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1. Rutherford Scattering

Problem 1.1 Using Eq. (1.38) calculate the approzimate total
cross sections for Rutherford scattering of a 10 MeV a-particle from
a lead nucleus for impact parameters b less than 10712, 10~10
and 1078 cm. How well do these agree with the values of mb?

There are various ways of doing this problem. We will list below two
very simple methods.

Method I. In general, the total cross section for Rutherford scat-
tering is given by (see Eq. (1.38) in the text)

Z7'¢2\* ' d(sin?)
O’TOT—S’/T( iE ) /0 @3— (1.1)

However, if the impact parameter is restricted to a finite range, say
b < by, then we can write the total cross section as

(1.2)

ZZ/62)2/1 d(sin %)

TEE
4E 65, (sin §)

——

bo

where 0y, is the scattering angle corresponding to the impact param-
eter by and is given by (see Eq. (1.32) of the text)

772 6,
= t =0 1.
bo 5 ot 5 (1.3)
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Carrying out the integration in (1.2), we obtain

77’2\ [ 1 2 0,
oror(bo) = 87 ( 1B > (—-2—> <1 — cosec —2—>

77'e2\ 0
:47r< e) cot? 22

4F 2
VA
=7 ( 5 cot 7) = 7bg, (1.4)

where we have used the identification in (1.3). It follows, therefore,
that

bo (cm) | oroT(bo) = 73 (cm?)

10~12 3.2 x 10724
10~10 3.2 x10~20
10~8 3.2 x 10716

Method II. An alternative method to obtain the same result is to
note that the total cross section for Rutherford scattering can be

7762\ 2 1d(sin—g-)
ovor =37 (%5 ) | (ot

2

A 0 90
-47r(, 1B ) /0 de cotgcosec 3" (1.5)

This can be converted into an integral over the impact parameters

using the defining relationship (see Egs. (1.32) and (1.36))
77'e? 6 db 77'e? o0
5F cot 3 8- 4B cosec” 7, (1.6)

so that we can write

77'e2\? [ (72'\ " (22
—4 b
mor=ar (%) [0 () (5 )

- / db b. (1.7)
0

written as

b=




Rutherford Scattering 3

This is true in general and can also be deduced from the definition
of the cross section in Eq. (1.33) or (1.34) of the text. If impact
parameters are smaller than some fixed value, say bg, then the total
cross section takes the form

bo
UTOT(bO) - 271'/ db b= ﬂ'bg, (1.8)
0
which is the same result as derived earlier.

Problem 1.2 Prove that Eq. (1.55) follows from the relations in
Egs. (1.53) and (1.54).

This problem can be solved directly from the relationship between
the scattering angles in the laboratory and the CM frames. From
Eq. (1.53) of the text we have

cosfcm + ¢
(14 2¢ cos Oom + ¢2)/2

cos Op,ap = (1.9)

Through direct differentiation, it follows that

dcosfOrap 1 B ¢(cosfcm +¢)
deosfom (14 2¢cosfom + €)M (1 + 2 cosfom + (2)%/?
1+ {cosbcum

= , 1.10
(14 2¢ cosOcm +C2>3/2 (1.10)

which leads to

dcosfom (1 +2¢cosbom + C2)3/2

= 1.11
d cos 01,1 14 ¢ cosfcm (L11)

Let us note that
(14 2¢ cosfcm + ¢2) = (1 + cosfom)? + ¢?sin? 0oy > 0. (1.12)

Since the differential cross sections in the two frames must be pos-
itive, the Jacobian connecting the two must also be positive. From
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Eq. (1.54) of the text, this leads to the relationship (using the abso-
lute value of the Jacobian)

do do d cosOcm
OLab) = —— (fom) | —=2
dQLab ( Lab) dQCM ( CM) d cos eLab
do (1 + 2¢ cos O + ¢2)3/2
= 0 , (1.13
dQCM( CM) |1 + CCOS HCMI ( )

which is the desired result (see Eq. (1.55) of the text).

Froblem 1.3 Sketch cos by, as a function of cos Ocom for the non-

relativistic elastic scattering of particles of unequal mass, for the cases
when ¢ = 0.05 and ¢ = 20 in Egs. (1.52) and (1.53).

For nonrelativistic scattering, we know from Eq. (1.53) of the text
that

cosfom + ¢ C—m (1.14)
(1 + 2¢ cosOcm + C2)l/2, mo’ .

cos Or,ap =

where mj, mg represent respectively the masses of the projectile and
the target in the laboratory frame. The first case that we want to
consider, namely,

(=—=0.05 or mg=20my, (1.15)
ma

corresponds to the scattering of a light projectile from a heavy target,
while the second case

(=—7=20 or m;=20ms, (1.16)
ma

describes the opposite, where a heavy projectile is scattered from
a light' target. The two cases, therefore, represent inverse scenarios.
We will treat them separately. Furthermore, the solutions for the two
cases can be worked out in two simple but equivalent ways as follows.
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¢ = 0.05

Method 1. Here we simply evaluate the angles numerically from the
formula

cosOcv + 0.05
(14 0.1cosOcm + 0.0025)1/2°

Keeping terms up to three-digit accuracy, we have

cos OLap = (1.17)

cos Ocpm | cos O,an
—1.00 | —1.000
—-0.70 | —0.673
—0.50 | —0.461
—0.05 0.000
0.00 0.050
0.50 0.536
0.70 0.724
1.00 1.000

This is plotted in Fig. 1.1, and it is clear that for this case of a light
projectile scattering from a heavy target, the scattering angles in the
laboratory and in the center-of-mass frames are approximately the
same.

Elastic scattering angles

1 o
I.J

1

mass ratio
¢ c=005 097

ra-2
=1.J

cos B¢y

Fig. 1.1. Center-of-mass vs. laboratory scattering angles for a mass ratio ¢ = 0.05.
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Method II. When ¢ < 1, as is true in the present case, we can
write

cosfom + €
(1 + 2¢ cos Oy + ¢2)1/2
_ cosfom + ¢
" (14 2¢ cos O ) /2
~ (cosfom + C)(l — ¢ cosfcm)

cos Orap =

= (cosOcym + ¢)(1 + 2¢ cos HCM)_1/2 _

~ cos Oy + ¢ (1 — cos? fcm)
= cosfcom + ¢ sin®fom = cos Oy + 0.05sin? Oy, (1.18)

Here we have neglected terms of order ¢? and higher, which would
lead to small corrections in the result. We note that since 0 <
sin? Oy < 1, it follows that

cos O, = cos O, (1.19)

as we saw from the explicit calculation.

¢ =20

Method I. In this case, a heavy projectile scatters from a light target
and we have

cos Bcm + 20
(1 + 40 cos Oy + 400)1/2°

Explicit numerical evaluation, keeping terms up to four digit accu-
racy, leads to:

cos Opap = (1.20)

cos Bcm | cos Or,ap
—-1.0 1.0000
—-0.7 0.9993
—0.5 0.9990
0.0 0.9987
0.5 0.9991
0.7 0.9994
1.0 1.0000
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Elastic scattering angles

+5
m‘m‘m
mass ratio
0.5
9 B = 20
3 S
D
w i 1 T T
S-Is -1 -05 0.5 1 15
—-0.5-
—-14
=t5
cos B¢y

Fig. 1.2. Center-of-mass vs. laboratory scattering angles for a mass ratio ¢ = 20.

This is plotted in Fig. 1.2, and shows that the scattering in the
laboratory frame is almost entirely in the forward direction — like a
truck hitting a ping-pong ball.

Method I1. When ( > 1, as is true in the present case, we can write
cosBom + €
(14 2¢ cos O + ¢2)1/2

cos O1,.p =

1 2 1\ 72
= —(cosfcm + ¢) (1 + —cosfcm + —)

¢ ¢ ¢?
1 1 1 3
~ Z(COS fcm + €) (1 — ECOS Ocm — 2—C2 + 2—? cos? 90M>
1 1, 1 3 9
R c (( —cos Bcm + cos Bcm — c cos” Ocm i + —2-2 coS 901\/{)
1 1
=1- e sin? oy =1 — 200 sin? O (1.21)

Here we have neglected higher-order terms in %, which are negligible.
From the fact that 0 < sin?6cym < 1, we conclude that in this case

cos Orap ~ 1, (1.22)

which is consistent with the numerical calculation. In either case
(whether ¢ = 0.05 or ¢ = 20), we see directly from the tables that
Orab < fom.
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Problem 1.4 What would be the approzimate counting rate
observed in the Rutherford scattering of 10 MeV a-particles off lead
foil at an angle of 0 = T in the laboratory? Assume an incident fluz
of 10° a-particles per second on the foil, a foil 0.1 cm thick, and a
detector of transverse area 1 cm X 1cm placed 100 cm from the inter-
action point, and density of lead of 11.3 g/cm3. What would be the
counting rate at § = 5°7 By about how much would your answers
change if the above angles were specified for the center-of-mass —
be quantitative, but use approzimations where necessary. (Why don’t

you have to know the area of the foil?)

From Eq. (1.40) of the text, the counting rate is given by
ptAg do
A dQ |
In the present problem of the scattering of o particles from a foil of
lead (2%8Pb??), we are given

dn(8) = No (6)dS2. (1.23)

Ny = incident flux/foil area = 10°% sec™! /foil area,
Ap = Avogadro’s number = 6 x 10?3 /mole,
p = density of the foil = 11.3g/cm?, (1.24)
t = thickness of the foil = 0.1 cm,
A = Atomic weight of lead = 208,
E = energy of the incident « particle = 10 MeV.

Furthermore, we are also given that the detector has an area
ds=1lcm x 1cm = 1cm? (1.25)
and is located at a distance
R =100cm, (1.26)

from the target (foil). Therefore, the solid angle subtended by the
detector at the scattering center is given by

ds _
dQ = =5 = 10 4 sr. (1.27)
Finally, we note that for the scattering of o particles from lead
(208Pb%?), we have

Z=2 2 =82 (1.28)
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so that the Rutherford scattering cross section takes the form

do 7277\* [ 1 : _
d_Q-(e):( B ) (sing> (s)~"

2
hc 2\’ 49, (1
= (2 X 82 X m X ;‘l—c) cosecC 5(81‘) 3 (129)
where we note that
hc =~ 197 MeV - F e _ fine structure constant = 2 (1.30)
C R e T e ure ¢ a =137’ .

and 1 F = 1 fmor 1 Fermi = 1073 cm. Using these values, the
differential cross section at any angle takes the form

do 197 MeV —F 1 \? 9
—_ = 1 4 — -1
dQ () ( 64 x 20 MoV | 137) cosec 2(Sr)

6
~ 0.4 x 107%* cosec? 5 cm? /sr. (1.31)

Using all of these results, we can calculate the counting rate at
any angle from (1.23) as:

6 x 102 x 11.3 x 0.1/cm?
208

dn(8) = 10°% /sec x

7
x 0.4 x 10~ cosec? 3 cm? /st x 1074 sr

4

6
~ 0.13 cosec 2 counts/sec. (1.32)

It follows now that

dn(d = %) =~ 0.13 x 4 counts/sec = 0.5 counts/sec,

dn(0=5°=35) ~ 0.13 x 28 X 10 counts/sec =~ 3.6 x 10* counts/sec.




10 Solutions Manual

For « particles scattering from lead (?®Pb?2), we have ¢ = % =

% ~ 0.02. As a result, using (1.18) we obtain
cos 01, = cos Ocm + ¢ sin? Oy = cos Oy + 0.02 sin? fcm, (1.33)
so that for fcm = %, we obtain

cos b1, = 0.02
or 9Lab o g - 002,

which leads to
AngCM:% = 0(31\/[ - 9Lab ~ 0.02. (1.34)

On the other hand, for 6cy = 5° = g5, we have

1/ 7\2 2
cos O1ap = cos 0oy + 0.02sin? Oy & 1—5(%> +002(36>

—1- Y006 T 2~1—1 098><112
2 36/ o\ 36

or HLabN098X§‘6"

which leads to

™
A9|30M=5o=§r€ = 9(}1\/{ — 9Lab ~ 0.02 x gé- ~ 0.002. (1.35)

From Eq. (1.32), the relative change in counting rate arising from
this difference in angle is given approximately by:

4A9
Aldn)] ) _ 255 cos 2/ L 2nfcot ] (1.36)
dn (sin§)5 / (sing)4 2

This leads to

Bl (g = 1) ~ 2 x 0.02 x 1 = 0.04 = 4%,

lAgi">|( = L)~ 2 x 0.002 x 23 ~ 0.092 = 9.2%.
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Problem 1.5 Sketch the cross section in the laboratory frame as a
function of cosOrap for the elastic scattering of equal-mass particles
when dSZM is 1sotropic and equal to 100 mb/sr. What would be your
result for ( = 0.05 in Eq. (1.52)?7 ( You may use approzimations where

necessary.)

We know from Eqgs. (1.53) and (1.55) of the text that

cos O,ap = cos fom + ¢
2T (14 2¢ cos By + 212 (1.37)
do_ gy _ _do_ (1+2Ccosfom + (2)3/2 '
dQLab Lab/ = dQCM ll + C COs 90M| ’
where ( = T4,

When m; = mgy, namely, the particle masses are equal, we have
¢ = 1, and we obtain from the first relationship

1 4 cosfcm B (1+cosHCM>1/2
V2(1 + cos fcp) /2 2 ’

COSs eLab =

which leads to
(14 2¢ cosOcom + C2)3/2 _ 23/2(1 + cos 9(JM)3/2

|1 + ¢ cos Oom| (14 cosfcm)
= 23/2 (1 + cos Ocn) 2
_ 4 1+ coscom 1/2
B 2
= 4¢os Opap- (1.38)
Thus, for ( = 1 (equal masses), we can write
do do
— (0 =4 0 O1,ab - 1.
dQLab( Lab) dQCM( cM) €08 OLab (1.39)
For an isotropic cross section in the center-of-mass frame of value
d
? (6cm) = 100 mb/sr, (1.40)
dQom
we obtain
do
(OLab) = 400 cos 01,41, mb/sr, (1.41)
d€2ap

which leads to a straight line with zero intercept for the laboratory
cross section plotted against cos 1, (see Fig. 1.3).
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Elastic scattering angles
450

400

g
‘0
350 ‘,’
S do
RS dQ
250 *

>

300 =100 mb/sr

M

mass ratio_

. ’g=1

1)‘

200

150 $

Cross section (mb/sr)

100

50

0 T T
0 0.5 1 1.5

cos O74p
Fig. 1.3. Differential cross section vs. laboratory angle for mass ratio ( = 1.0.

For the case of a light projectile with ¢ = 0.05, we can use our
earlier result (1.18) to write

cos O = cos Oy + 0.05sin? 6o, (1.42)

which can be inverted to give

cos Oom = cos O, — 0.05. (1.43)
Using this, we obtain

(1 4+ 2¢ cos Oy + ¢2)3/2 _(1+0.1cos Ocm )32
|1+ ¢ cosOcm| (14 0.05cos fcm)
~ (1 + 0.15cos fcm) (1 — 0.05 cos fcm)
~ 1+ 0.1cosfcm
~ 1+ 0.1(cos 81,5 — 0.05)

~ 1+ 0.1cos O1,ap- (1.44)
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Therefore, for an isotropic cross section in the center-of-mass given
by (1.40), the cross section in the laboratory takes the form

97 (Bran) ~
dQp,p - b dQ

= (100 + 10 cos 1 5p,) mb /sr. (1.45)

—5—(0)(1 + 0.1 cos fap) = 100(1 + 0.1 cos frap)

In this case, the laboratory cross section is again linear with cos OLab,

but has a much smaller slope and a finite intercept, as shown in
Fig. 1.4.

Note that fCM do = fLab do!

Elastic scattering angles

o W“J
wes*’ do
= 100 mb/sr

T 80 Q.
~ .
‘é mass ratio
~ 60
_8 ¢ c=.05
3
Q 40
w
172}
o
O 20

0 T T

-2 -1 0 1 2

cos O,

Fig. 1.4. Differential cross section vs. laboratory angle for mass ratio ¢ = 0.05.

Problem 1.6 Certain radioactive nuclei emit o particles. If the
kinetic energy of these a particles is 4 MeV, what is their velocity if
you assume them to be nonrelativistic? How large an error do you
make in neglecting special relativity in the calculation of v? What
is the closest that such an « particle can get to the center of a Au
nucleus?
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The o particle has a rest mass given approximately by

M =4 x 10* MeV/c*. (1.46)
If the « particle has a kinetic energy
T =4MeV, (1.47)
and if we treat it nonrelativistically, then we have
1 1 UNR 2
T = 5M’U12\]R = 5‘]\4@2 X <—C—> = 4 MeV

1 2
or -2-><4><103MeV><<”£‘1) — 4 MeV
C

2
or (v—NE) —2x 1073
C

or BIZ—R — /20 x 102 ~ 0.045.

Here vng represents the magnitude of the velocity of the nonrela-

(1.48)

tivistic particle.

On the other hand, if we treat the a particle as relativistic, we
can then use the relativistic relationships from Egs. (A.7) and (A.10)
of Appendix A of the text to write

E =~yMc,
T=E—-Mc=(y-1)Mc, (1.49)
cP = /T2 + 2M2T = /42 — 1Mc?,

where P is the magnitude of the momentum. The relativistic velocity
now follows using Eq. (A.8) of the text

v _cP _/(y+ Dy =1
c E 0% '

(1.50)

From the fact that the a particle has kinetic energy
T =4MeV, (1.51)
we can determine the Lorentz factor using (1.49)
T = (y—1)Mc* = 4MeV

or (y—1)x4x10°MeV = 4MeV (1.52)
or y= 141073,
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Using this in (1.50), we can determine the relativistic velocity

v /(24 1073)10-3

¢ 1+10-3
~ V20 x 1072(1 4 0.5 x 107%)Y/2(1 — 1073)
~ V20 x 1072(1 + 0.025 x 107%)(1 — 1073)

~ V20 x 1072(1 — 0.00075). (1.53)

Using (1.48) we see that we can write the relativistic velocity in
Eq. (1.53) as

VR = ’UNR(l - 0.00075). (1.54)

Consequently, we can define the relative error in neglecting
relativity as

|Av| _ lvr — UNR|

~ 0.00075 = 0.07%. (1.55)
UNR UNR

For the scattering of such an « particle from gold (Au), the dis-
tance of closest approach can be dertermined as follows. First we note
that the distance of closest approach is attained when the impact
parameter vanishes (for head on collisions). From Eq. (1.25) of the
text, we see that the distance of closest in this case (b = 0) is given by

77’ e?

To = E R (156)

where, for scattering of o particles from gold (Au), we have

Z=2 Z =79, (1.57)

If we treat the o particle nonrelativistically, we have
E =T =4MeV. (1.58)

Using all of these, we determine

2
rO:ZZ'x%x%
197 MeV —F 1

4MevV 137
~ 56 F=5.6 x 107'? cm. (1.59)

=2 %79 x
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Problem 1.7 An electron of momentum 0.511 MeV /c is observed
in the laboratory. What are its 8 = 2, v = (1 — ,82)_1/2, kinetic
energy, and total energy?

The rest mass of an electron is

m = 0.511 MeV /2. (1.60)
If the electron has a momentum
p = 0.511MeV /c, (1.61)

then it is fairly relativistic. Using Einstein’s relationship we have the
total energy of the electron

E = \/p2c® + m2ct = V2 mc* = ymc?, (1.62)
where we have used (1.49). This determines the Lorentz factor
v = V2. (1.63)

From the definition of the Lorentz factor

_ 1 gy
TTamme T

(-2)" ()" e

The value of the total energy is obtained from (1.62)
E = V2mc® = V2 x 0.511 MeV =~ 0.722MeV. (1.66)
The kinetic energy follows from (1.49)
T=(y—1me® = (vV2-1) x 0511 MeV ~ 0.211 MeV.  (1.67)

(1.64)

we obtain

Problem 1.8 What are the approzimate values of the kinetic
energy for the recoiling lead nucleus and the momentum transfers
(in eV units) at the cutoffs specified in Problem 1.17

We note from Eq. (1.1) of the text that in a scattering involving a
particles, conservation of momentum determines the recoil velocity
of the target

— ma — —
= —(Ug — 1.68
7= (i — ), (1.68)
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where mq, m; represent the mass of the « particle and target, respec-
tively, and v, U, denote respectively the initial and final velocities
of the a particle in the laboratory. It follows that the recoil kinetic
energy of the target in the laboratory is given by

. 1 ™y m2
R l = - 2 = — X —%(Tn — T, 2
ecoil energy = omyv; = - - (Vo — Uy)
1 - —
= 2_mt(Po _pa)2
1 L
= }E(P(Q) + P2 — 2Pp ‘Pa)- (1.69)

For elastic scattering, because m, is far smaller than m;, the
magnitude of the initial and final momentum of the a particle is
essentially the same. (The nucleus absorbs essentially no energy, but
just momentum.) We can therefore write

1
Recoil energy ~ — pa(1 — cos §)
my

2 4
= Lo E(1 —cosf) = T B sin? b
my mye 2
4 E
— 2o T (1.70)
e 1+ b2(5%0%)

where F represents the energy of the incident o particle, and we
used the relationship between the scattering angle and the impact
parameter given in Eq. (1.32) of the text. For the scattering of the
o particle from lead (*®Pb8?), as in Eq. (1.31), we can calculate

727'e2\ ? AN
=(zz2'x X x &
( °F ) ( “ 9B~ hc)

197 MeV - F 1 )2

2% 10 MeV_ - 137
~1.4x10" % cm?. (1.71)

=<2><82><
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Using this, we can write the recoil energy as a function of impact
parameter as

dmy, E

™1+ 8 (757)

4x4 10 MeV
208 1+ b’

1.4x10—24 cm?
_ 0.8 MeV
" 140.7 x 1024 b2/cm?’

Using Eq. (1.72), we tabulate below the values of recoil energy for
different cutoffs on impact parameter:

Recoil energy =

(1.72)

b (cm) | Recoil energy (MeV)
10~12 0.5

10~10 1.1 x 104
108 1.1 x 10~8

Since Tpy, < T,, our assumption that the initial and final ener-
gies of the « particle are the same holds well. Note that, for impact
parameters of 1078 cm, energy transfers to the nucleus are vanish-
ingly small 1072eV. At these “enormous” distances, there must be
some shielding of nuclear charge by the external electrons, and so the
calculation cannot be valid. Also, for transferring energy to bound
electrons, rather than to nuclei, the electrons cannot absorb arbitrary
amounts since they are located in quantized orbits.

Problem 1.9 Taking the ultrarelativistic limit of Eq. (1.71), find
an approzimate ezpression for Oran, at fcm = 5, and evaluate 01,
for vyem = 10 and yom = 100. Does the approzimation hold best for
particles with small or large mass values?

Equation (1.71) in the text relates the laboratory and CM angles as
follows:
1 B sin cm 1 sinfemy 1

YoM B cosfcm + Bom ~ yom cosfom +1 7 oM
(1.73)

tan Oy, =
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where the next-to-last term is for highly relativistic scattering, and
the final term is for Ocm = 3.

Thus 61 = arctan( WSM). For yvycm = 10 and 100, this corre-
sponds to arctan(0.1) = 5.7° and arctan(0.01) = 0.57°, respectively.

Clearly, such approximations hold best at high energies when
both Bcm and the B of the produced particle are large. That is,
when the particle mass in B can be ignored. It should be recognized
that high-energy scattering does not necessarily imply that the mass
of any produced particle can be assumed to be negligible.

Problem 1.10 What is the minimum impact parameter needed to
deflect 7.7 MeV «a-particles from gold nuclei by at least 1°7 What
about by at least 30°7 What is the ratio of probabilities for deflections
of @ > 1° relative to 8 > 30°7 (See the CRC Handbook for the density

of gold.)

For the scattering of a 7.7 MeV a-particle from gold, we have

Z=2 27'=17, E=17MeV, (1.74)
so that we obtain
Z7'e? he €2
= 77" x — x —
2E 2E " e

197MeV — F o 1
2x7.7TMeV 137

~145%x 107 B em ~ 1.4 x 1072 cm. (1.75)

We know from Eq. (1.32) of the text that

77" e? 0
— t — 1.
b 55 ot (1.76)
which leads to
6
b(6) ~ 1.4 x 1072 cot 5 Cm. (1.77)
We note that for
7 1
0 =1°"= — ~ — 1 1.78
180 60 < ( )
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we have
6 0 1 0
tan - ~ - &~ — t— = ~ 120. .
ang N o N o, cotbg tan% 0 (1.79)
Similarly, for
T 1
=30°= -~ = 1.
6 =30 £~ 5 (1.80)
we have
6 1 1
t —_ - — t— = =~ 4. 1.81
an o AN oA o, cobg tan 2 (1.81)

Using these values in (1.77), we obtain

~14%x10712 x 120cm = 1.7 x 10~ % cm

b(f = 1°)
6 =30°)~14x10712 x 4cm = 5.6 x 10712 cm.

b > (1.82)

As we have already seen in Problem 1.1, the probability of scat-
tering for angles greater than 6, goes as the area mb?. Therefore,
using (1.82) we have

o(0>1°) b (0=1°)
o(6 > 30°)  b2(6 = 30°)

1.7 x 1010\ 2
~ (W) ~ 900. (1.83)

In other words, there will be approximately 900 more particle colli-
sions for 6 > 1° than for § > 30°.

Problem 1.11 Consider a collimated source of 8 MeV a-particles
that provides 10* a/sec that impinge on a 0.1 mm gold foil. What
counting rate would you expect in a detector that subtends an annu-
lar cone of A8 = 0.05 rad, at a scattering angle of @ = 90°? Compare
this to the rate at @ = 5°. Is there a problem? Is it serious (see Prob-
lem 1.12). (Hint: You can use the small-angle approzimation where
appropriate, and find the density of gold in the CRC Handbook.)
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For scattering of 8 MeV « particles from gold, we have
Z=2, Z'=79 E=8MeV,
p = density of gold =~ 19.3g/cm?,
¢ = Thickness of gold foil = 0.1mm = 1072 cm,
Np = Incident flux = 10%/sec, (1.84)
A = Atomic weight of gold = 197,
Ag = Avogadro’s number = 6 x 10?3 /mole,
A# = Angle subtended by the detector = 0.05rad.

We can therefore calculate
do 77'e2\* 40,
@_(0)_< o ) cosec §(sr)

he e\’
= (ZZ' X 4—]% X e_) cosec? -9—(sr)_1

hic 2

197 MeV —F 1 \? 0,
= (2 X 79 x RSV 137> cosec §(sr)
~ 0.48 x 1072* cosec* —Z—cm2/sr. (1.85)

Similarly, we have

Aopt _ 6% 10% x 19.3 x 1072 /cm”
A7 197

~ 6 x 102 /cm?. (1.86)

From Eq. (1.40) of the text we therefore obtain the counting rate

Aopt d_O'
A dQ

A |
~ 10% /sec x 6x10%° /cm? x 0.48 x 10" cosec* 5 cm? /st x d2

dn(@) = No

(0) dQ

= 2.88 cosec4g dQ(sec — st) 7. (1.87)
For scattering with azimuthal symmetry, we can write
dQ) = 27 sin 6d0, (1.88)
and if we identify df ~ Af = 0.05rad, we get
dQ) ~ 27 sinf x 0.05sr ~ 0.3sin fsr. (1.89)
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Putting this back into (1.87), we obtain

6
dn(6) ~ 2.88 cosec? 3 (sec —sr)™1 x 0.3sin 6 sr

0
~ 0.86 sin9cosec4§ (sec) L. (1.90)
Tt follows that |
dn (0 = g) ~ 0.86 x 1 x (v2)* ~ 3.4/sec. (1.91)
On the other hand, for § = 5° = 35 R % < 1, we have
: 1 4 b 2\ 4
sinf ~ 0 ~ Tg7 osec’ 5~ <5> ~ (24)%, (1.92)

and we obtain
1
dn(f = 5°) ~ 0.86 x 5 X (24)*/sec ~ 2.4 x 10%/sec.  (1.93)
This is, in fact, larger than the incident flux, and, if this were
true, conservation of probability (particle number) would be vio-
lated, which is a serious problem! For one thing, we note that
the approximation

df ~ A, (1.94)
is meaningful only when

% < 1, (1.95)
which is clearly violated when Af = 0.05 rad and § = 5° ~ L ~

12
0.08 rad. This is one of the sources of the difficulty. For other sources

of this error, we turn to the solution of the next problem.

