1 * 'ftr '

Since ok+l : la1ra,.a1r1z,... l, the continued fraction expansiOn of a1a1 is purely

periodic. Hence, Theoiem !0.20 tells us that -1 1 a*+r: Pk+r - ' '17 < O'

This impl ies that  Pk+t: l r /71,  so that dk :  c"o,  and nlk '

T o s e e t h a t Q l # - l f o r 7 : l , 2 , 3 , " " n o t e t h a t Q i : - l i m p l i e s t h a t
dj : -pi -G. 

-'Sin"" 
ct; has a purely periodic simple continued fraction

expansion, we know that

- l  <  e i : - P i + ^ f t t  < 0

and

d j : - P j - - . / 7 > t .

From the first of these inequalities, we see that Pi > -r/7 and, from the

second, we see that Pi < -l -fi. Since these two inequalities for p1 are

contradictory, we see that Qt # -1-

Since we have found all solutions of x2-dy2: I and x2-dy2: -1, where

x and y arc positive integers, we have completed the proof. n

We illustrate the use of Theorem 11.5 with the following examples'

Example. Since the simple continued fraction of .,8 is t l;f ,f ' f ,f ,el the

shows that when n is even Pin-t, Qin-t is a solution of

fo r  7  :1 ,2 ,3 , . . . ,  and  when n  is  odd,  Pz in - t ,421n- t  i s -a  so lu t ion

I  and Pz( j -Dr-r ,Qz( i -Dn-,  is  a solut ion of  x2 -  dy ' :  - l  for

x 2  -  d y '  : 1  a n d  x 2  -  d y 2  :  - 1

found, we wil l show that Qpal: I

1 . 2 . 3 . . .  .
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posi t ive solut ions of  the diophant ine equat ion x2 
.  . l3yr:  I  are pni_t ,et . ' j_t ,

i : l'2'3"" *T]: p1_o1/e.roi-r is the (roi-l)th ctnvergent or ,r," simplecontinued fraction expansion of .,m. The least po-ritiu" sorution ispe:649, {e :  180. The posi t ive solut ions of  the diophant ine equat ionx2-13y2 :  - I  are Prci-o,Qtoi-oi  :  1,2,3, . . . ;  the least  posi t ive solut ion is
P q :  1 8 , q a  :  5 .

Example. Since the continued fraction of -,.fr is t3;Wl, the positive
solut ions of  x2 -  t4y2_: I  are pai-1,e4j-r ,  j  :  r , .2,3, . . .  where p+i- tbqi-r  isthe 7th convergent of the simple continued fraction expansion of Vl4. The
least posi t ive sohl t ion is pt :  15,  Qt:  4.  The diophant ine equat ion
xz - l4y2 : -1 has no rotuiionr, since the period length of the simple
continued fraction expansion af ,/la is even.

We conclude this section with the following theorem that shows how to find
all the positive solutions of pell's equation x2-- dyt : I from the least positive
solution, without f inding subsequent convergents of the continued fraction
expansion of ,/7.

Theorem 11.6. L9t xg1 be the least positive solution of the diophantine
equation x2 - dyL : l, where d is a positive integer that is not a perfect
square. Then all positive solutions xk,lk are given by

x t r * y r f i : ( x t * y r r / v ) o

(Note that xp and y1, are determined by the use of Lemmaf o r k :
I  1 . 4 ) .

Proof. We need to show that x1r,y1, is a solution for k :
every solution is of this form.

To show that x1,/r -.!! a solution, tst note that by taking conjugates, it
follows that x1, - ytrf i: (x r- lr,,/T)k, because from Lemma 10.4, the
conjugate of a power is the power of the conjugate. Now, note that

xt - dyt : (xp + yr,fi)G,, - yr,fi)
:  (x  r  t  y16)o ( " ,  -  yrE)k
: (x? - ayilo
:  1 .

Hence xk,lt is a solution for fr :

To show that every positive solution is equal to
integer ft, assume that X,y is a positive solution
k :  1,2,3, . . . .  Then there is an integer r  such that

and that

x*,lt< for some positive
different from x*,lk for
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(xl + yJ7)" < x + Y./7 ( (x t * v]/a)n*t '

When we multiply this inequality by (x t * y rf i)-" ' we obtain

I  <  (x  r -  r r f i )n (x  +  YJd)  (  x t  +  YI IA '

s ince x? -  dy? :1 impl ies that x t  -  ! t , [ i  :  (x1 * yt , [d)- t .

Now let

s *  /  . /7  : ( r ,  -  yr f i ) ' (x  + YJI) ,

and note that

s 2 - d t z : ( s -  tJa)(s + t , /D
:  ( x t

: (*?
- l-  t .

+ yf /7) '8 -  Y, l7)Gt
- dy?) '8 '  -  dYz)

-  y r f i )n (X + YJA)

We see that s,/ is a solution of x2 - dy': l, and furthermore, we know that

i .; ,fr'.'"*;;';r",lV.--Mor.oner, since we know that s + t-,/7 > 1,

we see that 0 < (s + tJa)-r < 1. Hence
1 -

r : +t(s t r,/7> +(s - r.'.ff)l > o
/-

and

, : 1[(s + t-./7) - (s - t',17)] > o.
2Jd

This means that s, /  is  a posi t ive solut ion,  so that s 2 x1,  and t '2 y1,  by the

choice of x1,y1 as the smallest-positive solution' But this contradicts the

inequality s * f ../7 < xr * ytf i. Therefore X,I ' must be xpy1, for some

choice of /c. tr

To i l lustrate the use of Theorem I1.6, we have the following example'

Example. From a previous example we know that the least positive solution of

the  d iophant ine  equat ion  x2  -  l3y ' :  I  i s  x t :649,  -Pr :  180 '  Hence '  a l l

positive solutions are given by xt, yp where

x* * yr,./n : (649 + tgo\[Lte .

For instance, we have
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x z *

H e n c e  x 2 : 8 4 2 3 6 1 ,  y 2
x2 -  l3y2  :  l ,  o ther  than

Some Nonlinear Diophantine Equations

y 2,8 : 842361 + 233640.,/l t

: 233640 is the least positive solution of
X 1 -  6 4 9 ,  y '  :  1 8 0 .

l l .3 Problems

l ' Find all the solutions of each of the foilowing diophantine equations
a )  x 2  +  3 y 2 : 4

b )  x 2  +  5 y 2  : 7

c )  2 x 2  +  7 y 2 : 3 0 .

2' Find all the solutions of each of the following diophantine equations
a )  x ' - y ' : B

b )  x2  -  4y2 :  40

c) 4xz - 9/2 : loo.

3' For which of the following values of n does the diophantine equation
x2 - 3ly'  :  n havea solut ion

4. Find the least positive solution of the diophantine equations

a) x2 - 29y2 : -1

b)  x2 -  29yz :  1 .

5. Find the three smallest positive

a ) l
b) -1
c ) 2

x 2 - 3 7 y 2 : 1 .

6. For each of the
equation x2 - drz

i l 2
b ) 3
c ) 6
d )  1 3

d) -3
d 4
f)  -s?

following values
: -l has solutions

e)  t j
f )  3 l

e) 4r
h) s0.

solut ions of the diophantine equation

of d determine whether the diophantine

7. The least positive solution of the diophantine equation xz - 6lyz : 1 is
xt:1766319049, l t-  2261i398A. Find the least posit ive solut ion other than
x  t , l  t .
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8. S!g* that if pr/qt is a converggnt of the simple continued fraction expansion of

Jd then lp? - dq?l < | + zJd.

9. Show that if d is a positive integer divisible by a prime of the form 4ft * 3, then
the diophantine equation x2 - dy':  - l  has no solut ions.

Let d and n be positive integers.

il Show that if r,s is a solution of the diophantine equation x2 - dyz : I and
X,Y is a solution of the diophantine equation x2 - dy' : , then
Xr + dYs, Xs t Yr is alsoa solut ion of x2 - dy':  r .

b) Show that the diophantine equation x2 - dyz: n either has no solutions, or
infinitelv many solutions.

I l. Find those right triangles having legs with lengths that are consecutive integers.
(Hint: use Theorem 11.1 to write the lengths of the legs as x -.r2 - 12 and
y :2st, where s and t are posit ive integers such that (s,t) :  l ,  s ) /  and s
and  t  have  oppos i t e  pa r i t y .  Then  x - y : i l  imp l i es  t ha t
( s  -  r ) 2  -  2 t 2 :  + 1 . )

12. Show that each of the following diophantine equations has no solutions

a )  x a - 2 y a : 1  b )  x 4 - 2 y 2 - - 1 .

11.3 Computer Projects

Write programs to do the following:

1. Find those integers n with lrl < Ji such that the diophantine equation
x2 - dyz: rz has no solut ions.

2. Find the least positive solutions of the diophantine equations x2 - dy': I and
x 2  -  d y 2  -  - 1 .

3. Find the solutions of Pell's equation from the least positive solution (see Theorem
I  1 . 6 ) .
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0
I
2
3
4
)
6
7
8
9

t 0
n
t 2
1 3
1 4
1 5
l 6
t 7
l 8
l 9
20
2 l
22
23
24
25
26
27
28
29
30
3 l
32
33
34
35

3

3 -  3 -
3 -  3

7
3 -  3 -

3 -  3
7 ^

3 -  3 -
7  3 -  3

3 -  3  7
l l  3 -  3

7 - -
3  l l  3  -

3 -  3
7 - - 1 3
3 -  3 -

3  1 1  3

3  7  3  l l
3 7 3

1 3 -
3 -  3 -

3 1 3  3
-  l l  -  7
3 -  3 -

3 -  3
7 1 7

3  -  3  1 3
7  3 -  3

-  l l
3 t 7  3  7

3 -  3
l l  7  -  -
3 -  3 -

4A
4 l
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 l
62
63
64
65
66
67
68
69
70
7 l
72
73
74
75
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Tabfe 1. Factor Table.

The least prime fac1o1,of .::h.odd positive integer less than 10000 and not divisible byfive is given in the table. ThJinitial digits of tile integei are listed to the side and thelast digit is at the top of the column. primes are indicated with a dash..

1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9

- 1 3 1 1 -
3  7  3 -

3 7 3
1 9 _

3 -  3 -
l t  3 -  3

7
3  l l  3  -

1 3  3 -  3
- r 7  7 _
3 -  3 -
7  3 l I  3

17 23
3 1 3  3  7

3 -  3
1 9  7 - 1 3
3 -  3 -

3 -  3
7 l l - 1 9
3 -  3 -

3 -  3
1 3 -
3  7  3 t 7

3 7 3
_  l l

3 -  3 -
3 2 3  3

l l  -  -  7
3 -  3 r 3

3 1 7  3
- 1 9  7 -
3 2 3  3 -
7  3 -  3

t 7  -  1 l  -
3 -  3  7

3 -  3

3  7  3 -
2 9 3 7 3
2 3 - -
3  -  3  l r

1 3  3 -  3
7

3  1 9  3 2 9
t 7  3 -  3
-  l l  7  -
3 1 3  3 -
7  3 -  3

- 2 3  -  1 3
3  8  3 7

3 t  3 -  3
7  - t l

3 -  3 2 3
3 -  3

7 t 7 1 9 -
3 -  3 -

3 1 3  3
t 7 -

3  7  3 -
3 7  3

1 t  -
3 2 9  3 1 3

2 3  3 -  3
7

3 -  3 -
l t  3 -  3
1 9 -  7 -
3  l l  3  t 7

80
8 l
82
83
84
85
86
87
88
89
90
9r
92
93
94
95
96
97
98
99

100
l0 l
t02
103
rc4

t20
t2l
r22
123
t24
125
r26
t27
128
t29
130
1 3 1
r32
r33
134
1 3 5
136
r37
r38
139
140
t4l
r42
r43
144
145

3  l l  3  -
3 1 9  3

3 1 7  3
7  - - 2 3
3 -  3 -

3 -  3
1 7 f i 2 9 _
3  7  3 -

1 3 3 7 3
3 1  1 9
3 -  3 -

3 -  3
7

3  1 3  3  -
3 -  3

r r  3 1  7  1 3
3 1 7  3 1 9
7  3 2 3  3

- 2 9 - 3 7
3 -  3  7

3 1 9  3
1 3  7 t t -
3 2 3  3 -

1 7  3 1 3  3
7 - - -
3 -  3 -

l l  3 -  3
3 1  -

3  7  3 1 3
3 7  3

3 -  3 -
1 9  3  1 1  3
- 1 7 3 7  7
3  -  3  1 1

3 2 9  3
2 3 -  7 -
3 -  3 -

105
106
107
r08
109
l l 0
l l l
lt2
l l 3
rt4
l l 5

7  3 3 1  3
1 3  1 9

t46
147
148
r49
150
r 5 l
rs2
153
r54
t55
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Table 1. (Continued).

