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Preface

This book is based on a one-semester course on Nuclear and Particle Physics
that we have taught to undergraduate juniors and seniors at the University
of Rochester. Naturally, the previous experience and background of our
students determined to a large extent the level at which we presented the
material. This ranged from a very qualitative and hand-waving exposition
to one class that consisted of a mix of about six engineering and math
majors, to relatively formal and quantitative developments for classes that
were composed of about ten to fifteen well-prepared physics majors. It will
not come as a great surprise that, independent of the degree of sophistica-
tion of our students, they were invariably fascinated by the subject matter,
which provided great wonderment and stimulation to them. In class, we
strove to stress the general underlying ideas of nuclear and particle physics,
and we hope that in transforming our lecture notes into this more formal
text, we have not committed the common sin of sacrificing physical content
and beauty for difficulty and rigor.

It is quite remarkable how much has changed since we first wrote this
book in 1989. The field of heavy-ion collisions has blossomed, the top quark
and the r neutrino were discovered, a very small direct contribution to CP
violation has been confirmed in K° decays, large CP violation was found in
interactions of neutral B mesons, the Standard Model has gained complete
acceptance, and many exciting ideas have been proposed for possibilities
for physics beyond the scale of the Standard Model. Furthermore, the con-
firmation of a finite mass for neutrinos has revealed the first chink in the
armor, and a clear need for expansion of the Standard Model. The devel-
opments in the related field of cosmology have, if anything, been even more
dramatic. We were tempted to include some of these in this second edition
of our book, but fearing that this might expand it beyond its current scope
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viii Nuclear and Particle Physics

and sensible length, we decided not to pursue that option. Nevertheless, we
have updated the original material, clarified several previous discussions,
and added problems to help test the understanding of the material.

Apologies

This book is intended primarily for use in a senior undergraduate course,
and particularly for students who have had previous contact with quantum
mechanics. In fact, more than just slight contact is required in order to
appreciate many of the subtleties we have infused into the manuscript.
A one-semester course in Quantum Mechanics should be of great help in
navigating through the fantastic world of nuclear and particle phenomena.
Although, in principle, our book is self-contained, there are parts of several
chapters that will be daunting. For example, the sections on Relativistic
Variables and Quantum Treatment of Rutherford Scattering in Chapter 1,
some of the more formal material in Chapters 10, 11, 13, and 14, and the
section on Time Development and Analysis of the K° — K System in Chap-
ter 12, are all especially demanding. Although the treatment of the mass
matrix for the kaon system may be considered too advanced, and not essen-
tial for the overall development of the material in the book, we believe that
the other sections are quite important. (Also, we felt that mathematically
advanced students would appreciate some of the more challenging excur-
sions.) Nevertheless, if deemed necessary, the formal concepts in these
harder sections can be de-emphasized in favor of their phenomenological
content.

Having chosen a somewhat historical development for particle physics,
we had difficulty in infusing the quark structure of hadrons early into our
logical development. We felt that this early introduction was important
for familiarizing students with the systematics of hadrons and their con-
stituents. To achieve this goal, we introduced the properties of quarks in
the Problems section of Chapter 9, well before the discussion of their rele-
vance in the Standard Model in Chapter 13. Although this might not be the
best approach, it should nevertheless provide students, through problems,
with the valuable experience of interpreting hadrons in terms of their quark
content, and in reducing the possible confusion and frustration caused by
keeping track of the many different hadrons.
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Units and Tables of Nuclear and Particle Properties

We use the cgs system of units throughout the text, except that energy,
mass, and momentum are specified in terms of eV. This often requires the
use of he to convert from cgs to the mixed system. Whenever possible,
we have shown explicitly in the text how such change in units is made.
Periodically, when we depart from our normal convention, as we do for
the case of magnetic moments, we warn the reader of this change, and
again offer examples or problems to ease the transition between different
conventions.

We have found that the best source of information on properties of nu-
clei and particles, as well as on fundamental constants, is the all-inclusive
CRC Handbook of Chemistry and Physics (CRC Press, Inc.) Because every
library has copies of this work, we have not provided such detailed informa-
tion in our manuscript, and urge students to consult the CRC tables when
need arises. We have, nevertheless, included some useful physical constants
in an appendix to this book.

Other References

The subjects of nuclear and particle physics share a common heritage.
The theoretical origins of the two fields and their reliance on quantum
mechanics, as well as the evolution of their experimental techniques, provide
much overlap in content. It is therefore sensible to present these two areas
of physics, especially at the undergraduate level, in a unified manner. And,
in fact, there are several excellent texts that have recently been published,
or extensively revised, that provide the kind of combined exposition that we
have presented. The books Subatomic Physics by Hans Frauenfelder and
Ernest Henley (Prentice-Hall, Inc.), Particles and Nuclei by B. Povh, et al
(Springer-Verlag), and Nuclear and Particle Physics by W. S. C. Williams
(Oxford University Press) are particularly worthy of noting, because they
offer a panoramic view of nuclear and particle physics of the kind that we
have attempted to give in our book. We believe that the emphasis in all
three of these works is sufficiently different and original to make them all
complementary and of value to students learning these two exciting fields
of physics.
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Chapter 1

Rutherford Scattering

1.1 Introductory Remarks

Matter has distinct levels of structure. For example, atoms, once consid-
ered the ultimate building blocks, are themselves composed of nuclei and
electrons. The nucleus, in turn, consists of protons and neutrons, which
we now believe are made of quarks and gluons. Gaining an understanding
of the fundamental structure of matter has not been an easy achievement,
primarily because the dimensions of the constituents are so small. For ex-
ample, the typical size of an atom is about 10~8cm, the average nucleus
is about 10~12cm in diameter, neutrons and protons have radii of about
10~13cm, while electrons and quarks are believed to be without structure
down to distances of at least 10~16cm (namely, they behave as particles of
< 10~16cm in size).

The study of the structure of matter presents formidable challenges
both experimentally and theoretically, simply because we are dealing with
the sub-microscopic domain, where much of our classical intuition regard-
ing the behavior of objects fails us. Experimental investigations of atomic
spectra provided our first insights into atomic structure. These studies ulti-
mately led to the birth of quantum mechanics, which beautifully explained,
both qualitatively and quantitatively, not only the observed spectra and
the structure of the atom, but also clarified the nature of chemical bond-
ing, and a host of phenomena in condensed matter. The remarkable success
of quantum theory in explaining atomic phenomena was mainly due to two
reasons. First, the interaction responsible for holding the atom together
is the long-ranged electromagnetic force, whose properties were well un-
derstood in the classical domain, and whose principles carried over quite
readily to the quantum regime. Second, the strength of the electromagnetic
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2 Nuclear and Particle Physics

coupling is weak enough (recall that the dimensionless coupling constant
is represented by the fine structure constant, a = f^ « y^) so that the
properties of even complex atomic systems can be estimated reliably using
approximations based on perturbative quantum mechanical calculations.
Peering beyond the atom into the nuclear domain, however, the situation
changes drastically. The force that holds the nucleus together - the nuclear
force as we will call it - is obviously very strong since it holds the positively
charged protons together inside a small nucleus, despite the presence of the
Coulomb force that acts to repel them. Furthermore, the nuclear force is
short-ranged, and therefore, unlike the electromagnetic force, more difficult
to probe. (We know that the nuclear force is short-ranged because its ef-
fect can hardly be noticed outside of the nucleus.) There is no classical
equivalent for such a force and, therefore, without any intuition to guide
us, we are at a clear disadvantage in trying to unravel the structure of the
nucleus.

It is because of the lack of classical analogies that experiments play such
important roles in deciphering the fundamental structure of subatomic mat-
ter. Experiments provide information on properties of nuclei and on their
constituents, at the very smallest length scales; these data are then used to
construct theoretical models of nuclei and of the nuclear force. Of course,
the kinds of experiments that can be performed in this domain present in-
teresting challenges in their own right, and we will discuss some of the tech-
niques used in the field in Chapter 7. In general, much of the experimental
information, both in nuclear and particle physics, is derived from scatter-
ing measurements - similar, in principle, to those that Ernest Rutherford
and his collaborators performed in discovering the nucleus. In such exper-
iments, beams of energetic particles are directed into a fixed target, or,
alternately, two beams of energetic particles are made to collide. In either
case, the results of collisions in such scattering experiments provide invalu-
able, and often the only attainable, information about subatomic systems.
Since the basic principles in most of these experiments are quite similar, we
will next sketch the ideas behind the pioneering work of Rutherford and his
colleagues that was carried out at the University of Manchester, England,
around 1910 and which provided the foundation for nuclear and particle
physics.
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1.2 Rutherford Scattering

The series of measurements performed by Hans Geiger and Ernest Marsden
under Rutherford's direction at Manchester provide a classic example of a
"fixed target" experiment. The target was a thin metal foil of relatively
large atomic number, while the projectiles consisted of a collimated beam
of low energy a-particles, which, as we will see in the next chapter, are
nothing more than the nuclei of helium atoms. The basic outcome of these
experiments was that most of the a-particles went straight through the foil
with very little angular deviation. Occasionally, however, the deflections
were quite large. A detailed analysis of these observations revealed the
structure of the target, which ultimately led to the nuclear model of the
atom.

To fully appreciate the beauty of these experiments, it is essential to
analyze the results in their proper historical context. Prior to this work,
the only popular model of the atom was due to Joseph Thomson, who visu-
alized the electrically neutral atom as a "plum pudding" where negatively
charged electrons were embedded, like raisins, within a uniform distribution
of positive charge. If this model were correct, one would expect only small
deviations in the a-particles' trajectories (primarily due to scattering from
the electrons), unlike what was found by Geiger and Marsden. To see this,
let us do a few simple kinematic calculations. Because the velocities of the
a-particles in these experiments were well below 0.1c (where c refers to the
speed of light), we will ignore relativistic effects.

Let us assume that an a-particle with mass ma and initial velocity vo
collides head-on with a target particle of mass mt, which is initially at
rest (see Fig. 1.1). After the collision, both particles move with respective
velocities va and vt- Assuming that the collision is elastic (namely, that no
kinetic energy is converted or lost in the process), momentum and energy
conservation yield the following relations.

Momentum conservation:

mav0 — mava + mtvt,

or v0 = va H vt. (1.1)
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@ — — @

^ m,, w,

Fig. 1.1 Collision of a particle of mass ma and velocity vo with a target particle of
mass mt.

Energy conservation:

- mavl = - mavl + - mtv\,

or vl = vl + ^ v l (1.2)

where we have labeled (Hi)2 = Vi-Vi as vf, for i = 0, a and i. Squaring the
relation in Eq. (1.1) and comparing with Eq. (1.2), we obtain

or » , 2 ( l -^)=2i?a .S1 . (1.3)

It is clear from this analysis that, if mt <C ma, then the left hand side of
Eq. (1.3) is positive and, consequently, from the right hand side we conclude
that the motion of the a-particle and the target must be essentially along
the incident direction. In other words, in such a case, one would expect
only small deviations in the trajectory of the a-particle. On the other hand,
if mt » ma, then the left hand side of Eq. (1.3) is negative, which implies
large angles between the trajectories of the a-particle and the recoiling
nucleus, or large-angle scattering. To get a feeling for the magnitude of the
numbers, let us recall that the masses of the electron and the a-particle
have the following approximate values
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me « 0.5MeV/c2,

ma « 4 x 103 MeV/c2. (1.4)

Therefore, if we identify

m( = me,

then,

TTl
10~4. (1.5)

a

Now, from Eq. (1.3) it follows that ve = vt < 2va, and then Eq. (1.2) yields
va & v0. Therefore, meve = ma ^f- ve < 2 x 10~4 mava « 2 x 10~4 mavo,
and the magnitude of the momentum transfer to the electron target is
therefore < 10~4 of the incident momentum. Consequently, the change
in the momentum of the a-particle is quite small and, in the framework
of the "plum pudding" model of the atom, we would expect only slight
deviations in the a-trajectory after scattering from atomic electrons; thus,
the outcome of the experiments, namely the occasional scatters through
large angles, would pose a serious puzzle. On the other hand, if we accept
the nuclear model, wherein the atom has a positively charged core (the
nucleus) containing most of the mass of the atom, and electrons moving
around it, then the experimental observations would follow quite naturally.
For example, setting the mass of the target to that of the gold nucleus

mt = mAu « 2 x 105 MeV/c2, (1.6)

yields

™i«50. (1.7)
ma

A simple analysis of Eq. (1.3) gives vt < 2m7^v"., and from Eq. (1.2)
we again obtain that va « VQ- Therefore, mtVt < 2mava ftj 2mavo. This
means that the nucleus can carry away up to twice the incident momentum,
which implies that the a-particle can recoil backwards with a momentum
essentially equal and opposite to its initial value. Such large momentum
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transfers to the nucleus can, therefore, provide large scattering angles. Con-
sequently, in the Rutherford picture, we would expect those a-particles that
scatter off the atomic electrons in gold to have only small-angle deflections
in their trajectories, while the a-particles that occasionally scatter off the
massive nuclear centers to suffer large angular deviations.

The analysis of the scattering process, however, is not this straight-
forward, and this is simply because we have completely ignored the forces
involved in the problem.1 We know that a particle with charge Ze produces
a Coulomb potential of the form

U[f) = ^ . (1.8)

We also know that two electrically charged particles separated by a distance
r = \f\ experience a Coulomb force giving rise to a potential energy

V(r) = ^ - . (1.9)

Here Ze and Z'e are the charges of the two particles. An important point
to note about the Coulomb force is that it is conservative and central. A
force is said to be conservative if it can be related to the potential energy
through a gradient, namely

F{r) = - V ^ ( r ) , (1.10)

and it is denned to be central if

V(f) = V(\f\) = V(r). (1.11)

In other words, the potential energy associated with a central force depends
only on the distance between the particles and not on their angular coor-
dinates. Because the description of scattering in a central potential is no
more complicated than that in a Coulomb potential, we will first discuss
the general case.

Let us consider the classical scattering of a particle from a fixed center.
We will assume that the particle is incident along the z-axis with an initial

xWe have also tacitly assumed, in the context of the Thomson model, that contribu-
tions to large-angle scattering from the diffuse positively charged nuclear matter can be
ignored. This is, in fact, the case, as discussed by Thomson in his historic paper.
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velocity vo- (It is worth noting that, outside the foil, the incident and the
outgoing trajectories are essentially straight lines, and that all the deflec-
tion occurs at close distances of the order of atomic dimensions, where the
interaction is most intense.) If we assume that the potential (force) falls off
at infinity, then conservation of energy would imply that the total energy
equals the initial energy

E = - mvl = constant > 0. (1-12)

Equivalently, we can relate the incident velocity to the total energy

v0 = \ —. (1.13)
V m

Let us describe the motion of the particle using spherical coordinates with
the fixed center as the origin (see Fig. 1.2). If r denotes the radial coordi-
nate of the incident particle, and \ the angle with respect to the z-axis, then
the potential (being central) would be independent of x- Consequently, the
angular momentum will be a constant during the entire motion. (That is,
since r and F are collinear, the torque r x F vanishes, and the angular
momentum r x mv cannot change.) For the incident particle, the angu-
lar momentum is clearly perpendicular to the plane of motion and has a
magnitude £ = mvob, where b is known as the impact parameter. The im-
pact parameter represents the transverse distance that the incident particle
would fly by the source if there was no force acting. Using Eq. (1.13), we
can obtain the following relation

[2E
I = m\ — b = b v2mE,

V m

1 2mE
o r .fc2 = ~ p - - (L 1 4)

From its definition, the angular momentum can also be related to the

angular frequency, x, as follows

— r + r-f- x ) I = mr2 -£• = mr2x, (1-15)

at at J at
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__L i_iL_r^rA ^z

Fig. 1.2 The scattering of a particle of mass m, with initial (asymptotic) velocity vo,
from a center of force at the origin.

where, as usual, we have defined a unit vector x perpendicular to r = rf,
with v(r) = rf + rxx expressed in terms of a radial and an angular compo-
nent of the velocity, and the dot above a variable stands for differentiation
with respect to time. Equation (1.15) can be rewritten as

at mr2

The energy is identical at every point of the trajectory, and can be
written as

*-H£)>+Mt)"+™

- Hi)'=*->£?-"<••>•

or * . _ f » ( J S _ v ( r ) - 5 f T ) ] i . (I.X7)
dt [m \ 2mr2) J

The term ^~s is referred to as the centrifugal barrier, which for I ^ 0 can
be considered as a repulsive contribution to an overall effective potential
yeff(r) = V{r) + 2 ^ J - Both positive and negative roots are allowed in Eq.
(1.17), but we have chosen the negative root because the radial coordinate
decreases with time until the point of closest approach, and that is the time

(1.16)
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domain we will be examining.2 Rearranging the factors in Eq. (1.17) and
using Eq. (1.15), we obtain

dr _ _ \2__P_ f 2mEr2 / _ V£)\ _ 11 *
dt ~ [m 2mr2 \ (? \ E ) J J

--iLH1-™)-*}'-
Prom Eqs. (1.16) and (1.18), we now obtain

A l A* l dl A

d-X = —2 dt = —_- — dr
I dr

or dX = — r- (1-19)

r[,2(l--M)-6f

Integrating this between the initial point and the point of closest ap-
proach, we obtain

2 The motion is completely symmetric about the point of closest approach (r = ro),
and consequently the positive and negative roots provide identical information. In fact,
if the a-particle approached the target with the velocity vo along the exiting trajectory
in Fig. 1.2, it would then emerge on the entering trajectory, with the same asymptotic
velocity. A simple way to see that this is true is to imagine the collision as observed
from both above and below the plane of scattering shown in Fig. 1.2. Viewed from these
two perspectives, the motion in Fig. 1.2 appears as the mirror image of the reversed
trajectory. This symmetry is a consequence of time-reversal invariance of the equations
of motion, a concept that will be discussed in Chapter 11.

(1.18)



10 Nuclear and Particle Physics

fx° , fro bdr
/ d\ = - r>
Jo Joo r[r2(i_Y±riyb2y

/

°° dr
—— -r. (1.20).

o r^(i-Yg.yh2y
The point of closest approach is determined by noting that, as the par-

ticle approaches from infinity, its velocity decreases continuously (assuming
the repulsive potential for the case of an a-particle approaching a nucleus),
until the point of closest approach, where the radial velocity (^ ) vanishes
and subsequently changes sign. That is, beyond this point, the velocity of
the particle increases again. Therefore, at the distance of closest approach,
when r = ro, both the radial and the absolute velocities attain a minimum,
and we have

- = 0

which, from Eqs. (1.17) and (1.18), means that

or r g ( l - ! £ o > ) - * = o. (1.21)

Thus, given a specific form of the potential, we can determine r0, and
therefore xo> as a function of the impact parameter b.3 Defining the scat-
tering angle 6 as the change in the asymptotic angles of the trajectory, we
get

r°° dr
e = n-2Xo=7T-2b — — -r. (1.22)

^ r[r2(l-Vjrl)-b*y
3We note that, in general, with i ^ 0 and E > 0, that is, for 6 ^ 0 , -^ is maximum

at r = ro (see Eq. (1.16)). Also, for I ^ 0, even for an attractive Coulomb potential,
there will be a finite result for ro as determined from Eq. (1.21). This is because the
centrifugal barrier for I 7̂  0 acts as a repulsive potential that dominates over Coulomb
attraction at small distances.
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Consequently, given an impact parameter b, and a fixed energy E, the
scattering angle of a particle in a potential can, at least in principle, be
completely determined.

As an application of the general result, let us now return to the scat-
tering of a charged particle from a repulsive Coulomb potential, for which
the potential energy is given by Eq. (1.9)

V(r) = ^ , (1.23)

where Z'e represents the charge of the incident particle and Ze the charge of
the scattering center. (The scattering of an a-particle from a nucleus would
then correspond to Z' = 2, with Ze representing the nuclear charge.) The
distance of closest approach can be obtained from Eq. (1.21)

2 ZZ'e2 l 2
ro ^ — ro-b2= 0,

^ * \ / ( y ) 2 + 4 f c 2 n „,.
or r0 = — — 2 (1.24)

Since the radial coordinate can by definition only be positive, we conclude
that

Consequently, from Eq. (1.22), we obtain

f°° dr
e = ir-2b r . (1.26)

Jr0 r [ r 2 ( 1 _ l ^ £ i ) _ 6 2 ] I

Let us define a new variable

x=1-, (1.27)

which gives

(1.25)
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1 2E [ 4b2E2 \

Prom Eq. (1.27), we obtain

dr , dx
dx = — 7 , or dr = - ,

r x

and, in terms of this new variable, we can write

«,. f° ( dx\ x

r° dx
= 7r + 2 6 / — r . (1.29)

Now, using the following result from the integral tables

I , ^ = 4= cos"1 (- P + 2lX ) , (1-30)

we obtain

, 1 i I T + 2*>2x \ °6 = IT + 2b x - cos"1 . E

b W(V) 2 + 4 & v ,0
o l( 1 + ^ X \ °

= 7T + 2 COS"1 . ZZ e =

= 7r + 2cos"1 ( . 1 = I -2cos"1(l)
I / i I 4 ^ g 2 ~ / V ^
V y 1 + (ZZ'e!)5 /

= 7T + 2cos~1 ( . 1 I . (1.31)

\ V i + (ZZ>e*)*J

Equivalently, we can write

(1.28)



Rutherford Scattering 13

1 (9 TT\

A , 46^~C O Sl2~2J'
V (ZZ'e2)2

1 , / 0 7r\ . , 6» 1
or .., „, = cos = sin - = —^,

!+#fr V2 2/ 2 c o s e c 2 f
26£ 0

° r Z Z ^ = C O t 2 '

or b=-^- cot - . (1.32)

This relates the scattering angle, which is a measurable quantity, to the
impact parameter which cannot be observed directly. Note that, for fixed
b, E and Z\ the scattering angle is larger for a larger value of Z. This is
consistent with our intuition in that the Coulomb potential is stronger for
larger Z, and leads to a larger deflection. Similarly, for a fixed b, Z and
Z', the scattering angle is larger when E is smaller. Qualitatively, we can
understand this as follows. When the particle has low energy, its velocity
is smaller and, therefore, it spends more time in the potential and suffers a
greater amount of scattering. Finally, for fixed Z, Z1 and E, the scattering
angle is larger for smaller b. Namely, when the impact parameter is small,
the particle feels the force more strongly and hence the deflection is larger.
Equation (1.32) therefore incorporates all the qualitative features that we
expect of scattering in the Coulomb field.

1.3 Scattering Cross Section

As we have seen, the scattering of a particle in a potential is completely
determined once we know the impact parameter and the energy of the
particle; and, for a fixed incident energy, the deflection is therefore defined
by just the impact parameter. To perform an experiment, we prepare an
incident flux of beam particles of known energy, and measure the number
of particles scattered out of the beam at different 6. Because this number
is determined entirely by the impact parameters involved in the collisions,
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such measurements reflect these impact parameters and thereby the range
of the interaction and the effective size of the scattering center.

Let No denote the number of particles incident on the target foil per
unit area per unit time. Because we assume the target density in the
foil to be low, this flux will always be uniform over the thickness of the
target material. Any incident particle with impact parameter between b and
b + db relative to any scattering center will undergo an angular deflection
between 8 and 9 — d6, and will scatter into a solid angle dfl. (The larger the
impact parameter, the smaller is the scattering angle.) The number of such
particles scattered per unit time is 2irN0 b db, since 2irb db is the relevant
area of the circular ring around each scattering center through which any
particle must pass in order to be emitted into the solid angle between 6 and
6 — d6. It may seem puzzling that we do not have to be concerned with the
fact that we have many target particles in our foil, and that any single beam
particle, in principle, comes within some impact parameter of all of them!
This would clearly provide a great complication to our analysis. But we
are assuming that our foil is exceedingly thin, so that multiple collisions of
one beam particle are negligible; and we also have the Rutherford atomic
model in mind, which means that the separation between nuclei is vast
relative to their size. Normally, very large impact parameters provide very
little scattering, so it is the trajectory that comes nearest to any single
nuclear center that matters most. (And, of course, the effect of electrons,
because of their small mass, is also quite negligible.) When the thickness
or density of the medium cannot be ignored, other interesting phenomena,
involving coherence and interference between scattering centers, come into
play. Cherenkov radiation and the density effect in ionization have origin
in such ramifications (see Chapters 6 and 7);

Annular Ring of
Area = 2nbdb

No —f~

Annular Ring
of Area =

2nRsin6Rd0

Scattering
Center

Fig. 1.3 Incident particles within the area 2nbdb of any scattering center are emitted
into the annular ring of area R?dQ at angle 8.
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For a central potential, at any impact parameter b, we can think of the
scattering center as presenting an effective transverse cross-sectional area
ACT = 2nb db for scattering of an incident particle by an angle 9 into dfl.
Because the specific relationship between b and 9 (e.g., Eq. (1.32)) depends
rather explicitly on the nature of the force, for example, whether it has r~2

behavior, or whether it is central, and so forth, in general, ACT can depend
on both 6 and <p, so that we can write

Aa(9,<j)) = bdbd(j) = - ~ {9,4>)dto =-^ ( M ) sin6Wdt/>, (1.33)
ail ail

which defines the differential cross section j ^ , and where the negative sign
reflects the fact that 6 decreases as b increases. When there is no azimuthal
dependence in the scattering - e.g., when the interaction has spherical sym-
metry - we can integrate over 4> (as we already did implicitly in our discus-
sion of the annular rings of area 2nb db) and write

Aff(0) = - ^ (9)2irsin9d9 = 2nbdb
dil

da ... b db , „,.

We wish to note that, since the Coulomb potential is central (depends only
on distance and not on angle), we have assumed azimuthal symmetry in the
scattering. This means that all positions along the annular ring of radius
b are equivalent and that the differential cross section is only a function of
the angle 9 and not <j>. It follows, therefore, that measuring the yield as a
function of 9, or the differential cross section, is equivalent to measuring
the entire effect of the scattering.

In subatomic experiments, the unit, normally used to measure cross-
sectional area is the barn, which is defined as 10~24 cm2. This is a very small
quantity - but then we have to remember that the typical size of a nucleus
is about 10~12cm and, therefore, the cross-sectional area for a medium-size
nucleus (if we assume it to be a sphere) would be of the order of a barn.
This is, consequently, a relatively natural unit for such measurements. The
units of solid angle are steradians, and 4?r sr corresponds to a sum over all
solid angles around a point - that is, all 9 and (f>. We can also define a total
scattering cross section by integrating the differential cross section over all
angles
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<TTOT = JdSl ^(6,<t>) = 2ir J'dB s i n 0 ^ (0), (1.35)

where, in the last step, we have again assumed azimuthal symmetry. (If
there is any independence observed in the scattering, the last step in Eq.
(1.35) would not hold.) The total cross section represents, in some sense,
the effective size that the source of the potential presents for scattering at
all possible impact parameters.

Let us now calculate the cross section for Rutherford scattering. We
know from Eq. (1.32) that

t ZZ'e2 6

b=-2E-COt2-

It follows, therefore, that

db 1 ZZ'e2 2 6
^ = - 2 ^ C ° S e C 2- ^

The negative sign in Eq. (1.36) again reflects the fact that, as b increases,
6 decreases, and that there is less deflection for larger impact parameter.
Substituting this back into the definition of the scattering cross section, we
obtain

dn W ~ sine d6~\ AE ) C ° S e C 2 ~ V " ^ ^ ; sin4f" { V

If we now integrate this relation over 0 (note from Eq. (1.34) that, because
there is no azimuthal dependence, dft = 2TT sin 6 d6), we obtain the total
cross section

<TTOT = f % (9) dn = 2TT P dO sine ^ (6)
J as I JQ dil

This divergence may seem troublesome, but it is consistent with our earlier
discussion. Namely, the total cross section reflects the largest values of im-
pact parameter a particle can have and still undergo scattering. In the case

(1.36)

(1.37)

(1.38)
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of the Coulomb potential, the long-ranged force extends to infinity and,
consequently, a. particle very far away from the center will still experience
the Coulomb force, albeit only very slightly, and this is the origin of the
divergence. Because the Coulomb force drops off rapidly with distance, and
does not lead to any appreciable scattering beyond some finite value of the
impact parameter, it is therefore appropriate to cut off the angular inte-
gration at some finite 9 = 60 > 0°, corresponding to some realistic cutoff
for the impact parameter. This cutoff provides a finite CTTOT for observable
scattering angles (that is, for 9 > 6o), which can be compared with experi-
mental measurements. Finally, we should point out that our results cannot
be valid for impact parameters much larger than the innermost electron
levels in atoms because such electrons will shield and thereby reduce the
effective nuclear charge.

1.4 Measuring Cross Sections

Let us now see how we would go about performing a measurement in order
to extract a cross section. Macroscopically, we have a beam of a-particles
(Geiger and Marsden used a collimated source of a-particles from a sample
of radioactive radon), a thin foil, and some scintillating material for detect-
ing the scattered particles. This was, initially, a thin coat of ZnS phosphor
deposited on a glass screen, and viewed by eye through a telescope. The
telescope was able to rotate in one plane and thereby trace out the counting
rate as a function of 9 (but not 4>). Schematically, the apparatus can be
represented as in Fig. 1.4.

Now, if we have our flux of No a-particles per unit area per second
impinging on the thin foil, then some of these will pass through essentially
undeflected, .while others will be scattered through an angle between 0 — d9
and 9, corresponding to impact parameters between b + db and b. Here d6
can be regarded as the angle subtended by the aperture of the telescope.
In fact, the telescope views a small area of the screen given approximately
by Rd6 • Rsin9d(f> = R2dtt, where R is the distance from the foil to the
point of observation on the screen. The scattered particles that appear in
this part of the screen are those that pass through and emerge from the
part of the annular ring of impact radius b, width db, and arc length bdcf).
Had Geiger and Marsden constructed a circle of telescopes about the beam
center to view the a-particles emitted for all values of (f> for any particular
fixed angle 9, they would have certainly increased their event rate by | ? ,
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but at the substantial cost of greatly complicating their experiment.

Area of
Telescope

= RdB Rs\n9d<?

R " " ^ A Telescope ^vM\~dV
^T ^< \ Swivels jf l/Tlr

Source | „ tf^g l!n.PI«!IL_..x < / _ \ i L _ J i l l

Collimators Foil Telescope 11 V p s i n e
Phosphorescent Travels U II

ZnS Screen Along 0 \Z/

Fig. 1.4 Sketch of the macroscopic geometry of Rutherford scattering.

Now, the fraction of the incident particles that approach our nuclear
targets within the small areas Au = bd<f>db at impact parameters b, is,
in fact, the same fraction — j ^ that will be removed from the beam and
scattered into the area R2dil that is being viewed at angles (6, <f>) of the
screen. This fraction is identical to the ratio of the sum of all the small
bd<j>db areas for the N nuclear centers within the foil, divided by the entire
area (S) of the foil, or, stated in another way, it is the probability for the
incident particles to enter within the N little areas, divided by the total
probability of hitting the foil

dn Nbd<pdb N . .. 1S ,

-iVo = ^ r - = 5 A ' ( M ) - < L 3 9 >

For a foil of thickness t, density p, atomic weight A, N = (&£- J Ao, where
J4O is Avogadro's number of atoms per mole. Thus, for the number of a-
particles scattered per unit time into the detector at angles (9,(j)), we can
write

For any given detector situated at angles (9, <j>) relative to the beam axis,
and subtending a solid angle dCl (which is determined by the transverse

(1.39)

(1.40)
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dimensions of the detector - its area/i?2), we will observe dn counts per
second

dU = No J ^ {e^)dn- (L41)

This is a general expression, valid for any scattering process, independent
of the existence of a theory that might be able to provide a specific formula
for ^ . Thus, the counts observed in any experiment will be proportional
to the number of incident beam particles, the number of scattering centers
per unit area of target material, to the solid angle subtended by the detec-
tor, and to an effective cross section that each scattering center presents
for bringing about the process of interest. (We are still assuming that cor-
rections due to multiple collisions are small, that is, we are dealing with
thin targets.) Geiger and Marsden performed very detailed measurements
of dn as a function of 6, using different target material (of relatively large
Z), different a-particle sources of different energy, different thicknesses of
foil, and found their data to be in complete agreement with Rutherford's
prediction, as given in Eq. (1.37). That is, knowing iVo, ^ and dCl, they
measured dn, and extracted a form for the differential cross section that
agreed beautifully with Rutherford's prediction, and thereby verified the
presence of nuclei within atoms. It should be recognized that, although
Geiger and Marsden's measurements provided clear evidence for the exis-
tence of a nuclear center, these experiments shed very little light on the
nature of the nuclear force. The low-energy a-particles never penetrated
into the nucleus of the atom because of the repulsion from the nuclear
Coulomb barrier.

1.5 Laboratory Frame and the Center-of-Mass Frame

So far, we have discussed collisions of a particle with a fixed center. In
reality, however, the target also moves (recoils) as a result of the scatter-
ing. In some experiments we may be interested in colliding two beams of
particles of comparable energy with each other. Although such situations
may appear to be extremely complicated at first glance, when the potential
is central, the problem can be reduced to the one we have just studied; this
can be achieved through the separation of the motion of the center of mass.

Let us assume that we have two particles with masses m\ and rri2,
at coordinates f\ and fa, interacting through a central potential. The
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equations for the motion can be written as

mifi = -ViVflfi - r 2 | ) ,

m2f2 = -V2y( | r i - r2|), (1.42)

where V is the gradient operator, which has the following form in spherical
coordinates

v . ^ A - 3 J_ + _ i i * i = 1>2. (1.43)

Since the potential energy depends only on the relative separation of the
two particles, let us define the variables:

r = ?i - r 2 ,

B nun +m2r2 ,-. ...
Rcu = ; , (1-44)

mi + m2

where f denotes the coordinate of mi relative to m2, and RQM defines the
coordinate of the center-of-mass of the system (see Fig. 1.5). Prom Eqs.
(1.42) and (1.44) we can easily obtain the following:

r = [ir - -VV(\f\) = ^ - ^ r,
mi +m 2 Vl u dr

(mi + m2)flcM = MRCM = 0, or .RCM = constant x R, (1.45)

where we have used the fact that V(\r\) = V(r) depends only on the radial
coordinate r, and not on the angular variables associated with f, and where
we have defined

M = mi + m2 = total mass of the system,

a = = "reduced" mass of the system. (1-46)
mi + m2

It is clear from the above analysis that, when the potential is central, the
motion of two particles can be decoupled when rewritten in terms of a
relative coordinate and the coordinate of the center of mass.

We also note from Eq. (1-45) that the motion of the center-of-mass is
trivial in the sense that it corresponds to that of a free, non-accelerating,
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tt%2

?2 Is > m i ? - ' '

\
Origin of

Coordinates

Fig. 1.5 Position of the center of mass and the definition of the relative coordinate for
the two particles with masses m\ and m-x-

particle. In other words, the center-of-mass moves in the laboratory with
a constant velocity (RCM is fixed) independent of the specific form of the
potential. The dynamics is contained completely in the motion of a ficti-
tious particle with the reduced mass \i and coordinate r. In the frame in
which the center-of-mass is at rest, the complete dynamics, then, becomes
equivalent to the motion of a single particle, with mass /u, scattering from a
fixed central potential, a situation that we have already analyzed in detail.
A simplification that occurs in the center-of-mass frame is that the sum of
the momenta of the interacting objects vanishes, which follows from Eq.
(1.44) when .RCM is set to zero. Because of this, it is more common to
define the center-of-mass frame as the frame in which the total momentum
vanishes, and we often refer to the center-of-mass frame equivalently as the
center-of-momentum frame.

To understand how various quantities can be transformed between the
laboratory frame and the center-of-mass frame, let us return to the scat-
tering from a fixed target. We assume that the particle with mass 7712 is
initially at rest in the laboratory frame, and the particle of mass mj is inci-
dent along the 2-axis with a velocity v\. Let the scattering angle of particle
mi in the laboratory frame be given by #Lab> a nd its speed after scattering
by v. For this case, the center-of-mass moves along the z-axis with a speed
fCM

t>CM=^CM= miVl • (1.47)
mi +m 2

In the center-of-mass, the two particles therefore move towards each other
along the z-axis (see Fig. 1.6)
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mii »i »"2 s. mii 5j , / w2i 52

X /m 2 ,S 2

Lab Frame CM Frame

Fig. 1.6 Collision of mi with rri2, as viewed in the Lab and in the center-of-mass frame.

m,2Vi
Vl = vi - VQM = ; ,

mi +rri2
mivi

V2 = I>CM = ; • (1-48)
mi +m 2

where vi and &2 are the speeds of beam and target particle, respectively,
as viewed in the center-of-mass frame. Here we see explicitly that the
momenta of the two particles in the center-of-mass are equal and opposite.

For elastic scattering, the magnitudes of the velocities of the particles
do not in the collision, but the angles at which they emerge depend on
the dynamics. Let 8CM denote the scattering angle as measured in the
center-of-mass frame. Note that because 0QM represents the change in the
direction of the relative position vector {r) as a result of the collision, it
must be identical to the scattering angle for the particle with reduced mass.
To obtain a relation between #Lab and #CM, we note that the velocities in
the laboratory frame and in the center-of-mass frame are related through
the velocity of the center-of-mass. In particular, after scattering, the z-
components of the velocities of particle of mass mi are related through

V COS #Lab - VCU = ^1 COS #CM,

Or UCOS^Lab = CiCOS^CM +^CM, (1.49)

while, the components of the velocities perpendicular to the z-axis are re-
lated through
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usin0Lab = uisin0cM- (1.50)

From Eqs. (1.50) and (1.49), we obtain the non-relativistic result

, a sinflcM sin^cM ,-. C1X

t a ^ L a b = COS^M + ^ff = COBffcM + C ( }

where we have defined

v_cu=m1

vi m2

and where the last equality in Eq. (1.52) holds only for elastic scattering.
For future use, we rewrite Eq. (1.51) in an alternative form

COS0CM + C ,, „-.
COS6>Lah = T> (1.53)

(1 + 2CCOS<?CM + C 2 ) "

where we have used the transformation of the final velocity to the center-
of-mass frame for the case of elastic scattering.

Using the relationship between #Lab and #CM, we can also relate the
differential cross sections in the two frames, arguing as follows. The par-
ticles that scatter through an angle #Lab into the solid angle c?fii,ab in the
laboratory frame are the same ones that scatter by #CM into the corre-
sponding solid angle dficM in the center-of-mass frame. (That is, these are
two equivalent ways of looking at the same process.) Because 4> is trans-
verse to the boost direction between the two reference frames, it follows
that <i</>Lab = d&CM- Thus, ignoring the azimuthal coordinate, we must
have

— (6>Lab)sin0Labd0Lab = j ^ (#CM) sintfcM^CM,
" " L a b " " C M

da da d(cos9Cu) n C / n

or 5 u M = ^ W d M ^ - (L54)

The right hand side of Eq. (1.54) can be evaluated using Eq. (1.53), leading
to

(1.51)

(1.52)

(1.54)
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dcr la , da (1 + 2CcosflCM + C2)1 n «v

1.6 Relativistic Variables

In the Appendix we review the basics of special relativity, and use those
results here to discuss briefly the kinematics in terms of relativistic vari-
ables. In the scattering of any two particles with rest masses mi and m2,
the velocity of the center-of-mass is obtained from the ratio of the total
relativistic momentum and the total relativistic energy

— = ?™= E1+E2 • ( L 5 6 )

If mi refers to the mass of the projectile and m2 to that of a target particle,
then using laboratory variables, we obtain (with the target initially at rest)

3 _ Pic _ Ac
^ C M ~ E1 +m2c2 - jp*c*+ml<* + m2<?' ( '

where our convention is to define |Pj| — P{ for i = 1,2. At very low energies,
namely when mic2 » P\c, this reduces to our nonrelativistic expression of
Eq. (1.47)

PCM = 5— 2 = 7 1 \~- (1.58)
m,\cl+m2Ci (mi + 1712) c

At very high energies, when mic2 <̂C P\c and rri2C2 C P\c, we can write
the following for the value of /?CM

/?CM = \Pcu\ = . 1 2 « 1 - ^ - I ( ^ ) 2 • (1-59)

When mi and m2 are comparable, Eq. (1.59) simplifies to /?CM «

(l - ^ ^ J , and, for this case, 7CM becomes
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7CM = (1 - 0 C M ) " * « [(1 + PCM) (1 - /5CM)]"1

- KIT)]'4 - I/S- (1-6O)
In general, we can obtain an expression for 7CM in the following way.

We note from Eq. (1.57) that

so that
2 _ E\ + 2Eim2c2 + m\c4 - P?c2

^CM~ (E1+m2c*r
_ m2c4 + m\c4 + 2£im2c2

- ( E x + m . c 2 ) 2 ' {1-b2>

where we have substituted miyC4 for E\ — P^c2. It therefore follows that

7CM = (1-/&,)"* = , 2 4 4 , V 4 ? 9 C ' 5Tr. d'63)
(mj c4 + m\c4 + 2E1m2c2) 2

which, in the high-energy limit of E\ m P\c » m\(? and P\c » m2C2,
reduces to the result of Eq. (1.60).

The quantity in the denominator of Eq. (1.63), despite its appearance,
is an invariant scalar. This can be deduced by evaluating the square of the
following four-vector in the laboratory frame (P2 = 0)

S = {E1+E2f-(P1+P2}\2

= (Ei + m2c2)2 - P2c2 = E\ + m2c4 + 2E1m2c2 - P2c2

= mlc4 + m\c4 + 2Eim2c2. (1-64)

Because s is a scalar, it has the same value when calculated in any reference
frame. In particular, it has a simple meaning in the center-of-mass frame,
where the two particles have equal and opposite momenta (i.e., the total
momentum vanishes in the center-of-mass frame)

(1.60)

(1.61)

(1.62)
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s = m2c4 + m2c4 + 2E1m2(? = (E1CM + E2CM)2 - (PICM + A C M ) C2

= (E1CM + E2CM? = ( i £ £ T ) 2 • (1-65)

Thus s is the square of the total energy available in the center-of-mass.
Hence, for m2 initially at rest, we can write

E1+m2c2 ££pT
7CM = T O T = ^ § f • (L 6 6)

The variable s is used frequently in describing high energy collisions, and
£ Q ^ T is often referred to as -Js. Clearly, from its structure in Eq. (1.65),
^r can also be regarded as the rest mass or the invariant mass of the two
colliding objects.

In discussing scattering, it is often convenient to define another invariant
called t, the square of the four-momentum transfer in a collision. This
variable is just the square of the difference in the energy-momentum four-
vectors of the projectile before and after the scattering

t = (E{ - ElCj2 - ( P / - Pty2 c2. (1.67)

Because momentum and energy are conserved separately in all collisions,
we can express t just as well in terms of target variables

t = (Ef2 - E i , y - (P( - P£} 2 c2. (1.68)

Furthermore, since, just as s, t is also an invariant scalar, we can calculate
its value in any reference frame. In particular, let us analyze this quantity
in the center-of-mass frame. For simplicity, we will restrict ourselves to the
case of elastic scattering, for which P^M = ^CM = ^CM and conse-
quently i?cM — ^CM f°r ^ne two particles in the center-of-mass frame. It
follows from Eq. (1.67) that

t = — (̂ 1CM + -PlCM ~~ 2-PJCM ' PlCMj c

= -2P^Mc2(l - COS6>CM)- (1-69)
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where we have set P1CM = -PICM = PCM, and where #CM denotes the
scattering angle in the center-of-mass frame. Since — 1 < COS#CM < 1, we
conclude that for elastic scattering through any finite angle, t < 0. On
the other hand, from its definition in Eq. (1.67), we can also think of t as
the square of the mass of an exchanged particle (with energy E[ — E\ and
momentum P( — P{) that mediates the scattering. Consequently, we must
conclude that if such an exchange process can be used to describe scatter-
ing, then the object being exchanged cannot be physical since it has an
imaginary rest mass. This means that although this "virtual" object can-
not be detected, if the picture is correct, its consequences can be calculated
and observed. Diagrams of the kind shown in Fig. 1.7, were pioneered by
Richard Feynman in the calculation of scattering amplitudes in quantum
electrodynamics (QED) and are referred to as Feynman diagrams (graphs).

«!, Ei,pi m1,El,p1

VJ\(E'-E'), (?'-?')

"i2i £21 P2 m2t E2i p2

Fig. 1.7 Exchange of a mediating object of mass \/t in the collision of masses m\ and

For convenience, let us define a variable q2 given by q2c2 = — t. In the
laboratory frame, we have that -P̂ Lab = 0 and, therefore, from Eq. (1.68)
we obtain

S2c2 = - [ ( s | L a b - m2c2)2 - (P/Labc)2]

= - (^Lab)2 - {PLhc)2 ~ 2E}Labm2c2 + m|c4]

= - 2m2!c4 - 2£ 2 / L a b m 2 c 2 ]

= 2m2c2 (Ef2h&h - m2c2) = 2m2c2T/Lab,

or q2 = 2m2T/Lab, (1.70)
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where, in the last step, we replaced Ŝ Lab ky ^Lab + m2C2. Thus, in the
nonrelativistic limit, where T2Lab ~ \ tn-?v\, Q2 is just the square of the mo-
mentum transferred to the target, namely q2 m (m2V2)2. We consequently
expect q2 to reflect the "hardness" of a collision, with small q2 being charac-
terized by long-range (R PS ^) soft collisions. Referring back to Eq. (1.69),
we see that small q2 must correspond to small 6CM- We also see that, for
small #CM> Q2 ^ -PCM^CM w !%•> o r the square of the transverse momentum
developed as a result of the collision.

We will leave it to the reader to show, with the help of Appendix A,
that the relativistic equivalent of Eq. (1.51) is

t a n 0 L a b = J**°c* (1.71)

7CM(/?COS0CM + /?CM)

where /3c is the velocity of the scattered particle in the center-of-mass frame.
Note also that Eq. (1.71) reduces to Eq. (1.51) in the limit of low velocities.

Finally, let us rewrite the Rutherford cross section of Eq. (1-37) in
terms of the momentum transferred between the two objects involved in
the scattering process. From Eq. (1.69) (and the relation between t and
q2), we can deduce that

dq2 = -2P2d{cos6) = ^ ^ (1.72)
7T

where we have ignored the small difference between center-of-mass and
Lab variables (PiLab « -PICM = P = m\Vo). Specializing to the case of
Rutherford scattering at low velocities and, for convenience, setting m =
mi •€. m,2, and v = vo in Eq. (1.37), we obtain

da = {ZZ'e2)2 1
j^dq2 ~ (2mv2)2 (k=f^)2'

or ^ = ^ Z Z ' ^ 1 . (1.73)
dq2 v2 q4

The q~~4 divergence of the cross section is characteristic of Coulomb scat-
tering, and reflects the r"1 dependence of the potential. It is important
to recognize that there is a distribution in q2, with different events having
different momentum transfers. The rapid fall-off with q2 implies that the
typical value of momentum transfer is small. The dispersion in this mean



Rutherford Scattering 29

has important physical consequences that will be brought up in Chapter
6. Although the minimum value of q2 can be zero, this corresponds to no
scattering; the maximum value (a rare occurrence, indeed!) is 4P2. Al-
though Eq. (1-73) was obtained using nonrelativistic kinematics, it also
holds, in fact, as v2 —> c2 (see, however, our comments in the section "Sizes
of Nuclei" in Chapter 2).

1.7 Quantum Treatment of Rutherford Scattering

We arrived at Eq. (1-73) through a rather circuitous classical route. We
will now end this section by sketching how the Rutherford cross section
can be calculated using quantum mechanics. This will be done through
an application of Fermi's Golden Rule,4 according to which the transition
probability to continuum states per unit time in perturbation theory is
given by

P=-\Hfi\2p{Ef) (1.74)

where p(Ef) is the density of final states and Hfi denotes the matrix el-
ement of the perturbation Hamiltonian between the initial and the final
states

Hfi = (f\H\i) = JdPrpfWHWii?)- (1-75)

For the case of elastic Rutherford scattering, the wave functions are plane
waves, corresponding to free-particle states approaching (i) and leaving (/)
the scattering center, and the perturbation Hamiltonian is the Coulomb po-
tential energy given in Eq. (1.23). For the incident and outgoing momenta
p and p ', respectively, we can define the wave vectors k = | and k' = ^ - ,
and a momentum transfer that results from the scattering q = h(k' — k).
Except for an overall normalization of the wave functions, our matrix ele-
ment Hfi can now be written as

I cfW*'-Fy(r) e~il-7 = [ dzrV{r)e^?. (1.76)
J a" J a"

4 A discussion of this famous result for transitions between states can be found in
standard texts on quantum mechanics.
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The integral on the right is the Fourier transform of V(r), and can be
thought of as the potential energy in momentum space. Doing the integra-
tion,5 we find that

V(<f)=[ d>rV(r)e^=(ZZ'e2l^H2\ (1.77)
J a" Q

space

Evaluating the density of final states,6 substituting into Eq. (1.74), and
relating the transition probability to the scattering cross section, leads to
the same expression as obtained in Eq. (1.73). Thus Rutherford's result,
without any apparent reference to H, is also in agreement with quantum
mechanics (when effects of intrinsic spin are ignored).

Problems

1.1 Using Eq. (1.38) calculate the approximate total cross sections for
Rutherford scattering of a 10 MeV a-particle from a lead nucleus for impact
parameters b less than 10~12, 10~10 and 10~8 cm. How well do these agree
with the values of ?r62?

1.2 Prove that Eq. (1.55) follows from the relations in Eqs. (1.53) and
(1.54).

1.3 Sketch cos#Lab as a function of COS#CM for the nonrelativistic elastic
scattering of particles of unequal mass, for the cases when £ = 0.05 and
C = 20 in Eqs. (1.52) and (1.53).

1.4 What would be the approximate counting rate observed in the Ruther-
ford scattering of 10 MeV a-particles off lead foil at an angle of 6 = § in
the laboratory? Assume an incident flux of 106 a-particles per second on
the foil, a foil 0.1 cm thick, and a detector of transverse area 1 cm x 1
cm placed 100 cm from the interaction point, and density of lead of 11.3
g/cm3. What would be the counting rate at 6 = 5°? By about how much

5The Fourier transform corresponds to a generalization of the Fourier decomposition
of functions into series. Transforms of different functions can be found in mathemati-
cal tables and are useful for a variety of applications in physics. See, for example, L.
Schiff, Quantum Mechanics, (New York, McGraw Hill, 1968); A. Das and A. C. Melissi-
nos, Quantum Mechanics, (New York, Gordon & Breach, 1986); A. Das, Lectures on
Quantum Mechanics, (New Delhi, Hindustan Book Agency 2003).

6See a discussion of this issue, and matters pertaining to this entire section, in A. Das
and A. C. Melissinos, Quantum Mechanics, pp 199-204, A. Das, Lectures on Quantum
Mechanics, (New Delhi, Hindustan Book Agency 2003).
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would your answers change if the above angles were specified for the center-
of-mass - be quantitative, but use approximations where necessary. (Why
don't you have to know the area of the foil?)

1.5 Sketch the cross section in the laboratory frame as a function of cos #Lab
for the elastic scattering of equal-mass particles when d^a is isotropic and
equal to 100 mb/sr. What would be your result for ( = 0.05 in Eq. (1.52)?
(You may use approximations where necessary.)

1.6 Certain radioactive nuclei emit a particles. If the kinetic energy of
these a particles is 4 MeV, what is their velocity if you assume them to
be nonrelativistic? How large an error do you make in neglecting special
relativity in the calculation of v? What is the closest that such an a particle
can get to the center of a Au nucleus?

1.7 An electron of momentum 0.511 MeV/c is observed in the laboratory.

What are its /? = ^, 7 = (l — 02) 2, kinetic energy, and total energy?

1.8 What are the approximate values of the kinetic energy for the recoil-
ing lead nucleus and the momentum transfers (in eV units) at the cutoffs
specified in Problem 1.1?

1.9 Taking the ultrarelativistic limit of Eq. (1-71), find an approximate
expression for #Lab at 9CM = f, and evaluate #Lab for 7CM = 10 and
7CM = 100. Does the approximation hold best for particles with small or
large mass values?

1.10 What is the minimum impact parameter needed to deflect 7.7 MeV a-
particles from gold nuclei by at least 1°? What about by at least 30°? What
is the ratio of probabilities for deflections of 9 > 1° relative to 6 > 30°?
(See the CRC Handbook for the density of gold.)

1.11 Consider a collimated source of 8 MeV a-particles that provides 104

a/sec that impinge on a 0.1 mm gold foil. What counting rate would you
expect in a detector that subtends an annular cone of A9 = 0.05 rad, at
a scattering angle of 6 = 90°? Compare this to the rate at 9 = 5°. Is
there a problem? Is it serious (see Problem 1.12). (Hint: You can use the
small-angle approximation where appropriate, and find the density of gold
in the CRC Handbook.)

1.12 Consider the expression Eq. (1.41) for Rutherford Scattering of a-
particles from gold nuclei. Integrate this over all angles to obtain n. In
principle, n cannot exceed iVo, the number of incident particles. Why?
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What cut-off value for 0 would be required in the integral, that is, some 6 =
#o > 0, to assure that n does not exceed No in Problem 1.4? (Hint: After
integrating, use the small-angle approximation to simplify the calculation.)
Using the Heisenberg uncertainty principle ApxAx sa h, where Ax is some
transverse distance corresponding to a change in transverse momentum of
Apx = pin0o « V2mE9o, calculate the distances Ax to which you have to
restrict the description of the scattering. Are these distances sufficiently
restrictive? Explain!

Suggested Readings

Geiger, H. and E. Marsden, Philos. Mag. 25, 604 (1913).

Rutherford, E., Philos. Mag. 21 669, (1911).

Thomson, J. J., Cambridge Lit. Phil. Soc. 15, 465 (1910).



Chapter 2

Nuclear Phenomenology

2.1 Introductory Remarks

The original Rutherford-scattering experiments demonstrated that each
atom had a positively charged central core that we call its nucleus. How-
ever, even the original experiments of Geiger and Marsden showed devi-
ations from the Rutherford formula at a-particle energies above 25 MeV,
and especially for scattering from nuclei of low-Z. Also, in the late 1920s,
James Chadwick noticed serious discrepancies between expectations from
Coulomb scattering and the elastic scattering of a-particles on helium. The
observed differences could not be attributed to expected quantum effects,
first calculated by Neville Mott. All this indicated very clearly that there
was more than just the Coulomb force involved in nuclear scattering.

Prior to the discovery of the neutron by Chadwick in 1932, it was
thought that the nucleus contained protons and electrons, but it is now
recognized that the nucleus consists of protons and neutrons - collectively
known as nucleons. Most of what we know about nuclei and the nuclear
force has been obtained through decades of painstaking experimentation. In
what follows, we will merely summarize the main features of the physics of
the nucleus, and only occasionally present some of the crucial experimental
underpinnings that led to the elucidation of nuclear phenomena.

2.2 Properties of Nuclei

2.2.1 Labeling of Nuclei

The nucleus of any atom X, can be labeled uniquely by its electric charge or
atomic number Z, and its total number of nucleons A, and is conventionally

33
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represented as AXZ. Alternatively, it can be specified by the number of
protons (Z) and the number of neutrons (N = A - Z). Because the whole
atom is electrically neutral, the nucleus must be surrounded by a cloud
of Z electrons. A great many nuclei, with different Z and A values have
been found in nature or produced in the laboratory. Nuclei with the same
number of protons but different number of neutrons are known as isotopes;
thus AXZ and A' Xz are isotopes of nucleus X, and all such atoms have
similar chemical properties. Nuclei that have the same total number of
nucleons but different number of protons are called isobars; thus AXZ and
AYZ' are isobars. Just as an atom can be found in its ground state as well
as in an excited state, so also can a nucleus be excited to higher levels, and
such states are referred to as a resonances or isomers of the ground state.

2.2.2 Masses of Nuclei

As we already mentioned, a nucleus, AXZ, contains Z protons and (A— Z)
neutrons. Thus, naively, we would expect the mass of the nucleus to be

M(A,Z) = Zmp + (A-Z)mn, (2.1)

where mp and mn denote, respectively, the mass of the proton and the
neutron, with

mp«938-27MeV/c2,

mn «939-56MeV/c2. (2.2)

However, the measured values of nuclear masses reveal that the mass of a
nucleus is smaller than the sum of the masses of its constituents.1 Namely,

JAs an aside about masses, we should point out that isotope charts usually give
masses of neutral atoms and not of nuclei. To get the nuclear mass one must subtract the
electron masses (Zme) from the atomic weights (ignoring the small differences in electron
bindings). Unfortunately, chemists and physicists use different mass scales. Chemists
assign 16.0 atomic mass units (amu) to the "natural" isotopic mixture of oxygen found
on earth, while physicists assign 16.0 amu to the atom of 1 6O8. One amu is the mass
in grams of one fictitious atom that has an atomic weight of 1.0000 gm. Thus 1 amu
= (AQ 1) gm = 1.6606 xlO~24 gm. (The latest value for Ao is (6.022098 ± 0.000006)
xlO23 mole"1.) There is also the unified mass unit "u", defined as ^ of the mass of
the 12C atom. We will use mp = 1.00728 amu = 938.27 MeV/c2 = 1.6726 x 10~24 g,
and mn=mp + 1.29332 MeV/c2.
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M{A, Z) < Zmp + (A- Z)mn. (2.3)

This explains why an isolated nucleus cannot just fall apart into its con-
stituents, because that would violate the principle of conservation of energy.
The mass deficit, denned as

AM(A, Z) = M(A, Z) - Zmp -(A- Z)mn, (2.4)

is negative, and can be thought of as being proportional to the nuclear
binding energy (B.E.); the absolute value of AM is related to the mini-
mum energy required to break up the nucleus into its components. Thus
a negative B.E. will assure that the nucleus holds together, and the more
negative is the value of AM, the more stable is the nucleus. The mass
deficit and the B.E. are related simply through c2

B.E. =AM(A,Z)c2, (2.5)

where c is the speed of light. Thus, -AMc2 or — B.E. is the amount of
energy required to release all the nucleons from their captivity within the
nucleus. It is also useful to define a binding energy per nucleon, or average
energy needed to release a nucleon from a nucleus, as

B _ -B.E. _ -AM(A,Z)c2

A~ A A

_ (Zmp + (A-Z)mn-M(A,Z))c2

- j • V*)

This quantity has been measured for a wide range of stable nuclei (see Fig.
2.1) and, except for some fine structure that we will discuss later, shows
some remarkable features.

For low-mass nuclei (A < 20), ̂  oscillates somewhat and increases
rapidly with A, and then saturates, reaching a peak value of about 9 MeV
per nucleon near A — 60; for larger A, ^ drops very slowly. An approximate
average value of ̂  for a wide range of nuclei can therefore be taken as about
8 MeV per nucleon. As we will see, these characteristics have important
implications for the nature of the nuclear force and the structure of the
nucleus. One immediate deduction is that if we deposit about 8 MeV of
kinetic energy inside the nucleus, and transfer it all to one nucleon, then we
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Fig. 2.1 The binding energy per nucleon for the most stable nuclei.

can, in principle, free that nucleon from the binding of the strong force, and
it can escape the nucleus and materialize. To appreciate the significance of
this observation, let us recall that all quantum-mechanical objects display
wave behavior. In fact, for any particle with momentum p, we have an
associated wavelength (according to de Broglie's hypothesis)

* = - , (2.7)
P

where h and A are respectively Planck's constant and the wavelength A
divided by 2TT (referred to as the reduced wavelength). (The de Broglie
bound-state requirement corresponds to 2TIT = nX, and A consequently
reflects a typical radial size.) Now, let us assume that we transfer about 8
MeV of kinetic energy to a nucleon within a nucleus. Being quite massive (m
RS 940 MeV/c2), the nucleon will be essentially non-relativistic. Calculating
its wavelength from non-relativistic kinematics, we obtain

— ^ - ^ _ 7k;
~ P~ V2mT ~ V2mc2T

197MeV-fm 197
" V 2 x 9 4 0 x 8 M e v " l 2 0 f m " L 6 f m '
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or * ss 1.6 x l(T13cm, (2.8)

where 1 fm is a femto-meter (10~15m) or one fermi (after Enrico Fermi).
This wavelength is within the typical range of nuclear dimensions, and it is
therefore reasonable to expect to localize nucleons of such energies within
the nucleus. Consequently, a nucleon with about 8 MeV of kinetic energy
(or 120 MeV/c momentum) could either be absorbed into or emitted from
a nucleus. On the other hand, if electrons were present inside a nucleus, a
kinetic energy of about 8 MeV would make them relativistic, and in this
case pc PS T fa 8 MeV would yield a far larger de Broglie wavelength

, _h ^ he ^ he ^ 197 MeV-fm
~ p * ¥ ~ 8 MeV ^ 8 MeV

PS 25 fm w 2.5 x 10~12cm. (2.9)

With a de Broglie wavelength substantially larger than any nuclear radius,
it would be unnatural to imagine an electron of PS 8 MeV energy residing
inside a nucleus. Well, then what about an electron with momentum of 120
MeV/c ? That kind of electron could, in principle, fit into a nucleus, but
it would have 120 MeV of energy, and would therefore not be consistent
with the energy scales of PS 8 MeV characterizing nuclear binding. This
is, of course, a rather heuristic argument against the presence of electrons
within nuclei, but more direct experimental observations also support this
deduction. (We will return later to other implications of ^.)

2.2.3 Sizes of Nuclei

The size of a subatomic object must be defined rather carefully. For a
quantum mechanical system, the size normally refers to the expectation
value of the coordinate operator in an appropriate state. For an atom, this
would correspond to the average coordinate of the outermost electron. This
can usually be calculated, at least perturbatively. In the nuclear domain,
there is no simple expression for the force, and we therefore have to rely on
interpretation of experiments to determine size.