Problem 1.12 Consider the exzpression Eq. (1.41) for Rutherford
Scattering of a-particles from gold nuclei. Integrate this over all
angles to obtain n. In principle, n cannot exceed Ny, the num-
ber of incident particles. Why? What cutoff value for 8 would be
required in the integral, that is, some 8 = 6y > 0, to assure that
n does not exceed Ng in Problem 1.47 (Hint: After integrating, use
the small-angle approzimation to simplify the calculation.) Using the
Heisenberg uncertainty principle Ap,Ax =~ h, where Ax is some



Rutherford Scattering 23

transverse distance corresponding to a change in transverse momen-
tum of Apy = pinflo = V2mEby, calculate the distances Az to which
you have to restrict the description of the scattering. Are these dis-
tances sufficiently restrictive? Explain!

Both Egs. (1.40) and (1.41) of the text are equivalent and give the

counting rate at a scattering angle 6. Let us look at Eq. (1.40) of

the text

A()pt do
A dQ

Since Ny, Ao, p, t, A are constants independent of scattering angle,

integrating the above relationship over all angles (above a certain

cutoff value, corresponding to some cutoff in impact parameter, as
was discussed in Problem 1.1), we obtain

6). (1.96)

dn
d_Q(e) = No

A
n(b > by) = Nof{%é o(b> by) = Np Zpt x 7bE

1.97
n(b > bo)  Aopt « (1.97)

Ny A

Clearly, the total number of particles scattered per second,
n(b > bo), cannot exceed the total incident flux, namely, n(b > bo) <
N, for conservation of probability (particle number). This leads to
the inequality

or b3,

Appt
—ﬂwaggl

1 A \Y?
< | = .
or bo_ <7r Aopt)

For the case of the a-particle scattering from gold discussed in
Problem 1.11, we can use (1.86) to obtain

(1.98)

11\ .
< | = — ~ 2. N . .
bg < <7r 6><1020> cm ~ 2.2 x 107" cm (1.99)
On the other hand, from Eq. (1.32) of the text
77’ e
b= © cot —e—b, (1.100)

2F 2
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we can calculate

O _ 2B _ 1 2B he,
Y T IR T g e f a2
1 2 x 8 MeV
< X
~2x79 " 197 MeV — F
X 137 x 2.2 x 107 cm ~ 16 (1.101)
or cot—eﬁmigm
Ob,
2 1 s
> — =-~— =175°
o Oz g TgNg =T

For scattering angles below this bound, namely § < 7.5°, conser-
vation of probability will be violated, which is what we saw explic-
itly in the solution of Problem 1.11 for 6 = 5°. Although derived
from very physical considerations, this bound on the scattering angle
seems artificial. After all, a particle can scatter at any angle, and
should not be subject to any such bound. In fact, all of this is an
artifact of our formalism, and can be seen as follows. First, we note
that the bound on the impact parameter (1.99) is close to the size of
the nucleus, and consequently imposing such a cutoff may affect the
validity of the calculation. In fact, at these low energies the proba-
bility of scattering is very high, but in our derivation we assumed it
to be low (no second scatter...). Our formula therefore works fine
for large, but not for small angles.



2. Nuclear Phenomenology

Problem 2.1 Calculate the approzimate density of nuclear matter
in gm/cm®. What would be the mass of a neutron star that had the
diameter of an orange?

Nuclear matter consists of tightly packed protons and neutrons.
Therefore, to calculate the density of nuclear matter, it is sufficient
to calculate the density of nucleons. As we know from Eq. (2.2) of
the text, both the proton and the neutron have approximately the
same mass (and their sizes are comparable) so that calculating the
density of the proton is sufficient for our purpose. For the proton,
we have

my ~ 938 MeV/c? ~ 1.67 x 107 * g. (2.1)

Parenthetically, we note that this leads to a relationship between the
two units of energy:

lerg = 1g x 1 (cm/sec)?
_ 938MeV
T 1.67 x 107242
N 938 x 10%* MeV
" 1.67 x (3 x 1010)2 cm? /sec?
~ 6.2 x 10° MeV = 6.2 x 10! eV. (2.2)

x 1 (cm/sec)?

x cm? /sec?

Returning to our problem, the rms “charge radius” of the proton
is ~ 0.9 x 10713 cm. This differs somewhat from the approximate
formula given for nuclear size in Eq. (2.16) of the text, which would

25
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suggest that for A = 1 we have
R,~1.2x 10" B cm. (2.3)

Treating the proton as a sphere with the above radius, the density
of proton can be calculated as
myp Mp
Vo o gmRS
1.67 x 1072 ¢g
Y Ix (1.2 x 10-59)3 om?
~ 2.4 x 10M g/cm3. (2.4)

Pp =

This represents an approximate density of nuclear matter.
If we assume a diameter of a neutron star approximately the size
of an orange:

dns = 2Rns =~ 10 cm, (2.5)

then its volume will be given by

4
VNs = gleiS. (2.6)

The mass of the neutron star would therefore approximately equal:

4 m
Mns = Vspp = —mR¥g X 52
NS NSPp 37T NS %’NR;’)
Rns 3 5cm 3 _o4
= <E) mp ~ <1.2 < 10-13 cm) x 1.67 x 107“* g
~1.2x 10 g. (2.7)

Problem 2.2 Calculate the difference between the binding energy
of a nucleus of 2C and the sum of the binding energies of three
‘He nuclei (a-particles). Assuming that 2C is composed of three
a-particles in a triangular structure, with three effective “a-bonds”
between them, what would be the binding energy per a-bond? (See
CRC Handbook for Chemistry and Physics for mass values.)
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From the CRC Handbook we can find that
Binding energy of 12C ~ —92.16 MeV,

2.8)
Binding energy of *He ~ —28.29 MeV. (

Therefore, the difference in the binding energy between 12C and three
4He nuclei is

A(B.E.) ~ —92.16 MeV — 3 x (—28.29) MeV = —7.29MeV.  (2.9)

This shows that 12C is more tightly bound than three *He nuclei and
is therefore stable to decay into 3 o particles.

If we assume that the 12C nucleus consists of three 4He nuclei
in a triangular form with three o bonds, this extra binding energy
must represent the binding energy of the three o bonds. Therefore,
the binding energy per a bond is given by

§ = A(%)'E') ~ _7‘29;\46\/ ~ —2.43 MeV. (2.10)

Problem 2.3 Calculate the binding energy of the last neutron
in *He and the last proton in 180. How do these compare with
;'i— for these nuclei? What does this tell you about the stability of
‘He relative to 3He, and of 1°0 relative to 1°N? [Hint: the binding
energy of the last neutron needed to form a nucleus (A, Z) is given
by [M(A—1,Z) +my, — M(A, Z)|c®. An analogous expression holds
for the last proton.]

From the CRC Handbook (or the footnote on p. 34 of the text),
we have

mp ~ 1.00728 amu = 1.67 x 10724 g &~ 938.27 MeV/c?
(2.11)
or lamu ~ 1.66 x 1072%g ~ 931.5 MeV/c?.

We are using the unified atomic mass units, sometimes also denoted
by “u”. In these “amu” units, the masses of the proton and neutron
(given in Eq. (2.2) of the text) can be written as

my ~ 1.00728 amu, m, =~ 1.00867 amu. (2.12)

To calculate the B.E. of the last nucleon, we use atomic masses
rather than nuclear masses, because these are more readily available,
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and the masses of the electrons cancel out in the formulas. (There
are very small corrections from electron binding energies in atoms
that we can ignore.) The masses in question are
M(*H) =~ 1.0078 amu, my, ~ 1.0087 amu,
M(3He) ~ 3.0160amu, M (*He) = 4.0026 amu, (2.13)
M(*®N) = 15.0001 amu, M (*®0) = 15.9949 amu.

If we define
A=(MA-1,2)+my,— M(A,Z))c, (2.14)
we can calculate the B.E. of the last neutron in *He as follows:
B.E. = —A = —(M(*He) + m,, — M(*He))c?
~ —(3.0160 + 1.0087 — 4.0026) amu x c*
~ —0.0221 x 931.5MeV/c? x ¢?
~ —20.586 MeV, (2.15)
where we have used (2.11).
Similarly, defining
A=(MA-1,Z-1)+my,— M(A,Z))
= (M(A—-1,Z-1)+ M(*H) - M(A, 2))c*, (2.16)
where the second form is appropriate for atomic masses, we can cal-
culate the B.E. of the last proton in 160
B.E. = —A = —(M(*N) + M(*H) — M('°0))c?
~ —(15.0001 + 1.0078 — 15.9949) amu x c?
~ —0.0130 x 931.5MeV/c? x ¢?
~ —12.109 MeV. (2.17)

The average B.E. per nucleon for “He can be calculated using
Eq. (2.6) of the text

B.E. 1
B.E. = —= (2myp + 2my, — M(4He))c2
A 4He 4
1
= (2M(*H) + 2m,, — M(*He))c?
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1
~ ——(2.0156 + 2.0174 — 4.0026) amu x c?

4
~ _i x 0.0304 x 931.5 MeV/c? x ¢?
~ —6.99 MeV. (2.18)
Similarly, for 0 we have
B.E. 1
— _ - M 160 2
T |y = 16 (8me + 8 — M(P0))e
=1 (8M(*H) + 8m,, — M(*€0))c?
1
~ —E(8.0624 + 8.0696 — 15.9949) amu x ¢?
~ _Ilé x 0.1371 x 931.5 MeV/c? x (2
~ —7.99MeV. (2.19)
Both Eqgs. (2.18) and (2.19) correspond approximately to the B.E.
per nucleon for low mass nuclei (—ﬁ— = —% R 8MeV). Further-

more, comparing with Egs. (2.15) and (2.17), we conclude that the
B.E. of the last neutron in *He and the last proton in 60 are lower
(more negative) than the average B.E. per nucleon for these nuclei.
Correspondingly, we see that “He is far more stable than 3He, and,
likewise, 60 is more stable than !°N.

Problem 2.4  Starting with cgs quantities, calculate the value of

uB = 2;}20, and convert it to MeV /T wunits. (Hz'nt: you can relate

forces and magnetic fields through the Lorentz force F= W+B.)

In CGS (cm-g-sec) units, electric charge is given in esu and the mag-
netic field in Gauss (G). In these units, force and energy are in dynes
and ergs, respectively. In the MKS (m-kg-sec) system, the unit of
electric charge is the Coulomb (C) and the magnetic field is given
in Tesla (T). In these units, force and energy are in Newtons and
Joules, respectively. Tesla is related to Gauss as

1T=10*G or 1G=10"*T. (2.20)
The magnitude of the charge of an electron (proton) is

e=48x10""%su=1.6x10"°C. (2.21)
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From the definition of the Lorentz force in the CGS system and the
definition of work (energy)

o1

F=q-xB, E=|Fr (2.22)

it follows that
lerg = 1esu-G-cm,

(2.23)
or lesu-cm = lerg/G.

We note from the definition of the Bohr magneton that

. eh e x hic
HB = 2mec © 2m..c?
197 MeV — F
~ 4.8 x 10710
810" esu X o ST MeV
4.
= -—81—3212% % 10719 x 10713 esu-cm
4.
= -—81—;212—?1 x 1072 erg/G
_4x 197  10-2 % 6.2 x 10° MeV
~1.022 G
~ 5.8 x 1071 MeV/G
MeV
_ ~15 _ ~11

which agrees approximately with the value given in Eq. (2.18) of
the text. Here, in the intermediate steps we have used (2.2), which
converts “erg” to “MeV”.

Problem 2.5 Assume that the spin of a proton can be represented
by a positive pion moving at a speed c in a circular orbit of radius
10713 ¢cm about a neutral center. Calculate the current and the mag-
netic moment associated with this motion. Compare this with the
known magnetic moment of the proton. (Hint: recall that using cgs
units you can write a magnetic moment [i = (%)[f, where I s the
current flowing around the area A.)
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For this simple model of proton motion, we have

e~ 4.8 x 1070 esuy,
r = radius of circular orbit = 107!3 ¢m, (2.25)

¢ = speed of rotation = 3 x 10! cm /sec.
It follows that the period of rotation is given by

277 6x 1078 cm

T - ~
c 3 x 1010 cm/sec

=2 x 1072 gec. (2.26)

The current (rate of change of charge with time) associated with the
motion of the charge is given by

e 4.8x107esu
T~ 2x10-2gec

I= = 2.4 x 10"® esu/sec. (2.27)

As we know from classical electromagnetism, in CGS units, the
magnetic moment associated with a circular loop carrying current I
is given by

p==xA, (2.28)
c

where A represents the area enclosed by the current loop. Applying
this to the simple model of proton motion, we obtain

I o 2.4 x 103 esu/sec

X 3 x 10720 ¢cm?

o = o X~ 3 om0 cm/sec
= 2.4 x 107? esu-cm = 2.4 x 1072 erg/G
6.2 x 10° MeV
~ 2.4 x107%
8 *TT10AT
~ 1.489 x 10713 MeV/T, (2.29)

where we have used (2.2). The result for the magnetic moment can
be compared with the measured value of the magnetic moment of
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the proton (given in Eq. (2.20) of the text)
by~ 279N = 2.79 X —% X pg
mn

0.511 MeV/c?
938.27 MeV/c?

~ 2.79 x 3.15 x 107 MeV/T =~ 8.8 x 1071* MeV/T.  (2.30)

Hence, this simple model leads to good agreement for the order of
magnitude of the magnetic moment of the proton.

~ 2.79 x

x 5.79 x 107 MeV/T

Problem 2.6 We arqued previously that the n™ mesons in Fig. 2.2
scattered not from individual nucleons, but rather (coherently) from
the entire nuclei. In fact, the first minima (n = 1) corresponded to
0 ~ 21‘1%, with R being consistent with 1.2 As. At higher energies,
when larger momenta can be transferred to nuclei, it is possible to
dislodge a single proton or neutron from the nucleus. When this
happens, the m+ mesons can be termed to scatter elastically from
quasi “free” nucleons. How would this affect the diffraction pattern
in Fig. 2.27 What about if you could scatter from very small point-
like constituents within nucleons? (Would the fact that a 7

point particle affect your answer?)

18 not a

From the classical formula for diffraction from a sphere of radius R,
we know that the minima of the diffraction pattern occur at

9Rsind™ =n)\, n=1,2..., (2.31)

min
where A denotes the wavelength of the incident beam. For small
angles, this leads to

A nh
AR 9.32
min 2 R 2 Rp ) ( )

where we have used de Broglie’s hypothesis to relate the momentum
of a particle to its wavelength

h
A= 2.33
) (2.33)

Here h = 27h is Planck’s constant and p denotes the magnitude of
the momentum of the incident particle. The first minimum occurs at
W _ _h

min = 3p (2.34)
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If the incident 7% has low energy, it will primarily scatter from
the target nuclei. The first minimum of the diffraction pattern will

therefore occur at an angle O&)H corresponding to

R=12x10"13 A3 cm, (2.35)

where A denotes the mass number of the target nucleus. As the
momentum (and therefore energy) of the 7t increases, it can pene-
trate deeper into the nucleus and scatter from individual nucleons. In
the limit that it has infinite momentum, it can scatter from effectively
“free” nucleons within the nucleus, in which case the first minimum
of the diffraction pattern will occur at values corresponding to

R=12x10"Bcm. (2.36)

This angle will be relatively larger than the minimum angle for scat-
tering from the nucleus since the size of the nucleon is smaller than
the size of the nucleus. At intermediate values of momentum, both
components of diffraction will be present, and hence these two con-
tributions to the scattering must be added together. The “coherent”
scattering from the entire nucleus arises from a sum of amplitudes
for scattering off individual nucleons close to § = 0, with the final
rate given by the square of the sum of the amplitudes. While the
“incoherent” scattering from individual “free” nucleons arises from
a sum over individual intensities. Thus, naively, the rate for coher-
ent scattering is expected to go as |A|? and for incoherent scattering
as |A|.

If the scattering is from even smaller constituents within nucleons,
then an even more diffuse component (larger 6 values) must be added

to the spectrum. If pions are not point-like, then R =~ \/ R2 + Rgth or-

Problem 2.7 Normally, in optics, one looks at the diffraction pat-
tern as a function of angle 8. In this case, the value of 0 at the first
mantmum changes with wavelength or momentum. Can you see any
advantage to using a variable such as ¢> ~ p% ~ (pf)? to ewam-
ine diffraction patterns at different scattering energies? Sketch how
the pattern might look for scattering of ™ mesons of different ener-
gies from nuclear targets. Now, as energy increases, and larger g°
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become possible, what would be the effect of having nucleon substruc-
ture within the nucleus? What about point substructure within the
nucleon? (Does your answer depend on whether the " has such
substructure?)

As is clear from Eq. (2.32), the positions of the minima of the
diffraction pattern depend on the momentum of the incident particle.
On the other hand, for small angles, if we identify the momentum
transfer as

g> = p?sin 0 ~ (pd)?, (2.37)

then using (2.32) we can write the locations of the minima of the
diffraction pattern as

(a2 = (p0l2)" = . (2.38)

It is clear that in this q2 variable, the locations of the minima of
the diffraction pattern depend only on R, and are independent of
the incident momentum. (As it turns out, the size of the nucleon
appears to grow with incident energy, and the diffraction pattern

shrinks as the scattering energy increases. This growth of the nucleon
cross section is not completely understood.)

Problem 2.8 What are the frequencies that correspond to typical
splitting of lines for nuclear magnetic moments in magnetic fields of
~ b tesla?

The interaction of a particle of magnetic moment i with a magnetic
field B leads to a typical shift in the energy

AE =[i- B~ uB, (2.39)

where 1, B denote the magnitudes of the magnetic moment and the
magnetic field, respectively. For particles with typical nuclear mag-
netic moments in the presence of a 5T magnetic field, we have:

AE = unyB~3.15x 107 MeV/T x 5T
~ 1.57 x 10713 MeV, (2.40)
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where we have used (2.30). This shift in the energy will be reflected
in a shift in the frequency of the lines by

Ay — AFE _ AFE X c
h 2mwhc
157 x 1071 MeV x 3 x 10'° cm/sec
-~ 6 x 197MeV — F
~ 3.95 x 10"/sec ~ 39 MHz. (2.41)

The corresponding wavelength is given by

c 3x10%cm/sec 9
A= — = ~ 7.5 x 10 =7.0m. 2.42
v 3.95 x 107/sec e " (242)

This is in the upper range of short-wave radio frequencies (RF).

Problem 2.9 Show that when non-relativistic neutrons of kinetic
energy Ey collide head-on with stationary nuclei of mass number A,
the smallest energy that elastically-scattered neutrons can have is
given approximately by

A-1\?
Emin:EO(A+1> .

What will be the approzimate energies of the neutrons after one, two,
and any number j of such consecutive collisions, if the target nucleus
is hydrogen, carbon, and iron?

For a neutron incident on a much heavier target nucleus, we see from
Egs. (1.1) and (1.2) of the text that

2
— 2 my — - \2
= Mpvy — My X —5 X (U — Un)

M, m 2m
=mup|l1l—— v§——”v§+ " Vv cos @
my my

or (mg+mp)v2 = (my — my)vE + 2muvguy cosd, (2.43)

where 6 is the scattering angle and vy, v, represent the magnitudes of
the incident and scattered neutron velocities. It is clear from (2.43)
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that, for m; > my, both v2 and thereby the kinetic energy of the
scattered neutron will be minimum when 8 = 7, that is, when the
neutron scatters backwards.

For 6 = m, we note that Eq. (2.43) takes the form

(myg + mn)v,% + 2mpvpvg — (Mg — mn)vg =0, (2.44)

which can be solved to yield

o — —2mpuvo &+ /4mZvd + 4m? —m2)Z  —m, +my "
n 2(m¢ + my,) me+my
(2.45)
Since vy, > 0, it follows that when m; > m,,,
m¢ — My
= —— p. 2.46
Un = (2.46)

Consequently, the energy of the neutron when scattered backwards
is given by

1 me — My, 21 me — My, 2
B == 2 (2 Tm) 2_ (") B 2.47
n = 5Mnvy <mt - mn) 5 (mt o 0. (2.47)

Since the neutron mass corresponds to a mass number A =~ 1, if
the target nucleus has a mass number A, we can write

A—1)\2
E, = (m) Ep. (2.48)

Thus, we see that everytime a neutron is scattered backwards, its
energy will be reduced by a factor of

(4-1y ca

Consequently, if it scatters backwards j consecutive times, its energy
will be given by

A-1\% ,
En,j - (m) Eo, J = 1,2, 3, cees (250)

For scattering from hydrogen, carbon and iron (A = 1,12,56,
respectively), we can tabulate the energy of the neutron after
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successive backward scatterings as

Collision # | 'H 12 56Fe
1 ~0| ()" B | (8)° Bo
2 ~0| (B)" B | (B) B
3 ~0| ()" Eo | (8)° Bo
. ~ 11\2J 55\ 27
J ~0 (13) Lo (57) Eo

Problem 2.10 Using the results of Problem 2.9, calculate the num-
ber of collisions needed to reduce the energy of a 2MeV neutron to
0.1 MeV through elastic collisions between the neutron and carbon
nucles.

As we have seen in Eq. (2.50) in the previous problem, after j suc-
cessive backward scatterings, the energy of the scattered neutron is
given by

A—1\%
E,,=——| FEp. 2.
o= (551) B 251
If the scattering is from '?C nuclei, we have
12—-1\% 11\%
E,i=|——)| Ey=\{—=| E. 2.52
™J (12+1> 0 <13) 0 (2.52)

If By =2MeV and E, ; = 0.1 MeV, we obtain

11\ %
0.1 MeV = (-—) x 2 MeV

13
11\% 0.1M
or — = ————0 ev = 0.05
11
or 2jln-— =1In(0.05)

13
In005) _ (=8) o,
2 x In(0.85) ~ 2x0.165

Therefore, it would take about 9 consecutive backwards scattering of
the neutron to reduce its energy from 2 MeV down to 0.1 MeV.

and j =~
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Problem 2.11 For q? < 1, the exponential in the elastic form fac-
tor of Eq. (2.13) can be approzimated as 1+ ik -7 — $(k-7)2, where
k= 1(]’ Calculate |F(q)|? in terms of a root-mean-square radius of

the charge distribution R = \/(r?), for p(r) described by (a) a uni-
form distribution of charge within r = R, and (b) a Gaussian form

p(r) =~ e_%f, and show that in both cases |F(q)|? falls off approzi-
mately exponentially with ¢*. (Hint: Use symmetry arguments to elim-
inate the k - 7 term by recognizing that k- 7= kyx + kyy + kz.
Also, note that for a spherically symmetric p(r), (x?) = (y?) = (%) =
$(r?), and (r?) = [4mridrr2p(r).)

In Eq. (2.13) of the text, the form factor is given by

F(7) = / By )k, (2.54)
all space

In spherical coordinates, the exponent can be written as

1 i

—q T = —qrcos#, 2.55

. 74 (2.55)
where ¢, r represent the magnitudes of the three-vectors ¢, 7, respec-
tively. For ¢ < 1, we can Taylor expand the exponential to write

1
F(q) %/ d®r p(7) (1 + —qrcosf — — ¢*r? cos? 9).
all space h 2h?
(2.56)
Furthermore, if the charge distribution is spherically symmetric,

namely,

p(7) = p(r), (2.57)
we can simplify Eq. (2.56) by integrating over angular coordinates,
which yields

1
F(q) ~ /r2dr d(cos 8)de p(r) <1 + hqr cosf — 572 —q°r? cos? 9)

= 4n / drr2p(r) (1 — 9;;;) (2.58)

If the charge distribution is normalized to unity

3ro(r) = 4n rr2p(r) = .
/aud o(r) 4/d o(r) =1, (2.59)
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and if we identify the mean square radius of the charge distribution as
r2 o= (r?) = / d3r p(r) x r* = 47r/dr rip(r).  (2.60)
all space

We can rewrite the form factor in Eq. (2.58) as |

2

- q
@)~ 1 - s ()

2
~ e onz () (2.61)
where we have used the fact that g2 < 1 to write the form factor in

the approximate exponentiated form. It follows now that
2

@) ~e s (2.62)
This shows that the form factor falls off exponentially with g2
Let us next consider two special cases. First, when there is a

uniform charge distribution within a spherical volume of radius R.
Here we have

53 7S R, :
p(r) =< 37R (2.63)

0 r > R.

Clearly, the charge distribution is normalized to unity, and we have

1 R
(r?) uniform :47?/drr4p(r)47r X 7 R3/0 drrt

571'
3 R 3R?
so that from (2.62) we get
ey PR
lFuniform(Q)l ~e sh. (265)

The second example corresponds to a Gaussian charge distribu-
tion of the form

2 \? _a?
p(r) = (m) =3 (2.66)
where R is some fixed length scale that reflects the size of the
distribution. We can check the normalization of this distribution by
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noting that

/ d®r p(r) = 47r/dr r2p(r)
all space

3 2
2 \2 [° T
=47 X <m) dr 7’26 R2

3
2 2
=4
() (
3 3
2 \2 2\2 1 3
—4”(%1@) (—2—) §r(§)

3 3
2 \2 (R*\21 /=

(Note that the distribution given in the statement of the problem is
not normalized to unity.) In the intermediate steps above we defined

_ V2

2.
T= -7 (2.68)
and we used the “standard” definition of the “Gamma, (") function”
xd
T'(n) =2 / dz 22l (2.69)
0
Using this distribution, we can now calculate
<r2>Gaussian = 47T/d7” T4P(T)
3 2
2 ) o0 2r
=47 X <_2> / drrie” 72
n 0
2 \2 [R2\% [
— 4 2
=47 X (7‘[‘_}%2> X (7) /0 dz e *
3 53
= 47 X 2_)? X R X L r >
~ U\ a2 2 2 \2
2 \! (R2\! 1 37
2 s
=4 (?FR_?) * (7) “9X 4
3R?
= — (2.70)
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so that Eq. (2.62) leads to
q2 RZ

|FGaussian(§)|2 ~e 4n2 . (2.71)
In both cases (and, in fact, in general for spherically symmetric dis-
tributions of charge) the form factor falls off exponentially with ¢2.
(Needless to say, you do not have to know about I' functions to do
this problems — you can just look up these integrals in your favorite
tables of definite integrals.)






3. Nuclear Models

Problem 3.1 The Bethe-Weizsicker formula of Eq. (3.5) provides
an excellent representation of the mass systematics of nuclei. Show
explicitly that, for fized A, M(A,Z) has a minimum value. Is there
evidence for the “valley of stability” observed in Fig. 2.37 What is
the stablest nucleus with A = 167 What about A = 2087 (You can
differentiate Eq. (3.5), or simply plot M as a function of Z.)