r 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9

36
37
38
39

160
r6l
t62
r63
t64
r65
r66
r67
r68
r69
170
17l
172
173
174
175
176
177
178
179
180
l 8 l
r82
r83
184
185
186
t87
1 8 8
189
r90
l 9 l

76
77
78
79

2m
201
202
203
204
205
206
207
208
209
210
2tl
2t2
2r3
2t4
2t5
2r6
217
2t8
2r9
220
22r
222
223
224
225
226
227
228
229
230
231

l l 6
rt7
1 1 8
l l 9
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
? 5 S

256
257
2s8
259
260
26r
262
263
264
265
266
267
268
269
270
27r

156
t57
1 5 8
159
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
29s
296
297
298
299
300
301
302
303
304
305
306
307
308
309
3r0
3 l l

1 9  3 -  3
7 - t 3 -
3 -  3 -

t 7  3 -  3
7 - -

3 -  3 -
3 -  3

7 2 3 - l l
3 3 1  3 1 7

t 3  3 -  3
l l  -
3  7  3 2 3

4 1  3 7 3
1 9 -
3 1 3  3 -

2 9  3 r 7  3
-  -  l l  7
3 -  3 3 7

3 -  3
r 7 -  7 -
3 4 1  3 2 9
7  3 -  3

1 3 -
3 l l  3  7

3 1 3  3
7 2 3 t 7

3 -  3 3 1
3  l l  3

7 1 9 - 4 3
3 1 7  3 l r

3 -  3

3  7  3 -
3 1  3 7  3
-  l t  - 2 3
3 -  3 r 9

7 t 3 -
3 -  3 r 9

l l  3 -  3
7 1 3 - 1 7
3 -  3  7

3 -  3
4 3  7  - -

3 r 9  3 -
1 3  3 2 3  3
7 - t l 2 9
3 -  3 -

t 9  3 3 t  3

3  7  3 -
u 3 7 3

29 t3
3  l l  3  -

3 -  3
- - 1 9  7
3 -  3 t 7

3  l l  3
l 3 4 t  7  -
3 3 7  3 r l
7  3 1 3  3

3 r - - 4 7
3 -  3  7

3 1 7  3
2 3  7 - -
3 -  3 r 3

3 3 7  3
7 3 1  - -
3 -  3 4 3

3 -  3
2 9 - - l l
3  7  3 -

3 7  3

3 -  3  7
3  l t  3
7  - 2 9

3  -  3  l l
7  3 2 9  3

- 1 9 - 4 1
3 -  3  7

l l  3 -  3
7  - 3 1

3  l l  3  -
2 3  3 -  3
7  - - 3 7
3 1 3  3 1 9

4 7  3 l l  3
4 t - 2 3 1 3
3  7  3  l l

3 7  3
- t 7 4 3 -
3 -  3 -

3 -  3
t 3 l t 1 7  7
3 3 1  3 -

2 9  3 1 3  3
7 2 3

3 r 9  3 -
7  3 -  3

- 4 3 3 7 r 1
3 -  3  7

1 9  3 -  3
l l  7  - -
3 -  3 t 7

3 -  3
7 - - -
3 -  3 -

3 7  3 -  3
l l  -

7  3 -  3
-  1 1  t 9  -
3 -  3  7

3 7  3 -  3
7 5 3

3 2 9  3 -
7  3 r t  3

1 9 - - 1 7
3 -  3  7

3 -  3
7 4 7 t 9

3 1 3  3 -
4 3  3 -  3
7 r l - 1 3
3 -  3 -

4 t  3 -  3
2 3 3 7  - 2 9
3  7  3 -

l 7  3 7  3
t 3  -  -  l l
3 -  3 -

3 1 3  3
t t t 9 2 9  7
3 4 1  3 -

3 3 1  3
- 2 3  7  -
3  -  3  1 3
7  3 -  3

-  t 7  1 1  -
3 4 3  3  7

3 -  3
3 7  7 1 7 -
3 -  3 -

1 1  3  1 9  3
7 2 9 1 3 -
3  l 1  3  -
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Table 1. (Continued).

l 3  7  9 1 3 7 9 1 3 7 9 1 3 7 9
192
r93
r94
195
r96
r97
198
r99

232
233
234
235
236
237
238
239
:oo
361
362
363
364
365
366
367
368
369
370
37r
372
373
374
375
376
377
378
379
380

272
273
274
275
276
277
278
279
400
40r
402
403
404
405
406
40'7
408
409
4r0
4tr
412
413
414
4t5
416
4t7
4 1 8
419
420

3t2
3 r 3
3r4
3 1 5
316
317
3 1 8
3le-
440
44r
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

320
321
322
323
324
325
326
327
328
329
330
3 3 1
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

381
382
383
384
385
386
387

t 7  3 4 1  3
- - 1 3  7
3 2 9  3 -

3 1 9  3
3 7 1 3  7 t l
3 -  3 -
7  3 -  3

1 1  -
3 -  3 -

1 3  3 -  3
-  l 1  7  -
3 5 3  3 4 r
7  3 1 7  3

3 1 3  3  7
3 2 9  3

r 7  7  1 9  l l
3 3 7  3 -

3 -  3
7 -3 r -
3 -  3 -

3 4 7  3
1 3 - _ - 1 7
3  7  3 -

3 7  3
-  -  l l  3 l
3 r 7  3 -

3 4 3  3
l 9 4 r -  7
3 -  3 1 3

l l  3 2 3  3
4 7 -  7 1 9
3  l l  3  -
7  3 -  3

n 2 3 t 3 t 7
3 -  3 -

3 -  3
- 1 3 -  7
3 r 7  3 2 3

3 -  3
7 -

3 -  3 -
1 3  3 -  3
2 3 - -  7
3 -  3 1 9

3 -  3
l l  -  7  4 l
3 1 3  3 -
7  3 1 9  3

- 1 3
3 2 9  3  7

3 -  3
7 t t _

3 4 7  3 -
6 1  3 -  3
7 - 3 7 -
3 1 9  3 2 3

l l  3 1 3  3
- 5 3
3  7  3 -

1 9 3 7 3
t 7 - - 2 9
3 -  3 3 1

3  7  3 -
3 7  3

-  1 3  4 t  -
3  -  3  3 l

l l  3 -  3
1 7 4 7 -  7
3  1 1  3  -

3 -  3
_ 1 9

3 -  3 -
3 -  3

2 9 3 7  t t  7
3 1 3  3 -

3 -  3
3 t t 7  7 1 3
3 -  3 -
7  3 6 1  3

l 7 -
3 l l  3  7

3 2 3  3
t 3  7 - -
3 -  3 -

4 1  3  1 l  3
7 - - -
3 2 3  3 1 1

4 3  3 -  3
37 47 53 59
3  7  3 1 3

3 7  3
-  l t
3 4 1  3 -

3 1 9  3
- - 3 1  7
3 -  3 -

3 t 7  3
7 t l

;
3

23

2 3  3 1 3  3
1 9  7 * -
3 2 9  3 4 7

3 -  3
7 1 7 2 3 t 9
3  -  3  1 3

3 -  3
4 3 - t 7 l I
3  7  3 3 1

3 7 3
t t 4 t - -
3 -  3 -

3 -  3
5 9 - 1 3  7
3 -  3 -

3 5 3  3
1 3 - 4 3
7  3 4 7
3 7 3

2 9 -
3  1 9  3  l l

3 -  3
*  3 rz3  7

3  7  3 -
l r  3  7  3

19 43
3 l l  3 2 3

3 -  3
- 6 t -  7
3 -  3 4 r

1 7  3  1 1  3
7 6 7

3  -  3  l l
7  3 -  3

1 3 -
3 -  3  7

3 7  3 l l  3
- - 4 3  7
3 -  3 1 1

2 3  3 -  3
7 1 7

3 -  3 5 3
7  3 -  3

421
422
423
424
42s
426
427

4s9
460
461
462
463
464
465
466
467347 3 2 3  3  7
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348
349
350
3 5 1
352
3s3
354
355
356
357
358
359
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
s00
501

5 9  3  1 l  3
7 1 3 -

3  3 1  3  l l
3 -  3

7 1 3 - -
3 -  3 -

3 -  3
5 3  1 1
3  7  3 4 3

3 7  3
17 37

3 -  3 5 9
:tn- 3-
t7  -  -  61
3  7  3  1 1

3 7  3
47 29 37 13

3 -  3 -
7  3 -  3

1 1  1 3  5 9  3 l
3 1 9  3 ' , l

2 9  3 -  3
6 1  7 - -

3 4 3  3 -
1 9  3 -  3
7 - l r 1 7
3 -  3 2 9

1 3  3 4 1  3
- 2 3 - 5 3
:-Tl r 7t

4 1 5

3 1  3 4 3  3
- 1 3  7 3 7

3 -  3 1 7
' t  3 5 3  3

2 9 -
3 -  3 ' , l

1 1  3 4 7  3
7 6 7 -

3 1 1  3 1 9
1 3  3 1 7  3
7  - - -

- 1 1 1 3 -
3 r 7  3  7

4 7  3 -  3
7  - -

3 -  3 -
3 3 r  3

7  - - r l
3 5 9  3 3 7

t 7  3 -  3
t r  29  41  23
3  7  3 -

1 3 3 7 3-Tt1 qt*-
3 1 3  3 1 7

2 3  3 -  3
- 1 3

3  7  3 2 9
5 9 3 7 3
- 1923 r r
3 -  3 -

3 1 7  3
1 1 6 7  -  7
3 -  3 -

Table 1. (Continued).

388
389
390
39r
392
393
394
39s
396
397
398
399
5zo
521
522
523
524
525
526
527
s28

428
429
430
431
432
433
434
435
436
437
438
439

468
469
470
471
4',72
473
474
475
476
477
478

502
503

3 2 3  3 4 3
3  3 1  3

-  1 l  -  7
3 1 9  3 -

6 7  3 5 9  3
1 3 -  7 -
3 1 7  3 -
- r  3 1 3  3

-  1 l
3 -  3  7

3 -  3
1 1  7  -  -

3 -  3 1 3
1 7  3 -  3
7 - 1 9 -
3 -  3 -

3 2 9  3
l l  4 7

3  7  3 -

4 7  3 1 3  3
t 7 -  7 7 3
3 -  3 1 9
7  3 -  3

- 5 3 1 1 2 3
3 3 1  3  7

4 1  3 1 9  3
7  - 1 7

3 -  3 -
1 1  3 -  3
7 - - -
3 1 1  3 6 1

3 -  3

s29
530
5 3 1
532
533
534
535
s36
537
538
s39
540
54r
542
543

560
561
562
563
564
565
566
s67
568
s69
570
571
572
573
5',74
) t )

576
5',77
578
579
580
5 8 1
582
583

479_
600
601
602
603
604
605
606
607
608
609
6 1 0
6 1 1
612
6 1 3
614
6 1 5
6r6
617
6 1 8
6 1 9
620
621

3 1  3 4 1  3
7 - 1 7 1 3
3 4 3  3 -

3 -  3

3 -  3 -  _
1 7  3 -  3

7 t l 1 3
3 r 9  3 -

3 7  3 -  3
7  - - 2 3
3 -  3 7 3

1 1  3 -  3
1 3 - 5 9 -
3  7  3 -

3 7  3
- r 7 3 1 4 1
3 -  3 2 9

3  1 1  3
1'1 '7

I

3  -  3  l 1
3 4 7  3

6 r -  7 3 1
3 -  3 3 7
'7 323 3

4 1  1 1
3 -  3  7

3 -  3
' 7  1 3 -

3 2 3  3 r 7

3  7  3 -
5 3 3 7 3
1 3  -  1 1  -

3 -  3 4 1
3 1 3  3

- 2 9 -  7
3 5 9  3 t 7

1 1  3 -  3
' t -

3  1 1  3  1 3
7  3 7 3  3

2 9 2 3 s 3 -
3 -  3  7

3  1 1  3
4 ^ -

|  -  J I

3  -  3  1 1
^ a
5 -  J

7 1 9 1 3 -
622
623



4 1 6

504
505
506
507
508
509
5 1 0
5 l l
512
5 1 3
514
5 1 5
516
517
5 1 8
5 1 9
640
64r