There are several ways to go about this. First, for the low-energy
Rutherford-scattering experiment, when the impact parameter is zero,
namely when the projectile collides head-on with the scattering center, the
distance of closest approach is a minimum (see Eq. (1.25)), given by
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^ . (2.10)

Such particles will, of course, be scattered backwards (6 = tr), and this
distance of closest approach provides an upper bound on the size of the
nucleus. The assumption is that low energy a-particles cannot overcome the
repulsive Coulomb barrier of the nucleus, and therefore cannot penetrate
into the nucleus. Such low energy measurements yield relatively poor upper
limits, typically,

RAU < 3.2 x l(T12cm, RAg < 2 x l(T12cm. (2.11)

An alternative way to measure the sizes of nuclei is to scatter very high
energy charged particles such as electrons off nuclei. For head-on collisions
(i.e., when the impact parameter vanishes) we see from Eq. (2.10) that as
E increases

rfn —* 0. (2.12)

That is, higher-energy particles probe deeper into the nucleus. Because
electrons interact mainly through the electromagnetic force, and are not
sensitive to the nuclear force, they are influenced primarily by the electric-
charge structure of the nucleus. In other words, using electron scattering,
we can deduce the distribution of charge (the "form factor") in a nucleus,
and the radius of the charge distribution can be defined as an effective
size of the nucleus. At relativistic energies, the magnetic moment of the
electron also contributes to the scattering cross section. Neville Mott was
first to formulate Rutherford scattering in the quantum domain, and to
include such spin effects. Systematic studies of the scattering of high-energy
electrons, initiated by Robert Hofstadter and his colleagues during the late
1950s, revealed the effects of spin and the extended nature of the nuclear
charge distribution, including that of the proton.

For any given spatial charge distribution p(r) normalized to unity, we
can define a form factor of the target in terms of its Fourier transform F(q)
in momentum transfer, as given in Eq. (1.77)

F(q) = f d3rp(r) e**p. (2.13)
J •'•
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In general, this form factor modifies the cross section for elastic scattering
of electrons from a point-like center, as follows

where the subscripted differential cross section is the Mott cross section
for the scattering of point particles, which for high-energy scattering of
electrons on a massive nuclear target can be related to the Rutherford
formula as

— = 4 cos'*- — (2.15)

Thus, deviations from the distribution expected for point-scattering provide
a measure of size (and structure) of the objects involved in the collision. Be-
cause electrons are thought to be point particles, the observed distribution,
therefore, reflects the size of the nuclear target.

There is yet another way of studying sizes of nuclei by taking advantage
of the strong force. In particular, the relatively weak Coulomb interaction
can be neglected in the elastic scattering of sufficiently energetic strongly-
interacting particles (such as -K mesons, protons, etc.) from nuclear targets.
Such projectiles interact quite readily with nuclei, and are thereby "ab-
sorbed" out of the beam - very similar to the way light gets removed by
an absorbing disc. The result of the absorption is a diffraction pattern -
again, similar to that observed in the scattering of light from a slit or grat-
ing. The size of the nucleus, which acts in many ways as an absorbing disc,
can therefore be inferred from the diffraction pattern.

All these phenomenological investigations have provided a remarkably
simple relation for the radial size of the nucleus as a function of its nucleon
number A

R = r0A*

« 1.2 x 10~13Ai cm = 1.2A* fm. (2.16)

From the preceding we can conclude that nuclei have enormous mass den-
sities of « 1014gm/cm3, and that nucleons are tightly packed inside the
nucleus.

(2.14)
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Fig. 2.2 Differential elastic cross sections for scattering of ir+ mesons of momentum of
« 270 MeV/c from carbon and calcium targets. The unit mb is 10~3 of a barn (see
p. 15). Using the de Broglie wavelength for the 7r+, and the optical analogy for the
first minimum in the scattering, yields nuclear radii close to values expected from Eq.
(2.16); also, the ratio of the angles at the minima for the two targets scale as the radii
of these nuclei. (Data are based on C. H. Q. Ingram in Meson-Nuclear Physics - 1979,
AIP Conference Proc. No. 54.)

2.2.4 Nuclear Spins and Dipole Moments

Both the proton and the neutron have spin angular momentum of \h. Fur-
thermore, just as electrons in an atom can have orbital angular momentum,
so also can nucleons inside a nucleus. We know from quantum mechanics
that orbital angular momentum can take on only integral values. The total
angular momentum of the constituents - namely, the vector sum of the or-
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bital and intrinsic spin angular momenta - defines the spin of the nucleus.
Thus, it is not surprising that nuclei with even atomic number have inte-
gral nuclear spin whereas nuclei with odd atomic number have half-integral
nuclear spin. However, what is surprising is that all nuclei with an even
number of protons and an even number of neutrons (even-even nuclei) have
zero nuclear spin. It is equally surprising that large nuclei have very small
nuclear spins in their ground states. These facts lend credence to the hy-
pothesis that spins of nucleons inside a nucleus are very strongly paired so
as to cancel their overall effect.

Every charged particle has a magnetic dipole moment associated with
its spin, given by

P-9^-J, (2.17)

where e, m and S are the charge, mass and the intrinsic spin of the charged
particle. The constant g is known as the Lande factor, which for a point
particle, such as the electron, is expected to have the value g = 2. (In fact,
small deviations at the level of 10~3 have been observed for the "point-like"
electron, but this agrees with expectation from field-theoretical calculations
based on quantum electrodynamics, or QED.) When g ^ 2, the particle is
said to possess an anomalous magnetic moment, which is usually ascribed
to the particle having a substructure. For the electron (with \SZ\ = | ti),
the dipole moment fie ~ HB, where /is is the Bohr magneton, defined as

eh
HB = - = 5.79 x KT11 MeV/T, (2.18)

2mec
where a magnetic field of 1 tesla (T) corresponds to 104 gauss (G). The
magnetic dipole moment for nucleons is measured in terms of the nuclear
magneton, defined using the proton mass

" " = 2 ^ " ^

From the ratio of ^E , we deduce that the Bohr magneton is about 2000
times larger than the nuclear magneton.

The magnetic moments of the proton and the neutron are
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Up PS 2.79 HN,

Unta -1.91 nN. (2.20)

Consequently, both nucleons have large anomalous contributions to their
moments. This provides indirect evidence that these particles have addi-
tional structure. In fact, since the neutron is electrically neutral, its sizable
magnetic moment is particularly dramatic, and points to the fact that the
neutron must have an extended charge distribution. The measurement
of magnetic dipole moments for different nuclei has yielded the surprising
result that all their values lie between — 3//jv and 10 //JV- This again is ev-
idence for strong pairing inside the nucleus. Furthermore, this also shows
that electrons cannot be present inside nuclei because it would then be par-
ticularly hard to explain the small values of nuclear moments, since even
one electron would produce a moment a thousand times that observed for
nuclei.

2.2.5 Stability of Nuclei

When we examine the characteristics of stable nuclei, we find that for
A < 40 the number of protons equals the number of neutrons (TV = Z).
But beyond A = 40, stable nuclei have N PS 1.7Z; namely, neutrons far
outnumber protons (see Fig. 2.3). This can be understood from the fact
that, in larger nuclei, the charge density, and therefore the destabilizing
effect of Coulomb repulsion, is smaller when there is a neutron excess.

Furthermore, a survey of the stable nuclei (see Table 2.1) reveals that
even-even nuclei are the ones most abundant in nature. This again lends
support to the strong-pairing hypothesis, namely that pairing of nucleons
leads to nuclear stability.

Table 2.1 Number of stable nuclei in nature.

N Z Number of Stable Nuclei

Even Even 156
Even Odd 48
Odd Even 50
Odd Odd 5
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2.2.6 Instability of Nuclei

In 1896, through sheer accident, Henri Becquerel discovered natural ra-
dioactivity. He was studying fluorescent properties of uranium salts by
exposing the material to the sun and then photographing the emission spec-
trum. Because the weather was cloudy, he stored the compound as well as
some photographic plates inside a desk drawer. When he subsequently de-
veloped the plates, he noticed that they were overexposed, and surmised
that the uranium compound must have emitted penetrating radiation of
a variety quite different from fluorescence. This was the first observation
of natural nuclear radioactivity, and subsequent studies have revealed that
such spontaneous emission is a common phenomenon, especially for large
nuclei.

Nuclear radioactivity involves the emission of essentially three kinds of
radiation: a-radiation, /3-radiation and 7-radiation. Each of these emana-
tions has distinct properties that can be characterized in the following way.
Consider a radioactive source located at the bottom of a narrow and deep
cavity within a piece of lead. Because lead easily absorbs nuclear radiation,
the cavity will therefore function as a source of a well collimated beam of
radiation (see Fig. 2.4). If a magnetic field is applied perpendicular to
the plane of the paper in Fig. 2.4, the beam will bend if it contains any
charged components. The direction of bending will depend on the sign of
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Fig. 2.3 Neutron number as a function of atomic number for a representative sample
of most stable nuclei.
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the electric charge, and the amount of bending will be determined by the
momentum of the particles. Such simple experiments demonstrated that
a-rays have positive charge, and because most of them arrived close to the
same spot on the screen, they indicated that the a-particles in the beam
were essentially mono-energetic, with typical velocities of about 0.1 c. Fur-
thermore, the range of a-particles was found to be relatively short. (We
will discuss in Chapter 7 how such measurements can be carried out.) In
contrast, the most common forms of /3-rays were found to bend in a di-
rection opposite to that of a-rays, indicating that ^-radiation consisted
of negatively charged particles. The ^-particles were observed to be well
dispersed along the screen, which meant that, unlike the a-particles, the
/3-particles had a continuous spectrum of velocities, which were as high as
0.99 c. Other measurements revealed that /5-particles had longer ranges and
were less ionizing than a-particles. (We will discuss ionization in more de-
tail in Chapter 6.) It took about 3 mm of lead to stop typical /3~particles,
while a piece of paper sufficed to stop a-particles. Finally, a third form
of emission, namely 7-radiation, was observed to arrive undeflected at the
center of the screen, suggesting that these objects had no charge. In fact,
7-rays behaved in all respects like electromagnetic radiation, and it was
therefore concluded that they were photons that traveled with the speed
of light. Measurements revealed that 7-rays had much longer ranges and
produced even less ionization per unit path than /?-rays. It took typically
several cm of lead to completely stop (absorb) 7-rays.

a y |3w \
0 s «ieid y ^F ls°c?e s r

' / / / 1 / / / Radioactive
/ / / ! /^A / -^^^ Material
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Fig. 2.4 Separation of a, /3 and 7-rays in a magnetic field.

It is, of course, also possible to deflect charged particles using an elec-
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trie field. In fact, by applying an electric field in the plane of the paper
in Fig. 2.4, perpendicular to both B and to the beam axis, and adjusting
the magnitudes of the electric and the magnetic fields, the deflection of
any charged particle can be varied, and even completely canceled. For a
given electric and magnetic field, the deflection is a function of the charge
and mass of the radioactive emission, and such measurements of deflections
revealed that a-particles carried two units of positive charge and four units
of atomic mass. In other words, a-particles were merely the very stable nu-
clei of helium atoms, namely 4He2. Similarly, through such measurements,
/?-particles were identified as electrons. Thus, the most common forms of
natural nuclear radiation, namely a-rays, /?-rays and 7-rays correspond,
respectively, to the spontaneous emission of helium nuclei, electrons and
energetic photons by heavy nuclei. It should be recognized, however, that
any nuclear fragment can also be regarded as a form of radiation. (More
quantitative aspects of a, j3 and 7 emission will be treated in Chapter 4.)

2.3 Nature of the Nuclear Force

In addition to determining the properties of nuclei, scattering experiments
also provide more global information on the character of the nuclear force,
as we will summarize below.

First of all, it is clear that the nuclear force has no classical analog. The
gravitational attraction between nucleons is far too weak to bind them to-
gether. And the nuclear force cannot have an electromagnetic origin, since
the nucleus of the deuteron contains only one proton and one neutron, and
the neutron, being charge-neutral, has only very weak electromagnetic in-
teractions (due to its magnetic dipole moment). In fact, the electromagnetic
interaction (namely Coulomb repulsion) primarily destabilizes the nucleus.

It is also clear that the nuclear force must be extremely short-ranged.
For example, the structure of the atom is explained exceedingly well just
by the electromagnetic interaction. Consequently, the range of the nuclear
force cannot be much greater than the size of the nucleus, simply because,
otherwise, it would affect the excellent agreement between theory and ex-
perimental observations in atomic physics. This argument would suggest
that the range of the nuclear force is limited to about 10~13cm — 10~12cm,
which corresponds to the approximate size of nuclei.

Other important evidence for the short-ranged nature of the nuclear
force comes from the fact that the binding energy per nucleon is a constant,
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essentially independent of the size of the nucleus. In fact, if the nuclear
force had a long range like the Coulomb force, then given A nucleons,
there would be \A(A — 1) pairwise interactions between them (that is, the
total number of independent combinations for A nucleons, taken two at
a time). Correspondingly, the binding energy, which basically reflects the
total potential energy of all possible interactions among the nucleons, would
grow with the number of nucleons as

BacA(A-\). (2.21)

Thus, for large values of A, we would have

\ ocA. (2.22)

In other words, if the force between any two nucleons were independent
of the presence of other nucleons, the binding energy per nucleon would
grow linearly with A. This is, in fact, what happens for the Coulomb force,
and it is primarily because a long-ranged force does not saturate, in the
sense that any single particle can interact with as many other particles
as are available. The net effect of this kind of force is that the binding
becomes ever tighter as the number of interacting objects increases, and,
as a result, the size of the interaction region remains fairly constant. This
is the situation for the case of atomic binding, where atoms with a large
number of electrons have sizes comparable to those with few electrons.

For the case of nuclei, however, we see from Fig. 2.1 that the binding
energy per nucleon is essentially constant, and therefore we conclude that
the nuclear force must saturate. Namely, any given nucleon can interact
with only a finite number of nucleons in its neighborhood. Adding more
nucleons to a nucleus therefore only increases the size of the nucleus but
not the binding energy per nucleon. As we have seen before in Eq. (2.16),
the size of a nucleus grows slowly with atomic number in a way so as to
keep the nuclear density essentially fixed. These observations again lend
support to the fact that the nuclear force is short-ranged.

In general, to keep the nucleons within a nucleus, the nuclear force must
be attractive. However, experiments in which high energy particles were
scattered off nuclei have revealed that the nuclear force has a repulsive
core. Namely, we find that below a certain length scale, the nuclear force
changes from attractive to repulsive. (The presence of the repulsive core



Nuclear Phenomenology 47

is best attributed to a quark substructure of the nucleon.) Conceptually,
this result is appealing because, if the nuclear force were attractive at all
distances, then the nucleus would collapse in on itself. Pictorially, we can
represent the behavior of the nuclear force through a square-well potential
that an incident nucleon can sense as it moves toward the nuclear center
(see Fig. 2.5).

— 1—5
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r = R Range ~R
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Fig. 2.5 Approximate description of the nuclear potential as a function of distance to
the center. The repulsive core is sensed only at small distances (S -C R).

Because low energy particles cannot probe short-distance behavior in the
nucleus, to an excellent approximation the repulsive core can be ignored in
problems pertaining to low-energy nuclear structure, and the nuclear force
can be represented adequately through just a square-well potential.

We should point out that we do not expect the nuclear density nor the
nuclear force to cut off suddenly at some r = R, and so the square well
is meant to represent only the general effects of the nuclear force. It is
more appropriate for incident neutrons than, for example, for protons, or
for other incident nuclei, which, in addition, are subject to the repulsive
Coulomb potential due to the positive charge of the nucleus (see Fig. 2.6).
In the presence of Coulomb repulsion, an incident proton of total energy Eo

senses the Coulomb barrier as it approaches the nucleus. Classically, the
proton cannot get closer than r = r^1™, because, for R < r < r™m, V(r)
would exceed Eo, and the kinetic energy would have to be negative, which
is not physically possible. However, ignoring the repulsive core for r < 6 in
Fig. 2.5, a neutron of same energy could penetrate into the nuclear center.

It was once the hope that low-energy scattering experiments could be
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used to obtain the exact shape of the nuclear potential, but it turns out
that the results of the scattering are not very sensitive to the details of
the shape, but primarily to the range and the height of the potential. The
square well is one of several forms of potentials that can provide a good
phenomenological description of the nuclear force.

The fact that the nuclear force can be described through a potential
energy function of the kind shown in Fig 2.5, suggests on the basis of
quantum theory that nuclear systems can have discrete energy levels and
corresponding bound states similar to the type found in atomic systems.
The presence of such nuclear quantum states, and the transitions between
them, have been confirmed in a variety of ways. They can be inferred from
scattering experiments and through studies of the energies observed for
emitted nuclear radiation. The modeling of ground levels and excited nu-
clear states formed one of the early testing grounds for quantum mechanics.
Some of the experimental evidence for nuclear levels, and several successful
nuclear models, will be described in the following chapters.

Coulomb
/ Repulsion v ( r )

V(r) s - . _ - i ^ _ _ _ _ Eo V B | ^ j ^ . ^ Eo

__________•—» | "•
r min T

r = r0

""2—-Neutron ""^p—Proton

Fig. 2.6 The potential energy of a proton and a neutron incident on a nuclear target.
(Recall that, as a charged particle enters the nucleus, it sees less of the total nuclear
charge, and the character of the classical potential changes from i to (3H2 — r2) , and
consequently the potential remains finite at r = 0.)

Studies of mirror nuclei,2 and the scattering of protons and neutrons,
demonstrate the interesting fact that, once we correct for known Coulomb
effects, the force between two neutrons is the same as the force between two
protons, which also coincides with the force between a proton and a neutron.
This property of the nuclear force is referred to as charge independence.
Namely, the strong nuclear force between two particles is independent of the

2 Mirror nuclei are isobars that have proton and neutron numbers interchanged as in
AXZ and AYA~Z (e.g., 1 5O8 and 15N7). Such pairs of nuclei have the same number of
n-p interactions, but differ in their number of p-p and n-n interactions.
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electric charge carried by these particles. This is a remarkable result and,
as we will see in Chapter 9, it leads to the concept of strong isotopic-spin
symmetry. Very briefly, this symmetry implies that, just as the "spin-up"
and the "spin-down" states of an electron correspond to two different spin
states of the same particle, so the proton and the neutron correspond to
two states of the same particle called the nucleon. If we could turn off the
Coulomb field, the neutron and the proton would be indistinguishable in
their nuclear interactions. This is analogous to the indistinguishability of
spin up and spin down states in the absence of a magnetic field. We will
discuss this symmetry in more detail in Chapter 9.

Let us examine the question of range of the nuclear force from a some-
what different perspective, and note that the electromagnetic force between
two interacting charged particles can be understood as a result of an ex-
change of a photon between them. Photon propagation is described by the
Maxwell Equations, which correspond to propagation at the speed of light
(see Chapter 13). Consequently, we presume that the photon is massless.
Furthermore, the Coulomb force is represented by the potential

V(r)oc-, ' (2.23)
r

which, of course, shows explicitly that it is a long-ranged force.
For the case when the exchanged particle is massive, Hideki Yukawa

showed in 1934 that the corresponding potential takes the form

_VB£.r

V{r) oc 6 h , (2.24)
r

where m is the mass of the particle mediating the interaction.
In the limit that m vanishes, we recover the Coulomb potential of Eq.

(2.23), and conclude again that the range of the Coulomb force is infinite,
which is consistent with experiment. From the form of the Yukawa poten-
tial, the range for the interaction is given by some characteristic value ofr,
which also corresponds to the Compton wavelength of the object of mass m

* = — . ' (2.25)
me

Therefore, once we know the mass of the exchanged particle, we can predict
the range of the force. Conversely, if we know the range of the force, we
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can also predict the mass of the particle being exchanged. For the case of
the nuclear force, a simple calculation shows that

h

o He 197MeV-fm , „ „ „ . , ,
or me2 = — w — r=—«164MeV. (2.26)

X 1.2 x 10-13cm

But this is approximately the mass of the well known TT meson (pion). There
are, in fact, three pions, with masses

m7r+ = mn- = 139.6 MeV/c2,

mno = 135MeV/c2. (2.27)

This suggests that pions might be the mediators of the nuclear force. We
will return later to a discussion of pions, other mesons, and their place in
the development of the full story of charge independence of the strong force.

Problems

2.1 Calculate the approximate density of nuclear matter in gm/cm3. What
would be the mass of a neutron star that had the diameter of an orange?

2.2 Calculate the difference between the binding energy of a nucleus of 12C
and the sum of the binding energies of three 4He nuclei (a-particles). As-
suming that 12C is composed of three a-particles in a triangular structure,
with three effective "a-bonds" between them, what would be the binding
energy per a-bond? (See CRC Handbook for Chemistry and Physics for
mass values.)

2.3 Calculate the binding energy of the last neutron in 4He and the last
proton in 16O. How do these compare with ^ for these nuclei? What does
this tell you about the stability of 4He relative to 3He, and of 16O relative.
to 15N? [Hint: the binding energy of the last neutron needed to form a
nucleus (A,Z) is given by [M(A - 1, Z) + mn - M(A, Z)] c2. An analogous
expression holds for the last proton.]

2.4 Starting with cgs quantities, calculate the value of /J,B — 5̂ TH> a n d
convert it to MeV/T units. (Hint: you can relate forces and magnetic
fields through the Lorentz force F = 3^-.)
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2.5 Assume that the spin of a proton can be represented by a positive
pion moving at a speed c in a circular orbit of radius 10~13 cm about a
neutral center. Calculate the current and the magnetic moment associated
with this motion. Compare this with the known magnetic moment of the
proton. (Hint: recall that using cgs units you can write a magnetic moment
/x = (^) A, where I is the current flowing around the area A.)

2.6 We argued previously that the TT+ mesons in Fig. 2.2 scattered not
from individual nucleons, but rather (coherently) from the entire nuclei.
In fact, the first minima (n = 1) corresponded to 6 « ^-, with R being
consistent with 1.2A*. At higher energies, when larger momenta can be
transferred to nuclei, it is possible to dislodge a single proton or neutron
from the nucleus. When this happens, the n+ mesons can be termed to
scatter elastically from quasi "free" nucleons. How would this affect the
diffraction pattern in Fig. 2.2? What about if you could scatter from very
small point-like constituents within nucleons? (Would the fact that a 7r+

is not a point particle affect your answer?)

2.7 Normally, in optics, one looks at the diffraction pattern as a function
of angle 6. In this case, the value of 6 at the first minimum changes with
wavelength or momentum. Can you see any advantage to using a vari-
able such as q2 PS p?r PS (p9)2 to examine diffraction patterns at different
scattering energies? Sketch how the pattern might look for scattering of
?r+ mesons of different energies from nuclear targets. Now, as energy in-
creases, and larger q2 become possible, what would be the effect of having
nucleon substructure within the nucleus? What about point substructure
within the nucleon? (Does your answer depend on whether the TT+ has such
substructure?)

2.8 What are the frequencies that correspond to typical splitting of lines
for nuclear magnetic moments in magnetic fields of « 5 tesla?

2.9 Show that when non-relativistic neutrons of kinetic energy EQ collide
head-on with stationary nuclei of mass number A, the smallest energy that
elastically-scattered neutrons can have is given approximately by

Emin = E0 ( ^ - ] j .
What will be the approximate energies of the neutrons after one, two, and
any number j of such consecutive collisions, if the target nucleus is hydro-
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gen, carbon, and iron?

2.10 Using the results of Problem 2.9, calculate the number of collisions
needed to reduce the energy of a 2 MeV neutron to 0.1 MeV through elastic
collisions between the neutron and carbon nuclei.

2.11 For q2 « 1, the exponential in the elastic form factor of Eq. (2.13)
can be approximated as 1 + ik-f— |(fc-f)2, where k = ^q. Calculate |F(g)|2
in terms of a root-mean-square radius of the charge distribution R = \/{r2),
for p(r) described by (a) a uniform distribution of charge within r = R, and

(b) a Gaussian p(r) = ^ J\e~ ~&, and show that in both cases \F(q) |2 falls

off approximately exponentially with q2. (Hint: Use symmetry arguments
to eliminate the fc-fterm by recognizing that k-f= kxx + kyy + kzz. Also,
note that for a spherically symmetric p(r), (x2) = (y2) = (z2) = | ( r 2 ) , and
(r2) = J4Trr2dr r2p(r).)
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Chapter 3

Nuclear Models

3.1 Introductory Remarks

A variety of early experiments demonstrated that the character of the nu-
clear force differed markedly from any previously encountered in classical
physics. However, a quantitative description of the nuclear force has turned
out to be elusive. As we learned from atomic physics, where the correct level
structure was found only after the classical Coulomb interaction between
the nucleus and the electrons was extended to the atomic domain through
quantum mechanics, knowing the properties of a force is only the first step
in developing a theory of structure. Although neutrons and protons were
known to be the nuclear constituents, the absence of a fundamental under-
standing of the nuclear force made it difficult to determine the structure
of the nucleus. It is not surprising therefore that, instead of a theory, phe-
nomenological models of the nucleus were constructed to accommodate the
many remarkable experimental findings. In the following, we describe only
a few such models. We should also keep in mind that, unlike the case of
atomic physics, most of these nuclear models were proposed to explain only
limited aspects of the data, which is precisely what they do.

3.2 Liquid Drop Model

The liquid drop model of the nucleus was one of the earliest phenomenolog-
ical successes constructed to account for the binding energy of a nucleus.
As we have already discussed, experiments revealed that nuclei were es-
sentially spherical objects, with sizes that could be characterized by radii
proportional to As, which suggested that nuclear densities were almost in-
dependent of nucleon number. This leads quite naturally to a model that

53
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envisions the nucleus as an incompressible liquid droplet, with nucleons
playing the role analogous to molecules in a drop of normal liquid. In this
picture, known as the liquid drop model, the individual quantum properties
of nucleons are completely ignored.

As in the case of a liquid drop, the nucleus is imagined as composed of
a stable central core of nucleons for which the nuclear force is completely
saturated, and a surface layer of nucleons that is not bound as tightly
(forces not saturated). This weaker binding at the surface decreases the
effective binding energy per nucleon (^), and provides a "surface tension",
or an attraction of the surface nucleons towards the center (see Fig. 3.1).
If, as experiments suggest, a constant binding energy (B.E.) per nucleon
can be attributed to the saturation of the nuclear force, then on the basis
of these considerations we can write a general form for the binding energy
of a nucleus as follows

B.E. = -a1A + a2As, (3.1)

where the first term represents a volume energy for the case of uniform
saturated binding (remember that volume a R3 oc A), and the second
term corrects for any over-estimation due to the surface tension. It is clear
that the correction to the binding energy per nucleon in Eq. (3.1) is higher
for lighter nuclei because these have a larger surface-to-volume ratio of
nucleons. That is, small nuclei have relatively more nucleons on the surface
than in the core. This can explain why the binding energy per nucleon is
smaller for lighter nuclei.

Fig. 3.1 Surface layer and core of nucleus in the liquid drop model.
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In this same model, the small decrease in binding energy per nucleon for
very heavy nuclei can be understood as due to Coulomb repulsion. Namely,
if the nucleus has Z protons, then the electrostatic (Coulomb) energy of
these protons, which has a destabilizing effect, has the form oc %g. Thus,
adding such a positive term to reduce the binding strength, we can write

Z2
B.E. = -a1A + a2A3 + a3 — . (3.2)

The three terms in Eq. (3.2) arise from purely classical considerations.
Unfortunately, they do not accommodate the fact that lighter nuclei with
an equal number of protons and neutrons are particularly stable. In other
words, Eq. (3.2) does not lead to stronger binding and greater stability
(that is, more negative B.E.) for light nuclei that have N = Z. Similarly,
Eq. (3.2) does not provide the natural abundance of even-even nuclei nor
the paucity of odd-odd nuclei. Such observations can be understood mainly
as arising from quantum effects (spin, statistics, etc.). Within the frame-
work of the liquid drop model, they can be included by generalizing the
empirical formula for binding energy to contain additional phenomenologi-
cal terms

2 Z2 (N — Z)2 3
B.E. = -aiA + a2A? + a3 — + a4 T—— ± a5A~^, (3.3)

A A

where all the coefficients oi, a2, a3, 04, as are assumed to be positive.
Note that the fourth term implies that, unless N = Z, the binding energy
will contain a positive contribution that will destabilize the nucleus. For
small Z, where destabilization from the a3 term is not very important,
the a4 term reflects the stability of N = Z nuclei. In the last term, the
positive sign is chosen for odd-odd nuclei, implying that such nuclei are
relatively unstable. On the other hand, for even-even nuclei, the sign is
taken as negative, implying greater stability and, therefore, abundance of
such nuclei in nature. For odd-̂ 4 nuclei, the value of 05 is chosen to be
zero, primarily because the binding energy for such nuclei can be described
quite well without the last term in Eq. (3.3).

The arbitrary coefficients can be determined by fitting the empirical
formula to experimentally observed binding energies for a wide range of
nuclei. The following set of values provides a rather good fit
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O! « 15.6 MeV, a2 PS 16.8 MeV, a3 « 0.72 MeV,

a4 w 23.3 MeV, a5 » 34 MeV. (3.4)

Given the phenomenological formula for the binding energy, we can also
write an equivalent empirical relation for masses of nuclei as follows (see
Eqs. (2.4) and (2.5))

M{A,Z) = (A- Z)mn + Zrrip + — ^

-{A- Z)mn + Zmp - ^ A
c

+ *Ai + **r + !*iAzML±!*A-l. (3.5)
c2 c2 A% c2 A c2 '

This expression, known as the Bethe-Weizsacker semi-empirical mass for-
mula, can be used to predict stability and masses of unknown nuclei of
arbitrary A and Z. It also plays a crucial role in a quantitative under-
standing of the theory of fission, as we will see in Chapter 5.

3.3 The Fermi-Gas Model

The Fermi-gas model was one of the earliest attempts to incorporate quan-
tum mechanical effects into the discussion of nuclear structure. It assumes
that a nucleus can be regarded as a gas of free protons and neutrons con-
fined to a very small region of space, namely to the nuclear volume. Un-
der such conditions, the nucleons would be expected to populate discrete
(quantized) energy levels within the nucleus. We can think of the protons
and neutrons as moving inside a spherically symmetric well, whose range
is given by the radius of the nucleus, and whose depth can be adjusted to
obtain the correct binding energy. Because protons carry electric charge,
as discussed in Chapter 2, they sense a potential that differs from that
sensed by neutrons. The observed energy levels for neutrons and protons
will therefore differ somewhat, depending on the specific range and depth
of the individual potentials. We will see in Chapter 9 that all elementary
particles can be classified as either bosons or fermions, and that protons
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and neutrons being fermions obey Fermi-Dirac statistics. According to the
Pauli exclusion principle, this implies that any given energy level can be
filled by at most two "identical" nucleons (i.e., in the sense of same energy
and charge) of opposite spin projection.

Since the lowest levels in a well have strongest binding, to achieve great-
est stability for the ground state, we expect the energy levels to fill from
the bottom up. The highest level that is completely filled defines what is
referred to as the fermi level, of energy Ep. If there is no fermion beyond
the fermi level, the binding energy of the last nucleon is given simply by Ep.
Otherwise, the energy of the fermion in the next level reflects the binding
energy of the last nucleon.

If the depths of the wells for neutrons and protons were the same, then,
in heavier nuclei, where the number of neutrons exceeds the number of pro-
tons, the fermi level for neutrons would lie higher than for protons. If this
were the case, then the binding energy of the last nucleon would be charge
dependent, namely different for protons and neutrons. This is inconsistent
with experiment, and leads us to conclude that, to have fermi levels of same
energy for neutrons and protons, protons must move in shallower potential
wells (see Fig. 3.2). In fact, if this were not the case, all such nuclei would
be unstable, and neutrons would drop down to lower proton levels through
P~ emission (J3~ decay is discussed in Chapter 4).

°^ , r y^—^
-H~ T -H~
-t-f- " -r+-
\JH-\ [ l '

Neutrons protons

Fig. 3.2 Ground-state energy levels for neutrons and protons in nuclei.

Let us next relate the energy of the fermi level to the number of fermions.
We define the momentum associated with the fermi level through
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EF = £ (3.6)

where m is the mass of a nucleon. Ignoring the presence of fermions beyond
the fermi level, we can write the volume for states in momentum space as

V,W=Y&- (3-7)

If V denotes the physical nuclear volume, then the total volume for states
in what we may call "phase space" is given by the product

VTor = VxVPF=fr30Axfp3F

/ATT\2

= {jj A(r0pF)3, (3.8)

which is proportional to the total number of quantum states of the system.
We know from the Heisenberg uncertainty principle that, for any quantum
state, the same components of momentum and position obey the inequality

AxAPx > ^ . (3.9)

This relation can be used to provide a restriction on the minimum volume
that can be associated with any physical state of the system, which can be
shown to be

Estate = (2TTH)3 = h3. (3.10)

It follows, therefore, that the number of fermions that can fill states up to
and including the fermi level is

_VWr 2 / 4 T A 2 3 4 fropF\3 . -

nF = 2 ( 2 ^ = (2^)3 [Y) A{roPF) =^A \~T) ' ( 3 ' n )

where the factor of 2 arises because each state can be occupied by two
fermions with opposite spins.
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For simplicity, let us now consider a nucleus with N = Z = y, and
assume that all the states up to and including the fermi level are filled. In
this case we have

In other words, the fermi momentum for this case is a constant, independent
of the nucleon number. It follows that

= BE. = _L flY (Sl\f ~ 3^L f^]2
F ~ 2m~ 2m \r0) \ 8 ) * 2mc2 \r0)

*2Ho( ix f M e V * 3 3 M e V - <"3>
Taking the average binding energy per nucleon of about —8 MeV to repre-
sent the binding of the last nucleon, it follows from our simple approxima-
tion that the depth of the potential well is about 40 MeV, namely,

Vo = EF + B « 40 MeV. (3.14)

This result is consistent with the value of Vo obtained through other con-
siderations. The Fermi-gas model has been used to study excited states of
complex nuclei, which can be accessed by "raising the temperature" of the
nucleon gas (i.e., by adding kinetic energy to the nucleus). The model can
also be shown to account in a natural way for the presence of the a± term
in the Bethe-Weizsacker mass formula of Eq. (3.5).

3.4 Shell Model

The shell model of the nucleus is based on its analog in atomic physics,
namely the orbital structure of electrons in complex atoms. The model can
account for many crucial nuclear properties, and we will therefore review

(3.12)
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several features of atomic structure before discussing the application to the
nuclear domain

As we know, the binding of electrons to a nucleus in a complex atom
is attributed to the central Coulomb potential. Electron orbits and energy
levels for such a quantum system can be obtained by solving the appropri-
ate Schrodinger equation. In general, the solutions are quite complicated
because they involve the Coulomb field of the nucleus as well as that of
the other electrons, and cannot be obtained in closed analytic form. Nev-
ertheless, certain characteristic features of the motion of an electron in a
hydrogen atom have general relevance, and we will discuss these first. For
example, the orbits and atomic energy levels that electrons can occupy are
labeled by a principal quantum number n (this determines the eigenvalue of
the energy in the case of hydrogen), which can assume only integral values

n = 1,2,3,.... (3.15)

In addition, for any given value of the principal quantum number, there are
energy-degenerate levels with orbital angular momentum given by

t = 0,l,2,...,(n-l). (3.16)

For any given orbital angular momentum, there are [21 + 1) sub-states
(me) with different projections of the orbital angular momentum along any
chosen axis

me = -I, -t + 1, . . . , 0 ,1 , . . . , £ - 1, t. (3.17)

Due to the rotational symmetry of the Coulomb potential, all such sub-
states are degenerate in energy. Furthermore, since electrons have an in-
trinsic spin angular momentum of f, each of the above states can be oc-
cupied by an electron with spin "up" or "down", corresponding to the
spin-projection quantum number

m, = ± - , (3.18)

and, again, the energy corresponding to either of these spin configurations
will be the same.
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Thus, any energy eigenstate in a hydrogen atom is labeled by four quan-
tum numbers, namely (n,£,me,Tns). For a given value of n, it follows that
the number of such degenerate energy states is given by

n- l
nd = 2]T(2£+l)

1=0

= 2(2] [> + "N)
V 1=0 J

= 2 ( 2 x -n(n- l ) + n )

= 2(n2-n + n)=2n2. (3.19)

However, all of these states are degenerate only if there is no preferred di-
rection in space that can break the rotational symmetry of the Coulomb
interaction. That is, when there is a preferred direction, for example, de-
fined by some magnetic field, then the energy of the system can also depend
on the mi and ms quantum numbers. Consequently, an interaction term
such as —fl-B added to the Coulomb potential can split the degenerate en-
ergy levels. Interactions such as spin-orbit coupling (see Fig. 3.3), between
the spin magnetic moment of the electron (jl oc S) and the magnetic field
(B oc L) due to the motion of the nucleus (as observed in the electron's
rest frame), can change the energies of levels and thereby remove some of
the degeneracies. In particular, spin-orbit interactions in atoms lead to a
fine structure in the energy levels that has been well-studied. Because the
effects of such interactions are usually quite small, they are often neglected
in elementary discussions of atomic physics; however, as we shall see, they
provide a key element in determining the nature of nuclear structure.

Consequently, ignoring fine structure, we can view the hydrogen atom
as consisting of allowed electron orbits corresponding to shells of a given
value of n, with each shell containing degenerate sub-shells specified by
the value of the orbital angular momentum. Going beyond hydrogen, and
introducing the electron-electron Coulomb interactions, leads to a splitting
in any energy level n according to the lvalue of the state. The larger the £,
the more aspherical is the orbit, which produces less average binding, and
a greater shift up in energy. The degeneracy in m< and ms is not affected
greatly, even in more complex atoms. Any shell can still accommodate only
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^^, - ^ f ^ u , m

Le = mrx v (out) Bp~rxv(oul)

Motion Relative to Proton Motion Relative to Electron

Fig. 3.3 Spin-orbit coupling of the electron and proton in a hydrogen atom. Classically,
the orbital motion of an electron is equivalent to a magnetic field due to the circulating
proton. Thus a p.e • Bp term is equivalent to an L • S operator for the electron.

2n2 electrons, in consistency with the Pauli principle. It also follows that
if a shell or a sub-shell is filled, we have

Y^me = 0. (3.20)

In other words, there is a strong pairing effect for closed shells, and from
the antisymmetry of the fermionic wave function (see Chapter 9) it can be
shown that we get in general

L = 0 = S,

J = L + 5 = 0. (3.21)

For any atom containing a closed shell or a closed sub-shell, all electrons
are paired off and consequently no valence electrons are available. As a
result, such atoms will be chemically inert. In fact, if we examine the inert
elements, we find that they have just such structure. For example, both
electrons in the He (Z — 2) atom fill up the shell corresponding to n = 1.
Similarly, Ne (Z = 10) has closed shells corresponding to n = 1 and n = 2.
AT (Z — 18) has closed shells corresponding to n = 1,2, and closed sub-
shells corresponding ton = 3,£ = 0,l. The electrons in Kr (Z — 36) fill up
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shells corresponding t o n = 1,2,3, as well as the sub-shells corresponding
to n = 4, I = 0,1. Finally, Xe [Z = 54) has closed shells corresponding
to n = 1,2,3, and closed sub-shells corresponding to n = 4, £ = 0,1,2, as
well as n = 5, I — 0,1. (The energies of the oblong n = 4, £ = 3 levels lie
above the more spherical n = 5, £ = 0, 1 levels; the latter therefore get filled
first.) These inert elements are exceedingly stable. In fact, their ionization
energies are particularly large, as is consistent with their greater stability.
The above atomic numbers, namely,

Z = 2,10,18,36,54, (3.22)

are called the magic numbers of atomic physics and correspond to closed-
shell structures.

In nuclei, there is also evidence for magic numbers. In fact, although
the binding energy per nucleon varies smoothly on a broad scale, a close
examination shows peaks corresponding to specific values of nucleon num-
bers:

N = 2,8,20,28,50,82,126,

Z = 2,8,20,28,50,82. (3.23)

Nuclei with either proton or neutron number corresponding to any of these
magic values appear to be particularly stable, and are referred to as magic
nuclei. Nuclei where both the proton and the neutron numbers are magic
(e.g., 4He2,16O8,208Pb82) are known as doubly magic, and have even greater
stability.

In addition to stronger binding of magic nuclei, other interesting fea-
tures also suggest that nuclei possess shell structure. For example, magic
nuclei have many more stable isotopes and isotones than their neighbors
do. (Isotones are nuclei with the same number of neutrons but a different
number of protons.) Thus Sn (Z = 50) has ten stable isotopes, whereas
In (Z = 49) and Sb (Z = 51) have only two each. Similarly, for N = 20,
there are five stable isotones, whereas N = 19 has none, and N = 21 has
only one, 40K19, which is not very stable (has a mean life of about 109

years.) Also, we know that a departure from a spherical charge distribu-
tion inside a nucleus can give rise to an electric quadrupole moment. Such
moments are known to vanish for magic nuclei, whereas neighboring nuclei
display large values. Again, this is reminiscent of behavior expected from
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shell structure. Similarly, neutron-capture cross sections - measured by
scattering neutrons from nuclei of different neutron number - show a sharp
drop for magic nuclei relative to their neighbors. This again suggests a shell
structure for neutrons within nuclei.

Although there are many suggestive indications for shell structure in
nuclei, in trying to set up and solve an appropriate Schrodinger equation,
we face two essential differences from the case of atoms. First, there is no
apparent central core that can provide the binding potential. Consequently,
for the nuclear analog, we must picture the nucleons as moving in some
effective mean potential within the nucleus. Second, whereas the well-
understood Coulomb potential provides binding in atoms, the exact form
of the nuclear potential is unknown. Nevertheless, since we are interested
in obtaining shell structure, it is not unreasonable to first assume that the
mean potential in which the nucleons move is central. The Schrodinger
equation for a central potential V(r) has the form

(-^v2+y(r))v(r) = ^(f),

or (V2 + | ? ( £ - V(r)f) iKO = 0, (3.24)

where E is the energy eigenvalue. Because we assume that the potential is
spherically symmetric, the energy eigenstates will also be eigenstates of the
angular momentum operator. (In other words, the system has rotational
invariance, as a result of which its angular momentum will be conserved.
The angular momentum operator will therefore commute with the Hamil-
tonian of the system, and will have simultaneous eigenstates.) The energy
eigenstates can therefore be labeled by the angular momentum quantum
numbers. Under these circumstances it is convenient to use spherical coor-
dinates, in which case we can write

^ = 4 | . r > | . _ * £>, (3.25)
r2 or or h2r2

where L2 is the angular momentum operator in coordinate space, whose
eigenstates are the spherical harmonics Yt>mt{9,<j>), satisfying
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£»1WM) = - « £ * W M ) = hmtYitme(e,((>). (3.26)

Now, writing the Schrodinger wave function in separable form, namely1

VW£ (r8) = ^ ^ r/,m/ (0, 0 , (3.27)
r

where n, I and m^ are, respectively, the radial, orbital and projection quan-
tum numbers, and substituting Eq. (3.27) back into Eq. (3.24), we obtain
the radial equation

(£ + £(^-™-^))~e>-<>- <-)
The radial equation has the form of a one-dimensional Schrodinger equa-
tion, but with two differences. First, for I ^ 0, there is an additional
potential term due to a centrifugal barrier resulting from the orbital mo-
tion. Second, the boundary condition for the radial wave function une(r) is
that it must vanish both at infinite separation as well as at the origin. (This
is essential for having a normalizable wave function.) The radial quantum
number n defines directly the number of nodes in the radial solution, and
also determines the energies of the states. (Compare this with the hydrogen
atom, where the number of nodes in the radial solution is given by n—£ — 1.)
In the general case n and I are therefore not correlated, and can take on
any integral values.

1The symmetry of a wave function, that is, its response to some particular trans-
formation, has important consequences. We will discuss these issues in greater detail
in Chapters 10 and 11, when we get to particle physics. Here we only wish to point
out that, under inversion of coordinates, namely f —>• — f, the length r does not change,
6 —> ix — 8, and <f> —> it + 4>- The net effect of this transformation is that the Yi,mt (8, <p),
and therefore the total wave function, picks up a phase of ( —1)'. This defines the "par-
ity" of a state. Thus when (. is even, there is no change in sign of the wave function and
the parity of the state is termed even. When the sign changes (for odd £), the parity of
the level is termed odd. Atomic and nuclear states have unique parity - they are either
even or odd, but not mixtures of the two. (See the Appendix B for a discussion of the
properties of the V<?,m(,(0, </>)•)
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It is not possible to extract any additional information about the energy
levels of a nucleus without assuming some specific form for the potential.
Two simple potentials that are used commonly to solve Eq. (3.28) are the
infinite square well and the harmonic oscillator. Although these potentials
yield exact solutions for the system, they are not realistic because, among
other things, they do not provide the possibility of barrier penetration
through quantum tunneling. A more realistic potential, such as a finite
square well, can yield only numerical solutions and is therefore not very
useful for gaining overall insights. Fortunately, the qualitative features
of the solutions are not very sensitive to the specific form used for the
potential, and so in what follows we will restrict ourselves to the simpler
potentials.

3.4.1 Infinite Square Well

This potential is defined by

f oo r> R,
V(r) = ~ (3.29)

(̂  0 otherwise,

where R denotes the nuclear radius. The radial equation for R > r > 0
takes the form

{dP + wV3*"- - i ^ 1 ) ) U n l { r ) = °- (3-30)
The solutions that are regular at the origin are given by the oscillatory
"spherical Bessel" functions (see Appendix C), namely

Uni(r) = ji(knir), (3.31)

where

kru = V^F- (3-32)

Since the height of the well is infinite, nucleons cannot escape, and con-
sequently the radial wave function must vanish at the boundary. In other
words, we must have
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uni{R) = MkntR) = 0, £ = 0,1,2,3,.. . ,

and n = 1,2,3,..., for any £. (3.33)

This boundary condition leads to the quantization of energy levels. In fact,
the energy eigenvalue corresponding to any kn( is given by the nth zero of
the tth. spherical Bessel function. Since the zeros of Bessel functions are
all distinct (nondegenerate), it follows that in the present case there is no
degeneracy in energy corresponding to different combinations of n and £
values. Rotational invariance, however, still provides a (21 + 1) degeneracy
in energy levels that corresponds to different mi values for a given I. Also,
because nucleons have a spin angular momentum of | , as usual, each state
can accommodate two neutrons or two protons, in consistency with the
Pauli principle. Thus, we conclude that, for the case of an infinite square
well, each shell can contain 2(2£ + 1) protons or neutrons. It now follows
that, for n = l, closed shells can occur for any of the following proton or
neutron bold-faced numbers

2 , 2 + 6 = 8 , 8 + 10 = 18 , 18 + 14 = 32 , 32 + 18 = 50 , . . . . (3.34)

It is heartening to see that we can obtain several of the known magic
numbers. But, unfortunately, this simple analysis does not yield the desired
magic numbers 20, 82, and 126. (We should add that we were somewhat
careless in presenting the above results, in that we ignored all but the n = 1
solutions. The specific order in which energy levels are filled depends on the
exact values of the zeros of the different Bessel functions. Taking other n
values into account does not greatly affect our overall conclusions, namely,
that the infinite square well potential does not reproduce all the nuclear
magic numbers.)

3.4.2 Harmonic Oscillator

The radial equation for the three-dimensional harmonic- oscillator potential

V(r) = JmwV, (3.35)

takes the form
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( d2 2m / 1 , 2 h2£U+l)\\ , , .

The solutions are related to the associated Laguerre polynomials, as follows

unt{r) ex e - T rt+1L^£=1 \J— rj , (3.37)

and the energy eigenvalues of the bound states are given by

E r u = h u \ 2 n + l - l j , 71 = 1 , 2 , 3 , . . . ,

and £ = 0,1,2, . . . , for any n. (3.38)

By defining a quantum number A, this can be rewritten in the more familiar
form of the analysis based on Cartesian coordinates, namely, with

A = 2n + 1 - 2, (3.39)

we have

Eni = hw(k+^\ A = 0 , l , 2 , . . . , (3.40)

where the ground state A = 0 has the characteristic non-vanishing zero-
point energy.

As in the case of the infinite square well, rotational invariance implies
a (21 + l)-fold degeneracy for every value of I, corresponding to different
mt values. However, there is more degeneracy in the energy eigenvalues
corresponding to different I and n combinations that yield the same A. In
fact, we note from Eq. (3.39) that when A is an even integer, then all t e -
states with the following (t, n) values

(l,n) = (0, ^ ± 2 ) , ( 2 , | ) , (4, ^ ) , ..., (A,l), (3.41)

will be degenerate in energy. Similarly, if A is an odd integer, the states
with (£, n) values



Nuclear Models 69

(^)=(l,^),(3,^,(5,^),...,(A,l), (3.42)

will have the same energy. Thus, the total number of degenerate states
corresponding to some even value of A is

A

nA = Yl 2(2£+l)
t=0,2,4,-

A

= £2(4*+l)

= 2 ^ + l ) (A + l) = (A + l)(A + 2). (3.43)

Similarly, for a given odd value of A, the total number of degenerate states
is

A

nA = ] T 2(2£ + 1)
£=1,3,5,...

A - l

= Y, 2(2(2^ + 1) + 1)
k=0

A - l

= 2 ^ 4 ( 4 f c + 3)

= 2 ( ^ ) ( A ~ 1 + 3) = ( A + 1 ) ( A + 2)- (3'44)

Thus, we see that, for any value of A, the total degeneracy of states is given
by



70 Nuclear and Particle Physics

nA = (A + l)(A + 2). (3.45)

It now follows that, for the three-dimensional harmonic oscillator potential,
closed shells can occur for proton or neutron numbers of 2, 8, 20, 40, 70,
etc. Once again, this model predicts some of the magic numbers, but not
all of them.

3.4.3 Spin-Orbit Potential

It was fairly clear by the 1940s that a central potential could not reproduce
all the magic numbers. The crucial breakthrough came in 1949 when Maria
Goeppert Mayer and Hans Jensen suggested - once again following the lead
from atomic physics - that inside the nucleus, in addition to the central
potential, there is a strong spin-orbit interaction, and therefore the total
potential sensed by a nucleon has the form

yT O T = V(r) - f(r)L • S, (3.46)

where L and 5 are the orbital and the spin angular momentum operators
for a nucleon, and f(r) is an arbitrary function of the radial coordinates. In
atomic physics, a spin-orbit interaction splits the two degenerate j = £ ± \
energy levels and produces a fine structure. The spin-orbit interaction in
Eq. (3.46) has precisely the same form as in atomic physics, except for the
presence of the function f(r). Also, the sign of this interaction must be
chosen to be consistent with the data, so that the state with j = I + | can
have a lower energy than the state with j = £ — | , which is opposite to
what happens in atoms.

Now, the total angular momentum operator is given by

J = L + S, (3.47)

and therefore

J 2 = L2 + S2 + 2L- S,

or L • S = I {J2 - L2 - S2) (3.48)
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where we have used the fact that orbital and spin angular momentum op-
erators commute, and therefore their order in a product does not matter.
Thus, in a state with definite £, s, and j values (that is, a quantum state
can be labeled either by the eigenvalues £, mi, s, ms or £, s, j , rrij, and it
is the second basis that is appropriate for our calculation), we have

(L-S) = {\{J*-L*-S>))

= y [itf + 1)-*(* + l ) - | ]

{ ftH / for j — p j _ i

(3-49)
-V(*+l)forj=*-§,

where we have substituted s = | for the spin of a nucleon.
The shifts in the energies from their degenerate central values can be

written as

AEni (j = l+l^= - ^ Jd*r |r/w(r1|2/(r),

AEni (j = I - 1) = ̂ t i l | d 3 r 1^(^12/^), (3.50)

so that the total splitting between the two levels becomes

A = AEne (j=£-l^- AEne (j = l+\}

= «2^+|)/d3r|^(f)|2/(r). (3.51)

We see that the splitting due to the spin-orbit interaction is larger for
higher values of orbital angular momentum, and can consequently produce
level crossing. Namely, for large £, the splitting of any two neighboring
degenerate levels can shift the j = £ - \ state of the initially lower level
to lie above the j — I + \ state of the previously higher level. Thus, as
shown in Fig. 3.4, for an appropriately chosen f(r), the energy levels for
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a finite square well can split upon the addition of a spin-orbit interaction.
And we can therefore conclude that by including a spin-orbit interaction we
can reproduce all the desired magic numbers, and thereby accommodate a
shell-like structure in nuclei. The energy level diagram of Fig. 3.4 is labeled
according to the spectroscopic notation of atomic physics, namely as (nLj).
The multiplicity of any final level is given, as usual, by (2j + 1). We have
not shown the levels beyond lGi; these are 2Ds, 2£>a, 35i, lHn, and so
forth.

/ lG7 / 2 8

/
/

1G {
\
\

\ lG 9 / 2 10^1 ^

..-: 2Pl'2 2 L 22
2P < £ ' lF5/a 6 f
IF ^ 2P3'2 4 J

N s lF7/2 8 8 ^1

^ 1 P 3/a 4 1 1 [ra
! 2 D = < 2S 2 r 1 2 I1—1

IP < • — ^ 2\e i n - 1

is is 2 ryiJ J J ^

Fig. 3.4 Energy levels in a single-particle shell model. The boxed integers correspond
to the magic nuclear numbers.

It is worth pointing out that in our discussion of the energy spectrum, we
have treated protons and neutrons on an equal footing. It is clear, however,
that the effect of the Coulomb potential must shift the energy levels for
protons to somewhat higher values. Upon applying such corrections, it
is found that the qualitative features of the spectrum remain essentially
unchanged.
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3.4.4 Predictions of the Shell Model

The shell model accounts for a wide variety of properties of complex nuclei:
For example, it provides the correct spin-parity assignment for the ground
states of a large number of odd-A nuclei. According to the model, the
proton and the neutron levels fill up independently and, due to the Pauli
exclusion principle, only two neutrons or two protons can occupy any given
level (with their intrinsic spins anti-parallel). If we assume that nucleons
pair off in every filled level, yielding zero total angular momentum, then the
last unpaired nucleon must determine the spin-parity of the ground state.
An immediate consequence of this picture is that the ground states of all
even-even nuclei must Jiave zero spin, which is experimentally correct. The
single-particle shell model cannot predict the ground-state spins of odd-odd
nuclei because there is no a priori constraint on how unpaired protons and
neutrons should couple.

Let us next examine the spin-parity assignments of several odd-̂ 4 nuclei
in greater detail. Consider the isobars 13C6 and 13N7. (Note that these are,
in fact, mirror nuclei.) The six protons in 12C and the six neutrons in 13N
should be completely paired off, while the remaining seven nucleons in both
cases should fill the following shells

( 1 5 l ) 2 (1Pf)4 i1Pif • ^
Thus, the last unpaired nucleon - a neutron for 13C6 and a proton for 13N7 -
has total angular momentum j = \ and orbital angular momentum £ = 1.
(Recall, from our previous comments in the footnote pertaining to Eq.
(3.27), that I — 1 corresponds to a state of odd parity.) Hence, according
to the shell model, the spin-parity of the ground state for these nuclei is
expected to be ( |) , which is, in fact, the observed value. Similarly, for
the isobars 17O8 and 17F9, the nine neutrons for 17O8 and nine protons for
17F9 will fill the following levels

( 1 5 0 2 ( l p t ) 4 ( i n ) 2 ( i 2 3 i ) 1 - (3-53)
The total angular momentum of the last unpaired nucleon in the £ = 2
state is | . Thus, the spin-parity of these nuclei is expected to be (|) ,
which is again consistent with experiment.

For 33S16, the measured value of the ground state spin-parity is ( |) .
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According to the shell model, the seventeen neutrons will fill up the levels
as follows

( l S f ) 2 ( l P f ) 4 ( I P , ) 2 (ID,)" (2S,)2 ( I D s ) 1 , (3.54)

once again leading to a prediction consistent with experiment. However,
certain spin-parity assignments of the shell model do not agree with obser-
vation. For example, the neutrons in 47Ti22 would be expected to fill the
levels as

( I S , ) 2 ( l P f ) 4 ( i P j ) 2 ( l U f ) 6 (2S, ) 2 ( l D f ) 4 ( i F j ) 5 , (3.55)

leading to a ground state spin-parity of ( |) , whereas the experimental
value is ( |) . Such discrepancies can be remedied by slightly modifying
the assumptions of the single-particle shell model to allow pairing between
all "valence" nucleons, namely between any nucleons that occupy unfilled
levels.

The shell model can also be used to calculate magnetic moments of
nuclei. As measurements show, the proton and the neutron have intrinsic
dipole moments of 2.79 (IN and —1.91 /ZJV, respectively. Thus, we expect
the intrinsic magnetic moment of any unpaired nucleon to contribute to
the total magnetic moment of the nucleus. In addition, since protons are
charged, the orbital motion of any unpaired proton can also contribute to
the magnetic moment of the nucleus. For the deuteron, for example, if we
assume that the proton and the neutron are in lSi states, then, without
orbital angular momentum for the proton (£ = 0), we expect the magnetic
moment of the deuteron to be the sum of the intrinsic dipole moments of
the proton and the neutron

\i& = 2.79 /J,N - 1.91 HN = 0.88 (j,N. (3.56)

The observed magnetic moment of the deuteron is 0.86 (XN - in good agree-
ment with expectation. The nucleus of tritium (3HX) has two neutrons
and one proton, all in the lSi state. Since the neutrons are paired, they
should not contribute to the magnetic moment. The unpaired proton, hav-
ing i = 0, will have no contribution from its orbital motion. Consequently,
the total magnetic moment of 3H1 should be the same as that of the un-
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paired proton, namely 2.79 /xjv, which is in good agreement with measured
value of 2.98 /ijv- For 3He2, the unpaired nucleon is a neutron in a lSi
state. Consequently, the total magnetic moment should be the same as
that of the neutron, which is —1.91 /J,N, again, close to the observed value
of -2.13 HN- 4He2 (a-particle) has a closed shell structure (in fact, it is
doubly magic), and the shell model would therefore predict no spin and no
magnetic moment, which is indeed experimentally correct. In 10B5, the five
protons and the five neutrons have the same level structure, namely,

( l S , ) 2 ( l P f ) 3 . (3.57)

Thus, there is one unpaired proton and one unpaired neutron. The unpaired
proton will be in an i = 1 state, and therefore the orbital motion will
contribute \x = 2^ c £ = /Ujv to the total magnetic moment, which will
yield a value

2.79 fiN- 1.91 (j,N + nN = 1.88 fiN. (3.58)

This compares quite well with the measured value of 1.80/ijv-
We see therefore that the shell model, in addition to providing the known

magic numbers, also describes other important properties of light nuclei.
For heavy nuclei, however, there is marked difference between the predic-
tions of the shell model and the measured quantities.

3.5 Collective Model

For heavy nuclei, many predictions of the single-particle shell model do not
agree quantitatively with experiment. The discrepancies are particularly
severe for magnetic dipole moments. Also, the shell model predicts van-
ishingly small quadrupole moments for closed shells, and quadrupole mo-
ments of opposite sign for neighboring nuclei with atomic numbers Z ± 1.
Although this agrees qualitatively with experiment, the measured values of
quadrupole moments are very different from the predictions. In fact, some
heavy nuclei appear to have large permanent electric quadrupole moments,
suggesting a nonsphericity in the shape of these nuclei. This is certainly
not consistent with the assumptions of the shell model, where rotational
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symmetry plays a crucial role.2
In a revival of the liquid drop model, Aage Bohr noted that many prop-

erties of heavy nuclei could be attributed to a surface motion of the nuclear
liquid drop. Furthermore, James Rainwater showed that excellent agree-
ment between the expected and measured values of magnetic dipole and
electric quadrupole moments could be obtained under the assumption that
the liquid drop had an aspherical shape. These successes presented some-
what of a dilemma because the liquid drop model and the single-particle
shell model had fundamentally opposite viewpoints about the nature of
nuclear structure. Individual particle characteristics, such as intrinsic spin
and orbital angular momentum, play no role in a liquid drop picture, where
collective motion that involves the entire nucleus has prime importance. On
the other hand, individual nucleon properties, especially of the valence nu-
cleons, are crucial to the success of the independent-particle shell model.
The shell model had yielded too many important nuclear features to be
abandoned outright, and a reconciliation between the two extreme views
was needed.

The reconciliation was brought about by Aage Bohr, Ben Mottelson
and James Rainwater who proposed a collective model for the nucleus that
provided many features that were not present in either the shell or the liquid
drop model. In what follows, we describe this model only qualitatively. Its
basic assumption is that a nucleus consists of a hard core of nucleons in
the filled shells, and outer valence nucleons that behave like the surface
molecules in a liquid drop. The surface motion (rotation) of the valence
nucleons introduces a nonsphericity in the central core, which in turn affects
the quantum states of the valence nucleons. In other words, one can think
of the surface motion as a perturbation that causes the quantum states
of the valence nucleons to change from the unperturbed states of the shell
model. This adjustment accounts for the difference in predictions for dipole
and quadrupole moments from those given by the shell model.

Physically, one can view the collective model as a shell model with a po-
tential that is not spherically symmetric. Spherically symmetric nuclei are,
of course, insensitive to rotations, and consequently rotational motion can-
not produce additional (rotational) energy levels in such nuclei. Aspherical
nuclei, on the other hand, can have additional energy levels because of the
presence of rotational and vibrational degrees of freedom. These types of

2Finite quadrupole moments of charge distributions arise when the second moments
(x2), (y2) and (z2) differ from each other, namely when the distribution of charge is not
spherical.
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effects modify the predictions of the simple shell model. In particular, large
nonsphericity in nuclei can provide large permanent dipole and quadrupole
moments. Mathematically, these ideas can be incorporated as follows. For
simplicity, we assume the nucleus to be an ellipsoid defined by the form

ax2+by2 + ^-=R2, (3.59)
ab

where a and b are parameters related to the deformation from a spherical
shape of radius R. The mean potential for nuclear motion can then be
chosen as

(o for ax2 + by2 + 4 < R2,
V(x,y,z)=l m ~ (3.60)

y oo otherwise.