From Eq. (3.5) of the text, the mass of the nucleus as a function of
its charge (Z) and the nucleon number (A) is given by

a asz Z2
M(A,Z) = (A — Z)mp+ Zm,, — C—;A+%A'§ +C_§_1

3

a4 (A — 2Z)2 _3

— -t a5 A7 %, 3.1

L (3.1)
where the values of the positive coefficients a1,...,as are given in

Eq. (3.4) of the text. For a fixed value of A, the nuclear mass becomes
a function of its charge alone. The value of the nuclear charge for
which the mass becomes a minimum can be easily determined from

8M(A, Z) :_mn+mp+ 20,3% B 40,4(142—2Z) —0
07 072 fixed A . c2A3 ccA
2 2
or =y <a3A3 + 40,4) =3 (4a4 + (mp, — mp)c ) (3.2)

A 4 — 2
2 day + azA3

To determine whether this stationary point is a minimum or a

maximum, we note that
0?’M(A, Z)

2
527 = —— <4a4 + a3A%> > 0. (3.3)

fixed 4 CA
43
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We therefore conclude that the extremum in Eq. (3.2) is a
minimum.
The solution for the minimum in Eq. (3.2) represents a valley of

minima, similar to what is observed in Fig. 2.3 of the text. Noting
from Eqgs. (2.2) and (3.4) of the text that

az = 0.72MeV, a4 =23.3MeV, (my —my)c® ~ 1.29MeV,
(3.4)

we conclude that for low values of A, the minimum in the mass
occurs for

A
Zmin ~ "2'a
which represents the stability line. However, as A increases, the
denominator becomes larger than the numerator and we have

(3.5)

A
Zmin < ‘2‘ or N > Zpin, (36)

where we have used the fact that A = Z + N. This deviation from
stability starts when

3 3
(M, — myp)c? 2 1.29MeV \ 2
A | ——— ~ 2.2
or A= ( a3 0.72 MeV !

(3.7)

which is somewhat low compared to the experimental observations
sketched in Fig. 2.3 of the text.
From the formula in (3.2) we can calculate
A dag+ (mp, — my)c?

(A=16) = =
Zmin(4 = 16) = 5 x day + 0.72A%

16 “ 4 x 23.3MeV + 1.29 MeV

27 4% 23.3MeV +0.72MeV x (16)}
~ 8 % 0.95 = 7.6, (3.8)

208 4 x 23.3MeV + 1.29 MeV
Zomin(A = 208) = 2 x X eVt A
2 4x233MeV +0.72MeV x (208)3

~ 104 x 0.79 ~ 82.16.
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We note that for A = 16 and A = 208, we expect %08 and 208pp82
respectively, to represent the most stable nuclei, and so this model
leads to reasonably accurate predictions.

This result can also be obtained graphically as follows. First, we

note that, for a fixed value of A, we can write the mass formuls in
Eq. (3.1) as

2
4a4 + azAs
M(A, Z)c* = LA?’—Z2 ~ (4aq + (Mp —mp)A)Z + C
2
. 4a4 + a3A'§' 7 _ A y a4 + (mn - mp)02
A 2 day + a3A%
A 4 - 2\2
14 C—Zx(a4+(mn 77’1:2“1;)(3)
4ay4 + a3A3
2
= éa‘“;__%.A_?’ (Z ~ Zunin)?
A 4 " — 2\2
N C_Zx(a4+(m mzp)C) ’ (3.9)
dag + a3z A3

where we have collected all the constant terms into C, namely,
C = Ampc® — a1 A+ as A3 + agA + asA~3. (3.10)

The mass formula depends quadratically on Z, and, when plotted
against Z for fixed A, shows a minimum at Z = Z;, as given in
(3.2). For A = 16 and A = 208, the total number of nucleons is a
multiple of 4. Consequently, we can have only an even—even structure
(although an odd—odd nucleus has even A4, it will not correspond to
a multiple of 4), so that we need to consider only the negative sign
in the last term of the mass formula in (3.1). For completeness, we
plot in Figs. 3.1 and 3.2 the graphs for A = 16 and 208, respectively,
for both odd-odd and even—even nuclei.

Problem 3.2 Using Eq. (3.3) compute the total binding energy
and the value of % for 8Be, 1206 5626 45 d 208P182  How do these
values compare with experiment? (See CRC Handbook of Chemistry
and Physics for data.)
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The empirical formula for the B.E. is given in Eq. (3.3) of the text

B.E.

—a1A+ agA% + a3Z2A_% + ag(N — Z)QA_1 + a5A'%
—a1A+ agA% + agZQA“% + a4(A — QZ)QA_1 + a5A_%,

(3.11)

where the upper sign in the last term is for odd—-odd nuclei while
the lower sign is for the even-—even nuclei. The coefficients in the
expression have values given in Eq. (3.4) of the text, namely,

a1 ~ 15.6 MeV, a9~ 16.8 MeV, a3~ 0.72MeV,
as ~ 23.3MeV, a5~ 34 MeV.

The B.E. per nucleon can be obtained from this to correspond to
B.E.

A

(3.12)

—ay + GQA_% + a3ZQA—% + CL4(A - 2Z)2A—2 + G,5A—271_.
(3.13)
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We note that 8Be?, 12C8, 5Fe26 and 298Pb82 are all even—even
nuclei. Therefore, we consider only the lower sign in the last term
in Egs. (3.11) and (3.13) in evaluating the B.E. and the B.E. per
nucleon. Putting in the numbers, we obtain the table:

Table 3.1.
A Z BE.uculated (MeV) B.E.taples (MeV) Z = _BE (\ev)
8 4 —58.99 —56.50 7.37
12 6 —03.09 -92.20 7.76
56 26 —495.48 —-492.30 8.85
208 82 —1621.68 —1635.80 7.80

Problem 3.3 You might conclude from Problem 3.2 that 8Be* is
stable. This is, in fact, not the case. Can you provide a model to
explain this result? (Hint: see Problem 2.2.)

As we have already seen in Problem 2.2,
B.E. of “He? = —28.29 MeV. (3.14)

Therefore, we see from Table 3.1 that the difference in the B.E. of
8Be? and that of two “He? nuclei is given by

A = —56.50 MeV — 2 x (—28.29) MeV
= (—56.50 + 56.58) MeV = 0.08 MeV. (3.15)

As a result, we see that ®Be? can decay into two “He? nuclei, thereby
releasing 80 keV of energy:

8Be* — ‘He? + “He? + 80 keV. (3.16)

Problem 3.4 Calculate the binding energy of the last neutron in
ISNT and of the last proton in 08, and contrast with the last neutron
in N7 and in 1908,
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From the CRC Handbook, we know that

M(*H') = 1.0078 amu, my, = 1.0087 amu,
M(*¥N") = 14.0031 amu, M (®N") = 15.0001 amu,
M(1®N7) = 16.0061 amu, M (**08) = 15.0030 amu,
M(1508) = 15.9949 amu.

(3.17)

Using these values and the conversion between “amu” and “MeV”
units, we can calculate the binding energy of the last neutron in N7

B.E. = (M(*N") + m, — M(*N"))c?
= —(14.0031 + 1.0087 — 15.0001) amu x c?
~ —0.0117 x 931.5MeV/c? x ¢ = —10.8985MeV.  (3.18)

Similarly, the binding energy of the last proton in 308 is

B.E. = —(M(14N7) + M(*HY) — M(P°08))c?
—(14.0031 + 1.0078 — 15. 0030) amu X ¢
~ —0.0079 x 931.5MeV/c? x ¢ = —7.3588MeV.  (3.19)

Furthermore, the binding energy for the last neutron in N7 is
given by
B.E. = —(M(}N") + m, — M(**N"))c?
= —(15.0001 + 1.0087 — 16. 0061) amu X ¢
~ —0.0027 x 931.5MeV/c? x ¢ ~ —2.5150 MeV. (3.20)

Finally, the binding energy of the last neutron in 808 is

B.E. = —(M(1508) + my, — M(*%08%))c?
—(15.0030 4 1.0087 — 15. 9949) amu X ¢
~ —0.0168 x 931.5MeV/c? x ¢ = —15.6492MeV.  (3.21)

Problem 3.5 What would you expect for the spin and parity of the
ground states of 23Na'l, 33CIY" and 41Ca®® on the basis of the single-
particle shell model? Do these predictions agree with experimental

values? What about the magnetic moments of these nuclei? (See CRC
Handbook for data.)



Nuclear Models 49

The energy levels in a single-particle shell model are shown in Fig. 3.4
of the text, where the neutrons and protons are assumed to fill the
energy levels independently from ground up.

23Nall has 11 protons and 12 neutrons. The 12 neutrons must all
be paired, as are the first 10 protons, and the last proton yields the
JF for the nucleus. The shell structure in this case is

n: (151/2)2(1P3/2)4(1P1/2)2(1D5/2)4,
p: (181/2)*(1P3/2)* (1P /9)?(1Ds5)3.

Thus, the last proton in the state 1Ds5/9 leads to the spin-parity
(¢ = 2 for the D state)

5+

JE = 5 (3.22)
which is not consistent with the observed value of
3 +
JE = 5 (3.23)

The magnetic moment for this case is given by (see Eq. (3.58) of the
text)

p=279un +Lluy =2.79uN + 2un = 4.79uyN, (3.24)
which, not surprisingly, differs from the observed value of
Lobs = 2.2uN. (3.25)

35CI'7 has 17 protons and 18 neutrons. All the neutrons are
paired, while 16 of the protons are paired, leaving one unpaired
proton, which determines the spin-parity of the nucleus. The shell
structure for this case is given by

n: (151/2)*(1Ps/2)* (1Py/2)%(1Ds52)5(251 /2)*(1D3)?,
p: (181/2)2(1P3/2)*(1P12)?(1D52)8(2851/9)?(1D39) .
The lone proton in the state ! Dy /2 would lead to
3t
=35
which is consistent with experiment. The predicted value of the

magnetic moment is

p=279uN + fun = 2.79uN + 2un = 4.79n, (3.27)

JF (3.26)
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which does not agree with the observed value of

Pobs = 0.8 (3.28)

41Ca?0 has 20 paired neutrons, 20 paired protons, and one
unpaired neutron. The shell structure has the form

n: (151/2)2(1P3/2)4(1P1/2)2(1D5/2)6(251/2)2(1D3/2)4(1F7/2)1,
p 1 (1812)?(1P3/2)*(1P1/2)*(1D5/2)%(251/2)*(1 D3 2)*.

The last neutron in the state 1 F; /2 determines

JP = -;- , (3.29)

consistent with experiment. The predicted value of the magnetic
moment is that of the unpaired neutron

p=—191un, (3.30)

which differs somewhat from the observed value of

Lobs = —1.6unN. (3.31)

Problem 3.6 Consider a somewhat more sophisticated model for
the anomalous contribution to the magnetic moment of a nucleon.
Assume that the proton can be regarded as a fized neutral center
with a ©+ meson circling about in an £ = 1 orbit. Similarly, take a
neutron as an effective proton center with a m~ meson in an £ =1
orbit around it. Using m, = 140 MeV/c?, calculate p= (27;2 C)E, and
compare results with those of Problem 2.5.

If we assume such an “atomic” model for the nucleons, then the
magnetic moment of the 7 meson will be given by

Ly = ( ch )e, (3.32)

2mgc
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where e represents the charge of the pion, the mass of the pion is
given by

Myt = M- = 140 MeV/c?, (3.33)

and /£ represents the orbital angular momentum of the pion. Since
the 7+ mesons move in orbits with £ = 1, we obtain

h
Mwi=< ° )Xl:impMN
m

2m +c nt
938.27 MeV/c?
140 MeV/c? BN 6.Tun (3.34)

In the model for the proton, where we assume that a 77 is going
around a neutron, we can predict

Pp = pn + pr+ = (=191 +6.7)un = 4.79unN
~4.79 x 3.15 x 107 MeV/T ~ 1.51 x 107 ¥ MeV/T,  (3.35)

where we have used the value of puy in MeV/T from Eq. (2.30). This
is quite comparable to the result in Problem 2.5.

For the neutron, the model assumes that a 7~ moves around a
stationary proton so that we have

Pn = Pp + pp- = (2.79 = 6.T)puny = =3.91pun
~ —3.91 x 3.15 x 1071 MeV/T ~ —1.23 x 10713 MeV/T.

(3.36)

Problem 3.7 The ground state of 3'Ba®® has spin-parity —%Jr.

That s, its spin is % and parity +. The first two excited states have
spin parity %+ and 1—21_. According to the shell model, what assign-
ments would be expected for these excited states? (Hint: The surprise
has to do with “pairing energy”.)

137B456 has 56 protons and 81 neutrons. The protons are all paired
and therefore do not contribute to the spin parity. According to the
single-particle shell model, the neutrons should fill the energy levels
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as follows:

n: (151/2)2(1P3/2)4(1P1/2)2(1D5/2)6(2S1/2)2(1D3/2)4
(1F7/9)%(2P3/2)* (1F5/2)° (2P /2)?(1Go2) * (1Gy 2)®
(2D5/2)%(2D32)*(351/2)*(1H112) " (3.37)

If this is how the energy levels are filled, then the unpaired
neutron will be in the state (1H;;/,), leading to a ground state spin-
parity (¢ =5 for an H state)
11~
5
Furthermore, the next energy level in the sequence would correspond
to the (1Hy/y) state, so that if the unpaired neutron is excited, then
it could move to the next level, leading to a spin-parity assignment
for the excited state of

JF (ground) = (3.38)

JF (excited) = g : (3.39)
However, the observed spin-parity of the ground state of 137Ba?®
p _3"
']obs = —2' ) (340)
while the next two excited states are
1+ 11~
JE (excited) = 5 '3 (3.41)
This suggests that the shell structure for the neutrons in 3"Ba®6 may
have the form
n: (1S19)%(1P39)*(1P1/9)%(1D5/2)°(251/2)*(1D3/9)*
(1F7/2)®(2Ps/2)*(1F5/9)° (2P 12)? (1G9 2) ° (1G72)®
(2D59)%(2D3/2)%(351/9)*(1Hy12) 2. (3.42)
Since the unpaired neutron is in the state (2D3/5), it will lead to a

ground state spin-parity assignment of
3+t
JF (ground) = 5 (3.43)

Furthermore, since the filled (3S;/2) and (1H;;/,) states are very
close in energy to the (2D3/9) state, a neutron from either can “drop
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down” to fill the (2D3/5) shell, which can then yield excited states
of spin-parity
J¥ (excited) = —;—+ and % . (3.44)
We can understand this kind of a shell structure in the following
way. While normally energy levels fill from ground up, sometimes it
leads to greater nuclear stability when a subshell of higher £ is closed
off (completely filled) and the unpaired nucleon is left in a lower
shell. This happens when shells are very close to each other, as is the
case for 3579, 2D3/9 and 1Hyy/9. For the ground state of 137Ba, the
(251/2) and (1Hyy/7) levels are filled to capacity, while 2D3/5 is only
partially filled, with the unpaired neutron also in that 2Dz, state.






4. Nuclear Radiation

Problem 4.1 Calculate the Q wvalues for the following a-decays
between ground-state levels of the nuclei: (a) *®Po — 204pp 4 o
and (b) 9Th — ?Ra + «. What are the kinetic energies of the
a-particles and of the nuclei in the final state if the decays proceed
from rest?

From the CRC Handbook we have the atomic masses

M(®%8Po®) = 207.9812amu, M (***Pb®?) = 203.9730 amu,
M(9Th%) = 230.0331 amu, M (**Ra®®) = 226.0254 amu,
M (*He?) = 4.0026 amu. (4.1)

From Eq. (4.4) of the text, the @ value in a reaction involving
a decay is given by

Q=Tp+Ty=(M(AZ)—MA-4,7—2)— M(4,2))c,
(4.2)

where we assume that M (A, Z) and M (A — 4, Z — 2) represent the
masses of the parent and the daughter nuclei (atomic masses can be
used because the masses of the electrons cancel out). Furthermore,
the kinetic energies of the o particle and the daughter nuclei are

 Mp M(A—-4,7Z —2)
T Mp+ M, MA-4,7-2)+M4,2)’

T, Tp = Q — T,

(4.3)
With all this information, we can look at the reaction

208P084 N 204Pb82 + a, (44)

55
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and we have

Q — (M(208P084) _ M(204Pb82) . M(4He2)) 62

~ (207.9812 — 203.9730 — 4.0026) amu x c2
~ 0.0056 x 931.5MeV/c? x ¢? = 5.2164 MeV

M(204Pb82)

Ta = M (204Pb®?) + M (4He?) (4.5)
N 203.9730 amu '
™ (203.9730 + 4.0026) amu
~ 0.98 x 5.2164 MeV = 5.11 MeV,

Tp=Q — Ty~ (5.2164 — 5.11) MeV ~ 0.11 MeV,

)

X 5.2164 MeV

where in the intermediate steps we have used Eq. (2.11), which relates
the “amu” unit to the “MeV” unit.
Similarly, for the reaction

23090 _, 226,88 | a, (4.6)

we have
Q — (M(230Th90) . M(226Ra88) _ M(4H82)) C2

~ (230.0331 — 226.0254 — 4.0026) amu X c¢?

~ 0.0051 x 931.5MeV/c? x ¢ ~ 4.7506 MeV,
M(226Ra88)

M (?%Ra®®) + M (4He?) (4.7)
226.0254 amu

~ 4.7506 MeV

(326.0254 + 4.0026) amu < +7°00 Me
~ 0.982 x 4.7506 MeV =~ 4.66 MeV,

Tp =Q —T, ~ (4.7506 — 4.66) MeV =~ 0.09 MeV.

(0]

Problem 4.2 Estimate the relative contribution of the centrifu-
gal barrier and the Coulomb barrier in the scattering of a 4 MeV
a-particle from 236U. In particular, consider impact parameters of

b= 1fm and b = 7fm. What are the orbital quantum numbers in
such collisions. (Hint: |L| ~ |7 x p| ~ hkb ~ kL.)

The scattering of an a particle from a 239U%2 nucleus is governed by
a Schrodinger equation of the kind given in Eq. (3.28) of the text,
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with
77 e? 2 x 92¢2 184¢2
V(’I") = Vcoulomb = = = )
T T T
(4.8)
R24(L+ 1)

2mr2

Vcentrifugal =

3

where m is the reduced mass of the system defined in Eq. (1.46) of
the text. Since my <K massyy, it follows that

m & me ~ 4.0026 amu ~ 4.0026 x 931.5 MeV/c? ~ 3728 MeV/c?.
(4.9)

In the present case, both the Coulomb and the centrifugal terms
are repulsive, and while the Coulomb potential is independent of ¢
(acts the same way for every ¢ component), the centrifugal barrier
depends explicitly on £. It vanishes for £ = 0 (there is no centrifu-
gal contribution if there is no impact parameter: £ ~ |p X 5]), and
it grows with £. The two potentials have different dependence on
radial distance, and must therefore be compared with care. However,
qualitatively, for £ # 0, the centrifugal potential dominates at very
small distances, while the Coulomb potential takes over at large dis-
tances. This transition depends on £, and can be seen from Eq. (4.8)
to correspond to

B2+ 1 he Fic
Ttransition(e) = 2mZZ’eQ) = 57 72 X —6—5 X f(@ + 1)
197 MeV — F

N X2 % 92 x 3728 ey < 13T x e+ 1)

~ 0.01974(¢ + 1) F. (4.10)

Classically, any impact parameter b determines the orbital angu-
lar momentum in the scattering through Eq. (1.14) of the text

1 2mE
i TZ,Z or £{=+vV2mFE b. (4.11)

We have
m~ Mg, E=4MeV. (4.12)
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Furthermore, since the quantum eigenvalues of angular momentum
are represented as hf,£ =0,1,2,..., we obtain

h
he(b) = \/2moFE b = \/2myc2E X _ﬁg

hb

SN 2
V2 x 3728 x 4 (MeV)?2 x Ty (419)
b
or £(b) = 0.87 x 7
Therefore, we see that
((b=1F)~087=~1,
(4.14)

((b=T7TF)~ 087 x7=~6.

To estimate the relative contributions of the two potentials at the
distance of closest approach, we recall that this can be determined
from Eq. (1.25) of the text

77! e 2F \? |
— 1 T4+ =—=——=_) p2|. 4.
To 2E +\/ + (ZZ’62> b ( 15)

Here, we have

7Z'e*> ZZ'he €  2x92x197TMeV—-F 1

oF 9E  he 2 x 4MeV * 137
~ 33.12F, (4.16)

b2
R ERNCERTIR

b2
~33.12F [1+ |14+ —————
33 [ +< +2(33.12F)2)}
~ 66.24F ~ 66 F. (4.17)

so that

ro(b) ~ 33.12 F

(The b-dependent correction terms for the two cases under consider-
ation are negligible, and so, for these b values, g does not depend
very much on b.)
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At the distance of closest approach, we note from Eq. (4.8) that

VCoulomb(r = 66 F)

1842 hc e?
~ — 184 x £ L &
66F ~ o4 X 66F X he

197MeV —F 1
N 18 X e X o AMeV,

Veentrifugal (1 = 66 F', £ = 6) (4.18)
A20(¢ 4 1) hc hc
~ = — X0l +1
2m T2 2m,C? X 72 x A+ 1)
_ 197TMeV —- F 9 197MeV — F
" 2 x 3728 MeV (66 F)2
~ 0.05 MeV.

X6x7

We chose £ = 6 for the calculation of the centrifugal term because
it is larger for higher ¢ values, and yet we find that it is negligible
compared to the Coulomb potential for £ = 6, even at the distance
of closest approach. This is easily understood from our earlier obser-
vation that

Ttransition (£ = 6) ~ 0.0197 X 6 x TF ~ 0.83F < r, (4.19)

as a result of which, the Coulomb potential always dominates over
the centrifugal term for these cases.

Problem 4.3 Free neutrons decay into protons, electrons and
antineutrinos, with a mean life of 889 sec. If the neutron-proton mass
difference is taken as 1.3 MeV/c?, calculate to at least 10% accuracy
the mazimum kinetic energies that electrons and protons can have.
What would be the mazimum energy that the antineutrinos can have?
(Assume decay from rest and that the antineutrino is massless.)

The decay of a free neutron leads to three bodies in the final state:
n—p+e + U, (4.20)

and, as discussed in the text, unlike o decay, which constitutes a two-
body decay, the energies of the individual decay products cannot be
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specified uniquely. If we assume that the neutron decays at rest, then
momentum conservation leads to

Pp + Pe +P5 =0, (4.21)

and it follows from the conservation of energy in Eq. (4.32) of the
text that

Q=T +T.+Tp = (mp—mp —me — m,;)c2. (4.22)
We are given that
(Mn — mp)c® = 1.3MeV, mec® =0.511MeV, my =0, (4.23)
it therefore follows from (4.22) that
Q=Ty+Te+Ty=(1.3-0511—-0)MeV =~ 0.8MeV.  (4.24)

This relationship shows why the energies of the individual decay
products cannot in general be unique. However, if one of the decay
products is at rest (namely, one of the kinetic energies vanishes), then
conservation of momentum provides a way to determine the unique
energies of the other two products. Under these circumstances, one
of the objects can assume its maximum energy. There are three such
special cases to consider, and we will analyze these separately in what
follows.

First, if the antineutrino is produced at rest (since the antineu-
trino is assumed to be massless, it cannot really be produced at rest,
and this should therefore be interpreted as saying that the momen-
tum and, consequently, the energy of the antineutrino is negligible),
it follows from Eqs. (4.21) and (4.22) that

Pp=—De, Tp+Te=0Q. (4.25)

Since the sum of the kinetic energies is ~ 0.8 MeV, the proton must
be nonrelativistic, whereas the electron can be relativistic. Therefore,
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using the appropriate forms for kinetic energies, we obtain

2
p
ﬁ +v/p2c + m2ct — moc? = Q
P (4.26)
\/pec2 + m2c4 =Q+ meCQ - pe
2mp

where we have used the identification in Eq. (4.25). Squaring both
sides, we can solve for pg

(A P
4m2  mp(Q + mec?)
or (pe)2 4mpp?a (Q + (mp + me)CQ) =+ 4m12, (Q + 2mec2) =0

pic? + m2ct (Q—I—mec) +

or p; = 2m, [Q + (mp +me)c® £ \/(mp + me)2ct + 2Qmpc2J .
(4.27)

Since mpc2 > mec?, and mp62 > (), we can approximate the kinetic
energy of the proton as

: 2

= Le 2 2 Qmpc
o, AT (e mT <(mp FmeC G me)c2>
_ Q (1 o mpc2 ) MeC 2 Q
a (mp + me)c? (my + me)c
0.511 MeV

= (938.27 + 0 5;31) MoV X 0.8 MeV ~ 4.24 x 10~4 MeV
~ 0.4keV, (4.28)

where in the intermediate steps we have discarded the solution of the
quadratic equation with positive sign as unphysical, since it leads to
a larger value of proton kinetic energy than is allowed by the bound
in Eq. (4.24). The kinetic energy of the electron is therefore

Te = Q — T, ~ 0.8MeV — 0.4keV = 0.7996 MeV. (4.29)

The second case to consider is when the electron is emitted at
rest, namely, p. = 0. Here we have

ﬁp —_ *ﬁl—/, Tp + Tl—, + Q (430)
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For a massless neutrino, Ty = E; = pyc (where py = |p|), so that
we obtain
Tp + TD = Q
P2
z pC = 4.31
o o +prc=Q (4.31)

or py = —myc=k \[m%cg + 2mpQ ~ %

)

where we have discarded the solution with the negative sign because

it leads to a negative value for py, which is unphysical. The kinetic
energies of the proton and the neutrino now become

T = p% ~ Q2
P 2m,  2mpc?

(0.8MeV)2 _4
~~ ~ 3. =0.34k 4.32
5 % 038 MoV 3.39 x 107*MeV = 0.34keV, (4.32)

Ty =Q — T, ~ 0.8MeV — 0.34keV = 0.7996 MeV.

The final special case is when the proton is produced at rest,
namely, when p, = 0. Here, we have

Pe=—Dp, Te+T5=20Q. (4.33)

Using these relationships we obtain

T, + T5 = +/p%c? + m2ct — mec® + poc = Q

(4.34)
or \/p3c2 + m2ct = Q + mec® — pc.
Squaring both sides and rearranging terms, we obtain
o Q2 + QQmeCQ
P =5Q + mec®)c’
2 2
+ 2Q0mec 0.8MeV (0.8 + 2 x 0.511) MeV
Ty =ppc= 9 El S = ( ) (4.35)
2(Q + mec?) 2 x (0.8 4 0.511) MeV

~ 0.5 MeV,
T.=Q—Ty; ~08MeV — 0.5MeV = 0.3MeV.
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Comparing Eqs. (4.28), (4.29), (4.33) and (4.35), we conclude
that
T,Sma"‘) ~ 0.4keV, when the neutrino is at rest,
e(ma'x) ~ 0.7996 MeV, when the neutrino is at rest, (4.36)
Tlg,max) ~ (0.7996 MeV, when the electron is at rest.

Problem 4.4 If the stable isotope of sodium is 22Na, what kind of
radioactivity would you ezpect from (a) 22Na and (b) *Na?

We know that 23Nall is stable. The isotope 2?Nall has one less neu-
tron, while ?Na!! has one extra neutron relative to 22Nall. Conse-
quently, a proton in 2Na!! can undergo an inverse 8 decay to yield

2Nall — 2Nel® 4 et + 1, (4.37)

where 22Nel® is a naturally occurring' stable isotope of 2°Ne!0. Simi-
larly, the extra neutron in 2*Na!! can undergo a 3 decay to yield

2ANall - #Mg!?2 + e + 7, (4.38)
where 2#Mg!? is stable.