7 r 3 7 3
- 3 1  1 3 _
3 6 1  3 3 7

I r  3 -  3
- 1 3 -  7
3  l t  3  _

3 -  3
1 9 -  7 -
3 4 7  3 2 3
7  3 l l  3

5 3 3 7 - 1 9
3 -  3  7

1 3  3 -  3
7 3 1  _

3 7 r  3 -
2 9  3 -  3
37 19  43  t3
3  1 l  3  7

3 -  3
s 9  7 4 1 4 7
3 1 7  3 -

3  l l  3
7 2 3 2 9 - _
3  -  3  l l

3 1 3  3
- 4 3 7 3 6 7
3  7  3 2 3

1 7 3 7 3
-  l l 6 l  _
3 4 7  3 1 3

3 1  3 -  3
- - 7 9  7
3 -  3 -

3 -  3
- 2 9  7  1 1
3 1 9  3 -

1 3 _
3  7  3 5 3

4 3 3 7 3
- 1 3

3  -  3  l l
1 7  3 2 3  3

7
3 3 7  3 -

3 -  3
-  l l  7  2 9
3 2 3  3 3 1
7  3 -  3

6 7 - 1 9 -
3 -  3  7

3 3 7  3
7 2 9 t l

3  -  3  1 l
7  3 t 7  3

t 9 -
3 -  3  7

3 -  3 -
3 _  3

-  l l
3  7  3 -

3 7 3
4 3 7 1  - 1 7
3 -  3 1 9

2 3  3 6 1  3
3 t  -  -  7
3 1 7  3 _

1 3  3 1 9  3
1 1  -  7  s 9
3 6 7  3 4 7
7  3 4 3  3

- 3 1 - 5 3
3 1 3  3  7

1 9  3 -  3
7 -

3  3 1  3  -
7  3 -  3

1 3 - - l l
3 -  3  7

5 3  3 1 3  3
il 7 1929
3 -  3 3 7

2 3  3 -  3
7 6 7 - -
3 7 t  3 1 3

3 t 7  3
- - l t 4 l
3  7  3 -

3 7  3
1 7 3 7 5 3 -
3 7 3  3 4 7

1 l  3 8 3  3
1 9 - 1 3  7

544
545
546
547
548
549
550
551
552
553
s54
555
556
s57
s58
559
680
681

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
720
721
722
723
724

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
760
761

Table 1. (Continued).
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7 9  3 -  3
7 1 3 - t r
3 -  3 -

3 -  3
l l 6 l - 1 9
3  7  3 -

3 7 3
-  59  -  t l
3 -  3 -

1 3  3 -  3
t 7 - t t  7
3 -  3 -

3 -  3
2 3 -  7 -
3 1 3  3 _
7  3 -  3

l l  -  -  7
3 2 3  3 1 9

3 2 9  3
1 3 1 7  7 -
3 -  3 -
7  3 t 3  3

642
643
644
645
646
647
648
649
650
651
652
6s3
654
655
656
657
658
659

682
683
684
685
686
687
688
689
690
69r
692
693
694
695
696
697
698
699

3 4 r  3
1 3  7 - 1 9
3 -  3 -

3 1 3  3
7  - 7 t 8 3
3 6 1  3 -

5 7  3 -  3
-  3 1  -  l t
3  7  3 1 3

2 9 3 7 3
l l  5 3
3 1 7  3 -

3 -  3
-  1 9 -  7
3 -  3 2 9

3 -  3

725
726
727
728
129
730
73r
732
733
734
735
736
737
738
739

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

4 7 7 9 1 1 -
3 -  3  7

3 -  3
7 4 3 _

3  -  3  1 3
l l  3 -  3
7 - - 5 9
3 1 1  3 7 1

3 6 1  3
2 3 -
3  7  3 1 7

t 9 3 7 3
3 1 4 3 1 3 -
3  -  3  1 l
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Table 1. (Continued)'

1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
800
801
802
803
804
805
806
807
808
809
8 1 0
8 1 1
812
8 1 3
8 1 4
8 1 5

700
701
'702

703
704
705
706
707
708
709
7r0
7 t l
7 t 2
713
7 t 4
715
7t6
717
7 1 8
7t9
840
841
842
843
844
845
846
847
848
849
850
8 5 1
852
8s3
854
855

'740

741
742
743
744
745
746
747
748
749
750
7 5 1
752
753
754
755
756
757
758
759
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
920
92r
922
923
924
925
926
927
928
929
930
9 3 1
932
933
934
935

7  3 -  3
1 1 1 7 1 3 -
3 3 7  3  7

1 9  3 -  3
2 9  7 1 7 6 1
3 -  3 -

3 5 9  3
7 - l r -
3 4 1  3 -

3 3 7  3
1 9 -

3  7  3 -
l l  3  7  3
5 3 - - 2 3
3  l l  3 1 7

43 329 3
- - 6 7  7
3 1 3  3 -

3  1 l  3
7 1 3

3 5 3  3 -
3 -  3

1 3 7 1 2 3  7
3 2 9  3 -

1 l  3  1 3  3
8 3 -  7 -
3  l l  3  -

7  3 4 1  3
- 5 9
3 -  3  7

3  l l  3
7  - 2 3

3  -  3  1 l
4 7  3 7 9  3
7  r 7  - 2 9
3  3 1  3  4 r

- 4 7  7 4 3
3 -  3 -
7  3 -  3

7 9 1 3 3 1 -
3 -  3  7

1 l  3 -  3
2 3  7 3 7 -
3  1 1  3  -

7 3  3 1 9  3
7 4 1 4 7 3 r
3 -  3 -

1 3  3  1 1  3

3  7  3  1 1
3 7  3 7  3
- 2 3 1 7  -

3  1 3  3 6 7
7 r  3 -  3
43 r r -  7
3 -  3 2 3

3 1  3  7  3
t 3 4 7 1 9 -

a a

5 -

3  l l  3
2 3 - -  7
3 7 9  3 l l

3 -  3
4 3 3 7  7 6 r
3 r 7  3 1 3
7  3 2 9  3

- 1 1 4 7 6 7
3 -  3  7

3 -  3
1 9  7 - -
3 -  3 8 3

r 7  3 4 3  3

3  1 1  3  3 1
3 -  3

4 1  1 3  1 1 7
3 -  3 4 3
7  3 l l  3

- 2 9
3 r 7  3  7

3 1  3 -  3
7 - -

3 5 9  3 -
1 3  3 -  3
7  r l  - 7 3

3 -  3 -
t 7  3 -  3
- 1 9
3  7  3 -

3 7  3
67 -  -  1 l
3 -  3 -

3 7 1  3
1 3 - - 2 3
3  7  3 -

3 7  3
-  l l

3 3 7  3 -
5 3  3 1 7  3

7
3 1 9  3 1 3

8 3  3 -  3
t 7 -  7 l l
3 2 9  3 s 9
7  3 3 7  3

1 1  -  7 9  -

3 -  3  7
3 2 3  3
7 1 3 1 7

29 331 3
7 3 1 3 -  7
3 -  3 -

4 1  3 t 7  3
-  1 1  7  4 7
3 -  3 2 9
7  3 -  3

3 -  3  7
1 3  3 5 3  3

7  - r l

3 4 1  3 *
8 9  3 -  3
7  - - r 7

3 r3  3 *
373  3

1 9 - 3 1 1 3
3  7  3 7 9

2 3 3 7 3
6 l - 1 1 1 9
3 -  3 -

6 1  3 r 3  3
- 2 3  -  l 1
3  7  3 -

3 7  3
i l  1 9  - 4 7
3 s 9  3 1 3

7 3  3 -  3
- - 3 7  7
3 -  3 r 7

7 1  3 4 r  3
- 6 7  7  -

3 -  3 1 9
7  3 -  3

1 3 -
3 4 7  3  7
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Table 1. (Continued).

1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
8 1 6
8 1 7
8 1 8
8 1 9
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

856
857
858
859
860
86r
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
970

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
9t l
912
913
9r4
9 1 5
916
917
9 r 8
919
980
981

936
937
938
939
940
94r
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
990
991

3 -  3
- 1 1 1 3 -
3  7  3 1 9

3 7 3
5 9 1 3 2 9 _
3 4 3  3 _

3 1 9  3
7

3  -  3 7 3
3 7  3 2 3  3
l 1 -  7  -
3 -  3 r 7
7  3 -  3

_ 4 3
3 1 9  3  7

3 -  3
5 3  7 t t -
3  1 3  3  3 1

t 9  3 1 7  3
7 - 6 r 1 3
3 -  3 -

i l  3 -  3
1 7  8 3
3  7  3 3 7

3  1 3  3
7 - 5 9 -
3 -  3 -

3 2 3  3
3 l  -  l l  -
3  7  3 1 3

3 7  3
t 9  t 7
3 2 3  3  -

l 1  3 -  3

7 - 1 3 1 1
3 -  3 2 3

3 3 1  3
l l  1 3
3  7  3 -

7 9 3 7 3
3 7 - -
3 8 9  3 5 3

3 -  3
4 t t 7 t t  7
3 -  3 -

1 3  3 -  3
- 1 9  7 -
3 -  3 -
7  3 -  3

3 1 - 2 3 -
3 1 1  3  7

3 -  3
7 - 1 3

3 -  3 1 9
3  l l  3

7 3 1 6 7 -
3  -  3  1 l

5 9  3 1 9  3
8 9 3 1  1 8  7
3  l l  3  -

3 7 t  3

3 -  3 -
3 4 7  3

7 1 3 1 1 8 9
3 1 7  3 -

3 -  3
7l  29

3  7  3 -
l r  3  7  3

8 3 -
3  l l  3  -

1 3  3 -  3
4 7 4 3 2 9  7
3 3 1  3 6 1

3  l l  3
1 9 -  7 -
3  3 1  3  1 l
7  3 -  3

23 -  -  13
3 4 t  3  7

3 -  3
7 8 9 s 3

3 -  3 6 7
3 -  3

7 2 9 1 7 -
3 -  3 1 7

3 -  3

l l  3 1 7  3
7  _ 8 3

3 l l  3 4 1
3 -  3

7  - 2 3 9 7
3 -  3 -

3  l l  3

3  7  3  l l
t 3 3 7 3

- 1 7
3 -  3 -

1 9  3 5 3  3
-  l l  -  7
3  1 3  3 3 7

3  3 1  3
- 8 9  7  t 3
3 -  3 -
7  3 -  3

-  4 1  1 9  l 1
3 7 3  3  7

t 7  3 6 1  3
1 1  7  - 4 3
3 5 3  3 2 9

3 -  3
r r 2 3 4 7  7
3 -  3 -

3 1 9  3
- 6 1  7 -
3 3 7  3 2 3
7  3 -  3

1 3 - u t 7
3 6 7  3  7

9 7  3 1 3  3

838
839
960
961
962
963
964
965
966
967
968
969

971
972
973
974
975
976
977
978
979

a n 4
t -

3 -  3 -
7  3 r t  3

43 t3
3 2 9  3  7

3 -  3
1 9 7 4 1

982
983
984
985
986
987
988
989

7 t t 3 r -
3 -  3 -

1 3  3 4 3  3
- 5 9
3  7  3 7 r

3 7 3
4 t  -  -  l l
3 1 3  3 1 9

992
993
994
99s
996
997
998
999

Reprinted with permission from u. Dudley, Elementary Number Theory, Second
Edition, copyrighto 1969 and l97g by w. H. Freeman and company. All rights
reserved.