Needless to say, more realistic calculations in the collective model provide
even better descriptions of nuclear properties, but they also become far
more complicated.

One of the important predictions of the collective model is the existence
of rotational and vibrational levels in a nucleus. These levels can be derived
much the same way as is done for the case of molecules. Thus, we can choose
the Hamiltonian for rotations to be

H = YV (3-61>
with eigenvalues 2J 2̂> w n e r e the effective moment of inertia / is a func-
tion of the nuclear shape. If there is rotation about an axis perpendicular
to the symmetry axis of the ellipsoid, it can then be shown that the angu-
lar momentum of the rotational levels can only be even. Thus, we see that
rotational and vibrational levels in a nucleus are predicted with specific val-
ues of angular momentum and parity. Such excitations have indeed been
found through the observation of photon quadrupole transitions (Al = 2)
between levels.

Finally, the collective model accommodates quite naturally the decrease,
with increasing A, of the spacing between the first excited state and the
ground level in even-even nuclei, as well as the fact that the spacing is
largest for nuclei with closed shells. The first follows simply because the
moment of inertia grows with A, which decreases the energy eigenvalue
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of the first excited rotational state. The latter is due to the fact that a
nucleus with a closed shell should not have a rotational level because such
a nucleus would tend to be spherical. On the other hand, such a nucleus
can have vibrational excitations. However, vibrational excitations involve
the entire core and not just the surface. The core being much more massive,
implies that the energy level for vibration will lie far higher, and the spacing
between the ground state and the first excited state will be much greater.

3.6 Superdeformed Nuclei

Throughout our discussion of nuclear phenomena we have emphasized that
nuclei tend to have relatively small intrinsic spins. We can imagine that
under certain circumstances nuclei could be greatly deformed and yet not
fission (see Chapter 5). In fact, particularly stable superdeformed nuclei
have been predicted to exist for values of A between 150 and 190. Such
nuclei were expected to be spheroidal in character, with semi-major and
semi-minor axes differing by about a factor of two. During the late 1980s,
a series of experiments was carried out on the scattering of heavy ions on
heavy ions. When such collisions take place, superdeformed nuclei are pro-
duced with remarkably large angular momenta of about 60 h. These nuclei
de-excite through a series of (quadrupole) emissions of ~50 keV 7-rays
down to lower levels that have more symmetric nuclear shapes. However,
because the observed level spacings (photon energies) remain essentially
fixed, this poses a problem from the point of view of the collective model,
where we would expect the moment of inertia to decrease with a decrease
in deformation. In fact, different nuclei appear to have essentially identical
emissions as they "spin down". This is an even greater puzzle, because of
the known effects of nucleon pairing on binding energy and level spacing.
This is currently a very active area of study in nuclear physics, that may
yet offer additional surprises.

Problems

3.1 The Bethe-Weizsacker formula of Eq. (3.5) provides an excellent repre-
sentation of the mass systematics of nuclei. Show explicitly that, for fixed
A, M(A, Z) has a minimum value. Is there evidence for the "valley of sta-
bility" observed in Fig. 2.3? What is the stablest nucleus with A = 16?
What about A = 208? (You can differentiate Eq. (3.5), or simply plot M
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as a function of Z.)

3.2 Using Eq. (3.3) compute the total binding energy and the value of
f for 8Be4, 12C6, 56Fe26 and 208Pb82. How do these values compare with
experiment? (See CRC Handbook of Chemistry and Physics for data.)

3.3 You might conclude from Problem 3.2 that 8Be4 is stable. This is, in
fact, not the case. Can you provide a model to explain this result? (Hint:
see Problem 2.2.)

3.4 Calculate the binding energy of the last neutron in 15N7 and of the last
proton in 15O8, and contrast with the last neutron in 16N7 and in 16O8.

3.5 What would you expect for the spin and parity of the ground states of
2 3Nan, 35C117 and 41Ca20 on the basis of the single-particle shell model?
Do these predictions agree with experimental values? What about the
magnetic moments of these nuclei? (See CRC Handbook for data.)

3.6 Consider a somewhat more sophisticated model for the anomalous con-
tribution to the magnetic moment of a nucleon. Assume that the proton
can be regarded as a fixed neutral center with a ?r+ meson circling about
in an I = 1 orbit. Similarly, take a neutron as an effective proton center
with a TT~ meson in an £ = 1 orbit around it. Using m^ = 140 MeV/c2,
calculate /J, = (2^ e j I, and compare results with those of Problem 2.5.

3.7 The ground state of 137Ba56 has spin-parity | + . That is, its spin is f
and parity +. The first two excited states have spin parity | and ^ .
According to the shell model, what assignments would be expected for these
excited states? (Hint: The surprise has to do with "pairing energy".)
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Chapter 4

Nuclear Radiation

4.1 Introductory Remarks

In previous chapters we indicated that many nuclei are unstable and often
emit a, /3 or 7 particles. We will now discuss several more quantitative as-
pects of nuclear radioactivity and its historical impact on our understanding
of nuclear structure and nuclear transmutation.

4.2 Alpha Decay

As we have seen before, a-decay represents the disintegration of a parent
nucleus to a daughter through the emission of the nucleus of a helium atom,
and the transition can be characterized as

AXZ __> A-iyZ-2 + 4He2 ( 4 1 }

As we will see in Chapter 5, a-decay can be regarded as the spontaneous
fission of the parent nucleus into two daughter nuclei with highly asymmet-
ric masses. If we assume that the parent nucleus is initially at rest, then
conservation of energy requires

MPc2 =MDc2+TD + Mac2+Ta, (4.2)

where Mp, MD and Ma are the masses of the parent, daughter and the
a-particle, respectively. Similarly, To and Ta represent the kinetic energies
of the daughter and of the a-particle. Equation (4.2) can also be rewritten
as

81
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TD + Ta = (MP-MD-Ma)c2 = AMc2. (4.3)

Although the right hand side of Eq. (4.3) involves nuclear masses, we can,
in fact, use atomic masses in the expression since the masses of the electrons
cancel. Thus, we can write

TD + Ta = (M(A, Z) - M(A - 4, Z - 2) - M(4,2))c2 = Q, (4.4)

where we have denned the disintegration energy or Q-value as the difference
in the rest masses of the initial and final states. It is clear that Q also
equals the sum of the kinetic energies of the final state particles. For non-
relativistic particles, the kinetic energies can be written as

TD = 2MDV2D,

Ta = \Mavl, (4.5)

with VD and va representing the magnitude of the velocities of the daughter
and of the a-particle.

Since the parent nucleus decays from rest, the daughter nucleus and the
a-particle must necessarily move in opposite directions to conserve momen-
tum, satisfying

MDvD = Mava,

01 VD = jtVa- (4-6)

When the mass of the daughter nucleus is much greater than that of the a-
particle, then VD <&va, and consequently the kinetic energy of the daughter
nucleus is far smaller than that of the a-particle.

Let us eliminate VD and write expressions for TD and Ta in terms of
the Q-value
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TD + Ta = - MDv2D + - Mav\

or ID + -La = i-a TJ • (4.7)
MD

Using Eq. (4.4), this can be rewritten as

The kinetic energy of the emitted a-particle cannot be negative, that is,
Ta > 0. Consequently, for a-decay to occur, we must have an exothermic
process

AM > 0, Q > 0. (4.9)

For massive nuclei, which is our main interest, most of the energy is carried
off by the a-particle. The kinetic energy of the daughter nucleus is obtained
from Eqs. (4.4) and (4.8)

If we use the approximation H j ~ -£^, we can then write

Ta « ^ Q,

TD^jQ, (4.11)

which can be used to estimate the energy released in the decay.
We note from Eq. (4.8) that the kinetic energy (and therefore the mag-

nitude of the velocity) of the a-particle in the decay is unique, which is
consistent with our earlier discussion. This is a direct consequence of the

(4.8)

(4.10)
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fact that the process is a two body decay of a parent initially at rest. Care-
ful measurements, however, have revealed a fine splitting in the energies of
a-particles emitted from any radioactive material, corresponding to possi-
bly different Q values. The most energetic a-particles are observed to be
produced alone, but less energetic a-decays are always accompanied by the
emission of photons. This suggests the presence of energy levels and of an
underlying quantum structure of discrete states in nuclei. If this is correct,
then a parent nucleus can transform to the ground state of the daughter
nucleus by emitting an a-particle with energy corresponding to the entire
Q value, or it can decay to an excited state of the daughter nucleus, in
which case the effective Q value is lower. And, as in the case of atomic
transitions, the daughter nucleus can subsequently de-excite to its ground
state by emitting a photon. Hence, the decay chain would involve

AXZ __> A-4y*Z-2 + 4 ^

with

A-4y*z-2 >. A-AyZ-2 + (4.12)

The difference in the two Q values would then correspond to the energy
of the emitted photon. For example, the spectrum of observed a-particle
energies in the decay of 228Th to 224Ra can be associated schematically
with the level structure shown in Fig. 4.1.

Ground State

y^y// °f228Th

' 0.299 MeV . J\//^y / /

0.253 MeV 1 ? S^* / ^ /

Excited 0.217 MeV VTCl /v /S^
States of \ /<r /N

2 2 4 Ra I Y Y AZ /&
t / / //

0.084 MeV i ' ' ' ^— / ^ *

' /
Ground State > > *

of224Ra

Fig. 4.1 a-particle transitions observed in the decay of 228Th.
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The underlying level structure shown in Fig. 4.1 can be determined by
measuring the kinetic energies of the different a-particles observed in these
decays, which in turn yield the Q values for the transitions through Eq.
(4.8). Based on the assumption of discrete nuclear levels, the difference in
the Q values will then yield the expected energies of the emitted photons.
The measured energies of such accompanying (coincident) photons have, in
fact, confirmed the overall picture and therefore the existence of discrete
nuclear levels.

Example 1

Consider the a-decay of 2 4 OPU 9 4

240pu94 __> 236U92 + 4 ^ 2

The emitted a-particles are observed to have energies of 5.17 MeV and 5.12
MeV. Substituting these two values into the first relation in Eq. (4.11)

OPS A T

we obtain the two Q values

240
Qa « —- x 5.17 MeV « 1.017 x 5.17 MeV « 5.26 MeV,

236
240

Q2 « ™ x 5.12 MeV « 1.017 x 5.12 MeV « 5.21 MeV.
236

Thus, when 240Pu decays with disintegration energy Qi as 5.21 MeV, the
daughter nucleus 236U92 is left in an excited state and transforms to the
ground state by emitting a photon of energy

Qi - Q2 Rj 5.26 MeV - 5.21 MeV = 0.05 MeV.

This is, indeed, consistent with the observed energy of 0.045 MeV for the
photon. Thus, we can conclude from such studies of a-decays that there
are discrete energy levels in nuclei, very much like those found in atoms,
and that the spacing between nuclear levels is about 100 keV, whereas the
corresponding spacing in atomic levels is of the order of 1 eV.
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4.3 Barrier Penetration

The a-particles emitted in nuclear decay have typical energies of about 5
MeV. When such low-energy particles are scattered from a heavy nucleus
they cannot penetrate the Coulomb barrier and get sufficiently close to the
nucleus to interact through the strong force. The height of the Coulomb
barrier for A « 200 is about 20-25 MeV, and a 5 MeV a-particle therefore
cannot overcome this barrier to get absorbed into the center. On the other
hand, a low-energy a-particle that is bound in a nuclear potential well
sees that same barrier, and yet is able to escape. How this could happen
constituted a great puzzle, until it was recognized that the emission of
a-particles was a quantum-mechanical phenomenon.

c .

\ Incoming a-particle
\ with Energy Eo < Ec

V(r) \

^ < Energy Level
for a-particle
Bound within

' Nucleus

Fig. 4.2 Potential energy function for an a-particle interacting with a nucleus.

The first quantitative understanding of a-decay came in 1929 from the
work of George Gamow and of Ronald Gurney and Edward Condon. As-
suming that the a-particle and the daughter nucleus exist within the parent
nucleus prior to its dissociation, we can treat the problem as an a-particle
moving in the potential of the daughter nucleus, with the Coulomb poten-
tial preventing their separation (see Fig. 4.2). For concreteness, consider
the decay

2 3 2 T h ^ 2 2 8 R a + 4 H e ^ ^

The kinetic energy of the emitted a-particle is observed to be E = 4.05
MeV, and the lifetime of 232Th is r = 1.39 x 1010 years. The radius of
the thorium nucleus obtained from the formula R = 1.2 x 10~13Ai cm is
« 7.4 x 10~13 cm.
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The a-particle must penetrate the Coulomb barrier in order for the
decay to take place. The calculation of barrier penetration for a three-
dimensional Coulomb potential is rather complicated. However, since we
are interested only in order-of-magnitude estimates, we will ignore the an-
gular dependence of the Schrodinger equation and consider the potential
as effectively one-dimensional. Furthermore, we will replace the Coulomb
potential by a square barrier of equal area, which approximates the effect of
the Coulomb repulsion, and is calculationally much simpler (see Fig. 4.3).
As long as Vo is chosen so that it is larger than E, then the transmission
through the barrier is sensitive primarily to the product of \/VQ — E and a,
and not to the precise value of Vo. For Z ss 90, we can choose

Vo = 14MeV,

2a = 33 fm = 33 x 1CT13 cm. (4.14)

A straightforward quantum-mechanical treatment of the transmission
through the square barrier shown in Fig. 4.3, yields the following transmis-
sion coefficient

iki k

T = f / (*1+% ' (415)

l + [ l + ( S ^ ) Jsinh22«a

with

« = [ ^ L ( V o - £ ) ] 2 , (4-16)

where Ma is the rest mass and E is the kinetic energy of the emitted a
particle (outside of the barrier). For Mac2 m 4000 MeV, E = 4.05 MeV,
VQ = 14 MeV and UQ «S 40 MeV (the calculation is not very sensitive to
the depth of the nuclear potential), we have
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« = 1 [2Mac2{V0-E)Y
nc

« _ [2 x 4000 MeV (14 - 4) MeV]^ ~ 1.4 fin"1,
197MeV-fm l v

jfc«0.9ftn~\

kx a 3.0 far1. (4-17)

Now, 2«a w 33 fin x 1.4 fin"1 « 46, which means that 2KO » 1, and allows
us to write

sinh22Ka^(^-) = i e 4 B a « J e 9 2 » l . (4.18)

- ' — ^ - • - » :
I r ^ " \- 2a -I rj*n <

r = R r=R

Fig. 4.3 Potential energy for scattering of 4 MeV a-particle from 228iJa, and the equiv-
alent one-dimensional square-well potential.

We see that the transmission coefficient T is determined essentially by this
exponent, and is not very sensitive to the choice of ki and k. Because we
are interested only in estimating T, we can therefore simplify Eq. (4.15) by
taking the limit of large h (i.e., k\ » K,2 and k\ > A;2). In this limit, the
transmission coefficient of Eq. (4.15) becomes
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T*-^-±(smh22Ka)-i
K2 + k2 fci

-.*(Vo-E) ( E \ * F ^[2MQ(y0-^)]^
~ Vo \E + Uo) [ \

„ 4(10) / _ 4 \ * f 92,

« 3.5 x e~92 « 4 x 10~40. (4.19)

Thus, the a-particle has an exceedingly small probability for penetrating
the barrier. This explains why low energy a-particles cannot be absorbed by
heavy nuclei. However, for an a-particle bound in a nucleus, the situation
is quite different. The kinetic energy of the a-particle within the well is

Ta ss Uo + E « 44 MeV, (4.20)

and the corresponding velocity is

/ 2 2 ^ _ /~27T
Va~ V M ~CV M c2

y ±v±Q£ y iv± QKS

/2x44MeV
"CV-4000MeAr"°-15c- (4'21)

Being confined to a small region of fa 10~12 cm, the a-particle will bounce
against the barrier with a frequency given approximately by

va ^ 0.15 x 3 x 1010 cm/sec
~R ~ 7.4 x 10-13 cm

pa 6.0 x 1021/sec. (4.22)

Every time the a-particle hits the barrier, the probability of escape is given
by Eq. (4.19). We conclude therefore, that the probability for the a-particle
to escape per second is simply
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P(a-emission) « ^ T ss 6.0 x 1021/sec x 4 x 10"40
R

« 2.4 x 10-18/sec. (4.23)

This is what is called the decay constant (denoted by A), and is the prob-
ability of decay per unit time. The mean lifetime for the decay process (to
be discussed in the next chapter) is the inverse of the decay constant

1
P(a-emission)

1

~ 2.4 x 10-18/sec

ss 0.4 x 1018 sec

« 1.3 x 1010 yrs. (4.24)

This lifetime is remarkably close to the observed value.
We have presented an oversimplified calculation of a-decay. The quanti-

tative result for the coefficient, therefore, cannot be trusted in detail. Nev-
ertheless, in general, for VQ ̂ $> E, the decay constant can be represented
as

P(a-emission) oc E^e'lt [2Mc(Yo ~ E)]\ (4.25)

This shows that the probability for decay is quite sensitive to the mass
and the energy of the a-particle. In particular, it shows why spontaneous
fission through barrier penetration into heavier daughter nuclei (of large
M), a subject that we will discuss more fully in the next chapter, is a
slow process. It also connects the decay constant and the lifetime for a
process with the energy of the a-particle. We note that P(a-emission) is
proportional to E%, and, as a result, the larger the E, the shorter is the
lifetime. That is, for large E, the decay is fast, which is consistent with
naive expectation. We also note from Eq. (4.25) that, for Vo > E, and
(Vb - E) 5 varying slowly with E, we can write approximately

logP(a-emission) oc (logE + constant). (4.26)
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This result provides a quantitative relationship between the decay constant
and the energy of the decaying particle, and is known as the Geiger-Nuttal
rule. This relation was discovered in data prior to the development of the
theoretical formulation.

4.4 Beta Decay

A nucleus with an over abundance of neutrons (i.e., with a value of ^
greater than that for stable nuclei) can transform to a more stable nucleus
by emitting an electron. This kind of process is known as j3- decay, and the
transformation can be denoted by

AXZ —> AYz+1+e~. (4.27)

Prom electric-charge conservation, it follows that the proton number of
the daughter nucleus in such decays increases by one unit. However, the
nucleon number remains unchanged. There are two other processes that
are also referred to as /3-decays. In one case, a proton-rich nucleus emits a
positron (positrons are antiparticles of electrons, and have the same mass
as electrons but positive electric charge), and thereby reduces the nuclear
charge by one unit. In this case, the process can be represented by

AXZ __>. AYZ-I +e+_ ( 4 2 8 )

In addition, a proton-rich nucleus can also reduce its nuclear charge by one
unit by absorbing an atomic electron. This process is referred to as electron
capture, and can be represented as

AXZ + e~ —• AYZ~1. (4.29)

The electron is normally captured from an inner if-shell of an atom. As a
result, the outer electrons of the atom cascade down to fill the lower atomic
levels, and one or more X-rays are usually emitted. In all three of these
processes, the nuclear transformation can be characterized by AA = 0 and
\AZ\ = 1.

Because only the electron and the recoiling daughter nucleus were ob-
served in /?-decay, the process was initially assumed to be a two body
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disintegration, very much like a-decay. Thus, for the decay in Eq. (4.27),
where the parent nucleus is at rest, conservation of energy requires

Ex = EY + Ee- = EY + Te- + mec2,

or Te- = (Ex - Ey - mec2) = (Mx - My - me)c2 - Ty

= Q-TYKQ. (4.30)

In other words, for a two-body process, just as in a-decay, the lighter emit-
ted particle, (the electron), would be expected to carry away most of the
released energy, which would have a unique value given by Eq. (4.30). How-
ever, as we have already discussed in Chapter 2, these electrons are emitted
with a continuous spectrum of energies. In fact, the observed differential
distribution in the number of emitted electrons as a function of their en-
ergy has the shape given in Fig. 4.4, and, within experimental accuracy,
has an endpoint (the maximum energy of any emitted electron) given by
the value in Eq. (4.30). That is, the electrons have a spectrum of energies,
with most values lying well below that predicted by energy conservation in
two-body decays. When this was first observed, it appeared to threaten the
survival of one of the most cherished conservation laws in physics, namely
energy conservation! In addition, a consideration of the change in angular
momentum in /?-decay processes reveals that angular momentum could not
be conserved if the decays produced only two particles in the final state.
Examining the decay in Eq. (4.27), we note that the number of nucleons
does not change in the transition. However, an electron, which is a fermion,
is emitted in the process. The electron, as well as each of the nucleons, have
spin angular momentum of | . Consequently, independent of any possible
change in the value of the orbital angular momentum, which must always
have integral value, it is clear that angular momentum cannot be conserved
in this kind of a process.

For a while, it seemed that the principles of conservation of momentum,
energy and angular momentum might not apply in /3-decay. This would
have implied, through Emmy Noether's theorem (discussed in Chapter 10),
that the universe is not isotropic, and that there is an absolute coordinate
system and an absolute time scale, all of which would have severely im-
pacted physical behavior. Physics, as we know it, would have had to be
abandoned. To extricate science from this abyss, Wolfgang Pauli proposed
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Fig. 4.4 The energy spectrum of electrons emitted in /3-decay.

that an additional particle, one that was difficult to detect, was emitted in
/3-decay. Conservation of electric charge required this particle to be electri-
cally neutral, just like the neutron and the photon. Ostensibly, this would
explain why it was so hard to detect this particle. We know now that
this neutral particle, the neutrino, does not interact readily with matter,
and this is the main reason why it is so difficult to observe. Because the
maximum energies for electrons emitted in /3-decay corresponded to the
disintegration energy of the nucleus, it meant that this new particle had
to be essentially massless. Furthermore, if the postulated neutrino were to
restore the conservation of angular momentum, then it would have to be
a fermion with spin angular momentum | . In some ways, such a particle
would resemble a neutron, except that it would be much lighter, and Fermi
therefore coined for it the name neutrino (diminutive for neutron), and it
is denoted by the Greek letter v.

Every elementary particle appears to have an antiparticle, and the neu-
trino is no exception; its antiparticle is known as the antineutrino (F). Since
both the neutrino and the antineutrino are electrically neutral, an interest-
ing question is what specific property distinguishes them from each other.
The neutron and the antirieutron are also neutral, but they have magnetic
dipole moments of opposite sign, and, as we will discuss in Chapters 9 and
11, opposite nucleon or "baryon" numbers that distinguish them. However,
the neutrino is an essentially massless point particle, without structure, and
has neither nucleon number nor a magnetic dipOle moment. (Until the dis-
covery of neutrino mixing or oscillations in the late 1990s, all neutrinos
were thought to have been massless. We will touch on this development in
Chapter 12.) Experiments on j3 decay indicate that neutrinos that accom-
pany positrons ("i/e+") are left handed, whereas the ones that accompany
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electrons ("ve-") are right-handed, where by left-handed we mean that
the particle has its spin pointing opposite to its momentum, and by right-
handed that it has its spin pointing in the direction of its line of flight.
(This convention is opposite to the definitions of left-handed and right-
handed polarizations used in optics.) If we define e~ as the particle and e+

as its antiparticle, then it is tempting to call the ve- the antineutrino (F)
and the ve+ the neutrino (ve). (This assignment will be justified shortly.)
Consequently, the handedness is one of the distinguishing characteristics
between a neutrino and its antiparticle (antineutrino), and has far-reaching
consequences, as we will see later. Using our new nomenclature, we can
rewrite our three /3-decay processes as

AXz y AYZ+1 + e~ +v

AXZ _ > AYZ-I +e+ + Uj

AXZ +e- __+ AyZ-l + v ( 4 3 1 )

If the parent nucleus decays from rest, then conservation of energy for
electron emission will yield

MPc2 =TD + MDc2 + Te- + mec2 + Tv + mvc2,

or TD+Te- + T F = {Mp - MD - me - mv) c2

= AMc2 = Q, (4.32)

where Mp, MD, me and mv are, respectively, the masses of the parent
nucleus, the daughter nucleus, the electron and the antineutrino. Simi-
larly, TD, Te- and 2V represent the kinetic energies of the decay daughter
nucleus, the electron and antineutrino. We see from Eq. (4.32) that elec-
tron emission can take place only if the disintegration energy Q is positive,
that is, when the mass of the parent nucleus is greater than the sum of
the masses of the decay products. In fact, neglecting small differences in
atomic binding energies, we conclude that electron emission will take place
if

Q = (M(A, Z) - M(A, Z + l)- mv)c2

n(M(A,Z)-M{A,Z + l))c2>0, (4.33)
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where M(A,Z) represents the atomic weight, including the atomic elec-
trons, and we have neglected the small mass of the neutrino. Furthermore,
because the daughter nucleus is much heavier than either the electron or
the antineutrino, the small recoil energy of the daughter can be ignored,
and for any /?-decay we can write

Te- +TT7^Q. (4.34)

It is now clear that, with a V in the final state, the energy of the electron is no
longer unique. In fact, any continuous value 0 < Te- < Q is kinematically
allowed, and the maximum electron energy, corresponding to Tp- = 0, is
given by the endpoint value of Eq. (4.32)

m - ) m a x = Q - (4.35)

Pauli's postulate therefore accommodates the continuous energy spectrum
in /3-decay, and simultaneously restores all the accepted conservation laws.

For completeness, let us note that the disintegration energy for positron
emission is given by

Q = (MP - MD —me- mv)c2

= (M(A,Z)-M(A,Z-l)-2me-mv)c2

&(M(A,Z)-M(A,Z-l)-2me)c2, (4.36)

where, again, all the M(A, Z) in the last line of Eq. (4.36) refer to full
atomic weights, and Q must be positive for the decay to occur. Similarly,
electron capture can take place only if

Q = (MP + me- MD - mv)c2

= (M(A, Z) - M(A, Z-\)- mv)c2

&(M(A,Z)-M(A,Z-l))c2>0. (4.37)

As stated before, all of these relations neglect the ss eV differences in bind-
ing energies of electrons in atoms.

Just as a proton or a neutron is defined to be a nucleon with nucleon or
baryon number +1, so is an electron denned to be a lepton with a lepton
number +1. A positron, being the antiparticle of an electron, has lepton
number — 1, just as an antiproton or an antineutron has nucleon number
— 1. We will see in Chapter 9 that both lepton number and nucleon number
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appear to be conserved in all interactions; we can therefore conclude from
the three processes in Eq. (4.31) that neutrinos must also be leptons with
lepton number +1, while the lepton number for antineutrinos is —1.

4.4.1 Lepton Number

Three charged leptons appear to exist in nature, all with their own associ-
ated neutrinos, namely (e~,ue), (/i~,^M) and (T~,VT). The muon and the
T lepton have properties similar to that of the electron, but are far more
massive. The three types of neutrinos are also known to be distinct from
one another. For example, when neutrinos produced in a decay such as
TT+ —> [i+ + Uy, are allowed to interact with matter, they never produce
charged leptons other than n~. That is,

^+AXZ -> AYz+1+fx~,

Vlt+-AXz-/¥ AYz+1+e~,

*V + AXZ •/*• AYz+l + T- , (4.38)

and ve interacting with matter produce electrons

Ug+ AXZ ^ AyZ+l+e-^

ve+ AXZ ^ AYz+1+fi-,

ve + AXZ fi AYZ+1 + r~. (4.39)

Similarly, although not studied as extensively, vr produces T~~ , and not e~
or [T. This family structure for leptons and their antiparticles plays a
major role in constructing theories of fundamental interactions.

4.4.2 Neutrino Mass

The issue of whether neutrinos have mass has important ramifications. As
is clear from Eqs. (4.33) and (4.35), the mass of the neutrino can be
determined from the end point of the /^-spectrum. If mv = 0, then the end
point of the spectrum is tangential to the abscissa, whereas if mv ^ 0, then
the end point is tangential to the ordinate (see Fig. 4.5). Thus, the shape
of the /3-spectrum near the end point can be used to extract the mass of the
neutrino. However, in practice, the shape at the end point is very sensitive
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to measurement resolution. There are also other methods of determining
the masses of neutrinos, and at present the most stringent direct limit on
the mass of the electron neutrino is mVt < 2 eV/c2.

^ k m v = 0 \ m,*0

Electron Energy Electron Energy

Fig. 4.5 Dependence of the end point of the /3 spectrum on the mass of the neutrino.

A small but finite neutrino mass is interesting from a cosmological per-
spective because a massive neutrino can contribute to the mass of the uni-
verse as dark matter. A finite mass for the neutrino leads naturally to
concepts such as mixing between different neutrino states, and to the pos-
sibility of conversion of one species to another, much in the spirit of beat
phenomena and energy exchange observed for weakly-coupled oscillators.
The possibility of neutrino mixing provides one of the experimental meth-
ods for establishing a non-vanishing neutrino mass. For example, starting
out with Vp we can look for the evolution of e~ production in matter as a
function of distance traveled by the neutrino. In fact, measurements of the
neutrino flux from the sun and from interactions of cosmic rays, performed
by Ray Davis and Masatoshi Koshiba and their collaborators, imply that
there is a finite probability for different types of neutrinos to transform into
each other, which requires that neutrinos have finite mass. (These kinds of
issues will be discussed in greater detail in Chapter 12.)

4.4.3 The Weak Interaction

The /?-decay processes of Eq. (4.31) can be written equivalently as

n —> p + e~ +Ve,

p —> n + e+ + ve,

p +e~—>n + ve. (4.40)

Because a neutron is more massive than a proton, a free neutron can de-
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cay as in Eq. (4.40). However, by the same token, since the proton is
lighter than a neutron, a proton cannot /?-decay in free space. That is,
a proton can undergo /3-decay, but only inside a nucleus. Free neutrons,
on the other hand, do decay in the laboratory with lifetimes of about 900
sec. This lifetime is much longer than the time scales involved in nuclear
and electromagnetic reactions. (We note that the typical time scale for a
nuclear reaction is about 10~23 sec, while the corresponding time scale for
an electromagnetic process is about 10~16 sec.) Thus, we conclude that
although /?-decay is a nuclear phenomenon, it does not involve the strong
nuclear force. (Its origin also cannot be electromagnetic.) This result led
Fermi to postulate the existence of a new force that is responsible for /3-
decay. It is called the weak force, and is short-ranged, since it is effective
only within the nuclear domain. The weakness of the strength of this force
is responsible for the long lifetimes observed in /3-decays. In terms of rel-
ative strengths, the nuclear, electromagnetic, weak and the gravitational
interactions can be characterized by the ratios 1 : 10~2 : 10~5 : 10~39. As
in the case of electromagnetism, the weak coupling strength of this force
also allows us to calculate any of its effects through perturbative techniques.

As we have noted before, nuclei do not contain electrons. Consequently,
electrons produced in /3-decay cannot originate from within the nucleus.
Rather, they must be produced at the time of the decay. This is quite
analogous to the situation in atomic transitions, where photons do not exist
within atoms, but are produced during the transitions. Just as a transition
in an atom can be understood as being induced, for example, by a dipole
interaction, and can be calculated using perturbation theory, in a similar
way, /3-decay can be understood as being induced by the weak force of the
weak-interaction Hamiltonian. The transition probability per unit time,
or the "width", for the process can also be calculated from perturbation
theory using Fermi's Golden Rule (discussed in Chapter 1)

P = T\Hfi\2p(Ef), (4.41)

where p(Ef) is the density of states for the decay products, and Hfi de-
notes the matrix element of the weak-interaction Hamiltonian, iJwk, taken
between the initial and the final states

Hfi = (f\Hwk\i) = j dzxrs{x)H^i{x). (4.42)
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Prom Eq. (4.40) we see that the weak-interaction Hamiltonian must connect
four fermionic states, otherwise the matrix element in Eq. (4.42) would not
describe /?-decay. The Hamiltonian for the theory of /3-decay as proposed
by Fermi - also known as the four-fermion interaction or current-current
interaction - was relativistic, and based on the properties of the Dirac
equation for fermions. Over the years, experimental studies have greatly
restricted the structure of the four-fermion theory to a form that is in
excellent agreement with all experimental measurements of low energy j3-
decay processes.

Mirror Image of v v in /}-decay

Fig. 4.6 Sketch of the momentum and spin vector of a neutrino and its mirror (inverted)
image.

One of the features of the modern form of the theory is that there
are only left-handed neutrinos and right-handed antineutrinos, which ac-
commodates quite naturally the large violation of parity observed in weak
interactions. A system is parity-invariant if it does not change under re-
flection of spatial coordinates, that is, if it is indistinguishable from its
mirror image. For the left-handed neutrinos emitted in /3-decay, however,
the mirror reflected process, that is, the mirror image, will involve right
handed neutrinos. This follows because under reflection r-+ -f, p—t —p,
and s must transform as L = r x p ->• (—f) x (— p) = L. (Handedness
can be defined as jjfrjr.) Therefore, as shown in Fig. 4.6, the direction of
motion changes under reflection, but spin, being an angular momentum,
does not, leading to a change in the handedness. (We urge the reader to
look at a rotating screw and its image in a mirror, to become convinced
that the sense of rotation is preserved under reflection.) Thus, we see that
the process of /3-decay is distinguishable from its mirror image. However,
since to all intents right-handed neutrinos (and left-handed antineutrinos)
do not appear in nature, the parity transformed process, in effect, does not
exist, and consequently parity must be violated in weak interactions. This
agrees completely with experiment, and these issues will be.discussed again
in later chapters.
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4.5 Gamma Decay

As we have already seen, when a heavy nucleus disintegrates by emitting
an a-particle or a /3-particle, the daughter nucleus may be left in an excited
state. If the excited nucleus does not break apart or emit another particle,
it can de-excite to the ground state by emitting a high energy photon or
gamma (7) ray. As we saw in Example 1, the characteristic spacing of
nuclear energy levels is about 50 keV, and typical energies of nuclear 7-rays
can therefore range from a fraction to several MeV. Because this kind of
de-excitation is electromagnetic, we expect lifetimes for such processes to
be about 10~16 sec.1 As in atomic transitions, the photon carries away at
least one unit of angular momentum (the photon, being described by the
vector electromagnetic field, has spin angular momentum of H), and the
process conserves parity.

The study of the emission and absorption of nuclear 7-rays, forms an
essential part of the development of nuclear spectroscopy. The subject has
a direct parallel in the study of atomic spectroscopy, however, there are
important differences. Consider, for example, a system initially in a state
of energy E{ making a transition to a state with energy Ef through the
absorption or emission of a photon of frequency v. In such processes, we
can define what are known as resonant or recoilless transitions, for which

hv = T(Et-Ef), (4.43)

where "—" corresponds to absorption and "+" to emission. Thus, in prin-
ciple, measuring v determines the level spacings. However, in absorbing or
emitting a photon, any system must, in fact, recoil to conserve momentum.
If M denotes the mass of the final-state object and v the magnitude of its
recoil velocity, it then follows from conservation of momentum that

— = Mv. (4.44)

Consequently, conservation of energy yields to a modified version of Eq.
(4-43)

1When we speak about "typical" lifetimes for different interactions, it should be
recognized that these can vary substantially for any specific process because of differences
in the phase space and transition operators under different circumstances. Thus, for
example, electromagnetic reactions have "typical" lifetimes ranging between PB 10~19

sec in certain particle decays to ?a 10~8 sec for atomic dipole transitions.
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Ei-Ef =ophl/+ - Mv2,

1 fhv\2

or hu = T(Ei-Ef-^^j=^(Ei-Ef-AER), (4.45)

where AER denotes the kinetic energy of the recoil.
Now, every unstable energy level has a "natural" width 5E = F and a

lifetime r, which can be related through the uncertainty principle:

or F as - « uncertainty in (Ei — Ef). (4.46)

In other words, the exact value of an energy level is uncertain, and cannot
be denned in any given transition to better than ft) F. Consequently, if
the kinetic energy of the recoil is such that AER <C F, then Eq. (4.45)
is essentially equivalent to Eq. (4.43), and resonant absorption can take
place. On the other hand, if AER > F, it is then impossible to excite the
system to a higher level through resonant absorption within the bounds (or
"umbrella';) provided by the uncertainty relation.

To appreciate this more fully, consider an atom with A — 50. The
typical spacing of atomic levels is of the order of 1 eV, and we will therefore
consider absorption of a photon of energy of hv = 1 eV. For the atom, we
have Me2 as 50 x 103 MeV = 5 x 1010 eV, and, consequently,

Because typical lifetimes associated with excited atomic levels are about
10~8 sec, we see that

h 6.6 x 10-22
1 as - fts „„ „ • MeV-sec

r 10~Hsec

= 6.6 x 10"14 MeV = 6.6 x 10"8 eV. (4.48)

(4.47)
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Consequently, AER <C T, and, for atomic transitions, resonant absorption
can therefore take place.

In contrast, typical nuclear spacings have hv > 100 keV = 105 eV. If
we consider again a nucleus with A = 50, we still have Me2 « 5 x 1010 eV,
but now, with the higher photon energy, the nuclear recoil energy is given
by

If we assume a typical lifetime of about 10~12 sec for a nuclear level, then

r ~ H ~ 6-6 x 1Q-22 MeV-sec
r 10~12 sec

= 6.6 x 10~10 MeV = 6.6 x 10~4 eV. (4.50)

It is clear, therefore, that for such nuclear transitions AER 3> V, and
resonant absorption cannot occur.

In fact, for resonant absorption to take place in nuclei, the recoil
energy must somehow be reduced, and this is done beautifully through
what is known as the Mossbauer effect (named after its discoverer Rudolf
Mossbauer). The basic idea rests on the fact that, the heavier the recoiling
system, the smaller is the recoil energy (see Eq. (4.49)). An enormous
increase in the mass of the recoil can be achieved by freezing the nucleus
into a rigid crystal lattice, which, of course, has a much larger mass than
a single nucleus. As a result, the mass of the recoiling system becomes
the mass of the macroscopic crystal, thereby increasing the effective mass
of the recoil by many orders of magnitude, and consequently making the
recoil energy AER negligible relative to Y. Because of this feature, the
Mossbauer technique can provide exceedingly precise estimates of widths
of levels. For example, level widths in iron have been measured to an accu-
racy of about 10~7 eV, which leads to an accuracy of about 1 part in 1012

in level spacing. The technique is therefore extremely useful in determining
hyperfine splittings of nuclear energy levels.

Problems

4.1 Calculate the Q values for the following a-decays between ground-state
levels of the nuclei: (a) 208Po -> 204Pb + a and (b) 230Th -* 226Ra + a.

(4.49)
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What are the kinetic energies of the a-particles and of the nuclei in the
final state if the decays proceed from rest?

4.2 Estimate the relative contribution of the centrifugal barrier and the
Coulomb barrier in the scattering of a 4 MeV a-particle from 238U. In
particular, consider impact parameters of 6 = 1 fm and b = 7 fm. What
are the orbital quantum numbers in such collisions. (Hint: \L\ ~ \fx p | ~
hkb ~ hi.)

4.3 Free neutrons decay into protons, electrons and antineutrinos, with a
mean life of 889 sec. If the neutron-proton mass difference is taken as 1.3
MeV/c2, calculate to at least 10% accuracy the maximum kinetic energies
that electrons and protons can have. What would be the maximum energy
that the antineutrinos can have? (Assume decay from rest and that the
antineutrino is massless.)

4.4 If the stable isotope of sodium is 23Na, what kind of radioactivity would
you expect from (a) 22Na and (b) 24Na?

4.5 Specify any additional particles needed in the following weak reactions
to assure the conservation of lepton number: (a) /j,~ ->• e~+ ? (b) r + ->•
e+ ? (c) e- + AXZ -> ? (d) !/„ + n -> ? (e) AXZ -»• AyZ-i + ?

( f ) F e + p - > ?

4.6 Calculate the typical kinetic energy expected of an a-particle confined
within a nucleus if its emitted energy is 10 MeV. What is the momentum
of such an a-particle inside the nucleus and after it is emitted. Is the
wavelength of such an a-particle acceptable for it to be contained within a
nucleus of 12C? What about 238U?

4.7 When you examine the dependence of Z on iV for stable nuclei, you
find that /?+ emitters lie above the region of stability (have proton excess)
and f}~ emitters lie below that region (have neutron excess). For example,
8B emits /3+, while 12B emits j3~. Stable nuclei are those that do not seem
to have sufficient mass for either emission to take place, that is, they are
the nuclei with greatest binding or smallest mass. As discussed in Problem
3.1, this suggests that stable nuclei should correspond to a "valley" in
the M-Z space, that is, specified by ^ = 0. Using the semi-empirical
mass formula for M, show that the relationship between Z and A for this
valley of stability is Z m (2+0(jff8 A2/a)- Several nuclei with Z beyond 110
were discovered in the late 1990s. Is it possible that there could be more
"islands" of stability for Z >120? Consider, for specifics, the possibility
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of binding of Z = 125, Z — 126, and Z = 164. Even more massive nuclei
have been hypothesized with Z > 200. These would have rather exotic
bubble-like or toroidal structure. Why would such structures be expected
to be more stable than spherical nuclei?
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Chapter 5

Applications of Nuclear Physics

5.1 Introductory Remarks

Studies of properties of nuclei and of the nuclear force have contributed
significantly to the formulation of the fundamental laws of nature. The
understanding of physical laws has in the past led to applications that have
benefited mankind. For example, the principles of electromagnetism led to
the commercialization of electricity, which has proven indispensable in our
daily life. Similarly, the explanation of atomic phenomena has given us the
laser, the transistor and a host of amazing devices. Needless to say, many
applications have also arisen from our understanding of nuclear physics.
However, because these developments have been put to both constructive as
well as destructive use, they have often led to controversy. In this chapter,
we will describe only a few of these applications and the principles behind
them.

5.2 Nuclear Fission

Neutrons, being electrically neutral, do not sense the direct Coulomb force.
As a consequence, unlike protons that are repulsed by the nuclear charge,
low energy neutrons can get quite close to the nuclei and interact with
them through the attractive nuclear potential to form bound states. In the
early days of nuclear physics, the capture of low energy neutrons within
nuclei was promoted as a technique for producing new nuclei of higher A
values. In experiments designed to make transuranic elements through neu-
tron capture, it was often observed that scattering of low energy thermal
neutrons (at room temperature T « 300 K, kT w ^ eV) from odd-A nuclei
such as 235U did not produce heavier nuclei, but instead the parent nucleus

105
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fragmented into two smaller-mass daughter nuclei. Such fragmentation of
a heavy nucleus into two medium-size nuclei and any other remnants is
known as nuclear fission. Certain heavy nuclei can also undergo sponta-
neous fission with only minimal external perturbation. A typical example
of induced fission of an odd-A nucleus is given by the absorption of thermal
neutrons by 235U

235U + n — • 1 4 8 L a + 8 7 B r + n. (5.1)

On the other hand, the scattering of thermal neutrons from even-A nuclei
such as 238U does not produce fragmentation. Nevertheless, fission can take
place in such nuclei when the neutrons have kinetic energies of the order of
2 MeV.

Fission, therefore, appears to be an inherent characteristic of large nu-
clei, and it has come to play an important role in our lives because the
process can release a large amount of energy. An estimate of the energy
released in the fission of a heavy nucleus can be obtained from the graph
of the binding energy per nucleon (see Fig. 2.1). The binding energy
per nucleon is smaller for very large-A values than for medium-A nuclei,
where it attains a maximum. The process of fission therefore involves the
breakup of a comparatively lightly bound heavy nucleus into two tightly
bound medium-A nuclei, and as a result this must lead to a release of en-
ergy. Thus, if we use —7.5 MeV as the approximate binding energy per
nucleon for 235XJ and about —8.4 MeV for the fission products (recall that
^ is defined as the negative of the binding energy per nucleon), we then
obtain an energy release of about 0.9 MeV per nucleon in a typical fission.
Consequently, the total energy released per fission of one 235U nucleus, and
shared among the end products, can be estimated to be

235 x 0.9 MeV = 211.5 MeV « 200 MeV. (5.2)

This is, indeed, a lot of kinetic energy, and consequently the harnessing of
nuclear fission can, in principle, provide a substantial source of power.

5.2.1 Basic Theory of Fission

The phenomenon of nuclear fission can be understood both qualitatively
and quantitatively on the basis of the liquid drop model. Qualitatively,
the model assumes nuclei to be spherical, and this is indeed consistent
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with much of the data. However, for very large nuclei, a spherical shape
need not necessarily be stable. Furthermore, an external perturbation,
such as an incident neutron, can create surface waves that can lead to a
change in the shape of a liquid drop. The liquid drop can, for example,
elongate as a result of the perturbation. If the produced deformation is
sufficiently large, Coulomb repulsion between the elongated portions of the
drop can produce a two-lobe structure that can push the lobes further
apart, causing a complete split or fission of the initial nuclear drop into two
droplets. On the other hand, if the initial deformation is not very large,
then the deformed liquid drop can form an excited state of the compound
nucleus (consisting of the incident neutron and the parent nucleus of nucleon
number A), which can eventually de-excite to a lower energy state of a
nucleus with nucleon number (A + 1) through the emission of a photon.
This second scenario is commonly referred to as the radiative capture of a
neutron. These processes are represented pictorially in Fig. 5.1.

vly v^^y \^-^J Ww

( A + i ) +r
Radiative V J
Deexcitation —

Fig. 5.1 Neutron absorption leading either to fission or to radiative capture.

The liquid drop model also provides an excellent quantitative descrip-
tion of nuclear fission. As we have already seen, the model provides a
natural and successful parameterization of the binding energy of nuclei.
The empirical formula for the binding energy (see Eq. (3.3)) has three
classical terms that depend explicitly on the shape of the drop, namely
the volume energy, the surface energy and the Coulomb energy. We can
therefore perform a simple classical calculation to analyze the stability of
a liquid drop under any external perturbation. Thus, if we assume that
a spherical liquid drop of radius R deforms very slightly under some ex-
ternal perturbation to an ellipsoid of the same volume (recall that nuclear
matter behaves like an incompressible liquid), with semi-major and semi-
minor axes a and b, respectively, we can write a and b in terms of a small
parameter of deformation e, as (see Fig. 5.2)
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a = R(l + e),

b = — ^ - j - . (5.3)
(l + e)i

(See Problem 5.13 for the connection between the parameter e and the
usual eccentricity of an ellipsoid.) This choice of parametrization guaran-
tees that the volume of the liquid drop remains unchanged

V=^nR3 = ̂ nab2. (5.4)
o o

[ i )/K \ External _ f [ V>\ « \
\ \ i I Perturbation V \ / J

a = R(l + f )

6=tl77)^

Fig. 5.2 Deformation of a sphere into an ellipsoid of same volume.

Since the volume is identical for the sphere and for the ellipsoid, the
volume energy will be the same for both the original and the deformed
liquid drops. However, the surface energy and the Coulomb energy will
differ for the two cases. In fact, it can be shown (by comparing the surface
area of an ellipsoid to that of a sphere) that the surface energy for the
ellipsoid assumes the form

a2Ai —> a2Al U + ̂  e2) , (5.5)

while the Coulomb energy changes to

-S^fH'-H- (56)
The above deformation increases the surface energy while decreasing the
Coulomb term. The stability of the droplet therefore depends on how these



Applications of Nuclear Physics 109

two terms compete with each other. The total change in binding energy
due to the deformation can now be written as

A = B.E. (ellipsoid) - B.E. (sphere)

2 2 A* 1 2 &= - eza2As - - eza3 -j-
5 o As

= \ e2Ai (2a2 - a3 ^j . (5.7)

Clearly, if this energy difference is positive, then the spherical drop will be
more tightly bound and consequently stable under a small external pertur-
bation. In fact, from the values of a2 and 03 given in Eq. (3.4), namely
a2 « 16.8 MeV and a3 w 0.72 MeV, we find that A > 0 when

Z2
2o2 - a3 — > 0,

or ^ < 47. (5.8)

This simple classical analysis shows therefore that a spherical nucleus
is stable under infinitesimal perturbations only if Z2 < ATA. There are,
of course, quantum-mechanical corrections that have to be considered, but
they do not affect the qualitative features of the result, namely that spher-
ical nuclei with Z2 > 47̂ 4 are expected to be highly unstable and subject
to spontaneous fission. Because large nuclei have Z <\A (see Fig. 2.3),
it follows, in fact, that they all satisfy Z2 < 47A, and a spherical shape
therefore provides them maximal binding. However, even for Z2 < 47^4,
the binding energy of two daughter nuclei can be smaller than the binding
energy of a spherical parent nucleus, in which case, the spherical parent can
fission, and thereby transform to a state of lower energy.

Let us consider the simple example of a parent nucleus fragmenting into
two identical daughter nuclei. (We are therefore assuming that both the A
and Z values for the parent nucleus are even.) Neglecting the quantum-
mechanical terms, namely the terms with 04 and 05 in Eq. (3.2), we can
calculate the difference in the binding energy of the initial nucleus and the
fission products when they are far apart from each other. Since the volume
energy cancels out, we obtain
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A(B.E.) = B.E.(A,Z)-2B.E. ( f ' f )

172

= o2A*(l-2*)+a3-r(l-2-*). (5.9)
As

Using the values of 02 and 03 from Eq. (3.4), we obtain

( Z2\
-0.27 a2 + 0.38 a3 — 1

A j

= Ai f-0.27 x 16.8 MeV + 0.38 x 0.72 MeV ^ )

( Z2\
-16.5+ — ] MeV. (5.10)

This calculation shows therefore that for Z2 > 16.5 A, we will have A(B.E.)
> 0, which corresponds to the condition that the two daughter nuclei will
be more tightly bound than the parent nucleus. It follows therefore that
for 16.5 A < Z2 < 47 A, when the spherical shape of the parent nucleus is
stable under small perturbations, it is, nevertheless, energetically favorable
for the parent to fragment into two lighter nuclei.

Our previous discussion can now be incorporated more quantitatively
into a graph of the potential energy of the two fission fragments as a func-
tion of their separation distance (see Fig. 5.3). When the two daughter
nuclei are far apart, their potential energy relative to the parent is given by
Eq. (5.10). For A « 240 and Z « 92, this corresponds to « 200 MeV for
two smaller nuclei of comparable size. As the fragments are brought closer
together, they sense the repulsive Coulomb potential, which increases as the
separation between them decreases. For r = ro, approximately when the
daughter nuclei start touching, the Coulomb potential is at its maximum,
and is of the order of « 250 MeV. (This reduces by « 10-15% for daugh-
ter nuclei with asymmetric Z-values of « 2:1.) For r < ro, the two nuclei
begin to fuse into a single deformed nucleus and, as we have discussed,
there are two possibilities for the evolution of the system. (Note that when
r < r0, the value of r provides an effective measure of the elongation of the
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deformed nucleus and is therefore proportional to the deformation param-
eter e given in Eq. (5.3).) First, when Z2 > 47 A, the spherical shape is
unstable, and that the energy decreases quadratically with deformation (see
Eq. (5.7)). This corresponds to Branch-I in the potential energy. In this
situation, at the slightest perturbation, the spherical parent nucleus evolves
into two separate nuclei because continued separation of the original object
is energetically favorable for all r values. The nucleus will therefore "roll
downhill" very rapidly, and spontaneously fission. When Z2 < 47 A, the
spherical parent nucleus corresponds to a stable bound state whose energy
increases quadratically with deformation. This is represented by Branch-II
of the potential-energy graph. In this case, classically, the parent nucleus
will be at the bottom of the potential well, but, due to quantum corrections,
the ground state acquires a zero-point energy given by some EQ • If Ec de-
notes the peak of the Coulomb barrier, then this is the classical amount of
energy a nucleus must have in order to undergo fission. In other .words, a
nucleus must acquire an amount of energy Ec - Eo in order to split apart.
This is known as the activation energy, and its value is typically between
6-8 MeV for nuclei with A ta 240. For Branch-II, the parent nucleus can
also fission through quantum mechanical tunneling through the barrier.
However, the probability for this, as mentioned in our treatment of barrier
penetration in Chapter 4, is exceedingly small since the fragment masses
are large and, correspondingly, the lifetime for such a process will be quite
long. Because the evolution of nuclei into two daughter nuclei on Branch-I
is always energetically favorable, such fissions will be very fast.

V(r) I I

i ,
r0 r —-

Fig. 5.3 Potential energy for the interaction of two medium-size nuclei as a function of
their separation distance. The nuclei just touch at r = ro, and coalesce at r = 0.

This elementary theory of fission, based on the liquid drop model, is due



112 Nuclear and Particle Physics

to Niels Bohr and John Wheeler, and although classical in its conception,
it leads to a surprisingly good understanding of both natural and induced
fission. It explains, in particular, why thermal neutrons induce fission in
235U, whereas only higher-energy neutrons can produce fission of 238U. This
difference can be argued in two ways. First, from a qualitative viewpoint,
because 235U is an odd-even nucleus and 238U is even-even, it follows that
the ground state of 235U will lie higher (less tightly bound) in the potential
well of its fragments than that of 238U. Hence, to induce fission, a smaller
perturbation will be needed for 235U than for 238U. More quantitatively, we
can estimate the activation energy that is required for the fissioning of 236U
and 239U; this can be calculated as about 5 MeV for the former and over
6 MeV for the latter. Now, in capturing another neutron, 235U becomes
an even-even compound nucleus, and the process therefore changes an odd-
even nucleus to a more tightly bound even-even nucleus; consequently, this
kind of transformation releases energy (the binding energy of the last neu-
tron is —6.5 MeV), which is sufficient for providing the activation energy
needed for the compound nucleus to fission into its fragments. The kinetic
energy of the incident neutron is irrelevant in this process, and hence even
thermal neutrons can induce fission in 235U. In contrast, the capture of a
neutron by 238U, changes it from an even-even to an odd-even nucleus. In
other words, neutron capture in this case changes a tightly bound nucleus
to a less tightly bound one, which is a less exothermic process (the binding
energy of the last neutron in 239U is —4.8 MeV, short of the more than
6 MeV required for fission). It is for this reason that higher energy neu-
trons, of energy greater than 1.2 MeV, are needed to provide the additional
activation energy required for 238U to fission. We also wish to note, that
although the pairing term (i.e., the last term in Eq. (3.2)) is negative for
even-even nuclei and zero for odd-even nuclei, and reflects the qualitative
behavior of the two systems, this term alone does not account for the entire
difference observed in the neutron induced fission of 235U and 238U.

In the preceding example, we assumed that the fission fragments have
equal mass, which would appear to be most natural. In general, however,
the fission fragments have quite asymmetrical mass distributions (this re-
duces the effective size of the Coulomb barrier). In fact, masses of daughter
nuclei tend to cluster around nucleon numbers of A PS 95 and A RJ 140.
Thus far there is no fundamental understanding of this particular cluster-
ing. Just after fission, daughter nuclei are usually left in excited states
and they decay to ground states through neutron emission or evaporation.
Thus, neutrons are often produced along with the larger fission products.
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In general, the original fission products, being neutron rich, do not lie on
the stability line in the N-Z plane but above it, and eventually decay to
the stability line through f}~ emission.

5.2.2 Chain Reaction

It is clear from the above discussion that each nuclear fission produces
a large amount of energy. This in itself would not be very interesting,
because what is needed for useful applications is a steady supply of energy.
What makes fission attractive as a possible source of commercial power is
the fact that neutrons are often produced along with the daughter nuclei.
For example, in 235U, an average of 2.5 neutrons are produced per nuclear
fission. Since such neutrons can induce additional fission, they can, in
principle, sustain a continuous process, and thereby provide a useful output
of energy.

Let us define the ratio of neutrons produced in the successive stages of
fission by

Number of neutrons produced in the (n + 1) stage of fission
Number of neutrons produced in the n stage of fission

If this ratio is less than unity, i.e., if k < 1, the process is called sub-critical.
It is clear that in this case the fissioning of some sample of material cannot
continue indefinitely, and eventually the reaction stops. This condition
is therefore not very useful for generating power. If fc = 1, namely, the
number of neutrons inducing fission remains constant at every stage, then
the process is called critical. In this case, a continued reaction rate is
possible. This is the most desirable condition for providing a constant
supply of power in a nuclear reactor. When k > 1, then more and more
neutrons are produced at every stage of fission, causing a runaway chain
reaction. This scenario is called supercritical, and it causes the output
energy to grow rapidly, leading to an uncontrollable explosion. Needless to
say, this kind of condition finds application in the design of nuclear weapons.

In a controlled environment, such as a nuclear reactor, the chain reaction
can be put to practical use for generating power. Very briefly, a nuclear
reactor consists of several components, the most important of which is the
core (see Fig. 5.4). The core contains the fissile material, or fuel elements,
the control rods and the moderator. Natural uranium can be used as the
fuel in a reactor. However, because natural uranium is a mixture of 235U

(5.11)
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and 238U, and 235U has a shorter lifetime (about 7 x 108 yr) than 238U
(about 5 x 109 yr), the natural mixture contains only a small fraction of
235U (the ratio of 235U to 238U in natural uranium is about 1:138). As
a result, most of the thermal neutrons incident on such a sample will be
captured radiatively by 238U nuclei, and will not induce fission. It is for
this reason that enriched uranium, which is essentially pure 235U, is used
as fuel in nuclear reactors.

Retractable
f Control Rods

/ /XV/Q/^C^—Fuel Elements

///rY/£y/yj/i — Moderator Material

Fig. 5.4 Sketch of the elements of the core of a reactor.

The control rods in a reactor are often made of cadmium, which has
a high absorption cross section for neutrons. Therefore, by retracting or
inserting the control rods, the number of neutrons available for inducing
fission can be regulated. This mechanism is the key element in maintain-
ing a constant A-value and, therefore a constant power output. The fuel
elements are usually surrounded by a moderator, whose main function is
to slow down any fast neutrons that may be produced in the course of
fission, so that they will have a larger probability of being absorbed and
thereby induce more fission (higher energy neutrons have smaller absorp-
tion cross sections). It is advantageous to have moderator material that is
inexpensive, and with a negligible cross section for absorption of neutrons.
Heavy water (D2O), for example, is preferred as a moderator over normal
water (H2O) because the cross section for neutron capture by protons in
normal water (to make deuterons) is much larger than that for capture by
deuterons in heavy water (to make tritium nuclei).

In a power plant (see Fig. 5.5), the reactor core is immersed in a coolant
(often water), which removes the heat energy produced in the core, and
keeps the core at sufficiently-low temperature to prevent a meltdown. (The
heat is generated from energy deposited by the fission remnants as they
ionize the material in the core.) The entire set up is surrounded by heavy
shielding needed to minimize any leakage of radiation. When the nuclear
reactor starts operation, the value of k is set slightly higher than unity,
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and is maintained at that value until the desired power output is achieved,
after which point the &-value is lowered to unity. As we have just noted,
the coolant removes the heat energy produced in the fission process, and
this can then be used to boil water and produce steam. The steam, in turn,
can run turbines that generate electricity. This is, of course, only a very
basic outline of the design and functioning of a nuclear power reactor. In
practice, the design and construction is far more complicated, especially
because of the many safety features needed to avoid accidents.

' / / . Steam Driven
/ . Y/A Turbine

/ / Core / / f lTT ( ) H T Electricity
// // l i y i ^ y ' n Generator

/ , Coolant / / ) \

Y/////////777A ^ W ^
Shield Condenser

Fig. 5.5 Sketch of the main elements in a nuclear power plant.

Finally, it is interesting to calculate the maximum energy expected from
a nuclear reactor. As we have seen, the fission of one 235U nucleus yields
~ 200 MeV or 3.2 x 1 0 ~ n joules. Now, one gram of any element contains
^p- atoms, where A§ is Avogadro's number, and one gram of 235U contains
therefore about 6 x ^ - « 3 x 1021 atoms. It therefore follows that the
complete fission of one gram of 235U can yield a total energy of

w 3 x 1021 x 3.2 x KT 1 1 joules

« 1011 joules

K. 1 MWD (MegaWatt-Day). (5.12)

That is, the fission of one gram of 235U can produce one MW of power for
an entire day. To compare this yield to the energy expected from one gram
of coal, we recall that burning one ton of coal yields a thermal energy of
0.36 MWD. Thus, ignoring relative efficiency of converting the energy to
electric power, a gram of completely fissioned 235U yields about « 3 x 106

more energy than a gram of coal.
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5.3 Nuclear Fusion

The data for the binding energy per nucleon has an interesting structure
in that it shows a maximum for medium-size nuclei with A w 60. As we
have seen, the subsequent slow decrease in this value for increasing A is
what makes nuclear fission possible. For lighter nuclei, the binding energy
per nucleon falls much more sharply, indicating that, with the exception of
magic nuclei, lighter nuclei are less tightly bound than medium-size nuclei.
We can therefore imagine using a process just opposite of fission that can
serve as another source for generating energy. Namely, if we combine (fuse)
two light nuclei into a relatively heavy and tightly bound nucleus, this can
then lead to a release of energy due to the difference in binding energies of
the initial and the final states. This process is known as nuclear fusion, and
the energy released per nucleon is comparable to that in fission. However,
since lighter nuclei contain fewer nucleons, the total energy released per
fusion is smaller. On the other hand, since there is an abundance of light
and stable nuclei in nature, fusion provides an attractive alternative for
generating power. Fusion is, in fact, the mechanism responsible for energy
generation in the interior of the sun and of other stars.