Problem 4.5 Specify any additional particles needed in the fol-
lowing weak reactions to assure the conservation of lepton number:
(@) pu~—e+?2m)7t et ?(c)e "+ X2 -5 2(d) v, +n— 7
(e) 1 X% - AYZ 1 4 2 (f) De4+p— 7

As discussed in Chap. 4 of the text, all leptons carry a quantum
number known as lepton number. If the electron, the muon and the
tau lepton carry the same lepton number 1, then a reaction such as

po—e +, (4.39)

would be kinematically allowed, and would satisfy lepton-number
conservation. However, as discussed in Chap. 9 (see Sec. 9.2.2 of
the text), different families of leptons carry different lepton-family
quantum numbers. If these quantum numbers are to be conserved in
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a reaction, then we can have only the following unique reactions

(a) u~ — e + e+,
(b) 1t —et+ v+,
(¢) e +4X% - AYZ-1 4y,
(d) Vu+n—')p+/*l’—v
() AXZ—>AYZ_1+6+—|-I/6,
O Fetp—etin

Problem 4.6 Calculate the typical kinetic energy expected of an
a-particle confined within a nucleus if its emitted energy is 10 MeV.
What is the momentum of such an a-particle inside the nucleus and
after it is emitted. Is the wavelength of such an a-particle acceptable
for it to be contained within a nucleus of *2C? What about 238U7?

(4.40)

¢

anr)

An « particle with 10 MeV of kinetic energy is clearly nonrelativistic.
Outside the nuclear potential well, all its energy is kinetic and we can
therefore identify

Tloutside) — pr — 10 MeV. (4.41)

On the other hand, inside the nuclear well, the o particle feels the
potential of the well and we have

E = To(linside) + V(’I“) — Téinside) — U, (4.42)

where the potential depth of the nuclear well (if we assume a square-
well potential) is about Uy = 40MeV (as discussed in Sec. 4.3 of
the text). Therefore, using Eq. (4.41) and conservation of energy, we
obtain

E = Tinside) _ 1y — 10 MeV
- (4.43)
Tivside) — 10 MeV + Up = (10 + 40) MeV = 50 MeV.

In other words, the o particle has more kinetic energy inside the
nucleus than outside.
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Since the a particle is nonrelativistic both inside and outside the
potential well, we can calculate its momentum as

p(outside) — \/ QmaTo(éoutside) _ \/m % _1_
Cc
1
~ /2 x 3728MeV x 10MeV x =
C
~ 273 MeV/c,

(4.44)

p(inside) _ \/ Mg O(linside) _ \/ QmaCQTo(lmSide) > 1
C

1
~ 2 x 3728 MeV x 50 MeV x =
c

~ 610 MeV/c,

where we have used the value of m, given in Eq. (4.9).
The corresponding de Broglie wavelength of the o particle inside
the nuclear well is
)\ (inside) _ h _ 2mhe
p(inside) p( inside) »
_6x197MeV — F
~ 610MeV

=19 x 1078 em, (4.45)

~19F

where we have used the value of the momentum from Eq. (4.44).
From Eq. (2.16) of the text, we can obtain
Rizg=12x 10713 43 cm = 1.2 x (12)7 x 10~ 3 ¢m
~ 2.76 x 10713 cm > A(inside)
Rassy = 1.2 % (238)% x 10713 cm
A 7.44 x 10718 ¢m > \(inside)

(4.46)

We therefore conclude that the o particle can be contained inside
either of these nuclei.

Problem 4.7 When you examine the dependence of Z on N for
stable nuclei, you find that S+ emitters lie above the region of stabil-
ity (have proton ezcess) and §~ emitters lie below that region (have
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neutron excess). For example, 8B emits 3%, while 12B emits 5~. Sta-
ble nuclei are those that do not seem to have sufficient mass for either
emission to take place, that is, they are the nuclei with greatest bind-
ing or smallest mass. As discussed in Problem 3.1, this suggests that
stable nuclei should correspond to a “valley” in the M-Z space, that
is, specified by %A—Z/‘I = 0. Using the semi-empirical mass formula for
M, show that the relationship between Z and A for this valley of sta-
bility is Z =~ (2+0'0145 A7) Several nuclei with Z beyond 110 were
discovered in the late 1990s. Is it possible that there could be more
“islands” of stability for Z > 1207 Consider, for specifics, the pos-
sibility of binding of Z = 125, Z = 126, and Z = 164. Even more
massive nuclei have been hypothesized with Z > 200. These would
have rather exotic bubble-like or toroidal structure. Why would such

structures be expected to be more stable than spherical nuclei?

As derived in Problem 3.1 (see Eq. (3.2)), the valley for stable nuclei
can be described as

_ A dag+ (mn — myp)c?
2 dag + a3A%
Using the values (see Egs. (2.2) and (3.4) of the text)

(mp —mp)c? ~ 1.3MeV, ag~0.72MeV, a4 ~ 23.3MeV,
(4.48)

Z (4.47)

we obtain
(4 x 23.3 + 1.3) MeV

A (93.2 +1.3)
2 " (4x23.3+0.7243) MeV
A

(93.2 + 0.72A3)

A
4 =~ _
2><

93.2 A

2" 932+ 0.7245 2+ 0.015A3
(Note that the coefficient of the second term in the denominator may
have a typo in older edition of the text.)

Z = 125 is an unfavored odd number, and not likely to be stable.
Shell Model corrections to the semi-empirical mass formula would
favor stability for Z = 126 and A = 310. However, here Z%/A = 51,
which is above the Z2?/A = 47 limit, where spontaneous fission should
prevent formation of stable nuclei. A toroidal shape would permit the
protons to separate (as in fission), thereby lowering the impact of the
destabilizing Coulomb term in the mass formula.

o~

(4.49)



5. Applications of Nuclear Physics

Problem 5.1 To study neutron absorption cross sections at
very low energies, one must often slow down (moderate) energetic
(= 1MeV) neutrons that are produced in reactors. Show that paraffin
would be a better moderator than aluminum, by specifically calcu-
lating the mazimum energy that a 1 MeV neutron can transfer in a
collision with a proton (within paraffin) as opposed to that with an
Al nucleus.

As we saw in Problem 2.9 (see Eq. (2.48)), in a head-on collision with
a target nucleus of mass number A, a neutron scatters backwards
(0 = 7) with an energy

A—-1\°
E.=——| E 5.1
where Ej represents the energy of the incident neutron. If the tar-

get is paraffin (essentially a chain of CHy units), then ignoring the
presence of C, for A =1 we get

A—-1\? 1-1)\?
(paraffin) __ — En = 0. 9
E) <A+1> Ey <1+1> 0=20 (5.2)

On the other hand, if the target nucleus is aluminum (*"Al'?), we
have A = 27, leading to

. A-1)? 27 —1\?
E(alummum) _ —
) - (251) Bo= (5r7) B

~ 0.86.Fy. (5.3)

Thus, we see that paraffin is a much better moderator, since after
one collision a neutron can lose all its energy.

67
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Problem 5.2 Calculate the energy released when 1gm of 235U fis-
sions into “8La and 8"Br. Compare this to the energy released in
fusing deuterium and tritium nuclei in 1gm of tritiated water with
1gm of deuterated water (i.e. ToO and D5 0).

Let us consider the fission process
23592 4y _, 148 57 | 87335 | (5.4)

The energy released per fission is
A = B.E.(¥3°U%) — B.E.(*¥La%") — B.E.(}Br®). (5.5)

The B.E. for the different nuclei can be calculated using the phe-
nomenological formula Eq. (3.3) of the text, or more directly from
the defining relationship in Eq. (2.5) of the text. Using the latter, we
obtain

A = [M(**U%) - 92m,, — 143m,, — M(**8La’") + 57m,, + 91m,,
— M(*"Br®®) + 35my, + 52my)c?
= [M(35U%) — M(M8La5T) — M (5"Br®)] 2. (5.6)
From the CRC Handbook, we have the atomic masses
M (?3°U%) ~ 235.0439 amu,
M (M8Lad") ~ 147.9320 amu, (5.7)
M (®"Br*) ~ 86.9207 amu.
Using these and the conversion factor from “amu” units to “MeV”
units in Eq. (2.11), we obtain
A ~ (235.0439 — 147.9320 — 86.9207) amu x ¢?
= 0.1912 x 931.5 MeV/c? x ¢? ~ 178.1 MeV. (5.8)

This is the energy released per nuclear fission. In 1 g of 235U, we have

6 x 1023

235
so that the complete fission of 1g of the material will lead to a
release of

Nazsyy = 5.9
U

6 x 1023
Erssion = Nassy X A —235— % 178.1 MeV

~ 4.55 x 102 MeV. (5.10)
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From Eq. (5.21) of the text, we note that the fusion of a deuterium
(2H') nucleus with tritium (3H') leads to

H+3H — *He 4+ n + 17.6 MeV. (5.11)
Now,
Ap,0=2%x2+16=20, Ar,0=2x3+16=22, (5.12)

and in 1g of D50, there are

6 x 1023
20

deuterium nuclei, while in 1g of T9O, there are

Np,o =2 X =6 x 10?2 (5.13)

6 x 1023
22

tritium nuclei. When we combine 1g of DoO with 1g of TH0, we
therefore have

Nr,0 =2 X ~ 5.4 x 10% (5.14)

N = Np,0 ~ 5.4 x 10% (5.15)

possible number of fusions. Complete fusion will lead to a release of
energy amounting to

Efysion = N x 17.6 MeV = 5.4 x 10?2 x 17.6 MeV
~ 9.5 x 10% MeV. (5.16)

Comparing Egs. (5.10) and (5.16), we conclude that there will be
a comparable amount of energy released in fission and fusion pro-
cesses per gram of material.

Problem 5.3 The counting rate for a radioactive source is mea-
sured for one minute intervals every hour, and the resulting counts
are: 107,84,65,50,36,48,33,25,.... Plot the counting rate versus
time, and from the graph roughly estimate the mean life and the
half-life. Recalling that the expected error on N counts is VN, do
the data points seem reasonable? (Hint: use “semi-log” paper to plot
log N wvs. t.)
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The activity of a radioactive material is given in Eq. (5.26) of the text
A(t) = ANge™ = A(0)e™, (5.17)

where the decay constant )\ is related to the half-life of the material.
The activity gives the number of nuclear disintegrations per second
at some time t. We can find the number of decays within a time
interval At centered on t, as follows:

t+45¢ t+4¢ /
AN(t) = / dt’ A(t') = A(0) / . dt' e
t t— &t

_42_15

_ __1_ —A(t+41) —A(t—-4t)

= )\A(O)(e ) A5 )

= T A(0)e ™ (e% . e—%“) , (5.18)

where, as defined in Egs. (5.24) and (5.25) of the text, the mean
life T is given by

1ty

When the counting interval is

At = 1 min = 60 sec, (5.20)
we can write
AN(t) = ’r.A(O)e_’\t (630’\ — 6_30’\) (5.21)
or InAN(t) = -+ C,
where we have combined the constant terms into C'
C = In(1A(0)) + In(e30* — 7304, (5.22)

Equation (5.21) represents a straight line with slope (—\A) and an
intercept C. Let us tabulate the observed counting rates (number of
counts in 1-minute intervals) at the start of each hour as a function
of time, as shown in the table on the next page.
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¢ (hr) | AN(t) | mnAN(t)
1 107 ~ 4.67
2 84 ~ 4.43
3 65 ~ 4.17
4 50 ~ 3.91
5 36 ~ 3.58
6 48 ~ 3.87
7 33 ~ 3.50
8 25 ~ 3.22

We can now plot In AN(¢) against ¢, and as we have already
mentioned, the plot should yield a straight line with slope A.

In Fig. 5.1, we plot the counting rate as a semilog graph, in which
case there is no need to calculate In AN(t), and the slope can be

Counts/minute

200 — —]

100

N (1/min)

20

10 1 1 1 1 % 1 1
0 100 200 300 400 500 600 700 800

t (minutes)

Fig. 5.1. Counts per minute vs. time on semilog paper.
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obtained more simply. Note that a change by a factor of 10 in N (t)
corresponds to a change of 1 in In AN(t). The slope in log (not In)
can therefore be read off the graph! (A least-square fit to the data is
also shown in the plot.)

The slope calculated from the data gives an estimate of

A= 3.1 x 1073 min™! (5.23)

which, in turn, leads to

7 = mean life = — & 322 min,

1
A
t1/2 = half life = 7In2 ~ 224 min.

(5.24)

The statistical uncertainties shown in Fig. 5.1 correspond to
square roots in the number of events (Poisson statistics). The fit
is reliable since 7 of the 8 points lie within one standard deviation
(error bar) of the straight line fitted to the data.

Problem 5.4 A relic from an Egyptian tomb contains 1 gm of car-
bon with a measured activity of 4 x 10712 Ci. If the ratio of %g—, nuclei
in a live tree is 1.3 x 10712, how old is the relic? Assume the half-life
of 14C is 5730 yr.

We know from the previous problem (as well as from Eq. (5.26) of
the text) that

A(t) = A(0)e™, A(0) = AN(0), (5.25)

where the decay constant A is related to the half-life as
\ = In 2 _ 0.693. (5.26)

tig tiye
For the present problem, we are given that
t{)s) = 5730 yr = 5730 x 365 x 24 x 60 x 60 sec
~ 1.8 x 10! sec,
\(4c) _ 0693 0.693 (5.27)
ti‘;g 1.8 x 1011 sec

~ 3.8 x 10712 /sec.
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Since the ratio of E—g nuclei in a living tree is given as 1.3 x 1072,
in 1g of carbon, the number of *C nuclei is given by

6 x 1023

Npagy = 1.3 X 10712 x B

= 6.5 x 10'°. (5.28)

It follows therefore that

A(0) = )\(14C)N(14C) (0) ~ 3.8 x 10712 /sec x 6.5 x 10 decays
~ .25 decays/sec. (5.29)
The present activity of the relic is
A(t) =4 x 10712 Ci = 4 x 10712 x 3.7 x 101° decays/sec
~ 0.15 decays/sec, (5.30)

where we have used the definition of Curie given in Eq. (5.29) of
the text.
Using these values, we determine from Eq. (5.25) that

A(t) 0.15
MO = 2 o n 2 2051
B 40) T 025

0.51 0.51

or t ~ 1.3 x 10 sec (5.31)

S0 T 38 x 1012 /sec
_ 13x 10! sec
™ 3.1 x 107 sec/yr

Thus, the relic is approximately 4193 yrs old.

~ 4193 yrs.

Problem 5.5 If the lifetime of the proton is 1033 yr, how many
proton decays would you expect per year in a mass of 10% metric tons
of water? What would be the approximate number expected in the

year 20507

If the mean life of the proton is
7 = 103 yr ~ 10% x 3.1 x 107 sec = 3.1 x 10" sec, (5.32)

then its decay constant is

1 10733
)\ = — = ]_ —33 ~
= o =0T S T sec

This is extremely small.

~3.2x107* /sec.  (5.33)
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The activity, as we have seen in the past two problems, is
defined as

A(t) = A(0)e=?t, (5.34)
where
A(0) = A\pN,(0) = 10733 N,,(0) decays/yr. (5.35)
The weight of 103 metric tons of water (Hy0) is given by
10° x 103 kg = 10° x 10> g = 10% g, (5.36)
and contains (for A(Hp0) =2 x 1+ 16 = 18)
N, =2 x 10° x 5’%023 ~ 6.7 x 10% (5.37)

protons (nuclei of hydrogen). Therefore, we see that the present activ-
ity (assumed as that at ¢ = 0) is

A(0) = 107%3 N, (0) decays/yr = 10733 x 6.7 x 103! decays/yr
~ 0.067 decays/yr. (5.38)

The number of proton decays in 103 metric tons of water per year is
negligibly small. Furthermore, from Eq. (5.34)

At) = A(0)e = 0.067 x e 10t /yr, (5.39)

we conclude that in the year 2050 (¢ ~ 50yr), the counting rate will
not change significantly. .

Although we have ignored the decays of bound protons (and neu-
trons), there is really no reason for doing that. Hence, in principle,
the nucleons within oxygen nuclei can also contribute to the decay
rate through barrier penetration. Of course, because of large nuclear
binding energies, such decays could not proceed via standard 8-decay
(see Chap. 15 in the text).

Problem 5.6 Clalculate the surface energies and Coulomb energies
for the following nuclei:

228Th, 234U, 236U, 240P’U,, 243P'LL.

Based on your calculations which nuclei would you expect to fission
most easily?
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For nuclei that can be described as spherical liquid drops, the con-
tributions of the surface and the Coulomb energies to the B.E. are
given in Eq. (3.2) of the text

S(A, Z) = surface energy = as A3 =~ 16.8A%,

C(A, Z) = Coulomb energy = a3? ~ 0.72A3 % e

3

where we have used the values of as and a3 given in Eq. (3.4) of the
text. We note that both these energies are positive and therefore have
~ a destabilizing effect on any nucleus. Carrying out the calculations
explicitly for the five nuclei under study, we obtain the results given
in the table below.

Nucleus | A3 | £ |S(MeV) | C(MeV) |S+C (MeV)
2287190 | 37.33 | 35.53 | 627.1 954.9 1582.0
234092 1 37.94 | 36.17 | 6374 988.0 1625.4
236U92 | 38.19 | 35.86 | 641.6 986.0 1627.6
240p94 | 38.56 | 36.82 | 647.8 1022.2 1670.0
243py94 | 38.94 | 36.36 | 654.2 1019.4 1673.6

Since the surface and the Coulomb energies destabilize a nucleus,
and the sum of the two energies is maximum for 243Pu®%, on the basis
of this simple model, we conclude that 243Pu® would fission most
easily. (Of course, we are neglecting quantum effects.) However, if we
take the deformed liquid drop model, which is at the heart of the
theory of nuclear fission, we note that the stability of a nucleus is
determined from Eq. (5.7) of the text

1 Z? 1 Z?
A = 562 (2a2 — G3Z) s 5e2 (33.6 —0.72 x Z) (5.41)

and is controlled by the quantity within the parentheses. The lower
this value, the more unstable is the nucleus and, in particular, if it
is negative, the nucleus will fission. Tabulating these values for the



76 Solutions Manual

five nuclei, we obtain

Nucleus (33.6 —0.72 x 272) (MeV)
228 T7h%0 8.02
234U92 7.56
236U92 778
240pyy94 7.09
243py 94 7.42

From the values in this table, we conclude that 24°Pu® is most likely
to fission, while the spherical liquid-drop model suggests ?43Pu®* as
the most likely candidate to fission.

Problem 5.7 If the efficiency for conversion of heat to electricity
is only 5%, calculate the rate of consumption of 23°U fuel in a nuclear
reactor operating at a power level of 500 MW of electricity.

As we saw in Problem 5.2 (see Eq. (5.10)), the complete fission of 1 g
of 23°U yields an energy

Efssion & 4.55 x 102 MeV/g

1
6.2 x 10° MeV/erg
~ 7.3 x 10" erg/g = 7.3 x 10'° Joules/g

= 7.3 x 101° (Joules/sec/g) x 1sec

~ 4.55 x 10% MeV /g x

1sec
= 7.3 x 10"
7:3 X 107 Watt/g x 8.64 x 104 sec/day
~ 8.7 x 10° WD/g = 0.87 MWD /g, (5.42)

where we have used the conversion from “MeV” to “erg” given in
Eq. (2.2). We note that since the efficiency of conversion of heat to
electricity is only 5%, the fission of 1g of 23U will yield less useful
electric energy:

) 005 x 0.87 MWD /g ~ 0.043MWD/g.  (5.43)

fission
Therefore, to produce 500 MWD of electricity, we need

500MWD 500 MWD

E(electricity) ~ 0.043 MWD / g

fission

~ 12,500 g ~ 12.5kg (5.44)
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of 235U per day. This represents a large rate of fuel consumption, but
many orders of magnitude smaller than for the case of fossil fuel.

Problem 5.8 In the fission of 23°U, the mass ratio of the two pro-
duced fission fragments is 1.5. What is the ratio of the velocities of
these fragments?

The fission of 23°U can be represented as a two-body decay, e.g.,
2357 — M8La 4 87Br. (5.45)

As we saw in Problem 5.2 (see Eq. (5.8)), a single fission yields an
energy of

Q =~ 178 MeV. (5.46)

This implies that the fission fragments are nonrelativistic. If we
assume the two fragments have masses M; and My with

M,
— =1.5 5.47
M2 ) ( )

and if we further assume that 23U decays from rest, then from
momentum conservation we can write that Myv; = Myvs, and obtain

v _My 1

o =0 = 15 7067 (5.48)

This represents the ratio of the velocities (magnitudes) of the two
fission fragments.

Problem 5.9 How much energy is liberated when 1 gram of hydro-
gen atoms s converted into helium atoms through fusion? Compare
this with the energy liberated in the fission of 1gm of 23%U.

From Eq. (5.17) of the text, we get
4(*H) — *He + 2™ + 2u, + 27 + 24.68 MeV. (5.49)

Namely, four nuclei of hydrogen, through fusion, lead to a helium
nucleus with a release of 24.68 MeV of energy. In 1g of hydrogen,
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we have
6 x 102 03
Nig ~ —g = 6 x 10 (5.50)
nuclei of hydrogen. Therefore, the complete fusion of 1 g of hydrogen
will yield '

N |
Erusion = % x 24.68 MeV

N6><1023
T4

of energy. Comparing this with the amount of energy released in the
complete fission of 1g of 23°U (derived in Eq. (5.10)),

x 24.68 MeV =~ 3.7 x 102* MeV  (5.51)

Fission ~ 4.55 x 1023 MeV, (5.52)

we conclude that the fusion of 1 g of hydrogen releases approximately
8 times the energy released in the complete fission of 1g of 23°U.

Problem 5.10 The half life of radioactive cobalt-60 is 5.26 yr.

(a) Calculate its mean life and disintegration constant.

(b) What is the activity of 1 gm of ®°Co? Ezpress this in curies and
in rutherfords.

(c) What is the mass of a 10-Ci sample of cobalt-607

We are given that ®°Co has a half-life
15 = 5.26yr ~5.26 x 3.1 x 107 sec & 1.6 x 10%sec.  (5.53)

(a) It follows from the definitions that

7°C0) = mean life = s N LO X050 o s 108 sec
In 2 0.693 ' ’
A(*°C0) — decay constant = T(B(}Co) N 53 1108 o (5.54)
~ 4.3 x 1079 /sec.
(b) One gram of %°Co has
Neog, & §x 109 _ 1022 (5.55)

60
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nuclei of 89Co. The activity of 1g of 6°Co is therefore
A(0) = A°CO) Noo o =~ 4.3 x 1079 /sec x 10%2 decays
= 4.3 x 10" decays//sec. (5.56)
(¢) The sample with 10 Ci activity has
10Ci = 10 x 3.7 x 10*® decays/sec = 3.7 x 10! decays/sec. (5.57)

Since the activity of 1 g of °Co is 4.3 x 10'3 decays/sec, we conclude
that the sample must have a mass
3.7 x 10! decays/sec
4.3 x 1013 decays/sec/g

~ 0.86 x 107%g = 8.6 mg. (5.58)

Problem 5.11 Suppose that atoms of type 1 decay to type 2, which,
in turn, decay to stable atoms of type 3. The decay constants of 1
and 2 are A1 and A9, respectively. Assume that at t = 0, N; = Ny

and No = N3 = 0. What are the values for Ni(t), Na(t) and N3(t)
at any later time t7

When several species of radioactive material are involved in a decay
sequence

l1-2—-53—--

. (5.59)

the dynamical equation for the number of species at any time is given
in Eq. (5.31) of the text. Extending this to the present problem of a
decay involving three species

1—2-—3, (5.60)

where species “3” is stable (A3 = 0), the relationships between species
become

dNVi (¢)

dt - _AlNl(t)a
d]\(fft(t) = MN1(F) — AaNa(2), (5.61)
d]\(gl?vt(t) — AQNQ(t),

where A; and A represent the decay constants of the first two
unstable species.
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We can solve the equations in Eq. (5.61) subject to the initial
conditions

N1(0) = N, Na(0) = N3(0) = 0. (5.62)

The first equation in Eq. (5.61) leads to

dVy(2)
=-\NN
dt A (2)
or /Nl(t) Vi A /tdt
—1__
N M 0 (5.63)
Ni(t)
or In No A1t

or Ni(t) = Noe Mt

where the initial conditions appear in the limits of integrations.
Substituting this into the second equation of Eq. (5.61), we obtain

dN,(t)
dt

= )\1N0€_’\1t — /\QNQ(t). (5.64)

Multiplying both sides with e*?* (integrating factor), we obtain

erat (dN2(t) + /\2N2(t)> = A\ Nge=(M1—22)t

dt
or /t dt d (e)‘2tN2(t)) = /t dt A\ Ny e~ (A=)t
0 dt 0 . (5.65)
or  eMtNy(t) = _ﬁ(e—(h—)\z)t _ 1)
A1No —Aat ~ At
or Ny(t)= ——F(e 2" —e "),
2(5) = 2 )

In evaluating the integral, we used the initial conditions, and the
solution therefore automatically satisfies Eq. (5.62).



Applications of Nuclear Physics 81

Finally, substituting this solution into the last of equations in
Eq. (5.61) we have

d]\(’i"t(t) = Ao Ny(t) = —ilh"/\\f“ (e722t — e~
1— A2
— Al)\Q 1 — Aot 1 -1t _
or Ns(t) = VR ( " (e 1)+ " (e 1) (5.66)
No

(/\ge_’\lt — )\16_)\2t + ()\1 — /\2)),

TN — o

where we have again used the initial conditions in evaluating the
integrals, which automatically satisfy Eq. (5.62).

Thus, the complete solution satisfying the initial conditions of
Eq. (5.62) takes the form

Nl(t) = Noe_)‘lt,
A N
e e oam
Ny
A1 — A2

No(t) =

Ng(t) = ()\26_/\1t - )\16_)‘2t + ()\1 — )\2))

These satisfy the given initial conditions, and as ¢ — oo we obtain
Nl(t) — 0, Ng(t) — 0, Ng(t) - No, (568)

signifying that all the initial particles decay eventually into the stable
variety “3”.

Problem 5.12 The activity of a certain material decreases by a
factor of 8 in a time interval of 30 days. What is its half life, mean

life and disintegration constant?

The activity of a radioactive material has an exponential time depen-
dence given in Eq. (5.26) of the text

or In(48)=-x. (5.69)
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If the activity of a material decreases by a factor of 8 in 30 days,
we have

t = 30days =~ 30 x 8.6 x 10% sec = 2.6 x 10° sec,

(5.70)
A(t = 30days) 1
A(0) )
Substituting this into Eq. (5.69) we obtain
A % 2.6 x 10° sec ~ —ln-;—
! (5.71)
= — —2.08) = 1077 .
or A 2.6X106SGCX( 2.08) =~ 8 x 10~ /sec

From this value of the decay constant (disintegration constant), we
can determine
1 1

T = mean life = 3= 8 X 107 Jsec

1sec
~ 14.5d
8.6 x 10% sec/day e (5.72)

t12 =7In2 ~ 1.25 x 10°sec x 0.693 ~ 8.7 x 10° sec
1sec
8.6 x 10% sec/day

= 1.25 x 10% sec

~1.25 x 10% x

~ 8.7 x 10° x ~ 10.1 days.

Problem 5.13 For a prolate spheroid (ellipsoid) with eccentricity
x, the semi-major axis a and semi-minor azis b in Fig. 5.2 are related
through b = V1 — 2 a. If the volume and surface area of the nuclear
ellipsoid are given, respectively, as %Wab2 and 27rb(b—|— &“x_—ll), defin-
ing € = %.’EQ, show that Eq. (5.5) holds for small values of z. (Hint:
Assume that the volume does not change under distortion; expand
functions of =, and keep all terms up to order x°.) Using this result,
roughly, how would you argue that Eq. (5.6) has the right dependence?