4 1 9
Appendix

Table 2. Values of Some Arithmetic Functions'

I
3
4

6
t 2
I
l 5
l 3
l 8
t 2
28
t 4
24
24
3 l
l 8
39
20
42
32
36
24
60
3 l
42
40
56
30
72
32
63
48
54
48
9 l
38
60
56
90
42
96
44
84
78
72
48
124
57

I
2
2
J

2
4
2
4
3
4
2
6
2
4
4
5
2
6
2
6
4
4
2
8
3
4
4
6
2
8
2
6
4
4
4
9
2
4
4
8
2
8
2
6
6
4
2
l 0
3

I
I
2
2
4
2
6
4
6
4
l 0
4
t 2
6
I
8
l 6
6
l 8
8
t 2
l 0
22
8
20
t 2
l 8
t 2
28
I
30
l 6
20
l 6
24
t 2
36
l 8
24
l 6
40
t 2
42
20
24
22
46
l 6
42

I
2
3
4
5
6
'l

I
9
l 0
l l
t 2
l 3
l 4
l 5
l 6
t'l
l 8
l 9
2A
2 l
22
23
24
25
26
2'I
28
29
30
3 l
32
33
34
35
36
5 I

38
39
40
4 l
42
43
44
45
46
4"1
48
49
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Table 2. (Continued).

93
72
98
54
120
72
120
80
90
60
168
62
96
104
127
84
144
68
r26
96
t44
72
r95
74
n 4
t24
140
96
168
80
1 8 6
t2r
r26
84
224
108
t32
120
180
90
234
n 2
r 68
128
t44
t20
252
98
t7 l
r 56
217

50
5 l
52
53
54
55
56
57
58
59
60
6 r
62
63
64
65
66
67
68
69
7A
7 l
72
73
74
75
76
1 1

78
79
80
8 l
82
83
84
85
86
87
88
89
90
9 l
92
93
94
95
96
9',|
98
99
100

20
32
24
52
l 8
40
24
36
28
58
l 6
60
30
36
32
48
20
66
32
44
24
70
24
72
36
40
36
60
24
78
32
54
40
82
24
64
42
56
40
88
24
72
44
60
46
72
32
96
42
60
40

6
4
6
2
8
4
8
4
4
2
t 2
2
4
6
7
4
8
2
6
4
8
2
t 2
2
4
6
6
4
8
2
t 0
5
4
2
t 2
4
4
4
8
2
t 2
4
6
4
4
4
t 2
2
6
6
9
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Table 3. Primitive Roots Modulo Primes

The least primitive root r modulo p for each prim e p, p < 1000 is given in the table'

2
l l
5
6
3
5
3
2
6
l l
2
2
2
3
3
2
J

2
2
l l
2
3
I

5
2
3
2
5
2
l 7
7
3
5
2
2
3
5
6
3
5
6
7

709
719
727
733
739
743
7 5 r
7 5 1
76r
769
773
787
797
809
8 1 1
8 2 r
823
827
829
839
8 5 3
857
859
863
877
8 8 1
883
887
907
9 l l
919
929
937
94r
947
9 5 3
967
97r
977
983
991
997

r 5
2
3
l 3
2
J

2
1 3

n
J

2
1

)
2
3
2
2
2
2
2
3
3
5
2
3
7
7
3
2
3
2
3
3
l l
5
2
2
z
5
2
5
3
2

439
443
449
457
46r
463
467
479
487
49r
499
s03
s09
521
523
541
547
5 ) /

563
569
57r
577
587
593
599
601
607
6 1 3
617
6r9
63r
641
643
647
6 5 3
659
601
673
677
683
691
701

l 9
5
2
t
2
3
2
6
3
7
7
6
3
5
2
6
5
3
3
2
5
T 7
l 0
2
3
1 0
2
2
3
7
6
2
2
5
2
5
3
2 1
2
2
7
5

l 9 l
1 9 3
r97
199
2tl
223
227
229
233
239
241
251
257
263
269
271
277
28r
283
293
307
3 1 1
3 1 3
317
3 3 1
33',1
347
349
3s3
359
367
373
379
3 8 3
389
397
401
409
4 1 9
421
43r
433

1
2
2
3
2
2
3
2
5
2
3
2
6
3
5
2
2
2
2
7
5
3
2
3
5
2
5
2
6
3
3
2
3
2
2
6
5
2
5
2
2
2

2
3
5
7
1 l
l 3
t 7
l 9
23
29
3 1
3',1
4 l
43
47
5 3
59
6 l
67
7 I
7 3
79
8 3
89
97
l 0 l
103
107
109
1 1 3
127
1 3 1
r37
1 3 9
t49
l 5 l
1 5 7
1 6 3
r67
r73
179
l 8 l
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Table 4. Indices

p Numbers

I
l :
l :
l !
) 1

29
3 r
3 i
4 l
43
47
53
59
6 l
67
7 l
73
79
83
89
97

I r(
l t 2

I to
l 8
22
28
30
36
40
42
46
52
58
60
66
70
72
78
82
88
96 'ilil,Y,l 'i l;i l^ilrrl trlfr|JIl,lil'i

p Numbers

t 7 1 8 l 1 9 20 2 l 22 23 24 25 26 27 28 29 30 3 l 32 33

l9
23
29
3 l
37
4 l
43
47
53
59
6 l
67
7 l
73
79
83
89
97

l0
7

2 l
7
7

33
38
t6
l 0
40
47
64
49
2 l
2 l
56
6

89

e l
r z l  r s
l l  I  e
z 6 i  4
1 7 1 3 5
16 I  e
zs l rc
1 2 l 4 s
3 s l ' 3 7
4 3 1 3 8
t 3 l i 2 6
1 3 l  l 0
5 8 1  1 6
2 0 1 6 2
6 1 3 2

6 3 1 4 7
r 8 1 3 5
7 8 1 8 1

5
24
8

25
34
37
37
49
8

24
17
40
17
70
29
t4
69

l 3
t7
29
22
t4
36
6

3 l
t 0
55
62
27
39
54
80
82
5

l t
26
t7
3 l
29
t 5
25
7

26
l6
60
37
63
72
25
t 2
24

20
27
l 5
36
t6
5

39
l 5
57
28
l 5
46
26
60
57
77

8
l 3
29
l 3
40
28
20
53
9

42
44
30
l 3
75
49
76

I

l 6
l 0
l 0
4
8
2

42
t2
44
30
56
2

46
54
52
2

l9
5

t 2
l 7
l 7
29
25
46
4l
20
45
67
38
78
39
59

Indices
t l

r s l  r+ l
r l ro l  I
6 l 3 4 l 2 l
s  I  r r  I  j3 l  s l4 r

t 4 l 2 2 l 3 s
s l 1 1 6 1 4 6
3 4 1 2 0 1 2 8
nlsr l rs
s t l 2 s l 4 4
a I rr I oa

1 8 l 4 e l 3 5
3 l 6 l l l l

s 2 l t 0 l 1 2
3 l2s l se

l 8 l  3 l 1 3

I

l 5
t 4
23
l l
39
l 3
57
29
55
60
l 5
67
l 8
87
9

9
28
34
3

33
49
59
47
l l
l l
56
38
3 l
46

5
l0
9

44
f

5
5
5

30
40
20
5

80
74

20
l 8
3 l
27
23
t 7
2 l
32
57
6 l
69
t4
85
60

Reprinted with permission from J. V. Uspensky and M. A. Heaslet, Elementary Number Theory,
McGraw-Hill Book Company. Copyright O 1939.
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Table 4. (Continued).

Numbers
p

3'l
4 l
43
47
s3
59
6 l
67
7 l
78
79
83
89
97

I
r9
23
34
l l
4 l
48
65
55
29
25
57
22
27

l9
2 l
l 8
33
9

24
l l
38
29
34
37
35
63
32

t 8
2

l 4
30
36
44
l4
l 4
64
28
l0
64
34
t 6

32

42
30
55
39
22
2A
64
t 9
20
l l
9 l

35
4

l 7
38
39
27
l l
22
70
36
48
5 l
l 9

6
33
3 l
4 l
3'l
46
58
65
65
35
67
24
95

20
22
9

50
9

2s
l 8
46
25
74
30
30

6  l 2 l
t s l 2 4
4 s 1 3 2
1 4 l  l l
5 4 1 5 6
s 3 1 6 3
2 5 1 3 3
t l + t

7 5 1 5 8
4 0 1 8 1
2 l l l 0
8 5 1 3 9

In

I
1 3  |')) |
33 I43 1e l
48 15 r  I4e l
7 t l
2e l

4 l

dices

I43 1
8 l

27 1r i  I
6 r l
43 17 r  I76 1
26 128 1
58  1

4 l
29
48
34
27
l 0
l 3
64
7

72
45

23
40
1 6
58
29
2 l
54
30
6 l
73
l 5

44
23
20
50
9

3 l
59
23
54
84

2 l
54
l0
43
50
38
l 7
76
65
l4

23
36
38
46
2

66
28
l 6
74
62

p
Numbers

50 5 l 52 53 54 ) ) 56 ) t 58 59 60 6 l 62 63 64 65

53
59
6 l
67
7 l
'73

79
83
89
97

43
r3
45
3 l
62
l 0
50
55
68
36

27
32
53
5 t

5
27
22
46
7

63

76
47
42
2 l
5 l
3

42
79
55
93

22
33
57
23
53
'7'7

59
78
l 0

3 5
t 9
52
l 4
26

53
l 9
\)

3 l
37
8

59
56
52
5 l
66
87

2 l
52
26
t 9
57
65
l l
4 l
37

30
32
49
42
68
33
37
36
55

29
36
45
4

43
t 5
1 3
75
47

3 l
36

J

5
3 l
34
43
67

30
56
66
23
7 l
l 9
l 5
43

Inc

69
58
45
66
69
64

Lices

48

I  1 7
l l e
1 6 0
l 3 e
1 4 7
t 8 0

35
53
45
55
70
83
75

6
36
48
24
6
8

t 2

34
67
60
1 8
22
5

26

p
Numbers

66 67 68 69 't0 ' t l 72 73 74 75 't6
I I 78 79 80 8 l

67
7 l
78
79
83
89
97

33
63
69
73
t 5
1 3
94

47
50
48
45
56
57

6 l
J I

29
58
38
6 l

4 l
52
2'7
50
58
5 l

35
42
4 l
36
79
66

44
5 l
33
62
l t

36
t 4
65
50
50

44
69
20
28

23
z l
27
29

4'l
44
53
72

40
49
67
53

43
32
77
2 l

Inc

39
68
40
J J

l ices

I
1 4 3
1 4 2
t 3 0

3 l
46
4 l

42
4

88

p
Numbers

82 83 84 85 86 87 88 89 90 9 1 92 93 94 95 96

83
89
97

4 l
37
23

6 l
t 7

26
'73

76
90

45
38

60
83

44
92 s 4  l ' 7 e 1 5 6  1 4 9

Ind

20 1
lces

22 82 48
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Table 4. (Continued).

p Indices

8 e { t 0 l l tI 5 76432
l2 t 6l 5t4l 3

l l
I

I r
l '
l !
2.
2l
3 l
3''
4 1
43
4'l
53
59
6 l
67
7 l
73
79
83
89
97

2 l  r l  |  |  |
21  41  3 l  r l  I
3 l  2 1  6 l  4 1  5 l  I
2 l  4 l 8 l  s l r o l  I
2 l  4 l  8 l  3 l  a l n
3 l  e l ro ln l  s l r s
21  4 l  s l  r o l  r g l  7 )
5 l  2 l t o l  + l zo l  r l
21  4 l  a l t o l  : l  6 l
3 l  e l 271 ro l ze l r c l
21  4 l  a l  r o l t z l z t l
o l r e l r r l z s l z t l :B l
3 l  s l z t  l l s l ze l+ r l
s lzs  I  r r  I  r+  lzz lu l2 l  4 l  8 l t 6 l : z l r r l
z l  + l  s l ro l r z l  s i
z l  4 l  a l re l : z l  : l
2 l  4 l  s l  ro l t z leq l
T l 4 e l s q l s r l s r l  z l
s l zs l sz l+ r l s t l  s l
3 l  e l z t l  z l  e l r s l
z l  4 l  s l  r o l t z l oa l
3 l  e l 27  l s r l os l r z l
s l 2 s l 2 8 l 4 3 l 2 t l  s l

t 2  l  2 l  a l  rt 4 l  e l r s ; r z l r s l r r l  r l  o l r z l  s17 l  16 l  l l I  t l z z l  r s l z r  I  n l  l s l  Ir z  1  z+  !  r s  !  I  I  r s  I  t  I  v l  za l  z t  I  zst7  |  20  I  2e  I  zs  I  n  I  a l  z+ l  ro  I  : o  I  zs  It 7  I  34  l 3 t  l 2s  I  n  I  ze l  r s  I  : o  I  z :  I  s  Ize l t o  l r e l 32 l28 l  + l z+ l z t l  g l r s l
37  l 2s ;  r z  I  r o  I  r o  |  + l  r z l  r c l z z l  z t ln  |  8  |  40 l  r z  I  r :  I  r e  |  + l  I  z t l  + t l  n  Iz2 l 44 l  r s  I  r z  |  : +  |  r s  I  m  I  t  I  A l  za lt0 | z0 | 40 | 2t | +z ! zs I so I +r I zt I +e I6 l  t 21  z+ l  + t  I  t s  I  q  I  r s  I  : o  I  r t  I  z z l
r  I  5s l+ r l  u l  r s l  o l  r s l  : o l  s l  r o i14121  1  +21  +s  |  : r  |  + l z t l  s+  I  z :  I  r s  Ir i l  2 l  l o l  so l  : r  I  e l +s l  o l so l  a  I,11  + l rz lx lz t  I  s lz+ lzz lss l ro l
15 | t I t+ | za I se I zq I ss I t: I ee | +q Ii t l 64 l  t + l  +z l y  l z z  I  eo  I  zo  I  oo  I  z l
o l  o l  l o l  s :  I  z r  I  u l  zg l  +s  |  +e l  : e  I