In principle, fusion can take place when two light nuclei are brought
close enough to each other so that they can overlap and fuse, and thereby
release energy. However, for this to happen, the Coulomb barrier between
the two nuclei has to be overcome. The value of the repulsive Coulomb
energy is a maximum when the two nuclei are just touching, and has the
form

ZZ'e2

Vboulomb = R + Ri' (5.13)

where Z and Z' are the atomic numbers of the two nuclei, and R and R'
are their respective radii. Recalling Eq. (2.16), we can rewrite this as

_ e2 hcZZ'
•^Coulomb — T~ : i , . . 1,

he i.2[Ai + (A')i]fm
1 197MeV-fm ZZ'

~ 137 1.2fm Ai + (A')i

Z 2" 1
ss — r MeV « - A* MeV, (5.14)

Ai+(A')i 8 ( '
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where A and A' are the nucleon numbers of the two light nuclei, and the final
expression is obtained by setting A f» A' sa 2Z « 2Z'. Thus, the Coulomb
barrier between two nuclei of A « 8 is about 4 MeV. Consequently, for
fusion to take place, we must provide kinetic energies of the order of a few
MeV to overcome the Coulomb barrier (clearly, the exact value depends on
the specific nuclear masses and charges).

It would therefore appear that a natural way to achieve fusion is by
colliding two energetic beams of light nuclei. In such a process, however,
most of the nuclei get scattered elastically and, as a result, this turns out
to be an inefficient way of inducing fusion. An alternative method is to
heat up the relevant nuclei to high temperatures to provide them with
sufficient kinetic energy to overcome the Coulomb barrier. To estimate
these temperatures, let us assume that each of the nuclei needs a kinetic
energy of about 2 MeV (that is, the Coulomb barrier is roughly 4 MeV).
Recalling that room temperature (300 K) corresponds to ^ eV, we obtain
that 2 MeV corresponds to

2 * L 1 ° 6 e V x 300K « 1010 K. (5.15)
V 40 ) e *

Although this is beyond the typical scale of RJ 107 K temperatures found
inside the sun and the stars, the Maxwellian tail of the spectrum in the
sun goes out far enough to provide the required excursions in energy, and
explains why fusion can take place in stellar interiors. There is a variety of
fusion reactions that can take place inside stars, and we will describe only
two of the "burning cycles".

Our sun has a mass of about 1030 kg, which consists primarily of about
1056 hydrogen atoms. Consequently, we expect that the main source of
energy in the sun is derived from the burning of hydrogen. This happens
through the proton-proton cycle, as suggested initially by Hans Bethe

XH + :H —> 2H + e+ + ve + 0.42 MeV,

XH + 2H —> 3He + 7 + 5.49 MeV,

3He + 3He —> 4He + 2 (XH) + 12.86 MeV. (5.16)

The large amount of kinetic energy released in the last step is due to the fact
that the 4He nucleus is doubly magic, and is bound extremely tightly. The
final kinetic energies are shared among the end-products of the reactions,
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and can be deposited in the stellar material. Thus, in effect, a proton-
proton cycle burns four hydrogen atoms to obtain

6 ^H) —»• 4He + 2 (1H) + 2e+ + 2i/e + 27 + 24.68MeV,

or 4(1H)—> 4He + 2e++2j/e+27-|-24.68MeV. (5.17)

The atoms inside the sun are in a highly ionized plasma state, and con-
sequently the positrons (e+) emitted in this cycle can annihilate with the
prevalent electrons and contribute to an increase in the total release of en-
ergy. Similarly, the produced photons can interact with stellar matter, and
deposit their energy. Prom the fact that the age of the universe is about
1010 yr, and from the power output of the sun, we can estimate that the
sun will continue to burn for about another 109 yr before it runs out of fuel
for fusion.

Another fusion cycle that plays a fundamental role within stars is the
carbon or CNO cycle. The helium produced in the proton-proton cycle can
produce carbon nuclei through the reaction

3(4He) —-> 12C +7.27 MeV. (5.18)

Subsequently, the carbon nucleus absorbs a hydrogen nucleus leading to

12C + JH —> 13N + 7 + 1.95 MeV,

is N _^ i3C + e+ + Ve + L 2 0 MeV,

13C + JH —>• 14N + 7 + 7.55 MeV,

14N + JH —> 15O + 7 + 7.34 MeV,

i 5 0 __> i s N + e+ + Ug + 168 M e V ;

1 5N+ 2H —> 1 2C+ 4He +4.96 MeV. (5.19)

Thus, in the full carbon cycle, we effectively get

12C + 4 (XH) —> 12C + 4He + 2 e+ + 2 vt + 3 7 + 24.68 MeV,

or 4(1H)—> 4He + 2 e + + 2 ve + 37 + 24.68 MeV. (5.20)
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The types of burning cycles that take place in different stars determine
their specific evolution.

Finally, we mention that there is a considerably large effort world-wide
to achieve controlled thermonuclear fusion. In fact, the following reactions
have already been observed under laboratory conditions

2H + 3H —> 4He + n + 17.6 MeV,

2H + 2H —> 3He + n + 3.2 MeV,

2H + 2H —» 3H + lE + 4.0 MeV. (5.21)

The main difficulty in producing fusion on a large scale lies in the problem
of containing the fuel material sufficiently long at the high temperatures
needed to penetrate the Coulomb barrier. At present there are two popu-
lar methods vying for this goal. One is magnetic confinement, wherein a
hot plasma of 2H and 3H circulates and fuses within a region of confining
electromagnetic fields. The other is inertial confinement, wherein electro-
magnetic energy (laser light or beams of heavily ionizing ions) is injected
into a small region that contains the fuel material. However, much work
remains to be done before fusion can be put to practical use.

5.4 Radioactive Decay

As we have seen, unstable nuclei can often transmute into other nuclei
through the emission of a, /3 or 7 particles. Any such spontaneous transition
from one state to another is known as a radioactive decay, and in this
chapter we will describe some general properties of such processes.

As we mentioned before, radioactive decay can be described as a sta-
tistical process. Namely, if we have a large number of radioactive nuclei,
we cannot say specifically which nucleus will decay at any given time. But
there is a unique constant probability of decay associated with each nu-
cleus. Thus, if N denotes the number of radioactive nuclei of any specified
type, at a given time, and A is the constant probability for decay per unit
time (that is, the decay constant), then the change in the number of nuclei
during an infinitesimal time interval dt is defined by

dN = N(t + dt) - N(t) = -N(t)X dt. (5.22)
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The negative sign in the above equation represents, as usual, the fact that
the number of nuclei decreases as a result of decay. If we assume No to be
the initial number of nuclei at t = 0, then the number of nuclei N(t) at any
later time can be obtained from Eq. (5.22) as

dN

JN0 N JO

or In — f l = -Xt,

or N(t) = Noe~xt. (5.23)

In other words, for a radioactively decaying system, the number of nuclei
that survive decreases exponentially, and vanishes only at infinite times.
This is the characteristic law for all such statistical decay processes.

There are several time scales that can be associated with a radioactive
system. We can denote by i i the time interval during which half of the
nuclei in the sample decay. It then follows that

N(H) = f=N0e-^,

or Aii = In 2,

and

If the decay constant is known (or can be calculated), then the half-life
ti can be obtained and compared directly with measured values. Another
useful time scale for describing decays is the average or mean life of a
radioactive material. This can be calculated using Eq. (5.23)

(5.24)
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fo°°tN(t)dt

() srmdt
= Nofo°°te-"dt
~ Nof™e-Hdt

= £ 4 (5-25)
where the definite integrals can be performed directly or found in tables
(they are related to "Gamma" functions). Consequently, as we mentioned
in the previous chapter in connection with barrier penetration, the mean
life of the sample is the inverse of the decay constant. Furthermore, r is
related to the half-life through the multiplicative constant In 2 = 0.693.

We noted before that Eq. (5.23) implied that it would take an infinite
amount of time for the total sample to disintegrate. Nevertheless, after
several half-lives, the number of decaying nuclei is often too small to be
detected. The number of disintegrations per unit time, or the activity, of a
material is defined as follows

A(t)= ~ =XN(t) = XNoe-xt. (5.26)
at

The activity is clearly a function of time and, in fact, also falls off exponen-
tially with time. For example, for 226Ra, whose half-life is 1620 years, we
have i i = 1620yr = 1.62 x 103yr « 1.62 x 103 x 3.1 x 107sec « 5 x 1010sec.
Consequently,

A = ^ « ^ _ M U X 1 0 - V (5-27)
ti 5 x 1010sec

2

If the radioactive sample at t = 0 consists of one gram of 226Ra, then the
original number of radioactive nuclei in the sample is

fi * ID23

AT0«^^-«2.7xl021, (5.28)
lib

and the activity of the sample at t = 0 is consequently
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A(t = 0) = \N0

« 1.4 x 10~n x 2.7 x 1021/sec

« 3.7 x 1010 disintegrations/sec. (5.29)

This initial activity falls off exponentially in time with the same decay
constant as given in Eq. (5.27).

The natural activity of 226Ra has been used to define a unit of radioac-
tivity. Thus, any sample with 3.7 x 1010 disintegrations per second is said
to have a radioactivity of 1 curie (Ci), named after Pierre Curie. Typi-
cal laboratory samples usually have far smaller radioactivities of the order
of a millicurie = 1 m Ci = 10~3 Ci = 3.7 x 107 disintegrations/sec, or a
microcurie = 1 [i Ci = 10~6 Ci = 3.7 x 104 disintegrations/sec. A more
rational unit of activity is known as the rutherford (rd), defined as 106

disintegrations/sec. An activity of 1 micro-rutherford (/xrd) in a material
corresponds therefore to 1 disintegration per second, and is referred to as
one becquerel (Bq).

Example 1

Let us suppose that we have a small sample of radioactive substance that
has a mean life r of 103 seconds. At some time t = 0 we observe 106

disintegrations per second. At a later time t, we would expect from Eq.
(5.26) that the activity would be

A(t) = A(0)e~xt.

Thus if we want the number of disintegrations expected in any 10 sec in-
terval centered on t, this would be

/

t+5 I

dtA{t) = —=• ̂ (O)e"At|*+J
. - 5 ^

= rA(0)e~Xt\^ = TA(0) (e"^*"5) - e-*(*+5)) .

Let us suppose that we wish to know AN(t) at t = 1000 sec. Then, for a
10 sec interval centered o n i = 1000, we would predict
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AAT(IOOO) = TA(0) [e~$£s -e-T$$]

= rA{Q)e~i f eioro - e~Tooo j

In fact, the general expression for an arbitrary At would be

t / At At\

AN(t) = TA(0) e"r ( e2r - e " 2r j ,

which for At <̂C r reduces to

At * *
AAT(f) « TA(0) — e~ r = .4(0) At e~ r .

T

Clearly, the expected number of disintegrations for our chosen time inter-
val will drop with time. There is, of course, no a priori way of determining
specifically which of our nuclei will disintegrate; we know only the expected
average number of disintegrations. In statistical processes, where the prob-
ability of any occurrence (p) is small, but there is a large sample of events
(N) that can contribute to the process, Poisson statistics can be used to
describe the system. For Poisson statistics, when the expected mean is
AN = pN, then the error or standard deviation on the mean can be shown
to be just yfpN = VAN. (Note that for our chosen interval of At = 10
sec, the probability p = AAt = 10~2 <C 1, and therefore Poisson statistics
are appropriate.)

Going back to our specific example, where A AT is 4 x 106, we must now
interpret the predicted result as follows. We can state that, in any given ex-
periment performed to count AiV, we will rarely observe the exact expected
mean number of AN counts. What we will see is that, in about 68% of
such experiments (assuming a Gaussian approximation for the error), the
observed counting rate will fall between AN - VAN and A AT + VAN.
Thus, if we expect AN = 4 x 106 counts, then ^ ^ ^ is only 5 x 10~4, so
the fluctuations about the mean will be at the level of « 0.05%. However,
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if we wish to look at the counting rate at a somewhat later time of t = 104

sec, then AN(t = 104) will be far smaller

AiV(104) » 106 x 10 x e~w « 450,

and VA~N will be « 21, and the relative deviations from the expected value
will therefore be larger and easier to observe.

5.4.1 Radioactive Equilibrium

As we have indicated, upon decay, a radioactive parent nucleus produces
what is called a daughter nucleus. The daughter nucleus can either be sta-
ble or radioactive. If it is radioactive, then it decays into a granddaughter
nucleus and so on. Thus, each radioactive parent nucleus initiates a series
of decays, with each decay-product having its own characteristic decay con-
stant and, therefore, a different half-life. In general, the mean life of the
parent nucleus is much longer than that of any other member of the decay
chain, and this will be important for the observations that follow.

Consider a radioactive sample of material where the parent nucleus has
a very long life time, and therefore the number of parent nuclei barely
changes during some small time interval. Let us suppose that the daugh-
ter, granddaughter, etc., decay comparatively fast. After a certain lapse in
time, a situation may develop where the number of nuclei of any member
of the decay chain stops changing. In such a case, one says that radioac-
tive equilibrium has set in. To see when this can occur, let us denote
by Ni,N2,N3,... the number of nuclei of species 1,2,3,... in the series,
at some specified time, and by Aj, A2, A3,..., respectively, the decay con-
stants for these members of the decay chain. The equations governing the
time-evolution of the populations Ni, N2, N3,... • can be deduced from the
contributions to the change in any species, as follows. The daughter nu
clei are produced at a rate of AiiVi due to the decay of the parent nuclei
(see Eq. (5.22)), and they in turn decay at a rate of X2N2. The difference
between the two gives the net rate of change of the daughter nuclei. For
any nucleus in the chain, there will be a similar increase in population from
the feed-down and a decrease from decay, except for the parent nucleus, for
which there is no feed-down possible. Thus, for the change in the number
of parent, daughter, granddaughter nuclei, etc., in a time interval At, we
can write
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ANt = -XxNiAt,

AN2 = \iNtAt - \2N2At,

AN3 = X2N2At - X3N3At,

: : : . (5.30)

Dividing Eq. (5.30) by At, and taking the limit of infinitesimal time in-
tervals, we can rewrite relations (5.30) in terms of our species numbers
Ni,N2,N3,..., as follows

7 - -^
at

^ = A2JV2-A3iV3,

i i i . (5.31)

We say that a secular equilibrium is reached when

dNl = dN2 = dN1 = . _ 0

dt dt dt K J

Note that by assumption, T\ is very large, and the change in Ni is therefore
very small ( ^ « 0). Clearly, Eq. (5.32) holds only when

AiiVi = X2N2 = X3N3 = . . . , (5.33)

or, equivalently, when

^ = ^ = ^ 3 = . . . . (5.34)
T\ T2 r3

Consequently, under these conditions, the daughter, the granddaughter,
etc., will all be in equilibrium with each other, as well as with the parent
nucleus (i.e., their numbers will effectively not change with time).
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5.4.2 Natural Radioactivity and Radioactive Dating

There are about 60 radioactive nuclei found in nature. This is much smaller
than the order of « 1000 radioactive isotopes that have been produced
artificially in laboratories. If, at the time of the formation of our planet, all
isotopes were almost equally abundant, then their absence in nature can
be used to estimate the age of the Solar System. In fact, our Solar System
is believed to be about 10 billion years old (1O10 yr), it is therefore not
surprising that during this time most of the radioactive nuclei with shorter
lifetimes have completely decayed away.

The naturally occurring radioactive nuclei have atomic numbers mostly
between Z = 81 and Z = 92, and are characterized by substantial neutron
excess. Nevertheless, the presence of a large number of protons in these
nuclei leads to strong Coulomb repulsion and instability. Such nuclei can
decay by successive emission of one or more a particles (two protons and
two neutrons). The resulting daughter nuclei, will therefore have an even
larger neutron to proton ratio and will tend to decay through the emission
of ft~ particles. The granddaughters may still be unstable and decay again
through the emission of more a-particles. This chain of a and ft decays
will continue until the nucleus reaches the N—Z stability band (Fig. 2.3).
Because an a-particle has four nucleons, the alternate a and ft decays will
define a radioactive nuclear series with atomic mass numbers that differ by
four nucleon units. This leads naturally to the four known series of heavy
a-emitters, whose daughter remnants differ progressively by four nucleons
in their values of A

A — An Thorium series,

A = An + 1 Neptunium series,
(5.35)

A = An + 2 Uranium-Radium series,

A = An + 3 Uranium-Actinium series,

where n is an integer. Each of the series is labeled using the historical name
of its parent nucleus, which is the longest-lived nuclide in the decay chain.
(The parent of the "actinium" series is, in fact, 235U.) From the measured
values of the mean lives of the parents
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r(thorium 232Th90) RJ 1.39 x 1010yr,

r(neptunium 237NP93) « 2.2 x 106yr,

r(uranium 238U92) « 4.5 x 109yr,

r("actinium" 235U92) « 7.15 x 108yr, (5.36)

and from the fact that the age of the universe is about 1010 yr, we should
not expect to find any of the radioactive isotopes of the Neptunium series
on earth. In fact, we have natural evidence only for the parents of the other
three series. It is also curious that isotopes of lead define the stable ends
for each of these three series, namely, 208Pb82, 206pb82 a n d 207pb82) corre_
sponding to the Thorium, Uranium and the Actinium series, respectively.
In addition to the heavier nuclei, there exist a few medium-size nuclei in
nature, such as 40K19(ii w 1.3 x 109 yr) and U5In49(ii » 5 x 1014yr), that
are also radioactive.

One of the important applications of radioactivity is in determining the
age of organic material that may be thousands of years old. The method is
based on the following simple observation. Our atmosphere contains many
gases, including 14N and 12C. Furthermore, the atmosphere is constantly
being bombarded with high energy cosmic rays, consisting of protons, heav-
ier nuclei, photons, and other particles. These cosmic rays interact with
nuclei in the atmosphere, and produce particles of lower energy. Any slow
neutrons produced in these collisions can be absorbed by 14N to produce
an isotope of carbon that is radioactive

1 4 N 7 +n—> 14Ce+p. (5.37)

14C decays with a half-life of 5730 years through /3~ emission

14C6 __>. 14N7 + e - + V g m (5>38)

At any particular time therefore, our atmosphere contains a large amount of
12C and a very small amount of 14C, both of which can form carbon dioxide
(CO2) molecules. Living organisms, such as plants, consume CO2 from the
atmosphere and consequently contain both of these carbon isotopes. The
intake of CO2 stops with the death of the organism. Subsequently, 14C,
being radioactive, continues to decay, whereas the amount of 12C remains



128 Nuclear and Particle Physics

unchanged. As a result, the relative concentration of the two isotopes in any
fossil changes with time. By measuring directly the relative amountsof 14C
and 12C in a fossil, and comparing this result with that in a corresponding
living organism, we can estimate the age of the fossil. Alternatively, we
can compare the activity of 14C in a fossil with that in a living organism
and thereby also deduce the fossil's age. The second method is known as
radioactive dating, or 14C dating, and finds great use in archaeological and
anthropological studies. The idea of carbon dating was suggested initially
by Walter Libby.

Example 2

As an example, consider a piece of wood, weighing 50 g, which has an
activity of 320 disintegrations/minute from 14C. The corresponding activity
in a living plant is 12 disintegrations/minute/gm, and we wish to determine
the age of the wood. (The half-life of 14C is ti = 5730 yr, and A = 2^2.)

We are given that the initial and current activities are

A(t = 0) = 12/min/gm,
AM 3 2 0 / • /

-4(*) = —/min/gm.
From the definition of activity, we can relate the activities at our two times
as follows

A(t) = ^ = XN(t) = \Noe~xt = A(t = 0)e~xt.
at

Therefore, we obtain

U In ̂  = °)

1 , / 12x 50\ 5730yr
OT « = A ln (-320-) * o d f X ^

« 5170 years.

In other words, the piece of wood is about 5170 years old. Recently, carbon
dating techniques have greatly improved through the use of nuclear mass
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spectrometers, which can measure directly very small differences in the
concentrations of 14C and 12C in any material. Using sample sizes of about
1 mg (as opposed to 1 gram in the older counting method), measurements
with sensitivity of « 10~14 in the 14C/12C ratio have been achieved. In
our example we have ignored variations in concentrations of 14C stemming
from any time dependence in the flux of cosmic rays, or from other, more
recent, sources such as atmospheric nuclear testing. Such effects can be
detected and must be taken into account in radioactive carbon dating.

Problems

5.1 To study neutron absorption cross sections at very low energies, one
must often slow down (moderate) energetic (sa 1 MeV) neutrons that are
produced in reactors. Show that paraffin would be a better moderator
than aluminum, by specifically calculating the maximum energy that a 1
MeV neutron can transfer in a collision with a proton (within paraffin) as
opposed to that with an Al nucleus.

5.2 Calculate the energy released when 1 gm of 235U fissions into 148La and
87Br. Compare this to the energy released in fusing deuterium and tritium
nuclei in 1 gm of tritiated water with 1 gm of deuterated water (i.e., T2O
and D2O).

5.3 The counting rate for a radioactive source is measured for one minute
intervals every hour, and the resulting counts are: 107, 84, 65, 50, 36, 48,
33, 25, . . . Plot the counting rate versus time, and from the graph roughly
estimate the mean life and the half-life. Recalling that the expected error
on N counts is y/N, do the data points seem reasonable? (Hint: use "semi-
log" paper to plot logiV vs t.)

5.4 A relic from an Egyptian tomb contains 1 gm of carbon with a measured
activity of 4 x 10~12 Ci. If the ratio of ^ nuclei in a live tree is 1.3 x 10~12,
how old is the relic? Assume the half-life of 14C is 5730 yr.

5.5 If the lifetime of the proton is 1033 yr, how many proton decays would
you expect per year in a mass of 103 metric tons of water? What would be
the approximate number expected in the year 2050?

5.6 Calculate the surface energies and Coulomb energies for the following
nuclei

2 2 8 T h j 2 3 4 u ( 2 3 6 u > 240pu } 243pu
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Based on your calculations which nuclei would you expect to fission most
easily?

5.7 If the efficiency for conversion of heat to electricity is only 5%, calculate
the rate of consumption of 235U fuel in a nuclear reactor operating at a
power level of 500 MW of electricity.

5.8 In the fission of 235U, the mass ratio of the two produced fission frag-
ments is 1.5. What is the ratio of the velocities of these fragments?

5.9 How much energy is liberated when 1 gram of hydrogen atoms is con-
verted into helium atoms through fusion? Compare this with the energy
liberated in the fission of 1 gm of 235U.

5.10 The half life of radioactive cobalt-60 is 5.26 yr.
a) Calculate its mean life and disintegration constant.

b) What is the activity of 1 gm of 60Co? Express this in curies and in
rutherfords.

c) What is the mass of a 10-Ci sample of cobalt-60?

5.11 Suppose that atoms of type 1 decay to type 2, which, in turn, decay
to stable atoms of type 3. The decay constants of 1 and 2 are Ai and A2,
respectively. Assume that at t = 0, Ni = No and N2 = N3 = 0. What are
the values for N% (t), N2 (t) and ^3 (t) at any later time i?

5.12 The activity of a certain material decreases by a factor of 8 in a
time interval of 30 days. What is its half life, mean life and disintegration
constant?

5.13 For a prolate spheroid (ellipsoid) with eccentricity x, the semi-major
axis a and semi-minor axis b in Fig. 5.2 are related through b = y/1 — x2 a.
If the volume and surface area of the nuclear ellipsoid are given, respectively,
as |TTO62 and 2TT6 (b+ asin~1 XY defining e = \x2, show that Eq. (5.5)
holds for small values of x. (Hint: Assume that the volume does not change
under distortion; expand functions of x, and keep all terms up to order x5.)
Using this result, roughly, how would you argue that Eq. (5.6) has the right
dependence?

5.14 Secular equilibrium can also be defined through the requirement that

d_ (N2\ = d_ (NA = I (NA

dt\Nj dt\N2) dt\N3J'"
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Assuming Ai <C A2,A3,A4..., show explicitly that you retrieve the first
three relations in Eq. (5.33). What happens for the final state of the decay
chain? Is this sensible?
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Chapter 6

Energy Deposition in Media

6.1 Introductory Remarks

Physics is an experimental science and experiments provide the foundation
for our understanding of nature and of physical laws. As we have argued
repeatedly, nowhere has the need for experiments been greater than in the
development of nuclear and particle physics. In these sub-atomic domains,
scattering of particles from each other provides the primary source of in-
formation. The experiments are often quite challenging in their own right,
and the experimental techniques can be as fascinating as the underlying
structure they are meant to study. In this and in chapter the following two
chapters, we will discuss some of the principles and devices that form the
basis of experimentation in nuclear and particle physics. Most modern ex-
periments rely on the application of a variety of exceedingly sophisticated
electronic and computer tools. These tools provide the means for automat-
ically preselecting interactions of greatest interest and of handling of enor-
mous volumes of scientific data. We will not cover these important areas of
experimentation, but will rather restrict ourselves to the more general ideas
encountered in the acceleration of probe particles to high energies and in
the detection of particles produced in sub-atomic collisions. We begin with
the principles underlying the detection of different kinds of particles, and
defer the description of detectors and accelerators to following chapters.

In order to be detected, an object must leave some trace of its presence.
That is, it must deposit energy in its wake. Ideally, detectors should help us
observe particles without affecting them in any measurable way, but, as we
will see later, this is not always possible. Independent of the sizes or shapes
of particle detectors, their operation is usually based on the electromagnetic
interactions of particles with matter. Energetic charged particles, for exam-
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pie, can ionize atoms, and thereby release electrons that can subsequently
be accelerated to produce small detectable currents. Most electrically neu-
tral particles can also interact with matter and transfer some or all of their
energies to the charged nuclei or to the atomic electrons of the medium,
which in turn can yield detectable electric signals. Particles such as neu-
trinos, which have no electromagnetic interactions, and therefore have very
low probabilities for colliding in matter (that is, have small cross sections),
are therefore especially difficult to detect. We will now discuss some of the
more straightforward ways in which particles can deposit their energies in
matter.

6.2 Charged Particles

When a charged particle moves through a medium, it interacts primarily
with the atomic electrons within that medium. If the particle has sufficient
kinetic energy, it can deposit that energy in the medium by ionizing the
atoms in its path or by exciting atoms or molecules to higher states; the
excited systems can subsequently drop down to their ground levels through
photon emission. When the charged particle is massive, its interactions with
the atomic electrons (Rutherford-like scattering) will not greatly affect its
trajectory (see the discussion in Chapter 1). A particle can also suffer
more catastrophic nuclear collisions, but these have smaller cross sections,
and are therefore relatively rare. Consequently, most of the energy that
a particle deposits in the medium can be attributed to its collisions with
atomic electrons.

A convenient variable that describes the ionization properties of any
medium is the stopping power S(T), which is defined as the amount of
kinetic energy lost by any incident object per unit length of path traversed
in the medium (this is often termed ionization-energy loss, or simply energy
loss):

S(T) = - ~ = nion7, (6.1)
ax

where T is the kinetic energy of the particle, riion is the number of electron-
ion pairs formed per unit path length, and / denotes the average energy
needed to ionize an atom in the medium. (For large atomic numbers, I can
be approximated as 10Z in eV units.) The negative sign in Eq. (6.1) simply
reflects the fact that a particle's energy decreases as it moves along (that is,
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the change in kinetic energy between x and x + dx, dT = T(x + dx) - T(x),
is negative). For any given medium, the stopping power is, in general,
a function of the energy of the incident particle, and it must, of course,
also depend on the particle's electric charge. We will see later that the
dependence on energy becomes very weak for relativistic particles.

Because the stopping power involves only electromagnetic interactions,
it can be calculated quite reliably. Hans Bethe and Felix Bloch derived the
following expression for relativistic particles

where m is the rest mass of the electron, /3 = ^ is the particle's velocity
relative to the speed of light in vacuum, 7 is the particle's Lorentz factor
(1 - /?2)~2, Q = ze is its charge, Z is the atomic number of the medium,
and n is the number of atoms per unit volume (equal to £^SL, as given in
Eq. (1.40)).

In natural a-decay of nuclei, the emitted a-particles have kinetic ener-
gies of the order of a few MeV, and because of their large mass (ss 4000
MeV/c2) the relativistic corrections in Eq. (6.2) can be ignored, which
simplifies S(T) to

S{T) - mpc* ln r ^ \ • (6-3)

However, for energetic particles produced in accelerator experiments, or for
electrons from nuclear ^-emission, the relativistic corrections are usually
substantial, and Eq. (6.2) must be used. (In fact, for electrons, there are
additional small correction terms.) The above expressions for S(T) have
been confirmed for different kinds of media and various types of particles,
over a wide range of energies.

In light of the arguments presented in Chapter 1, it may seem puzzling
that energy loss due to scattering from atomic electrons dominates over
that for scattering from nuclei. The reason for this is that large angular
deviations in elastic scattering correspond to large changes in the direction
of momenta, which need not be accompanied by significant energy loss. For
example, for the case of the elastic scattering of a-particles in the nuclear
Coulomb field, there is a significant change in the direction of momentum of
the a particle, but very little transfer of energy to the massive nucleus. On

(6.2)

(6.3)
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the other hand, scattering from the weakly-bound atomic electrons (and
ionization) represents an inelastic process that requires energy transfer.
To be more specific, a momentum transfer of 0.1 MeV/c to an electron
target would require an energy transfer of about 10 keV, while the same
momentum transfer to a gold nucleus would correspond to less than 0.1
eV of energy transfer. Consequently, the dependence of energy loss in
Eq. (6.2) on the inverse of the mass of the target, supports our previous
contention that, ignoring strong nuclear collisions, small-angle scattering
from atomic electrons is the dominant mechanism of energy deposition for
massive charged particles traversing matter.

Because of the fi~2 dependence in Eq. (6.2), at low particle velocities,
the ionization loss is quite sensitive to particle energy. In fact, this depen-
dence on v~2 suggests that particles of different rest mass (M) but same
momentum (p) can be distinguished because of their different rates of en-
ergy loss. Although S(T) has no explicit dependence on particle mass, for
any fixed momentum, the effect of mass comes in through

1 M2-Y2

v2 p2

Consequently, at low velocities (7 sa 1), particles of same momentum but
different mass will display significantly different energy loss.

Independent of particle mass, the stopping power decreases with in-
creasing particle velocity, and S(T) displays a rather shallow minimum
when 7/8 « 3 (that is, the minimum occurs at higher momenta for more
massive particles). This minimum in Eq. (6.2) is due to the convolution of
the decrease in S(T) caused by the /3~2 dependence (/3 saturates at /? RJ 1
at high energies), and the rise caused by the Cn-y2 term that is due to rel-
ativistic effects. When the stopping power is displayed as a function of 7/3
or - j ^ , S(T) is almost independent of M, and we can therefore say that
S(T) "scales as" 7/? or - ^ (see Fig. 6.1):

The relativistic in^2 rise in S(T) for 7/? > 3 (v > 0.96c) eventually
plateaus (saturates) because of the presence of long-range inter-atomic
screening effects (ignored in the Bethe-Bloch calculation). The total in-
crease in ionization is rarely greater than 50% beyond the value measured
for a "minimum-ionizing" particle, namely a particle that has v « 0.96c.
The relativistic rise is best observed in gaseous media, and is only a several
percent effect for dense materials. Nevertheless, this can be used to distin-
guish different particle types through their small differences in energy loss
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in gaseous detectors for energies corresponding to 7/? > 3.
At very high energies, after the saturation of the relativistic rise, ioniza-

tion loss becomes an energy-independent constant rate, and it is therefore
not possible to distinguish particle-types purely on the basis of ionization.
Except in gaseous media, the stopping power at high energies can be ap-
proximated quite adequately by the value when 7/? ss 3 (see next section).
We should also point out that, at very low energies, the stopping power in
Eq. (6.2) becomes unphysical (negative), reflecting the fact that ionization
loss is very small when the velocity of the particle is small. In this regime,
the details of the atomic-structure of the medium become important, and
the incident particle can even capture electrons from the medium to form
atomic systems of its own.

1.6-1

. ,_, 1>4 " \ V ' <2_____ Gaseous
§i!2 \ / Media
smin \ ^ T

\ ^ r ^-v-Solid Media

1 o ' 1 ^ " ^ i 1 1—»-
1 10 100 1000

Fig. 6.1 Stopping power relative to its minimum value as a function of -^ (or 7/3).

Once we know the stopping power, we can calculate the expected range
R of any particle in the medium, that is, the distance it will travel before
it runs out of kinetic energy and comes to a halt

At low energies, two particles of same kinetic energy but different mass
can have substantially different ranges. For example, an electron with a
kinetic energy of 5 MeV has a range that is several hundred times that of
an a-particle of the same kinetic energy. At high energies, where the range
becomes essentially proportional to energy, the difference in path lengths

(6.4)
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for particles of same kinetic energy becomes less pronounced.

6.2.1 Units of Energy Loss and Range

The units of S(T) in Eq. (6.2) are ergs/cm in the cgs system. The more
common way to specify energy loss is in MeV/cm, or in terms of an equiva-
lent thickness of gm/cm2, that is, in MeV/(gm/cm2) of material. Similarly,
the range is commonly expressed in cm or in gm/cm2, where the two units
are related simply through the density of the medium. When 7/? m 3,
the minimum value of S(T) for a particle with z = 1 can be evaluated
approximately from Eq. (6.2) as follows

47re4A0 ( f ) f2mc272/32^

mc2p* \ I J

(12)(4.8 x 1CT10 esu)4(6 x 1023 atoms/mole) (&}

~ (9.1 x 10-28 gm)(3 x 1010 cm/sec)2 (^)

, / 2 x 0 . 5 x l 0 6 e V x 9 \
X ln { IQZeV j

« 5.2 x 10~7(13.7 - ln Z)p f erg/cm.

The ln Z term is relatively small (< 4.5), and it varies slowly with Z. Let
us therefore use (Z) « 20 to get an approximate result

Smin « 5.6 x 10"6 p ̂  erg/cm x 6.3 x 10s MeV/erg

17

w 3.5 p — MeV/cm,

or 5min » 3.5 -^ MeV/(gm/cm2). (6.5)

As we mentioned before, Eq. (6.5) can also be used as a high-energy ap-
proximation for ionization loss in most media.
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Example 1

The range of a 5 MeV a-particle moving through air is given (in cm) approx-
imately by R = 0.318 T?, where T is in MeV units. If the stopping power
of aluminum relative to air is 1600, calculate the range of an a-particle in
aluminum in cm and in the equivalent thickness in gm/cm2.

The range in air is just 0.318 x 5= w 3.56 cm. Consequently, the range
in aluminum foil is | g | | cm = 2.225 x 10~3 cm. Now, using the density of
2.7 gm/cm3 for aluminum, this yields an equivalent thickness of material of
(2.225 x 10~3 cm) x (2.7gm/cm3) » 6.1 x 10~3 gm/cm2, or 6.1 mgm/cm2.

Example 2

Using the empirical formula for an electron's range-energy relation at low-
energy, namely, i?(gm/cm2) = 0.53T(MeV) — 0.16, calculate the energy of
an electron that has a range in aluminum of 2.5 gm/cm2.

The energy in MeV would be

T = 0^3 (E + °"16) = 0^3 (2"5 + °"16) * 5"° MeV"
Comparison of this with Example 1 shows that a 5 MeV electron has a
range that is about 400 times longer than that of an a-particle of the same
kinetic energy.

6.2.2 Straggling, Multiple Scattering, and Statistical
Processes

In our examples concerning the ranges of particles in matter, we calculated
values expected on the basis of phenomenological expressions. On the av-
erage, these predictions are quite accurate, but substantial variations are
observed from one event to another. The magnitude of the dispersion in in-
dividual ranges about the mean depends on the mass of the particle. Thus,
the ranges of a-particles of same energy have relatively little dispersion (or
straggling) compared to that found for electrons stopping in matter.

The fundamental reason for such variations can be attributed to the
inherent statistical nature of scattering processes. The energy that is trans-
ferred from an incident particle to target particles is not just a fixed and
unique quantity, but rather has a range of values that are distributed ac-
cording to some functional form. Thus, for example, for Rutherford scat-
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tering, the distribution function is given by Eq. (1.73). Once a function of
this kind is known, we can calculate a mean value and a dispersion about
the mean for any chosen variable, such as, for example, the kinetic energy
transferred to the target. Any finite dispersion about the mean implies the
presence of variations in the process from one interaction to another. (We
have already witnessed the presence of similar fluctuations in our discussion
of natural radioactivity.) The range of a particle in matter is determined by
the sum over a series of independent collisions with atomic electrons in the
medium. It should therefore not be surprising that fluctuations in energy
transfer in individual collisions can lead to variations in ranges of particles
of same initial energy.

Another important effect that has statistical origin involves the angular
deviation experienced by particles in their Rutherford scattering off atomic
electrons in the medium. The consecutive collisions add up in a random
fashion and provide some net deflection of any incident particle from its
original line of flight. This "multiple-Coulomb scattering" also increases
the path length that any particle follows as it traverses a given thickness
of material. Because multiple scattering is a random process, the mean
angular deviation for an ensemble of many particles passing through some
thickness L of material must average to zero. However, the root-mean
square (rms), or standard deviation 9Tms = ^J(62) in the angle due to this
"random walk" is finite and equals approximately

20MeV [L . .
ppc V -̂ o

where z is the charge of the incident particle (in units of e) of momentum p
(in MeV/c) and velocity /?c, and XQ is the radiation length of the medium
(see next section).

Example 3

Calculate the mean kinetic energy transferred to a target at rest in the
laboratory ((T)), and the dispersion about that mean (AT), for a process
that can be characterized by the cross section

(6.6)

(6.7)
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This is, in fact, the approximate form of the dependence for scattering of
nucleons at small q2 from a nucleus of radius R in fm, and q2 is in (GeV/c)2

units (c/Problem 2.11).
The kinetic energy transferred to the target can be obtained from Eq.

(1.70) to be

2M'

Hence, for the mean and for the second moment of T, we obtain

/0°° dq2e-SR2i2 16MB,2'

f°°da2 (-^-Y e-8R2i2 i

[ ' ~ /0°° dq2e-8R2"2 ~ 128M2i?4' l ° - 8 j

where, to evaluate the above integrals, we used the standard result

jTcfc^e—= J £ J , (6.9)

Consequently, the dispersion in T, defined by the square root of the vari-
ance, reduces to

AT = [((T - (T))2)]i

= [<ra>-W* = i6^F- (6-10)

Thus, for this simple exponential dependence on q2, the dispersion, or root-
mean-square (rms) variation in (T) from scattering to scattering is just
equal to the mean value of T. Because M is almost equal to the atomic
weight A in GeV units, and R m 1.2 As, we can write

AT = Trms = (T) ss (20i4f r 1 GeV. (6.11)

Prom this example, we can see once again the very strong dependence
of the kinetic energy transfer on target mass. For protons interacting with
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protons, (T) m 0.05 GeV and momentum transfers are typically « 0.3
GeV/c, but for proton-lead collisions (T) w 7 keV!, and momentum trans-
fers are sa 0.05 GeV/c. (These results, including our exponential formula
for q2, hold only for elastic reactions when nuclei do not break apart in the
course of the collision.)

6.2.3 Energy Loss Through Bremsstrahlung

Although Eq. (6.2) was derived for the case of Rutherford scattering of
massive projectile particles, it also holds surprisingly well for incident elec-
trons. The scattering of electrons in matter is more complicated because
electrons have small mass, and consequently relativistic corrections become
important for kinetic energies as low as several hundred keV. In addition,
electron projectiles can transfer substantial fractions of their energies to
the atomic electrons with which they collide, thereby producing what are
referred to as 5-rays, or knock-on electrons, which cannot be distinguished
from the incident (i.e., scattered) electrons. This indistinguishability re-
quires more delicate quantum-mechanical treatment of the scattering cross
section. Despite these complications, Eq. (6.2) still provides an adequate
approximation to the ionization loss by electrons for energies in excess of
about 1 MeV. (The relativistic rise for electrons is somewhat smaller than
it is for massive particles.)

However, unlike massive particles, electrons usually suffer large acceler-
ations as a result of their interactions with atomic electric fields (and es-
pecially with the intense nuclear Coulomb fields). These accelerations can
then lead to radiation of electromagnetic waves. Such emission of photons,
or bremsstrahlung as it is termed, is an important mechanism for energy
loss, especially for ultra-relativistic electrons. (Bremsstrahlung can also be-
come significant for more massive particles, but only beyond 1012 eV, or
TeV energy scales.) Thus for the total energy loss by electrons traversing
matter we can write schematically,

(-£) =( _£) + (-<f) . (6.12)

The ratio of the bremsstrahlung to ionization loss for high-energy electrons
can be shown to be approximately equal to
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(dT) T 7

\dx I brem ^ J ^ (a, -i o\
m \ ~ 1200mC2' ( b " " j

V ax /ion

where Z is the atomic number of the medium, m is the rest mass of the
electron (projectile), and T is its kinetic energy in MeV. At high energies,
the ionization loss is constant (saturated by the density effect), and given
approximately by Eq. (6.5), and radiation dominates the total energy loss
in Eq. (6.12). (This is illustrated in Figure 6.2.) According to Eq. (6.13),
the radiated energy at high energies is proportional to the energy of the
electron, and for this regime it is useful to define the radiation length (Xo),
which is the distance that an electron travels before its energy drops to \
of its original value. From Eqs. (6.5) and (6.13) we obtain

(T~) = ~1T> w i t h * o « 1 7 0 ^ ( i n g m / c m 2 ) . (6.14)
V^/brem X0 Z<*

Dividing Xo by the density of the medium, or multiplying the right-hand

side of Eq. (6.14) by that density, converts the units to energy loss per

cm (see Eq. (6.5)). At high energies (7/? > 3) it is also useful to write an

approximate expression for ionization loss in terms of the radiation length.

Defining a critical energy (Tc) as the energy at which energy loss due to

collisions (ionization) is the same as that due to bremsstrahlung, we can

write ^ L m = U L = ~ ^ ' (O5)
where, from Eqs. (6.5) and (6.14), we get Tc « ^ (in MeV).

Except for smallest Z values, the above expressions provide quite satis-
factory approximations for calculating ionization-energy loss for any high-
energy particle of unit charge, and the radiation loss for high-energy elec-
trons. Substituting XQ from Eq. (6.14), into Eq. (6.15), and setting
I = 2.2 for Z « 20, we get that (£ : ) i o n « -1.6 MeV/(gm/cm2). This
high-energy approximation holds to « 30% accuracy for every medium,
except hydrogen.

An important consequence of Eq. (6.14) is that, because of
bremsstrahlung, high energy electrons lose their kinetic energy exponen-
tially with the distance traveled in matter. That is, integrating Eq. (6.14)
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between an initial kinetic energy To and some later value T, provides the
relation

T = Toe~^. (6.16)

Thus, energetic electrons radiate most of their energy within several radi-
ation lengths of material. This characteristic behavior is particularly im-
portant in the design of electron detectors. More massive ultra-relativistic
charged particles that do not radiate lose their energy through nuclear
(strong) collisions or just through ionization loss.1

l Total ^ v ^ » - S ~ Bremsstrahlung

— \ S'
dx \ ^fyr ^Ionizat ion

~3mc2 Tc T

Fig. 6.2 Energy loss in matter as a function of electron energy.

Example 4

As an example of the effects of multiple scattering, let us calculate the
typical angular deviation of a 5 MeV proton traversing 1 cm of argon gas
at atmospheric pressure and 0°C, and compare this to the case of an electron
of same kinetic energy.

The radiation length of gaseous argon at the stated conditions is ap-
proximately 105 m. The proton is non-relativistic, and its momentum can
therefore be approximated as

p = V2MT « y/2 x 1000 MeV/c2 x 5 MeV « 100 MeV/c.

'Muons, as we will see, are massive charged particles that do not have strong interac-
tions, and therefore can neither radiate nor deposit their energies through large transfers
of momentum to nuclei. Consequently, muons have ranges that are essentially propor-
tional to their incident energies. Shielding radiation-sensitive equipment and personnel
from excessive exposure to high-energy muons is therefore an issue of substantial concern
at high-energy laboratories.
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The proton's velocity can be calculated from

/ 2 T ^ / 2 x 5 MeV~
W V Af y 1000 MeV/c2 ~ C'

The electron, on the other hand, is quite relativistic, and its momentum
can therefore be taken as

c c

The electron's velocity is essentially equal to c. Thus from Eq. (6.6), for
the proton we obtain

^ * olfioo / H w °"02 rad = 20 mrad'
and for the electron we get

*-*rlb.v^*4 0 m r a d-
Consequently, as expected on the basis of their small mass, electrons are
scattered much farther away from their initial directions than the massive
protons. And because low energy electrons also have far longer ranges, they
also exhibit far greater dispersion or straggling than more massive particles
of same kinetic energy.

6.3 Interactions of Photons with Matter

Because photons are electrically neutral, they do not experience the
Coulomb force the way charged particles do. We might therefore concluder

incorrectly, that they cannot ionize atoms. In fact, photons are the carriers
of electromagnetic force and can interact with matter in a variety of ways
that lead to ionization of atoms and to energy deposition in a medium, as
discussed below.

We can describe the attenuation of light (photons, X-rays or 7-rays) in
a medium in terms of an effective absorption coefficient fi, which reflects
the total cross section for interaction. In general, fj, will depend on the
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energy or frequency of the incident light. If I(x) represents the intensity of
photons at any point x in the medium, then the change in intensity dl in
an infinitesimal thickness of material dx can be written in terms of /i as

dl = I(x + dx) - I(x) = -nl(x) dx, (6.17)

where, as usual, the negative sign indicates that the intensity decreases
with traversed distance. Integrating the above expression from some initial
value Io at x = 0 to the final intensity I(x) at the point x, we obtain

dI A

— = -li dx,

f1 dI f A
or — = -fj, dx,

Jio 2 Jo
or I(x)=Ioe-'"t. (6.18)

As in the case of other statistical processes, such as radioactive decay, we
can define a half-thickness, xi, as the thickness of material that photons
must traverse in order for their intensity to fall to half of the original value.
This can be related to pt, as follows. Prom Eq. (6.18), we can write

I (x i ) = | = Ioe- '"*>

which implies that

fixi = In 2,

In 2 0.693
or xi = = . (6.19)

. 2 /* P

If xi is expressed in cm, then /J, must have units of cm"1, and when xi is
given in terms of gm/cm2, then \x has units of cm2/gm. The value of /x"1

is just the mean free path for absorption, or the average distance through
which a beam of photons will propagate before their number drops to - of
the initial value.

We will now turn to a brief discussion of the specific processes that
contribute to absorption of photons in any medium.
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6.3.1 Photoelectric Effect

In this process, a low-energy photon is absorbed by a bound electron, which
is subsequently emitted with kinetic energy Te (see Fig. 6.3). If we call the
energy needed to free the atomic electron Ig (this is the negative of the
binding energy), and the frequency of the photon u, then energy conserva-
tion requires that the Einstein relation holds, namely,

or Te = hu-IB, (6.20)

where IB sets the scale for the appropriate photon energies that are required
for the process to take place. The photoelectric effect has a large cross
section in the range of X-ray energies (keV), and, ignoring the absolute
normalization, scales approximately as

Zh
a « T for E~ < mec2,

Z5
CT«— for Ey>mec2. (6.21)

Thus the process is particularly important in high-£T atoms, and is not very
significant above the 1 MeV range of photon energies. When the emitted
electron originates from an inner shell of the atom, one of the outer electrons
drops down to fill the lower (more stable) empty level, and the emitted
electron is consequently accompanied by an X-ray photon produced in the
subsequent atomic transition.

v

Fig. 6.3 Pictorial representation of the photoelectric effect.
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6.3.2 Compton Scattering

Compton scattering can be thought of as equivalent to a photoelectric effect
on a free electron. In conventional language, one can think of the process as
involving the collision of two classical particles - the photon, with energy
E = hv and momentum p = --, and an electron at rest. Alternatively,
the process can be viewed as follows. The electron absorbs an incident
photon, and forms an electron-like system that has an unphysical mass (see
Problem 6.8); this virtual system (that is, "existing" only for very brief
times as determined through the uncertainty relation r « A?^e5, where
AE = Amc2 is the uncertainty in the system's energy) then de-excites into
a physical electron and to a photon of shifted frequency (or energy), as
shown in Fig. 6.4.

v v' y^ *^.—<^^~~

» , ^ — • » — * = — — ^— — • " • •

e~ e~ z in zout

Fig. 6.4 Pictorial representations of Compton scattering (left) and of pair production
(right).

The kinematics for the scattering assumes that the target electron is
free. This means that the results are not expected to hold for incident
photons of very low energy (much below 100 keV), where effects of atomic
binding can be important. Treating the photon as a particle of energy hu
and momentum ^ (zero rest mass), and using fully relativistic momentum-
energy expressions for the electron, it is straightforward to show that the
kinematic relation between the frequency of the incident and the scattered
photon (i/), at a photon scattering angle 6, is given by

where m is the rest mass of the electron. Prom the above expression, we see
that, for any finite scattering angle, the energy of the scattered photon is
smaller than that of the incident one. The incident photon must therefore
transfer some of its energy to the electron, which consequently has a recoil
energy that depends on the scattering angle.

Relying on special relativity, the quantization of light (that is the par-

(6.22)
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tide properties of photons), and quantum theory, the Compton reaction
served as one of the early major confirmations of the veracity of the new
ideas of 20th century physics. Again, ignoring absolute normalization, the
cross section for Compton scattering appears to scale as

at*.h> (6-23)
where Z is the atomic number of the medium. Compton scattering domi-
nates energy deposition in the 0.1 to 10 MeV range of photon energies.

6.3.3 Pair Production

When a photon has sufficient energy, it can be absorbed in matter and
produce a pair of oppositely charged particles. Such conversions can only
take place when no known conservation laws are violated in the process.
In addition to charge and momentum-energy conservation, other quantum
numbers may restrict the possible final states. The best known conversion
process, commonly referred to as pair production, involves the creation of
a positron-electron (e+e~) pair through the disappearance of a photon.

However, a massless photon cannot be converted into a pair of massive
particles without violating momentum-energy conservation. This is best
seen heuristically as follows. Let us suppose that the photon has a very
small rest mass (far smaller than the mass of an electron). Now, in the
photon's rest frame, the energy is its rest mass, namely close to zero, while,
for the final state, the minimum energy is given by the sum of the rest
masses of the two particles, which by assumption is relatively large. It
follows therefore that a process such as pair production can only be observed
in a medium in which, for example, a recoiling nucleus can absorb any
momentum (but very little energy!) required to assure momentum-energy
conservation. Since the mass of the positron equals that of the electron,
the threshold for e+e~~ pair production is essentially hv « 2mc2 = 2 x 0.511
MeVw 1.022 MeV (see Problem 6.9).

The pair production cross section scales essentially as Z2, where Z is
the atomic number of the medium. It rises rapidly from threshold, and
dominates all energy-loss mechanisms for photon energies > 10 MeV. At
very high energies (> 100 MeV), the e+e~~ pair cross section saturates,
and can be characterized by a constant mean free path for conversion (or
by a constant absorption coefficient) that essentially equals the electron
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radiation length of the medium,

Xpair = (^pair)"1 « ^Xo. (6.24)

A natural question to ask is what happens to the positrons that are
created in the conversion of photons in matter? Because positrons are
the antiparticles of electrons, after production, they traverse matter, much
as electrons do, and deposit their energies through ionization or through
bremsstrahlung. Once a positron loses most of its kinetic energy, how-
ever, it captures an electron to form a hydrogen-like atom, referred to as
positronium, where the proton is replaced by a positron. Unlike hydrogen,
positronium atoms are unstable, and decay (annihilate) with lifetimes of
about 10~10 sec to form two photons

e+ + e~—^7 + 7. (6.25)

The process of annihilation produces photons of equal energy, back-to-back
in the laboratory. To conserve momentum-energy, each photon carries away
exactly 0.511 MeV. Thus pair annihilation provides a very clean signal for
detecting positrons, as well as for calibrating the low-energy response of
detectors.

The three processes that we have just discussed provide independent
contributions to the absorption of photons in any medium. We can there-
fore write the total absorption coefficient as the sum of the three separate
coefficients,

M = Mpe +MComp + Mpair- (6.26)

The independent contributions as well as their sum, are shown as a function
of photon energy in Fig. 6.5.

Finally, referring back to our discussion of Rutherford scattering in
Chapter 1, we can relate any absorption coefficient to the scattering cross
section as follows. We argue that an object scattered out of the beam pro-
duces a drop in the beam intensity or an equivalent increase in the counting
rate for scattering. According to Eq. (1.39), the fraction of the incident
beam that is scattered, or lost, is proportional to the cross section per
nuclear scatterer (a) and to the thickness of target material (dx)



Energy Deposition in Media 151

M = J'pe+J'Comp+Mpalr
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Fig. 6.5 Sketch of photon absorption coefficients as a function of energy for relatively
high-Z material.

This is just the negative of f̂, or the fraction of the beam that is attenuated
or absorbed, as given in Eq. (6.18). Equating the two terms, we obtain the
following relationship between any cross section and an absorption coeffi-
cient

H = p -j- a = ncr, (6.28)

where fj, has units of cm"1, when n is the number of scattering centers per
cm3, and a is expressed in cm2. When fj, is given in units of cm2/gm, then
n corresponds to the number of atoms per gm of material.

Example 5

The total absorption coefficient for 5 MeV photons in lead is about 0.04
cm2/gm. If the density of lead is taken as 11.3 gm/cm3, what is the half-
thickness of lead for these 7-rays? What thickness of lead would be required
to reduce the intensity of such photons to 0.06 of the initial value?

The absorption coefficient in cm""1 can be calculated as fj, —

0.04 cm2/gm x 11.3 gm/cm3 = 0.45 cm"1. Hence, xi = ^ =
n Jl'6?!-! « 1-53 cm, which is the thickness of lead that will reduce the
u-TCO c m

photon intensity to half of its original value. To find the thickness needed
to reduce the intensity to 0.06 of the initial value, we use Eq. (6.18)

(6.27)
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1

— p—PxI1o

or 0.06 = e-f*,

or ln(0.06) = —fix,

In(0.06) ln(0.06)
or x = - = -± -r « 6.2 cm.

fi 0.45 cm-1

If we characterize the range of 5 MeV photons in matter by the inverse
of the absorption coefficient (that is, by the absorption length), we then
obtain a typical penetration length or range in lead of /045,?m-i) RJ 2.2 cm,
or equivalently 2.2 cm x 11.3 gm/cm3 « 25 gm/cm2. Comparing this with
the ranges of electrons and a-particles of similar energy, it is clear that
7-rays are far more penetrating at such low energies.

Example 6

What is the cross section that corresponds to an absorption coefficient of
0.45 cm""1 for photons in lead?

The relationship we need is given in Eq. (6.27), namely,

n Ao p'

Using Ao = 6.02 x 1023, A - 207.2 gm, and p = 11.3 gm/cm3, we obtain
the cross section

/ 207.2gm \ / 0.45cm-1 \ „„ ,„ 23 2 , „,
a = ———f-x=- T w 1.37 x 10~23cm2 = 13.7 b.

V6.02 x 102V ^11.3 gm/cm3 j
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Example 7

The radiation length of lead at high energy is 5.6 mm. What is the value
of the absorption coefficient, and what is the cross section for e+e~ pair
production on a lead target?

From Eq. (6.24), we can calculate the absorption coefficient for pair
production as n « ^ - ~ 1.39 cm""1, and, following Example 6, we can
calculate the cross section to be a « 42.3 b. This can be compared with the
total inelastic nuclear (strong) cross section for nucleon interactions with
lead at high energies, which is about 1.6 b. Consequently, we conclude
that the mean free path for nuclear collisions in lead is about 15 cm, as
opposed to the 0.6 cm radiation length that characterizes electromagnetic
interactions. At high energies, far less material is therefore required to
stop photons or electrons than particles that interact primarily through
the strong force.

6.4 Interactions of Neutrons

As we have already mentioned, neutrons are in most respects very similar
to protons. They are the constituents of nuclei, and have essentially the
same mass, same nucleon number and spin as protons. They are, however,
electrically neutral, and consequently, just like photons, cannot interact di-
rectly through the Coulomb force. (Although neutrons have small magnetic
dipole moments, these do not provide substantial interactions in media.)

Neutrons do not sense the nuclear Coulomb force, and as a result even
slow neutrons can be scattered or captured by the strong nuclear force.
When low-energy neutrons interact inelastically, they can leave nuclei in
excited states that can subsequently decay to ground levels through the
emission of photons or other particles. Such emitted 7-rays or other par-
ticles can then be detected through their characteristic interactions with
matter. Elastically scattered neutrons can transfer some of their kinetic
energy to nuclear centers, which in recoiling can also provide signals (e.g.,
ionization) that can be used to reveal the presence of neutrons. In the elas-
tic scattering of neutrons from nuclei, just as for the case of ionization loss,
it is more difficult to transfer a sizable part of a neutron's kinetic energy
to a nucleus if the nuclear mass is large (recall from Eq. (1.70) that, for
any momentum transfer q, the transfer of kinetic energy goes as -^ with
nuclear mass M). As we have already mentioned, this is the reason that
hydrogen-rich paraffin is often used as a moderator to slow down energetic
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neutrons.
When neutrons are produced in collisions, they can be quite penetrating,

especially if their energies are in the range of several MeV, and there are no
hydrogen nuclei available for absorbing their kinetic energies. The neutron
shine, or "albedo", at accelerators and reactors is often a major source
of background to experiments, and can only be reduced through use of
appropriate moderators and materials that have large neutron-absorption
cross sections (e.g., boron, which captures low energy neutrons through
1 0 B+n—> 7Li + a).

6.5 Interaction of Hadrons at High Energies

All particles that interact through the strong nuclear force are known col-
lectively as hadrons. Neutrons, protons, ir mesons and K mesons, are the
most common hadrons. We will discuss the intrinsic properties of such par-
ticles in Chapter 11, but will describe here the overall character of their
interactions.

Protons are, of course, the nuclei of hydrogen atoms, and are therefore
the easiest hadrons to accelerate and to use as particle beams (see Chapter
8). When proton beams interact with other protons, or with larger target
nuclei, they can produce ir mesons, K mesons, neutrons and other hadrons.
At low beam energies (below RS 2 GeV), the interactions between pions
and nucleons, kaons and nucleons, and between two nucleons, differ quite
markedly. At such low energies, the collision cross sections between any
two hadrons change rapidly (and often oscillate) with energy. All this is
because certain hadronic systems resonate at specific energies while others
do not. Beyond 5 GeV, the total cross sections for hadron-hadron inter-
actions change (drop) only slightly with increasing energy. They reach
minimum values, typically 20-40 mb (m irR2), at « 70-100 GeV, and then
increase logarithmically with increasing beam energy.

Hadronic collisions, in the main, involve very small momentum transfersy
small production angles, and interaction distances of the order of w 1 fm.
Central collisions, involving large momentum transfers are quite rare, but
very interesting from the point of view of developing an understanding of the
structure of hadrons. Typical momentum transfers in hadronic reactions
are of the order of q2 » 0.1 (GeV/c)2. The mean multiplicity, or the average
number of particles (usually pions) produced in a typical hadronic collision,
grows logarithmically with incident energy, from « 3 particles at 5 GeV
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to « 12 at 500 GeV, with great fluctuations around the mean occurring
from one event to another. Thus when high-energy hadrons interact with
matter, they break apart the nuclei, produce mesons and other hadrons,
that can, in turn, interact again and deposit energy in the medium. This
is essentially independent of electric charge of the hadron, and therefore,
ignoring small differences due to Coulomb scattering, high-energy neutron
and proton interactions in matter are almost indistinguishable. Any energy
deposited by the primary or the secondary particles in matter can then be
used to estimate the energy of the incident hadron (see our discussion of
calorimeters in Chapter 7).

Problems

6.1 What is the minimum thickness of aluminum in cm that is needed to
stop a 3 MeV a particle? What about the thickness needed to stop a 3
MeV electron? (Use the approximate range-energy relationship provided
in Examples 1 and 2.)

6.2 About how much steel in cm is required to stop a 500 GeV muon if the
muon deposits energy only via ionization loss? (Use Eq. (6.5) to calculate
your result.) Would you need a comparable amount of material to stop 500
GeV electrons? What about 500 GeV protons?

6.3 Multiple-scattering error often limits the ability to measure the direc-
tion of motion of a charged particle. To what accuracy can the incident
angle of a 500 GeV muon be measured after the particle traverses one meter
of iron?

6.4 Typically, what fraction of a beam of 100 GeV photons will be trans-
mitted through a 2 cm thick lead absorber?

6.5 The capture cross section for thermal neutrons on 27A1 is 233 mb. On
average, how far can a beam of such neutrons penetrate a slab of aluminum
(p = 2.7 gm/cm3) before half of the beam is absorbed. (See relation (6.27)^)

6.6 Protons and a-particles of 20 MeV pass through 0.001 cm of aluminum
foil. How much energy do such particles deposit within the foil?

6.7 Compare the stopping power of electrons, protons and a-particles in
copper, for particle velocities of 0.5 c.

6.8 Calculate the mass (i.e., A/S) of the virtual electron in Fig. 6.4 for an
incident photon of wavelength of 1.25 x 10~10cm. What is the approximate
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lifetime of such an object? Repeat your calculation for a wavelength of 1.25
x lCT12cm.

6.9 Consider the collision of a photon with a target of mass M that is
initially at rest in the laboratory. Show that the minimum laboratory
energy that a photon must have to produce an e+e~ pair is E1 = 2mec2(l +
*jfr)- (Hint: Equate the expression for s given in Eqs. (1-64) and (1.65).)
Thus the threshold for pair production is essentially 2mec2.

6.10 What is the mean free path for nuclear collisions of 10 GeV protons in
liquid hydrogen if the proton-proton total cross section is 40 mb? (Assume
a liquid hydrogen density of 0.07 gm/cm3.)

6.11 Prove the kinematic relation given in Eq. (6.22).
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Chapter 7

Particle Detection

7.1 Introductory Remarks

The investigation of nuclear and particle collisions or disintegrations relies
upon detectors for measuring the products of such interactions. Although
subatomic particles are certainly too small to be observed through purely-
visual means, we can use the mechanisms for energy deposition we described
in the previous chapter to detect such particles. Although we will describe
only the very simplest prototype detectors, the principles underlying their
performance are similar to those used in even the most sophisticated de-
vices.