The ellipsoid has a semi-major axis a and a semi-minor axis b,
related as

b=+v1-122aq, (5.73)

where x represents the eccentricity of the ellipsoid. If we assume
that the volume of the ellipsoid is the same as that of a sphere with
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radius R, then we have

V= g TR = % mab?. (5.74)
As pointed out in Eq. (5.3) of the text, this leads to the relationship
R
a=R(l+¢), b=——=. (5.75)
(1+¢€)2
Using this in Eq. (5.73), we obtain
R
——— =(1-2)iR(1 +¢)
(1+¢€)2 (5.76)

or 14+e= (1-—:(:2)_%.

We see that for small z, we can Taylor expand this to obtain

1 1
e~ —1+ (1 + §x2) = §x2, (5.77)

as we expect. In general, using Egs. (5.75) and (5.76) we can write
a=R(1-2273, b=R(l-2?s. (5.78)

The surface area of the ellipsoid can be written as

L1
S = 2rb [b+a>< >0 ﬂ
xr
.1
= 27 R(1 — 22)8 [R(l —2?)s + R(1 —2?)73 x 22 x]
Zz
o1
— 91 R? [(1 _ xQ)% F(1- :1:2)“% o Smx :1:} . (5.79)

For small z, we can Taylor expand the above quantities to obtain

1 1
(1- 332)% ~ 11— —?;:132 — §x4,
N—% 1 7 4
(1 —2x%) 6~1+6:1: +ia:, (5.80)
1
sin_ "z 1 1 5 3 ¢ 1 5 3 4
~ = Sl b ) =14 22?4+ ot
z x<x+6$+40x> 5T T "
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Substituting this into Eq. (5.79), we obtain the surface area for small
z (keeping terms up to z%):
1o 14 L o L o

i 7 3
~OrR2 |1 — 222 — 44+ - gt - g
S 7R 3:1: 93: <1+6:1: +72:1: ) <1+6x +4Ox )]

9 6 40 6 36 72

2 2:1:22
=47R? 1+ —z* | =47R?[ 1+ 2 ==
7rR<+45sc) WR(+5<3>)

= 47w R? (1 + §GQ>- (5.81)

= 27 R? 1—%$2—1x4+1+1:1:2+—3—a:4+1:z:2+i:c4+l:c4}

This shows how the surface of the sphere scales under the volume-
preserving deformation. The change can be described by the scaling

behavior
R? — R? <1 + §€2>

(5.82)
2 2 2 4
or A3 — A3 (1+5€>’
where we have used the fact that for nuclei
R~ A5, (5.83)

The scaling in Eq. (5.83) reproduces Eq. (5.5) of the text. We can
also write:

1
A" — A3 (1 + §62) T aAm (1 - 162) , (5.84)

which leads to Eq. (5.6) of the text.

Problem 5.14  Secular equilibrium can also be defined through the
requirement that

a4 (No\_d N3\ d(Ny —0
dt \N, )  dt \Ny) — dt \ N3 o

Assuming A1 < Ao, A3, Ay, ..., show explicitly that you retrieve the
first three relations in Eq. (5.33). What happens for the final state of
the decay chain? Is this sensible?
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Let us consider a sequence of radioactive decays

1-2—53—>.-->n, (5.85)
described by the relationships
dN;
— = -\ NV
dt 14V1,
dN,
— = A\ N1 — AN
dt 14V¥1 24¥2,
dN. 5.86
—=2 = XNy — A3, (5:56)
dt
dN,
dt = )\n—an—la

with the condition on the decay constants that A\; < Ao, Az, .. ..
The condition for secular equilibrium

a+1
——--—.:O :1,2737..., 58
can also be written as
a+1
— 2 = 5.
T (5.88)

Using Eq. (5.86), we note that

d (2
Niyi) 1 AN Np dNgy

dt Niyq, dt (Nijp1)? dt
= N1~1+1 (—/\1N1 - N]:/:il (AN — >\i+1Ni+1)>
— (Ni\ill)Q ((Mig1 — M) Nig1 — M)
~ Z]Viv+l—1)2 (Ai+1Nig1 — AiNi) (5.89)
where we are assuming that ¢ = 1,2,...,n — 2, i.e. this holds for all

but the last species. We have also used the fact that A\; < A\jy;. At
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secular equilibrium, we expect Eq. (5.89) to vanish, leading to the
relationship

)‘i+1Ni+1 - /\z'Ni = 0, 1= 1, 2, ceey T — 2. (590)
This can be written out explicitly as
ANy = ANy =-.. = An—an—la (591)

and reflects the fact that, for secular equilibrium, there are as many
particles of a given species produced as there are decaying (not count-
ing particles of the final variety).

To analyze the behavior of the final variety of particles, we note
from Eq. (5.86) that

d () _1dN; N dN,

dt N, dt (N,)? dt
1 N

=N (=A1Ny) — )2

()\n—an—l)

N
= —(—ﬁ ()\an + )\1N1)
n

[ @] o

where we have used the relationships in Eq. (5.91). If we assume that
A1 is very small, such that AjN; =~ 0 (which will guarantee that in
secular equilibrium N; does not change appreciably), the right-hand
side of the above equation will not vanish because \1(IN;)? need
not be negligible. The nonconstant nature of %—i simply reflects the
fact that even though N; may be constant in secular equilibrium, N,
cannot be because there is production of particles of the final variety,
but no decay.



6. Deposition of Energy in Media

Problem 6.1 What is the minimum thickness of aluminum in cm
that is needed to stop a 3MeV « particle? What about the thickness
needed to stop a 3MeV electron? (Use the approxzimate range-energy
relationship provided in Ezamples 1 and 2.)

Using the approximate range-energy relationships given in Examples
6.1 and 6.2, the range of an o particle with kinetic energy T (MeV)
in air and aluminum is

Air : Ry = 0.3273/2 = 0.32(3)}® = 1.7cm,

Al: R = Rg/1600 = (1.7)/1600 = 10 pm. (6.1)

For an electron, the range R (g : cm’Q) is
R = 0.53T (MeV) — 0.16 = 0.53(3) —0.16 = 1.43g -em > (6.2)

and dividing by the density of aluminum p = 2.7g/ cm?, yields the
range in cm,

R=143g-cm %/(2.7g/cm?®) = 0.53 cm. (6.3)

Problem 6.2 About how much steel in cm is required to stop a
500 GeV muon if the muon deposits energy only via ionization loss?
(Use Eq. (6.5) to calculate your result.) Would you need a comparable
amount of material to stop 500 GeV electrons? What about 500 GeV
protons?

Muons: A 500 GeV muon will be a minimum-ionizing particle for
most of its path through steel. If we assume that steel has the same
density and atomic number as iron, ppe = 7.9 g/cm?’, and Ape =
56, respectively, the muon will lose energy by lonization at a rate

87
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given by

A 2
Smin & 3.5pz MeV/cm = 3.5(7.9) (5—2) =12.8MeV/em  (6.4)

which yields an approximate range of

E 500 x 103 MeV

B =5 = g MoV /em 000 (6:5)
Electrons: For a 500 GeV electron in steel, the primary energy loss
is via bremsstrahlung, with a radiation length of Xy, = 1.76 cm.
High-energy bremsstrahlung photons will convert to ete™ pairs in
a characteristic length of Xpair = 9X¢/7. The electron and positron
of the pair will then radiate bremsstrahlung photons. This cycle
repeats many times resulting in an “electromagnetic shower” of elec-
trons, positrons and photons. When the average photon energy drops
below the pair-production threshold, the shower terminates quickly.
The depth (in units of Xj) of the maximum particle density, tmax,
increases logarithmically with energy, and can be parametrized by a
scale factor known as the “critical energy” F.. E, = 23 MeV for iron,
which yields

tmax(E) =~ In(E/E.) with E in MeV. (6.6)

A typical energy-deposition profile for a 30 GeV electron, with a max-
imum at tmax (30 GeV) = In(3x10%/23) = 7.2X,, is shown in Fig. 6.1.
A 30 GeV shower is contained within ~ 20Xy (=~ 0.35m). The depth
of the point of maximum energy deposition for 500 GeV electrons is

tmax(500 GeV) = In(5 x 10°/23) = 10X,.

Assuming that shower containment scales as tpax, a 500 GeV electron
shower is contained within ~ 28X,.

Protons: Protons interact with matter via the strong interaction
that can be characterized by an interaction length Lin, which for
iron is Lin(Fe) ~# 17 cm, as given in the Particle Data Group (PDG)
tables. Assuming that a nucleon loses on average 1/2 of its energy in
each interaction, the number of interactions, n, needed to drop the
initial energy below 1GeV, is defined by (500 GeV)(0.5)" = 1 GeV,
orn =1In500/In 2 ~ 9, or (9% 17cm) ~ 1.6 m of iron. Assuming that
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Fig. 6.1. Energy deposition profile for a 30 GeV electron in Iron, along with the number
of electrons and photons in the shower, as a function of depth in units of radiation lengths.

a T = 1GeV proton (pc =~ 1.7 GeV) loses energy through ionization
down to the level of the critical energy, then, for I, ~ 12MeV/cm
in Fe, this requires another 0.8 m of iron, and corresponds to a lower
limit on the length needed for the proton to dissipate its final 1 GeV
of energy. Hence, a total length of ~ 2.4m of iron is required for the
absorption of the energy of an incident 500 GeV proton.

Problem 6.3 Multiple-scattering error often limits the ability to
measure the direction of motion of a charged particle. To what accu-
racy can the incident angle of a 500 GeV muon be measured after the
particle traverses one meter of iron?

A particle with a momentum p travelling through a medium of length
L and radiation length X will multiple scatter through an rms angle
Orms given by

20MeV | L
Orms = . 7
A 500 GeV muon (pc = 500 GeV, B =~ 1), traversing a length L =
100 cm of Fe (radiation length Xo = 1.8cm) will multiple scatter
through an rms angle 6., relative to the incident direction of the

muon:

20MeV | L 10
Opms = B A/ Xo = 105 \/ ~ 0.3 mrad. (6.8)
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Problem 6.4  Typically, what fraction of a beam of 100 GeV pho-
tons will be transmitted through a 2 cm thick lead absorber?

The fraction of high-energy photons transmitted through a medium
of radiation length Xy and length z is

7
I/Ip=e#* where u= X (6.9)
For Pb, Xo = 0.56 cm, and for a thickness of 2cm, the fraction of
photons transmitted is

I/Ip = e (142 = 6.1%. (6.10)

Problem 6.5 The capture cross section for thermal neutrons on
2741 is 233 mb. On average, how far can a beam of such neutrons
penetrate o slab of aluminum (p = 2.7gm/cm3) before half of the
beam is absorbed. (See relation (6.27).)

The cross section of thermal neutrons in Al is 233 mb (0 = 2.33 x
1072° cm?). A beam of neutrons travelling through a thickness z of
aluminum, with p = 2.7g/cm3, attenuates as I = Ipe M*, with an
attenuation constant u: '

Ap 6 x 1023
= p 05—l T
p=pgo =20

23x107%® =1.4x10"2ecm™.  (6.11)
To attenuate neutrons by a factor of two means that:

—pz =In(I/Ip) = In(0.5) = —0.693,
and therefore

T = 0.693/1.4 x 107?cm™! ~ 50 cm. (6.12)

Problem 6.6 Protons and «-particles of 20 MeV pass through
0.001cm of aluminum foil. How much energy do such particles
deposit within the foil?
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For nonrelativistic particles, the stopping power is given by Eq. (6.3)
in the text:

dnQ%e*nZ 2me 5% c? 04 1 2me % c?
T = 1 — e K ___l . .
S(T) mec? 32 . { I Z A 32 . I ’
K =0.31MeV -g~!.cm?

To obtain the velocity () of a particle with mass m and kinetic
energy 1T', we use the relationship:

pc  V2mT 2T
f="%= =/
m m

(6.13)

For protons and «a particles of kinetic energy 20 MeV passing through
0.001 cm of Al foil, the parameters for stopping power are:

40 40

2 2 _

B2 = —~ = 0.043; = 0.011;
TS » e 3730

mp =938 MeV; mg =3730MeV; 2, =1; 2z, =2;
Zn=13; Apa=27; pa=27g-cm™3; Ia ~27eV.

"The stopping power and energy deposition for protons in 0.001 cm of
Al is:

6
Sy, = (0313 L1 [1.02 x 10 (0.043)J

27 0.043 130
= (3.5)(5.8) = 20 MeV - cm?/g, (6.14)
pS(T)pdx = (2.7)(20)(0.001) MeV = 54keV

while for a particles, we obtain:

13 1 1.02 x 10%(0.011)
Sa = (031) 5z 5o57 I [ 130 }
= (13.6)(4.46) = 61 MeV - cm?/g, (6.15)

pS(T)adz = (2.7)(61)(0.001) MeV = 160 keV.

Problem 6.7 Compare the stopping power of electrons, protons
and a-particles in copper, for particle velocities of 0.5¢.

Stopping powers of electrons, protons and « particles for v = 0.5¢ can
be compared by noting that the stopping power is proportional to
Q?/v?. Therefore, the stopping powers of electrons and protons, both
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with Q = e, are the same at the same velocity. Compared to objects
with charge Q = le, the stopping power for o particles, @ = 2e,
would therefore be a factor of 4 larger.

Problem 6.8 Calculate the mass (i.e. \/s) of the virtual electron
in Fig. 6.4 for an incident photon of wavelength of 1.25 X 10~ %cm.
What is the approzimate lifetime of such an object? Repeat your cal-
culation for a wavelength of 1.25 X 10~ 2 cm.

To find the mass of the virtual electron for an incident photon with
wavelength ), first find the energy of the incident photon using

E, = he/X = 2r(197MeV - fm)/A. (6.16)

For a stationary target electron, the energy and momentum of the
virtual electron is,

E,=E,+ mec?, PyC = pyc = E,. (6.17)
The square of the effective mass of this excited electron is

m2ct = B2 — p2c? = (B, + mec?)? — Eg = 2E,mec® + m2ct

and
2F
= 1 X .18
my me + meCQ (6 )
For A =125 x 1071%cm
E,~1MeV and = 20) _ ~ 2
) R eV and my, =me 1—|—m62—2.2me~1MeV/c.
e
(6.19)
For A =1.25 x 1072 cm
2(100
, ~100MeV and m, = meq[1+ fn 02) ~ 20m, = 10MeV /c’.
€

(6.20)

The Heisenberg uncertainty relationship can be used to estimate the
lifetime of the virtual state. For a 1 MeV state

h/2m 6.6 x 1072 MeV -s

= = 6.6 x 10722 6.21
dmc? 10 MeV % S ( )

Otcm &
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while for a 10 MeV state the lifetime estimate is
h/2m 6.6 x 10722 MeV -5

_ —-23
S = TRV =6.6x107%s.  (6.22)

Otem =~

Problem 6.9 Consider the collision of a photon with a target of
mass M that is initially at rest in the laboratory. Show that the min-
imum laboratory energy that a photon must have to produce an eTe™
pair is By = 2mec?(1+ 57 ). (Hint: Equate the expression for s given
in Egs. (1.64) and (1.65).) Thus the threshold for pair production is
essentially 2mec?.

The minimum -y energy needed for the reaction v+ M — M + 2m,
to proceed can be obtained from the minimum energy required in the
center of mass, 1/s. Equating incident and final values of s, we get

s = (E,+ Mc*)? - p,2yc2

= (Ey + MJ*)? — E2 = (Mc? + 2m,c?)? s
2 _ 2 2 _ as2 2 (6.23)
or s/c*=2ME,/c*+ M*= M*+ 4Mm, + 4m’

M

Problem 6.10 What is the mean free path for nuclear collisions
of 10 GeV protons in liquid hydrogen if the proton-proton total cross
section is 40 mb? (Assume a liquid hydrogen density of 0.07 gm/cm3.)

and E, = 2mec? <1 + %>

To obtain the mean free path, we find the number of atoms per gram
of material. Multiplying this by the density, yields the number of
scattering atoms per unit volume. Then, multiplying by the cross
section, gives the number of interactions per cm of path length.

Ao (6.02 x 10?3 molecules - mole )(2 atoms - molecule™)
A 2(g - mole™1)
= 6.02 x 10?3 atoms - g *

A
= pfa = (0.071)(6 x 10%%)(40 x 107%") = 1.7 x 103 em ™.

The inverse is the mean free path:

1 1
A==

LT TTR3 e = 6 x 102 cm. (6.24)
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Problem 6.11 Prove the kinematic relation given in Eq. (6.22).

The Compton scattering formula is derived by applying energy and
momentum conservation to the reaction.
Energy conservation:

E. = h(v — V") + mec?;

(6.25)
E? = B2(v — V) 4 2mecPh(v — V') + m2c.
Momentum conservation:
hy' sinf = pecsinfe; h(v — v/ cos 0) = peccos be. (6.26)

Squaring the last two equations:
K2/ sin? 0 = p2c®sin0,; h2(v — v/ cos0)? = p2c*cos® f..  (6.27)

Adding the above two equations:
K2 (v — V' cos 0)2 4+ K20 sin? 0 = p2c® = E? —m2ct, (6.28)

Expanding the first term in Eq. (6.27) and substituting Eq. (6.25)
for E2:

K2 (V2 — 201 cos 0)+ h2'? = (v — V)24 2meh(v — V). (6.29)
Combining the terms:

R/ (1 — cos§) = mech(v — V'),

hvt/

- (1 —cosf)=v—1, (6.30)
, v
v [1 + " (1 — cos 9)] = .
Finally, the solution:
= Y (6.31)

[1 + hl/2
MmeC

€

(1 — cos 0)] .



7. Particle Detection

Problem 7.1 A radioactive source emits a-particles with kinetic
energies of 4 MeV. What must be the value of an applied magnetic
field so that the radius of curvature of the orbit of the a-particle is
10cm? (Does your answer depend on the kind of medium into which
the a-particle is emitted?) Do the same calculation for electrons of
same kinetic energy.

This problem is done most easily employing the form of Chap. 8, in
Eq. (8.9"), that relates the radius for circular motion of a charged
particle with momentum p and the imposed magnetic field B. The
z in the formula is the charge of the particle in units of electron
charge:

p
0.3zR’

(7.1)

. . . . e
R_—O.SzB’ with R in m, B in Tesla, pin GeV/c; B

Considering a 4 MeV (kinetic energy) « particle, the nonrelativistic
momentum is:

p=V2mT = /(2(4) (4 x 10-3) GeV/c = 0.18 GeV /c

and the field needed for a 10 ¢cm radius is

0.18

B= 53200

=3T. (7.2)

95
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Considering an electron of 4 MeV (kinetic energy), the momentum is
relativistic, and

1 1
p= E\/EQ —m2ct = Z\/(T+ mec?)? — m2ch

1 T 2 2
= ZV/T? + 2mec®T = —4/1 + MeC :
C C T

.001
Pe = (0.004GeV/c)4/1+ g—m = 0.0045 GeV /c,

which, for a 10 cm radius, requires the field:

p__Pp _ 00045
~0.3zR 0.3(1)(0.1)

=0.15T. (7.3)

Problem 7.2 The mass of a K+ is 494 MeV /c? and that of a ©+
is 140 MeV /c?. If the rms time resolution of each of two scintilla-
tion counters that are 2m apart is 0.2 nsec, calculate to better than
10% accuracy the momentum at which the system will just be able

to resolve a mt from a K+ (by one standard deviation). (Hint: See
Eq. (7.10).)

The task is to find the maximum momentum for which a time reso-
lution 6t = 0.2 ns will just resolve a 7 meson (mc? = 0.14 GeV) from
a K meson (mc? = 0.49 GeV) for a 2m flight path. Equation (7.18)
is useful only in the approximation that the two masses are nearly
equal, which is certainly not the case for these two mesons. You
must start with Eq. (7.10), or proceed as follows: assuming a veloc-
ity Br = 1, the time of flight for the m meson is t = L/c = Tns.

The resolution limit is reached when the uncertainty in the K
velocity equals the difference in the two velocities, 68y = AB =
1— Bk . The fractional error in the K velocity is equal to the fractional
uncertainty in the time resolution:

0B _ 9t _ 3.
Br t
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Using an approximation for large momentum, and solving for p,

——1=4/1+4 — 1= for p* > m-c
Bx Bk P2 2p? b -
my 0.5 0.5 7.4
and = = = = 2.0GeV/c.
= "Bk T Voo 025 /

Bk
Problem 7.3 What are the Cherenkov angles for electrons and
pions of 1000 MeV/c for a radiator with n = 1.47 What will be the

ratio of the number of radiated photons for incident electrons and
pions?

The Cherenkov angle is related to the velocity of the particle and
index of refraction n of the medium.

1
cosf, = B’ (7.5)
The Cherenkov angles for electrons and m mesons of 1 GeV/c, passing
through radiator of n = 1.4, are

[ 1
electron : §, = cos™! m] = 44.4°, -
- ) .
ion : f, = cos™! | ————| = 43.8°.
pion : 6, = cos _(0'99)104] 3.8

The number of radiated photons is related to the Cherenkov angle
by

N o sin? 4, (7.7)

so that the ratio of the number of photons emitted by an electron to
those for a m meson is

N,  |sin(44.4°)
N,  |sin(43.8°)

r = 1.02. (7.8)

Problem 7.4 About 10° electron-ion pairs are produced by a
charged particle traversing a counter. If the typical ionization poten-
tial of the medium is I = 30€V, in principle, how well can Yyou
measure the deposited energy using a Geiger counter, an ionization
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counter with a gain of unity, and a proportional counter with a gain
of 108 that has gain variations of 5%7

The statistical uncertainty (in %) is related to the number of counts
detected by the counter

1
Ostatistical — ﬁ (79)

With 30 eV /ion-pair and 10° produced ion pairs, 30 MeV is deposited
in the counter. A Geiger Counter will provide only a single count for
each particle detected and therefore has no resolution for the amount
of ionization. An Ionization Counter detecting single ionization elec-
trons could in principle reach a resolution of

1 1

= Tn = NI =0.1% or 30keV.
X

g

However, electronic noise associated with the environment and the
readout electronics corresponds to, at best, a few thousand electrons,
and thus dominates the energy resolution. A Proportional Counter
producing 10'? jon pairs has a negligible statistical error, however,

gain variations of ~ 5% generate an observed uncertainty of ~ 5%,
or 1.5 MeV.

Problem 7.5 If you wish to measure the momentum of a 10 GeV/c
singly-charged particle to 1% accuracy, in a 2T field, using a 1m
long magnet, how well do you have to know the ezit angle (see
Fig. 7.5)?7 If you use MWPCs that have 2 mm inter-wire anode spac-
ings to measure that angle, about how far do you have to separate two
planes to achieve your goal? Now suppose that you use, instead, sili-
con microstrip detectors of 25 um spacing. What separation distance
between two such planes could achieve the same goal?

A magnetic field B = 2T with an effective length L = 1 m, alters the
trajectory of a singly-charged particle with momentum p = 10 GeV/c
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as follows. The magnet imparts a transverse momentum
pr = BL (7.10)

relative to the incident direction, and the particle will therefore leave
the field region at an angle given by

sing = P _ BL _ (2T)(1m)
p p 19
A hit on any MWPC wire for a wire pitch d = 2mm stipulates the
location of the particle with uniform probability of being within a
width £d/2 of the hit location.
The resolution of this measurement is taken as the standard devi-

ation of the uniform probability distribution (better than using just
d/2):

=0.2. (7.11)

2 mm
=d/V12 = —— = 0.58 mm. 7.12
o=d/Vi2= "2 (712

Two points separated by a distance D along the flight path, each
measured with a resolution o, define the angular resolution

To measure a momentum to 1% accuracy, the bend angle § must be
measured to the same accuracy

df = (0.01)6 = 0.002 rad = 2 mrad. (7.14)
Equating the last two equations yields:
D =204/df = (1.4)(0.58mm)/2 x 1073 = 40 cm. (7.15)

For silicon detectors with strip pitch of d’ = 0.025 mm, the equivalent
spacing of planes is much smaller:

D' = (d'/d)D = (0.025/2)(40 cm) = 0.48 cm. (7.16)

Problem 7.6 Sketch the pulse height spectrum that you would
expect in the decay of ®°Co in Eq. (7.8) when the two de-ezcitation
photons are emitted simultaneously, namely within the time resolu-
tion of the detector.

The energy deposited in each event is the sum of the photon ener-
gies = 2.5 MeV, with a fractional uncertainty characteristic of the
detector, namely 10% or o = 0.25 MeV.






8. Accelerators

Problem 8.1 Protons are accelerated in a cyclotron by an electric
field with oscillating frequency of 8 MHz. If the diameter of the mag-
net is 1 m, calculate the value of magnetic field and the mazimum
energy that the protons can reach.

Protons are accelerated in a cyclotron of radius 0.5 m, and an 8 MHz
acceleration frequency (w = 2mf = 5 x 107 rad/s). Protons will cir-
culate at an 8 MHz frequency for a magnetic field of:

mw _ (1.67 x 10727 kg)(5.0 x 197 rad/s)

B = =052T 1
Q 1.6 x 10~19C (8.1)
or, using eV units for the mass
gy (m\w
Qc? Q )c
5.0 x 107 rad/s)
= 10° 6v). > =0.52T. :
(940 x 10° eV) 9 10 m?/s2 0.52T (8.2)
The maximum kinetic energy
1 5, 1, o (wR\?
Tz—z—mv zi(mc)(—c——)
2.5 x 107]°
= 0.5(940 M —_—| =3. : .
0.5(940 ev)[leOS] 3.3 MeV (8.3)

Problem 8.2 To achieve an energy of 20 TeV, each of the SSC
main rings was to contain about 4000 dipole magnets, each 16-meters
long, with a field of TT. This means that over half of the ~60 mile
SSC tunnel was to be taken up by dipoles. If you were to build a single
synchrotron for use in fized-target collisions of equivalent energy in
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the center-of-mass (v/s = 40 TeV), and used a similar magnet design,
how long would your tunnel have to be?

The SSC was designed to have center mass energy of 40 TeV. A fixed-
target machine with a beam energy E’ has a center-of-mass energy

Vs = V2mE' (8.4)

to have the same center-of-mass energy as the SSC, the energy of a
fixed target beam must be:

- (V2)? _ 1600 x 10° GeV?

= = =9 x 10° TeV. :
2myc? 2GeV _9 8 © (8:5)

The circumference of the circular tunnel will scale with the energy

E 8 x 10° TeV

C' = C— = (60miles) ooy = 24X 10° miles. (8.6)
€

Problem 8.3 If the capacitance of a Van de Graaff accelerator
terminal is 250 uuF' (pF'), and if it operates at a wvoltage of 4 MV,
what is the total charge on the terminal? If the charging belt can
carry a current of 0.2mA, how long does it take to charge up the
accelerator to 4 MV?

The total charge on a capacitance C at a voltage V is:
Q=0V=25x10""°F)(4 x10°V) =103 C. (8.7)
A constant current I will charge the capacitor in a time

,_Q_ _1W07°C
I 02x103C/s

5s. (8.8)

Problem 8.4 Starting with cgs units, show that Relation (8.9')
follows from Relation (8.9).