7 l 3 l 6 l  ' l  Iu l  e l  s l r o l  z l  I
t r l r o l r+ l  a l  t l  4

ll
Numbers

p Indices

t 7 l 8 t 9 20 2 l I 2322 24 25 26 27 28 29 30 3r 32 33
1 9
23
29
3 l
37
4 1
43
47
53
59
6 l
67
7 l
73
79
83
89
9?

l0
l 5
2 l
22
l 8
26
26
38

J

33
44
20
62
20
48
l 5
6

83

I

I
6

l 3
4

36
33
35
2
6

27
40
8

27
65
30
t 8
2t

26
l 2
35
34
l 9
l 0
t 2
t 4
54
t 3
56
62
37
60
54
38

t 2
23
5

33
40
l4
3

24
28
47
26
37
l 8
32
37
73
93

l 4
t 7
l 5
29
35
42
l 5
48
56
33
s2
46
t 7
t 7
74
4 l
77

I

I
)

t 4
2 1
5

40
28
43
53
5

37
38
t 2
5 l
65
34
94

l 0
I I
)

30
34
46
33
47
l0
7

53
60
74
47
I 3
82

20
2

l 0
t 6
t 6
42
l 3
35
20
l 4
t 6
8

64
l l
39
22

l l
6

20
t 4
)

22
26
l l
40
28
4 l
40
34
22
28
t 3

22
l 8
3
2

l 5
1 6
52
22
l 9
56
3

54
23
44
84
65

I Numbers

I  rs  I  r  I
l r : l  t l z r
|  6 l t 2 l 2 4

I r z l t r l zz
|  2 l  6 l 1 8
3 3 1 2 4 1 2 6
s l l 4 e l 4 s
4 4 l 2 e l s 8
3 8 l 1 5 l 3 0 l
4 s l 2 3 l 4 6 l
2 t l  5 1 3 5 1
sr l :e l :+ l
6 e l 4 e l 6 8 l
s | 'o I zo I

t + 1 + + l + t l
z + l t s l u l

I
l l
9

I I
36
37
57
60
25
32
24
46
40
40
79

22
l 3
33
39
21
) 5

59
50
l l

47
59
80
3 l

1

37
I 3

42
5 l
57
33
6

1 6
t 9
't7

4
35

t4
t'l
39
35
3r
43
53
66
42

57
7 l
t 2
78
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Appendix

Table 4. (Continued).

p
Indices

34 3 5 1 3 6 37 38 39 40 4 l 42 4t 4 4 i | 4 5 i . 4 64',1 48 49

17
4 l
43
47
53
59
6 l
6',1
7 l
73
79
83
89
97

28
20
3 l
34
9

27
45
65
l0
35
l 3
59
36
2

19
38

t

29
l 8
54
29
63
70
29
39
35
l 9
l 0

I
23
z l
4

36
49
58
59
&
72
38
70
57
50

1 5
20
20
l9
39
55
5 l
22
68
35
57
82
56

8
17
6

38
l 9
49
35
t 2
48
26
3 l
68
86

I

8
30
23
38
37
3

l 3
2 l
78
62
26
42

I
24
9

46
l 7
l 3
6

20
32
76
4 l
78
l6

29
45
39
34
26
t 2
69
l 4
70
82
56
80

I
37
25
9

52
24
57
70
52
8 l
79
1 2

M
50
l 8
43
48
44
58
77
79
59
60

I
Numbers

r l
3 2 l l e l  I
4 7 l 4 r l 2 e
3 6 1 1 3 1 2 6
2 5 l 5 0 l 3 e
2 e l 5 8 l 4 e
2 4 l | 2 6 1 4 0
7 1 1 6 3 1 2 3
? 3 l 6 r l 2 s
? 5 1 6 7 1 5 1
8 8 1 8 6 1 8 0
e l 4 5 l 3 1

5
52
t'l
3 l
67
42
t )

l 9
62
58

l0
45
34

1 6 2
1 4 3
1 6 4
: l 61
138
l8
t 9 6

20
3 t

1

l 5 i
I  17
1 2 8
1 4 3
| t16
1 2 4
1 9 2

p
lndices

53
59
6r
67
' l l

13
19
83
89
97

40
3

l 4
47
48
61
50
69
72
72

27
6

28
27
52
43
7 l
55
38
69

I
t 2
56
54
9

69
55
27
25
54

24
5 l
4 l
63
53

I

54
75
76

48
4 l
t 5
l 5
46
z l
25
47
89

37
2 l
30
34
l l
63
50
< )

57

l 5
42
60
25
))
3 1
l 7
6',7
9 l

30
23
53
33
56
t4
34
23
67

I
46
39
1 8
6 l
42
68
69
44

3 l
1 l
55
l 3
47
53
29
26

I
22
30
65
62
23
87
33

N

M
68
33
28
46
83
68

I
mbers

I
2 1 l | 4 2
5 0 1 6 6
r e l 2 2
5 t 1 5
r l rs

7 1 1 3 5
4 9 1 5 1

17
36
37
45
36
l6
6 l

72
48
t4

34
39
39
56

p
Indices

. , ' r i i i i i i

oo l  e t  l oa  los  l i o  lu r  l n l t t  l ra  l r s  l t t l t t  l z t  l re  180  |  8 t

67
7 l
73
19
83
89
97

I
60
49
10
6 l
55
70

65
26
30
39
76
59

29
57
l l
78
50
4

6 l
20

6 l
66
33
73

I
38
20
63

5
3

44
60
43
l 5
1 5

I
22
3

45
75

66
6

46
84

40
l 2
49
32

4 l
24
58
63

44
48
85
24

53
l 3
7',|
23

2(
) i

I t

I
{umbt
I
t' l s 2

'  1 7 0
i l 9 0

r
l 2 r
1 3 2
1 6 2

42

l9

p
Indices

82 8 3 1 8 4 8 5 1 8 6 1 8 7 1 8 8 8 9 1 9 0 9 t 1 9 2 1 9 3 94 95 96

83
89
97

I
2r
95

6 3  I  l l
8 7 1 4 7

3 3 l l o l 3 0
4 l  I  l l  I  5 5

I
8 l 1 7 1 8 5 37 88 52

N
66

umbr
l r s

lrs



Table 5. Simple Continued Fractions
for Square Roots of positive lntegers

d dJ7 J7

|  ,  I  r,, l l  i
l :  l r r :1 - l  I
i s  l t z ,q l  I
l o l t2 :2+ t  I
l t  l r z ; r ,TJ '+ t  l
l s  ) r2 ;ye t  I
I  l 0  |  [ 3 : 6 ]  |
I t t  I  l : ; : , o t  I
I  tz  I  t : ;N l  I
I n I t l , r . r , T , l , o l  I
| 'o I f3:LAGt I
i  t 5  I  [ 3 ; t , 6 ]  |
l n | t+ :s t  I
J ts  J  l+ ;+,a l  I
I ,n I r+;1i;l)"rl I
I  20 I  Ia:2,81 i
I  zt I  t4; iJJJJst I
| ,z  I  t+rr ,xJ. r"s l  I
I  2 3  |  [ + : t . l , r , s ]  |
I  zq I  t4 ; l  ,81 |
I  ze  I  t s ; ro l  I
I  , ,  I  rs:s,  ror Ij  28  j  t s ;3 ,2 , : ,  ro l  I
I  2e I  ts : t tJ ;Jot  I
I  :o I  Is:z,rol  l
I  , '  I  t s ; r , r - : _ : ; r r , ro l  I
I  3 2  |  t 5 : l , l , l , l o l  I
|  : l  I  t s ; r , f  r , r o1  |
l : +  I  t s ; r ,+ r l o t  I
l : s  l t s : _o l  I
I  i 7  |  t 6 : l 2 l  I
i : a  j  t o ;o ,u t  L
l : r  116 'aJ I  l ;
] qo  l t o ; : J2 l  l ;
io '  l to : fu t  i ;
I  42 )  [6:2, t21 |  .
lo ,  l lu ,@, , r l  l ;
a a  l | . 6 : l . l , l , 2 , l . l . t . l 2 l  l  .
4 s  l t 6 ; r , t ] J m 1  l ;+e1ro, f f i r l i
47  [  [o ; t , s ,  r ,  t z l  I  g
4 8  l l e ; r , r z l  l q
s o l t z ; l + l  l ;
5 r  I  t t : t . t q l  I  ;
s z l t t : + t t f V . u ,  l n

t -

I  t 7 ; 3 , 1 , 1 , 3 . 1 4 1
I tz ;zre;J. r+t
I  t t ,T,zl, tqi
I t 't;zr+l
t -

I  t 7 ; l , t , 4 , l . l . l 4 l
t -

I  I 7 : l , l , l , l . l . l . t 4 l

I t t ; n d . t q t
|  [ l : l  , z , t , t+1
I  tz ; r ,q3JJtr , raJJat
I  t 7 ; 1 , 6 ,  |  , l 4 l
I t z ;1 r+ t
I  [ a ; to ]
I t s ;sT ' t-
I  l E ; 5 2 1 . 1 , 7 , 1 . t . 2 , 5 , t 6 1
|  [s:+.  ro]- -

t 8 : 3 , 3 , 1  , 4 . 1  . 3 . 3 . 1 6 1
ts;zT;, rJ,lot- -
l8;22,- l  ,1 . t  ,z,z,t  ol
[ 8 ;2 ,16J
[ 8 ; 1 . 1 , 5 , 5 , 1 . 1 . 1 6 1
t g ;  l ,  r  J , l , G t
[ 8 ;  l ,  r  , l  , l 6 ]-
I E ;  1 , 2 ,  l ,  1 , 5 , 4 , 5 .  t ,  t , Z ,  t ,  t  O ]
[ 8 : 1 , 3 , 2 , 3 , l , l 6 J
t s :  r , q ,T .  t 6 l
ta;ffi.I
[ 8 ; l , l 6 l
[ 9 ;  I  8 ]
Iq ;eJ 8 t
[ 9 ; 6 , l 8 l
t q ; {  I , l , a , I 8 t
tq:1.1..-r'r.sJJJmr
[ 9 ; 3 , 1 8 1
tq ;2JJ , l2 , l8 t
[\ry,zJal
[ 9 ; 2 , 1 8 ]
[ 9 ;  l , l  , 5 ,  I  . 5 .  l .  I  . l  8 l
l 9 : l  , l  , 2 .4 .2 .1  .  1  .  1  81_ - -
I9 :1  ,1  ,4 .6 .4 . t  .  1  .  1  S l
rg;mr
[ 9 ; 1 , 2 , 1 , 1 8 ]
l q ; t , : , r , r s l
t g : t , s ] , r r r ; l , l . i l l

53
54
55
56
5 7
58
59
60
6 l
62
63
65
66
61
68
69
70
7 l
72
73

11 I/ )  |
76 1
77 178 I7 e l
80 I82 I83  I
34 1
t 5  |- - l

16 l
J 7  l
18 i
re l
' o i
l l  I
t't I- l

3 l
4 l
' t
6 l
- l

8  i  [ q ; t , a , t , t e ]
q i lg;iJTl

426



Answers to Selected Problems

Section l. l

1.  a)  20 b) s5 c)  :as d) 2046
2.  a )  32  b)  120 c )  14400 d)  32768
3. t .  2.  6,  24,  120,720, 5040, 40320, 362880, 3628800

4 .  l ,  1 2 0 ,  2 5 2 , 1 2 0 ,  I
5 .  8 4 .  1 2 6 .  2 1 0
g .  2 n  \ n + D  / 2

1 0 . 2 n
r  r .  6 5 5 3 6
2 1  .  x  :  y  :  l .  z  : 2

Section 1.2

l .  9 9  :  3 ' 3 3 ,  1 4 5  :  5 ' 7 9 ,  3 4 3  :  7 ' 4 9 , 0  :  8 8 8 ' 0

2 .  a ) .  c ) ,  d ) ,  e )

3 .  a )  5 , 1 5  b )  1 7 , 0  c ) - 3 , 7  d ) - 6 , 2

4 .  a :  * . b
1 3 .  b )  3
11.  0  i f  a  is  an in teger ,  - l  o therwise.