7.2 Ionization Detectors

Ionization detectors are devices designed to measure the ionization pro-
duced when an incident particle traverses some medium. If the number of
detected electrons and positive ions is to reflect the energy deposited in the
material, then any produced electron-ion pairs must be kept from immedi-
ately recombining into atoms. This can be done by applying a sufficiently
high electric field across the medium. This field will separate the charges,
start their drift towards their respective electrodes, and thereby keep them
from recombining.

The basic ionization detector consists of a chamber that is filled with
a suitable medium that can be easily ionized. The chamber has a cathode
and an anode that are held at some large relative voltage, and the device
is characterized by a capacitance (C) that is determined by the geometry
of the electrodes. The operating medium should be chemically stable (or
inert) so that the moving ionization electrons are not easily captured by

157
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the molecules of that medium. The medium should not be very sensitive to
radiation damage so that its response to incident particles does not change
markedly with use. In addition, the medium should have a low value of
ionization potential (I) in order to maximize the amount of ionization
produced per energy deposited by any incident particle.

• HV

Sensitive I ' o n^ng
Medium S___^ ~ Q - — - " * " ' P a r t l c l e

^ - ^ ^ M>—»— Signal

Fig. 7.1 Basic elements of an ionization detector.

As we have mentioned, when a charged particle traverses a sensitive
region of a detector, it ionizes the medium and produces electron-ion pairs.
These start drifting immediately along the electric field lines: electrons to
the anode and the positive ions to the cathode. As the charges drift, they
induce signals on the electrodes, which provide small currents that flow
through some resistor R (see Fig. 7.1). This, in turn, produces a voltage
drop that can be sensed with an amplifier A. The amplifier signal can
be analyzed to obtain a pulse height that can be related to the amount of
produced ionization. The amount of produced ionization depends primarily
on the density and atomic structure of the ionizable medium and, of course,
on the charge of and energy deposited by the incident particle. However,
the amount of ionization that is detected is determined by many technical
factors, foremost among which is the nature and size of the applied electric
field, or the applied voltage (see Fig. 7.2).

When the voltage difference between electrodes is small, the electrons
and ions can recombine soon after they are produced, and only a small frac-
tion of the produced electrons and ions reach their respective electrodes.
This provides an output signal that corresponds to fewer electron-ion pairs
than are produced in the medium. The range of operating voltage where
this occurs is referred to as the recombination region. As the voltage differ-
ence is increased beyond the point where dissociated electron-ion pairs can
recombine, we obtain a signal that reflects the total amount of produced
ionization. This operating range is called the ionization region. Increas-
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ing the voltage further, provides the initially freed electrons with sufficient
acceleration and energy so that they can ionize additional atoms of the
medium. This increased ionization is often referred to as signal amplifica-
tion or multiplication. The output signal in this operating region of voltages
is larger than, but proportional to, the initially produced ionization, and,
for this reason, this operating range is referred to as the proportional range.
(It should be noted that proportional does not necessarily imply that the
signal increases linearly with voltage.) Increasing the voltage even further,
yields an avalanche of electron-ion pairs. In this mode, referred to as the
Geiger-operating region, the energy of the original ionization electrons in-
creases sufficiently rapidly so that they can excite or ionize more atoms,
thereby providing more freed electrons or photons from de-excitation of
atoms. This, in turn, produces more electron-ion pairs, and eventually
leads to a discharge, that is, to a highly amplified output signal whose
size is independent of the amount of original ionization. Finally, increasing
the voltage beyond the Geiger range, leads to a breakdown that generates
a continuous discharge of the medium, with the chamber no longer being
sensitive to any incident ionization. Depending on the circumstances, most
detectors are operated as ionization, proportional, or Geiger counters, de-
pending on the circumstances, and most detectors use gas as the operating
medium.

; I i I | ° I I f I \ ^
I-a, i fly i e* i-^f^ i

Output J — t - * * ^ ^ " ^ I I §>•& I 1 »
Pulse ST" ± ^ ^ I I aS. ! D "

High Voltage

Fig. 7.2 Signal response to ionization loss as a function of imposed voltage for heavily
ionizing (top curve) and minimum ionizing particles (lower curve). In the Geiger region,
the output does not depend on the voltage, nor on the amount of deposited energy or
initial ionization.

7.2.1 Ionization Counters

Ionization chambers, or ionization counters, operate at relatively low volt-
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ages, and therefore provide no amplification of the original signal. Con-
sequently, the output pulses for single minimum-ionizing particles tend to
be quite small and usually require special low-noise amplifiers for attain-
ing efficient operating performance. For heavily ionizing nuclear fragments,
however, or for a flux of many particles, the fully integrated signals can be
substantial and easy to detect. Ionization chambers are not very sensitive
to voltage variations, and provide very linear output response for a wide
range of input signals. Because there is no inherent amplification of signal,
or discharge in the operating medium, these types of counters do not re-
quire much time to recover from large currents, and can therefore be used
in environments with high interaction rates. In addition, because there is
no amplification, they provide excellent energy resolution, which is limited
primarily by electronic noise and by the inherent fluctuations in the produc-
tion of the initial ionization. Liquid-argon ionization chambers have been
used with great success as "sampling" detectors in high-energy calorimet-
ric measurements of energy deposition (to be discussed later). Solid-state
devices, pioneered in nuclear physics, are now used commonly as ionization
counters in high energy experiments. Gaseous ionization chambers are use-
ful for monitoring high levels of radiation; they were also used in the past
to measure, for example, ranges of a-particles from radioactive decays of
nuclei.

Let us illustrate how an ionization counter can be employed to determine
the range of 5.25 MeV a-particles emitted in 210Po decay. The chamber can
be chosen to be a precisely manufactured round-bottom flask with a radius
of about 6 cm. The inside wall can be silver coated to serve as one of the
two electrodes. A small sample of Po (about 10 /uCi) can be suspended from
a grounded insulated wire at the center of the flask. An operating gas can
be admitted, under pressure if need be, and the flask sealed. (Alternatively,
the chamber can be simply a parallel-plate device that has the a-particle
source embedded on one of the surfaces.) A potential can be applied to
the silvered surface, and the current monitored through an amplifier, as
sketched in Fig. 7.1. If the ionizing medium is air, then we expect to
produce a small but detectable current. The value of / for air is about 30
eV; thus, the number of electron-ion pairs that will be produced by one
a-particle will be about

(7.1)
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The activity of the source is

A = 10 fiCi = 10 x (10~6 x 3.7 x 1010) a-particles/sec

= 3.7 x 105 a-particles/sec. (7.2)

Hence, the number of charged pairs produced per second is

N = nA= (1.75 x 105) x (3.7 x 105/sec) « 6.5 x 1010/sec. (7.3)

Consequently, if both the positive and negative charges are collected, this
will provide a current

J = JVe = 6.5x 1010/sec x 1.6 x 10~19 C

= 1.04 x 10~8C/sec = 1.04 x 10~8A. (7.4)

Currents of this size can be measured in a straightforward manner. (For
the parallel-plate geometry, the current would be only « 5 nA, because
only half of the a-particles would be emitted into the sensitive region.)

The measurement of range proceeds as follows. The current is monitored
as a function of decreasing gas (air) pressure. As long as the density of the
air is high enough to stop the a-particles, the observed current, reflecting
the total ionization produced by the a-particles, remains constant. When
the pressure drops below that critical value, the a-particles do not lose all
their kinetic energy within the gas volume, and therefore produce fewer
electron-ion pairs in the sensitive region. As a result, the current drops,
and keeps decreasing as the pressure is decreased further. For an a-particle
range of 6 cm in air, at a temperature of 25°C, the critical pressure Pcrit

is found to be 51 cm of Hg. Thus, at any other temperature and pressure,
the range R can be calculated assuming the scaling.of the simple gas law.
In particular, for standard conditions of T = 288 K and P = 76 cni of Hg,
we obtain

H = ̂ ,x%i / -=6c m X |=f? | f= M c m . (7.5)
Jr 1 c r ;t 7b cm Hg 29oK

Although, in principle, the observed current provides an absolute mea-
sure of the total energy deposited in the form of ionization, it is always
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wise to calibrate ionization chambers with sources or signals of known en-
ergy. This is particularly important when counting rates are very high and
individual pulses must be counted in rapid succession. Under such condi-
tions, small concentrations of impurities in the detector medium (often at
less than a part per million level) can cause loss of electron signal through
attachment. That is, some of the electrons drifting towards the anode can
be attracted to the contaminant (electronegative) molecules that can form
negative ions, which drift far slower than electrons, and therefore do not
contribute to the fast output pulse that is produced by the electrons.

7.2.2 Proportional Counters

Gaseous proportional counters usually operate in high electric fields of the
order of 104 V/cm and achieve typical amplification factors of about 105.
Such fields can be obtained using thin (diameters of 10 - 50 fim) metallic
wires as anode field electrodes in a cylindrical chamber geometry. Because
the fields are most intense near the axial anode wires, this is where the
multiplication of charge, that is, secondary ionization, also takes place.
For a large variety of gases, the output signals, even for minimum-ionizing
particles, are quite large. Also, these detectors can operate over a relatively
wide range of high voltage settings. Although proportional chambers can
be used for measuring absolute energy deposition (pulse heights), their
reliance on the multiplication of ionization in the medium makes them
quite sensitive to the dependence of the output signal on the magnitude of
the operating voltage.

Georges Charpak and his collaborators developed a variant of the pro-
portional counter in the multiwire proportional chamber (MWPC) that has
found primary application as a position detector in high-energy physics ex-
periments. The idea is illustrated in Figs. 7.3 and 7.4. The principle is to
have a plane of anode wires positioned precisely, with typical wire-spacings
of about 2 mm. Such planes can be sandwiched between two similar cath-
ode planes (or, alternatively, thin stretched aluminum foil can be used for
cathodes). Typically, a space of < 1 cm is left between cathode and anode
planes. These doublets are then enclosed in some superstructure - usually
with thin mylar-sheet windows on the outside. Operating gas can then be
admitted into the regions between electrodes. Several doublet planes, with
different orientations of anode wires, can be sandwiched together. Charged
particles passing through the gaseous medium produce ionization along
their paths, which produces pulses on the anode wires that are closest to
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the trajectories. The anode wires, each with its own amplifier, function
essentially as independent proportional counters, and can therefore be used
to localize the position of any charged particle to an accuracy of the order
of the spacing between the anode wires.
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Fig. 7.3 Electric field structure in a multiwire proportional chamber and in a multiwire
drift chamber.
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Fig. 7.4 Sketch of the geometry of multiwire proportional chamber planes.

A set of MWPC planes placed before and after a region that has an
applied magnetic field can be used to obtain the change in the angle of a
charged track as it passes through that region, which, in turn, provides the
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momentum of the particle. The principle is shown in Fig. 7.5. Note that
particles of different incident momentum will be dispersed, or fanned out, in
9. The effect is very similar to the dispersion of white light through a prism.
Thus, the position of a particle at the exit of the magnet is determined by
its momentum. A system of the kind shown in Fig. 7.5 can therefore be
used as a spectrometer to analyze the momentum distribution of particles
in a beam.

II : II K \\
ze ^ ^ • s J ? V = R B z e

S / S*N. L = J?sin9

I /« ^
—1 0 /

i A
i/

Fig. 7.5 Measuring the momentum of a charged particle using MWPCs, assuming the
particle's trajectory traverses a region of constant magnetic field B (normal to the plane).
Reconstructing 0, and knowing the length L and B, provides p.

By modifying the electric field structure in a planar multiwire chamber,
the position measuring accuracy can be improved substantially. The modi-
fied structure is shown in Fig. 7.3, where we have sketched the electric field
lines in both a MWPC and in a drift chamber. The idea in the drift cham-
ber is to provide a relatively constant electric field (£? = — ̂ ) in each
cell in a direction transverse to normal incidence. This can be achieved
by grading the potential uniformly along neighboring cathode field wires,
and using additional "field-shaping" wires interspersed between the anode
wires, as shown. The additional wires provide corrections needed to attain
approximately constant electric fields between the anode wires. For most of
a cell, the field is such that the ionization electrons drift along the electric
field lines at a slow and constant velocity (about 50 /um/ns or 50 mm//is),
until they arrive within a few diameters of the anode wire, where, in a short
time, multiplication of signal takes place in the intense electric field. The
time of arrival of the pulse at the wire, relative to some external fast signal,
determines the distance of drift, and thereby yields a precise measure of
the position of the incident particle. For, example, it is relatively straight-
forward to achieve precisions of « 200 /xm in the measurement of position
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for inter-anode spacings or drift distances of « 1 cm.

7.2.3 Geiger-Miiller Counters

A Geiger-Miiller counter, or simply a Geiger counter, is an ionization de-
tector that operates in the Geiger range of voltages, namely at a voltage
high enough so that any produced ionization causes a gaseous discharge,
independent of the initial energy deposited in the medium. To appreci-
ate the advantage of a Geiger counter, let us consider the example of an
electron, with a kinetic energy of 0.5 MeV, that loses all its energy within
the counter. Suppose that the gaseous medium is helium, with an average
ionization energy of 42 eV. The number of electron-ion pairs produced in
the gas will be:

If the detector operates as an ionization chamber, and has a capacitance of
« 1 0 ~ 9 F = l n F , then the resulting voltage signal would correspond to

which is very small, indeed. On the other hand, if the detector operates in
the Geiger mode, because of multiplication, the expected number of ion-
pairs would be « 1010, independent of electron energy. Consequently, the
voltage pulse in this case would be a large and easily detectable sal.6 V.

The technical advantage of a Geiger counter is its simplicity of construc-
tion and its insensitivity to small voltage fluctuations. It is very useful for
general measurement of nuclear radiation, but it has two important disad-
vantages. First, there is no information whatsoever on the nature of the
ionization that caused the pulse. Second, because of the large avalanche
induced by any ionization, a Geiger counter takes a long time (about 1 ms)
to recover between successive pulses, and so it has a substantial dead-time,
which means that it cannot be used for high counting rates.

7.3 Scintillation Detectors

The ionization produced by charged particles can excite atoms and
molecules in the medium to higher energy levels. When these atoms and

(7.6)

(7.7)



166 Nuclear and Particle Physics

molecules de-excite, they emit light that, in principle, can be detected and
provide evidence for the traversal of the charged particle. Scintillators are
kinds of materials that provide detectable photons in the visible part of
the light spectrum, following the passage of a charged particle. There are
primarily two types of scintillators in common use in nuclear and particle
physics: organic or plastic scintillators and inorganic or crystalline scintil-
lators. Although the physics of light emission is different in the two kinds of
scintillators, and somewhat complicated, it is nevertheless well understood,
but we will not discuss it here in any detail. Organic scintillators, such as
anthracene or naphthalene, tend to emit ultraviolet light in their molecular
de-excitation. Unfortunately, light of such frequency is rapidly attenuated,
and consequently "wavelength shifter" material has to be admixed with the
scintillator to permit detection of photons. That is, the initially produced
light interacts with the wave-shifter material, which shifts the light to the
visible part of the spectrum. Inorganic crystals, such as Nal or Csl, are
usually doped with activators that can be excited by electron-hole pairs
produced by charged particles in the crystal lattice; these dopants can then
de-excite through photon emission.

Organic scintillators have fast decay times (typically RS 10~8sec), while
inorganic crystals are usually far slower (« 10~6sec), although some also
have fast components in their response. Plastic scintillators are therefore
more appropriate for use in high-flux environments. It takes substan-
tially more energy to produce a detectable photon in a scintillator than
an electron-ion pair through ionization (typically by a factor of 10), and
because inorganic scintillators produce more light than organic scintillators,
they are consequently better for applications at low energies.

In the pioneering days of nuclear studies, different phosphors were used
routinely in experiments, and viewed by eye. The light produced in scintil-
lators is usually very weak and normally cannot be seen in this manner. For
scintillation light to be detected, the scintillator material must be transpar-
ent to its own radiation, that is, it cannot have a short attenuation length
at the frequencies of interest. In addition, because of the low intensity~of
the emitted light, the photon signal must somehow be amplified in order
to be counted. Signal amplification is achieved most commonly by using
photomultiplier tubes (PMT) that view the scintillator either directly or
through light guides.

A photomultiplier tube converts a weak photon signal to a detectable
electric pulse. The device consists of several components (see Fig. 7.6).
First, right after a thin entry window, is a photocathode, which is made
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Fig. 7.6 Sketch of the main elements of a photomultiplier tube. The most common
tubes have ft* 5 cm diameters and are about fa 20 cm long.

of material in which the valence electrons are weakly bound and have a
high cross section for converting photons to electrons via the photoelectric
effect. As a result, any photon striking the photocathode will have a high
probability for releasing an electron. (Cathode diameters are typically 2-
12 cm, but far larger PMTs are also available.) Next, within the tube,
there is a series ("stages") of dynodes made of material of relatively low
work function. These electrodes are operated at ever increasing potential
(AY « 100-200 V between dynodes), which can be provided, for example,
through a regulated DC power supply and a resistor-divider chain. The
dynodes accelerate the initial electrons to the next stage, and multiply
them through secondary emission at each dynode. There are typically 6-14
dynode stages in PMTs, with a total gain, or electron amplification factor,
in the range of « 104-107 (usually the multiplication factor is « 3-5 per
dynode). The voltage is applied to the.electrodes through pins embedded
at the back end of the glass PMT; these pins are connected directly to the
dynodes that are located within the vacuum region of the tube.

The quantum conversion efficiency of the photocathodes is typically »
0.25 in the usual range of operating wavelengths (PS 400 nm). The output
signal is usually taken from the anode or last dynode of the PMT. Except
for statistical fluctuation, this signal is linearly proportional to the amount
of light incident on the photocathode. Although there is some spread in the
time of arrival of the signal due to different electron transit times (different
paths and different velocities), this is typically only several nanoseconds.
The output signals are therefore quite narrow, and, in conjunction with fast
plastic scintillators, can be used very effectively for triggering any detector
system on interesting events, and for timing intervals between successive
signals.

A scintillator used in conjunction with a photomultiplier is consequently
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an excellent detector of charged particles, and of any photons or neutrons
that interact within the scintillator material. As an example, let us consider
the /3-decay of 60Co

60Co27 —> 60Ni28 +e-+Ve. (7.8)

The 60Ni nucleus in this decay is, in fact, left in an excited state and decays
to the ground level through two successive photon emissions: one of 1.17
MeV to the first excited level, which is followed by a 1.33 MeV photon to
the ground level. Let us suppose that the 60Co sample is mounted on the
front face of a Nal(Tl) crystal (thallium activated Nal scintillator), and a
PMT is attached to the opposite side of the crystal. Because the antici-
pated signals are small, the crystal and PMT must be properly wrapped to
prevent external light from leaking into the detector. Also, because crys-
tals such as Nal are often hygroscopic, they must be well sealed to prevent
deterioration through absorption of moisture. (Plastic scintillators do not
have this disadvantage.)

Source / \ \ V
Scintillator \ Discriminator \

Photomultiplier Pulse Height Analyzer

Fig. 7.7 Block diagram of apparatus needed for measuring the decay products in the
decay of 60Co.

When photons from the de-excitation of 60Ni enter the scintillator, they
can interact through the photoelectric effect, through Compton scattering
or through e+e~ pair production. Any photon that is converted to a photo-
electron through the photoelectric effect generally deposits all of its energy
within the scintillator in the form of ionization produced by the emitted
electron. The intensity of the subsequently produced scintillation light-is
therefore proportional to the energy of the original photon. On the other
hand, photons that undergo Compton scattering usually do not deposit all
their energy within the scintillator, unless that scintillator block is exceed-
ingly large. That is, although the scattered electrons often deposit their
entire energy, the scattered photons tend to escape from the scintillator.
(The radiation length of Nal is about 2.6 cm, while that of plastic scin-
tillator is about 40 cm. It is therefore not surprising that, for detectors
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several cm on a side, only a fraction of the energy of the incident photon is
converted into ionization, and some leaves the detector.) Pair production is
exceedingly unlikely for low-energy photons, but, when it occurs, the pro-
duced electron and positron deposit their kinetic energy in the scintillator,
and eventually the positron annihilates with an atomic electron, yielding
two 0.511 MeV photons.

Consequently, ignoring the low-energy electron in Eq. (7.8), the en-
ergy deposited in the Nal will, in general, have two kinds of contributions:
First, the full energies of any of the photons that convert into photoelec-
trons, and, second, a continuous spectrum of energies deposited by the
Compton-scattered recoil electrons. The scintillation light and the output
from the PMT will therefore have signals equivalent to the deposition of
1.17 MeV, 1.33 MeV, and a continuum of energies below these peak values.
(If enough 0.511 MeV photons are produced from the annihilation of e+e~
pairs, they can provide photoelectrons and therefore a very useful calibra-
tion signal at 0.511 MeV.) The PMT output signals can be passed through
a discriminator to eliminate any small signals from pulses produced through
thermal electron emission from the cathode and dynode surfaces ("random
noise"). After discrimination, the pulses can be digitized and displayed on
a pulse-height analyzer (see Fig. 7.7). Because of fluctuations in ionization
loss, differences in the efficiency of light collection, and fluctuations from
electron multiplication, the 1.17 MeV and the 1.33 MeV energy signals will
not be sharp, but will have a shape that reflects the experimental resolution
of the detector system. The expected counting rate as a function of pulse
height is sketched in Fig. 7.8. (The energy resolution for Nal(Tl) crystals
in this range is about 10%.) We should point out that our simplified dis-
cussion has ignored the possibility of the simultaneous observation of the
summed signals from the two emitted photons. We have left this common
ramification to Problem 7.6.

7.4 Time of Flight

We have already remarked that a scintillation counter viewed with a PMT
can provide excellent time resolution. In fact, with care, time resolutions
of about 10~10 sec (0.1 nsec) can be readily achieved. (This corresponds
to a spatial resolution of s=s 3 cm for particles traveling at the speed of
light.) Thus arrays of scintillation counters can be used to measure the
time of flight (TOF) of particles and thereby obtain their velocities. Such
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Fig. 7.8 Sketch of the counting rate as a function of pulse height expected for the
products in the decay of 60Co.

TOF measurements have important applications in providing discrimina-
tion between particles of similar momentum but different mass that may
be produced in a collision. For example, measuring the momentum (p) of
a charged particle in a magnetic field (see Fig. 7.5), as well as its time of
flight (i) for reaching some scintillation counter located at a distance L from
the point of origin of the particle, determines the velocity and therefore the
rest mass of the particle. Let us assume that the momentum measurement
is very precise, and investigate the limitation of the TOF technique.

The TOF corresponds to just the distance traveled divided by the speed
of the particle, namely, t = £. Consequently, the difference in the flight
time of two particles of mass m2 and mi will be

For our known momentum p, this can be rewritten as

At=L[E1_E1]=J^ u 2 i V ) i _ {m24 + 2 c 2 ) i i
c [pc pc\ pc2 lK ' v ' J

In the non-relativistic limit, this reduces to the classical expression

At = — (m2 - m i ) = — Am, (7.11)
p p

(7.9)

(7.10)
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which, for the most interesting (and most demanding) regime of m,2 ~ vn,\ =
m and V2 « vi = v = /3c, becomes

At = k. *± = t ^ . (7.12)
pc m m

Now, using v — j , and dv = — p-dt, we can write

r 2
Aw = u2 - Ui = — j At = - ^ - A*. (7.13)

Consequently, at low energies (/? « 0.1), for a time resolution At ?» 2xlO~10

sec, and for a flight path of L « 102 cm, we obtain a very respectable
resolution in velocity

. . , v2 . (0.1 x 3 x 1010)2crn2/sec2
\Av\ = — At m i —5-^ i

L 102cm

x 2 x 10~10sec « 2 x 107cm/sec. (7.14)

And because - ^ = ~ = ^ , this means that, using TOF, it is possible to
discriminate between low-energy particles of same momentum but different
mass to better than sa 1% level of accuracy. Clearly, the relative mass
resolution deteriorates linearly with increasing momentum, and improves
with increasing path length.

Now, for the relativistic limit, let us rewrite Eq. (7.10) as

which, for mi fa m,2 and v\ sa i>2, becomes

. _ Lc / m 2 ^f\ i c I" m2 m2 1

_Lc i 2 ; x ~ C2 „ £ «i - «a _ L Av
— 9 9 -̂̂  — . I 1 . 1 0 )

2 «2 u l c v C V

(7.15)
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Thus, when v w c, assuming the above conditions of At « 2 x 10~10 sec
and L « 102 cm, we obtain for the resolution in velocity

. A , c2 . (3 x 1010)2crn2/sec2
Ad « — A< w ^

1 ' L 102cm

x 2 x l(T10sec w 2 x 109cm/sec. (7.17)

Although the resolution for particle velocity is still « 10%, unfortunately,
the relative mass resolution for v ca c is no longer as good. In fact, from
Eq. (7.16) we can deduce that

. Lc (rri2 — rni)(m2 + rni) Lcm . _ m2 Am L Am
At = — ^ ^ ^ « —r- Am = Lc -5 « —2 -—,

so that

^ = £ f A i = 7 2 ^ . (7.18)

m L t

Consequently, for momenta of >3 GeV/c, and masses of « 1 GeV/c2, we
have 7 > 3, and the resolution in mass discrimination is essentially lost.
Our example is, of course, only true if the flight path cannot be increased
greatly beyond sa 100 cm. For fixed-target experiments that involve highly
relativistic particles, this can be a possible alternative, however, for most
large collider experiments, increasing the flight path would also mean in-
creasing the size of the overall detection system (see next chapter), which
could be very expensive. It should also be recognized that the flight path
cannot be increased without limit if the particles of interest decay with
short lifetimes.

As we have implied previously, TOF can also be used to obtain mo-
menta of low energy neutrons or of any photons that interact within our
scintillation counter. In such cases, the initial collision time has to be ob-
tained through other means, as, for example, from the interaction time as
defined by a pulse produced by an incident beam particle. The difference
in time between a signal in the scintillation counter and some initial "start"
time can provide the TOF of any particle.
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7.5 Cherenkov Detectors

When a charged particle moves with uniform velocity in vacuum, it does
not emit radiation. However, if it enters a dielectric medium of index of re-
fraction n > 1, with a speed greater than the speed of light in that medium
(i.e., v > ^ or /? > i ) , then it emits what is known as Cherenkov radiation
(after Pavel Cherenkov, who first observed the effect in 1934). The direc-
tion of the emitted light can be calculated classically using Huygen's wave
construction, and can be attributed to the emission of coherent radiation
from the excitation of atoms and molecules in the path of the charged par-
ticle. The effect is completely analogous to the "shock" front produced by
supersonic aircraft. The emitted light has a spectrum of frequencies, with
the most interesting component being in the blue and ultraviolet band of
wavelengths. The blue light can be detected with relatively standard pho-
tomultiplier tubes, while the ultraviolet light can be converted to electrons
using photosensitive molecules that are mixed in with the operating gas in
some ionization chamber (e.g., MWPC).

The angle of emission for Cherenkov light is given essentially by

cos0c = - ^ , (7.19)
pn

and the intensity of the produced radiation per unit length of radiator
is proportional to sin2#c. Consequently, for /3n > I, light can be emit-
ted, while for j3n < 1, 6C is complex and no light can be observed. The
Cherenkov effect therefore provides a means for distinguishing two particles
of same momentum but different mass. For example, protons, kaons and
pions of 1 GeV/c momentum have /3 = 0.73, 0.89 and 0.99, respectively.
Consequently, to observe Cherenkov light from these particles would re-
quire media of different refractive index. In particular, for protons to emit
light, we would need a threshold n > 1.37, kaons would require n > 1.12,
and pion n > 1.01. Now suppose that we arrange two Cherenkov counters
in series, one filled with water (n = 1.33) and the other filled with gas
under pressure so that it has n = 1.05. If we pass a mixture of protons,
kaons and pions through the two counters, the protons will not provide
a signal in either detector, kaons will radiate Cherenkov light only in the
water vessel, while pions will register signals in both counters. This can
therefore provide a way of discriminating between particles that have dif-
ferent Cherenkov thresholds. When counters are used in this manner, they
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are termed threshold counters. (Most of the large experiments searching for
proton decay rely on Cherenkov light to identify the end products of the
decay, e.g., p ->• e+7r°.)

We can also see from Eq. (7.19) that we can discriminate between parti-
cle types on the basis of the observed angle of emission of Cherenkov light.
That is, for some fixed n value, the cone angle for light emitted by pions
will be greater than that from kaons and protons. Cherenkov counters that
are sensitive to different emission angles are known as differential counters.

Finally, more recent developments in this area have centered on the
ultraviolet (UV) part of the emission spectrum (ft* 5 eV). As we just men-
tioned, UV photons, through photo-ionization, can produce electrons that
can be detected using MWPCs. At high energies, several UV photons can
be emitted by a single charged particle. These photons will be distributed
in a cone at angle 9C about the incident charged track. Consequently, in
any ionization-sensitive device positioned transverse to the incident line
of flight, electrons that are produced by these UV photons will be dis-
tributed in a ring pattern. Detectors that rely on this principle are known
as ring-imagining Cherenkov counters (or RICH counters), and they are
particularly useful in experiments in which many particles are produced in
any given collision.

7.6 Semiconductor Detectors

The formation of an electron-hole pair in a semiconductor such as silicon or
germanium requires an energy of only about 3 eV; consequently, when these
crystals are used as solid-state ionization chambers, they can provide large
signals for very little energy deposition in the medium. Solid-state devices
can therefore be particularly advantageous for applications at low energies.
They were, in fact, developed initially in nuclear physics for high-resolution
measurements of energy, and for obtaining ranges and stopping power of
nuclear fragments. More recently, silicon strip detectors and pixels have
gained wide acceptance in both nuclear and particle physics for precision
measurement of positions of charged particles.

Because the number of free charge carriers produced in semiconductors
is so large, and both electrons and holes have high mobility, very thin wafers
of crystal (about 200-300 fxm) suffice for achieving good signals, even for
minimum-ionizing particles. The performance of these detectors is quite
linear in that the output signal is proportional to the ionization loss, pro-
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vided that an imposed electric field within the medium is large enough to
prevent recombination of the charge carriers. This can be achieved by using
very pure semiconductors of high-resistivity, and operating these detectors
as diodes with a reverse bias of about 100 V. The semiconductor wafer
is sandwiched between very thin conducting electrodes (thickness of tens
of figm/cm2), which can be deposited in electrically separated stripes (or
other patterns) on the surface of the wafer. Detectors 5 x 5 cm2 in area
are quite common; they often have 20-50 /xm stripes, and are used in series
(just like planes of MWPCs) to determine charged-particle trajectories to
position-accuracies of the order of several /jm in the transverse direction.
Such devices can be used to measure small impact parameters and thereby
determine whether some charged particle originated from a primary colli-
sion or was the decay product of a particle that traveled a small distance
from the original interaction, and then decayed.

Two silicon detectors positioned in series can be used to determine the
kinetic energy and velocity of any low-energy particle or nuclear fragment,
and therefore its rest mass. This determination is made by placing a very
thin wafer in front of a thicker detector that can stop that particle. The
velocity is deduced from the stopping power measured in the thin wafer,
and the mass from the range or from the total kinetic energy loss in the
thicker crystal (or array of thin wafers).

7.7 Calorimeters

Momenta of charged particles can be measured in a relatively straightfor-
ward fashion using magnetic spectrometers (see, for example, Fig. 7.5). In
certain situations, however, magnetic measurement may not be viable. For
example, precise magnetic measurements become difficult and expensive at
very high energies because they require either large magnetic fields in ex-
tended regions of space, or very long lever arms for measuring small changes
in the angular trajectories of particles passing through magnets, or bothr-
Also, at times, specific design considerations may preclude the use of an
analyzing magnet in an experiment. In addition, magnets cannot be used
for measuring energies of neutral particles (e.g., neutrons or photons). Un-
der circumstances when magnetic measurements are not of greatest value,
we can turn to calorimetric detectors that rely purely on the measurement
of total energy deposition in a medium. A calorimeter is a device that
absorbs the full kinetic energy of a particle, and provides a signal that is
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proportional to that deposited energy. One of the simplest calorimeters we
can imagine is the device that we described earlier in this chapter for mea-
suring the ranges of a particles. Large calorimeters were developed during
the early 1960s, especially for application in experiments dealing with high-
energy cosmic rays, and they have become exceedingly important tools for
measuring energies of particles produced at large accelerators.

We know that when high energy photons traverse matter they do not
deposit energy until they convert into electron-positron pairs. The pro-
duced electrons and positrons deposit their energies, as usual, by ionizing
atoms; however, when they are very energetic, they lose most of their en-
ergy through bremsstrahlung. When these bremsstrahlung photons have
high energies, they can, in turn, convert to electron-positron pairs, which
can radiate more photons, etc. This electromagnetic shower develops into a
sea of low energy photons, electrons and positrons that eventually deposit
all their remaining energies in the material.

Similarly, hadrons can deposit energy in matter through a series of suc-
cessive interactions. However, because hadrons are relatively massive, and
cannot radiate much of their energy through bremsstrahlung, they lose
their energy mainly through multiple nuclear collisions. Thus, an inci-
dent hadron might produce several ir mesons in its first nuclear collision;
these pions will subsequently collide with downstream nuclei, producing
more particles, etc., until the incident high energy is converted to many
charged particles of low energy that eventually deposit that energy by ion-
izing atoms within the medium. Because in most materials (especially of
Z > 10) the mean free path for nuclear interactions is substantially greater
than that for electromagnetic interactions (see Example 7 in Chapter 6),
it takes far more thickness of material to generate a hadronic shower than
an electromagnetic one. Consequently, calorimeters designed for measuring
deposition of electromagnetic energy are physically far thinner than those
designed for absorbing hadrons.

We should also mention that hadronic showers can have large fluctua-
tions in their energy deposition. This is. because such collisions often involve
production of unstable particles that have neutrinos as decay products.
Since neutrinos have exceedingly small interaction probabilities, they es-
cape detection and thereby reduce the energy that a hadron deposits in the
detector material. This occurs on a statistical basis, and consequently com-
promises the energy measurement of hadrons. Another important source
of fluctuation in the energy deposited by hadrons is due to the produc-
tion of neutral pions. These particles decay immediately into two photons
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(lifetime of about 10~16 sec), and the produced photons initiate their own
showers. Since the energy deposited by photons is electromagnetic, it is
therefore deposited relatively locally, and, as a result, the detected energy
can be very sensitive to the detailed structure of the detector (see below).
Because of such complications, the calorimetric energy resolution that can
be obtained for hadronic showers is therefore expected to be worse than
that for electromagnetically interacting particles.

We have discussed several mechanisms for energy deposition in matter,
and have already described some of the most common ones that are often
applied in the detection of particles. Similar principles apply in calorimetry.
For example, relying on the production of ionization in a medium, calorime-
ters can function as ionization chambers (e.g., liquid-argon calorimeters);
or, through the production of scintillation light, they can be scintillation-
sensitive detectors (e.g., Nal); they can also rely entirely on the production
of Cherenkov radiation (lead glass). In principle, a particle's energy can also
be determined from the heating of a detector or from the deposited acous-
tic energy, and such techniques have, in fact, been explored in the past.
Calorimeters can be constructed from homogeneous media (e.g., crystalline
scintillators or lead glass), or they can be sampling detectors. Sampling
calorimeters contain mainly uninstrumented absorber material that is in-
terspersed with active sampling devices to sense the energy of a developing
shower (see Fig. 7.9). Homogeneous detectors, which are usually sensitive
to the full energy deposition, tend to have best resolution, but they are
invariably very expensive. Sampling detectors, because they are subject
to additional sampling fluctuations, usually have worse resolution, but are
often easier and less expensive to construct. It is relatively straightforward
to make large sampling calorimetric systems (with thousands of individ-
ual channels) with energy resolution in ĝP of about ;%= for detection of
electromagnetic components, and about -4= for the hadronic components
(where E is in GeV units), but anything beyond that is more challeng-
ing. (The improvement in relative resolution with increase in energy can
be attributed to the expected decrease in sampling fluctuations.)

7.8 Layered Detection

Collisions at high energies involve the production of many and different
kinds of particles. In any given event, there can be electrons, muons, neu-
trinos and a large number of pions. Some particles are stable, others short-
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Fig. 7.9 A typical stack structure in a sampling calorimeter.

lived. To unravel the event structure, and to find out about the underlying
physics of the collision, it is often required to measure all these species,
and usually with substantial precision. Modern spectrometer systems, es-
pecially at colliders, which we discuss in the following chapter, are designed
in a layered manner, with every layer having a unique function (see Fig.
7.10). For example, the region closest to the intersection point often has
several layers of very thin silicon microstrip detectors to provide precise
spatial information for trajectories of charged particles. (The reason for
having "thin" material is to minimize multiple scattering and the conver-
sion of photons into e+e~ pairs in the silicon.) Such microstrip detectors
also provide sensitivity to the characteristic decays of short-lived particles.
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For a collider configuration, the next layer of instrumented detection
might have, for example, several layers of drift chambers surrounding the
silicon system. Such chambers are often located in an axial (i.e., solenoidal)
magnetic field, which can be implemented through a thin superconducting
coil that surrounds the chambers. (Again, the reason for "thin" is to min-
imize energy loss and multiple Coulomb scattering within the coil, which
worsens the resolution.) The signals from the silicon detectors and from
the drift chambers provide momentum information on any charged particles
that emanate from the interaction point.

Superconducting
Coil

Hadronic
Modules

Preshower -

Collision
Axis

Silicon
Microstrips

Muon
"Chambers

Drift
Chambers

EM Modules

Fig. 7.10 Sketch of a "typical" layered detector for high energy physics experiments at
colliders.

The next step in detection might involve segmented "preshower" coun-
ters, which usually consist of « 3 radiation lengths of absorber followed
by scintillation counters. (The scintillation counters can also provide in-
formation on TOF.) The inner tracking chambers usually have far less
material, and consequently do not produce much photon conversion or
bremsstrahlung of any original electrons. The preshower counters, on the
other hand, can provide first evidence for the presence of electromagneti-
cally interacting particles through the presence of large pulse heights from
photons that convert into e+e~ pairs or electrons that produce showers in
the material in front of these counters. (The magnetic-field coil can function
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as part of the radiator/absorber material when it precedes the preshower
counters.)

With trajectories of charged particles determined, and some indication
available for the presence of photons and electrons, the next step usually
involves electromagnetic (EM) calorimetry. Typically, EM calorimeters are
made of about 20 radiation lengths of high-Z material, which usually cor-
responds to about one mean-free-path for hadronic interactions. Conse-
quently, electrons and photons deposit essentially all their energies within
the EM modules, and hadrons only start to interact there. Far thicker
hadronic calorimeters, in which hadrons deposit most of their energy, fol-
low the EM calorimeters. (The EM sections are about 30 cm thick, while
the hadronic modules are usually about 150 cm thick, depending somewhat
on the type of absorber and readout used.)

The particles that penetrate through the calorimetry are primarily neu-
trinos and high-energy muons (with energy greater than that given by the
range within the intervening material). Muons that penetrate the calorime-
ters can be momentum analyzed again outside of the calorimeters, and their
trajectories can be traced back and matched for consistency with the track-
ing information available from within the calorimeters. This leaves only
neutrinos not accounted for. Their presence can be inferred from a lack of
overall momentum balance in the event (especially balance in the transverse
direction). In order to be sensitive to the presence of any missing energy
that may be carried off by neutrinos, the detectors have to be designed to
surround the intersection region over as much of the 4?r solid angle as is
possible, and to provide a minimum of loss in coverage from the presence
of structural elements, and the like. Needless to say, this poses very great
technical challenges to the experimenter.

Problems

7.1 A radioactive source emits a-particles with kinetic energies of 4 MeV.
What must be the value of an applied magnetic field so that the radius of
curvature of the orbit of the a-particle is 10 cm? (Does your answer depend
on the kind of medium into which the a-particle is emitted?) Do the same
calculation for electrons of same kinetic energy.

7.2 The mass of a K+ is 494 MeV/c2 and that of a TT+ is 140 MeV/c2. If
the rms time resolution of each of two scintillation counters that are 2 m
apart is 0.2 nsec, calculate to better than 10% accuracy the momentum
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at which the system will just be able to resolve a ir+ from a K+ (by one
standard deviation). (Hint: see Eq. (7.10).)

7.3 What are the Cherenkov angles for electrons and pions of 1000 MeV/c
for a radiator with n = 1.4? What will be the ratio of the number of
radiated photons for incident electrons and pions?

7.4 About 106 electron-ion pairs are produced by a charged particle travers-
ing a counter. If the typical ionization potential of the medium is I = 30
eV, in principle, how well can you measure the deposited energy using a
Geiger counter, an ionization counter with a gain of unity, and a propor-
tional counter with a gain of 106 that has gain variations of 5%?

7.5 If you wish to measure the momentum of a 10 GeV/c singly-charged
particle to 1% accuracy, in a 2 T field, using a i m long magnet, how well
do you have to know the exit angle (see Fig. 7.5)? If you use MWPCs that
have 2 mm inter-wire anode spacings to measure that angle, about how far
do you have to separate two planes to achieve your goal? Now suppose
that you use, instead, silicon microstrip detectors of 25 /jm spacing. What
separation distance between two such planes could achieve the same goal?

7.6 Sketch the pulse height spectrum that you would expect in the de-
cay of 60Co in Eq. (7.8) when the two de-excitation photons are emitted
simultaneously, namely within the time resolution of the detector.
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Chapter 8

Accelerators

8.1 Introductory Remarks

Accelerators are some of the most remarkable tools of modern science. They
are precision instruments constructed on a gargantuan scale. They have to
track and accelerate particles that traverse millions of km in just matters
of seconds, and maneuver and constrain particle motion to accuracies of
the order of 1 /zm. They can provide sufficient numbers of energetic par-
ticles to vaporize macroscopic targets with single pulses of beam. Because
of their immensity and their challenging complexity, and because of their
symbolic reflection of the intellectual aspirations and creativity of mankind,
modern accelerators have been likened by Robert R. Wilson to the great
Gothic cathedrals of medieval Europe. Their impact on nuclear and parti-
cle physics, the fields for which they were initially developed, has, of course,
been pivotal. They have served as the microscopes for probing nuclear and
particle structure, and, in fact, were it not for the development of accel-
erators, the fields of nuclear and particle physics would still be in their
infancies.

After the pioneering experiments of Rutherford and his colleagues re-
vealed the presence of a nucleus within the atom, it became clear that
higher-energy scattering experiments could provide an invaluable probe of
the nucleus. For example, it was understood that with sufficient energy
to penetrate the Coulomb barrier, projectiles could break apart nuclei and
reveal their constituents. It was also recognized that the more energy a
particle had, the more deeply it could probe within the nucleus. This is
simply a consequence of the fact that, through the uncertainty principle,
large momentum transfers correspond to small distances, and vice versa.
The study of the short-distance behavior of nuclei and of elementary par-
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tides requires therefore the availability of high energy beams that can be
used to impart large momentum transfers either to target particles or to
other beams of particles.

Although high energy particles are available in the cosmic rays, their
fluxes are quite low, and their energies, clearly, cannot be controlled. In
fact, the excitement brought about by discoveries of new phenomena in
experiments with cosmic rays only added impetus to the development of
techniques for accelerating charged particles.

The increase in accelerator energies achieved over the past 75 years
has been astounding. The first accelerators that were constructed (around
1930) provided beams of particles with energies of hundreds of keV, while
the largest modern accelerators will soon have beam energies of almost 108

greater than that. And because of the advent of colliding-beam techniques,
the effective increase in beam energy (that is, considering the energy avail-
able in the center-of-mass) has gone up by an even more spectacular factor
of about 1012! Such changes correspond to differences of about 106 in the
sensitivity to distance scales that can be studied with the next-generation
accelerators, which expect to provide sensitivity in the range of 10~18 cm.
Nowadays, besides being used in nuclear and particle physics, accelerators
are in demand in a variety of applications, ranging from experiments in con-
densed matter physics, the electronics industry, biomedical and geophysi-
cal areas, to food processing and sewage treatment. Accelerator science is
therefore no longer just an appendage of nuclear and particle physics, but
is a separate intellectual discipline in its own right.

There is a variety of ways of accelerating charged particles, and the
methods used for any specific application depend upon the kinds of probes
that are required, their energies, the desired beam intensities, and, of
course, any economic constraints. We will now sketch several of the key
historical developments in particle acceleration during the past 75 years.

8.2 Electrostatic Accelerators

8.2.1 Cockcroft-Walton Machines

Cockcroft-Walton machines are the simplest types of accelerators. They
are based on passing ions through sets of aligned electrodes that are op-
erated at successively higher fixed potentials. Usually, voltage-doubling
circuits are used for generating the high electric fields. A machine consists
of an ion source (often hydrogen gas) located at one end, and a target at



Accelerators 185

the other, with the electrodes arranged in between. First, electrons can
either be added to or stripped from the atoms of interest in order to pro-
duce ions, which are then passed through the series of accelerating regions.
The kinetic energy gained by an ion of charge q, passing through the volt-
age difference V, is given simply by T = qV. John Cockcroft and Ernest
Walton were the first to successfully apply these principles to particle accel-
eration, and used their device to disintegrate lithium nuclei using protons
of about 400 keV. Cockcroft-Walton machines are limited to about 1 MeV
energies because of the voltage breakdown and discharge that takes place
much beyond voltages of 1 MV. Currently, Cockcroft-Walton accelerators
are available commercially, and are often used as the first-step high-current
injectors (of the order of 1 mA) in the multi-stage process of accelerating
particles to high energies.

8.2.2 Van de Graaff Accelerator

The energy gained by a particle (ion) accelerated in a DC voltage machine is
directly proportional to the applied voltage, consequently, clever construc-
tion of the high voltage source is of crucial importance. That is precisely
what the Van de Graaff generator (named after Robert Van de Graaff)
does. The basic principle relies on the fact that since the charge on any
conductor resides on its outermost surface, if a conductor carrying charge
touches another conductor that envelops it, then, irrespective of its poten-
tial, it will transfer all its charge to the outer conductor. This can be used
to advantage to increase the charge on any conductor, and consequently to
create a higher voltage.

In the Van de Graaff accelerator, charge is carried on a conveyor belt
into a large metalic dome, where it is picked off, as shown in Fig. 8.1. The
conveyor belt is made of insulating material, and goes over motor-driven
rollers (R). A "sprayer" (S), connected to a discharge-voltage terminal,
sprays positive ions to the conveyor belt (electrons go to P). (Basically,
the high voltage ionizes the gas, and the ions are collected on the conveyor
belt.) The points where charges are sprayed or injected onto the belt are
known as corona points. The conveyor belt takes the positive charges up to
the dome, which is maintained at a positive voltage. The energy needed to
do this work is provided by the motors. At the upper end of the conveyor
there is a collector C, which collects the positive charges transferred to
the dome. Typically, this technique can produce accelerating potentials
of up to « 12 MV. (A tandem generator is a modification of the Van de
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Graaff generator, where negative ions that enter the accelerating tube from
one side, are first accelerated to the positive HV terminal, where they are
stripped and made positive, and then accelerated as positive ions down to
ground potential on the other side of the terminal. This, effectively, doubles
the acceleration energy to <25 MeV.)
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Fig. 8.1 The principle of a Van de Graaff accelerator.

The Van de Graaff has an evacuated tube through which ions from the
ion source are accelerated to strike the target. This accelerating tube is con-
structed with equipotential metallic rings embedded within the insulated
tube. The entire device operates within a pressurized chamber, containing
some inert gas that does not breakdown easily (often SFe). Normally, the
pressure of the gas inside the Van de Graaff is about 15 atm, and the limit
for the highest energy in such a machine comes from the voltage at which
there is electrical breakdown and discharge in the gas.
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8.3 Resonance Accelerators

8.3.1 Cyclotron

Fixed-voltage machines have an inherent limitation to their energy because
of voltage breakdown and discharge. An alternative method, which uses the
resonance principle, is more important for accelerating particles to higher
energy.

The cyclotron (or cyclic accelerator), first built by Ernest Lawrence, is
the simplest of the machines that use this principle (see Fig. 8.2). The
accelerator is constructed out of two hollow evacuated D-shaped metal
chambers (referred to as Ds), which are connected to an alternating high-
voltage source. The entire system is placed inside a strong magnetic field
perpendicular to the Ds. The principle of operation of the cyclotron is as
follows.

8 field

Target.

Electromagnet

Vacuum
Chambers
(The Ds)

S field

Fig. 8.2 Sketch of motion in a cyclotron.

Although the hollow Ds are connected to the source of high voltage,
because of the shielding effect of the metallic chamber walls, there is no
electric field within the Ds. Consequently, a strong alternating electric
field exists only in the gap between the Ds. A source for producing ions
is placed in the gap between the Ds, and, depending on the sign of the
voltage at that moment, any ion in the gap is attracted towards one of the
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Ds. However, the trajectory of the ions is circular because of the bending
effect of the magnetic field. Once an ion is inside the D, it stops sensing the
electric force, but continues in its circular motion because of the presence
of the static magnetic field. But after a half circle, when the ion is about to
emerge from the D, the direction of the voltage can be changed and the ion
can be accelerated again before it enters the other D. Similarly, when it is
about to exit from the second D, the applied voltage can again be reversed
and the particle accelerated further. If the frequency of the alternating
voltage source is just right, then the charged particle can be accelerated
continuously and move in ever increasing radial orbits, until it is extracted
to strike a target (for example, by suddenly turning off the B field).

For non-relativistic motion, the frequency appropriate for the alternat-
ing voltage can be calculated from the fact that the magnetic force provides
the centripetal acceleration for a circular orbit. That is,

v2 vB

or H = S l . (8.1)
r me

Now, for circular motion at constant speed, the angular frequency u is
related to the radius and circular velocity of the orbit as

w = - . (8.2)
r

We can therefore express the frequency of the motion as

2?r 2-irmc 2TT \mJ c' v ' '

Clearly, to keep the acceleration in phase with the particle motion requires
that the frequency of the electric field be the same as v. This frequency is
referred to as the cyclotron resonance frequency, and is the origin of the label
"resonance accelerator" for this kind of machine. Equation (8.3) therefore
provides a means for determining the frequency of the accelerating fields
as a function of other parameters. The maximum energy that a charged
particle has when it is extracted at a radius r = R is given by
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Equation (8.4) relates the magnitude of the magnetic field and the size of
the magnet that is needed to accelerate a particle to any given energy. In
a typical cyclotron, B < 2 T , the alternating voltage applied to the Ds is
« 200 kV, at a frequency of « 10-20 MHz. The maximum proton energy
that can be attained in such cyclotrons is about 20 MeV (for Ds of R « 30
cm), as will be shown shortly in an example.

As we increase the energy of charged particles, they become relativis-
tic, and the frequency relation in Eq. (8.3) starts failing. Consequently,
a fixed-frequency cyclotron cannot accelerate ions to relativistic energies.
For electrons, relativistic effects set in at even lower energies, and conse-
quently, such simple cyclotrons are not useful for accelerating electrons.
Synchronous accelerators (discussed in the following section) are needed
for attaining relativistic energies.

Example 1

For a cyclotron operating at an extraction radius R = 0.4 m, and a magnetic
field of JB = 1.5 T = 1.5 x 104 G, the frequency of the alternating source
needed to accelerate protons, and the maximum energy gained by these
protons, can be calculated from Eqs. (8.3) and (8.4) as

qB 1 4.8 x 10~10 esu x c x 1.5 x 104 G
2-KrripC 2?r mpc2

_ 4.8 x IP"10 esu x 3 x 1010 cm/sec x 1:5 x 104 G
~ 6.28 x 103 MeV x (1.6 x 10"6 ^ )

« 22.8 x 106/sec = 22.8 MHz,

_ 1 (gBR)2 _ 1 (4.8 x IP"10 esu x 1.5 x 104 G x 40 cm)2

max ~ 2 mpc2 ~ 2 (1000 MeV) x (1.6 x 10~6 jjj^)

(8.4)
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Note that we have used appropriate cgs units in evaluating the above ex-
pressions, and consequently the results can also be assumed to be in cgs
units. This implies that 1 esu-gauss is equivalent to 1 erg/cm, which is
consistent with Problem 2.4.

8.3.2 Linac or Linear Accelerator

Linear accelerators, as the name implies, accelerate particles along linear
trajectories rather than in circular orbits. These accelerators are also based
on the resonance principle, and operate as follows. A series of metal tubes,
called drift tubes, are located in a vacuum vessel and connected successively
to alternate terminals of a radio frequency oscillator, as shown in Fig. 8.3.
Let us suppose that at some time the fields are as shown in the figure.
Positive ions from the source will then be accelerated by the electric field
towards the first drift tube. If the alternator can change its direction before
the ions pass through that tube, then they will be accelerated again on
their way between the exit of the first and entry into the second tube, and
so on. However, as the particles accelerate, their velocities increase, and
consequently, if the drift tubes are all of the same length, the phase between
the particle positions and the potentials at the next tube may not keep in
step (that is, the next gap may not accelerate). To avoid this, the drift
tubes are made longer along the path so that one radio-frequency (RF)
alternator can accelerate the particles all the way to the end.

\ \y -v \+v } ~v \+v ^-J \^

Ion Source /
Hollow Drift Tubes

Fig. 8.3 A linear ion accelerator.

Because electrons become relativistic at relatively low energies, electron-
linear accelerators act on a slight variation of the principle just described.
The electron source is usually a hot wire filament which, effectively, boils
off electrons. These are accelerated through a positive potential grid and
rapidly become relativistic. Bunches of these electrons are then passed
through accelerating tubes that are fed with microwave power delivered by
klystron amplifiers. Electrons radiate easily as they get accelerated (this is
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referred to as synchrotron radiation), and therefore much power is needed
to increase their energy. This power is supplied by the microwave fields
that travel in step with electrons in specially shaped iris-loaded waveguides.
The longest linear accelerator is the two-mile Stanford Linac (SLAC), and
it accelerates electrons to energies of 50 GeV.

8.4 Synchronous Accelerators

As we have discussed before, if we want to accelerate particles to very high
energies, we must take relativity into account. For relativistic energies, the
equation of motion for a particle of mass m and charge q in a magnetic field
Bis

dp vx B

dv v x B , .
or rwy — = iwyv x OJ = q , (8.6)

at c

where, in the last step, we equated the centripetal force with the Lorentz
force. Now, with |u| ss constant = c, the resonance relation follows from
Eq. (8.6) (remember that both the magnetic field and the axis of circular
bending are perpendicular to the direction of motion)

qB
co= ,

T717C

or ,= f =4 m(l-4V*. (8.7)
2TT 2TT \mJ \ c2) c

Consequently, for this relation to hold during acceleration, either the al-
ternating frequency has to decrease, or the magnetic field has to increase,
or both must happen, as v —> c. Machines where the magnetic field is
held constant but the frequency is varied are called synchrocyclotrons, and
machines where the magnetic field is changed, irrespective of whether the
frequency is changed, are known as synchrotrons. In electron synchrotrons,

(8.5)
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the frequency is held constant and the magnetic field is varied, whereas in
proton synchrotrons, both the frequency and magnetic field are varied.

With relativistic effects taken into account, Eq. (8.7) can be used to
obtain the parameters for accelerating particles to any desired energy. Let
us first rewrite Eq. (8.7) in terms of the momentum of the accelerated
particle and the radius of the final orbit. For v PS c, we can also express
the frequency of the motion as

"-S5-S5- (8'8)

Writing p = rwyv pa m/yc, we can now obtain from Eq. (8.7) our usual
relativistic relationship between p, R and B (see also Fig. 7.5)

c _ 1 / q\ 1 B

2TTR ~ 2n \m) 7 c '

or tf=g. (8.9)

It is convenient to write Eq. (8.9) in the mixed units of accelerator science,
namely,

R*OJB> W

where p is in GeV/c, B is in tesla and R in meters, and where we have
assumed that q corresponds to the magnitude of the charge of a single
electron.

Now we can see that, independent of the nature of the accelerating fields,
any given momentum will be limited (often financially!) by the product of
the radius of the final orbit and the largest magnetic field that can be
supplied. At present, realistic bending magnets (dipoles) are limited to
fields of strength < 2 T for conventional electromagnets, and to < 10 Tior
superconducting dipole magnets. Thus, for example, to accelerate protons
to momenta of about 30 GeV/c requires an orbit radius of sa 50 m when
using conventional magnets

R*dB*jom=5Om- <8-10>
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If the accelerator were a synchrocyclotron with a cyclotron type of elec-
tromagnet, ignoring the difficulties of construction, the cost of even the
steel would be prohibitive. For the volume of the required magnet we can
use TrR2t, where t is the thickness of the poles (w 1 meter each); using
a density of 8 gm/cm3 for steel, this would yield a mass of w 2 x 108

lb, which, at current prices, would mean that the cost of the steel alone
would exceed $100M! A synchrocyclotron option is therefore impractical
for energies much beyond several hundred MeV.

Synchrotrons in the GeV (or higher) range of energies have magnets
positioned in a ring-like fashion (see Fig. 8.4). Particles with energies of
hundreds of MeV are injected (often from a linac) into a narrow vacuum
chamber that passes through all magnet apertures. At the start, the fields
are set to low values that correspond to the momenta of the injected parti-
cles. The beam particles are constrained by the magnetic field to move in
essentially circular orbits within the confines of the vacuum tube. To accel-
erate the particles to higher energy, RF power stations are placed in some
convenient locations within the ring of magnets. Every time the particles
pass through the RF cavities, they gain typically MeVs of energy from the
electric fields. For this to work, the phases of the accelerating fields for
different cavities must keep in step with each other as well as with the mo-
tion of the bunched beam. The magnetic field must also increase steadily
to assure that, as the momenta of the particles increase, the radius of their
orbit remains essentially fixed, in accord with Eq. (8.9).

Magnets
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Walton ~1 n .

\ \ Q^~~^^~~~-~-^ .Synchrotron

Linac—U <y^ U * ^ N ^

\ / \ / ""~~~~ Extraction

RF Power Station
(Accelerating Tubes)

Fig. 8.4 Sketch of a synchrotron complex.
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Most of the space along the ring is taken up by bending magnets. How-
ever, space is also needed for general servicing of the vacuum system, the
powering and cooling of the magnets, for the RF stations, for the injection
and extraction systems, and for other kinds of beam elements. A syn-
chrotron therefore has many "straight" sections along the ring, where there
is no bending. The accelerated particles consequently travel along circular
arcs within the magnets, and in straight lines between them. In order to
reach design energies, the beam particles must traverse the RF cavities and
therefore the entire ring millions of times. A natural question is whether it
is possible to maintain the beam within the small vacuum chamber for so
many traversals. This is discussed in the next section.

8.5 Phase Stability

Before proceeding further with our description of different accelerators, we
will introduce the principle of phase stability. Let us consider the operation
of a synchrocyclotron, that is, a cyclotron with a fixed magnetic field and
a variable accelerating electric RF field between the two Ds. Because there
is always some finite spread in the momentum of particles in any beam,
there is also a spread in the time of arrival of individual particles into the
region of the RF field between the Ds. Referring to Fig. 8.5, let us label as
synchronous, or "in time", the particle that arrives at the time (or phase) r
of the accelerating cycle. This particle will experience an electric field EQ,
which will accelerate that particle while it is in the gap between the Ds. A
particle that arrives earlier in the gap will therefore sense a somewhat larger
field E>. Thus the earlier particle will experience a larger accelerating force
(qE) while in the gap. This will increase the radius of its next orbit within
the cyclotron D, and shift the particles's next re-entry into the gap between
Ds to a later time (towards that of the synchronous particle). On the other
hand, a particle that arrives later than the synchronous one, will experience
a smaller acceleration due to the smaller E<. This will reduce the orbit
radius in the D, and again shift the arrival time at,the next acceleration
stage towards that of the synchronous particle. On the next cycle, the
synchronous particle will once again sense the same field EQ, while any
particles arriving late will be accelerated less, and those arriving early will
be accelerated more similarly for all following cycles. Particles that arrive
at arbitrary times relative to r will experience random accelerations or
even decelerations. Consequently, the self-correcting effect of the cyclical
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field will lead to a grouping of all remaining particles into bunches centered
on the time of the synchronous particle. This is the reason for the "RF
structure" that one hears about in accelerators.

Electric
Field

Time for One
Full Circular
Revolution

Fig. 8.5 Variation of electric field with time in the gap between the Ds of a synchrocy-
clotron.

A similar corrective effect occurs for particle motion in the vertical
plane. As a consequence of Maxwell's equations, at large radii (that is near
the edges), all dipole magnets have substantial fringe fields. This is shown
in Fig. 8.6. If our beam particles are supposed to travel in the bending
plane (horizontal circles in the figure), then, because of natural angular di-
vergence in the beam, some particles will have trajectories that move them
out of the median plane. These particles will experience a vertical restor-
ing Lorentz force proportional to (v x B) that will tend to counter their
divergence. Namely, it will deflect the particles back towards the median
plane. The larger the divergence, the greater will be the vertical restoring
or focusing force. There is no vertical correction for a particle moving in the
median plane, but, for any finite divergence, there will always be a vertical
component to the force.

For motion in a synchrotron, the fields in the apertures of individual
dipole magnets also provide corrections to the transverse motion. Just
as in the case of synchrocyclotrons, fringe fields along the edges of the
magnets (see Fig. 8.6) focus the particles vertically towards the median
plane. Because of the momentum dispersion of bending magnets, particles
of higher momentum traverse the vacuum pipe at largest radii, and particles
of smaller momentum move at smaller radii of the horizontal plane. And for
velocities v ta c, higher momentum particles therefore take longer to circle
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Fig. 8.6 Magnetic field in a synchrocyclotron and its effect on a charge circulating near
the edge of the magnet.

the ring than smaller momentum particles, which, once again, provides the
possibility for corrective acceleration at the locations of RF cavities, and
leads to the kind of phase stability described in Fig. 8.5.