Starting from the relationship in SI unit for the momentum p of a
patticle with charge @) circulating at a radius R in a magnetic field B,
the relationship in mixed-units (Relation (8.9')) can be obtained as
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follows:

p= QBR-[l(kg - m/s)/(CTm)]. (8.9)

Inserting a ratio for the speed of light and electron charge:

p= QR | (LU (gmpe) (T2 fiomm)

Note that 1.6 x 1071%kg-m?/s?2 = 1.6 x 1071 J = 1eV, and intro-
ducing Q/e = ¢

p = qBR[(3 x 10®)(eV/c)/(Tm)]. (8.10)

Finally, changing to GeV energy units, where 3 x 108 eV = 0.3 GeV,
we get:

p=0.3¢BR[(GeV/c)/(Tm)]. (8.11)

Problem 8.5 Suggest a mechanism whereby an accelerated beam
could be extracted from a circular accelerator, and directed onto an
external target.

Except for a pulsed magnet, all other techniques require the orbit
to be “bumped” into a region of special magnetic or electric field.
In a magnetic field, an electrostatic septum can be used, where one
thin plate (or plane of wires) of a capacitor separates a region of
E-field from an FE-field-free region. In a straight section, either an
electrostatic septum, or a magnetic septum providing a (thin) current
sheet that separates a region of B-field from a B-field-free region, can
be used.

Problem 8.6 Using Eq. (8.12), there is ostensibly sufficient energy
in the center of mass in the collision of a 1TeVn® with a lead
nucleus at Test to produce a Higgs boson (H®) of My =~ 120 GeV /c2.
In principle, this can be done in a coherent collision, where the
Pb nucleus remains intact. Does this make sense in light of Foot-
note 17 Assuming a nuclear form factor for Pb of =~ ¢—400¢° (with
q in GeV units), and considering the silly reaction 7° + Pb —
H® + Pb, what would be the approzimate reduction in the proba-
bility for producing the Higgs at 0° as a result of the form factor?
[Hints: To calculate the minimum value allowed for the quantity
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q?> = (Prc — puc)? — (Ex — Ex)?, assume that the Higgs boson is

relativistic, but approzimate the terms to order (Mpc? /EH)4 in 8.
You should get that ¢ = q2,, ~ (M%c*/2E;)?, when you ignore the
small mass of the pion and set By = E; ]

Coherent Higgs (my : 120 GeV/c?) production via the interaction of
a 1TeV 7% in the Coulomb field of a Pb nucleus at rest is pictured
in the accompanying Fig. 1.

The Coulomb field of a nucleus extends significantly beyond the
size of the nucleus, so that, in principle, this reaction can be coherent,
i.e. involve the charge of the entire nucleus. It is a stretch of the
imagination to believe that a neutral 7% that decays in a proper time
of ~ 10716 seconds will have any time to interact in this way, but let
us continue this amusing exercise:

1
2 4\ 2
mic
pHCZ\/E%I—m%{ﬂ:EH(l— EHQ>
H

m2 C4 m4 C4
= F — A H K 8.12
H ( 2E2,  8EL + > (8.12)

where K refers to higher-order terms in the expansion.
Assuming that the Higgs has the same direction as the inci-
dent 7Y, the square in the four-momentum transfer is:

¢’ = (prc— puc)® — (Bx — Eg)’
= p2c® — 2p,ppc® + p4c? — B2 + 2E Ey — E%.  (8.13)
Making the approximations F; =~ prc and cosf,y =~ 1, and using

the expansion in Eq. (8.12) above,

q2 = m72rc4 — m%{c"‘ + 2E;(Ey — prc)

m2,ct MES
z—m%lc4+2Eﬂ [EH—EH (1— 25?{ - 8531_1 +K>:|

Taking E; ~ Epy, only the third term in the expansion survives,
yielding
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H()

Fig. 8.1. Totally unrealistic mechanism for producing a Higgs boson in coherent scat-
tering of neutral pions from Pb nuclei.

2 4 4 8 4 .8

9 9 4 9 mEC M c MEC
= — 2F ~ . 8.15
¢=TmEe T H[J“ 2B, SE}’}] 1%, (8.15)
Calculating the momentum transfer for the given mass and energy

2 .4\ 2 2
9 M C 14400 2

= = ——1] =50GeV~. .16
1 ( 9Ex ) ( 2000 © (8.16)

The form factor would therefore yield an infinitesimal probability for
the process

g=4000% — o—20000 -, (8.17)






9. Properties and Interactions of
Elementary Particles

Problem 9.1 What quantum numbers, if any, are wviolated
in the following reactions? Are the interactions strong, weak,
electromagnetic, or none of the above? (See the CRC Handbook for
particle properties.)

(@) Q- = E0+ 77,

(b)) ot — 7t + 70,

(c) n—p+n,

(d) 7° — pt + e + e,

(e) K — Kt +e + 7,

(f) A —p+e.

(a) Let us consider the reaction
Q" 2047, (9.1)
From Table 9.4 of the text, we note that
L )=0, SO )=-3, Ir")=-1, S#")=0. (9.2

Similarly, from the reaction in Eq. (9.22) of the text, we know that
I5(20) = % S(20) = —2. (9.3)
Using these quantum numbers in Eq. (9.1), we find that the reaction
violates both isospin and strangeness quantum numbers:
ATy| = -;— AS] = 1. (9.4)
This is a weak hadronic decay.
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(b) For the reaction
IR S (9.5)
we note from Table 9.4 of the text that

13(2+) = 1, I3(7T+) = 1, I3(7T0) = 0,
B(x*)=1, B(x*)= B(x°) =0, (9.6)
SEH)=-1, S(t)=8(x%=0.

Using these, we find that Reaction (9.5) violates baryon number as
well as strangeness number:

IAB|=1, |AS|=1. (9.7)

Baryon number violating processes have not yet been observed, and
this reaction cannot be classified as a strong, weak or electromagnetic
process.

(c) The reaction
n—op+7w, - (9.8)

can be checked from Table 9.4 to satisfy conservation of all the
quantum numbers. However, from Table 9.3 of the text we see that
while the mass difference between the neutron and proton is about
1.3MeV/c?, the mass of 7~ is about 140 MeV/c?. Thus, such a reac-
tion will violate energy-momentum conservation and, consequently,
is not an allowed reaction since energy—momentum conservation is
absolute. Nevertheless, this reaction can take place virtually (as for
the case of ¥ — ete™) in the strong or Coulomb nuclear field (see,
e.g., Fig. 6.4 in the text).

(d) The decay of the 7° meson through
70— ut e + D, (9.9)

violates lepton number conservation. More precisely, from Table 9.2
of the text we see that the muon lepton number is violated in this
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process. This kind of decay has not as yet been observed, and does
not fall into strong, weak or electromagnetic processes.

(e) The decay
K° - Kt +e +1,, (9.10)

is kinematically allowed, as we see from Table 9.3 of the text. From

the quantum numbers in Table 9.4 of the text we have
1 1
I3(K%) = =5 I3(KT) = o S(K° =1, S(KY)=1. (9.11)

The reaction therefore violates isospin, but not strangeness in the
hadronic sector (which is the meaningful sector for assigning strong
quantum numbers, as discussed in Sec. 9.8.1 of the text):

ALl =1, |AS|=0. (9.12)

This can be classified as a weak semi-leptonic decay.

(f) From Tables 9.2 and 9.4 of the text, we note that the decay
process

A > p+e, (9.13)
violates lepton number, isospin and strangeness number
1
AL =1, |AL] = 27 |AS| = 1. (9.14)

This reaction has never been observed, and does not fall into the
strong, weak or the electromagnetic category of reactions.

Problem 9.2 What quantum numbers, if any, are violated in the
following processes? Would the reaction be strong, electromagnetic,
weak, or unusually suppressed? FEzplain. (See CRC Handbook for
particle properties.)

(a) A® = p+e + i,

(b) K~+p— Kt +27,

(c) Kt +p— Kt + 2+ + K9,
(d) p+p—=K*+ K" +n+n,
(e) £1(1385) — A 4 7T,

) p+n— 7 +7°.
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(a) From Table 9.4 we have that

B =0, Lp)=g SO)=-1, SE)=0.  (9.15)
Therefore, we see that the hadronic sector of the decay in
A’ - p+te + 7, ~ (9.16)
violates both isospin and strangeness quantum numbers
AL| = % IAS] = 1. (9.17)

This represents a weak semi-leptonic decay process.
(b) The process

K +p—o> KT 4+E (9.18)

is seen from Table 9.4 of the text to satisfy conservation of all quan-
tum numbers. This is indeed a strong process.
(c) We note from Table 9.4 of the text that

1

LK*) =3, Lp)=BK),  BEY)=1 (9.19)

S(Kt)=1, S(K%=-1=8(Z%), S =0.
Therefore, the reaction
Kt+p—- Kt +3t 4+ K° (9.20)
violates both isospin and strangeness quantum numbers
ALl =1, |AS|=2. (9.21)

Because strangeness changes by two units, it is a highly suppressed
unknown hadronic process.

(d) As in the earlier reaction, the process

p+p—= KT+ Kt +n+n (9.22)
is also a highly suppressed unknown hadronic reaction. We note that
1 1 1
I =, LK== 1 = —=
Sp)=0, SKH")=1, S(n) =0,
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so that the process (9.22) satisfies

ALl =1, |AS|=2. (9.24)
(e) From Table 9.4 of the text, we see that the decay

»T(1385) — AV + 7 (9.25)

conserves all quantum numbers. It is a strong process. (Note that
this channel is not kinematically allowed in $1(1189.4) decay.)

(f) The process
p+n—a +7°, (9.26)

involves only nonstrange hadrons and from Table 9.4 appears to sat-
isfy conservation of all quantum numbers. This is a strong process.
(The inverse reaction would only be allowed virtually.)

Problem 9.3 A 7° meson with momentum 135 GeV/c decays into
two photons. If the mean life of a 70 is 8.5 x 10717 sec, calculate to
10% accuracy how far the high-energy m° will travel prior to decay.
What will be the approzimate minimum value of the opening angle
of its two decay photons in the laboratory?

The 7% meson has momentum

p = 135GeV/c = 135 x 10° MeV/c, (9.27)
and from Table 9.3 of the text, it has a rest mass
m = 135MeV/c?, (9.28)
so that we can write
p = 10°me. (9.29)

The 7% meson is therefore ultrarelativistic, and we obtain
E = /p2c2 + m2c* = V108 + 1 mc® ~ 10°mc? = pe. (9.30)

Comparing with Eq. (A.7) of the text we determine

E = ymc?, =~ ~ 103,
(9.31)
p=103mc=vBme, = B~ 1.
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In its rest frame, the 7° meson has a mean life
r(rest) — 8.5 % 10717 sec. (9.32)

When the 7% meson is moving, there is time dilation leading to the
mean life time (see Eq. (A.13) of the text)

7 =47 103 x 8.5 x 10717 sec = 8.5 x 107 4sec.  (9.33)
During this time interval, the 7% meson will traverse a distance

d=fcr ~1x3x10%cm/sec x 8.5 x 10" M sec
= 2.55 x 1073 ~ 0.025 mm = 25 pum, (9.34)

which is hard but not impossible to measure.
In the decay of the 7° meson, for the two photons emitted at
some opening angle 6, energy—momentum conservation leads to

P =p1+ P,
E = F1+ Ey = pic+ pac (935)
E

where we have used the fact that for massless photons the Einstein
relationship takes the form

Ez' = DP;cC, 1= 1, 2. (936)

Squaring the two relationships in Eq. (9.36) and subtracting one
from the other, we obtain

E?— p?P = (Ey + Ey)? — (B + 1)
or (E% —pc?) = (2p1pa — 201 - Pa)c?

(9.37)
or m2ct = 2E 1 Fy(1 — cos6) = 2E1(E — Ey)(1 — cos )
m?2c?
0=1- .
or cos TR

Clearly, the opening angle is a function of E; (everything else is
fixed), and the minimum opening angle can be determined by taking
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the derivative of the above expression with respect to F; and setting
it to zero, which leads to

m2ct 1 _ 1 _0
2 Ef(E — E) E\(FE — E1)2 -

m2c
E—-FE,—E)=0 .
(”2EﬂE—Em2( 1~ B) (9.38)
E
or E1 = 5 - EQ.
In turn, this leads from Eq. (9.38) to
SO —1— m2ct . _2m2c4 N _2m2c4
COS Umin — 9 (%)2 — E2 ~ p202
2 —6

It is clear that when 0., is extremely small, as it is here, we can
Taylor expand cos fyin to obtain

C\2 2 4
_ Omin)” 27 o0

1 7

Y2 (9.40)

or Opin &~ ~ 2 x 1073 rad = 2mrad.

Problem 9.4 We will see in Chap. 13 that hadrons are composed
of constituents known as quarks, and that mesons can be represented
as quark—antiquark systems and baryons as three-quark systems. All
quarks have baryon number %, and their other quantum numbers are
listed in Table 9.5. Antiquarks have all their quantum numbers of
opposite sign to the quarks. The isotopic spin of quarks can be inferred
from the generalized Gell-Mann—Nishijima relation of Eq. (9.26).
Free quarks are not observed in nature. The top quark is as free as a
quark can get, but it decays so rapidly that it does not have sufficient
time to form hadrons, reflecting the fact that its weak interactions
are stronger than its strong interactions.

The quark system uds can exist in more than one isospin state.
What is the value of I3 for this combination of quarks? What are the
possible values of total I-spin for uds states? Can you identify them
with any known particles? (See, e.g., CRC Handbook.)
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Table 9.5. Properties of the quarks

Rest Electric “Flavor” Quantum Numbers
mass charge
Quark Symbol  (GeV/c?) (e) Strange Charm Bottom Top
2
Up u <3x1073 3 0 0 0 0
_3 1
Down d ~7x10 —3 0 0 0 0
1
Strange ] =~ 0.12 ~3 -1 0 0 0
2
Charm c = 1.2 3 0 1 0 0]
1
Bottom b ~ 4.2 -3 0 0 -1 0
2
Top t 175+ 5 3 0 0 -0 1

Since quarks carry baryon number
1

N = - 9.41
. (9.41)
from the Gell-Mann—Nishijima relationship in Eq. (9.26) of the text
N+ S
Q=13+ 5 (942)
as well as Table 9.5 of the text, we see that
B N +Sx) 2 3+0 2 1 1
I3(u) = Q(u) 9 =3T3 T3 59
N(d) + S(d) 1 240 1 1 1
I = — = —— — _— —— —_— — = ——
3(d) = Q) - U e
N(s)+ S(s) 1 3-1 1 1
I = — - ——— — — e - = .
(9.43)

Thus, the u, d quarks have isospin I = %, while the strange quark
is an isospin singlet I = 0. The resulting isospin for a composite state
such as (uds) can be determined from the law of addition of angu-
lar momentum (isospin algebra is like angular-momentum algebra).
Thus, two I = % objects can form an I = 0 or an I = 1 object, which
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can be combined with another I = 0 to yield:
I{uds) = 0 and 1. (9.44)

The (uds) state is charge neutral, has N =1 and S = —1. Compar-
ing with the properties of the particles in Table 9.4 of the text, we
conclude that the different isospin states can be identified with the
particles

I =0: A and the family of A particles,

0 . o . (9.45)
I =1:%" and the family of > particles.

Problem 9.5 What is the baryon number, hypercharge, and iso-
topic spin of the following quark systems: (a) u3, (b) cd, (c) @id, (d)
ddc, (e) ubc, (f) s5. Using the CRC Handbook, can you identify these
states with any known particles?

In the last problem we determined

1 1
I(w) =5, Lld) = 3.

I(s)=0, I(w)=TI(d)=75, I(s)=0.

(9.46)
For particles with flavor quantum numbers beyond strangeness, the
Gell-Mann—Nishijima relationship holds with a generalization of the
definition of hypercharge to include the new flavor quantum numbers,
namely,

Y
Y=N+S5+C+B+T, QzN—I—E, (9.47)
where C, B, and T represent the Charm, Bottom and Top quantum

numbers. Using this generalized definition, we can now calculate

V() 2 3+0+1+04+0 2 2

I3(c) = Q(c) — 5 T 37 5 —5—5207
Y (b 1 $40+0-1+0 1 1
13(b):Q(b)—T):*§—3 5 :—§+§=0,
Yt) 2 ++0+0+0=1 2 2
bO=QW-= =5 "—5 ——=573°°
(9.48)

Thus, we see that u© and d belong to the I = %— representation of
isospin, while the quarks with exotic flavors are isospin singlets with
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I = 0. The antiquarks belong to the same isospin representations,
but have opposite values for all other quantum numbers. With these
facts in mind, let us look at some composite states.

(a) The state

us (9.49)
is a charged state with
1 1 2 1
N=---=0 =—-+=-=1 = 1=1 .50
373 , @ 3+3 , S=0+ , (9.50)

with vanishing quantum numbers for C = B = T = 0. This is,
therefore, a charged, strange-meson state and belongs to the isospin
representation of an I = % interacting with an I =0, or

I(us) = % (9.51)

with

I3(u3) = Iz(w) + I3(3) = % +0= % (9.52)

From Table 9.4 of the text, we see that this state corresponds to the
particle KT or its excited states.

(b) The composite state (cd) has the quantum numbers

1 1 2

53 , + (9.53)

1
3
with vanishing quantum numbers S = B = T = 0. This is therefore
also a charged meson with charm quantum number. It belongs to the
isospin representation

I(cd) = % (9.54)

with

1

I3(cd) = I3(c) + I3(d) =0+ = = 5 (9.55)

N —
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Comparing with the particles in the CRC Handbook or the Particle
Data Group (PDG) book, we conclude that this state corresponds
to the DT meson or its excited states.

(c) The state (uwtid) is the antiparticle state of (vud) and has the
quantum numbers

2 2 1
N = —-— — - — — = ——-]_ = —_—_— — = —_ = ——]_ .
3 3 , Q 373 + 3 ) (9.56)
with § = C = B =
antibaryon. Because % and d have I = %, the (@ d) system can
be either I = 0 or I = 1. Thus, the (#iid) state can be either:

T = 0. Thus, it is a charged, nonstrange

- 1 3

with

LMWQszD+hWH4ﬂ@=—%—%+%=—§ (9.58)

The I = % state corresponds to p (antiproton) or its excited states,
while the I = % state can be identified with A~ or its excited states.

(d) The composite state (ddc) has the quantum numbers

2

1
(9.59)

1
:]_’ Q:—S—

| =
LWl
LW —

with S = B =T = 0. Thus, this is a charge-neutral charmed baryon
state. Arguing as before, it belongs to the isospin representations:

I(ddc) = 0,1 (9.60)

with
1 1
From the CRC Handbook or the PDG book, we conclude that the
I = 0 representation corresponds to the AQ particle and its excited

+0=-1.  (9.61)
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states, while the I = 1 representation corresponds to the X0 particle
and its excited states.

(e) The composite state (ubc) has the quantum numbers

1 1 1 2 1 2
3+3+3 @ 3 3+3 ’

C=0+0+1=1, B=0-1+0=—1,

(9.62)

with S = 0. This is a nonstrange charged baryon, with charm and
bottom quantum numbers. It belongs to the isospin representation

1
I{ubc) = 57 (9.63)
with
1 1

Ig(ubc) = I3(’LL) + Ig(b) + Ig(c) = 5 +0+0= 5 (964)
These types of states have not yet been confirmed.
(f) The state (s5) has the quantum numbers

1 1 1 1

with S = C = B = T = 0. Namely, it is a nonstrange, charge-neutral
meson state without flavor. Because s quarks have I = 0, it belongs
to the isospin representation

I(s3) =0, (9.66)
with
I3(s5) = I3(s) + I3(5) =0+ 0= 0. (9.67)

From Table 9.4 of the text, we see that this could correspond to the
J = 0 Y particle and its excited states. In fact, the J = 1 meson ¢ is
thought to be an almost pure (s3) state (see the CRC' Handbook).

Problem 9.6 Consider the following decays:
(a) N*(1535) — p+n°,

(b) 1(1189) — p+ 7Y,

(c) p°(770) — 70 4 4.
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(a) From the CRC Handbook or the PDG booklet, we note that
N*(1535) is a nonstrange baryon with isospin I = %, I3 = % Thus,
we see that the reaction

N*t(1535) = p+1° (9.68)

conserves all quantum numbers and is therefore a strong process. The
spin of the NT is J = %, while J, = %, and J, = 0. Consequently,
we can have £ = 0 and £ = 1 as relative orbital-momentum quantum
numbers in the final state. But only £ = 1 is allowed for strong
interactions (see Chap. 11).

(b) The process
»F(1189) — p+ n° (9.69)

can be checked from Table 9.4 of the text to violate both isospin and
strangeness quantum numbers:

1 1
1—->-0l==
2 2’

It is therefore a weak hadronic process. As in part (a), both £ =0
and ¢ = 1 can occur in the final state, and, in fact, “parity” violation
in weak interactions allows both (see Chap. 11).

(c) From the CRC Handbook or the PDG book, we note that the
p°(770) meson has I = 1, I3 = 0. Therefore, the process

P(770) — 70+ v (9.71)

IAL] = IAS|=|-1-0-0]=1.  (9.70)

conserves all quantum numbers. It may seem then that this would
correspond to a strong interaction. However, the photon participates
only in electromagnetic processes (and not in strong reactions). We
therefore conclude that this is an electromagnetic transition. The
po decays mainly into 717~ pairs, and only =~ 1073 of the time to
79+ v. The p has J = 1, while J 0 = 0. The photon must therefore
carry away J = 1. Electromagnetic interactions conserve parlty, and
the J = 1 photon must therefore have the symmetry of the B field
(magnetic dipole moment “M —1” transition), and not of the E field
(electric dipole moment “E — 1” transition). See Chap. 11 for more
discussion of parity.






10. Symmetries

Problem 10.1 Using isotopic spin decomposition for the decays of
the p meson with I = 1: pT — a0, pm - a a0 p — 7wtr~ and
p° — 7070, prove that o — 7070 is forbidden on the basis of isospin
invariance (that is, use the Adair-Shmushkevich analysis).

The p as well as the m mesons belong to isotriplet states with / = 1.
For p meson decaying into two m mesons, the possible reactions con-
serving all quantum numbers correspond to:

pt — at + 70,

pO — 70 +7T0, (10 1)
— 7t 47, '

p- o T + 70,

Since isospin invariance for p meson states requires that the total
decay rate for any charge state of p should add up to 1 (normalized),
let us assume that

Rate(p® — 70+ 7%) = z, Rate(p? = 7t +77)=1—2, (10.2)

where z is yet to be determined. Thus, we can write a table of

the form
Charge state of p | Final state Rate
pT at 4+ 7Y 1
pO 70 + 70 z
at 4w 11—z
p- 7~ + 7 1

121
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Isospin invariance for the m meson in the final state would
imply that

Total Rate(r™ + anything) = Total Rate(n™ + anything)
= Total Rate(r® + anything)  (10.3)
or I+1-2)=Q1—-2)+1=1+2z+1,

where, in the last expression, the two 7% mesons in the final state of
p® — 7%+ 79 are indistinguishable and both contribute to the count,
which is the reason for the factor of 2. The solution to Eq. (10.3)
yields

l-2)+1=1+2z+1
(10.4)
or 3r=0, =x2=0.

This implies that the decay
p° — 70 + 7, (10.5)

is forbidden, while the other three decays take place at identical rates
if isospin invariance holds.

The reason why the decay in (10.5) is forbidden can be under-
stood from the composition of isospin quantum numbers (which is
like angular momentum). The two 7 mesons in the final state belong
to I = 1 states and therefore the isospin of the composite state can be

I'=21o0r0. (10.6)

The states with I = 2 and I = 0 are symmetric under exchange
of two particles, while the I = 1 state is antisymmetric. This rules
out a state containing two 7° mesons from being in I = 1, because
identical bosons must be in symmetric states. In fact, a state with
O mesons can exist only in the I = 2,0 states. (We will see this
in greater detail in Problem 11.1 in the next chapter.) Thus, since
I(p) = 1, this decay is forbidden if isospin is conserved in the process.

two

Problem 10.2 Assuming invariance of strong interactions under
rotations in isotopic-spin space and the usual isospin assignments for
K and m mesons, what would you predict for the ratios of transition
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rates in the following decays:

(a) For an I =3, K* meson,

K**+ 5 Ktpt K* — Ktx0 K~ — KO~
K** —» K+70 "’ K** — KOp+’ K*  K+gp—

(b) What would you expect for the above processes if the K* meson
had I = %? (Hint: Consider the I3 of the final states.)

(a) Let us consider the two-body decay of the K* meson

K*> K+ (10.7)

Since K* mesons have a strangeness number S(K*) = 1, this
implies that

Y(K*) =1. (10.8)

It then follows that if the K* meson has I = %, there will be four

charge states

Y(K*)
2

The possible decays of the K* meson consistent with conservation
of all quantum numbers can be written as

QUE™) = I(K*) + = (K +5=21,0,-1. (109)

K*++—>K++7T+,
K*t — KT 4+ 70,

- K0+, 10.10
KO Kt 47—, (10.10)
K* — K%+ T,
where we have used the fact that
S(K*)=S(K% =1. (10.11)

(For example, K** — K~ 4+ 77 would violate strangeness
conservation.)
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If isospin invariance holds for the K* meson, then the total decay
rates for any charged state of K* should add up to 1 (normalized).
Thus, we can denote

Rate(K*t — KT + 7% =2z, Rate(K** —» KO+ 7%) = (1 — ),

Rate(K*® —» KT +77) =y, Rate(K** — K°+ 7% = (1 ——(y), )
10.12

where z, y are yet to be determined. We can therefore make the table

Charge state of K* | Final state Rate
K*t+ Kt + 7t 1
K*t K+t +x° T
KO+ 7t (1—x)
K*0 K* + 7~ Y
KO+ | (1-vy)
K*~ KO+ 7~ 1

Requiring isospin invariance for the K mesons in the final state,

we obtain
Total Rate(Kt + anything) = Total Rate(K° 4 anything) 10.13)
or l+z+y=0_1-2)+(1—-y)+ 1. .

Similarly, isospin invariance for the 7 meson in the final state leads to
Total Rate(nt + anything) = Total Rate(n~ + anything)
= Total Rate(n’ 4+ anything)  (10.14)
or 1+(l-z)=y+l=z+(1-y).
Relationship (10.14) leads to
y=1-—uzx, (10.15)
which, in turn leads to
I+l—z)=z+(1-y)=z+(1—-(1—-2)) =2z
or 3r=2 (10.16)
2 21

= , :1—- :1——:
or 3 J z 3
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Consequently, the relative rates become

Rate(K*** — Kt 4+7t) 1 1 3
Rate(K*t - K+ +a% z 2/3 2
Rate(K** - K+ +x% =  2/3
Rate(K*t - KO+ 7+)  1—z 1-2/3
Rate(K*~ — K°+77) 11 3
Rate(K** - K+ +#—) 'y 1/3

(b) If the K* has I = %, then there will be two charge states
Y(K™*)
2
The possible decays consistent with all conservation laws are
K** — KT 4+ 79

KO 4ot
K9 K+t 4 T,
KO 4 70,

2, (10.17)

Q(K™) = I3(K”) +

1
= I(K*) + 5 = 1,0. (10.18)

(10.19)

We can still parametrize the decay rates as in Eq. (10.12), and tab-
ulate the results |

Charge state of K* | Final state Rate

K** K+ + 7Y T
KO+ 7t (1—x)
K*0 Kt +7~ Y

KO 4+ 70 (1—-1y)

The requirement of isospin invariance for the K meson leads to

Total Rate(K ' + anything) = Total Rate(K° + anything) (10.20)
or z+y=(1-x)+(1-y). |

Similarly, isospin invariance for the m meson states leads to
Total Rate(n* + anything) = Total Rate(r~ + anything)
= Total Rate(w® + anything) (10.21)
or (1—-z)=y=z+(1—y).
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Substituting y = 1 — = from the above relationship in Eq. (10.21),
and solving for x, we obtain

l—-z=z+(1-y)=z+(1—-(1-2)) =2z
or 3z=1 (10.22)

1 ‘ 2
e = ]_ — = ]_ _—— = =,
or x 3 ) x 3= 3

Calculating relative rates, we obtain

Rate(K** - K*+7%) = _ 1/3 1
Rate(K*+ —» K0+ 7*) 1-2 1-1/3 2’

*+ + 0
Rate(K** —» Kt +n%) o _1/3_1 (10.23)
Rate(K* — K+ +77) y 2/3 2
Rate(K*® —» Kt +717) 2/3

Rate(K*0 - KO+ 70)  1—y 1-2/3

2.