2 3 .  b )  2 0 0 . 4 0 , 8 ,  I  c )  1 2 8 ,  l 8

2 4 .  2 0  +  l 8 [ x - l ] ,  S t . 0 8  n o ,  $ 1 . 2 8  Y e s

Section 1.3

l .  ( 5554 ) r ,  ( 2 f i 2 )  r c
2 .  ( 328 ) ro .  ( l  I  I  I  l oooooo )2
3 .  ( t r s )  , u ,  ( 74E)  6
4 .  ( t O t O t 0 l  I  I  l 0 0 l  l 0 l  I  l  l 0 l  I  I  l ) 2 ,  ( t  t O t  I  1 l 0 l  I  I  I  l 0 l 0 l  l 0 0 l  I  l 0 l  l 0 l ) 2 ,

( r o o t  l o l o o o o o l o l  l ) 2
6 .  b )  - 3 9 , 2 6  c )  ( t o o l ) - 2 ,  ( l l 0 0 l l ) - 2 ,  ( 1 0 0 1 l 0 l ) - z

1 4 .  i l  t + : 2 ' 3 1  + l ' 2 1 . , 5 6 : 2 ' 4 t  +  l ' 3 !  +  l ' 2 ! , 3 8 4 : 3 ' 5 !  +  l ' 4 !

Section 1.4

l .  ( r o o t 0 l  l o l  l o ) 2
2 .  ( r t t i l o l l l ) z
3 .  ( r o t  t 0 0 0 l l 0 l ) 2
4 .  ( l  l l o ) 2 .  ( l o o o l ) 2

5 .  ( t o o 6 5 ) r o
6 .  (338F)  re' t  .  (8705736) r6
8. ( l  I  C) rc,  (28 95) ro



428 Answers to Selected problems

2 3 '  a )  7 g r o s s , 7 d o , z e n , a n d g e g g s  b )  i l  g r o s s , 5 d o z e n , a n d  l r e g g s
c) 3 gross, I I dozen, and 6 eggs

Section 1.5

I a) prime b) prime c) prime d) composite e) prime f) composite
7 .  3 , 7 , 3 1 , 2 1 1 , 2 3 1 1 , 5 9
r 0 .  i l  2 4 , 2 5 , 2 6 , 2 7 , 2 9  b )  1 0 0 0 0 0 . l  +  2 , 1 0 0 0 0 0 1 ! +  3 , . . . , 1 0 0 0 0 0 1 ! +  1 0 0 0 0 0 1
t 4 . 5 3
16. a) 1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,7g,g7.93.99

Section 2.1

l .  i l 5  b )  l l l  c ) o  d )  I  e ) r r  i l 2
4. I if a is odd and b is even or vice versa, 2 otherwise
5 .  2 t 2 l
1 4 . i l 2  b ) s c ) s s d ) 3  e ) t  f ) 1 0 0 1
15. 66,70,105; 66,70,165; or 42,70,165
19.  (3k+2,  5k+3)  :  I  s ince  s3k+D_3(5k+3)  :  I

Section 2,2

l . a ) r s b ) 6 d Z d ) s
2 .  a )  r s  : 2 . 4 5  +  ( - l ) 7 5  b )  6  -  6 . 2 2 2  +  ( _ 1 3 ) 1 0 2

c )  z : 6 5 ' 1 4 1 4  +  ( - r 3 8 ) 6 6 6  d )  5  : 8 0 0 . 4 4 3 5 0  +  ( - 1 1 0 1 ) 2 0 1 8 5
3 .  a )  I  :  l ' 6 +  l . l 0  +  ( - t ) t 5  b )  7 : 0 . 7 0  +  ( _ l ) 9 g  +  1 . 1 0 5

c)  5  :  -5 .280+ 4 .330 +  ( - t )+os+ 1 .490
4 .  i l Z
s .  i l 2

Section 2.3

l .  i l  22 .32  b)  3 .13  c )  22 .52  d)  172 d ,2 . l . l l  f )  28  g)  s . ro l  i l  23 .43  i )  24 .32 .5 .7
|  2653 k )  3 .5 .72 .  I  3  l )  9 .1  l . l0 l  t ,  1 t ,  , l  i

8 .  b )  2 r 8 '  3 8 . 5 4 .  7 . 1  1 . 1 3 .  t 7 . t g
9. 249,331
10.  300,  301,  302,  303,  304
|  2 .  b )  5 ,9 ,  |  3 ,1  7 ,2  l ,Zg ,3  3 ,37 ,4  1 ,49 ,53 ,57 ,6  1 ,69 ,7  3 ,7  7 ,gg ,g  3 .g7  . l  O l

d)  693 :  21.33 :  9 .77
i l  24 b) 210 c) r+o d) I  l2l  I  e) soo+o i l  3426s7
i l  2 2  3 3  5 3  7 2 . 2 1  3 s  s 5  7 7  b )  1 , 2 . 3 . 5 . 7 . 1 1 . 1 3 . 1 7 . 1 9 . 2 3 . 2 9

d  2 . s . 1 1 , 2 3 . 3 . 5 7 . 7 .  1 1 1 3 . 1 3  d )  1 0 1 1 0 0 0 , 4 l f i  4 7 r r 7 g | r  g 3 i l r l 0 l r 0 0 l
18 ,540 ;  36 ,270 :54 ,  180 ;  90 .  108
308, 490
a)  30 ,  l00 l
a fuc )2 . : r , r 5 r

f )  33 .5 .7 .  I  3 .  19 .37 .73 .  109
1 0 3

1 4 .
1 5 .

1 7 .
2 1 .
25.
29.

30.

d )  3 2 . 5 . 7  . 1 3 . t 7 . 2 4 t  e )  5 2 .  1 3 . 4 1 . 6 t . 1 3 2 1
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Answers to Selected Problems

a ) 3  t ) z e  d 2 4 2
a )  x  : 9 8 - 6 n ,  !  :  |  *  7 n ,

c ) x : 5 0 * n ,  l :  - 1 0 0 +

(nickels, dimes, quarters) :

( 8 .  1 6 , 0 )
9 first-class, l9 second-class,

9 . 0  |  2  3  4  5  1 0 . 0  |  2  3  4  5 l l .  x 0 r 2 3

Section 2.4

l .  i l  zz 'q l 'eu  b)  7 '37 '53 '107 c )  t92 '3 r '4969

2.  u )  r : . sqr  b )  73  c )  tz '6+ t  d )  103 '107 e)  too t '1999 f )  4957 '4967

5 .  d 1 7 , 3 4 7  6 .  d ) 1 3 ' 1 7 , 4 1 . 6 1 , 2 9 3 ' 3 4 1 3  7 . 5 ' 1 3 ' 3 ? ' 1 0 9  l z '  5  l 3 '  2 n l o g r c 2

Section 2.5

l .  a )  x : 3 3  * 5 n . 1 : - l l - 2 n  b )  x : * 3 0 0 *  l 3 n ' y  - 4 O O - 1 1 n

;13::: i l ;4,-"44r, d) no sorution 
' i l  

,x 'ZI cb1 y =-zi^\n
-  

i l  x : 8 8 9 +  1 9 6 9  n , Y : - 6 3 3 - 1 4 0 2 n
2. 39 French francs, I I Swiss francs

3. 17 apples, 23 oranges 8-' l. 
"Pt 

0f

4 .  l 8
5 .  a )  ( 1 4 - c e n t s t a m p s , 2 l - c e n t s t a m p s )  = ( 2 5 , 0 ) , ( 2 2 , 2 ) , ( 1 9 , 4 ) , ( 1 6 , 6 ) , ( 1 3 , 8 ) '

( 1 0 ,  1 o ) ,  ( ? ,  1 2 ) , ( 4 ,  1 4 ) ,  ( 1 ,  1 6 )

b) no solution
c)  (14-cent  s tamps,2 l -cent  s tamps)  =(54 ,1) '  (51 '  3 ) '  (48 '  5 ) '  (45 '7 ) '

( 4 2 , g ) , ( 3 9 ,  1 1 ) ,  ( 3 6 ,  l 3 ) ,  ( 3 3 ,  1 5 ) ,  ( 3 0 ,  l 7 ) , ( 2 7  '  1 9 ) '  ( 2 4 ' , 2 r \ ' , ( 2 1 ' , 2 3 ) ' ,

( 1  8 ,  2 5 ) ,  ( 1 5 , 2 : 7 ) , ( 1 2 ,  2 9 ) , ( 9 ,  3 1 ) ,  ( 6 ,  3 3 ) ,  ( 3 ,  3 5 ) ,  ( 0 ' ,  3 7 )

z - l-n b) no solut ion

3n,  z  :  150-3n ,  w - -  f r
( 2 0 ,  0 .  4 ) ,  ( 1  7 ,  4 ,  3 ) ,  ( 1 4 ,  8 ,  2 ) ,  ( 1 1 ,  1 2 ,  1 ) '

4 l  s tandby 14.  no 15.  7  cents  and 12 cents

Section 3.1

l .  a )  l , 2 J l P $  1 , 3 , 9 , 2 7 , 3 J , 1 1 1 , 3 3 3 , 9 9 9  . . ' i t  
" f f 2 ,4.  i l  g b) b c)  o d) 12 d + f )  I

1 0 .
I  l .

t2.

1 3 .

0
I
2
J

4
5

12. a) 4 o'clock b) 6 o'clock c) 4 o'clock

I  3 .  0 . I  , 5 ,6
1 4 .  a  7  +  b  ( m o d p )

17.  n  7  + I  (mod 6)

1 8 .  1 , 3 , 5 , 7 , 9 , 1  l , l  3 , 1 5 , 1 7 , 1 9 , 2 1 , 2 3 , 2 5

2 t . a \ q z l r ) z c ) t 8
26.  a)  t  b)  I  c l  f  O)  I  e)  ap- t  =  1  (modp)  whenp is  pr ime andpla

27.  a)  -1  b)  - l  c )  - t  d)  - l  e )  (p- l ) !  :  - l  (mod p)  when p is  pr ime

30 .  a )  15621

2 3 4 5
3 4 5 0
4 5 0 1
5 0 1 2
0 r 2 3
t 2 3 4

l 0 r
l r  2

l 2  3
t 3  4
t -

lo  ,
l s  0

0
I
z

J

4
5

0
I
2
J

.+

5

0
I

L

J

4
5

0
0
0
0
0
0

0
J

0
J

0
J

0
2
+

0
2
4

0 5 4
1 0 5
2 r 0
3 2 1
4 3 2
5 4 3

3 2 1
4 3 2
5 4 3
0 5 4
1 0 5
2 1 0

5

0
5
A

J

2
I



L a)  x :3  (mod 7)  b)  x :2 ,5 ,g  (mod 9)  c)  x=7 (mod 2 l )  d)  no so lur ione )  x = 8 1 2  ( m o d  l 0 0 l )  f )  x : 1 5 9 6  ( m o d  t 5 g 7 )
2.  c )  x=5 (mod 23)
3.  I  t  hours
4.  6-0,6 ,12,18,24 (mod 30) ,  6  so lu t ions
s . a ) r : D 7 c ) s d ) t 6
8.  a)  (x ,y)  = (0,5) , \ t ,D. ,e.O,(3,3) , (4,0) , (5,4) , (6,1)  (mod 7)b )  ( x ,y )  =  ( t , l ) , (1 ,3 ) , ( t ,5 ) , t r , z l , t : , o l  