All these restoring forces induce very small oscillations in the motion
about the mean trajectory for both the transverse direction (known as
betatron oscillations) and for the longitudinal (energy or time) dimension
(known as synchrotron motion), and make it possible to maintain particles
in their orbits for long times. The entire concept, especially the corrective
nature of the accelerating RF field, is referred to as the principle of phase
stability; it was discovered independently by Edwin McMillan and Vladimir
Veksler, and serves as the basis for stable operation of most modern high-
energy accelerators.

In a proton synchrotron complex, the particles are usually accelerated
first in a Cockcroft-Walton (to about 1 MeV), and then in a linac (to
several hundred MeV), before they are injected into the synchroton. As we
described in the previous section, most synchrotrons have large radii, with
a large number of magnets that are positioned in a ring along a circular
acceleration path. The magnetic field is increased at a constant rate, usually
from ss several hundred gauss to the maximum value. This depends on the
circumference of the accelerator and the fraction of the ring that is filled
with magnets, as well as on whether the magnets are warm-temperature
electromagnets or superconducting. The radio frequency of the accelerating
fields is usually modulated between 0.3 MHz and 50 MHz, depending on the
energy of the injected particles, the number of accelerating RF stations in
the ring, the extraction (final) energy, etc. (A sketch of a typical accelerator
complex was given in Fig. 8.4.)

Because protons do not radiate very much, most proton synchrotron
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rings are filled essentially to capacity with the bending magnets required to
maintain particles of maximum energy in their orbit. The size of the ring
is therefore determined primarily by the desired magnetic field. Electrons,
on the other hand, because of their small mass and centripetal accelera-
tion in magnetic fields, emit substantial amounts of synchrotron radiation,
which is inversely proportional to the radius of the orbit. (For example,
30 GeV electrons lose « 1.5 GeV per turn in an orbit of R = 50 meters!
This amount of energy is difficult to supply through standard accelerating
systems that provide < 10 MeV/meter. The energy loss scales as 74, and
is therefore insignificant for protons.) Consequently, electron synchrotrons
usually have larger radii than proton synchrotrons of same energy; this is
needed to reduce the amount of radiation and to provide adequate RF power
for acceleration. The largest currently-operating proton synchrotron ring
is the Tevatron at the Fermi National Accelerator Laboratory (Fermilab)
in Batavia, IL. It has a circumference of about four miles, and contains su-
perconducting magnets. It accelerates protons from f» 150 GeV to as 1000
GeV (one TeV). The protons are accelerated first in a Cockroft-Walton,
and then, as H~ ions, in a 400 MeV Linac. After the Linac, the beam is
stripped of electrons, and the protons are accelerated to 8 GeV in the first
"Booster" synchrotron. The beam from the Booster is passed to the Main
Injector ring, and eventually, after acceleration to 150 GeV, the protons
are injected into the Tevatron. The Booster and the Main Injector use
conventional magnets.

8.6 Strong Focusing

The weak focusing provided by fringe fields of dipole magnets is insufficient
for keeping large fluxes of high-energy particles within their orbits long
enough to accelerate them to full energy. Fortunately, stronger focusing
(larger gradients) can be attained through the use of quadrupole rather than
dipole magnets. These serve essentially as lenses in optics, as is illustrated
in Fig. 8.7. Imagine a positively-charged particle entering the field region
along the axis of the magnet (x = y = 0). We see that, in this case,
the superposition of the magnetic field lines is such that there is no net
deflection. Now suppose that the particle enters along x = 0, but y ^
0; here, for both positive and negative y-values, as the particle traverses
the region of magnetic field it will be deflected towards the center of the
magnet aperture (to smaller \y\). The larger the \y\ of the particle, the
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stronger is the magnetic field, and the greater the deflection. Consequently,
positively-charged particles entering these regions of the quadrupole field
will be focused. For particles traversing the magnet along y = 0, but
x ^ 0, the effect is opposite, namely, for both positive and negative x-values
the particles will be deflected away from the center of the magnet, or be
defocused. Because of the way the field in quadrupole magnets changes
with position (that is, the fixed gradient, or constant change of field with
position, is equal and opposite for the two orthogonal planes), the magnet
will focus particles in one plane and defocus them in the other plane. It
can be shown that by placing such magnets in alternating sequence along
the beam, particles can, in fact, be focused in both planes. This is known
as the principle of alternate gradient focusing, or, simply, strong focusing.

Flux
Return
Steel

Fig. 8.7 Focusing/defocusing properties of a quadrupole magnet for positively charged
particles entering the plane of the paper. The sense of the windings on the electromagnet
is indicated by the arrows showing the direction of positive current flow. The path of
the magnetic field lines through the flux-return iron is also indicated.

The principle of strong focusing, proposed independently by Ernest
Courant, Stanley Livingston and Harland Snyder, and by Nicholas
Christofilos in the early 1950s, was first applied in the construction of the
30 GeV proton accelerator, the Alternating Gradient Synchrotron (AGS),
at Brookhaven National Laboratory in the late 1950s. The AGS design was
based on the shaping of pole pieces (and therefore the fields) in dipole mag-
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nets to provide large alternating gradients. All high energy synchrotrons
now use quadrupole magnets along with dipole magnets to guide particles,
as they circle the ring and keep gaining energy at the RF power stations.
The use of such separate functions for dipoles (to bend and maintain parti-
cles in their orbits of fixed radius) and quadrupoles (to correct positions of
particles within an orbit) was first developed for the accelerator at Fermilab.

Just as dipoles have weak focusing properties (moments corresponding
to quadrupole terms in their field structure), so do quadrupoles have higher-
order components in their fields. Correction coils (especially for sextupole
effects, but also for even higher octupole terms) are needed in high-energy
synchrotrons to assure that beams remain stable for the full acceleration
cycle, and do not "blow up", and leave their vacuum vessel. After the
beams reach their final energy, they can be extracted to target stations, or
made to collide with other beams of particles.

We will not discuss the variety of injection and extraction techniques,
nor the manner in which beams are brought to external targets in exper-
imental areas. The techniques employed for such purposes are based es-
sentially on the same kinds of electromagnetic tools and principles we have
already sketched, namely the use of dipoles, quadrupoles, RF cavities, etc.
This is another important sub-branch of accelerator science that has wide
applications in nuclear and particle physics, as well as in other disciplines.

8.7 Colliding Beams

As we know, the ultimate figure of merit in any high-energy scattering
experiment is not just the laboratory energy of a colliding beam-particle,
but rather the energy that is available for producing more particles, namely
the energy in the center-of-mass of the collision. We have discussed some
of these issues previously, but let us review several of the salient points.
Let us assume that a particle of rest mass m and total energy E collides
with a stationary particle of equal mass. The energy that is available in
the center-of-mass of the collision is given by our expression for \fs (Eq.
(1.64))

£TOT _ ^ = ^m^c4 + 2mc2E, (8.11)

which for very high energies becomes
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E^T « V2mc2E. (8.12)

This is the part of the incident energy that is available for converting energy
into new particles; the rest of the incident energy cannot be used because
it is required to maintain the motion of the center-of-mass, that is, to pre-
serve conservation of momentum in the collision. We see therefore that
in a collision of an accelerated particle with a fixed target, the energy in
the center-of-mass increases only as the square-root of the accelerator en-
ergy. Consequently, to make massive objects such as the W and Z bosons
with masses « 90 GeV/c2, requires enormous laboratory energies (just the
threshold for single Z production in p-p collisions is about 4 TeV).1 Ex-
cept for special purposes, colliding beam-particles with fixed targets would
therefore appear to be a rather inefficient way to utilize the full energy
of any machine. On the other hand, accelerating two separate beams of
particles, and making them collide head-on, with the center-of-mass of the
collision stationary in the laboratory, would make the entire energy of the
beams available for producing new particles. This is the idea behind the
development of colliding-beam accelerators.

There are different kinds of colliding-beam machines. The beams can
have particles of same type, for example, heavy ions on heavy ions, p on p
or e~ on e~, or of opposite type (particles and their antiparticles), for ex-
ample, p on p or e~ on e+, or of different type, for example, e~ on p. Both
beams can have same or different energy. (Asymmetric energies are often
used for technical reasons, that are either associated with the detection
of short-lived particles, or when it is not possible to make beams of same
momentum - as in the case of e~-p collisions, where electron energies are re-
stricted to relatively low values because of the great synchrotron-radiation
loss and the consequent financial implications of trying to reach the very top
energies available for protons. Naturally, the center-of-mass in such asym-
metric collisions is not stationary in the laboratory frame.) Also, colliders

xIt could be argued that using more massive targets, such as lead nuclei or, better yet,
blocks of lead would be advantageous. Unfortunately, this would not help increase the
energy in the center-of-mass, except for interactions that are characterized by distances
of the order of the size of lead nuclei (as 6 fm) or lead blocks (cm). That is, to produce
Z and W objects, we have to have large momentum transfers, and therefore collisions at
distances of the order of the Compton wavelength for these particles (about 10~2 fm),
and having larger targets has little relevance since the collisions of interest are between
protons in the beam and in the target (or, in fact between constituents within these
protons), and not between a proton and an extended object (see Problem 8.6).
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can have a single ring or two independent rings of magnets. Clearly, inde-
pendent systems must be used for all but antiparticle-on-particle colliders,
since in the latter case the orbit of a particle moving along one direction
of the ring can be maintained while moving the antiparticle in the same
vacuum pipe but opposite direction. Whether there is a single ring or two
rings of magnets, the two beams can be accelerated at the same time, and
maneuvered into colliding orbits at selected intersection regions that con-
tain detector systems. The beams pass through each other and interact at
the collision regions until their intensity is greatly reduced (this often takes
many hours - the reduction is due to beam-beam collisions as well as from
interactions of the beams with any remnant molecules within the vacuum
pipe), at which time they are removed safely from the collider, and the
acceleration cycle restarted (the acceleration and filling part of the cycle is
far shorter than the collision part).

The type of colliders that appear to be most appropriate for accelerating
protons are the kind of ring synchrotrons that we have discussed in the
previous sections. For electron-positron colliding accelerators, two options
are possible. One is, again, the synchrotron variety, and the other is a newer
concept that has been developed at SLAC, which involves linear colliders.
Here, two accelerators are constructed to aim beams at each other. One
accelerates electrons, and the other positrons. The full beams are then
made to collide head on, in a single-shot fashion. Such linear colliders
require high accelerating gradients of the order of « 100 MeV/meter, large
beam currents, and small transverse beam dimensions {fxm in size) in order
to produce enough collisions to make them competitive with ring machines,
which have the advantage that they operate with stored beams that allow
multiple passes of particles through the intersection regions.

The use of colliding beams, especially when it involves antiparticles,
requires substantially more beam "gymnastics". Antiparticles must first be
produced, extracted, stored, accumulated and then accelerated in quantities
to provide a sufficient number of interactions with the larger flux of opposing
particles. This means that all particles must be stored for far longer times
than in normal accelerators. The usual synchrotron focusing mechanisms
are not sufficient, and must often be enhanced through "cooling" techniques
that reduce the transverse momenta of particles in orbit, and prevent the
beams from blowing up. The principle of stochastic cooling, developed by
Simon Van der Meer, is used to assure that beam fluxes remain adequate.
The idea is to sense the transverse position of a particle at some point in
the ring, and send that information along a chord so that it arrives before
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the particle does (this is possible because the particle must traverse the
longer path along the arc of the ring). With the help of RF fields, this
information is then used to correct the transverse position of the particle,
and prevent its escape from orbit.

ssc
Collider
87 km \ » J s*" " " \ .
20 TeV jf S N.

I HEB \
I Circumference = 10.89 km I
I Energy = 2000 GeV I
II = 2 TeV /

I \ J 5 Stages of Acceleration

I ^ ^ ^ j f Linac 0-0.6 GeV
L - ^ " ^ LEB 0.6-11 GeV
V MEB \ / MEB .11-200 GeV

LEB I 3 - 9 6 k m ) / HEB 200-2000 GeV
0.54 km N 2 0 0 G e V / ^ collider 2 TeV-20 TeV
11 GeV ^ 4 J V _ / ' — 1

I \Q~~ Linac
Test beams,. I I 0.148 km

> * J 1 0.6 GeV

J1. ^~~>> Interaction points

Fig. 8.8 The injector complex that was to be used for the Superconducting Supercollider
(SSC). LEB, MEB and HEB refer, respectively, to the low-energy, medium-energy and
high-energy boosters or synchrotrons.

The largest collider for proton collisions on protons is the Large Hadron
Collider (LHC), which is expected to commence operations in « 2007 at
the CERN Laboratory, outside of Geneva, Switzerland. The LHC has one
tunnel that is 27 km long, with two 7 GeV beams circulating in opposite
directions in separate magnetic channels located in a common yoke and
cryostat. The superconducting magnets will operate at almost 8.4 T, with
currents of the order of 15,000 A (cable cooled to » 1.9. K). The expected
collision rate is about 109 interactions per second! This enormous luminos-
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ity requires the development of novel detection and triggering techniques
that can make effective use of the factor of fa 100 increase relative to previ-
ous collision rates. The LHC will also be able to collide protons with nuclei
of Pb, and beams of Pb with Pb.

The canceled U.S. Superconducting Supercollider (SSC) was to have
had two rings of magnets placed in an essentially circular pattern, each of
which were to be about 90 km in circumference. Each ring was to contain
about 4000 dipoles with superconducting coils (operating at about 7 T).
In addition, there were to be about 1000 quadrupoles per ring, and other
correction coils. The top energy was designed to be 20 TeV per beam.
Figures 8.8 and 8.9 provide an idea of the scale of the SSC machine design.

Problems

8.1 Protons are accelerated in a cyclotron by an electric field with oscillating
frequency of 8 MHz. If the diameter of the magnet is 1 m, calculate the
value of magnetic field and the maximum energy that the protons can reach.

8.2 To achieve an energy of 20 TeV, each of the SSC main rings was to
contain about 4000 dipole magnets, each 16-meters long, with a field of 7 T.
This means that over half of the RS 60 mile SSC tunnel was to be taken up
by dipoles. If you were to build a single synchrotron for use in fixed-target
collisions of equivalent energy in the center-of-mass (^/s — 40 TeV), and
used a similar magnet design, how long would your tunnel have to be?

8.3 If the capacitance of a Van de Graaff accelerator terminal is 250 fi/iF
(pF), and if it operates at a voltage of 4 MV, what is the total charge on
the terminal? If the charging belt can carry a current of 0.2 mA, how long
does it take to charge up the accelerator to 4 MV?

8.4 Starting with cgs units, show that Relation (8.9') follows from Relation
(8.9).

8.5 Suggest a mechanism whereby an accelerated beam could be extracted
from a circular accelerator, and directed onto an external target.

8.6 Using Eq. (8.12), there is ostensibly sufficient energy in the center of
mass in the collision of a 1 TeV ir° with a lead nucleus at rest to produce a
Higgs boson (H°) of MH « 120 GeV/c2. In principle, this can be done in
a coherent collision, where the Pb nucleus remains intact. Does this make
sense in light of Footnote 1? Assuming a nuclear form factor for Pb of
as e-400? (with q j n QeV units), and considering the silly reaction 7r°+Pb
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-> H°+Pb, what would be the approximate reduction in the probability for
producing the Higgs at 0° as a result of the form factor? [Hints: To calculate
the minimum value allowed for the quantity q2 = (pnc—pHc)2 — (En — EH)2,
assume that the Higgs boson is relativistic, but approximate the terms to
order (MHc2/EH)4 in 0. You should get that q2 » q2min m (MHcA/2En)2,
when you ignore the small mass of the pion and set EH = En.]

Suggested Readings

Edwards, D. A. and M. J. Syphers, Introduction to the Physics of High
Energy Accelerators, Wiley (1993).

Livingston, M. S. and J. Blewett, Particle Accelerators, McGraw-Hill
(1962).

Livingston, M. S., Particle Accelerators: A Brief History, Harvard Univ.
Press (1969).

Wilson, R. R., Sci. Am. 242, 42 (1980).
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Chapter 9

Properties and Interactions of
Elementary Particles

9.1 Introductory Remarks

After the discovery of the neutron in 1932, it was thought that the elec-
tron, the proton, and the neutron were the fundamental constituents of all
matter. Subsequent experiments, involving cosmic rays as well as acceler-
ator beams, revealed that there was a host of other particles that could
be regarded as equally fundamental. We already mentioned the families of
leptons and some of their properties in connection with nuclear /3-decay.
In addition, we also know of the existence of hadrons such as 7r-mesons, K
mesons, p mesons, hyperons, and their many excited states. All these can
be referred to collectively as "elementary" particles. Usually, an elemen-
tary particle is thought to be an object without any substructure, namely
a point particle. However structure can be probed only up to any given
scale that is limited by the available energy. Consequently, our definition
of what is elementary or fundamental is always tentative, and must rely
on experimental verification at ever higher energies. For example, to ex-
amine the structure of matter at length scales of Ar < 0.1 fm, requires
transverse-momentum transfers (ApT) at least of the order

T Ar (Ar)c (O.lfm)c ' ^ '

In other words, to be sensitive to small length scales, the energy of the
particles used as probes must be very high. Because of this need, the study
of elementary particles has also come to be known as high-energy physics.

Whenever a higher-energy accelerator starts operating, we can probe
deeper into the structure of matter and find that what was once considered
elementary is not really so. This has, in fact, been the story of the proton,

207
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the neutron, the 7r-mesons, the liT-mesons, and so forth. Our current un-
derstanding of which particles should be considered as elementary is very
different from that of only several decades ago. Nevertheless, we will start
with the traditional (historical) perspective, and turn to the more modern
view of elementary particles in a later chapter. We will begin at the one
GeV/c2 mass scale, and discuss the properties of elementary particles and
their interactions from a purely phenomenological point of view.

9.2 Forces

We are quite familiar with the classical electromagnetic and gravitational
forces. We know that every particle, whether with or without rest mass,
is subject to gravitational attraction. (The observed bending of light in
a gravitational field shows conclusively that particles do not need to have
rest mass but rather energy to experience the pull of gravity.) On the other
hand, only particles that carry electric charge sense the Coulomb field di-
rectly. Both the Coulomb and the gravitational forces are long ranged. The
photon is the carrier of Coulomb interaction, and from the fact that the
electromagnetic force has infinite range, we can conclude that the photon
must be massless. The carrier of the gravitational interaction is the conjec-
tured graviton, which is also believed to be massless. From our discussion
of nuclear phenomena, we learned that there are two more forces that have
importance in the subatomic domain. There is the strong force, which, as
we have seen, is responsible for the binding of nucleons inside a nucleus,
and the weak force, which appears in processes such as /? decay of nuclei.
These forces have no classical analogs and, unlike the electromagnetic and
the gravitational interactions, are exceedingly short ranged. Thus, it seems
that we can point to four fundamental forces in nature

1. Gravitation,

2. Electromagnetism,

3. Weak Force,

4. Strong Force.

Because, in principle, all the forces can act at the same time, it could
be asked how is it possible to determine which force contributes in any par-
ticular process? The answer is that the forces can be distinguished through
the strengths of their interaction. We can estimate the relative magni-
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tudes of these four forces in a heuristic way by considering their effective
potentials. Although such potentials are fundamentally non-relativistic in
concept, they provide a useful guide for rough comparison. Consider two
protons separated by a distance r. The magnitudes of the Coulomb and of
the gravitational potential energies for the two particles are

Vm(r) = 7 ,

^grav(r) = , (9.2)

where GN is Newton's constant [6.7 x 10~39?ic(GeV/c2)~2], and m is the
mass of the proton. It is more instructive to write the potential energies in
the Fourier transformed momentum space (see Eq. (1.77)) where, except
for an overall normalization, they take the form

Vem(q) = %,

ygrav((?) = ^ ! , (9.3)

where q refers to the magnitude of the momentum transfer that character-
izes the interaction.

The absolute values of the potential energies for both interactions ap-
pear to decrease quadratically with momentum transfer, the ratio of Vem

and Vgrav is, in fact, independent of momentum scale, and we can evaluate
this ratio as

Km = e2 = / V \ 1 Ttcxc4

Vgrav ~ GNm2 ~ \hc) (me2)2 GN

( 1 \ 1 HPGeV2 36 ( 9 4 )

{U7j (lGeV)2 6.7 1U ' ( 9 ' 4 )

where we have substituted 1 GeV/c2 for the mass of the proton, and used
the value of a = | j = j-|y for the electromagnetic fine-structure constant.
Equation (9.4) shows that, for charged elementary particles, the gravita-
tional force is inherently much weaker than the electromagnetic force.
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Next, let us recall that since both the strong and the weak forces are
short-ranged, they can be described phenomenologically by Yukawa poten-
tials of the form

O 2

Q mnc*r

Strong = 7" e " hc .
o 2 , mw<?r

ywk = ^ w k e — 1 ~ , (9.5)
r

where gs and <?wk represent the coupling constants (effective charges) for the
strong and the weak interactions, and mv and mw represent the masses of
the force-mediating (or exchanged) particles in the two cases. Once again,
we can transform the above potentials to momentum space, and, except for
an overall normalization constant, obtain

V 9«
s t r o n s ~ </2 + m 2 c 2 '

2
V , — ^wk (q fr\

q2 + m2wc2

The values of the coupling constants can be estimated from experiment,
and they are

2 2

I2- « 15, %^ w 0.004.

From our discussion in Chapter 2, we can think of the TT meson {mn « 140
MeV/c2) as the mediator of the strong nuclear force. Also, from weak-
interaction processes at low energies (e.g., /? decay), we can estimate that
mw « 80 GeV/c2. Consequently, we can compare the magnitude of the
Coulomb potential energy to that for the strong and the weak interactions.
However, there appears to be an explicit dependence on momentum scale
in the ratio. Since we are considering the interaction of two protons, it is
natural to choose the momentum scale to correspond to that of the proton
mass. Thus, choosing g2c2 = m2c4 = (1 GeV)2, we obtain
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Ktrong _ gl fa q2 =glhc m2c4

Vem he e2 q2+m2Tc2 he e2 m2^ + m2Tci

« 15 x 137 x 1 K 2 x 103,

Vem _ <?_ hc_ im2ci + m2vci

\U~hc"^ ^V

* w om(80)2 * ° x lo4- (9-7)
This shows once again that the strong force is stronger than the electro-
magnetic force, which in turn is stronger than the weak force, and that
gravitation is the weakest of all the forces. For larger momentum scales of
order sw mw, the weak and electromagnetic energies and strengths become
more comparable, and suggest the interesting possibility for a unification
of the two forces at very high energies. But because our phenomenological
estimates are only qualitative, the ratios of the effective potentials as given
in Eq. (9.7) should not be taken too literally.

The difference in the forces also manifests itself in the interaction time
characterizing a particular process. Thus, for example, the typical time
scale for a strong reaction is about 10~24 sec, which is roughly the time it
takes a light signal to traverse a proton's dimension, namely 1 fm. On the
other hand, typical electromagnetic reactions of elementary particles occur
in time intervals of the order of 10~20-10~16 sec, whereas the typical time
scales for weak decays are about 10~13-10~6 sec.1 In the GeV range of
energies, the properties of the four fundamental forces are therefore quite
different, and they can be used to classify the character of the elementary
particles.

9.3 Elementary Particles

Before it was fully appreciated that quarks were the fundamental con-
stituents of nuclear matter, all the known elementary particles were grouped
into four classical categories that depended on the nature of their interac-

1Again, we wish to stress that these are only typical time scales. Specific transition
rates have varying contributions from spin effects and factors corresponding to density
of final states ("phase space") that can have large bearing on lifetimes. As we mentioned
previously, the lifetime of the neutron, for example, is « 900 sec, which is far from the
norm for weak interactions.
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tions. This is sketched in Table 9.1.

Table 9.1 Different kinds of elementary particles, with their ranges in
mass and electric charge (superscripted).

Particle Symbol Range of Mass Values

Photon 7 < 2 x 1(T16 eV/c2

Leptons e~,/j,~,T~,ve,vli,vT < 3 eV/c2 - 1.777 GeV/c2

Mesons TT+,71- ,TT°,K+,K-,K0,

p+,p-,p°,... 135 MeV/c2 - few GeV/c2

Baryons p,n, A0, £ + , £ " , £°, A++,

A0,iV*°,Y*+,ft",... 938 MeV/c2 - few GeV/c2

All particles, including photons and neutrinos, participate in gravita-
tional interactions. The photon can interact electromagnetically with any
particle that carries electric charge. All charged leptons participate both in
the weak and electromagnetic interactions, and neutral leptons, of course,
have no direct electromagnetic coupling. (This is what made it so diffi-
cult to observe the neutrino in j3 decay.) Leptons do not sense the strong
force. All hadrons (mesons and baryons) respond to the strong force and
appear to participate in all the interactions. We will subsequently discuss
the differences between mesons and baryons; their common characteristic,
however, is that they appear to have substructure, and a size of the order
of one femtometer.

All the particles in nature can be classified as either bosons or fermions,
with the basic difference between them being the statistics that they obey.
Bosons obey Bose-Einstein statistics whereas fermions satisfy Fermi-Dirac
statistics. This is reflected in the structure of their wave functions. For
example, the quantum mechanical wave function for a system of identical
bosons is symmetric under the exchange of any pair of particles. That is,

^B{Xl,X2,Xz...,Xn) = ^B(x2,Xi,X3,...,Xn), (9.8)
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where the Xi denote, collectively, space-time coordinates as well as inter-
nal quantum numbers of particle i. On the other hand, under similar
assumptions, the quantum mechanical wave function for a system of iden-
tical fermions is antisymmetric under the exchange of any pair of particles,
namely

^F(x1,X2,X3,...,Xn) = -tyF(x2,Xi,X3,...,Xn). (9.9)

The Pauli exclusion principle is therefore automatically built into the an-
tisymmetric fermionic wave function, thereby forbidding a pair of identical
fermions to occupy the same quantum state. This follows because, for
x\ = x2, the wave function in Eq. (9.9) would equal its negative value, and
would therefore vanish.

It can be shown from fundamental principles that all bosons have integer
values of spin angular momentum, while fermions have half integral spin
values. In a subsequent section we will describe several ways to determine
spins of elementary particles. Prom such studies, it has been learned that
the photon and all mesons are bosons, whereas the leptons and all baryons
are fermions. Also, as we have already indicated, every known particle
has a corresponding antiparticle. The antiparticle has the same mass as
the particle, but otherwise opposite quantum numbers. Thus, the positron
(e+) is the antiparticle of the electron, and carries a negative lepton number
and a positive charge. The antiproton (p) has one unit of negative charge
and one unit of negative baryon number, in contrast to the proton which is
positively charged and has a positive baryon or nucleon number. Certain
particles cannot be distinguished from their own antiparticles. For example,
the 7T°, which has no electric charge, is its own antiparticle. It is clear that
for a particle to be its own antiparticle, it must, at the very least, be
electrically neutral. However, not all electrically neutral particles are their
own antiparticles. The neutron has no electric charge, yet the antineutron
is distinct because of its negative baryon number and the opposite sign of
its magnetic moment. Similarly, the K° meson, although charge neutral,
has a distinct antiparticle. (It is still unknown whether the neutrino is
distinct from its antiparticle.) Except where it is redundant, or where
there is a special symbol, antiparticles are denoted by the same symbol as
the particles, but with a bar over that symbol. Several examples are
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e~ =

XT = E 1 " ,

iT^iir. (9.10)

9.4 Quantum Numbers

As we emphasized in our treatment of nuclear phenomena, much of our
physical intuition does not help in trying to understand the subatomic
domain, and we have to rely on experiment as guide. The properties of
the elementary particles and their interactions are even more mystifying,
but there are many elementary particles, and many processes that can be
studied. However, to derive any meaningful conclusions from observations,
results must be organized in some coherent manner. Here our classical
experience does help. Classically, we know that a process or a reaction
can take place if it is allowed kinematically, and if it does not violate any
recognized conservation law. Thus, for example, we are quite certain that
a reaction that violates charge conservation will not take place. This cer-
tainty is based upon years of past studies and the development of a reliable
theory for electromagnetic interactions. We believe that similar conserva-
tion principles hold in the subatomic domain, except that here we do not
know all the relevant laws because we do not have a complete theoretical
understanding of all the forces. Consequently, to formulate general princi-
ples, we must deduce from experiment the type of quantum numbers that
are conserved and the conservation laws that are appropriate for each of
the interactions of the elementary particles. One of the clearest results ob-
served in reactions of elementary particles is that the number of fermions is
always conserved (that is, if we count a fermionic antiparticle as a fermion,
but with a negative fermion number), whereas the number of photons and
mesons is not. This suggests that the conservation of fermion number is a
fundamental feature of all interactions, as will be elaborated below.
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9.4.1 Baryon Number

From differences in the magnitudes of observed transition rates, or from
the absence (upper limits) of kinematically allowed processes, we can often
infer the presence of possible conservation laws. As an example, consider
the decay

p->e + +7r° . (9.11)

Since the proton is far more massive than the sum of the pion and positron
masses, and since the above decay satisfies the conservation of electric
charge, one might expect this process to take place. Nevertheless, pro-
ton decay is not observed. In fact, the upper limit on the probability for
reaction (9.11) is a miniscule < 10"~40/sec. This suggests that there is some
conservation principle that forbids the decay. In fact, we can account for
this simply by asserting that baryons carry an additive and conserved quan-
tum number (baryon or nucleon number) that equals B = 1 for all baryons
(and, of course, B = - 1 for antibaryons), but B = 0 for photons, leptons,
and mesons. Consequently, if baryon number is conserved in all physical
processes, then the proton, being the lightest baryon, should not decay.

9.4.2 Lepton Number

Similarly, we can postulate a quantum number for leptons, namely assert
that all leptons carry lepton number L = 1, whereas the photon and hadrons
carry no lepton number. The introduction of a lepton quantum number
is necessitated by many experimental observations. One example is the
process

e~ + e~ ->TT~ +TT~. (9-12)

At high energies, this reaction is kinematically allowed, and it certainly
satisfies charge conservation, but it is not observed. Naturally, lepton-
number conservation would prevent this process from taking place.2 In
fact, reactions such as

2 Conservation of lepton number can also explain the absence of proton decay in the
e+n° channel of Eq. (9.11).
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\T -> e~ +7,

li~ -> e~ + e+ + e~, (9.13)

although kinematically allowed, have also never been observed. It is from
such experimental findings that we arrive at the conclusion that there must
be different kinds of lepton numbers within the family of leptons (see Table
9.2). Thus, the electron and its neutrino have an electron-lepton number
Le = 1, whereas the other leptons have Le = 0. The muon and its neutrino
have muon-lepton number LM = 1, whereas the other leptons have L^ = 0,
and similarly for the r-lepton and its neutrino. The net lepton number of
any particle can therefore be expressed as the sum of the electron number,
the muon number, and the r-lepton number.

Table 9.2 Lepton numbers

Electron Muon r-lepton
Number Le Number iM Number LT L = Le + L^ + LT

e~ 1 0 0 1

ve 1 0 0 1

(j,- 0 1 0 1

^ 0 1 0 1

r - 0 0 1 1

vT 0 0 1 1

Leptons can therefore be split into three families, namely, [e~, ve), ((A~, ffj),
(r~, vT), with each family number conserved in all interactions. This would
explain, for example, why the muon decays as

H~ -¥e~ +Ve + Vp. (9.14)

It is worth noting that, although proton decay in Eq. (9.11) violates both
baryon number and lepton number, the combination B - L is conserved in



Elementary Particles 217

the process. Which suggests that this interesting feature should be incor-
porated into any physical theory.

9.4.3 Strangeness

In early studies of cosmic-ray showers, it was found that certain particles,
which have since been identified with K mesons and the E and A0 baryons,
were produced strongly (that is, with large cross sections of the order of
millibarns), but had lifetimes characteristic of weak interactions, namely
as 10~10 sec. These particles were always produced in pairs, that is, a K in
association with either a £ or A0. All this was certainly puzzling, and led
to a suspicion that a new quantum number might be associated with such
particles. When specific reactions, such as

7T- + p^K° + A°,

were studied with the A0 and K° subsequently decaying as

A° -> 7T~ + p,

K°-)-K++-K-, (9.15)

it was observed that the A0 was always produced in association with a K°
and never with just a TT0. The A0 was also observed to be produced in
association with a K+, but not with a K~

7T~ + p -» K+ + 7T~ + A0,

7T~ + p -ft K~ + 7T+ + A°,

71"- +p/>7T~ +71-++ A°. (9.16)

Similarly, for the reaction

7T+ + £ - > £ + +K+,

with the S + and K+ decaying subsequently as
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S+ ->n + n+,

K+ -+n++n°, (9.17)

it was observed that the £ + was always produced in association with a
K+, and never with just a n+. Again, £+ baryons were also found to
be produced in association with K° mesons, but with an additional TT+

required to conserve electric charge. Similarly, £~ baryons were produced
in association with K+ mesons in n~p collisions, but T,+K~ final states
were not observed

7T+ +p^Y,+ +n++K°,

IT' +P^S++K-,

it- + P A E - + 7 T + . (9.18)

The production cross sections for reactions such as those given in Eqs.
(9.15) and (9.17) for pion momenta of about 1 GeV/c were measured to be
about 1 mb, whereas the total cross sections for ?r± scattering on protons
were known to be about 30 mb. Thus, it was clear that these production
processes were strong. The subsequent decays of these particles were also
studied, and revealed that the A0, traveling at a speed of about 0.1c, de-
cayed after a flight path of about 0.3 cm. Consequently, the lifetime of this
baryon was deduced to be

0.3 cm ,~_in
TAO PS ; — = 10 sec.

3 x 109 cm/sec
And similar lifetimes were observed for the other "strange" particles, lead-
ing to the conclusion that the decays involved weak interactions (see Figure
9.1)

The puzzle of associated production was clarified by Murray Gell-Mann
and Abraham Pais, who proposed that these particles carried a new addi-
tive quantum number, which they called strangeness, which is conserved in
strong production processes, but violated in weak decays. All the ordinary
mesons and baryons (as well as the photon) were assumed to be non-strange
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(5 = 0). Thus, in any strong associated-production reaction with the ini-
tial state having no strangeness, the total strangeness of the particles in the
final-state must also add up to zero. Prom the analysis of such reactions,
it was deduced that the strangeness of the K+ and K° must be opposite
to that of the £ + , £°, S~, and A0. In fact, if we arbitrarily choose

S(K°) = 1, (9.19)

it follows that

S{K+) = S(K°) = 1, (9.20)

and that

S(A°) = S(E+) = S(E°) = S(E~) = - 1 . (9.21)

Similarly, from strong-production reactions such as

K~+p-^E- +K+,

K°+p^>Z° + K+, (9.22)

we deduce that the cascade particles E° and E~, can be assigned the
strangeness number S = —2, if the K° and K~ have S = — 1. The lat-
ter assignment is consistent with our identification of the K~ and K° as
antiparticles of the K+ and K°, respectively.

It is worth stressing that weak decays of hadrons do not conserve
strangeness. Consequently, if we assume strangeness to be conserved only
in strong and electromagnetic interactions, it then follows that we cannot
assign unique strangeness quantum numbers to leptons.

9.4.4 Isospin

The proton and the neutron are baryons with spin | , and are essentially
degenerate in their mass. In fact, as we already indicated they are quite
similar in their nuclear properties, except that the proton has a positive
charge whereas the neutron is electrically neutral. Correspondingly, their
electromagnetic interactions are quite different, and, as we discussed earlier,
even their magnetic dipole moments have opposite sign.
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p + p —»H~ + (19 charged particles)

^l^Ji^rrS^Lg^ig^^g^uSiJ^SE^^g^^^^

Fig. 9.1 A photograph of particle interactions and decays observed in a liquid-hydrogen
bubble chamber at Permilab. The tracks correspond to trajectories of charged particles
that ionized the hydrogen atoms and thereby produced bubbles (local boiling) along their
paths in the superheated liquid. A magnetic field in the chamber causes the curvature
of the particle trajectories. The chamber is sensitive for about 1 msec, which is long
compared to the lifetimes of some of the particles that can be observed to decay. The
incident particles are 400 GeV protons. One of these interacts strongly with a target
proton (nucleus of the hydrogen atom) and produces many other particles.

It has been known for a long time that the strong force does not depend
on the charge of a particle. In fact, studies of mirror nuclei (e.g., 3H and
3He) have demonstrated that the strong binding force between p-p, p-n
and n-n is essentially the same. Furthermore, scattering experiments have
revealed that, if we correct for electromagnetic effects, the cross section for
the scattering of two protons is the same as that for two neutrons. Thus,
the strong interactions do not distinguish between a proton and a neutron.
Consequently, if we imagine a world where only the strong force is present,
and the weak and electromagnetic forces are turned off, then in such a world
a proton would be indistinguishable from a neutron. (Our physical world
is, of course, not like this. Nevertheless, because the strong force is so much
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stronger than the other forces, we can pretend that our world is close to
this, and that the presence of the other forces will then provide only small
corrections to the simpler picture.) In such a world, we can think of the
proton and the neutron as two orthogonal states of the same particle that
we can call the nucleon, and write the states for the neutron and proton as

This language is very similar to that used in discussing the "spin up" and
the "spin down" states of a spin | particle, which are also indistinguishable
in the absence of any interaction that breaks rotational symmetry (e.g., a
magnetic field). The two spin states will be degenerate in energy until we
apply an external magnetic field, which picks out a preferred direction in
space, and removes the degeneracy of the two states. In much the same way,
we can think of the proton and the neutron as being degenerate in mass be-
cause of some symmetry of the strong force (or of the strong Hamiltonian),
and we call this symmetry the isotopic-spin or isospin symmetry. In real-
ity, the presence of electromagnetic and weak forces breaks this symmetry,
lifts the degeneracy in the masses, and allows us to distinguish between a
neutron and a proton.

As indicated in Chapter 2, the three TT mesons, namely TT+, TX~ and 7r°,
also have almost identical masses. And, just as in the case of the nucleons,
the cross sections for scattering different pions on protons and neutrons
are also found to be the same, once they are corrected for electromagnetic
effects. Thus, it appears that the strong force does not distinguish between
different kinds of TV mesons. Therefore, in the absence of electromagnetic
and weak forces, we can think of the three -K mesons as corresponding to
different states of one particle, the n meson, and we can represent the pion
states as

'•0-
7T- = I 0 . (9.24)

(9.23)
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Of course, these three states are degenerate in mass in our hypothetical
world. The analogy with spin now corresponds to the three spin projections
of a J = 1 particle that are degenerate in energy for a rotationally invariant
Hamiltonian.

Similarly, the (K+, K°) doublet, the {K°, K~) doublet and the
(E+, £°, £~) triplet, each correspond to states that can be considered as
different manifestations of single particles, the K, K and S, respectively.
In fact, this discussion can be extended to all the known hadrons, which
can be classified into multiplets corresponding to some quantum number
very much like the spin quantum number. We will refer to this quantum
number as the strong isotopic spin or strong isospin, and its conservation
suggests the invariance of the strong Hamiltonian under isospin transforma-
tions. These transformations correspond to rotations very much like those
that occur for spin, but the rotations are in an internal Hilbert space and
not in space-time. The isospin quantum number (or /-spin) is found to
be conserved in strong interactions (it is a symmetry of the strong force).
However, /-spin does not appear to be conserved in electromagnetic or weak
processes.

Table 9.3 summarizes the strong isospin quantum numbers of different
hadrons, as determined from scattering experiments. The assignment for
the third-component, or projection of the isospin chosen in Table 9.3 is
such that, in any given isospin multiplet, a particle with a larger positive
charge has a higher value of the isospin projection. We have also denoted
the projection as I3 instead of the conventional notation Iz, in order to
emphasize that isospin is not a space-time symmetry. We cannot assign
unique strong isospin quantum numbers to leptons or to the photon, be-
cause isospin transformations are a symmetry of only the strong-interaction
Hamiltonian, and the photon and the leptons do not participate in strong
reactions. As we will see in Chapter 13, there is another symmetry called
the weak isospin symmetry, which is fundamental to the Standard Model,
and involves leptons and quarks.

As we have indicated, /-spin is conserved in strong interactions, and
this can be inferred from comparisons of different production and decay
processes. We will leave these details to specific examples and to problems
in Chapter 10.
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Table 9.3 Isotopic spin assignments of a representative group of
relatively long-lived hadrons

Mass
Hadron (MeV/c2) I J3

p 938.3 1/2 1/2

n 939.6 1/2 -1/2

7T+ 139.6 1 1

7T° 135.0 1 0

7T- 139.6 1 - 1

K+ 494.6 1/2 1/2

K° 497.7 1/2 -1/2

~K° 497.7 1/2 1/2

K~ 494.6 1/2 -1/2

rf 548.8 0 0

A0 1115.6 0 0

S+ 1189.4 1 1

E° 1192.6 1 0

£~ 1197.4 1 - 1

ft- 1672.4 0 0

9.5 Gel l -Mann-Nishi j ima Rela t ion

The assignment of the strangeness quantum number in Eq. (9.19), and the
other choices we have made, may appear to be rather ad hoc. In fact, these
were made originally with the phenomenological observation in mind that
the electric charge of a hadron can be related to its other quantum numbers
through the Gell-Mann-Nishijima relation
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Q = h + \=h + ̂ y^, (9.25)

where Y = B + 5 is known as the strong hypercharge. (We will see later,
in the context of the Standard Model, that there is a different relation
involving the weak hypercharge, which holds for all fundamental particles.)
We summarize the quantum numbers of several typical long-lived hadrons
in Table 9.4. These are all consistent with Relation (9.25).

Table 9.4 Quantum numbers of a representative set of relatively long-
lived hadrons

Hadron Q I3 B S Y = (B + 5)

7T+ 1 1 0 0 0

7r° 0 0 0 0 0

7T- - 1 - 1 0 0 0 •

K+ 1 1 / 2 0 1 1

K° 0 - 1 / 2 0 1 1

f]° 0 0 0 0 0

p 1 1 / 2 1 0 1

n 0 - 1 / 2 1 0 1

E + 1 1 1 - 1 0

A0 0 0 1 - 1 0

H- - 1 -1 /2 1 - 2 - 1

fi- - 1 0 1 - 3 - 2

With the subsequent discovery of new particles with new flavor quantum
numbers such as charm and bottom, in addition to strangeness, the Gell-
Mann-Nishijima relation has been generalized to include these as well. In
the expanded relation, the hypercharge is denned to be the sum of the
baryon number, strangeness number, and all the new flavor quantum num-
bers. With this modification, the original relation, namely,
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Q = h + \ , (9-26)

holds for all hadrons. Since charge and isospin are conserved in strong
interactions, it follows that the generalized hypercharge is also conserved
in such processes. In fact, each of the flavors is conserved independently in
strong interactions.

9.6 Production and Decay of Resonances

We already mentioned in Chapters 2 and 4 about the existence of resonances
or excitations of nuclear ground levels. Similarly, it has been found that
there are also excited states of hadrons, and that such resonances have
typical lifetimes of the order of 10~23 sec. There are two ways to observe
such short-lived particles. Let us first consider the A(1232), which is a ir-N
state that has I = § (four different charge states). This was the first object
of its kind to be found, and it was discovered by Enrico Fermi and his
collaborators in the study of ir-N scattering as a function of energy. This
direct way of searching for excited hadronic states is referred to as formation
or s-channel studies. Using a pion beam, the probability of scattering from
a nucleon target (i.e., the n-N cross section CT^N) can be measured as a
function of the momentum of the pion, or, equivalently, the invariant mass
•̂JT of the TT-N system, as given in Eq. (1.64). Figure 9.2 sketches what

is observed at low energies for the elastic scattering of TT+ on protons as a
function of T/S. The cross section rises from threshold (about 1080 MeV,
corresponding to the sum of the masses of the TT+ and the proton) and
reaches a maximum at MAC2 SS 1230 MeV; the peak has an observed full
width at half maximum of FAC2 « 100 MeV. The excitation spectrum
can be characterized, essentially, by a Lorentzian, or "Breit-Wigner" form
(after Gregory Breit and Eugene Wigner). This peak can be interpreted
as a resonance in the ix-N system, or an excited state of the nucleon. The
intrinsic uncertainty in the mass associated with the observed width of
the line shape (corrected for any small effects due to the experimental
resolution) corresponds to a lifetime of the order of

h 6.6 x 10-22MeV-sec , , . nn.
T**W* 100MeV * 1 0 SeC" ^ 2 7 )



226 Nuclear and Particle Physics
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Fig. 9.2 Sketch of the pion-nucleon elastic scattering cross section at low energies.

Clearly, not all excited states of hadrons can be found in this fashion.
For example, resonances among pions cannot be produced in formation
experiments because the fluxes needed to observe such systems would be
forbiddingly high. Objects such as the p meson were discovered in final
states involving multiple-pion production. The following reaction, when
studied at a fixed beam energy, is a rich source of p° mesons

n~+p—>n++ir~+n. (9.28)

The way that the presence of a resonance can be detected in the final state is
by plotting the invariant mass or the *2gL of the n+ir~ system. If Reaction
(9.28) proceeds through the intermediate step

n~ + p —> p° + n,

followed by

p° —J-TT+TI--, (9.29)

then, after the p° decays, the TT+ and n~ will remain correlated. This is
because energy-momentum conservation in the decay will assure that

PP=P*++P*-, (9-30)
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and therefore the invariant mass of the two pions will maintain the mass of
the p°, namely,

M1^ = {E2p - Py) = (En+ + Ew- f - (&+ + & - )2 c2 = 8mt (9.31)

Consequently, when we plot the distribution for the effective or invariant
mass of two pions for many events corresponding to Reaction (9.28), namely
plot the number of events as a function of ^ F S if there is a contribution
from Reaction (9.29), we should then observe a peak in the distribution at
^ip- = Mp. A typical result for Reaction (9.28) is shown in Fig. 9.3, and
displays a peak at Mp = 760 MeV/c2, with a width of Tp sa 150 MeV/c2,
which characterizes the strong resonant interaction of the two pions.

Mp

Number ]j \

Events /] V-i

Bin -/ I \L_rp-0.15

0.6 0.7 0.8 0.9 (GeV/c2)
Invariant Mass of;r+;r~

Fig. 9.3 Sketch of the invariant mass of TT+TT" pairs produced in Reaction (9.28).

The fact that resonances have Breit-Wigner form is an intrinsic conse-
quence of the character of a decaying quantum state. The time dependence
of the amplitude of any state with mean life jr-̂ -, and with a central value of
mass of M — Mo, can be written in its own rest frame as (see the discussion
on time development in Chapter 12)

V > ( t ) « e - x ( M o - * j ) * , t > 0 (932)

This assures exponential decay of a state with mean life J^J , namely,

re2 f

\tp(t)\2 <x e~ir (9.33)
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Taking the Fourier transform of Eq. (9.32) provides the amplitude in energy
space (or in mass)

iHM)oc/ dt^){t)eiMcH. (9.34)
Jo

This is simple to integrate, and, except for an overall normalization, yields

ip{M) oc — F , (9.35)
VK ' (Af-M0) + t£ K '

which, upon squaring, yields the Lorentzian or Breit-Wigner form for a
resonant effect at M = Mo,

MAO|2 oc =5-. (9.36)
'^V M ( M - M 0 ) 2 + ̂  v '

9.7 Determining Spins

The spins of some of the stable elementary particles can in principle be
obtained, for example, through a Stern-Gerlach type of experiment. Thus,
from the splitting of a beam of particles in a magnetic field, we can deduce
that the electron as well as the proton have spin angular momentum | .
The neutrino, as we have seen earlier, was postulated to have spin | in
order to maintain angular momentum conservation in /? decay. The spin of
the photon can, of course, be determined from the classical properties of
electromagnetic waves. Because the electromagnetic field is described by
a vector potential, this implies that the photon is a vector particle with
spin-1, and that its wave function is proportional to its polarization vector
<f. Normally, a spin-1 state has three possible projections of the angular
momentum, corresponding to sz = 1,0,-1. However, propagating elec-
tromagnetic waves are transverse, which means that the physical photon
has no longitudinal degree of freedom. This is reflected in the fact that
the electric (E) and magnetic (B) fields, and the polarization vector of the
photon, are transverse to the direction of propagation [k = -M-)

IS = ?Eoei& •?-"*), B = kxE, (9.37)
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and obey the conditions

k - E = 0 , k - B = 0 , k - e = Q. (9.38)

These properties of the photon are related to its being massless, which is
a feature that can be accommodated through the invariance of Maxwell's
equations under what are traditionally referred to as "gauge" transforma-
tions of the electromagnetic potentials. (We shall discuss this in more detail
in Chapter 13.)

The spin of the n° meson can be deduced from the fact that it decays
into two photons. In the rest frame of the TT°, the two photons must be
emitted back-to-back with equal and opposite momenta (see Fig. 9.4). The
final state in this decay consists of two identical bosons and, consequently,
the final state wave function, which corresponds to the product of the wave
functions for the two photons, must be symmetric under the exchange of the
photons. As we have indicated, the photon wave function is proportional
to its polarization vector. Letting k denote the relative momentum of the
two photons and e\ and t2 their polarization vectors, the only scalar or
vector quantities that can be constructed from the vectors k, e*i and e2 that
are linear in both t\ and e2, and are symmetric under the exchange of the
photon variables, are

k x (e*! x e2), k • (ei x e2), and e*i • e2. (9.39)

The first vanishes because the polarization vectors are transverse, that is,

k x (ei x e2) = (k • e2)ex - (k • ei)e*2 = 0.

Thus, the simplest combinations satisfying all symmetry properties are the
scalar products in Eq. (9.39). Because the planes of polarization for the
two photons are observed to be orthogonal, we conclude that the final state
wave function must be proportional to the scalar product

jE-(?iX?3). (9.40)

For the decay of a TT° to take place (that is, for the transition amplitude not
to vanish), the pion wave function must have a component corresponding
to the final state wave function of the two photons. We therefore conclude
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that the pion wave function must also be a scalar under rotations, that is,
the pion must have spin zero. (We have ignored the possibility of the pion
having a spin greater than J = 1.)

"° f-r,-fa

Fig. 9.4 The decay of a TT° into two photons, as viewed in its own rest frame.

Similarly, we can obtain the spin of the K° meson from the decay process
K° —»• 2TT°. Once again, in the rest frame of the K° meson, the two n
mesons must have equal and opposite momentum (see Fig. 9.5). The
final state consists of two spin-zero particles, and consequently the total
angular momentum of the final state (and the spin of the K°) is the same
as the relative orbital angular momentum of the two pions. Since the
two 7T° mesons are identical bosons, the final-state wave function must
be symmetric under the exchange of the two particles. If we let £ denote
the orbital angular momentum of the final state, then the angular part of
the wave function of the final state will be proportional to the spherical
harmonics Yijm(8,(f>). We have noted previously in Chapter 3 that, under
the exchange of the two particles, these wave functions behave as3

Y,,m(0,<£)—>(-l)^,m(0,<£). (9.41)

It follows therefore that for the final state to be symmetric under the ex-
change of the two particles, t can take on only even values. Thus, we
conclude that the spin of the K meson must be even, namely 0, 2, or 4,
and so forth.

Fig. 9.5 The decay of a K° into two 7r° mesons, as viewed in the rest frame of the kaon.

We can also argue, as we did in the case of the TT°, that, since pions
are spinless, in the rest frame of the K meson, the only vector available for
describing the final state is the relative momentum of the two TT° mesons,

3Exchange of the two particles corresponds to f —> — f, which is the same as reflection
or a parity transformation (see Chapter 11).
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or k. Under an exchange of pions, the k vector changes sign, and we can
conclude that the simplest wave function that can be constructed from this
vector, and still satisfy all the symmetry properties of the final state, is a
scalar (e.g., any function oik-k). Consequently, we deduce that the wave
function for the K° meson must be a scalar, and that the K° is a spin zero
particle. In fact, the decay characteristics of the K mesons exclude the
higher spin assignments of J = 2,4, etc. That is, the angular distribution
of the 7T° mesons in the K° rest frame show no evidence for the presence
of other than I = 0 contributions to the decay.

Let us next discuss how the spins of some of the baryons can be obtained.
For example, let us analyze the following collision of a high-energy n~ with
a proton at rest

T T - + P - ^ K° + Y*°, (9.42)

where the hyperon (strange baryon) Y"]*0 subsequently decays through

Y?° —>7r° + A0. (9.43)

Let us use the beam direction, namely the direction of the incident pion
in the laboratory, as the axis of quantization for angular momentum. The
component of the incident pion's orbital angular momentum along its di-
rection of motion will clearly vanish (Lv RJ fxp^, which is perpendicular to
PTT). Furthermore, the pion is spinless. For the initial state, the projection
of the total angular momentum along the beam direction is therefore given
by the projection of the intrinsic spin of the proton, sz, namely,

U = sz(p) = ±\h. (9.44)

Now, let us restrict our study to the K°s and 5̂ *os that are produced only
along the beam axis, namely, close to the forward-backward direction in
the center-of-mass of Reaction (9.42). Again, along this axis, the relative
orbital momentum of the K° — Y{° system vanishes, and because the spin
of the K° is zero, from conservation of angular momentum we conclude
that

sz(17°) = 8z(p) = ±\h. (9.45)
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This allows us to conclude that the spin of the yj*° hyperon is | , or a higher
half-integer value. To obtain the true spin, we would have to analyze the
decay in Eq. (9.43) in substantial detail. Measuring the complexity of
the angular decay distribution in the rest frame of the Yj*0 would then
determine its spin value, which is now known to be | .

Similar analyses of other high energy production processes, and the
subsequent decays of the particles, have provided us with the values of spins
of many hadrons. What has been found is that some of the particles can
be related to each other and correlated into groups having similar quantum
numbers.

9.8 Violation of Quantum Numbers

As we have seen, all quantum numbers appear to be conserved in strong
processes, however, some are violated in electromagnetic and weak interac-
tions, and we will discuss these with a few illustrative examples.

9.8.1 Weak Interactions

There are three kinds of weak processes in nature, which can be classified
as follows: (a) hadronic decays, where only hadrons are present in the
final state, (b) semi-leptonic processes, where both hadrons and leptons are
present, and, finally, (c) leptonic processes, where only leptons are present.
For example, the decays

A ° ^ 7 T - + p ,

n ->• p + e~ +Ve,

H~ -> e~ +Ve + vfi, (9.46)

represent the three different kinds of weak processes. Since most of the
strong quantum numbers are not denned for leptons, it is not meaningful to
discuss their violation in leptonic processes. Furthermore, even in the case
of the semi-leptonic processes, we can only speak about the conservation or
the violation of quantum numbers between the initial and the final hadronic
states. Keeping this in mind, let us now examine some typical reactions.

9.8.1.1 Hadronic Weak Decays:

Consider the following decays of hadrons into other hadrons
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A0 — • 7T- + P,

h = 0 h = -l h = \
5=-l 5 = 0 5 = 0

£+ —> p + n°,

h = 1 h = \ h = 0
5 = -l 5 = 0 5 = 0

(9.47)
K° —> 7T+ + 7T-,
/3 = - I J3 = 1 j 3 = - 1
5 = 1 5 = 0 5 = 0

S" —+ A0 + ir~.
h = ~\ Is = 0 J3 = -1
5 = - 2 5 = - l 5 = 0

We see that both isospin and strangeness are violated in these decays, and
that a selection rule for such violations can be summarized by

|AJ3| = | , |A5| = 1. (9.48)

Also, we should add that, while both AJ = | and A/ = | transitions
appear to contribute to these processes, the A/ = | contributions are found
to be highly suppressed, and processes involving |A5| = 2 are exceptionally
rare.

9.8.1.2 Semileptonic Processes:

Once again, we examine only a few examples to bring out the essential
features of these decays, and emphasize that we consider only changes in
the quantum numbers of initial and final-state hadrons.
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n —> p + e~ + Ve,
T — 1 T — 1
J-Z — — 2 H — 2
5=0 5=0

7T~ > fJL~ + F M ,

/ 3 = - l
5 = 0

7T+ >• 7T° + e+ + ^e,
/ s = 1 h = 0
5=0 5=0

/s = \ (9-49)
5 = 1

/3 = | /s = 0
5 = 1 5 = 0

A0 —>• p + e~ + F e ,
/s = 0 h = \
5 = -l 5 = 0

S~ —> n + e~ +Ve.
I3 = - 1 j 3 = - I
5 = - l 5 = 0

Thus, we see that semi-leptonic decays can be classified into two types. The
first kind has no change in the strangeness flavor of hadrons. These pro-
cesses are known as strangeness-preserving decays, and are characterized,
of course, by |A5| = 0. In such processes we see that IA/3I = 1. Thus, the
strangeness-conserving semi-leptonic processes satisfy

|A5| = 0, IA/31 = 1, A/ = 1. (9.50)

The second class of semi-leptonic decays do not conserve strangeness.
Consequently, these decays are also known as strangeness-changing pro-
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cesses, and for these we find

|A5| = 1, |AJ8| = | , A / = i or | . (9.51)

Again, it is observed that the processes with A/ = | are highly suppressed,
as are |A5| = 2 transitions.

9.8.2 Electromagnetic Processes

Let us also consider several samples of electromagnetic decays. Again,
since strong quantum numbers cannot always be defined for a photon, the
meaningful quantity to analyze is the change in the quantum numbers of
the hadrons

7T° —»• 7 + 7,
/3=0
5 = 0

rf —)• 7 + 7,
h = 0 (9.52)
5 = 0

So —> A0+ 7.
Is = 0 7S = 0
5 = - l 5 = - l

This shows that strangeness is conserved in electromagnetic processes, while
isospin is not. In fact, these processes are characterized by

|A5| = 0, |A73| = 0, A/ = l and 0. (9.53)

In the following chapters we will attempt to incorporate all these results
into a theoretical framework, which is referred to as the Standard Model of
particle physics.
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Problems

9.1 What quantum numbers, if any, are violated in the following reactions?
Are the interactions strong, weak, electromagnetic, or none of the above?
(See the CRC Handbook for particle properties.)

(a) n- —>~° + 7r-,

(b) E+ —>7r++7r°,

(c) n —> P + TT~,

(d) 7T° —> n+ +e~ +Ve,

(e) K° ^ K + + e~ +Ve,

(f) A 0 — • p + e-.

9.2 What quantum numbers, if any, are violated in the following processes.
Would the reaction be strong, electromagnetic, weak, or unusually sup-
pressed? Explain. (See CRC Handbook for particle properties.)

(a) A0 —>p + e~ +Ve,

(b)K-+p-^K+ + E-,

(c) K++p—>K+ + X+ + K°,

(d) p + p —> K + + K+ + n + n,

(e) £+(1385)—>A° + 7T+,

(f) p + U > 7T~ +7T°.

9.3 A 7T° meson with momentum 135 GeV/c decays into two photons. If
the mean life of a TT° is 8.5 xlO~17 sec, calculate to 10% accuracy how far
the high-energy TT° will travel prior to decay? What will be the approxi-
mate minimum value of the opening angle of its two decay photons in the
laboratory?

9.4 We will see in Chapter 13 that hadrons are composed of constituents
known as quarks, and that mesons can be represented as quark-antiquark
systems and baryons as three-quark systems. All quarks have baryon num-
ber | , and their other quantum numbers are listed in Table 9.5. Antiquarks
have all their quantum numbers of opposite sign to the quarks. The isotopic
spin of quarks can be inferred from the generalized Gell-Mann-Nishijima
relation of Eq. (9.26). Free quarks are not observed in nature. The top
quark is as free as a quark can get, but it decays so rapidly that it does
not have sufficient time to form hadrons, reflecting the fact that its weak
interactions are stronger than its strong interactions.
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Table 9.5 Properties of the quarks

Rest Electric
Mass Charge "Flavor" Quantum Numbers

Quark Symbol (GeV/c2) (e) Strange Charm Bottom Top

Up u < 3 x 10~3 | 0 0 0 0

Down d « 7 x KT3 - \ 0 0 0 0

Strange s «0.12 - § - 1 0 0 0

Charm c « 1.2 § 0 1 0 0

Bottom 6 «4.2 —| 0 0 - 1 0

Top t 175 ± 5 | 0 0 - 0 1

The quark system uds can exist in more than one isospin state. What
is the value of I3 for this combination of quarks? What are the possible
values of total /-spin for uds states? Can you identify them with any known
particles? (See, e.g., CRC Handbook)

9.5 What is the baryon number, hypercharge, and isotopic spin of the
following quark systems: (a) us, (b) cd, (c) uud, (d) ddc, (e) ubc, (f) ss.
Using the CRC Handbook, can you identify these states with any known
particles?

9.6 Consider the following decays

(a) iV+(1535) —>p + v°,

(b) £+(1189)—>p + 7T°,

(c)p°(770)-^7r o + 7 .

Prom the properties listed in the CRC tables, discuss the interactions in-
volved in each case. What quantum numbers are violated? What are the
possible values of orbital angular momentum in the final states?

Suggested Readings

Frauenfelder, H., and E. M. Henley, Subatomic Physics, Prentice-Hall
(1991).
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Griffiths, D., Introduction to Elementary Particles, Wiley (1989).

Perkins, D. H., Introduction to High Energy Physics, Cambridge Univ.
Press (2000).

Williams, W. S. C , Nuclear and Particle Physics, Oxford Univ. Press
(1997).