Such relative rates can be measured, and thereby used to determine
the isospin of any decaying particle.

Problem 10.3 N* baryons are I = % excited states of the nucleon.
On the basis of isospin invariance in strong interactions, compare
the differences expected for N* and A decays into the m—N systems
discussed in Table 10.2.

The A particle has I = % and has two-body decays of the form
A — N+, (10.24)

where IV denotes collectively p or n, which belong to an I = % dou-
blet. Thus, these decay processes are identical to those handled in
Problem 10.2(a), but now involving nonstrange hadrons. Thus, with
the following identification

A K* peKt ne KO (10.25)

if isospin invariance holds, the calculation is identical to

Problem 10.2(a), and the results are the same as those given in
Table 10.2 of the text.
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The N* baryons, on the other hand, are excited states of nucleons
N, with I = %, and have two-body decays of the form

N* — N +. (10.26)

These decay processes are again completely parallel to those of
Problem 10.2(b) (but involve nonstrange baryons), with the
correspondence

1
N*HK*<I=§>, p— Kt ne K (10.27)

Hence, if isospin invariance holds, the results for the decays of N*
can be obtained directly from Problem 10.2(b).

Problem 10.4 What are the possible values of isotopic spin for
the following systems? (a) A wt meson and an antiproton, (b) two
neutrons, (c) am™ meson and a A°, (d) a 7+ and a 7° meson, (&) a u

and a u quark, (f) a ¢, b and an s quark (for properties of quarks,
see Table 9.5).

Strong isotopic spins for composite systems can be determined in
the following manner. Isotopic spins for several hadrons are listed
in Table 9.3 of the text, and we derived in Problem 9.5 the isotopic
spins of quarks: I(u) = 1 = I(d) while I(s) = I(c) = I(b) = I(t) = 0.

(a) Using the composition law for isospin, we get

I(r*p) = g%
_ (10.28)
I3(7T+ﬁ) = I3(’/T+) + Ig(ﬁ) =1- 5 = 5
1 3

Since I3 = 5 can be a legitimate isospin projection for both I = 5
and I = %, we conclude that the composite state (7*p) can have

. _"3 1
eltherI—iorI—i.

(b) A composite state of two neutrons can have

I(nn)=1,0
1 1 (10.29)
Since I3 = —1 cannot be an isospin projection of a state with I = 0,

we conclude that a composite state of two neutrons can only be I = 1.
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(c) The AV particle is an isosinglet (I = 0) and, consequently,
we have

I(nTA% =1. (10.30)

This composite state is therefore I = 1.
(d) We can have

I(r*7%) =2,1,0

(10.31)
I3(71’+7T0) = .[3(7T+) + I3(7T0) =14+0=1.

Thus, as we have already discussed in Problem 10.1, a state with two
7 mesons can have I = 2, I = 1 or I = 0. However, I = 0 has no

projection of I3 = 1, and the composite state (7T 7°) must therefore
have I =2o0r [ = 1.

(e) For a composite system of a u and a @ quark, we have
I(uu) = 1,0,
- (10.32)

I3(’U/E) = Ig(u) + 13(’1_1,) = 5 5 = 0.

Since the projection Is = 0 is possible for both I = 1,0 states, we
conclude that the composite state (u%) can have I =1 or I = 0.

(f) As we have seen in Problem 9.5, all quarks with flavor quantum
numbers are isosinglets. Thus, we have

I(bes) = 0. (10.33)

This composite state would therefore be a baryon with unique isospin
I=0.

G D



11. Discrete Transformations

Problem 11.1 The p°(770) has J® = 17, and it decays stron-
gly into wtw™ pairs. From symmetry and angular momentum
considerations, explain why the decay p°(770) — 7°7° is forbidden.

As we already indicated briefly in Problem 10.1, isospin invariance
forbids the decay

p*(770) — «° + 70 (11.1)

Let us analyze this in some more detail.

We know that the p® meson has I = 1, I3 = 0. We have also noted
in Problem 10.1 that a state with two 7 mesons can have isospin
I = 2,1 or 0. Using the composition law of angular momentum, we
can construct these isospin states explicitly. The five projection states
of the I = 2 state are symmetric under the exchange of the two «
mesons and have the normalized forms:

I =213 =2) = |ntnt),

I=21=1)= %uwﬂr% + 70 +Y),
I=921=0) = %(mw%% F b)Y + ), (11.2)
I=21T5=-1)= %uﬂ%w T = a%Y),

I =2,1I3 =—-2) = |r~ 7).

On the other hand, the three projection states of I = 1 are anti-
symmetric under the exchange of the two m mesons. They have the

129
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explicit normalized forms

=11 =1) = —(ln*7°) - |°7)),

I=1,I3=0)= ) = [n7 ™)), (11.3)

1
+ —
— (|77
voh
1
I=1,I3=-1)= —(|7% ) — |=~ 7).
I=11=-1) = 2 (') = r %)
Finally, the isosinglet state is symmetric under the exchange of
the two pions and has the normalized form

I =0,1I3 =0) = —1——(-—|7r07r0> +rteT) + 77w t)). (11.4)
V3

Thus, we see that the I = 1, I3 = 0 state (corresponding to the
isospin quantum numbers of the p° meson) does not have a |7%70)
component simply because the required antisymmetry of the state
does not allow this. As a result, the decay (11.1) cannot take place
if isospin invariance holds. As mentioned in Problem 10.1, only the
symmetric states with I = 2,0 and I3 = 0 have |m°7%) components.
From a less formal perspective, because in the rest frame of the p,
the two 7¥ mesons are identical and indistinguishable, both their
isospin and their orbital angular momentum states must be symmet-
ric. However, the p has J© = 1~ and JI = 0, and the two pions
must consequently be in the £ = 1 to conserve angular momentum.
But this is an odd state of the system, and therefore forbidden for

two 7° mesons.

Problem 11.2  What is the charge-conjugate reaction to K~ +p —
K%4+n? Can a K~ p system be an eigenstate of the charge conjugation
operator? Similarly, discuss the reaction p+p — 7t + 7.

Under charge conjugation, we have
CIK™)=|K*), Clp)=1p), Cln)=In), C|K°) =|K").
(11.5)
Since C? = 1, it follows that

CIK*)=|K™), CIK®)=|K"), Clp)=Ip), (11.6)
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and we see that

C|K™p) = |K'p), C|K°)=|K). (11.7)
The charge conjugate of the reaction
K +p—K%+n (11.8)
is therefore
Kt+p— K°+a. | (11.9)

Although the state |K~p) is charge neutral (which is a necessary
condition to be an eigenstate of C, as discussed after Eq. (11.54) of
the text), from Eq. (11.7) we see that |K"p) represents a physically
distinct state from |K~p). Consequently, the state |K~p) is not an
eigenstate of the charge conjugation operator. (Recall that a state
1) is an eigenstate of C if it satisfies C|¢) = nc|y), with n% =1.)

Since we know that

Clat)y=|n7), Clr7) =[%), Cln°%) ==, (11.10)
for the reaction
prp—om 4w, (11.11)
the charge conjugate reaction is given by
p+p—m 47, (11.12)

which is the same as the original reaction. Hence, under charge con-
jugation, we get

Clpp) = |pp), ClrFn™) = |n"n*). (11.13)

We can form symmetric and antisymmetric combinations of these
states that are eigenstates of the charge conjugation operator, namely
(% is just a normalization factor):

¢ (% (1pp) = |pp>>) ~ = () % b)),
1 _ B 1 _ _
o <$(|7r+7r ) £ |m 7r+))> = :i:ﬁ(|7r+7r Y |r T t)).

A proton—antiproton system can therefore be in an eigenstate of C,
just as a7 and a 7~ system. Reaction (11.11) can therefore proceed,

(11.14)
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preserving charge conjugation either for C = + or ' = — states.
(Again, the reverse reaction can only proceed virtually.)

Problem 11.3 If p° mesons are produced in states with spin pro-
jection J, = 0 along their line of flight, what would you expect for the
angular distribution of p° — 7t 4+ 7~ decay products in the p° rest
frame? (See Appendiz B for the appropriate Yy, (6, ) functions.)
What would be your answer if the initial p° had spin projection
J, = +17

Let us assume that the line of flight of the produced p° meson defines

the z-axis. In the rest frame of the p° meson, the 7+ and 7~ mesons

will be produced back-to-back in order to conserve momentum.
The spin-parity quantum numbers in the strong decay

Pl -t 7, (11.15)
are |
1= - 0™ +0. (11.16)

Thus, we see that conservation of angular momentum (as well as
parity, since it is a strong process) requires that the relative orbital
angular momentum of the final state be

¢=1. (11.17)

Because pions are spin-zero particles, this represents the total angular
momentum of the final state.

(a) If the initial p° meson has J, = 0, then conservation of angular
momentum (projection) requires that the final state of two pions
must have

£, =m=0. (11.18)
The spatial component of the wave function will have the form

Yrtn-(1,0,9) = f(r)Y10(0,¢) = f(r) cos 0, (11.19)

where f(r) is the radial component of the wave function, which is not
relevant for our discussion. The form of the spherical harmonics is
from Eq. (B.6) of the text. (The isospin component of this decay has
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already been discussed in Problem 11.1.) The angular distribution of
the decay products is therefore

do
30~ [rta- (1,0, O)|? ~ |Y10(, $)|> ~ cos? 6. (11.20)

(b) If the decaying p° meson is in the spin state J, = =1, then
conservation of angular momentum implies that the final state
should have

0, =m=%l. (11.21)
The final state wave function will have the form

¢7r+7r“ (T7 07 d)) = f(T)Yl,:I:l(07 ¢) ~ f(’l“) sin eii¢~ (1122)
This leads to an angular distribution of the form

do .
d—Q ~ |w7r+7r— (T7 97 ¢)|2 ~ IY1,:1:1(9> ¢)|2 ~ SlIlQ 0. (1123)
The angular distributions in Egs. (11.20) and (11.23) can be distin-
guished in data to provide the J, of the original p meson, and thereby
yield information on its production mechanism.

Problem 11.4 TheZ~ has JP = %Jr. It decays through weak inter-
action into a AY and a 7~ meson. If J = %+ and JE =07, what are

the allowed relative orbital angular momenta for the A-n~ system?
The reaction
ET = AV, (11.24)

is a weak decay process. We therefore expect several quantum num-
bers to be violated. Looking at Table 9.4 of the text, it is clear that
this process violates both isospin and strangeness quantum numbers,
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as is the case in many weak hadronic decays. The spin-parity assign-
ments in the reaction are:
1+ 1t

= 52 40 11.
5 —5 TO (11.25)

If we assume the final state particles have a relative orbital angular
momentum £po,—, then from conservation of total angular momen-
tum we obtain

Jz=- = Jpo,-

1 1
or 5 = £A07r_ + 5, or

(11.26)

Cpop- —

This determines
Lpo.— =0,1. (11.27)

If Lpo,— = 0, then we see from (11.25) that parity will be violated
in this process (see Eq. (11.21) of the text). On the other hand, if
fpo,— = 1, parity will be conserved in the decay. From the discussion
in Sec. 11.2.2 of the text, we know that parity can be violated in
weak interactions, and both these orbital angular momentum values
are therefore allowed in the decay.

Problem 11.5 Which of the following decays are forbidden by
C-invariance?

J/ Y — D+ p,
(
(Check the CRC tables to see if these decays take place.)
From the CRC Handbook or from the PDG, we have

nc(y)=-1, nc(@®)=1, nc(®) =-1,
no(W) = -1, no(J/$)=~-1, nclr)=1,
where ¢ represents the charge parity of the state. Now we can check
whether charge parity is conserved in the processes.

(11.28)
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(a) In the reaction

w — 70+ 7, (11.29)
the initial state has the charge parity
oMo — no(wf) = -1, (11.30)
whereas the final state has the charge parity
g™ =no(@me(r) =1x (-1 =-1.  (1131)

Thus, we see that charge parity is conserved in the process (11.29)
and it is therefore allowed by C' invariance.

(b) The initial state charge parity of the reaction

n — 0%+, (11.32)
is given by
ng ™ = ne(n) = 1. (11.33)
The final state has the charge parity
ng™ = nc(pPmo () = (~1) x (1) = 1. (11.34)

Thus, charge parity is conserved in this process, and it is allowed by
C invariance.

(c) From the general result of Eq. (11.60) of the text, we know that a

70 meson cannot decay into an odd number of photons if C invariance

holds. This can be checked explicitly in the present case
7 >y 4y 47, (11.35)

for which

initial final
pdnitial) _ po(@®) =1, 78 = (ne(v)® = (-1)* = -1. (11.36)

Thus, this reaction is not allowed by C' invariance.

(d) For the process

J/Y — p+ P, (11.37)
we note that the charge parity of the initial state is
ne(J/¢) = —1. (11.38)

The individual particles in the final state (p,p) are charged and
therefore cannot correspond to eigenstates of the charge conjuga-
tion operator. However, as we have already seen in Problem 11.2
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(see Eq. (11.14)), we can have eigenstates of C comprised of a p and
a p (the composite state is charge neutral):

c (—1—uﬁp>i xpm)) — L (3p) £ p)) (11.39)

V2 V2
The charge parity of the antisymmetric state is given by

1 ((PP) ants) = —1, (11.40)

which agrees with that for the initial state. Therefore, the J/1 can
preserve C' invariance when it decays into an odd-C state. |pp) is in
a charge odd state.

(e) For the decay

pO — v+, (11.41)
we note that
(initial) 0y __ (final) 2 _ 2 _
N =nc(p)=-1, ng ~ =mc(y) =(-1)"=1. (11.42)

Therefore, this decay is not allowed by C invariance.

Problem 11.6 Although the orbital wave for any strong m—N state
determines the parity of that state, different £-values do not neces-
sarily yield different decay angular distributions. In particular, show
that o J = %, Jz = —I——%, m—N resonance decays the same way whether
it has £ = 0 or £ = 1. Similarly, show that a J = %, Jz = +%, -
N system has the same decay angular distribution for £ = 1 as for
¢ = 2. [Hint: Ezpand the wave function for the state in terms of the
products of s = % spin-states and the appropriate Yy (6, ¢).]

For a m — N system, from the relationship
j;rN IEﬂN+§N (11.43)
the possible values of the total angular momentum are
1 1
i —f+ = |- =
7=ty l 2
1

mj:mg+mS:mg:|:§,

)

(11.44)
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where we denote by j,¢,m;, my, ms the eigenvalues of the total
angular momentum, relative orbital angular momentum, the pro-.
jections of total angular momentum, relative orbital angular
momentum, and intrinsic-spin angular momentum of the nucleon,
respectively.

(a) If we have j = 3 and m; = 3 for the m—N system (eigenvalues
of J,J;), then from Eq. (11.44) we see that the allowed values of
relative m—N orbital angular momentum are given by

¢=0,1. (11.45)

For ¢ = 0, we have j = —%—, while ¢ = 1 leads to j = % and %

The eigenstates |j,m;) can be constructed in terms of the basis
states |¢;mg, ms) using the Adair—Shmushkevitch formalism devel-

oped in the text, or the more standard composition law of angular

momentum. Now, let us write the eigenstates of j = % correspond-

ing to £ = 0 and £ = 1 (the states can have an arbitrary overall
phase):

1
my=—1,mg = =

(e=1)
e _l> A <\/§ 2> (11.46)

1
- ‘mf = O7ms - _§>> )

1 1\ =9 1
|J— )mj:_> = mZZOamS:_>7

2 2 2
1 1\ =9 1
lj:—Q—’mJ:—§> = mg:O,m3:“§>.

Ignoring the radial part of the wave functions, which are not

relevant to our discussion, we note that the angular parts of the

system with j = % = m,;, corresponding to £ = 0 or £ = 1 can be
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written as

[

£=0
U my =127 0 8) ~ Yoo(6,

-

1 1
mg = "> - \/§Y11(0,¢)‘m3 = __>)

2 2
ms = l> —sinf € |m, = —%>) ,

2
(11.47)

o |

(e=1)
B =12 (70, 9)

~ % (Ym( ;

1 (c s6
= ——1{co
vVAr

where ¢ denotes the azimuthal angle, and we have used the forms
of the spherical harmonics given in Eq. (B.6) of the text. It follows
that the angular parts of the square of the wave functions have the
forms:

(0= , 1 1\ 1
W] 1/2m]—1/2| An <ms— ms = §> i’

= 2 1 9 1
|7,b( Liomee1/al” = (cos 9<ms-———lmsz—>
=il g 2 2/ (11.48)
+ sin? §( m -——lm _ 1
]
= i (c0820 + sin® 9) =

The cross terms in the above expression vanish because of the orthog-
onality of the spin wave functions, and we see that the angular dis-
tributions in both cases are isotropic. (The same would hold for the
orthogonal m; = —-%) Because we are only interested in the angular
part of the solution, we have again suppressed the radial dependence
of the wave function, which is not relevant for our discussion.

(b) If the m — N system is in a state with j = mJ = 1, the allowed
values of relative orbltal angular momentum are 2 = 2 1.If 0 = 2,
we can have j = 2, 2, while £ = 1 will yield j = 2, 2 Once again,
all the states can be constructed. For simplicity, we record only the
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relevant states for the projection m; = 1/2

.3 1\ g 1
i=gmi=3) =g (fm=om=3)

1
my = 17ms = "—_>> 3

3 1\&=2 4 1
) = — ] — — = — 2 = s = —
'j Z,mJ 2> NG <\/— my = 0, m >

1
"‘\/g‘mg: l,ms = ——2—>> .

+

[\

Again disregarding the radial part of the wave functions, the angular
and the spin parts are:

- 1 1 1
w;l-?_—_gl/)g,mjzl/g ~ ﬁ <\/§Yi0(6a ¢)Ims = §> + Y11(97 ¢)|ms = _§>>

).

(11.50)

1
= — (2(:089

V8T
(¢=2) N 1 1
¢j=3/2,mj=1/2 ~ E (\/_2_Y20(0a ¢)|ms = §>

- \/3_'Y21(9>¢)‘ms = —1>>

N

mg =

> —sinf ¢

2
L ((300820 - 1)|m3 = %>

V8
: 1
+ 3sinfcosf €?\m, = _§>> .
Taking the absolute squares of the wave functions yield
1

(e=1) o1 2 B 1
Wj::a/z,mfl/?'2 = 8r (4 cos™ 0 <ms —g|Ms T §>

: 1 1
+ sin% @ <m3 = —§’ms = —§>>

1 1
= — 4 2 in2 = — 2
87r( cos” § + sin* 0) 87r(1—!—3(:05 9),
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(b= 2, 1 1 1
I¢J 3/2mg—1/2| 87T <(3COS 0 — 1) < - §lms = §>

. 1 1
+ .9311r12900829<mS = —§‘ms = —§>)

1
= & ((3 cos? @ — 1)2 + 9sin 20 cos? 9)
T
1
=% (1 + 3 cos? 9) . (11.51)

We see once again that the angular distributions for both orbital
values (but opposite parities) are the same. (And again, the same

result would hold for m; = —%)



12. CP Violation

Problem 12.1 Ignoring CP wviolation, plot to =~ 10% accuracy the
probability of observing of K9 as a function of time in a beam that
is initially (t = 0) pure K°.

The probability of observing K° as a function of time in a beam
that is initially pure K° is given in Eq. (12.58) of the text. In that
chapter, for simplicity, we had set ¢ = 1, but here we re-introduce
the factor of ¢ to make the numerical calculations more transparent:

2 2
——t —-——t —-—-1 —1 —1 A
+ )t mcC
[e s +e L — 2e 2(TS L/ COS t ,

(12.1)

where

T¢ ~ 0.9 x 10719 sec, T ~5x 1078 sec,
Am = mp —mg =~ 3.5 x 10712 MeV/c?, (12.2)
p:1+€a q:_1+6a

with € representing the parameter of CP violation. Now,

Amc? B Amc? N 3.5 x 10712 MeV

_ ~ 1010
- P X 200MV —F 3 x 10™ cm/sec
1
~ 5.25 x 10° /sec ~ — 12.3
x 107 /sec 5rs’ (12.3)

TS 0.9 x 10710 sec

~ ~ 2% 1073,
TL 5 x 10~8sec

From Eq. (12.42) of the text, we see that in the absence of the
small CP violation (e = 0), the weak eigenstates |K2), |K?) coincide
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with the strong eigenstates |K?Y),|KY) of CP. Thus, 1gnor1ng CP
violation,

p
so that
o [ _t _t _1( 1 _|_L)t Amc
PK't)=-|e s +e = —2e 2\"s ' 7L)" cos h t

_1f({1 ., t
e s +e L —2e 2(T5+TL)t cos——]. (12.5)
21g

&Q

S ]
|
|+
|
Jo+

Comparing with Eq. (12.1), we see that the qualitative behavior of
the probability is the same with or without CP violation, since the

difference lies in an overall multiplicative factor l ' The probability

in (12.5) clearly vanishes at ¢t = 0, as it should, since the initial beam
is pure K°. For 71, > 79 > t, the probability for observing K°
increases quadratically with ¢, as can be seen from the fact that, for
t =0, Eq. (12.5) leads to

_ 1 t t2 t t2
P )~ =1 - —+ g2 tl-— +——
4 Ts 87§ 87‘L

t/1 1 t2 1 1)\? #2
~2{1-Z =+ =) +=(=+= 1— -y
2\1s T 8\717s TI 87¢

1 t t2 t 12 t2
) (-4
4 27‘5 27g 87‘5 875

£2
N —s. 12.6)
5 (
87§
For 71, > t > 7g, the probability in Eq. (12.5) can be written approx-
imately as

_ 1 .t t
P(KO )~ = L — 2e ?7s —
(K", t) 1 _e e Cos TJ
10 ot t
=~ Z 1-— 26 27g COS *—;_;jl . (127)
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K9 & KO probabilities
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Fig. 12.1. Evolution of K° and K© from an initially pure K° beam, using Egs. (12.56)
and (12.58) given in the text.

In this regime, the probability oscillates with a period 477g with a
t

damping factor e ?7s, and for ¢ > 77, >> 75, the probability (12.5)
takes the form

P(K°t)~ ~e 7, (12.8)

so that the probability vanishes exponentially with the characteristic
scale 7. There must therefore be a maximum in the K9 component.
A plot of the full probability from Eq. (12.1) as a function of time is
displayed in Fig. 12.1, and explicitly shows all these features. Note
that the maximum in K° occurs at ¢ ~ 47g.

Problem 12.2  Using the parameters ni_ and ¢_ of Eq. (12.27),
derive an expression for the rate of K® — ntn~ decay as a function
of time. Assume that you start with a pure K° beam that develops
according to Eq. (12.55). You may ignore the overall normalization
of the decay rate.

As discussed in the text, the states |[K2) and |K?) in Eqs. (12.19)
and (12.20) of the text coincide with those in Eq. (12.50), with the
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identification
p=1+¢ qg=-1+e. (12.9)

Furthermore, from the parametrization in Egs. (12.24) and (12.27)
of the text, we can write

€ = |ngp_| ¥+, (12.10)

With these identifications, the time evolution of the state |K©)
from Eq. (12.55) of the text (using the convention in the text of c =1
in this discussion) becomes:

o) = Ly e i

4 e~ mm=3)t | K0y

_ 2/2(1|+ |77|+:p|2))[e——;{(ms—%73)t IK.(S)'>
2(1 -+ [ny—_|e*+-

It follows now from Eq. (12.23) of the text that

_ 201+ =12 | _i(me_z _
+ KO t)) = \/ +' (msg ¥s)t + KO
(mTmT| K7 () S0+ g% e 2 (7T |Kg)

+ e—%(mL—%WL)t (71.+7r— |K2)]

2 . :
U

+ |n+_|e—%(mL“%'7L)t+i¢+—]. (12.12)

This represents the time evolution for the transition amplitude
for the decay

K s at 47, (12.13)
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The time evolution for the rate of decay is obtained from
Pt + 77, t) = [(n"n” |[KO(t))?

_ 201+ |77+—.|2)
41 + [ny—|eiP+-|

x [ RISt 4 |y [2e BEL 4 |ny _|e"am (st

[(m ™ |Kg) 2

% (e%(mL—mS)_im“ + e‘i(mL“mS)+i¢+‘)]

_ 2(1 + |n+-1*)
41+ [14—1* + 2[n4—| cos )

_t .t 11,1
Xle 5 4 [y 27 2y, e 2R

(m*nT | K3

(12.14)






13. Standard Model 1

Problem 13.1 Prove that Eq. (13.49) follows from Eq. (13.48).

From Eq. (13.47) of the text we note that with the choice of the
minimum of the potential at

mw?
Lmin — T, (131)

we have from Eq. (13.48) of the text

1 A
V(Zmin + 2,y) = ——mwQ((xmm + sz:)2 + y2) + = ((Zmin + x)2 + y2)2
2 4

1
— ——Z—(xfmn + 2ZminT + 2% + y2)

A
+ Z(:I:?nin + 2Zmin® + 22 + 32)?
1

— —i(asfnin + 2Zmin® + 1> + y2)

A
+ 5 @hin + 40503” + (@7 +97)° + 22050 (2% + %)
+ 4x;311in$ + 4$minx($2 + y2))

1 A
= <_§mw2x$nin + fonin> + (_mw2 + /\:C?nin)xminx

1 A
+ <~_§mw2 + )‘:B?nin + —$r211in> 5172

[\

1 A
+ <__2—mw2 + §x?11i11> y2

+ Axminx(a32 + 92) + “(332 + 92)2

> >
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1 2 2\ 2
(e (7))
2

+ (_mwQ O x %) o o

(1 9 . 3A mw2> 9
+—zmw?+ = x — |z

2 2 A
2 2" x )Y
2
+ A X 4 T)\w—m(m2 +y%) + %(az2 +y%)?
m2wt
= 7 mw?z? + Vamw?z(z? + y?)
A2, 22
+ Z( + )7, (13.2)

which is the result in Eq. (13.49) of the text.

Problem 13.2 According to the quark model, wave functions of
baryons are antisymmetric in color. Construct a wave function for
the A1 that is explicitly antisymmetric under the exchange of any
two of its quark constituents in color space.