,G ,z i , i i ' , q j , i r ,u l , (5 ,1 ) , (5 ,3 ) , (5 ,5 ) , (5 ,7 ) ,(7,0), (7,2).(7,4),( l .0 (mod g)
c)  (x ,y)  = (0,0) ,  (0 ,3) ,  (0 ,6) ,  (  I  ,  I  ) ,  (  I  ,4) ,  (  I  ,7)  , (2 ,2)  , (2 ,5) ,  (2 ,g) ,  (3 ,0) ,  (3 ,3) ,  (3 ,6) ,(4,1) , (4,4) , (4,D,$,D,  (5,5) , (5,g l , re ,o l , ro , :J , - i i , i l  , (7 ,1) , (7,4) , (7,7) , (g,2) ,(8 ,5) , (g ,g)  (mod 9)
d) no solut ion

Section 3.3

l '  a )  x  =  3 7  ( m o d  l g 7 )  b )  x : 2 3  ( m o d  3 0 )  c )  x : 6  ( m o d  2 r 0 )d)  x  =  150999 (mod 554268)
4 .  2 l 0 l  * 2 0 1

8. a) x = 28 (mod 30) b) no solut ion
10 .  a )  x  : 23  (mod  30 )  b )  x  =  100  (mod  210 )  c )  no  so lu r i on

d) x :  44 (mod g40) e) no solut ion
i l .  3 0 t
|  3 .  0000,0001,0625,9376
17.  26 feet  6  inches

430

Section 3.2

Section 3.4

l .  a)  (x ,y)  =  (2 ,2)  (mod
(4 ,1 )  (mod  5 )

2 .  a )  ( x , y )  =  ( 0 , 4 ) ,  ( l , l ) ,
3 .  0 ,  l ,  p ,  o r  p 2

Answers to Selected problems

5) b) no solut ion c)  (x,y)  = (0,2),  (1,3),  (2,4),  ( : ,0)  or

(2,5),  (3,2),  (4,6),  (5,3),  (6,0) (mod 7) b) no solut ion

4.  a)

1 .  a )

8 .  a )

(
l0
t )
t -

{
l0
U

{ q
I
l 4
l r
l r

r l  ls  r l  f r
ol  b)  lo  2 l  c )  l ,/  \  /  t -

4  3J  [ z  o  6 l
t  o l  b )  lz '  o l  c )
4  4 )  l l  4  o j

4 l
rJ
ls
l )

l5
[ 4

5 5 4
5 4 5
4 5 5
5 5 5

9 .  a )  x  : 0 , y  E  7 , 2  - 2  ( m o d 7 )  b )  x  :
c )  

"  
=  5 , - y  =  5 , ,  =  5 , w  =  5  ( m o d  7 )

r 0 . i l 0 b ) 5 c ) 2 s d ) l

l , - y  E  0 , 2  =  0  ( m o d  7 )
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Answers to Selected Problems

Section 4.2

Section 4.1

l .  a)  28 b)  24 c)  2ro d)  2 t

2 .  a)  53 b)  54 c)  5r  c )  5e

3. a) by 3, not by 9 b) by 3, and 9 c) by 3' and 9 d) not bv 3

4. a) no b) Yes c) no d) no

5. a) those with their number of digits divisible by 3, and by 9 b) those with an

even number of digits c) those with their numbcr of digits divisible by 6

(same ior 7 and for 13) d) I  1

8 .  oz ro2n - t . . . aps -  azno2n - t  azn -z  *  *  a5  aaa3 l  a t  apo  (mod  3 l ) '

3 7  t r  4 $ 6 e 2 . 3 7 1 1  l 0 9 2 7 8 s
10.  a)  no b)  not  by 3 ,  by  5  c)  not  by 5 '  not  by  13 d)  yes

l l .  7 3  e
12.  

' ! -6

I 3. a) incorrect b) incorrect c) passes casting out nines check d) no' for example

part (c) is incorrect, but passes check

2. a) Friday b) Friday c) Monday d) Thursday

e) Saturday f) Saturday g) Tuesday h) Thursday

i) Monday j) Sunday k) Friday l)  Wednesday

Section 4.3

l .  a ) Tcanr

Round

') 3 ,4t () 1

I 1 6 b)'c 3
')

2 b-vc 1 6 5 ,| t l' - - l
' ) l
- l

-- ----- 1

3 ) I 1 6 b)'c -l I

4 3 b\,c 1 o 4

5 ,1
J 2 I 1 b r c 5

6 5 . 4 bvc ) I 1 o

1 o 5 4 3 2 ) b l c

3 .  a )  H o m e  t e a m s :  R o u n d  l : 4 , 5 .  R o u n d  2 : 2 , 3 ,  R o u n d  3 :  1 , 5 ,  R o u n d  4 : 3 , 4 '  R o u n d  5 :

t . 2

Section 4.4

5 .  558 ,  1002 ,  2 t - t 4 ,  4
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Section 5.1

l .  _ l  l "
2 .  I
4 . 4
5 .  a )  x  :  9  (mod  17 )  b )  , r  :  17  (mod  19 )
1 8 .  I
24 .  52

Section 5.2

t7  .  7 .23 .67

Section 5.3

l .  a )  1 , 5  b )  1 . 2 , 4 , 5 , 7 , g  c )  1 , 3 , 7 , 9  d )  1 , 3 , 5 , 9 , , . 1 3  e )  t , : . s , 2 , 9 . , , t 3 . 1 5
)  1 1 \  1 m - l

r  a r . J \ . . , \ L  I

5 .  l l
9 .  a )  x  : 9  (mod  14 )  b )  x  :  13  (mod  15 )  c )  - r  =  7  (mod  t6 )
l l .  a )  r  b )  I
1 2 .  d ( 1 3 )  :  1 2 , 0 0 4  : 6 . a ( 1 6 )  : 8 ,  d ( I 7 )  :  1 6 , , r ( r 8 )  : 6 ,  o ( t g ) :  t 8 ,  d ( 2 0 )  :  8

Section 6.1 i l  f

l .  i l  +o  b )  t 28  d  t 2o  i l  5760
2 '  a )  1 ,2  b )  3 ,  4 ,  6  d  no  so ru r i on  d )  7 ,  9 ,  14 ,  and  rg  e )  no  so ru t i on

f )  35 ,  39 ,  45 ,  52 ,  56 ,70 ,  J2 ,7g ,  g4 ,  g0
3 '  i l  l '  z  b)  those in tegers  n  such that  8  |  n :a l  n .  and n has at  least  onc odd pr inrcfactor; n has at reast two odd prime factors; or n has a prime factor p = t (mod 4)c ) z k , k : 1 , 2 , . _ .

Section 6.2

1 .  a )  48  b )  399  d  2sqo  d )  2 r0 r_ l  e )  6912
2 . i l 9  b ) 6  c ) r s  i l 2 s 6
3. perfect squares
4' those posit ive integers that have only even powers of odd primes in their prime-power factorization
5 .  a )  6 , r  r  b )  r 0 ,  r  7  c )  |  4 ,  |  5 ,21  , 23  d )  33 ,35 ,4  7  e )  no  so ru t i on  f )  44 ,  656 . a ) t  0 2  d q  d ) t 2  d t g z  f ) 4 5 3 6 0
8' a) primes b) squares of primes c) products to two dist inct primes or cubes ofprimes
9 .  n r (n )  /2

10.  a)  73,252.2044 b)  r  +pk c)  (pku+r t_D/gk_D o i i< t ta ,* t )_D/Qf_t)
j : l

Section 6.3

1 .  6 ,  29 ,  496 ,  g  I  2g ,  33550336 ,  g5ggg69056
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3 .  i l  t 2 , 1 8 , 2 0 , 2 4 , 3 0 , 3 6  b )  9 4 5

7. a),  c)  Pr ime
8.  a ) ,  b ) ,  d )  Pr ime

Section 7.1

l .  D W W D F  N D W G D  Z Q

2.  I  CAME I  SAW I  coNQUERED
3.  IEXXK FZKXC UUKZC STKJW

4.  PHONE HOME
5 .  t 2
6 .  9 . t 7
7 .  i l  C :7P +  16  (mod 26)  b )  C:acP

8 .  A )  V S P F X H  H I P K L B  K I P M I E  G T G

Section 7.2

RL OQ NZ OF XM CQ KE QI VD AZ

IGNORE THIS

I l  2 4 ]
124 25 )

d 2 6

0 0 0
3 1 0
3 1 0
2 t 3
2 t 7
0 0 s

Section 7.3

l .  t 4  t 7  t 7  2 7  l l  1 7  6 5 7 6 0 7  7 6

Z.  DO NOT READ THIS
4.  GOOD GUESS
5 .  9 2
6 .  1 5 0

Section 7.4

l .  1 4 5 3 ,  3 0 1 9
3 .  1 2 1 5  1 2 2 4  t 4 7 l  0 0 2 3  0 l 1 6

4. EAT CHOCOLATE CAKE

* bc 'r d (mod 26)

b )  EXPLOSIVES INS IDE

l .

2.

a

J .

4 .

6 .

ol
ol
0 l
r l

I' l
r l

[ 5 2
13 r
1 2  Iro 
loo
l 0  0
l . 0 0

a )  t  b )  l 3

I z  t :  I  I
I  I  23101
1253 7  )

i. digraphic Hil l cipher with enciphering matrix It j 163]

t 4
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5'  a)  0371 0354 0858 0858 0087 1359 0354 0000 0087 1543 I  7g7 053sb) 001 g 0977
ffi8 #l 3l1i'u* 

0274 0872 082r 0073 084s 07400000 0008 0r48 0803 04r5
6' d 0042 0056 0481 0481 0763 0000 0051 0000 0294 0262 0995 0495 05:| ' ag720000 0734 0152 0647 0972
7 '  d )  1 3 8 3  1 8 1 2 0 3 5 2 0 0 0 0  1 3 8 3  0 1 3 0  1 0 8 0  r 3 5 r  r 3 8 3  r  8 1 2 0 1 3 0 0 g 7 2 r 2 0 8  0 9 5 60000 0972 l5 l5 0937 1297 1208 2273 l5 l5 00008. 0872 I  152 1537 0169

Section 7.5

l. a) yes b) no c) yes d) no
4 .  l 8  :  2 * 1 6  :  2 * 3 * 1 3  :  3 * 4 * l  I  :  7 * l  I
5 .  ( tz ,s t ,g5 ,g ,  16 ,4g ,64)
6. 6242382306332274
g. (44,37,7 4,7 2,50,24)
1 0 .  a )  0 o  : 2 . 3 . 1 0 : 2 . 5 . 6 : 6 . 1 0  b )  1 5 9 6 0 :  g . 2 1 . 9 5

Section 7,6

l .  a )  3696,  2640,5600,3g5 b)  53g9
2.  829

Section 8.1

l .  i l 4  0 4  c ) 6
2 .  a )  3  b )  2 ,  3  c )  3 , 7  d )  2 , 6 , 7 ,  l l  e )  3 ,  5  f )  5 ,  I  I4 . 4
16. i l  23.89
18. d 2209

Section 8.2

L  a ) 2  0 4  c ) 8  d ) 6  e ) t 2  f ) 2 2
4. i l  q b) the modulus is not prime
6.  1
i l .  b)  6
1 2 .  c )  2 2 , 3 7 ,  g , 6 ,  g ,  3 g .  2 6

Section 8.3

l .  4 ,  1 0 ,  2 2
2 .  i l z  0 2  c ) :  i l 2
3 .  i l 2  0 2  d z  d ) 3
4 .  a ) 5  b ) 5  c ) r s  d ) 1 5
5 .  7 .  1 3 . 1 7 .  t 9

Section 8.4

l .  i n d 5 l  :  2 2 , i n d 5 2 : 2 .  i n d 5 3  : 1 6 ,  i n d 5 4 : 4 ,  i n d 5 J : I  ,  i nd56  :  18 ,  i nd57  :  19 .
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i n d 5 8 : 6 , i n d 5 9 : l 0 . i n d 5 l 0 : 3 ' i n d s l l : 9 ' i n d : 1 2 : 2 0 ' i n d 5 l 3 : 1 4 ' i n d i 1 4 : 7 1 '
i n d 5 l 5 : l 7 , i n d 5 l 6 : 8 . i n d 5 l 7 : 7 ' i n d 5 l 8 : 1 2 ' i n d s l g : 1 5 ' i n d r 2 O : 5 '
i n d 5 2 l  :  1 3 ,  i n d 5 2 2 :  l l