Chapter 10

Symmetries

10.1 Introductory Remarks

As we saw in the previous chapter, although several quantum numbers ap-
pear to be conserved in strong high-energy processes, some are violated
in weak and electromagnetic interactions. This must reflect the inherent
character of the underlying forces. Consequently, understanding the origin
of conservation principles, and under what conditions they are violated,
would appear to be an important element in the formulation of a quanti-
tative description of particle interactions. We will therefore first address
the question of how conservation laws arise in physical theories. As we
will see shortly, the surprisingly simple answer is that whenever there is an
underlying symmetry in a physical system, namely if our system is not af-
fected by a change in some coordinate or other dynamical variable, then we
can define a conserved "charge" (quantum number) associated with that
symmetry. Conversely, if there is a conserved quantity associated with
a physical system, then there exists an underlying invariance or symme-
try principle responsible for its conservation. This observation, known as
Noether's Theorem (after Emmy Noether), gives rise to powerful restric-
tions on the structure of physical theories. We now turn to issues related
to symmetries in physical systems.

10.2 Symmetries in the Lagrangian Formalism

In simple terms, any set of transformations that leaves the equations of
motion of a system unchanged or invariant, defines what is known as a
symmetry of that physical system. Symmetries can be discussed using
either the Lagrangian or the Hamiltonian formalism, for both classical as

239
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well as quantum theories. We begin the discussion using the Lagrangian
framework, which is most appropriate for studying relativistic systems -
our ultimate goal.

Consider first an isolated non-relativistic physical system consisting of
two particles interacting through a potential that depends on their relative
separation. The total kinetic and potential energies for this system are
given by

T = - mifj2 + - m2f22,

V = Vft - r2), (10.1)

where mi and m2 are the masses of the particles, and ?\ and r2 their
coordinates measured with respect to some specified origin. The equations
of motion (Newton's equations), or the dynamical equations, for this system
take the form

mifi = -ViV(fi - f2) = --xzr V(ri - r2),
or i

m2?2 = -V2V(n - f2) = - A V(n - r2), (10.2)
or2

where by ^ r V(fi —f2) we mean

x^V + y^-V + z^-V,
axi oyi ozi

with i being 1 or 2, and x, y and z being the unit vectors along the x, y
and z axes of our fixed coordinate system.

Now, if we translate the origin of the coordinate system by a constant
vector (-a), namely if we transform the coordinates as

n —> fi' =ri+a,

f2 —> f2' =f2+a, (10.3)

then the dynamical equations for the system of particles in Eq. (10.2) do
not change. This is simply a consequence of the fact that
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V(n - r2) —> V(n + a-f2-a) = V(n - r2). (10.4)

Thus, a translation of the origin of the coordinate system defines a sym-
metry of the two-particle system, and we say that the physical system is
invariant under spatial translations, namely, our physical system is not sen-
sitive to any particular choice for the origin of our coordinate system. The
consequence of this symmetry is quite interesting. We note from the form
of the potential that the total force acting on the system vanishes, that is,

J?TOT = Fi + F2 = -ViV(ri - r2) - V2V(ri - r2) = 0. (10.5)

(Equation (10.5) follows from the fact that |¥- = — | ^ . ) Consequently, for
the total momentum of the system we obtain

% ^ = F T O T = 0. (10.6)

In other words, the total momentum associated with the system is conserved
- that is, it is a constant of the motion, and independent of time.

This kind of result may seem to be purely accidental and applicable
only for our simple two-body example, but, in fact, it can be shown that for
any symmetry associated with a physical system, there exists a conserved
quantity. To see this, let us rewrite the dynamical equations in Eq. (10.2)
as

£ dT _ dV
dt 9^ ~ dn '

±™.--W (107)

where the kinetic energy is defined in Eq. (10.1). (Again, we are using our
shorthand notation in Eq. (10.7), and each equation represents, in fact,
three separate relations, namely, Jj ^? = — ̂  , for q = Xi, yi and Zi, and
i = 1 and 2). Furthermore, if we define the function

L = T-V, (10.8)
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then, recognizing that the coordinate and velocity of a particle are really
independent variables, we can write the entire content of the dynamical
equations in (10.2) or (10.7) schematically as

The quantity L{fi, "rj) is known as the Lagrangian of the system, and we
note that by construction we have

p r = ;pr = " * * = # • (10-10)
or, or*

Consequently, the Hamiltonian, H = T +V = IT — L, can now be obtained
from the Lagrangian through the use of Eqs. (10.1) and (10.10), and written
as

2

All the preceding considerations carry over quite naturally to more com-
plicated systems, and the Lagrangian for a general system with n-degrees
of freedom (namely, n-coordinates and n-velocities) can be represented as

L = L(qi,qi), i = l,2,...,n. (10.12)

The momenta associated with, or conjugate to, the coordinates qt can be
defined as given in Eq. (10.10)

dL
Pi=gr-., i = l,2,...,n, (10.13)

and the general dynamical equations of motion can be written in line with
Eq. (10.9) as

d dL d£ _

dl ~d<[i ~ ~dqi ~ '

(10.9)

(10.11)
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Let us now suppose that the Lagrangian for a given physical system is
independent of some particular coordinate qm. It then follows that

——= 0, for the specified m. (10.15)
oqm

As a result, the dynamical equation for i — mm Eq. (10.14) will give

^ = 0. (10.16)
cit

In other words, if the Lagrangian for a physical system does not depend ex-
plicitly on a given coordinate, then the corresponding conjugate momentum
is conserved. Moreover, if a Lagrangian does not depend on some particu-
lar coordinate, it must be invariant under translations (redefinitions) of this
coordinate, which brings to focus the connection between the invariance of
a theory and a corresponding conserved quantity.

As example, we saw in Chapter 1, that if we rewrite the two body prob-
lem in terms of the relative coordinate r = r\— ?2 and the center-of-mass
coordinate RCM, then the potential energy and therefore the Lagrangian
will be independent of RCM • Consequently, the corresponding momentum
PCM, which we have seen to correspond to the total momentum of the
system, will be a constant - a result we already recognized in Eq. (10.6).

As a second simple demonstration of these ideas, let us consider the
motion of a free rotor. In the absence of any force, the system has only
kinetic energy and we can therefore write

L = T = | W2, (10.17)

where / denotes the moment of inertia of the rotor and 6 its angular velocity.
This Lagrangian is independent of the angular coordinate 8 of the rotor,
and correspondingly we conclude (following our previous argument) that

pg = — = 19 - constant. (10.18)
36

(10.14)
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Hence, the lack of an explicit ^-dependence in the Lagrangian of a rotor
gives rise to the rotational invariance of the system, and leads to a constant
value of its angular momentum. As we have emphasized, such conclusions
are, in fact, quite general, and we summarize in Table 10.1 several com-
mon transformations and the associated quantities that are conserved when
physical systems are invariant under these transformations.

Table 10.1 Invariance of a system under a transformation and the
corresponding conserved quantity

Transformation Conserved Quantity for System

Space translation Momentum

Time translation Energy

Spatial rotation Angular momentum

Rotation in isotopic-spin space Isotopic spin

The converse argument also holds, namely that for every conserved
quantity of a physical system there exists an underlying invariance prin-
ciple. All this is much easier to see using the Hamiltonian formalism, to
which we now turn.

10.3 Symmetries in the Hamiltonian Formalism

The Hamiltonian formalism of classical mechanics goes over naturally to
quantum mechanics and, therefore, the discussion of symmetries in the
context of the Hamiltonian formalism can be quite illuminating. Let us
recall that a Hamiltonian H(qi,pi) for a system with n-degrees of freedom
is a function of n-coordinates and n-momenta. The equations of motion
now comprise the first-order Hamilton relations, given by

dqi _ . _ dH
~dt~qi~dii'

£=* = -f, -1,2,-n. (10.19)
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Let us now introduce the bracket notation (Poisson bracket) for indepen-
dent coordinates and momenta. In general, the Poisson bracket for any two
functions of qi and pi can be denned in terms of their partial derivatives
with respect to these variables as

r c v x „. u ^fdF dG OF dG\

= -{G(qi,Pi),F(qi,pi)}. (10.20)

Thus, for the basic Poisson brackets of the coordinates and momenta (also
known as the canonical Poisson brackets), we obtain

{qi,Qj} = 0,

{Pi,Pj} = 0,

{qi,Pj} = -{Pi,Qi} = Sij, (10.21)

where Sij is the Kronecker "delta", which equals unity for % = j and zero
for i ^ j . (In the transition to quantum mechanics, Poisson brackets are
replaced by commutators.) Using the brackets, we note that

{qi' }-^Wi dp-'dp- Wj)

- Yij Wi ~ dp-'
and

{Pi, H} = y \ — — - •5— -5—

^r1 \dqj dpj dpj dqjj

Thus the dynamical equations in (10.19) can also be written as

(10.22)

Thus the dynamical equations in (10.19) can also be written as
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4i = {qi,H},

Pi = {Pi,H}. (10.23)

(To obtain the relations in Eq. (10.22) we used the fact that the qt and pi
are independent variables, and therefore the partial derivatives ^ and J^i.

vanish for i ^ j , and all -^ and -^ vanish as well.) In fact, if any physical
observable w(qi,Pi) does not depend explicitly on time, then it follows from
the chain rule of differentiation and Eq. (10.19) that its time evolution will
be given by

^ ^ = Mqi,Pi),H}. (10.24)

10.3.1 Infinitesimal Translations

Let us next consider an infinitesimal translation of the coordinates of the
form

qi —> ql = qi + e»,

Pi —»• Pi = Pi, (10-25)

where e, are infinitesimal constant (arbitrary) parameters denning the
translation. Equivalently, we can write the infinitesimal changes in the
dynamical variables as

<5eQi = qi-q% = f-u

tePi = Pi ~ Pi = 0, (10.26)

where the subscript e on <5 signifies that our transformation involves only
changes in coordinates with parameters £j.

If we define a function g(qi,Pi) as

9 = £ e i W ' (10.27)
j

we then obtain
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dg ^ ( £ ^ 0

a^ - aPi ~ ^ e A ' -£i- (ia28)

Thus, from the definition of the Poisson brackets in Eq. (10.20), we can
write

r -, _ ST {dqt dg dqt dg \

= 2 i / y ' 6 J = Ci = ^e<lh

j

where we have used the results of Eq. (10.26) to relate the Poisson brackets
to infinitesimal changes in the dynamical variables. Now, using Eq. (10.20)
or Eq. (10.21), we can also verify that the original and the transformed
variables satisfy the same Poisson-bracket relations, namely,

{qUj}=0 = {P'i,p'j},

{qli,p'j}=5ij. (10.30)

In other words, the infinitesimal translations in Eq. (10.25) preserve the
canonical Poisson-bracket structure, and are correspondingly known as
canonical transformations.

Because the Hamiltonian is a function of the coordinates and momenta,
its change under the transformation of Eq. (10.25) can be calculated using
the chain rule of differentiation, as follows

(10.28)

(10.29)
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~ *f dqi 6i ~ ^ V dQi 9pi dpi dqt)

= {H,g}, (10.31)

where, in the middle step, we used the results of Eq. (10.28). Now, if the
Hamiltonian does not change under our infinitesimal translation, that is, if

6eH = {H,g}=0, (10.32)

then we can write

H{q'i,p'i)=H{qi,pi). (10.33)

Furthermore, since the Poisson brackets between the qt and the pi do not
change, it follows that the transformed dynamical equations coincide with
the original equations of (10.23)

q'i = {q'i,H(q'j,p'j)} = {qi,H(qj,pj)},

p\ = {p^Hiq^p'j)} = {pi,H(qj,Pj)}. (10.34)

That is, Eqs. (10.34).represent the same motion as Eqs. (10.23). In fact,
this reflects the very general result that when H does not change under an
infinitesimal transformation, that transformation defines a symmetry of the
dynamical equations of the system, or simply a symmetry of the physical
system. Thus, in our example of Eq. (10.32), translations are a symmetry
of the system because the Hamiltonian does not change under translations.

We see, from Eqs. (10.29) and (10.31), that the changes in qi, pi and
H under the infinitesimal translation of Eq. (10.25) can be obtained from
their Poisson brackets with g. In fact, from the procedure in Eq. (10.31), it
follows that the change in any observable can be obtained from its Poisson
bracket with g. Thus, we can think of g as generating the infinitesimal
translation, and, as a result, g is termed the generator of the infinitesimal
transformations. We see from Eqs. (10.24), (10.32), and (10.27) that an
infinitesimal translation is a symmetry of a physical system when
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or ^ = {«,ff} = 0. (10.35)

In other words, if translations are a symmetry of a system, then the mo-
menta are conserved, and, conversely, if the momenta are conserved, then
translations are a symmetry of the physical system. This is, of course, the
same result that we obtained in Eq. (10.16) using the Lagrangian formal-
ism.

10.3.2 Infinitesimal Rotations

Let us next consider rotations in two dimensions, and, in particular, finite
spatial rotations by an angle 8 about the z axis. The transverse coordinates
in the two systems can be related through the set of transformations

x' = x cos 9 — y sin 9,

y' = xsin6 + ycos6. (10.36)

For infinitesimal 9, we can replace cos# by 1 — ^-, and sin 8 by 8, and, to
first order in 9, we can write the transformations as

x' = x - 8y,

y'=8x + y. (10.37)

Using matrix notation, this can be rewritten as

C ) - C " 9 0 • <io-38)
Defining Sex and 5$y as the infinitesimal changes in the x and y coordinates,
we can write

*(:)•£:)••(•:)•(:DO- ™
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Now, in terms of the generalized coordinates and momenta, we can write
an infinitesimal rotation about the z-axis as

Qi —> Q'i=Qi- m,

Q2 —> q'2 = 9 2 +eqi,

Pi —>Pi =Pi ~eP2,

Pi —> P'I = P2 + epi, (10.40)

where q% and q-z can be thought of as x and y, and pi and pi as px and py.
Furthermore, identifying the infinitesimal angle of rotation with e, we can
write

^tf i = q'i - qi = - e ? 2 ,

5eq2 = 92 - 9 2 = e^i,

$ePl = Pi ~P\ = — CJP2,

$tP2 = p'2 ~ P2 — epi, (10.41)

and returning to our matrix notation, using column vectors for the coordi-
nates and momenta, we get

*(:)"OCi)(:)-

which is similar to the transformations in Eq. (10.38). If we define a
function g(qi,Pi) as proportional to the third or z-component of orbital
angular momentum, namely, proportional to (fx p)z, as

g = €(q1p2-q2pi)=eiz, (10.42)

then we have
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da dg

&—'• & = •«• <10'«»

Using the definition for Poisson brackets, we therefore obtain

{qi,g} = g— = -e<?2 = seq!,

{Q2,g} = -^ = eq1 =6eq2,

, -, dg
{Pi,9i = -Q— = -eP2 = <JePi,

{P2,9} = - ] ^ = ePi= S*P*- (1 0-4 4)

Once again, it can be shown that the Poisson brackets do not change
under the transformation in Eq. (10.40), and the change in the Hamiltonian
can be obtained, as before

. „ v^ (dH . 8H . \

~ fr(\dqi Opt 9Pi dqj

= {H,g} = -{g,H}, (10.45)

where we have used the results of Eqs. (10.44) and (10.20) in the preced-
ing derivation. Thus, arguing as we did in Eqs. (10.32)-(10.34), we see
again that rotations are a symmetry of the dynamical equations when the
Hamiltonian is invariant under such rotations, namely if

6€H = ~{g,H} = 0. (10.46)

Through Eq. (10.24), this implies that
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We see therefore that, if rotations about the z-axis define a symmetry of
the system, then the z-component of the orbital angular momentum is
conserved. Conversely, whenever the z-component of the orbital angular
momentum is conserved, the physical system is invariant under rotations
about the z-axis.

We can show similarly that for any general infinitesimal transformation
we can define a generator of that transformation, and a physical system is
invariant under that transformation if the corresponding generator is con-
served; and, conversely, if the generator of an infinitesimal transformation
is conserved, that transformation represents a symmetry of the system.

10.4 Symmetries in Quantum Mechanics

The transition from classical mechanics to quantum mechanics is best de-
scribed within the framework of the Hamiltonian formalism. In quantum
mechanics, classical observables are represented by Hermitian operators,
and the Poisson brackets are replaced by appropriate commutation rela-
tions. The classical generators of infinitesimal transformations therefore
become operators that define symmetry transformations for operators as
well as for vectors in Hilbert space. In quantum theory, such symmetry
transformations can be implemented in one of the two equivalent ways,
namely, either by transforming the state vectors in the Hilbert space or by
transforming the operators that act on them. This is quite similar to the
two ways that a classical transformation can be implemented, namely, as a
passive or an active transformation.

In quantum mechanics, any observable quantity corresponds to the ex-
pectation value of a Hermitian operator in a given quantum state, and its
time evolution - if the operator does not depend explicitly on time - is
given by Ehrenfest's theorem (compare with Eq. (10.24))

±<Q) = jR([Q,B\) = ±<m-EQ)), (10.48)

where we have denoted the expectation value of an operator Q in a state
\ip) as

(10.47)

(10.48)
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(Q) = MQIV>>- (10.49)

It is clear therefore that an observable quantity that does not depend ex-
plicitly on time will be conserved if and only if the corresponding quantum
operator commutes with the Hamiltonian. That is, for any quantum state,
we will obtain

> = "•

if and only if

[Q,H} = 0. (10.50)

This is the quantum analog of Eqs. (10.35) and (10.47), and we con-
clude that the infinitesimal transformations generated by an operator Q
define a symmetry of the theory when Eq. (10.50) holds; and, as a conse-
quence of the symmetry, the expectation value of Q in any quantum state
is independent of time (is conserved). Conversely, when an observable or
the expectation value of Q in any quantum state is conserved (is constant
in time), then Q generates a symmetry of the underlying physical system.

In quantum mechanics, when two operators commute, they can be di-
agonalized simultaneously, that is, they can have a complete set of common
eigenfunctions. Thus, when the Hamiltonian has an underlying symmetry
defined by the generator Q, the energy eigenstates are also eigenfunctions
of the operator Q, and can also be labelled by the quantum numbers cor-
responding to the eigenvalues of Q. Furthermore, these quantum numbers
are conserved in any physical process where the interaction Hamiltonian for
some transition (e.g., decay or reaction) is invariant under the symmetry
transformation. However, for transitions in which interaction Hamiltoni-
ans are not invariant under symmetry transformations, the corresponding
quantum numbers do not have to be conserved. This provides an under-
standing of why some quantum numbers are conserved whereas others are
violated in different interactions, and points to an essential first step in
constructing physical theories of fundamental interactions.

As an example of quantum symmetries, let us return to translations.
For simplicity, let us restrict ourselves to one dimension, and consider an
infinitesimal translation of the x-coordinate by a constant amount e. We
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will implement the transformation on the state vectors and not on the
operators, although the inverse is equally straightforward. Thus, for x —>
x' = x + e, with e real, our wave function corresponding to a given state
vector changes as1

xl>(x) —* i/f(x - e) = tp(x) - e ̂ ^ - + O(e2). (10.51)
ax

Consequently, under this transformation, the expectation value of the
Hamiltonian changes as follows

(H) = f dxip*(x)H(x)i)(x)
J—oo

—+ (H)' = dxxp*(x- e)H(x)rp(x - e)
J—OO

/•OO /»OO rlnli*

= dx ip*(x)H(x)iP(x) - e / dx -f- H(x)ip(x)
J-oo J-co dx

- e f°° dxi{>*(x)H(x) ̂ ^ +O(e2).

We can integrate the middle term by parts to write

By assumption, the wave functions vanish at infinity, and therefore the first

term on the right-hand side also vanishes, and we obtain

dx p(x) (H^-^H) tf>(s) + O(e2),

or (H)' = (H)-j{[H,px]) + O(e2), (10.52)

where, in the last step, we have identified the momentum operator with the
spatial derivative

1Note that for the translation x —> x + e, the corresponding change in the wave
function is if>(x) —> ip(x — e). (See any standard book on Quantum Mechanics.)
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Px—>-ih—. (10.53)

Comparing this analysis to Eqs. (10.27) and (10.31) shows that, to first
order in e, the quantum generator of infinitesimal space translations G can
be identified with the momentum operator, namely,

g = eG = -jPx, (10.54)

and that the Hamiltonian will be invariant under translations of the x-
coordinate if

\px,H] = 0. (10.55)

Furthermore, if Eq. (10.55) holds, then, through Ehrenfest's theorem, (px)
will be conserved. Clearly, the Hamiltonian for a free particle of mass m in
one dimension possesses this type of invariance

Pi
Hfree particle = lf~ • (10.56)

As we know, the energy eigenstates of the quantum mechanical free-particle
Hamiltonian are plane waves, which are also the eigenstates of the momen-
tum operator.

10.5 Continuous Symmetries

Broadly speaking, all symmetry transformations of a theory can be classi-
fied into two categories: those that depend on a continuous set of param-
eters and those that correspond to some kind of reflection. Accordingly,
they are known, respectively, as continuous and discrete transformations.
All the examples of symmetry transformations that we have considered thus
far in this chapter can be identified with continuous transformations, since
they depend on an arbitrary parameter of the transformation (e.g., e). In
the next chapter we will turn to discrete transformations, but we will first
proceed further with our development of continuous symmetries.

It is only meaningful to speak about infinitesimal transformations when
the transformations are continuous. In fact, for continuous transformations,
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the infinitesimal transformation has fundamental importance because any
finite transformation can be described in terms of a series of successive
infinitesimal transformations. This can be shown as follows. We note from
Eq. (10.51) that the effect of an infinitesimal translation along the as-axis
on a state \ip) is given by the operator

Ux(e) = l - T p s , (10.57)
n

acting on the state \ip).
The operator corresponding to a finite translation along the a;-axis,

namely Ux (a), where a is no longer infinitesimal, can be obtained as follows.
First, let us consider N successive infinitesimal translations by an amount e
along the z-axis. This corresponds to a total translation by an amount Ne,
and the operator representing such a transformation corresponds merely to
the product of N infinitesimal translations applied in succession

.7. (We)-( l-£*)(!-£ ft)

Since e is infinitesimal, Ne is also infinitesimal for any finite N. However, if
iV is very large, then the product can be finite. Thus, let us define a as the
parameter of finite translation which is identified with a = Ne in the limit
e —>• 0 and N —> oo. We can consequently regard a finite translation as a
series of an infinitely large number of successive infinitesimal translations.
It then follows from Eq. (10.58) that the operator corresponding to a finite
translation is given by

/ ' \ N
Ux(a) = lim ( l - 4 p i )

e->0 v '
Ne=a

" J S - O - & * ) " = ••*'*• (ia59>
6-M3 x '

Ne=a

We see therefore that the operator for finite transformations is obtained
simply by exponentiating the generators of infinitesimal transformations.

(10.58)
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(Clearly, similar expressions hold for finite translations along other axes.)
Symmetry transformations normally define what is known as a group.

(See Appendix D for some basics on Group Theory.) Thus, for example,
two successive translations can also be thought of as a single translation.
Similarly, two successive rotations define a rotation. The rules for combin-
ing two transformations (otherwise also known as the group properties of
the transformation) are completely determined by the commutation rela-
tions (or the algebra) of the generators of the transformation. Thus, for
translations along the ar-axis, we saw that the generators correspond to the
commuting momentum operators that satisfy

\px,Px] = 0. (10.60)

In fact, all momentum operators (along different axes) commute with one
another

\Pi,Pj] = 0, i,j = x,y, or z. (10.61)

For obvious reasons, such an algebra is known as a commutative or Abelian
(after Niels Abel) algebra. A consequence of Eqs. (10.59)-(10.61) is that

Uj(a)Uk(l3)=e-TiaPJe-liPPk

= e-{PPke-iaPj

= Uk(/3)Uj(a), k,j = x,y,z, (10.62)

and

Ux(a)Ux(f3) = e~TiaP* e~S &>*

= e"S {<* + P)P* =Ux(a + P) = Ux{f3)Ux{a). (10.63)

Namely, translations form what is referred to as a commutative or an
Abelian group. The order of the two translations is not relevant. How-
ever, not all symmetry transformations have this property. As we know,
infinitesimal rotations in quantum mechanics are generated by angular mo-
mentum operators (even classically, angular momenta generate rotations
through Poisson-bracket relations)
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L\ = X2P3 — X3P2,

L2 = X3P1 — X1P3,

L3 = X1P2 - X2p!, (10.64)

which satisfy the following quantum algebra (commutation relations)

[LjtLk] = £ ifi£JktLe, j , k,l = l, 2 , 3 , (10.65)
1

where tju is the totally anti-symmetric Levi-Civita tensor, which equals 1
if the j , k, I combination is cyclical, - 1 if it is not cyclical, and 0 if any two
indices repeat. Equations (10.65) define the simplest non-commutative al-
gebra (the generators do not commute), otherwise known as a non-Abelian
algebra. A consequence of this non-commutative property is that the group
of rotations behaves quite differently from translations. In particular, un-
like translations along two different directions, rotations about two different
axes do not commute. The order of rotations is important.

The group of spatial rotations in three dimensions [known as 50(3)]
has an algebraic structure very similar to that of the SU(2) group, which
is a group relevant to certain internal symmetries, and is characterized by
the properties of 2 x 2 unitary matrices that have determinants equal to
unity. As described below, the SU(2) group of transformations rotates state
vectors in Hilbert space in a manner akin to spatial rotations.

States of a quantum mechanical system are defined by vectors in an
abstract Hilbert space. And, just as normal vectors can be rotated in con-
figuration (coordinate) space, so can the vectors corresponding to quantum
mechanical states be rotated in an internal Hilbert space. Thus continuous
symmetries for a quantum system can be associated either with space-time
symmetry transformations or with internal symmetry transformations. The
transformations in the internal Hilbert space do not affect the space-time
coordinates, and consequently in all such transformations the space-time
coordinates are kept fixed. Thus, if we consider a two-level system, where
the two basic states are represented by the column vectors

(MX}) and ( ° ) ,
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then a general rotation in the internal space of this two dimensional system
can be represented as

S = - ) i £ ; - ^ , (10.66)

where the Gj are the 2 x 2 Pauli spin matrices, the infinitesimal generators
of 5(7(2), and defined as usual

h = % i = 1.2,3,

/0 l\ /0 -i\ (\ (A

From the properties of the Pauli matrices, the Ij can be shown to satisfy
the same algebra as satisfied by the angular momentum operators in Eq.
(10.65).2 In analogy with angular momentum, we can label the two states
according to the eigenvalues of, say, the I3 operator. In fact, the states
( ^1(x> J and I , | >j are eigenstates of I3 with the eigenvalues ± | . (Recall
that, because the Ij do not commute, only one of them can be diagonal.)
These two states will, of course, be degenerate in energy if such a rota-
tion corresponds to a symmetry of the system. (Once again, this is very
much like the situation with the spin up and the spin down states, which
are degenerate in energy for a rotationally invariant system.) The strong
isospin transformations that we discussed in the previous chapter corre-
spond to such internal rotations, and the degeneracy of the proton and
the neutron mass can be thought of as a consequence of invariance of the
strong-interaction Hamiltonian under such a symmetry transformation. In
general, if the Hamiltonian for any system is invariant under this kind of
an internal rotation, then there will be a conserved quantum number.

2Note that if we restrict the rotations to where £1 = 0, 63 = 0, and 12 = t, then these
internal rotations take the form

J*M\ = i (-*M) (10.68)

which, when compared with Eq. (10.39), shows that the two components of the wave
function can be thought of as coordinates in the internal space, and heightens the analogy
with rotations in ordinary space.

(10.67)
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10.5.1 Isotopic Spin

To bring the preceding formalism into focus, we will expand somewhat on
the application of these ideas to isospin. If there is an isospin symmetry,
then the implication is that our spin up proton (p) with 73 = | and our spin
down neutron (n) with I3 = — | are indistinguishable. (We denote by I3
the quantum number associated with the projection of isospin, namely the
eigenvalue of the /3-operator.) We can consequently define a new neutron
and proton state as some linear superposition of the \p) and \n) vectors.
We note from Eq. (10.68) (compare with Eqs. (10.36) and (10.39)) that a
finite rotation of our vectors in isospin space by an arbitrary angle 6 about
the I2 axis leads to a set of transformed vectors \p') and \n')

6 9
W) = COS2 b ) - s i n 2 ln̂ '

a a

\n') = sin - \p) + cos - |n). (10.69)
/> Z

Now, let us see what such an invariance implies about the nucleon-nucleon
interaction. Our two-nucleon quantum states in the Hilbert space can be
written in terms of the more fundamental states, which are either symmetric
or antisymmetric under an exchange of particles. These correspond to the
following four states

\1>i) = \PP), IV-2) = -j= (\pn) + \np)),

|V>3> = |nn), |V>4> = += (\pn) ~ \np)). (10.70)

Assuming, as in the case of normal spin, that I3 is an additive quantum
number, we can identify the isospin projections of l^j) with I3 = +1,
1̂ 2), 1̂ 4) with h = 0, and \ip3) with 73 = —1. Let us now see what
is the impact of the isospin transformation, for example, on [Vx) and on
l^ ) . Under the rotation given in Eq. (10.69), these states will transform
schematically as
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m) = I cos - p - sin - n I cos - p - sin -n 1)
V z L J \ A L J

6 6 6 6
= cos2 - \pp) - cos - sin - (\pn) + \np)) + sin2 - \nn)

= cos2 °- l^i) - -±= s i n ^ 2 ) +sin2 B- |^3>, (10-71)

. ,,. \ (.( 6 . 6 \ ( . 6 6 \ .
l^4> = ^ S I I C0S o ^ - S m o n S l n o P + C0S o n ) >

, / 0 6 \ ( 6 6 \ \
- | sin - p + cos - n\ cos - p - sm - n I > I

\ / A J \ Z L J J

= -L ^ c o s 2 ^ + s i n 2 0 ( M - M ) = |V4>. (10.72)

We see, therefore, that |-04) is totally insensitive to rotations in this
space. It must consequently correspond to a scalar (or a "singlet") combina-
tion, and represent the / = 0, 73 = 0 nucleon-nucleon system. We can also
calculate the changes in the states \i\)2) and \ty%) under the above rotation,
and show that the remaining states and |^i) transform into one another
under the isospin rotation, just as the three components of a vector do un-
der a spatial rotation. If there is isospin invariance in the nucleon-nucleon
strong interaction, then it follows that the three states \ty\), |^2), and \ip3),
corresponding to J3 = 1, 0, and — 1, respectively, are equivalent and cannot
be distinguished from each other. Consequently, it appears that any two-
nucleon system can be classified either as an / = 0 singlet or an I = 1 triplet
in isotopic spin space. The singlet and the three triplet states are indepen-
dent of each other, and the three substates of / = 1 are indistinguishable if
isospin is a symmetry of the system, that is, if the nucleon-nucleon strong
interaction is not sensitive to.the replacement of a neutron by a proton.
Any breaking of the degeneracy of the 7 = 1 states must arise from other
interactions (e.g., electromagnetic contribution to the Hamiltonian, which
can depend upon the electric charge of the system).

Similarly, we can form three-nucleon systems, that correspond to two
doublets with 7 = | , and an independent quartet of states with 7 = | , etc.
In this manner we can build multiplets in isotopic spin space in the same
way as we combine angular momentum states.

One important application of isospin invariance lies in the calculation
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of relative transition rates in decays or in interactions. As an example,
let us examine how we might calculate the decay of the A(1232) into a
pion and a nucleon. As we mentioned in Chapter 9, the A(1232) is a ir-N
resonance that was discovered by Fermi and his colleagues in the scatter-
ing of n mesons from nucleons. There are four members of the A(1232)
family, which correspond to four charged states and to four I3 projections
of an I = I isospin multiplet. To calculate the relative decay rates of
the A(1232) into a pion and a nucleon, we must recognize that, if there is
isospin symmetry, then the total rate for A++(1232), A+(1232), A°(1232)
and for A~(1232) must be identical because these members of the mul-
tiplet cannot be distinguished from each other on the basis of the strong
interaction. In addition, under the transformation of Eq. (10.69), p and n,
as well as TT+, TT° and TT~ , transform into one another, and cannot be told
apart. We must assume therefore that the total rate for A(1232) to decay
with a neutron in the final state must equal that for a proton in the final
state, and similarly for the three pions. We can therefore form a table in
which we list all the possible initial A(1232) members and all possible n
and N combinations that do not violate charge conservation, and impose
the above requirements of charge symmetry, or isospin invariance, for the
strong decay. This is shown below in Table 10.2.

Table 10.2 Transition rates for A -» irN, assuming isospin symmetry
in the decay.

Charge State of A I3 Final State Expected Rate Solution

A++ § pn+ 1 1

A+ \ pit* §

717T+ 1 — X I

A 0 - I PIT' y §

mr° 1 - y I

A - - f n-n- 1 1

By requiring that the sum of the p7r° and mr+ rates in A+ decay, as well
as the sum of the pir~ and mv° rates in A0 decay, add up to 1, we have
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assured that all the A members are equivalent in the sense that their total
transition rates are the same, which we have for simplicity normalized to
unity. Now, we impose the requirement that rates for decays involving a p
or n in the final state are the same, namely,

l+x + y = (l-x) + (l-y) + l, (10.73)

where x, y are defined in Table 10.2. In addition, we stipulate that the
final rates for decays involving a TT+ , TT° or TT~ be identical

l + (l-x)=x+(l-y) = y + l. (10.74)

We have more equations than unknowns, but there is a unique set of con-
sistent solutions, which is given in Table 10.2. The result indicates that,
for example, the A+(1232) will decay twice as often into p + TT° as into
n + TT+, and that the A0 (1232) will decay twice as often into n + ir° as
into p + TT", and so forth. These relative rates are purely a consequence
of isospin symmetry. The fact that these transition rates agree with data,
suggests that isotopic spin is a symmetry of the strong interaction, and
that both I and 73 are conserved in strong processes. The solution we
have just calculated could also have been obtained simply from tables of
Clebsch-Gordan coefficients, which give the coupling of angular momenta.
Our example, however, provides an instructive alternative procedure, one
which has been emphasized by Robert Adair and Ilya M. Shmushkevich.

10.6 Local Symmetries

Whether they are space-time or internal, continuous symmetries can also
be classified in two ways. First, the parameters of transformation can be
constants, that is, universal parameters, implying that the transformation
is the same at all space-time points, and this type of symmetry transforma-
tion is known as global. All the continuous transformations that we have
considered thus far fall into this category, and, as we have seen, invariance of
a theory under such transformations provides conserved charges (quantum
numbers). In contrast, if the parameters of transformation depend on the
space-time coordinates - namely, if the magnitude of the transformation is
different from point to point - then the symmetry transformation is known
as a local transformation. In this case, real forces must be introduced to
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maintain the symmetry. As example, let us consider the time-independent
Schrodinger equation

Hip(r)= (~^-V2 + V(f))tp(r)=Ei;{f). (10.75)

Clearly, if ip(r) is a solution of this equation, then so is eiaip(r), where a
is a constant parameter. In other words, any quantum mechanical wave
function can be defined only up to a constant phase, and therefore a trans-
formation involving a constant phase is a symmetry of any quantum me-
chanical system. This kind of transformation conserves probability density,
and, in fact, the conservation of electric charge can be associated with just
such a global phase transformation.

Consider next a local phase transformation

i/>(f) —• eia^ip(r), (10.76)

where the phase depends explicitly on the space coordinate, so that the
wave function at every point in space has a different phase. (We wish to
emphasize that we are not considering a change in space-time coordinates,
but rather that the parameter of the phase transformation is different for
different coordinate points.) Now, under the local phase transformation of
Eq. (10.76), the gradient introduces an inhomogeneous term

V [eiQ«V(r)] = eia{ff) [i(Va(f))V(r) + VV'(r)] ± eia^Vtp(f). (10.77)

Consequently, since the right-hand side of Eq. (10.75) remains homoge-
neous under the transformation of Eq. (10.76) while the left-hand side does
not, we see that the Schrodinger equation cannot in general be invariant
under a local phase transformation.

However, the transformation of Eq. (10.76) can be made a symmetry
of the Schrodinger equation if an arbitrarily modified gradient operator is
introduced as

V—>V-iA(r). (10.78)

Now, requiring the vector potential A(r) to change under the transforma-
tion of Eq. (10.76) as
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A{f) —>• A{r) + Va{r), (10.79)

will cancel the inhomogeneous term in Eq. (10.77), and under the combined
change we will have

(V - i!(r)) ip{r) —> (v - il(f) - i(Va(r))) ( e ^ ^ r ) )

- c<«(«0 ( v -iA(f)"jiP(r), (10.80)

which means that the local phase transformation in Eq. (10.76) will be a
symmetry of the modified time-independent Schrodinger equation

( - ^ (V - iA{f)f + V(rV)v(r1 = E^(f), (10.81)

provided we require the added vector potential to transform as given in Eq.
(10.79). We recognize Eq. (10.79) as a gauge transformation similar to
that found in Maxwell's equations, and note that invariance under a local
phase transformation requires the introduction of additional fields. These
are known as gauge fields (in the present case, A{f) can be interpreted
as the electromagnetic vector potential), and lead to the introduction of
definite physical forces. The symmetry group associated with the single-
parameter phase transformations of Eq. (10.76) is Abelian (commuting
symmetry), referred to as a (7(1) group. (These ideas will be discussed
further in Chapter 13.)

Although we have discussed all these results in the context of a simple
local phase symmetry, the general conclusion, namely that additional fields
must be introduced in order to get a local symmetry, holds as well for more
complicated symmetries. This observation is vital for constructing modern
physical theories. In particular, we can turn the argument around, and
suggest that the distinct fundamental forces in nature arise from local in-
variances of physical theories, and that the associated gauge fields generate
those forces. This idea is referred to as the gauge principle, and such theo-
ries as gauge theories, and together they provide our current understanding
of the fundamental interactions.
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Problems

10.1 Using isotopic spin decomposition for the decays of the p meson with
I = 1: p+ -> 7r+7r°, p~ -» 7r~7r°, p° -»• TT+TT" and p° -> 7r°7r°, prove that
/9° —>• 7r°7r0 is forbidden on the basis of isospin invariance (that is, use the
Adair-Shmushkevich analysis).

10.2 Assuming invariance of strong interactions under rotations in isotopic-
spin space and the usual isospin assignments for K and it mesons, what
would you predict for the ratios of transition rates in the following decays:

(a) For an / = | , K* meson,

K*++ —+ K+K+ K*+ —» K+K° K*~ —» K°TT-

K*+ —> K+7T0 ' K*+ —»• K°7T+ ' K*° —> A"+7T- '

(b) What would you expect for the above processes if the K* meson
had I = | ? (Hint Consider the I3 of the final states.)

10.3 JV* baryons are I = \ excited states of the nucleon. On the basis of
isospin invariance in strong interactions, compare the differences expected
for TV* and A decays into the TT-N systems discussed in Table 10.2.

10.4 What are the possible values of isotopic spin for the following systems?
(a) A 7r+ meson and an antiproton, (b) two neutrons, (c) a w+ meson and
a A0, (d) a ir+ and a TT° meson, (e)a u and a u quark, (f) a c, b and an s
quark (for properties of quarks, see Table 9.5).
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Chapter 11

Discrete Transformations

11.1 Introductory Remarks

Any set of transformations - either involving space-time or some internal
space - can be best understood when described in terms of a change in
reference frame. Continuous as well as discrete transformations can be
discussed within this kind of framework. The previous chapter dealt with
continuous symmetries, and we now turn to discrete transformations.

11.2 Parity

As mentioned in previous chapters, parity, otherwise known as space in-
version, is a transformation that takes us from a right handed coordinate
frame to a left handed one, or vice versa. Under this transformation, which
we denote by the symbol P, the space-time four-vector changes as follows:

/ct\ / ct\

X p — X

A . (ii.i)
y -y

\zj \-z)
It is important to recognize that the parity operation is distinct from spa-
tial rotations because a left handed coordinate system cannot be obtained
from a right handed one through any combination of rotations. In fact, ro-
tations define a set of continuous transformations, whereas the inversion of
space coordinates does not. It is clear therefore that the quantum numbers
corresponding to rotations and parity are distinct.

267
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Classically, the components of position and momentum vectors change
sign under inversion of coordinates, while their magnitudes are preserved

-. P
r —» — r,

u P L,

p = rnr —> — mr = —p,

r = (f-f)i -A [(-r) • (-f)]i = (f-r)i = r,

p = tf.fli A [(_£, . (_$]i = tf.flh = p . (n.2)

This defines the behavior of normal scalar and vector quantities under space
inversion. There are, however, scalar and vector quantities that do not
transform under parity as shown in Eq. (11.2). Thus, for example, the
orbital angular momentum, which changes like a vector under a rotation
of coordinates, and which we therefore regard as a vector, behaves under
space inversion as

L = fxp—> (—r) x (—p) = fx p = L. (11-3)

This is, in fact, just opposite of how a normal vector transforms. Such
vectors are consequently called pseudovectors or axial vectors. Similarly,
there exists a class of scalars, for example, the volume of a parallelopiped,
that transform oppositely from normal scalars

a • (b x c) - A (-a) • (-b x -c) = -a • (b x c). (11.4)

Such quantities are known as pseudoscalars. Of course, any type of vector
can be labeled by one index (namely, by its components). There are also
more complex objects in physics that require more indices, and are known
as tensors. The quadrupole moment, the (energy-momentum) stress ten-
sor, and the relativistic electromagnetic field strength -FMI/, are examples of
second rank tensors (objects with two indices).

An important property of the parity operation is that two successive
parity transformations leave the coordinate system unchanged, namely,

fA -r-^r. (11.5)
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If we think of P as representing the operator implementing a parity trans-
formation, then from Eq. (11.5) we conclude that

P2|V) = +1|V)- (H-6)

The eigenvalues of the parity operator can therefore be only ±1. If we
have a parity invariant theory, namely, a theory whose Hamiltonian H
is invariant under inversion of coordinates, then, as discussed before, P
commutes with H,

[P,H] = 0. (11.7)

When P and H commute, the eigenstates of the Hamiltonian are also eigen-
states of P, with eigenvalues of either +1 or - 1 . Because a wave function
transforms under P as

V(r)Av(-r), (n.8)
this implies that the stationary states of any Hamiltonian invariant under
a parity transformation have definite parity, and can be classified as either
even or odd functions. As example, consider the one-dimensional harmonic
oscillator, whose Hamiltonian is parity invariant

and, as we know, the energy eigenstates of the oscillator are Hermite poly-
nomials, which are either even or odd functions of x, but never a mixture
of odd and even functions.

Consider next a rotationally invariant system in three dimensions. As we
noted in Chapter 10, the energy eigenstates in this case are also eigenstates
of the angular momentum operator. The wave function for the system can
be written as

U « = Rne(r)Yim(e,cf>), (11.10)

where the Yem(0,<p) are the spherical harmonics, discussed previously in
Chapter 3. The parity transformation in spherical coordinates takes the
form

(11.9)



270 Nuclear and Particle Physics

P

r —> r,

9 A 7T-0,

<f> A 7T + ^, (11-11)
and under this transformation, the spherical harmonics behave as

Yim(0, <t>) A Yem(n - 6,n+ <f>) = {-If Yem(6,4>). (11.12)

Consequently, parity transforms any wave function that is an eigenstate of
orbital angular momentum as

i>mm(r) A (-l)e VWm(r). (11.13)

In general, a quantum mechanical wave function can have, in addition,
an intrinsic parity or phase that is independent of its spatial transformation
property of Eq. (11.13), and, correspondingly, a general quantum state that
is described by eigenfunctions of orbital angular momentum will transform
under parity as

^ntm{rf) A Tl^i-lY </Wm(r), (11.14)

where r\^, is the intrinsic parity of the quantum state. We can think of
the intrinsic parity as the phase analog of intrinsic spin, which when added
to the orbital angular momentum yields the total angular momentum of a
system. As a consequence of Eq. (11.6), the intrinsic parity satisfies the
condition

4 = 1- (11-15)

We can therefore define a total parity of any such quantum mechanical
state as

»7TOT = % ( - ! ) ' • (11-16)
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A detailed analysis of relativistic quantum theories reveals that bosons
have the same intrinsic parities as their antiparticles, whereas the relative
intrinsic parity of fermions and their antiparticles is odd (opposite).

The classical Newton's equation of motion for a point particle has the
form

m§ = F. (11.17)

If we assume the force F to be either electromagnetic or gravitational, we
can write

F = ^f, (11.18)

where C is a constant. Clearly, since under inversion of coordinates both
the left-hand side of Eq. (11.17) and the right-hand side of Eq. (11.18)
change sign, Newton's equation for electromagnetic or gravitational inter-
actions is therefore invariant under space inversion. It can be shown in a
similar fashion that Maxwell's equations are also invariant under a parity
transformation.

11.2.1 Conservation of Parity

When parity is a good symmetry, then the intrinsic parities of different
particles can be determined by analyzing different decay or production pro-
cesses, as will be shown in the examples. It should be recognized, however,
that it is not possible to determine an absolute parity of any system be-
cause, starting with some set of assignments, we can invert the parities of
all states without observing a physical consequence of that change. This
is similar, for example, to defining the absolute sign of electric charge or
other quantum numbers. A convention is needed to define intrinsic parities
of objects that differ in some fundamental way - either through their electric
charge, strangeness, or other characteristics. The accepted convention is to
choose the intrinsic parities of the proton, the neutron and the A hyperon
as +1. The parities of other particles relative to these assignments can be
obtained through the analysis of parity-conserving interactions involving
such particles.

When parity is conserved, it then restricts the kind of decay processes
that can take place. Let us consider, for example, particle A decaying in
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its rest frame into particles B and C

A^B + C. (11.19)

If J denotes the spin of the decaying particle, then conservation of angular
momentum requires that the total angular momentum of the final state
also be J. In particular, if the two decay products are spinless, then their
relative orbital angular momentum (£) must equal the spin of A,

l = J. (11.20)

Conservation of parity in the decay then implies that

If the decaying particle has spin-zero, then for the process in Eq. (11.19)
to take place we must have

VA=VBVC- (11-22)

Hence, the allowed decays correspond to

0+ —>-0+ + 0+,

o+ — K T + o~,

(T—>0 + + (T, (11.23)

with Jp = 0+(or 0~) representing the standard convention for labeling a
spin and intrinsic parity of a particle. It also follows that certain decays
are forbidden because they violate parity conservation, e.g.,

0+ 7^0++0- ,

0~ T4-0+ + 0 + ,

0 " A 0 " + 0". (11.24)

(11.21)
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Example 1: Parity of ir~ Meson

Consider the absorption of very low-energy (or, as is usually termed, "stop-
ping" ) TT~ mesons on deuterium nuclei

ir-+d—>n + n. (11.25)

If li and If denote the orbital angular momenta in the initial and final
states, respectively, then conservation of parity in the reaction would require

V^d(-l)U = r,nVn(-lY', (11.26)

where r]v, r]d, and r]n represent intrinsic parities of the three particles. Be-
cause the intrinsic parity of the deuteron is +1, and rfc = +1, it follows
that

rhr = (-l)l'-tt = (-l)t'+tt. (11-27)

The capture process is known to proceed from an £» = 0 state, and conse-
quently, we get that

r,^ = {-l)lf. (11.28)

Now, with the spin of the deuteron being Jd — 1, this leaves the following
possibilities for the state of the two neutrons

|Vl1n)) = |J = l ,s = l ,£ / = 0or2),

| ^ ) = | J = l ,s = 1 , ^ = 1),

| ^ ) = | J = l , a = 0 , ^ = 1), (11.29)

where the state with s = 0 corresponds to the antisymmetric singlet spin
state (t-J. — V[), and the state with s = 1 to the symmetric triplet spin
state of two neutrons. Because the two neutrons are identical fermions,
their overall wave function must be antisymmetric, which excludes all but
\ipnn) from consideration, and specifies that the pion is a pseudoscalar, or
has an intrinsic parity of r]n = — 1.
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Example 2: Parity of A(1232)

As we have discussed in Chapter 9, the A(1232) is a n-N resonance that
decays strongly into a pion and a nucleon

A(1232)—>w + N. (11.30)

The parity of the A can therefore be written as

»fc.= 'M7Jv(-l)/. (11-31)

where I is the relative orbital angular momentum in the final state. We
have just seen that rjn = — 1 and TJN is defined as +1. Consequently, we
have that the parity of the A is given uniquely by the orbital wave found in
the final state. (See, however, Problem 11.6.) Prom the observed angular
distribution of the •n and N in the rest frame of the A, it is found that £ = 1,
and consequently the parity of the A relative to the nucleon is TJA = +1.
(The spin of the A is also known to be J = | . )

11.2.2 Violation of Parity

Until the late 1950s, it was believed that parity was a symmetry of all
fundamental interactions. Namely, physics was believed to be the same
whether described in a right handed coordinate system or in a left handed
one. However, in the early 1950s, two weak decays were observed that were
quite confounding, and were referred to as the "r — 9 puzzle" (this "r"
should not be confused with the more recently discovered r lepton)

6+ —>7 r + + 7r°,

r+ —>7r++7r++7r-. (11.32)

These decays were very interesting because the 9 and r particles were ob-
served to have essentially identical masses and lifetimes. (Subsequently,
both were also found to have spin J = 0, a fact that we will use to sim-
plify our argument.) Naively, it could be concluded that the 9+ and r +

were one and the same particle. However, this presented a conflict with
parity conservation. To see this, note that in the rest frame of the decay-
ing particles, the total angular momentum of the initial state is zero (i.e.,
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assuming both 8+ and r + have spin J = 0). The final states in both pro-
cesses involve only 7r-mesons, which also have spin zero. Thus, conservation
of angular momentum requires that the relative orbital angular momentum
in the 7r+7r° final state must vanish (if = 0). For the 7r+7r+7r~ final state,
the situation is somewhat more complicated because there are two rela-
tive angular momenta in the final state (the relative angular momentum of
the two TT+ mesons and that of the n~ with respect to this system), both
of which were found to be £ = 0. Consequently, the intrinsic parities of
the 6+ and r + had to be the same as the product of intrinsic parities of
the vr-mesons in their respective final states. But pions are pseudoscalars
(r)n+ = r]n- = ri^a = — 1), and we must therefore conclude that

Vr+ = Vn+V-K+Vn- = ~ 1 - (11.33)

Consequently, if parity is conserved in these decays, then the 9+ and r +

have opposite intrinsic parities and therefore cannot correspond to different
decay modes of one object. Alternatively, we can assume that the 0+ and
r+ are the same particle, but, of course, only if parity is not conserved
in their decays. Tsung-Dao Lee and Chen-Ning Yang, in fact, undertook
a systematic study of all the experimentally known weak decays, and con-
cluded that there was no evidence supporting conservation of parity in weak
processes. They postulated that weak interactions violate parity, and sug-
gested experiments to test their conjecture, which was clearly and rapidly
confirmed to be correct. The decays in Eq. (11.32) are now understood as
two weak-decay modes of the K+ meson, a process in which parity is not
conserved1

#+—>7r++7r°,

K+ S- 7T+ + 7T+ -(-7T-. (11.34)

The experiment that showed conclusively that parity is violated in weak
interactions involved a study of the ft decay of polarized 60Co. The exper-
imental techniques were simple, yet quite powerful, and we will sketch out
the procedures. Consider the decay

1The antiparticle of the K~^~, namely the K~ meson, has decay channels analogous to
those of Eqs. (11.32) and (11.34), these being K~ ->7r~+7r° and K~ -> -K~ +7r++7r~.
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6 0Co—• 60Ni + e - + F e , (11.35)

which is equivalent to the /? decay of a neutron. The experiment utilized
a crystal of cobalt salt, whose nuclear spins were polarized by applying a
strong external magnetic field. The temperature of the salt was lowered to
about 0.01 K in order to minimize thermal motion that leads to depolariza-
tion. The angular distribution of the emitted electrons (6e) was measured
relative to the direction of the applied magnetic field, and the electrons
were found to be emitted preferentially in a direction opposite to the field,
and therefore opposite to the spin direction of the cobalt nuclei. That is,
if s denotes the spin of 60Co and ;? the momentum of the emitted electron,
then the experiment showed that the expectation value of cos 6e was finite
and negative

{cosee) = {m) = wMm <0- (1L36)
Because spin is an angular momentum, and therefore an axial vector, under
a parity transformation, our observable (cos#e) changes sign

= ~ { M } " -{cose'}- <lL37)
Now, if a right handed and a left handed coordinate system are physically
equivalent, then we must observe an identical value in the two frames, and
consequently conclude from Eq. (11.37) that, if parity is conserved, (cos#e)
equals its negative value, and therefore vanishes, that is,

(cos0e) oc(s-p) =0 , (11.38)

implying that the electrons must be emitted with equal probability for
cos#e > 0 and for cos#e < 0. The finite negative value observed for this
quantity shows therefore that the two coordinate systems are not equivalent,
and that parity is violated in weak interactions. In fact, since the original
experiment by Chien-Shiung Wu, Ernest Ambler and collaborators, others
have confirmed this result, and it appears that parity is violated maximally
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in weak processes. The basic principle in these kinds of experiments is
similar, namely, they all try to measure the expectation value of a quantity
that should vanish if parity is conserved.

11.3 Time Reversal

In simple terms, time reversal corresponds to inverting the time axis, or
the direction of the flow of time. In classical mechanics this transformation
can be represented as

T
t-^ -t,
-> T -,

r —> r,

p — mr —> — mr = —p,

L = rxp-?->rx(-p) = -L. (11.39)

Newton's equations of motion (Eq. (11.17)), being second order in the time
derivative, are invariant under time reversal for both electromagnetic and
gravitational interactions. It can also be shown that Maxwell's equations
are invariant under time inversion. However, not all macroscopic systems
are time-reversal invariant. In fact, for macroscopic systems, statistical me-
chanics defines a unique direction for the flow of time as the one for which
entropy (disorder) increases. Microscopic systems, on the other hand, ap-
pear to respect time reversal invariance. However, the implementation of
time reversal symmetry into a theoretical formalism is not as straightfor-
ward as for the other symmetries.

Let us consider the time-dependent Schrodinger equation

i h ^ = H^. (11.40)

Being a first-order equation in the time derivative, it cannot be invariant
under the simplest time inversion

1){?,t) A # ; - i ) . (ii.4i)

However, if we require the wave function to transform under time reversal
as



278 Nuclear and Particle Physics

^(f,t)^r(r,~t), (11.42)

then, assuming H is real (for a Hermitian operator), from the complex
conjugate of Eq. (11.40), we get

- i h ^ ^ - = Hr(r,t), (11.43)

and now letting t ->• —t, we obtain

i h 9 * * ^ =HP{f,-t). (11.44)

Hence, the Schrodinger equation can be made invariant under time inver-
sion, that is, both ijj and its time-reversed solution can obey the same equa-
tion, provided that time reversal for quantum mechanical wave functions is
defined as in Eq. (11.42).

Consequently, the operator representing time reversal in quantum me-
chanics is quite unconventional in that it transforms a wave function to
its complex conjugate. (Technically, such operators are called antilinear.)
Because time dependent wave functions are necessarily complex, it follows
that quantum mechanical wave functions cannot be eigenfunctions of the
time reversal operator. Consequently, there is no simple quantum number
that can be associated with time reversal invariance. Physically, however,
invariance under time reversal implies that the transition amplitudes for the
process i -> / and the time reversed one f —> i have the same magnitude,
namely,

\M^f\ = \Mf-n\, (11.45)

where Mi_>/ denotes the matrix element for the transition from an initial
state \i) to a final state | / ) . Equation (11.45) is referred to conventionally
as the principle of detailed balance. It states that the quantum mechanical
probability for a forward reaction to take place is the same as for the time
reversed process. Nevertheless, the transition rates for the two processes
can be quite different. Prom Fermi's Golden Rule, the rates are given by
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9-7T

W^f = - \M^f\2pf,

WMt = y \Mf^\2Pi, (11.46)

where /?/ and pi represent the density of states for the end products in
the two reactions. These can be quite different, depending on the masses
of the particles involved, and, correspondingly, the rates can be different,
even if detailed balance is valid. The principle of detailed balance has been
verified for many processes, and has, in fact, been used to determine spins
of particles by comparing the rates for the forward and backward reactions.

Time reversal invariance appears to be valid in almost all known funda-
mental processes, and the most spectacular test of this invariance principle
for electromagnetic interactions comes from a search for an electric dipole
moment of the neutron. As we have already discussed, although the neu-
tron has no electric charge, it has a magnetic dipole moment, suggesting the
presence of an extended charge distribution within the neutron. If the cen-
ters of the positive and the negative charge distributions do not coincide,
then the neutron can also have an electric dipole moment. Prom simple
dimensional arguments, we can estimate the magnitude of such a dipole
moment to be

fj,ei<ed^ex l(r1 3cm « l(T13e-cm, (11.47)

where we have used the fact that the typical size of the neutron and, there-
fore, the maximum separation of the charge centers is about d « 10~13cm.
Since the only possible preferred spatial direction for a neutron is its spin
axis, it follows that if the neutron has a non-vanishing electric dipole mo-
ment, then it can point only along that axis, thereby yielding a finite value
°f (fie£ • *)• The most sensitive searches for this effect provide an upper
limit of

t*et < lCT25e-cm. (11.48)

This is, of course, consistent with the absence of an electric dipole mo-
ment, and is ss 12 orders of magnitude smaller than our naive limit from
Eq. (11.47).
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A finite value of nei, and therefore a finite expectation value for (pee-s),
would imply violation of T-invariance. This can be seen from the way the
operator for the projection of the electric dipole moment along the spin
direction transforms under time reversal

pel -S-^pel-(-s) = -flefS, (11.49)

where we used the fact that pei transforms as ~ er, which does not
change under time reversal. The spin, on the other hand, being an angular
momentum changes sign (see Eq. (11.39)). Consequently,

(pe( • S > A - (pe£ • s), (11.50)

and, if time reversal is a symmetry of the system, then this quantity must
vanish. The result in Eq. (11.48) can therefore be regarded as an impressive
upper limit on T-violation in electromagnetic interactions. There is, how-
ever, a question of interpretation of this result, because under the parity
transformation we also obtain a change of sign

(Pef^-^((-pee)-^ = -(Pei-^- (11.51)

This means that a finite electric dipole moment could also arise as a conse-
quence of parity violation. However, we know from other experiments that
parity is conserved in electromagnetic interactions but violated in weak
processes. Consequently, the presence of an electric dipole moment could
arise from an interplay of electromagnetic and weak interactions. In fact,
a small contribution to the electric dipole moment is expected from the
weak interaction. Anything beyond that could be attributed to T violation
in electromagnetic processes or to contributions from some new physical
mechanisms. The upper limit on the value of the electric dipole moment
of the neutron (which is a factor of about 100 larger than the upper limit
on the electric dipole moment of the point-like electron) can therefore be
interpreted as providing limits on T violation in electromagnetic and P
violation in weak interactions.
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11.4 Charge Conjugation

Both parity and time reversal are discrete space-time symmetry transforma-
tions, and it is natural to ask whether there are any discrete transformations
in the internal Hilbert space of a quantum mechanical system. Charge con-
jugation is, in fact, this kind of transformation, under which the space-time
coordinates are unchanged and the discrete transformation affects only the
internal properties of the state.

Let us recall that the classification of the electron as particle and
positron as antiparticle is arbitrary. In fact, the definition of positive and
negative electric charge, positive and negative strangeness, the assignment
of baryon number, etc., as we have stated before, are all a matter of con-
vention. Once a choice is made, however, we can measure the quantum
numbers of other particles relative to the defined assignments. The charge
conjugation operation inverts all internal quantum numbers of states, and
thereby relates particles to their antiparticles. Classically, one can represent
charge conjugation as the following transformation on electric charge Q

gA-Q. (11.52)

Since electric charge is the source of electric and magnetic fields, it follows
that under such a transformation

E A -E,

B A -B. (11.53)

(This is simply because both E and B are linear in electric charge.) It is
straightforward to show that Maxwell's equations are invariant under such
a transformation.

For a quantum mechanical state \tp(Q,r,t)), where Q represents all the
internal quantum numbers such as electric charge, lepton number, baryon
number, strangeness, etc., charge conjugation reverses all the charges,

MQ,?,t)) A \ip(-Q,r,t)). (11.54)

Consequently, a state can be an eigenstate of the charge conjugation op-
erator C if, at the very least, it is electrically neutral. Thus, for example,
the photon (7), the atom of positronium (e~ - e+), the n° meson, etc., can
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be eigenstates of C. However, not all charge-neutral states are eigenstates
of C since they may carry other internal quantum numbers. For example,
the following are, clearly, not eigenstates of C

\n) —> \n),

|TT p) —> |TT + P) ,

\K°) A \K°). (11.55)

Because two consecutive charge conjugation transformations will leave a
state unchanged, it follows that the eigenvalues of C, or the charge parities
of an eigenstate, can be only ±1. Thus, for example, from Eq. (11.53) we
conclude that the photon, the quantum of the electromagnetic field, must
have a charge parity of — 1,

»7c(7) = - l - (H-56)

If charge conjugation is a symmetry of the theory, that is, if H and C
commute

[C,H] = 0, (11.57)

then the charge parity for any given process must be conserved. Because
Maxwell's equations do not change under C, electromagnetic interactions
should therefore be invariant under charge conjugation. Consequently, from
the decay of the n° into two photons

7f° —>7 + 7, (H-58)

we conclude that the TT° must be even under C, if charge parity is to be
conserved in the decay

Va (T°) = Vc (l)Vc (7) = (-1)2 = +1- (H-59)

In variance under charge conjugation therefore leads to restrictions on
the kinds of interactions or decays that can take place. For example, a
7T° cannot decay to an odd number of photons because that would violate
conservation of C-parity
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7r°/>n7, for n odd. (11.60)

And, in fact, the experimental upper limit on the branching ratio

TT°->27 1 S ~ i U •

While charge conjugation is known to be a symmetry of electromag-
netic and strong interactions, we can argue, as follows, that it must be
violated in weak interactions. As we have emphasized, charge conjugation
does not change space-time properties, and therefore the handedness of a
quantum state is insensitive to such a transformation. Thus, under charge
conjugation, we obtain

\VR) A \VR), (11.61)

where the subscripts L and R refer to left and right handed neutrinos (or
antineutrinos), respectively. But we pointed out previously that there is
no evidence for the existence of right handed neutrinos or left handed an-
tineutrinos. Consequently, the charge conjugate process of /3-decay cannot
take place, and charge conjugation therefore cannot be a symmetry of such
interactions. Nevertheless, although both P and C symmetry are violated
in /? decay, the combined transformation of CP appears to be a symmetry
of such processes. One can see this heuristically as follows

K) -A- \vR) -£» \VR),

\VR) A |F£)-£> |I/L>, (11.62)

that is, the combined operation of CP takes a physical state to another
physical state, which is not what the C or P operations do individually.
Nevertheless, the CP operation is not a symmetry of all weak interactions,
as we will discover in the following chapter.