As discussed in Sec. 13.5 of the text, the description of A*™ in terms
of the quark model naturally leads to the need for a new quantum
number “color”. From Sec. 9.6 as well as from Table 10.2 of the text,
we see that A*T is a nonstrange baryon with quantum numbers

3 3 3 3
B=1 =2, I=- = — = — = — =0. (13.
) Q y 27 I3 27 J 2) Jz 27 S 0 ( 33)
In terms of the quark model, we can therefore describe this state by
the three-quark system:

|ATT) = |uuu), (13.4)

where the spins of the u quarks are all parallel and point along
the same direction. This state satisfies the quantum numbers given
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in (13.3). However, in the ground state, where £ = 0, the wave func-
tion for such a state will be symmetric in both spin and isospin
spaces (space part is symmetric since (—1)¢ = 1 for £ = 0). On
the other hand, the Pauli principle requires that a composite state
of three identical fermions be antisymmetric under exchange of any
two fermions. This suggests that quarks carry an additional quantum
number, and that the wave function for A™+ is antisymmetric in this
“color” quantum number, thereby making the total wave function
antisymmetric.
Letting

lu®), a=rb,g, | (13.5)

denote the three color states of the u quark, a normalized state mani-
festly antisymmetric under the exchange of any two color indices can
then be constructed as

1
|ATT) = %ﬂurubug) — [uudub) + [uPudu"y — [ubuTu)
+ Judu"ub) — judulum)). (13.6)

Despite the fact that their constituents carry color quantum num-
bers, baryons (e.g. A™T) do not. In fact, all observed hadrons are
color-neutral or “singlets” in color. This can be attributed to the
“saturated” color structure of the quark states, wherein all three
colors contribute to each part of the wave function.






14. Standard Model and
Confrontation with Data

Problem 14.1 The mass of the top quark is larger than that of the
W boson. It is consequently not surprising that the top quark decays
into a W and a b quark (t — W +b). The expected width (I') of
the top quark in the Standard Model is ~ 1.5 GeV. (a) What can you
say about the lifetime of the top quark? (b) If QCD color interactions
can be characterized by the fly-by time of two hadrons (time needed to
exchange gluons), what is the ratio of lifetime to interaction time for
top quarks? (c) Because of the rapid fall-off in parton distributions
f(z, p) with increasing x, the peak of the production cross section for
t1 events in pp collisions occurs essentially at threshold. What is the
typical momentum of the b quark in pp collisions that yield tt events.
(d) What are the typical T values of the colliding partons that can
produce tt events at the Tevatron (/s = 2TeV)? What about at the
LHC (/s = 14TeV)? (Hint: § = zaps, where § is the value of the
square of the energy in the rest frame of the partonic collision of a
and b. Can you prove this?)

(a) In discussions about resonances in Sec. 9.6 of the text, we saw In
Eqs. (9.27) and (9.33) that for a state with decay width I, the mean
life is given by (we are restoring factors of ¢ that were set to unity
in Chap. 14)

h
= —. 4.1
T= 1 (14.1)

For the top quark, we are given that
Tiop ~ 1.5 GeV/c?. (14.2)
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It therefore follows that the mean life of the top quark has the value

h hc o 1

Ttop = = —

top Ciopc Tiopc® ¢
 200MeV — F 1

15GeV 3 x 1010 cm/sec

. 2x10° x 1073 MeV-cm
" 4.5 x 1013 MeV-cm /sec

~ 4.4 x 107 gec. (14.3)

(b) The typical size of hadrons is about the size of a nucleon, that is,
R=~1.0x 1078 cm. (14.4)

Consequently, the fly-by time between two hadrons is given by

R 1.0x1073 cm

Ty-by ¥ = 37010 cm/sec
This leads to the ratio

Teop 4.4 x 10726 gec

Ty-by 3 x 1024 gec

~ 3 x 10724 sec. (14.5)

~ 1.5 x 1072 (14.6)

This suggests that a top quark decays before it has time to interact.

(c) When tf pairs are produced in collisions:
p+p—t+t, (14.7)
they subsequently decay through the channels
t—>Wt+b t—W +b. (14.8)

If the t¢ pair is produced at threshold, then the ¢ and £ quarks are
essentially at rest. Consequently, the @ value for the reaction (see,
for example, Eq. (4.4) of the text) is

Q=Tw + Ty = (M; — Mw — M,)c*. (14.9)
From Table 9.5 and Sec. 13.11 of the text, we have

M, ~ 175GeV/c?, My =~ 80.4 GeV/c?, M, ~ 4.2 GeV/c?.
(14.10)
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Therefore,
Q = (M, — My — M) ~ (175 — 80.4 — 4.2) GeV/c? x ¢
= 90.4GeV. (14.11)

This is a large amount of energy, but we see from the masses of
the particles that we can treat the W bosons as almost nonrelativis-
tic, but the b quarks as (ultra) relativistic objects. The situation is
therefore quite similar to that of Problem 4.3.

Since the top quark decays at rest, momentum conservation
leads to

Py = —Dp- (14.12)
Substituting this into Eq. (14.9) we obtain
Tw+T =Q
2
Pw
T —
or g My +Ty=Q

or pgc2 + 2TbMWc2 — ZQMWC2 =0
or TP+ 2Ty Myc® + 2Ty Mwc? — 2QMwc® =0
or T2+ 2Ty(Mw + My)c® — 2QMwc* =0

_ —2(Mw + Mb)02 + \/4(MW + Mb)204 + 8Q My c?
- 2

or Tb

2Q Myy c? 2
(MW + Mb)264 ’
(14.13)

= —(Mw + My + (Mw + My)c? (1 +

where we have used Eq. (A.10) of the text in the intermediate steps.
Clearly, only one solution is physical (positive T3):

1
2 2 2
| 4 2QMwe ~1
(MW + Mb)204

9 % 90.4 QeV x 80.4GeV \ 2
1+ -1

Ty = (Mw + Mp)c?

~ 84.6 GeV

(84.6 GeV)?
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~ 84.6 GeV[(1+2.03)3 — 1] = 84.6 GeV x 0.74
~ 62.6 GeV. (14.14)

We see that the b quark carries away most of the released energy

in the process, and its momentum follows from the definition in
Eq. (A.10) of the text:

1
Py = E\/(Tb + Myc?)? — (Mpc?)?

~ %\/ (62.6 + 4.2)2 GeV? — (4.2)2 GeV? ~ 66.7GeV/c.  (14.15)

(d) Let us consider the process
p+p—t+t, (14.16)

in the center of mass. If the ¢f pair is produced at rest, then it is
clear [see Eq. (1.65) of the text] that the total energy in the center
of mass is:

EEGT = 2M;c? = 350 GeV = 0.35 TeV. (14.17)

To simplify the problem, let us assume that the process takes
place through the interaction of a pair of almost massless partons (a
parton and an antiparton), so that we can write the reaction as

“W4 9 >t T (14.18)

In the center of mass, the collision will appear kinematically sym-
metric, and we can define

Pl . =aPky, Pi, =aPh,, (14.19)

where x denotes the fraction of the four-momentum of the proton
that is carried by the parton. In this rest frame, the spatial momenta,
of the two partons will be equal and opposite, and the available
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energy in the collision will be given by
(P + Pegr)? = (zESM + 2EZM)? = 4a?s, (14.20)
where s represents the square of the available beam energy. To pro-
duce a tt pair, we must have
4225 = (0.35 TeV)?
0.35 TeV (14.21)
= _____2\@ _
At Fermilab, we have /s = 2TeV, so that
0.35 TeV
TFermilab = 5~ 5 y7
while at the LHC, with /s = 14 TeV, this leads to
0.35TeV
PLHC = 5 14 TeV
Problem 14.2 In discussing weak decays proceeding through W

or Z bosons, we have focused primarily on the fundamental transi-
tions among quarks and leptons. However, such decays often involve

or T

~ 0.09, (14.22)

~ 0.012. (14.23)

hadrons that contain spectator quarks, in addition to the partons
that participate in the weak interaction (see Fig. 14.3). For ezample,
Fig. 14.5 shows a diagram for the decay of a K° into a 7T pair.
Using similar quark-line diagrams, draw processes for the following
decays: (a) Kt — 7t + 7% (b)n > p+e™ + e, (¢) 77 — p¥ + vy,
(d) K — 7~ + et + ve.

See Figs. 14.1-14.4 that provide the diagrams for decays 14.2(a)—(d),
respectively.

Problem 14.3 Draw quark-line diagrams for the following
reactions: (a) 7~ +p — A°+ K% (b) 7t +p — It + KT, ()
mt4+n—7+p, (d) p+p—> A+ Kt +p, (e) p+tp— KT+ K.

See Figs. 14.5-14.9 that provide the diagrams for decays 14.3(a)—(e),
respectively.

Problem 14.4 Draw quark-line diagrams for the following weak
interactions, and include any required intermediate W or Z bosons:
(a) ve+n — ve+mn, (b) u+p— put +n, (c) 7 +p— A0+ 70
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d 7E+

. u W+ u
K" Cuy o
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u

Fig. 14.1. Decay 14.2a.

L |d W+ W
v e

Fig. 14.3. Decay 14.2c.

u u
n | d d
d u
W‘%ﬁ‘ <e'
Vl‘
Fig. 14.2. Decay 14.2b.
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KO
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P

Fig. 14.4. Decay 14.2d.
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Fig. 14.5. Reaction 14.3a. Fig. 14.6. Reaction 14.3b.
d d] o
Piu u A
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Fig. 14.7. Reaction 14.3c. Fig. 14.8. Reaction 14.3d.
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Fig. 14.9.

Reaction 14.3e.
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+

v, v, Vu i
%Z W+
u d
n| | Ply i
Fig. 14.10. Reaction 14.4a. Fig. 14.11. Reaction 14.4b.
d d
p v u AO
- ﬁ'\rﬁ :
_|u W d| °
T g d|

Fig. 14.12. Reaction 14.4c.

See Figs. 14.10-14.12 that provide the diagrams for decays
14.4(a)—(c), respectively.

Problem 14.5 One of the main reasons for the introduction of the
GIM mechanism was the need to suppress flavor-changing neutral
currents, in order to reduce the rate for K_% — utu~ to its observed
small value. (a) Draw the quark-line diagram for this transition
involving W bosons (via a higher-order box diagram), and the possi-
ble contribution from Z° exzchange. (b) Show that the Z° contribu-
tion vanishes once the weak states of Eq. (14.8) are used to calculate
that contribution. (Hint: Contrast the transition elements (d'd’'|Z°),
(s'5'|1Z%), and (d'5"|Z°) by considering (d'd’), (s's"), and (d'5").)

The reaction K°® — utp~ can take place through the second-
order weak transitions described in the two box diagrams shown
in Figs. 4.13-4.14. The diagrams differ only in the nature of the
exchanged quarks. In addition to a u-quark or a c-quark, a t-quark
can also be exchanged. These weak transitions are greatly suppressed.
Figure 4.15 shows a diagram that is a first-order (leading) weak
transition via an “s-channel” Z boson. This strangeness-changing
neutral-current diagram is ostensibly allowed, and should therefore
provide a large rate that can be measured for this process.

However, this process is suppressed by the “GIM” mechanism
of mixing of weak eigenstates via the unitary CKM matrix. The
important parameter is the Cabbibo angle 0.
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W+
. 4 v
K —§ \;Ivvv»v" +
w

Fig. 14.13. Box diagram decay with u-quark.exchange.

_.__d t’\/\WV-i\-r C
n
KO‘—L jvvvsv“ +
W+ g

Fig. 14.14. Box diagram decay with ¢ quark exchange.

Fig. 14.15. Decay via s-channel Z boson contribution.

The suppression of strangeness-changing neutral currents via the
GIM mechanism comes about because the weak eigenstates (d’, s')
correspond to a specific mixing of the strong eigenstates (d, s), and

vice versa:
d\ [(cosf. —sinb, d
s/ \sinf, cosé, s

with d and s quark states comprised of the following mixtures of the
weak eigenstates

d=d cosf,— s'sinb,,
5=d'sinf, + & cosd,.
Using these transformations, the coupling of the Z boson to the

strong interaction state K° = (d,§) can be expressed in terms of
the eigenstates of the weak interaction as:

(d,5|Z) = (d',d'|Z) cos O,sin b, — (s, 5| Z) cos O, sin 6,
+(d',5|Z) cos® 0, — (s',d'| Z) sin? @,.

Because of the orthogonality of the weak eigenstates, the ampli-
tudes for transitions between states of different flavor (d’,5'|Z) and
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Fig. 14.16. Deep inelastic electron scattering.

(s',d'|Z) vanish. The probabilities are equal for the two amplitudes
(d,d'|Z) = (s',5|Z) = 1/+/2, and therefore

(d,3|Z) (d',d'|Z) cos O, sin b, — (s',5 Z) cos f,sinb,) = 0.

1
= E(

Thus the Z contribution to the rate for the decay is also expected
to be very highly suppressed.

Problem 14.6 Consider the scattering of an electron from a proton
(of mass my), as shown in Fig. 14.3. Let W be the invariant mass
of the entire recoiling hadronic system, and QQ and P (except for
multiplicative factors of c) the four-momenta of the exchanged vector
boson and target proton, respectively, and E, E' and 8 the incident
energy, the scattered energy and scattering angle of the electron in
the laboratory (i.e. the rest frame of the proton). Defining Q? as
(k' —k)2c— 12, where k' and k are the three-momenta of the scattered
and incident electron, and v is the difference in electron energy, show
that for very high energies, (a) Q% = 4EFE’sin® g, (b) W2 = mg +
27?{’” - 8—42. (c) What is the smallest value that W can assume? What
type of scattering does that correspond to? (d) What is the largest
Q? possible? What does that correspond to? What is the mass of the
vector boson in this case? () What is the largest possible value of W?

We are studying the process
e +p—oe + X, (14.24)

where X denotes the entire hadronic system of mass W produced in
the scattering (see Fig. 14.16).

Let us denote by k¥, P k" and P)’é the four-momenta of the
incident electron, the target proton, the scattered electron and the
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produced hadronic system, respectively. Since the proton is initially
at rest, we can represent the four-vectors as

kM = (EIZ) PH = (myc, 0),

c

14.25)
E - Ev - (
KH = (—,k’), Py = (—X PX>.
c c
Conservation of energy and momentum leads to
kM + PF = k" + P, (14.26)
which can be written as
E + myc? = E' + Ex,
(14.27)

I_<," = E/ -+ PX.
The scattering angle 8 corresponds to the angle between the vectors
k and k.

(a) The momentum transfer in the process is given by (see Eq. (1.67)
of the text and the discussion there)

c (&

g = (K — k™) = [-”-, (k — E’)} . [M (k—K)|, (14.28)

which leads to the invariant
Q2= —32¢* = —(E—E)+ (k— k)23
=k + k22 — 2k -K'* — (E* + E? — 2EE)
= —(E% - K*c%) — (BE? — K?¢%) + 2EE' — 2)k| || cos 6
= —m2ct —mic* + 2EF — 2)|k|K'|c? cos 0
= —2m2ct + 2EE' — 2|k||K'|c? cos 6. (14.29)

This is a general result. However, if the electrons are extremely ener-
getic, we can treat them as ultrarelativistic and neglect their masses,
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in which case we can approximate
ke~ E, |K|~FE, (14.30)

and get

Q? = 2EE' — 2EF’ cos§ = 2EE'(1 — cos ) = 4EE' sin® g

(14.31)
which is the desired result.
(b) From Eq. (14.26), we have that
P)’é = PF 4+ kP — kM, (14.32)

From the definition of invariant mass in Eq. (1.64) of the text (where

5

it is denoted as ?gs', we obtain for the square of the invariant mass of
system X:

1 1 2
1 (E—EN\* -~ -
= L |m2 4 2my(E - B) + 2 (B B — (F - B2
= 3 |mpe” +2mp(E — BN + 5 (B - B)” = (k= &)"¢")
2myy Q2
_ 127 c2p - (14.33)

where v = E — E’. This is the desired result.
(c) From the first Eq. (14.27), we obtain:

Px=k—Fk
or Ph = k24 K% -2k K (14.34)

1
~ C—Q(EQ + E”? — 2EF’ cos¥),



162 Solutions Manual

where we have used the fact that the electron is ultrarelativistic.
Using this in the first relationship of Eq. (14.27) leads to

E4+my?=E +Ex=FE+ \/m?xc‘l—i— PicQ
or  (E—E 4+myc?)?=mkc'+ ]3§(c2
or E*+E?+mlc'+2Emyc® —2E'(E + myc?)
=m%ct + B2 + E”? — 2EF' cos 6
or  2Emy,c® + (mg —m%)c* = 2F' (E(1 — cos ) + myc?)

B 2Em,c?® + (mIQ, —m%)c?
— 2(BE(1 —cos ) +mpc?)

/

and (14.35)

Thus, the value of E’ is a function of the scattering angle 6. By
definition, E' > 0, and from the above equation we can see that E
has its maximum:

E . =E, (14.36)

max

which is reached when § = 0 and myx = m,. This corresponds to
elastic scattering off a proton at rest. Using Eq. (14.31), we can write
Eq. (14.33) as

2m,(E — E'y AEF 0
2 2 p s .2
W*=my+ ) A sin” o

2my B ,(mp 2B 50
02 —‘2E (-CT—F”CT sSin § . (1437)

_ 2
__mp—|—

For a fixed value of E, W? is a function of E’ and 6. We can find
the extremes of this function by taking derivatives and setting them
to zero. But this can be done more easily recognizing that W2 is a
linear function of E’ (with a negative sign), and the minimum value
of W2 occurs when E' = E/ .. = E, which, as we have seen, happens
for § = 0. For these values, we obtain

om,E
W2, =m2+ T2~ 2E<T—E> = m?. (14.38)
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The minimum in invariant mass is therefore obtained when the elec-
tron scatters forward in an elastic manner and the target proton
remains at rest.

(d) From Egs. (14.31) and (14.35), we have that

6 2E(2Emyc? + (m2 —m%)ch)
2 [N p P X
=4 FE - = . 14.
Q sin” 5 (B — cos 0) ) (14.39)

It follows that the maximum value of Q?, obtained when § = 7, my =
mp, has the value

2,0 2
o 4E*myc

mex = 55 1 mpc? (14.40)

This corresponds to the case where the electron is scattered
backwards.

(e) From (14.37), we see that the maximum value for the invariant
mass will be obtained for E’ = 0, in which case we have

2mykE
2

2 _ 2
Wma,x - mp +

(14.41)

Here, after hitting the target, the electron comes to rest and the
produced hadronic system takes away all the momentum.

Problem 14.7 Now consider the scattering of Problem 14.6 in a
frame in which the proton has an exceedingly large three-momentum,
so that its mass my, can be ignored, as can the transverse momenta of
all its partons. Now, suppose that the collision involves a parton car-
rying a fraction x of the proton’s four-momentum, and that it absorbs
the exchanged “four-momentum” Q. (a) First, show that in the lab-
oratory frame Q- P = mpl/CQ. (b) Now, prove that, for very large Q2
(corresponding to deep-inelastic scattering), and in particular when

Q? > megc‘l, T = gt (c) Plot ch—j as a function of 2”;2”'/ for
W = mp, W = Vbmy and W = 3m,. (d) Indicate the regions in
(c) that correspond to x < 1, x < 0.5 and = < 0.1. (e) Identify
the approzimate location of the point corresponding to E = 10 GeV,
E'=1GeV and § = T, and the point corresponding to E = 10 GeV,

E'=4GeV and 0 = %, on the plot in part (c).
6
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(a) From Eq. (14.25) of the previous problem, we have that in the
frame in which the proton is at rest:

gt = (kP — kM) = (M, (k - E’)>,

C (14.42)

Pt = (mpc, 0),

(Q* in the problem should be identified with ¢*. The four-vectors
used in this specific problem are defined with factors of c¢ different
from what is given in the Appendix.) Through direct evaluation,
we have
E-F
P - gc® = mye x (E-F) x ¢? = myrc?. (14.43)
c

This is a Lorentz invariant quantity, and is therefore independent of
the frame of reference. In particular, it holds even in the frame in
which the proton has an exceedingly large spatial momentum (the
“infinite momentum frame”).

(b) Let us assume that only one parton of the proton participates in
the reaction, and that its four-momentum is given by (see Fig. 14.17):

PH

parton

= zPH, (14.44)

where x represents the fraction of the proton’s four-momentum that
is carried by the parton. The effective reaction (see accompanying
Fig. 14.17) is given by

e~ + parton — e~ 4+ parton. (14.45)

Denoting by Pl o> Prarton the four-momenta of the incident and the

final-state partons, respectively, conservation of energy-momentum

Fig. 14.17. Deep-inelastic scattering (DIS) in the infinite momentum frame.
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Fig. 14.18. Kinematics of deep-inelastic scattering.

leads to

+ k= P~

parton

PH

parton

+ k'*
, (14.46)
or (xpli + (k'u - k/u)) - Ppl;rton’

where we have used Eq. (14.44). If we assume the parton to be mass-
less, then squaring the above relationship we obtain

(zP+(k—k)?> =P?~0
or (zP+q)?=2*P> 4+ ¢’ +22P - q~0  (14.47)

2
2,22 —
and  z°myc” — > + 2zmpr = 0,

where we have used Eq. (14.43) as well as the definition in (14.29).
If we assume that

Q* > meIQ,c‘l, (14.48)

then, we can neglect the first term in the above equation and this
leads to the expected result

T = @

— 5-
2mpyc

(14.49)

(c) The plots of interest are given in Fig. 14.18.






15. Beyond the Standard Model

Problem 15.1 Show that Eq. (15.22) follows from the definitions
given in Eq. (15.21).

The basic commutation relationships between the bosonic and
fermionic operators are given in Egs. (15.9) and (15.14) of the text.
The substantive relationships take the forms
[aB,aH =1, [aF,aH = aFa}, + a},ap =1, (15.1)
+
and the fermionic properties are reflected in the relationships

lap,ar], =0= [a},a}]Jr : (15.2)

The supersymmetry charges are defined in Eq. (15.21) of the text,
and have the forms

QF - aEaF, Q} = a}aB. (15.3)
It follows, therefore, that

Qr,QF| | = QrQk +QhQr

_ T T
= aBaFaTFaB +apapagar

= a% (1 — a}ap) ap + a}, (1 + aEaB) ar

= a};aB + a}ap — aEaTFaFaB + aLaTFaFaB
1
hw
where, in the intermediate steps, we have used the above relation-
ships, as well as the fact that the bosonic and fermionic operators

commute. This is the desired relationship in Eq. (15.22) of the text.

T

= abap + alar = — H, (15.4)

167
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Problem 15.2 Using dimensional analysis, and the known value
of Gn, show that you can write GN = —ﬁ%, where Mp 1is the Planck
mass or scale. What is the value of M; in GeV wunits? Applying
the uncertainty principle, you can define a Planck length and a
Planck time, as in FEq. (15.25). What are these values in cm and

sec, respectively?

The gravitational potential in three dimensions is given by

mim
Vgrav =GN 1’1“ 27 (15'5)

where Gy is Newton’s constant and r denotes the distance between
the two masses mj, mo. The dimensions of various quantities are
given by

] = (e = (M),
=1 (15.6)
[Vgrav] = [Energy] — [M] [L]Q[T]—Q’

where [M],[L],[T] represent arbitrary scales of mass, length and
time, respectively. It follows, therefore, that

[ma]{ma)

[r]

[M]?
L]

or [Gw] = [M]'[LPIT]

[Verav] = [GN] %

or [M]LP’[T]™ = [Gx] x = [Gn] x [MPIL]TH (15.7)

This determines the dimensionality of Newton’s constant.
The dimensions of several other fundamental constants are:

[l = LT, [Ad = [M][ZP[T] . (15.8)

It therefore follows that

hel _ MIEPII2 _ o
[GN] T OM]YLB[T)? [M]". (15.9)
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We can consequently associate a natural mass scale with the gravi-
tational interaction:

N=

o — (_h_c)% N ( he )
P Gn 6.71 x 10-39 (Ac) (GeV /c2) 2

~ (1.5 x 10%8(GeV/c?)2)% ~ 1.22 x 10 GeV/c?,  (15.10)

where we have used the value of Gy from the Table of constants
in Appendix E of the text. Mp is known as the Planck mass, and
it defines an energy scale where gravitational interactions become
important in particle interactions.

Similarly, we note that

Guhe] _ LI
= ———— = [L[]“. 15.11
EaNcio=at o1
This shows that there is a natural length scale associated with grav-
itational interactions, which is known as the Planck length:

- (6.71 x 10739 (he)(GeV /c?) 2 (hc))é
A

N

~ (6.71 x 10739(GeV)72(2 x 107! GeV — F)?)

~ (6.71 x 10739 x 4 x 10728 cm?)2

~ 1.62 x 10723 cm. (15.12)
The Planck length can also be obtained from the uncertainty

principle, as follows. We note that the Planck mass also defines a
characteristic momentum scale '

1 1
he \ 2 he®\ 2
p:Mpc=<G—;)2c:<5%) , (15.13)
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where we have used the definition of Planck mass from Eq. (15.10).
This momentum can lead to an uncertainty in the position of the form

h
A’f’ ~ E = h T-
hc3 \ 2
(&)
ﬁGN % GNhC %
I = A
= /p, (15.14)

where in the last step we used our definition of the Planck length.

Problem 15.3 Ignoring, for the moment powers of hc, Newton’s
law for n extra dimensions can be written as

1 mims

+2 il
Mg

V:grav (T) (0.8

where my and ma are the interacting masses, and Mg corresponds
to the effective Planck scale for n + 3 spatial dimensions. Assuming
that these n extra dimensions are compactified over equal radii R,
then V(r) for v > R, that is, from the perspective of our three-
dimensional space, becomes

1 mmm

Virse(r) = 352 o

Now, using the fact that MELJFQR" must equal Mlg, calculate R in
meters for n = 1,2,3, and oo, with Mg set to the desired value of
~ 1TeV /c?. From what you know of Newton’s law, is it possible to
have n = 17 (Hint: Clearly, you cannot ignore hc in calculating R!
Using the fact that (Mc) x (R) =~ h, and Problem 15.2, should enable
you to get the right answers.)

In (n+3) spatial dimensions, the gravitational potential has the form
(this arises from the requirement that, for central forces, such as
gravitation and the electric force, the field flux should be a constant)

mma (15.15)

Vgrav(r) =« 771—_!__1"'7

where r is the distance between the two charges in the (n + 3)-
dimensional space, and « denotes a proportionality constant — much
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like Newton’s constant in 3 dimensions. The dimensions of o can be
determined from an analysis parallel to the one done in the last
problem, and we obtain

[Vgrav] - [Cl{] X [n[,LTl]]n[-_I—n’i_ﬂ

or [M)LPIT? = o] x [MPILI™D (15.16)
and [o] = [M]7LI"HT] 2

Recalling the dimension of (fic), we can write

s« (5 2] 1] ()

(15.17)

This suggests that we can introduce a characteristic mass scale Mg
(similar to the Planck mass in 3 dimensions), and write

he (e N (15.18)
o= c”. .
ng M502
When n of the space-like dimensions are compactified on a radius
R < r3, where r3 denotes the large three-dimensional distances of

space, the effective gravitational potential can be written (in 3 dimen-
sions) as

mymso

Rry
where for simplicity we have identified r3 with r. Comparing with
the original expression for three dimensions, we can write

VD () = o

grav

(15.19)

o«
" R
he  (Re)mtt 1
M}Q) - Mg+262n X Rn

e \" Mp\?
n _—
or R _<M502) X(MS)

2
e [ Mp\n

d R=
an Mgc? <M5> ’

GN

or

(15.20)
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where we have used our previous definitions of the parameters. Fur-
thermore, taking the scales
Mg =1TeV = 10° GeV = 10° MeV, Mp =~ 1.22 x 10" GeV/c?,

(15.21)
we obtain for the radius of compactification in n dimensions:

R™M™ ~

200 MeV —F (122 x 10 GeV/c?\ =
106 MeV 103 GeV/c?
2

~ 2 x 10717 em x (1.22 x 10'°) (15.22)

We can now make a table for the values of R for different values of n.

n R(cm) Comments
1 3 x 1015 ruled out

by astronomical observations.
2 0.244 excluded by experiment.

3 11.06 x 107 | excluded by particle experiments

00 2 x 10~17