2 .  a )  - r=9  (mod  23 )  b )  x=9 '14  (mod  23 )

3.  . )  x  :  7 ,  18 (mod 22)  b)  no so lu t ion

-1.  a  :  2 .5 ,  t l r  6  ( rnod l3)

5 .  b  :  8 .9 .20 .  o r  2 l  (mod  29 )

6 .  , r  3  10 ,16 ,57 ,  59 .90 .99 .1  I  5 .1  34 ,  144 .1  45 .  I  49 ,  o r  |  - 52  ( r . I l od  I  - 56 )

T .  x  =  I  ( m o d  2 2 ) .  a  -  0  ( r n o d  2 3 ) ,  o r  x  E  1 , 1 2 . 4 5 . 4 1 . 7 t t ' 9 1 ' 9 3 ' 1 0 0 ' 1 3 7 ' 1 3 9 ' 1 4 4 '

183 '  l  85 .188 ,210 ,229 ,23  l  '  232 .? .52 .254 ,27  5 ,277  . 32  l  , 323 ,  367 '369 '3 t t  6 , , 1 |3 .41  5 ,4 . ] 0 '

459 ,461 .  o r  496  (mod  506 )

l t .  a )  ( t ,Z ) ,  ( 0 ,2 )  c )  - x  =  29  (mod  l 2 ) ,  ' t  -  42  (n rod  8 )

1 2  b )  ( 0 , 0 ,  1 ,  l ) ,  ( 0 , 0 '  1 , 4 )  d )  ' x  =  1 7  ( m o d  6 0 )

l 6 . b ) ( 4 9 9 3 8 . g g 8 . 7 O 1 @ . 4 9 9 3 9 9 9 8 1 1 ) : ' 7 4 9 9 9 2 4 9 . . ,

Section 8.6

r . a ) 2 0  b ) 1 2  c ) : 0  d ) 4 8

2.  a )  t , z  b )  3 ,  4 ,  6 '  8 .  12 .  24

80. 120, 240 e) no solut ion
I  68. 252. 504

3 . 6 5 5 2 0
4 .  a ) t t  b ) 2  c ) l  d ) l l  e ) t g  f ) 3 8

I  4 .  5 .  I  3 ' l ' l ' 29 .  5 ' lT '29 ,  5 ' ,29 '13

Section 8.7

l .  6 9 , 7 6 , 1 7 , 9 2 , 4 6 ,  I  I '

7 . 6 . 1 3 , 1 0 , 1 4 , 1 5 ,  l , 7 '

3 .  l 0
" 7 .  a )  l t  b )  7 1 5 8 2 7 8 8 2

9 .  1 , 7 4 , 2 5 ,  I  8 ,  I  2 ,  3 0 '

Section 8.8

l .  a ) s  b ) 5  d 2  d ) 6
2 .  a ) 2  b ) 3  d 2  i l 2
3. a) use sPread s : 3 b)

Section 9.1

I  .  a )  t  b )  I  , 4  c )  I  , 3 , 4 , 9 , 1 0 , 1  2

2 .  l , l , - 1 , 1 , - 1 , - l
I  l .  a )  - r  =  2 ,4  (mod 7)  b)  - r  =

1 5 .  . r  =  1 , 4 , 1 1 , 1 4  ( m o d  l 5 )

36 .  c )  DETOUR

e) t  go f )  388080 g) 8o+o h) I  254 I  l  328000

c)  no  so lu t ion  d)  5 ,  l0 '  15 .  16 ,20 ,  30 '  40 '  48 '  60 '

f )  z .  q ,  1 4 ,  1 8 .  2 1 . 2 8 , 3 6 . 4 2 . 5 6 , 6 3 .  1 2 ' 8 4 '  1 2 6 '

1 2 .  1 4 .  1 9 .  3 6 ,  2 9 , 8 4 ,  5 ,  2 5 .  6 2 . 8 4 .  - s '  2 5 .  6 2 ' "

1 8 .  1 6 .  6 ,  l 3 -  . . . .  p e r i o d  l e n g t h  i s  9

c )  3 l  d )  1 9 5 2 2 5 7 8 6  c )  l o z 3 z +  t  t t z :

l l .  l 0

e) 30 i) 20
e ) 5  t ) 7

use spread s :  2 l  c )  usc  sPrcad s  :  2

d )  1 , 4 , - s , 6 , 7 , 9 . 1  l ,  l 6 . l  7

|  (mod 7)  c)  no so lu t ion
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23.  a )

Answers to Setected problems

Section 9.2

l . a ) - l  b ) - l  c ) _ l  d ) _ l  e ) r  f ) l
4 . p = + l ( m o d 5 )
5 . p =  + 1 , * 3 , + g ( m o d 2 g )

Section 9.3

l . a ) r  b ) - l c ) r  d ) l  e ) _ l  f ) l
2 .  n  :  1 , 7 , 1 1 , 1 7 , 4 3 , 4 9 , 5 3 , o r 5 9  ( m o d 6 0 )
3 .  n  =  1 , 7 , 1 3 , 1 7 , 1 9 , 2 9 3 7 , 7 1 , g 3 ,  9 1 , 1 0 1 , 1 0 3 , 1 0 7 , 1 0 9 , 1 1 3 ,  o r  I  l 9  ( m o d  1 2 0 )
9 .  a )  - l  b )  - l  c )  - r

Section l0. l

6. a) . lb) .ar6 c) .92nr6 d) .5 e) xOq
i. a) (:s)g b) (.2)s c) (.r+o:), ai ' f. ' i6,
8 u)3  b)+ dL25 90  33
s .  u )Sb)+ . )Ad)  e l6

343 70 20 I  365
10. b :2s'3s'5"7"', where s1,.92,s3, and sa are nonnegative integers, not a1 zero
l l .  a )  2 ,1  b )  l , t  c )  z , t  d )  0 ,22  e)  3 .e  r l  o .o1
12. a) l ,o b) 2,0 c)  1,4 d) 2,1 e) l , l  f )  2.4
t 4 .  a )  3  b )  l 1  d  t t  d )  l 0 l  d  + t . z T  D  7 . 1 3

f) .000999
e) ( .052)6 f )  ( .02721350564)R

3/2 d s/3 h) 8/5
e)  [ -  |  ; 1 ,22 ,3 ,1 ,1 .2 ,21

0  l  I  1  I  2  t _ 2  3  1  4  3  2  5  3  4  5  6 lT' i '  6 'T' ; ' t ' t ' t ' ; , r ,7,T' ; ,  ; ' ; , ; ' ; , ; , ;
Section 10.2

l .  i l  t 5 /7  0  t0 /7  d  o lz l  d )  3ss / l l 3  d  z  f )
2 .  a )  [ t ; s ]  U)  B ;z l  c )  [0 ;1 ,1 ,1 ,9 ]  d )  [0 ;199 ,1 ,4 ]

f )  [o ;5 ,  l , l , z , l , 4 , l , 2 l l

Section 10.3

I  .  a )  [ l ; 2 , 2 , 2 , . . . 1  b )  [  t ;  1 , 2 , 1 , 2 , 1  , 2 , . . . )  c )  [ 2 ; 4 , 4 , 4 , . . )  d )  [  t  ; 1 , 1 , 1 , . . . J
2 .  4 _  l , L ! , s , t  b )  6 J , l , l , J  c )  0 , 2 , 6 , 1 0 , 1 4  d )  0 , 1  , 3 , 5 , 7
?  3 1 2 6 8 9

99532
/ ^ \ 2 3 8 i l 1 9 9 7 1 0 6 1 9 3

l -  l ' 3 ' 4  ^7 ' 32 ' 39 ' 7 t :  
o ,  

+
l l .  d )  2 1  4 t  6 9  9 l  l 1 3 -  1 3 5 ' 1 5 7  t 7 g ' 2 0 1  2 2 3  z 4 s  2 6 7  z } s  3 l lg  t 5 ' 2 2 ' 2 9 ' 3 6 , J t , E - ' T , d , 7 l  ' 7 g  ' g 5  , l t , f

Section 10.4

l .  
" )  IU,t , t ,+1 b) t3; : ,61 c) ta; l " : , r .s l  a) to;FrZt

2 .  a )  [ l ; 2 ]
3. a) (z: +.,/Til/rc b) (-l +,/+sl/z c) (s + .,Fazlto
4. b) [ lo;20] , 117:frl, I4t:il)
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5. c) [q;j,J8], tt o:z2o|lte;Tt4I?q,2,+t1
6. d to:ff i l ,  17 :7,t41, I l6;l,t 5,1,321
I  l .  b ) ,  c ) ,  e )

Section I l.l

l .  a )  3 ,4 ,5 :5 ,12 ,13 ;  15 ,8 ,17 : ' 7 ,24 ,25 :21 ,2O,29 :35 ,12 ,37  b )  3 ' 4 ' 5 ;6 ' 8 ' 10 ;  5 ' , 12 ' , 13 ;9 '

12,15;15,8,17:12,16,20:7,24,25;15,20,25;  10 '24 '26:21 '20 '29;  l8 '24 '30;  30 '16 '34;

21,28,35, 35,12,37 ; I  5,36,39; 24,32,40
1  '  -  2 \  - -  I  ( m 2 + Z n 2 )  w h e r e  m a n d n a r e p o s i t i v e i n t e g e r s .8 .  x  :  
; ( m " - Z n " ) , Y  

:  n l n , z  :  
t

i ^ l
, :  L(2^2-nz),!  :  ^r, ,  :  

+Q.m2+n2) 
where m and n a(e posit ive integers,

*>it,li, and n is even
I  |  ,  )  ,  r  ? \  r -  -  ^ ^  - - -  ^ - , {  , -  ^ - o  ^ ^ " i t i ' r ,

9. , - l-{^z-3n2),y 
: mn,, - 

f,(^2+3n2) 
where m and n are positive integers,

* r rT ln ,andm =  n (mod  2 )

Section 11.3

l .  a ) x : ! 2 , y : 0 ; x : + l , y : ! l  b ) n o s o l u t i o n  c ) x :  +  l ' y :  + 2

2 .  a ) x :  t 3 , y : * l  b ) n o s o l u t i o n  c ) x -  + 5 ' l : 0 ;  x : * 1 3 ' y : + 3

3 .  a )  x  :  70 , y  :  13  b )  x  : 9801 ,  Y  :  1820

5' X : l 52Q, y : 273 ; x : 4620799, y : 829920; x : 42703566796801,

Y  :  766987012160

6.  a) ,  d) ,  e) ,  g) ,  h)  Yes b) '  c ) '  f )  no
'1. x : 6239'765965'120528801, ! : 19892016576262330040
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Shift ing, 35
Sieve of Eratosthenes, 2,46
Signature, 216
Signed message, 216,218
Solovay-Strassen probabilistic

primality test, 334
Splicing of telephone cables, 284
Spread of a splicing scheme, 284
Square-free integer, 7 5
Strong pseudoprime, 157
Subkey,

read, 227
write, 227

Substitution cipher, 189
Succinct certificate of primality, 266
Sum of divisors function, 174
Summation notation, 5
Super-increasingsequence, 22O
Superperfect number, 186
Symbol,

Jacobi. 314
Kronecker, 324
Legendre, 289

Symmetric property, 92
System of residues,

complete, 93
reduced, 162

System of congruences, 107,1 l6

Telephone cables, 284
Terminating expansion, 341
Test,

divisibi l i ty, 129
Lucas-Lehmer, 183
Mil ler 's, 156
Pepin's, 3l I
primality, 153,263
probalist ic primali ty, 158,334

Theorem,
binomial,  12
Chinese remainder. 107
Dirichlet 's, 74
Eulerns, l6l

Fermat's last, 398
Fermat's l i t t le. 148
Lagrange's (on continued

fractions), 378
Lagrange's (on polynomial

congruences), 239
Lam6's, 62
Wilson's, 147

Threshold scheme, 228,243
Tower of Hanoi. 17
Transitive property,

Transposition cipher,
Triangle,

Pascal 's, l2
Pythogrean, 391

Twin primes, 50

Universal exponent, 269

Vall6e-Poussin, C. de la, 48
Vignrire ciphers, 197

Weights, problem of, 30
Well-ordering property, 4
Wilson, J.,  147
Wilson prime, 152
Wilson's theorem, 147

Gauss' generalization of, 152

Word s ize,  33,104
Write subkey, 22'l

lndex

92
204