11.5 CPT Theorem

We have seen that the discrete symmetries P, TandC appear to be violated
in some processes. However, it was shown independently by Georg Liiders,
Wolfgang Pauli, and Julian Schwinger that the combined operation of CPT
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must be a symmetry of essentially any theory that is invariant under Lorentz
transformations. That is, even if the individual transformations do not
represent symmetries of any given theory, the product transformation will
be a symmetry. This is known as the CPT theorem, and a consequence
of CPT invariance leads to certain very interesting conclusions, which we
summarize below.

(1) Particles satisfy Bose-Einstein statistics when they have integer spin,
and obey Fermi-Dirac statistics when they have half-integer spin. This
has additional implications for relativistic theories, in that it requires
an operator with integer spin to be quantized using commutation re-
lations, and an operator with half-integer spin to be quantized using
anti-commutation relations.

(2) Particles and their antiparticles have identical masses and same total
lifetimes.

(3) All the internal quantum numbers of antiparticles are opposite to those
of their partner particles.

The CPT theorem is consistent with all known observations, and CPT
appears to be a true symmetry of all interactions.

Problems

11.1 The p°(770) has Jp = 1~, and it decays strongly into TT+TT" pairs.
From symmetry and angular momentum considerations, explain why the
decay p°(770) ->• 7r°7r° is forbidden.

11.2 What is the charge-conjugate reaction to K~ 4- p ->• K° + n? Can a
K~p system be an eigenstate of the charge conjugation operator? Similarly,
discuss the reaction p + p —> TT+ + TT~ .

11.3 If p° mesons are produced in states with spin projection Jz = 0 along
their line of flight, what would you expect for the angular distribution of
p° —> TT+ + 7r~ decay products in the p° rest frame? (See Appendix B for
the appropriate 1̂ ,TO(#, 4>) functions.) What would be your answer if the
initial p° had spin projection Jz = +1?

11.4 The E~ has Jp = | . It decays through weak interaction into a A0

and a ir~ meson. 1i Jp = \ and JP = 0~, what are the allowed relative
orbital angular momenta for the A - %~ system?

11.5 Which of the following decays are forbidden by C-invariance?
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(a) LJ° -)• 7T° + 7,

(b)ij '->p°+7,
(c) 7T° -> 7 + 7 + 7,
(d) J/tp^p + p,
(e) p° -> 7 + 7.

(Check the CRC tables to see if these decays take place.)

11.6 Although the orbital wave for any strong n-N state determines the
parity of that state, different I-values do not necessarily yield different decay
angular distributions. In particular, show that a J = | , Jz = +§, n-N
resonance decays the same way whether it has I = 0 or I = 1. Similarly,
show that a J = § , Jz = +| ,7r- . /V system has the same decay angular
distribution for £ = 1 as for I = 2. [ffini: Expand the wave function for
the state in terms of the products of s = | spin-states and the appropriate
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Chapter 12

Neutral Kaons, Oscillations, and CP
Violation

12.1 Introductory Remarks

\s we saw in the previous chapter, weak interactions violate, separately
)oth the C and P symmetries. Nevertheless, it was thought until the earlj
L960s that the combined operation of CP might hold for all interactions
3ecause the CP transformation takes a physical particle state to a physica
mtiparticle state, as shown in the example of Eq. (11.62), invariance un-
ier CP is equivalent to having a particle-antiparticle symmetry in nature
however, the universe is known to be dominated by matter, with essentiallj
10 antimatter present, which is tantamount to saying that there is a definite
aarticle-antiparticle asymmetry in the universe. This would suggest thai
7P may not be a symmetry of all the fundamental interactions, and, ir
act, as we will describe below, there are processes in which the combined
)peration of CP is violated. In this chapter we discuss the violation of CF
n weak interactions. It should be recognized that, if CPT is a symmetry
)f all physical systems, then a violation of CP automatically implies that
C must also be violated. CP violation therefore implies that there are mi-
:roscopic (subatomic) processes for which time has a unique direction oi
low.

L2.2 Neutral Kaons

>Ve have already discussed the T-9 puzzle, where we concluded that the
lecays of the 6+ (6~) and the r + (r~) can be identified as two decay channels
)f the K+(K~). There are analogous decays of the neutral kaon partners
)f the K + and K~ that we will consider in this chapter. In particular, we
vill concentrate on the hadronic final states

287
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^o_^7ro+7ro!

6° —>7T+ +7T-,

r o _ ^ 7 r o + 7ro + 7ro;

T° —»• 7T+ + 7T- + 7T°. (12.1)

The first question that naturally comes to mind is how the 8° and r° are
related to the K° and if0. To make this connection, we will first discuss
the production and decay characteristics of neutral kaons.

Both K° and K° mesons can be produced in strong-interaction processes
such as

K~ +p—>K° + n,

K++n-+K°+p,

ir-+p^A° + K°. (12.2)

In these reactions, the kaons are produced in states of unique strangeness,
namely S = +1 for K°, and 5 = - 1 for ~K°. As we know, the K° can
be identified as the 73 = — | isospin partner of the K+, and the K° as
the I3 = + | partner of the K~. The K° is the antiparticle of the K°,
and the two can be distinguished due to their difference in strangeness.
The neutral kaons produced in the above collisions are unstable, and decay
through the weak interaction after traveling some distance £ (in a time
*iab) m the laboratory. The distance traveled prior to decay is related to
the proper time through the velocity v of the kaon,

L = Vilab = ̂ 7*proper, 7 = I 1 ~ ~g ) , (12-3)

and the mean proper time is just the lifetime TR-O of the K° in its own rest
frame

TKo = (proper). (12.4)

By measuring the velocity and the decay length (I) of a K°, we can deter-
mine its proper time, and from a sample of such events extract the lifetime.
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Because the K° is the antiparticle of the K°, it follows from the CPT
theorem that the two particles must have identical masses and lifetimes.

The results of experiments that study r^o are sketched in Fig. 12.1,
and are remarkable indeed. Instead of observing a single characteristic
decay time (exponential drop off) that would be expected for any unique
eigenstate of the free-particle Hamiltonian, the data indicate that there are
two distinct lifetimes associated with both the K° and the K° . This can
only be understood if we assume that the K° and the K° states consist
of a superposition of two distinct states with different lifetimes: a short-
lived one, originally labeled K®, and a longer-lived one, labeled K\. The
events corresponding to K° decays are of the 6° variety (namely, two-pion
channels) while those corresponding to the K% decays are of the r° variety
(that is, three-pion channels). The results found for K° and K° decays are
completely consistent with each other in the sense that the decay modes
and lifetimes observed for the K° and K$ components in both cases are
the same

n ss 0.9 x 10~10 sec,

r2 ss 5 x 10~8 sec. (12.5)

\ 6° decays

Log i\ T ° decays
(Number of Decays) \ r /^

\

Proper Time = (Ificy (sec)

Fig. 12.1 Sketch of the distribution in proper time for K° or for K° mesons, calculated
from their velocities and distances traveled prior to decay.

The fact that the K° and the K° can decay through common channels
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K° —• 7T° + 7T°, (12.6)

suggests that these particles can mix through higher orders in the weak
interaction. That is, although the K° and K° are distinguishable because
of their strangeness quantum number, and are represented by orthogonal
states, they do not remain orthogonal as time evolves and weak interactions
set in. That is, in the presence of weak interactions, the two kaons share
the same decay channels. This is a consequence of the fact that weak
interactions do not conserve strangeness. It is therefore possible to have
transitions between a K° and a K°, for example, through 2TT° intermediate
states (see Fig. 12.2)

K° * H 7r°+7r° H-^K°. (12.7)

»+ _

n~

K° ^-"~p~-\ g°

Fig. 12.2 Possible transformations of JFC° to ~K°.

Thus, the K° and K° particle states, although eigenstates of the strong-
interaction Hamiltonian (HBt), cannot be eigenstates of the weak interac-
tion Hamiltonian (iJwk)- That is, schematically, we have for the strong
interactions

(^°|ii:0) = 0,

(K*\Hst\K0) = 0,

with Hst\K°) = mKoc2\K0),Hst\K°) = mj^c2\K°), and mKo = mw BS
498 MeV/c2, and (where 5 is the operator measuring strangeness)
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S\K°) = +1\K°), S\K°) = -1\K°),

I3\K°) = -±\K°), h\Kt) = \\KZ), (12.8)

while for the weak interactions we have

Q^\H^\K°)^0. (12.9)

Because the decay of .ftT-mesons is a weak process, the observed K° and K$
particles, with unique lifetimes, can be thought of as corresponding to the
eigenstates of i?Wk • Furthermore, because both K° and the K° appear to
be superpositions of K^ and K$ states, it follows that the K® and K$ must
also be superpositions of K° and K°.

12.3 CP Eigenstates of Neutral Kaons

To determine which linear superpositions of states correspond to the eigen-
states of the weak Hamiltonian, let us assume for simplicity that CP is a
symmetry of weak interactions. Also, let us choose the phases for the K°
and K° states as follows

CP\K°) = -C\K°) = -\K°),

CP\K°) = -C\K°) = -\K°), (12.10)

where we have used the fact that If-mesons are pseudoscalars and conse-
quently have odd intrinsic parities. Using Eq. (12.10), we can now define
two linear orthonormal combinations of K° and K° that will be eigenstates
of the CP operator, namely,

\K°2) = -L (\K°) + ffi) . (12.11)

Applying the CP operator to the K® and K\ states, we can verify explicitly
that
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CP\K°) = -j= (CP\K°) - CP\K°))

= -J= (-|^> + \K°)) = -L (|ff°> - \W)) = \K°),

CP\K°) = -i= (<7P|ii:0) + CP|^°))

= 75 (-'**>-I*0))

= --J= (|tf°) + |i^>) = -\K°). (12.12)

Thus, the two states \K®) and I-K )̂, which do not carry unique
strangeness, can be denned as eigenstates of CP with eigenvalues +1 and
— 1, respectively. If CP is conserved in weak processes, we can then identify
K^ and K® with 6° and r°, respectively. In fact, we see that in the rest
frame of 6°, the two n° mesons must have zero orbital angular momentum
(I = 0), and the final-state 7r°7r° system is therefore an eigenstate of CP
with eigenvalue +1. This is consistent with our identification of K® with
the 6° decay mode

g°=K°—+7r°+7r°. (12.13)

Recalling that pions are pseudoscalar mesons, a similar analysis of the 3TT°

decay mode of the r° shows that it is an eigenstate of CP with eigenvalue
— 1, which confirms the identification of K% with the r° decay

r° = K\ —• n° + 7r° + TT° (12.14)

Note that the momentum (and therefore the phase space or the density
of states) available for the two-body decay in Eq. (12.13) is substantially
larger than the phase space for the three body decay in Eq. (12.14). Conse-
quently, if our analysis is valid, we predict that the rate for decay of the K®
will be much greater than that for K\, leading to the expectation that the
two particles will have different lifetimes - K\ being short-lived compared
to K\. This prediction of two lifetimes was, in fact, a principal result of an
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analysis of this problem by Murray Gell-Mann and Abraham Pais prior to
the discovery of the K.%•

12.4 Strangeness Oscillation

We can invert the relations in Eq. (12.11) to obtain

\K°) = -J= (\K°) + \K°)) ,

m = ~^= (IK0,) - \K°2)) . (12.15)

Thus the interactions involving the K° and K° mesons can be understood
as follows. In strong-production processes, such as given in Eq. (12.2),
only the eigenstates of the strong Hamiltonian are produced, namely \K°)
or \K°). However, as we see from Eq. (12.15), these states are superposi-
tions of the \Ki) and \K°), which are eigenstates of the weak Hamiltonian.
(The mass and lifetime eigenvalues of the K° and K\ are discussed below.)
At the time of production, the K° and K° correspond to the superposi-
tions of K° and K° given in Eq. (12.15). But as these specific mixtures
of the \K\) and I-K"") states propagate in vacuum, both the \K\) and \K\)
components decay away. However, the state I-F̂ i) decays much faster than
\K%), and, after some time, the initial \K°) or \K°) will therefore be com-
posed primarily of \K%). But Eq. (12.11) indicates that K° has an equal
admixture of K° and K°, which means that, starting out either as a pure
JFsT0 or as a pure K° state, any neutral kaon will evolve into a state of mixed
strangeness. This phenomenon is known as K° - K° or strangeness oscilla-
tion, and it can be observed as follows. For example, to detect the presence
of K° resulting from the time evolution of initially pure K°, we can exam-
ine the interactions of neutral kaons as a function of the distance from their
point of production. At the point of origin, the K° is a pure S = +1 state,
but, as the K° component decays away, a K° component starts developing,
and it can interact strongly with the medium (say, protons) to produce
hyperons of S = — 1, as follows

^ ° + p - ^ S + + 7 r + + 7 r - ,

W + p^t A° + 7r++7r°. (12.16)
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On the other hand, conservation of strangeness does not allow produc-
tion of hyperons by K° mesons, namely,

K°+p^Y,+ +Tr++ir-,

Consequently detecting hyperon production in the medium will signal the
presence of K°. This is, in fact, exactly what is observed. Close to where
the K° are produced, there are no K°, and no secondary interactions of the
kind given in Eq. (12.16). However, further downstream, there is evidence
for the emergence of K°, as can be inferred from the observation of hyperon
production.

As we will see shortly, the phenomenon of K° - K° oscillations can be
used to measure the small mass difference between the K° and K$. The
technique is similar to the one mentioned in Chapter 4 that was used to
detect finite values of masses of neutrinos. Besides neutral kaons and neu-
trinos, neutral bottom-mesons (B°), composed of bd or 6s quark systems
(see Table 9.5) also display these interesting quantum effects. There have
been searches for oscillations in neutral charm-mesons (D° mesons, com-
posed of cu or bd systems), and between neutrons and antineutrons, but no
effects have been detected so far.

12.5 K° Regeneration

Another interesting process involving the K° - K° system is what is known
as Jf° regeneration. This was originally proposed as a possibility by Abra-
ham Pais and Oreste Piccioni. The idea relies on the fact that the cross
section for K° interactions with nucleons is different from (greater than)
the cross section for K° interactions with nucleons. (We might expect
a(K°N) > a(K°N) since strong K°N collisions can produce everything
that strong K°N collisions can yield, and, in addition, can produce hy-
perons, as indicated in Eq. (12.16).) Let us consider a beam of K° that
is allowed to evolve in vacuum (through K% decay) into essentially a pure
K° beam. If we now let the K\ interact with some target material, then,
because the absorption of the K° component is greater than that of the K°
component of the K$, the admixture of K° and K° in the K\ beam will
change. For example, if all the K° is removed in strong interactions with
the material, then we will be left with a transmitted beam that is pure K°,
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and is consequently an equal mixture of K° and K° • Hence, starting with
a K\ beam, we can regenerate K\ by passing the K^ through some ab-
sorbing medium. This interesting phenomenon has been observed in many
experiments.

P A y

\ \ >

\2_. vL.
Ex = 0, Ey = 1 Ex = Ey = |
(Before Filter) (After 45° Filter)

Fig. 12.3 Polarization vector of an electric field before and after a filter that transmits
light along 45° (u).

Although i^° regeneration may appear to be somewhat exotic, it has,
in fact, a simple analogy in optics in the absorption of linearly polarized
light. Just as the K° and K° can be expressed using the K° and K° basis
vectors, and vice versa, so can light polarized along x or y be expressed in
terms of polarization vectors u and v that are rotated by 45° relative to x
and y (see Fig. 12.3), and vice versa. If we pass light polarized along y
through a filter that absorbs light along v (that is, a filter rotated by 45°
relative to y), then the partially transmitted light will be polarized along
u. This transmitted light can be decomposed along x and y, to yield an
equal mixture of components along both directions. Thus, starting off with
light that has the electric field polarized along y (or with a K\ beam), we
absorb away the component along v (selectively deplete the K° fraction of
K°), and thereby generate a component that is orthogonal to the incident
polarization, namely along x (regenerate the orthogonal K° state).

12.6 Violation of CP Invariance

Since IK®) is a state with CP eigenvalue — 1, then, if CP is conserved in
weak interactions, we would conclude that such a state could not decay into
two pions. That is, the following transitions could not take place
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K%-fr n++ it'. (12.17)

Nevertheless, an experiment performed in 1963 by James Christenson,
James Cronin, Val Fitch and Rene Turlay revealed that the long-lived com-
ponent of K° did, in fact, decay into two pions. Because this implies that
the long-lived and the short-lived components of K° need not be the K\
and K\ eigenstates of CP, we will refer to them as K\ and Ks (for K-long
and K-short). The branching rates of the Ki into 7r+7r~ and into 7r°7r° are
of the order of 0.1% of all K\ decays

Prom the lifetimes of the K°L and Ks in Eq. (12.5), it can be deduced that
the decay rate of Ki -> 2n is about 4 x 10~6 that of the decay rate of the
short-lived Ks into two pions.

The experiment of Cronin, Fitch and their colleagues involved passing
a pure w 1 GeV/c K° beam through an evacuated tube that was about 15
meters long. The short-lived component in the beam had a decay length
UK°) = lPCTK° ~ 6 cm, it was expected to decay away by the end of

S 3

the tube, and the goal was to search for 2ir decays at the end, and thereby
establish a more stringent upper limit on the 2TT mode of K°• But, instead,
the experiment observed 2TT decays, representing the first clear evidence for
CP violation in particle interactions.

As we mentioned in the introduction, the violation of CP is important
for gaining an understanding of the matter-antimatter asymmetry in the
universe. However, the character of CP violation is somewhat unusual
In particular, parity violation in weak interactions is maximal, while CP,
at least in K° systems is violated only very slightly, and, for all practi-
cal purposes, it can be considered as essentially conserved. In fact, CP
violation has been observed only in systems of K°-mesons and neutral B°-
mesons (where the violation is large and rates are comparable to those for
CP conserving decays). Thus, we can regard CP as a symmetry of al-
most all physical systems, and, because CP violation in K\ -> 2TT decay is
very small, we therefore expect the K\ and Ks eigenstates of the physical
particles to differ only slightly from CP eigenstates.

(12.18)
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Unlike parity violation, CP violation was found to be more difficult to
incorporate into theories, and, historically, this problem was viewed in two
ways: One suggested that the interaction responsible for the K\ -» 2vr tran-
sition involved the standard weak Hamiltonian ifwk, and the other view was
that it involved a new "extra-weak" interaction that appeared solely in sys-
tems such as K° mesons. In the latter prescription, ilwk was assumed to be
CP invariant, and the CP violation was attributed to the new extra-weak
interaction. The second alternative, although distinctly possible, does not
offer the most economical solution to the problem, as it invokes new inter-
actions for systems that violate CP symmetry. In fact, most predictions of
such phenomenologically-motivated "milli-weak" or "super-weak" theories
have been found to be inconsistent with data for K° and B° decays, and
will therefore not be elaborated any further.

As we have indicated, the transition (2TT|.HWIC|.K-£) clearly violates CP
symmetry. But this can happen because the K\ and Kg eigenstates of the
weak Hamiltonian are not eigenstates of the CP operator, in which case,
the physical states are superpositions of CP-odd and CP-even components.
This type of CP violation is commonly referred to as indirect, and arises
in K\ ->• 2TT decay solely because of the small inherent admixture of K® in
the K\ state. And, if this is the case, Hw^ is even under the CP operation.
But there is another possibility for a direct violation of CP through the
#wk Hamiltonian, and this can take place if (27r|.firwk|.K'2) ¥" 0- Here, i?wk
would have a component that is odd under CP. In fact, both the indirect
and direct terms contribute to CP violation in the JiT£ -> 2TT transition,
with the direct contribution being » 0.1% of the strength of the indirect
term.

To proceed further, let us define the two eigenstates of the weak Hamil-
tonian in terms of the eigenstates of Hst, i.e., in terms of \K°) and \K°),
as follows (for a more formal discussion, see the next section)

| gg> = V2(i1+N»)((1 + e ) | J g 0 ) " ( 1 ~ c ) l ^ > )

= v d r m {{{KOl)+AK°2))' (12'19)
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\K°L) = /o(^\^^2^ O1 + e ^ ° > + ^ " e ^ > )
V^U + |e| ) v '

= ^ ^ [(|^°> + | ^ » + e(\K°) - \K°~))]

= ^ ( 1 | | e | 2 ) d̂ 2°> + z\Ki)), (12.20)

where e is a very small, complex, parameter, representing the deviation of
the K°L and Kg states from true CP eigenstates, and therefore reflecting
the degree of indirect violation of CP in the system. Because we have
constructed the physical short-lived and long-lived neutral Jf-mesons as
explicit admixtures of the CP eigenstates, these new states therefore cannot
be eigenstates of CP, as can be checked directly

CP\K%) = | | e | 2 ) {CP\KD + e CP\K$))

= | | £ | 2 ) {\K°) - e\K$)) # \K°S),

CP\Kl) = | | e | 2 ) {CP\K°2) + eCP\KD)

= | | e | 2 ) (-\K°) + elK?)) ? -\Kl). (12.21)

Moreover, these new physical states are not even orthogonal

(Kl\K%) = ^ ^ ((K°2\ + e*(^0|) (IK0,) + e\K°2))

_ e + e* _ 2Ree _ , ^ | y 0 , (v? oo\
~ 1 + lei2 ~~ 1 + lei2 ~ \ A S I A L / - [iz.zz)

The lack of orthogonality of the two states is, in some sense, expected,
since both have the same decay channels (such as the 2TT and 3TT modes),
and this lack of orthogonality is, in fact, also a measure of the degree of
CP violation. In other words, in this formulation, it is only the state \K°)
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that decays into two pions, and because |7sT°) contains a small admixture
of \K®), it follows that it too has a small probability for such decay.

It is worth re-emphasizing that the above indirect violation of CP in
K\ -> 2TT decay arises purely from the small admixture of \K\) in the \Ki)
state. This kind of decay can be ascribed to AS = 2, A7 = | transitions.
The recently observed far smaller direct CP component arises from the
direct decay of K% -» 2TT, which can only take place if 7fwk has a CP-
violating component (does not commute with CP). This proceeds through
a AS = 1, A7 = | transition, referred to in the Standard Model (see the
following chapter) as a penguin contribution.

We can also express the ratios of the K\ and K% transition amplitudes
in terms of the following complex parameters:

_ K°L ->• 7T+ + 7T-

V+~~ K°s^n++ir-'

—££££•
While these weak decays can take place either through A7 = | or | transi-
tions, as we mentioned previously, the amplitude for A7 = | is observed to
be highly suppressed. Thus, for simplicity, if we assume that these decays
proceed through A7 = | , this implies that the 2ir systems are in the 7 = 0
state of isotopic spin. (This is equivalent to ignoring the direct term in
CP violation.) From the definition of |7sTg) and \K°L) in Eqs. (12.19) and
(12.20), we can then conclude that

?7+_ = 7700 = e. (12.24)

Thus, in this scenario of indirect violation of CP, we expect the ratios for
the two decay modes in Eq. (12.23) to be the same. In fact, the measured
values are consistent with this expectation, but only at the 1% level

|T7+_| = (2.29 ±0.02) x 10~3,

0+_ = (43±l)°, (12.25)

I7700I = (2.27 ±0.02) x KT3,

</>oo = (43 ±1)°, (12.26)

(12.23)



300 Nuclear and Particle Physics

where we have parameterized

»7+_ = |i7+_|ei*+-, (12.27)

and

*7oo = |r?oo|e^00. (12.28)

Including the A/ = | admixture, provides the small direct contribution
expected from the Standard Model (see next chapter). In this more general
scenario, the relationship between 7700 and 77-1 becomes modified

J2ooJl = 1 _ 6 I t e ( T l
\v+-\* b"*\e)>

where e' is the parameter that represents the direct contribution. Based
on very sensitive recent measurements of the above ratio of the ratios of
decay rates specified in Eq. (12.23), the latest value of Re (̂ -) is found to
be PS 1.6 x 10~3, which is inconsistent with the presence of just an indirect
CP-violating term, but nevertheless still in agreement with expectations of
the Standard Model.

12.7 Time Development and Analysis of the K°-K° System

In the absence of weak interactions, the states \K°) and \K°) are eigenstates
of the strong Hamiltonian, and describe distinct particle and antiparticle
states. These are stationary states in a 2-dimensional Hilbert space, and
can be identified with the basis vectors

| 2 ^ > — > r j . (12.29)

Any normalized general state in this space can, of course, be written as a
linear superposition of the two of the form
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M = n i2J!n,m^°lg°> + 6 l ^(|a|2 + |6|2)2

i M
—»• r . (12.30)

In the presence of weak interactions, however, the states in Eq. (12.30)
will not be stationary. In fact, as we have argued, they can decay through
many available weak channels. Consequently, to describe the K°-K° sys-
tem, requires an enlargement of our Hilbert space through the incorporation
of the other final states. Alternatively, we can keep the analysis simple by
restricting ourselves to a 2-dimensional Hilbert space, and incorporating the
consequences of decay channels into some effective Hamiltonian. Because
we are dealing with states that decay in time, that is whose probability is
not conserved, the effective Hamiltonian will no longer be Hermitian (see,
for example, Eq. (9.32)). Nevertheless, the time evolution of a general two-
dimensional vector in this space will still be governed by the time-dependent
Schrodinger equation

ihmp.=Htam))t (1231)

where Heg is a 2 x 2 complex (non-Hermitian) matrix operator, which can
be written in general as

HeS = M-±T, (12.32)

with

M = \ (Ha + Hle),

r = i (Feff - tfeff) ,

so that
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M^ = M, or M*k = Mkj,

r t = r , or T*jk=Tkj, j,k = 1,2, (12.33)

where F and M are Hermitian 2 x 2 matrices. Clearly, unless F vanishes,

HlstHa. (12.34)

In fact, as we have just emphasized, since Heg has to incorporate decays,
it cannot be Hermitian. We presume therefore that F is related to the
lifetimes of the states.

For the time evolution of \ip) in Eq. (12.31) we can write

in ̂ p- = JW(t)> = (M - i r) m)),

and

-ih ^ | M = m)\ His = (m\ (M + ^r) . (12.35)

From these equations, it is straightforward to show that

« f * » . - 1 W W|rW W>. (12.36)

Because decays reduce probability, we can conclude that the matrix F, in
any state in this two-dimensional space, must satisfy the requirement

<VK*)|F|VW) > 0. (12.37)

In other words, the matrix F must have positive or vanishing eigenvalues,
and, as anticipated, it represents the decay characteristics of the system.
The eigenvalues of matrix M, which correspond to the real parts of the
energy levels of the system, define the masses of the states in their own rest
frames (p = 0). For this reason, M is known as the mass matrix of the
system, while F is commonly referred to as the decay matrix.

In addition, if we represent Heg by a general 2 x 2 matrix of the form
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(AB\

then from Eq. (12.29) we obtain

{K°\HeS\K°) = A,

(K°\Hef{\K°) = D. (12.39)

Invariance of Hes under CPT then leads to the requirement that the mass
of the K° equal the mass of the K°, or

A = D. (12.40)

We can therefore write the general form of iTeff, consistent with CPT in-
variance, as

(AB\

Let us next construct the eigenstates of Hes, and take the following
general parametrization for the two eigenstates

(bl' + M2)* W
W> = n n \ ^ (r\K°)+8\KS))

(\r\2 + \s\2)2

- > n ,2J1, m i f ) . (12-42)
{\r\2 + |s|2)2 \sj

where p, q, r, s are complex parameters that define the K^ and K\ eigen-
states of Hes, which in the particle's rest frame have eigenvalues ms — 175
and rriL - f 7L, respectively. That is,

(12.38)

(12.41)
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HeS\Kos)=(ms-l-lsyK°s),

HeS\K°L) =(rnL-1- 7 i ) \K°L), (12.43)

where ms and mz,, and 75 and JL, correspond to the masses and widths
of the two eigenstates, and we have set c = 1. In the basis of the if£, Ks

eigenstates, the diagonal elements of Hes are, of course, the two eigenvalues
of Eq. (12.43). In this basis, the sum of the eigenvalues equals the trace
(Tr) of Heff. However, because the trace of a matrix is the same in any
basis, Tr Hes always equals the sum of the two eigenvalues. Thus, from
Eq. (12.41), we obtain

Tr #eff = 2A= (ms - %- js J + (mL - %- 7 i J ,

1 i
or A = - (ms + mL) - - (7 s + 7z,). (12.44)

Writing out the first equation in (12.43), we obtain

(A-ms + ^s B \ (p\
or 2 • = 0- (12-45)

V C A-rns + ^sJ \QJ
Equation (12.45) defines a set of coupled linear, homogeneous equations in
the unknowns p and q, and a nontrivial solution in such a case exists only
if the determinant of the coefficient matrix vanishes. In other words, for a
nontrivial solution of Eq. (12.45) to exist, we must have

(A-ms + ^s B \
det =0 , (12.46)

V G A-ms + i-rsJ
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or BC = [A - ms + - is) = ~ (mL - ms) - - (TL - 7s) ,
\ z / lz 4 J

or i (mL - ms) - i (7L - 7 s ) = ±VB~C. (12.47)

Substituting this back into the first Eq. (12.45), provides the following
solution for the coefficients p and q

l = ±yjl. (12.48,

Similarly, for the K^ eigenstate in Eq. (12.42), we obtain

Thus, if we choose r — p and s — —q, we can write

(|p|2 + M2)3

(bl2 + kl2)2

And the choice made in Eqs. (12.19) and (12.20) therefore corresponds to

p=l + e, q = -{l-e). (12.51)

Inverting the relations in Eq. (12.50), we can now write

l ^ > = ( | p | 2 + | g | 2 ) * (\K°S) - \K°L)) . (12.52)
zq

Since \Kg) and \K^) are eigenstates of Heff, the solutions to Eqs. (12.31)
and (12.43) are

(12.49)

(12.50)
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\K°s(t)) = e-Ums-hs)tlKos)!

\K°L(t)) = e~i (TOL ~ 5 Ti)* |#£), (12.53)

where, again, we have set c = 1 (cf. Eq. (9.32)). The states in Eq. (12.53)
decay with lifetimes given by the squares of their amplitudes

h
TS = ,

IS

TL = —, (12.54)

which correspond, of course, to the previously cited lifetimes of TS » 0.9 x
10~10 sec and rj, « 5 x 10~8 sec. Also, as we stated before, TUL and ms can
be identified with the masses of the long-lived and the short-lived particles,
respectively. It is worth emphasizing that, because the K\ and Ks are
not each other's antiparticles (unlike the K° and K°), their lifetimes and
masses do not have to be identical.

Let us now suppose that we start with an initially pure K° beam. The
evolution of such a beam can be obtained from Eqs. (12.52) and (12.53) as
follows

|*oW) = (|Pl2 + Ma)» {lKo{t)) + lKlm

= (|Play>* LA (ms ~ | 75)* ^0) + e - i K - I 7L)*|^)|

= ^ - ^ e-i (S - f ̂ -—j--, {P\K») +,«) .
ip L (bl2 + |g | 2 ) 2

+ e-i i^L - 1 lL)t • 1 ( p |^0 ) _ g |^o)}j
(|p|2 + |g|2)2 J

= J_ [p(e-I ("»s - | 7s)* + e - i ("»L - | 7i)*) |X°)
2p

+9(e-S (ms - | 7s)t _ e - l (mL - | 7 i ) i ) |^o)]. (13.55)

Thus, the probability of finding the state \K°) in the beam at a later time
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t is given by

P(K°,t) =\(K°\K°(t))\2

= l\(e-Ti(ms-hs)t + e-s(m£-5Tfc)*)|2

= - (e~ ft + e~ h + e~2h (7s+7z)* x 2cos(m£ -ms)- )
4 V nj
1 s_ 1 t_ 1 I ( _ L + _ I _ V Am .„„ _„.

= - e ' s + - e T I - + o e s L c o s - t - * ' (12.56)

where we have defined the mass difference

Am = m i - ms- (12.57)

Similarly, we can obtain the probability of finding the state \K°) at a time
t in the original |i£T0) beam as

p ( F \ i ) = |<i^|tf°(t))|2

* -I (£ + £)* cos * ^ ] . (12.58)

We see from Eqs. (12.57) and (12.58) that, if the two states \K%)
and |JK"£) had identical masses, that is, Am = 0, the beam intensities
would then exhibit the sum of two exponential fall-offs, corresponding to
the two characteristic lifetimes. However, what is observed in addition
is an oscillatory behavior (strangeness oscillation), implying a finite mass
difference for the two particles. This mass splitting can, in fact, be measured
from the period of oscillation, and has the value

Am = mL-ms& 3.5 x 1(T12 MeV/c2. (12.59)

The mass splitting is indeed small (recall that mK0 sa 500MeV/c2), and,
when converted to an upper limit on a possible K° - K° mass difference
(mKo ~ rnK0 < 10~18mKO), implies that CPT invariance holds to high
accuracy for neutral kaons. It also suggests, as we will see in the next
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chapter, that K°-K° mixing is mainly a second-order effect in the weak
Hamiltonian, generating AS = 2 through two AS = 1 transitions. This is
the origin of the contribution from the indirect component of CP violation,
whereas the contribution from the direct K% ->• 2TT decay arises from single
AS = 1 transitions.

8 lo4 r \ -
in . fc

° ' \
O ' \
i—i . \

X \
in ' \
d \
« 103 : \
a) , \
> V,

Ul ' I
"o \

^ 102 f V^sfH^Si-

2 4 6 8 10 12 14

Proper Time x 10~10 sec

Fig. 12.4 Data for K^s -> TT+TT~ as a function of proper time, after passing a K^
beam through a carbon regenerator. The dashed curve shows the shape expected in the
absence of K° - K% interference. The solid curve shows a fit including interference,
which is used to determine <£+_. [After W. C. Carithers et al., Phys. Rev. Latt 34
1244 (1975).]

Starting off with Eq. (12.55), we can also calculate the probability of
finding a \K°L) or \K%) in the beam as a function of time. Because both
\KL) a n d \Ks) d e c a y i n t 0 7r+7r~ pairs, by studying the number of TT+TT"

(or 7r°7r°) decays as a function of proper time, we can observe quantum-
mechanical interference in the two-pion decay modes of the |X£) and \K^).
That is, if we measure the square of the sum of the amplitudes
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\{K0L->2n) + {K0s^2v)\2, (12.60)

such data can provide values of the relative phases 4>-\ and <̂>oo from the
interference term in Eq. (12.60). The result of this type of measurement is
shown in Fig. 12.4.

12.8 Semileptonic K° Decays

Studies of K° and K° produced in reactions such as given in Eq. (12.2),
indicate that when a K° decays semileptonically there is a positron in the
final state, while for the decay of the K° there is an electron

K° —>n-+e+ + ve,

lK° —> 7T+ + e~ + vr. (12.61)

Under the CP operation, all particles, including neutrinos, transform to
their physical antiparticles. Consequently, the above decays can, in princi-
ple, provide additional insight into CP violation in the kaon system.

One interesting possibility is to start off with a beam that is composed
primarily of either K® or K°, and use the fact that there is oscillation
in strangeness as a function of time, to study the variation in the num-
ber of decays involving e+ (denoted by iV+) and the number involving
e~ (denoted by N~), as given in Eqs. (12.56) and (12.58). As the K%
component decays away, the original beam will turn completely into pure
7f£. Now, if K\ is an eigenstate of CP, then it will have equal admixtures
of K° and K°, and therefore an identical number of e+ and e decays. If,
however, the K\ is not an eigenstate of CP, namely if CP is violated in
the neutral kaon system, then an asymmetry will eventually develop in the
number of e+ and e~ decays. That is, as time goes by, and oscillations have
died down (recall that TS <C T£), there will be an asymmetry observed in
7V+ and N~, which depends on the relative strengths of the K° and K°
components in K\. This strangeness asymmetry, which appears explicitly
in our definition in Eq. (12.20), is observed to be « 3.3 x 10~3 (correspond-
ing to 2 Re e), and also determines the value of | a | 2 in Eq. (12.58). This
result is shown in Fig. 12.5.
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0.06 - I Charge Asymmetry in the Decays
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Fig. 12.5 The charge asymmetry observed for K° —> 7r~e+i/ and K° —> vr+e"!' as a
function of proper time, when the starting beam is predominantly K°. The observed
interference effect is sensitive to the K^ — Kg mass difference. For large values of proper
time, the asymmetry represents a CP violating effect and determines the strangeness
imbalance in K°L. [After S. Gjesdal et al., Phys. Lett. 52B, 113 (1974).]

Problems

12.1 Ignoring CP violation, plot to « 10% accuracy the probability of
observing of K° as a function of time in a beam that is initially (t = 0)
pure K°.

12.2 Using the parameters r;+_ and </>+_ of Eq. (12.27), derive an expres-
sion for the rate of K° —> TT+TV~ decay as a function of time. Assume that
you start with a pure K° beam that develops according to Eq. (12.55).
You may ignore the overall normalization of the decay rate.

Suggested Readings
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Chapter 13

Formulation of the Standard Model

13.1 Introductory Remarks

In Chapter 9, we discussed the properties of only a few low-mass hadrons
discovered prior to the mid 1970s. As the energies of accelerators increased,
additional excited states of those particles, but with larger masses and
higher spins, as well as particles with new flavors (see Table 9.5) were
found. In fact, even by the mid 1960s, there was a whole host of par-
ticles to contend with, and it was questioned whether they could all be
regarded as fundamental constituents of matter. As we argued previously,
even the lightest baryons, namely the proton and the neutron, show indi-
rect evidence of substructure. For example, the large anomalous magnetic
moments observed for these particles, especially dramatic for the neutron,
imply a complex internal distribution of currents. From the pattern 6f the
observed spectrum of hadrons, Murray Gell-Mann and George Zweig sug-
gested independently in 1964 that all such particles could be understood as
composed of quark constituents. As shown in Table 9.5, these constituents
had rather unusual properties, and were initially regarded as calculational
tools rather than as true physical objects.

A series of measurements performed in the late 1960s at the Stanford
Linear Accelerator Center (SLAC) on electron scattering from hydrogen
and deuterium revealed that the data could be most easily understood if
protons and neutrons were composed of point-like objects that had charges
of — | e and + § e. These experiments, led by Jerome Friedman, Henry
Kendall and Richard Taylor, corresponded to a modern parallel of the orig-
inal work of the Rutherford group, where, instead of finding "point-like"
nuclei within atoms, the presence of point-like quarks or partons was de-
duced from the characteristics of inelastically scattered electrons. In the
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original experiments of the Rutherford group, nuclei were not probed very
deeply, and therefore did not break apart in collisions with a-particles.
On the other hand, the scattering of electrons at SLAC involved sufficient
momentum transfers to break apart the neutrons and protons.

It is perhaps worth expanding somewhat on the difference between elas-
tic and inelastic scattering of electrons from nucleon targets. For elastic
scattering at high energy, the form factor of Eq. (2.14), obtained from
measurements at low energies, provides an adequate description of the dif-
ferential cross section. However, inelastic scattering, where the proton does
not stick together, offers the possibility of probing for substructure within
the nucleon. In particular, the inelastic scattering of electrons at large q2

corresponds to interactions that take place at very small distances, and are
therefore sensitive to the presence of point-like constituents within the nu-
cleon. In fact, the form factor for inelastic scattering at large q2 becomes
essentially independent of q2, reflecting the presence of point-like objects
within the nucleon. This is reminiscent of the large-angle contribution to
the Rutherford scattering of low-energy a-particles on the "point-like" nu-
cleus of the atom. It was eventually clarified that the nucleon contained
charged quark-partons as well as neutral #/uora-partons, both described by
their individual characteristic momentum distributions (the parton distri-
bution functions).

By the early 1970s, it became quite apparent that hadrons were not
fundamental point-like objects. In contrast, leptons still do not exhibit any
evidence of structure, even at highest momentum transfers. It is natural
therefore to regard leptons as elementary, but to regard hadrons as com-
posed of more fundamental constituents. This line of thought - completely
phenomenological in the beginning - merged the observations from electron
scattering with those from particle spectroscopy and the quark model, and
culminated in the present Standard Model. The Standard Model incorpo-
rates all the known fundamental particles, namely, the quarks, leptons and
the gauge bosons, and it provides a theory describing three of the basic
forces of nature - the strong, weak and electromagnetic interactions.

13.2 Quarks and Leptons

As we saw earlier, each charged lepton has its own neutrino, and there are
three families (or flavors) of such leptons, namely,
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(:-)• t ) - (:-)• ™
In writing this, we have used the convention introduced previously in con-
nection with strong isospin symmetry, namely, the higher member of a
given multiplet carries a higher electric charge. The quark constituents of
hadrons also come in three families (see Problem 9.4)

0 - (!) Md C)- (m)
The charges and baryon content of the different quarks were given in Table
9.5. The baryon numbers are B = | for all the quarks, and the charges are

g[«] = g[c] = QM = + | e ,

Q[d\ = Q\a] = Q[b] = ~e. (13.3)

Although the fractional nature of their electric charges was deduced indi-
rectly from electron scattering for only the u and d quarks, phenomenolog-
ically, such charge assignments also provide a natural way for classifying
the existing hadrons as bound states of quarks. Quarks also appear to
have flavor quantum numbers, as given in Table 9.5. For example, because
we defined the strangeness of the K+ as +1, we will see shortly that the
strange quark will have to be assigned a strangeness of —1. The charm, top
and the bottom quarks, correspondingly, carry their own flavor quantum
numbers. Of course, each quark has its own antiquark, which has opposite
electric charge and other internal quantum numbers such as strangeness
and charm.

13.3 Quark Content of Mesons

The quarks, like the leptons, are point-like fermionic particles. In other
words, they have spin angular momentum of |/i. This suggests that, since
mesons have integer spin, then, if they are bound states of quarks, they
can only consist of an even number of these particles. In fact, every known
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meson can be described as a bound state of a quark and an antiquark.
Thus, for example, a n+ meson, which has spin zero and electric charge
+1, can be described as the bound state

7r+ = ud. (13.4)

It follows, therefore, that the n~ meson, which is the antiparticle of the
TT+, can be described as the bound state

TT = ud. (13.5)

The TT° meson, which is charge neutral, can, in principle, be described as a
bound state of any quark and its antiquark. However, other considerations,
such as the fact that all three 7r-mesons belong to a strong-isospin multiplet,
and should therefore have the same internal structure, lead to a description
of the 7T° meson as

7T° = 4= (uu - dd). (13.6)
v2

The strange mesons can similarly be described as bound states of a
quark and an antiquark, where one of the constituents is strange. Thus, we
can identify the following systems

K+ = us,

K~ — us,

K° = ds,

tf° = ds. (13.7)

It is quite easy to check that not only are the charge assignments right, but
even the strangeness quantum numbers work out to be correct if we assign
a strangeness quantum number S = —1 to the s-quark. Because there are
quarks with higher mass and new flavor quantum numbers, phenomenolog-
ically, on the basis of the quark model, we would also expect new kinds
of mesons. Many such mesons have already been found. For example, the
charge-neutral J/ijj meson, whose discovery in 1974 by independent groups
headed by Samuel Ting and by Burton Richter suggested first evidence for
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the existence of the charm quark, can be described as a bound state of
charmonium (named in analogy with positronium)

J/ip = cc. (13.8)

This is a "normal" meson, in the sense that the quantum numbers of charm
add up to zero, but its properties (decays) cannot be explained using only
the older u, d and s quarks. There are, of course, mesons that contain open
charm, such as

D+ = cd,

D~ = cd,

D° = cu,

W =cu. (13.9)

We can think of such mesons as the charm analogs of the K mesons, and
the properties of these mesons have by now been studied in great detail.
In analogy with the K+, the D+ meson is defined to have charm flavor of
+1, which then defines the charm quantum number for the c-quark to be
+1. There are also mesons that carry both strangeness and charm quantum
numbers, two of these are denoted as

Df = cs,

D~ = cs. (13.10)

Finally, there is also extensive evidence for hadrons in which one of the
constituents is a,bottom quark. For example, the B mesons, analogous to
the K mesons, have structure of the form

B+ = ub,

B~ = ub,

B°d = db,

B~° = db. (13.11)
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The charge-neutral states involving b and s quarks are particularly inter-
esting because, just like the K°-K° system, they exhibit CP violation in
their decays

B°. = sb,

B° = sb. (13.12)

Recent experiments at two e+e~ colliders, one at SLAC ("BaBar") and
one at the KEK accelerator at Tsukuba, Japan ("BELLE"), both referred
to as "B-factories", have studied these neutral B mesons in the clean envi-
ronment of e+e~ collisions, and have found clear evidence for large violation
of CP symmetry in decays of B° mesons produced in pairs

e + + e" —>B + ~B. (13.13)

Extensive studies of B decays are currently being pursued at both e+e~~
and at hadron colliders, to search for any discrepancies with expectations
from the Standard Model.

13.4 Quark Content of Baryons

Just as mesons can be thought of as bound states of quarks and antiquarks,
so can baryons be considered as constructed out of these constituents.
But because baryons carry half-integral spin angular momenta (they are
fermions), they can be formed from only an odd number of quarks. Prop-
erties of baryons are most consistent with being composed of only three
quarks. Thus, we can think of-the proton and the neutron as correspond-
ing to the bound states

p = uud,

n = udd. (13.14)

Similarly, the hyperons, which carry a strangeness quantum number, can
be described by
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A0 = uds,

S + = uus,

S° = uds,

XT = dds. (13.15)

Also, the cascade particles, which carry two units of strangeness, can be
described as

H° = uss,

E~ - dss. (13.16)

Since all baryons have baryon number of unity, it follows therefore that
each quark must carry a baryon number of | . Furthermore, since a meson
consists of a quark and an antiquark, and since an antiquark would have a
baryon number — | , we conclude that mesons do not carry baryon number,
which is consistent with our previous discussion.

13.5 Need for Color

Extending the quark model to all baryons, leads to a theoretical difficulty.
We have already discussed the A + + baryon, which is nonstrange, carries
two units of positive charge, and has spin angular momentum of §. Thus,
naively, we can conclude that the A + + can be described by three up quarks

A + + = uuu. (13.17)

This substructure satisfies all the known quantum numbers, and, in the
ground state (where there are no contributions from relative orbital waves),
the three up quarks can have parallel spins to provide a resultant value of
J = | . However, the wave function for this final state, representing three
identical fermions, would therefore be symmetric under the exchange of
any two quarks. This is, of course, incompatible with the Pauli principle,
which requires a wave function containing identical fermions to be totally
antisymmetric. It would appear, therefore, that the quark model cannot
describe the A + + . On the other hand, the model works so well for other
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hadrons that it would seem unwise to give it up entirely. An interesting
resolution can be attained if it is assumed that all quarks carry an additional
internal quantum number, and that the final state in Eq. (13.17) is, in fact,
antisymmetric in the space corresponding to this quantum number.

This additional degree of freedom is referred to as color, and it is believed
that each of the quarks comes in three different colors. Namely, the quark
multiplets take the form

fua\ fca\ fta\
, , , a = red, blue, green. (13.18)

\daj \saj \baj

At this point of our development, color can be regarded as merely a new
quantum number needed for phenomenological reasons for understanding
the substructure of hadrons. However, we will see shortly that, in fact,
color is to the strong interaction what charge is to the electromagnetic
force, namely the source of the respective fields.

Hadrons do not appear to carry any net color, and therefore correspond
to bound states of quarks and antiquarks of zero total color quantum num-
ber, or, simply stated, hadrons are color-neutral bound states of quarks.
Under the interchange of any two quarks, the color singlet wave function
of three quarks changes sign, while that of a quark-antiquark color singlet
does not. This hypothesis leads to an excellent description of all known
baryons as bound states of three quarks, and of mesons as bound states of
quark-antiquark pairs. In particular, it also explains the structure of the
O~ baryon which has a strangeness of —3 and spin angular momentum of
| , and corresponds to the ground state of three strange quarks

fi~ = sss. (13.19)

We see once again how the symmetry property in color space plays a crucial
role in assuring the overall antisymmetry of the fermionic wave function for
this state.

The theoretical postulate of color seems rather ad hoc, especially since
the observable hadrons do not carry a color quantum number. However, the
existence of color can be established as follows. Consider the annihilation of
an electron and positron, leading to the creation of a /U+/U~ pair or a quark-
antiquark pair. The reaction can be thought of as proceeding through the
production of an intermediate virtual photon, as shown in Fig. 13.1. The
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cross section for the production of hadrons in this process depends on the
number of ways a photon can produce a quark-antiquark pair. This must
therefore be proportional to the number of available quark colors. That is,
the ratio of production cross sections

= *<e~e+-> hadrons)
a(e-e+ -» /o« + )

is proportional to the number of quark colors. And, indeed, this quantity
is consistent with exactly three colors. Because the production of hadrons
through the mechanism in Fig 13.1 depends, in addition, on the electric
charges of the quarks, such data also confirm the fractional nature of electric
charge carried by quarks.

In closing this section, we wish to point out that electron-positron anni-
hilation at high energies is one of the cleanest ways to establish the presence
of new quark flavors. For example, when the energy of the e+e~ system ex-
ceeds the threshold for production of hadrons containing some new quark,
the ratio in Eq. (13.20) must increase and display a step at that energy.
Of course, in addition, beyond that threshold, new hadrons containing the
new flavor can be observed in the final states of such collisions. This was
found to be the case for charm and bottom quarks, where after the initial
production of the analogs of positronium (the J/ip for cc, and the T for
bb), particles with open charm and open bottom flavor were observed to be
produced at somewhat higher energies. However, this is not likely to repeat
for the top quark, which, as we have indicated before, decays too rapidly
after its production to be able to form hadrons.

c + \ • M+ (?)

Fig. 13.1 The annihilation of e+e~ through a virtual photon into /i+/ti~ or qq pair.

13.6 Quark Model for Mesons

We will now apply the symmetry requirements of the strong interaction
to qq wave functions, and thereby deduce the quantum numbers that we
would expect for the spectrum of charge-neutral meson states in a simple

(13.20)
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non-relativistic quark model. Specifically, we will establish the restrictions
on the spin (J), parity (P) and charge conjugation (C) quantum numbers
that apply to such systems. The qq wave function is a product of separate
wave functions, each of which has a unique symmetry under the exchange
of the two particles

* = V'space V'spin ^charge, (13.21)

where i/>Space denotes the space-time part of the qq wave function, i/'spin
represents the intrinsic spin, and V'charge the charge conjugation properties.
We have ignored the part of the wave function that is associated with the
color degree of freedom because we know that this will always have even
symmetry for mesons.

The symmetry of V'space under the exchange of the q and q is, as usual,
determined by the spherical harmonics and the relative orbital angular
momentum of the q and q. If we call the exchange operation X, then,
schematically, we have

*</;space ~ X Yem(6, cj>) = (-1) ' Vspace- (13.22)

Therefore, if * is a state of definite parity, the spatial part of the wave func-
tion will be either symmetric or antisymmetric under exchange, depending
on whether £ is even or odd.

The effect of the exchange operation on ipspm will depend on whether
the two quark spins are in a spin state s — 0 or s = 1. Considering the
states with sz = 0, we obtain

s = o: x[\n)-\m = -[iu)-1j.t>],

s = i: x[\n) +1m = +[\n> +1;t>]- -(13.23)

Thus, we deduce that

X^spin = (-1)*+Vspin- (13.24)

Under the action of the exchange operator, q and q become interchanged,
and consequently, we can think of this as the operation of charge conjuga-
tion in the space of Charge- To determine the charge conjugation properties
of such a state, let us impose the Pauli principle on our two-fermion system,
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namely, let us require that the overall wave function change sign under an
interchange of q and q. Note that we are using a generalized form of the
Pauli principle, which treats q and q as identical fermions corresponding to
spin up and spin down states in the space of V'charge- Thus, we require

X^ = - # . (13.25)

Now, using the results of Eqs. (13.22), (13.24) and (13.25), we can write

X * = XipspaceXipspinXipchurge

= (-l)VSpace(-l)S+Vspin^charge = - * • (13.26)

Consequently, for Eq. (13.26) to hold, we conclude that the meson state
must be an eigenstate of charge conjugation with charge parity

Vc = {-lY+s- (13.27)

Thus, for meson states that are eigenstates of charge conjugation, Eq.
(13.27) establishes a relationship between the orbital wave, the intrinsic-
spin value, and the C quantum number of the qq system.

The only relevant quantum number that is still missing in our discussion
is the parity of the allowed states. The parity of * is given by the product
of the intrinsic parities of the constituents and the effect from inversion of
spatial coordinates. As we discussed in Chapter 11, the relative intrinsic
parity of a particle and an antiparticle with spin \ is odd. Consequently,
the total parity of our state * is

F * = - ( - l ) ' t f = {-l)i+1^>,

or, the total parity quantum number is

r,P = (-1) / + 1 . (13.28)

Since the spins of mesons are obtained from the addition of the orbital and
intrinsic angular momenta of the qq pair

J = L + S, (13.29)
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we now have all the ingredients for forming an allowed spectrum of mesons.
Table 13.1 lists the possible lowest-lying states, all of which correspond to
known mesons.

Table 13.1 Lowest-lying meson states expected in the quark model.

£ s j T]p r\c Mesona

0 0 0 - + 7T°,77

0 1 1 - - p°,w,0

1 0 1 + - 6?(1235)

1 1 0 + + a0 (1980), /o (975)

1 1 1 + + o?(1260),/i(1285)

1 1 2 + + ag(1320),/2(1270)

°For other properties of these mesons, see the CRC Handbook.

13.7 Valence and Sea Quarks in Hadrons

Regarding the substructure of hadrons, we have mentioned that the nucleon
appears to contain both quarks (q) and gluons (g), and, in fact, we have
also mentioned a momentum distribution for partons. The quark model
of hadrons must be therefore be recognized as the analog of the descrip-
tion of valence electrons in an atom or the valence nucleons in a nucleus.
Just as there are more constituents in the closed shells of atoms or nuclei,
so there are also more "paired" quark-antiquark systems within hadrons.
These quarks are referred to as the sea quarks, as opposed to the valence
quarks that characterize hadronic quantum numbers. And, in fact, the
additional contribution from the color-carrying gluons (see following two
sections) corresponds to about half of the content of the nucleon.

Searches for other kinds of hadrons have been performed in order to
identify new possible states of matter that would correspond to, for exam-
ple, valence systems of qqqq, hybrid mesons composed of qqg, or glueballs
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made of gg systems. There is some evidence for the existence of such ex-
pected states, but it is as yet not compelling.

13.8 Weak Isospin and Color Symmetry

As we have seen, leptons and quarks come as doublets, or in pairs, and
quarks, in addition, carry a color quantum number. The existence of such
groupings, and the color degrees of freedom, suggest the presence of new un-
derlying symmetries for this overall structure. Prom our discussion of spin
and isospin, we can associate the doublet structure with a non-commuting
(non-Abelian) symmetry group SU(2). We will continue to refer to this
underlying symmetry group as isospin, since it is an internal symmetry.
Unlike strong isospin, which is used only to classify hadrons, the isospin in
the present case also classifies leptons. Leptons, on the other hand, interact
weakly and, therefore, this symmetry must be related to the weak inter-
action. Correspondingly, the isospin symmetry associated with the weak
interactions of quarks and leptons is referred to as weak isospin. This sym-
metry is quite distinct from that of the strong isospin symmetry that we
discussed previously. But, as with strong isospin, where the symmetry is
discernible only when the electromagnetic interaction (electric charge) can
be ignored, so is the essential character of the weak isospin symmetry also
apparent only when the electromagnetic force is "turned off". Under such
circumstances, the up and down states of Eqs. (13.1) and (13.2) become
equivalent and cannot be distinguished.

For the case of weak-isospin symmetry, we can define a weak hyper-
charge for each quark and lepton, based on a general form of the Gell-
Mann-Nishijima relation of Eq. (9.26), namely,

Q = h + -^,

or Y = 2{Q-I3), (13.30)

where Q is the charge of the particle, and I3 the projection of its weak
isospin quantum number. Thus, for the (u, e~) doublet we obtain
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Y(l/) = 2(o-^j=-l,

y(e-) = 2^-l + 0 = - l . (13.31)

Similarly, for the (it, d) quark doublet, we have

™-'(i-5) — H-
W = 2 ( - l + i ) = 2 x 1 = 1. (13.32)

The weak hypercharge quantum number for other quark and lepton dou-
blets can be obtained in the same manner. In fact, in the Standard Model,
only left-handed particles have a doublet structure. The right-handed
quarks and the right-handed charged leptons are all singlets with 7 = 0,
and there are no right-handed neutrinos. As can be seen from Eq. (13.30),
the weak hypercharge quantum number is the same for both members of
any doublet, which is required if weak hypercharge is to be regarded as a
f7(l) symmetry of the type specified in Eq (10.76).

The color symmetry of quarks is also an internal symmetry. It can be
shown that it is similar to isospin in that it involves rotations - however,
the rotations are in an internal space of three dimensions - corresponding
to the three distinct colors of the quarks. The relevant symmetry group is
known as SU(3). The interactions of quarks are assumed to be invariant
under such SU(3) rotations in color space, leading to an equivalence of
quarks of different color. (This is needed in order to have consistency with
experimental observations.) Because the color quantum number is carried
by quarks and not by leptons or photons, we expect this symmetry to be
associated only with the strong interaction.

13.9 Gauge Bosons

As we have seen, the presence of a global symmetry can be used to classify
particle states according to some quantum number (e.g., strong isospin),
while the presence of a local symmetry requires the introduction of forces.
Since weak isospin and color symmetry are associated with rather distinct
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interactions, it is interesting to ask whether the corresponding physical
forces - namely, the strong (color) and the weak forces - might arise purely
from the requirement that these symmetries be local. Years of painstak-
ing theoretical development, coupled with detailed experimental verifica-
tion, has led to the conclusion that this is indeed very likely. It is the
current understanding that the local symmetries underlying the electro-
magnetic, weak, and strong interactions have origin in the C/y(l), SUL(2),

and S{7Coior(3) symmetry groups, respectively. The group corresponding
to the weak hypercharge symmetry, f/y(l), is a local Abelian symmetry
group, while SUL(2) and SE/Coior(3) are non-Abelian groups corresponding
to the weak isospin and color symmetries.1 Prom the Gell-Mann-Nishijima
formula of Eq. (13.30), we see that electric charge is related to weak hy-
percharge and weak isospin, from which it follows that the electromagnetic
UQ(1) symmetry can be regarded as a particular combination of the weak
isospin and weak hypercharge symmetries.

In Chapter 10, we showed in an example how local invariance necessarily
leads to the introduction of gauge potentials, such as the vector potential
in electromagnetic interactions. When these potentials are quantized, they
provide the carriers of the force, otherwise known as gauge particles. Thus,
the photon is the carrier of the electromagnetic interaction, or its gauge
boson. All the gauge bosons have spin J = 1, and the number of gauge
bosons associated with any symmetry reflects the nature of that symmetry
group. There are three gauge bosons associated with the weak interactions,
and they are known as the W+, W~, and Z° bosons. (These were discov-
ered independently in 1983 by Carlo Rubbia and collaborators and Pierre
Darriulat and collaborators at the antiproton-proton collider at the CERN
Laboratory outside of Geneva, Switzerland.) For the strong interactions,
there are eight gauge bosons, and all are referred to as gluons. (These are
the same gluons we have been discussing in connection with the substruc-
ture of the nucleon.) The gluons, or the gauge bosons of color symmetry,
are electrically neutral, but carry the color quantum number. This is in
contrast to the photon, which is the carrier of the force between charged
particles, but does not itself carry electric charge. This difference can be
attributed to the Abelian nature of the UQ(1) symmetry that describes the
photon, and the non-Abelian nature of SUcoior(3) that describes gluons.

1 Because the doublet structure of quarks and leptons involves only left-handed par-
ticles, the weak isospin symmetry group is also conventionally denoted by SUi(2). This
kind of structure is essential for incorporating the properties of neutrinos and of parity
violation in weak interactions.
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Figure 13.2 displays several examples of how the different gauge bosons
can induce transitions between different fermions, and, for the case of the
color force, also between gluons.

e~\, / ' **-? ? vn c ^ s er tr

| w - lw- lw+ Lz°
« d ve e" T 7 =u " v ^ ^

Fig. 13.2 Typical interactions among leptons and quarks and between gluons, mediated
by different fundamental gauge bosons.

13.10 Dynamics of the Gauge Particles

In this section, we highlight some basic features of the. dynamics of the
gauge particles. For simplicity, we first consider Maxwell's equations, which
describe the dynamics of the photon: the gauge particle associated with
electromagnetic interactions. For the other interactions, the dynamical
equations for the corresponding gauge bosons, although similar in form,
are more complicated. However, the conclusions regarding the properties
of such particles can be garnered from the simpler case. Consider Maxwell's
equations in vacuum

V • B = 0,

V x £ = - - . (13.33)

From the structure of the second and the third equations, we see that
we can define the electric and magnetic fields in terms of the usual scalar
and vector potentials as
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B = V x A, (13.34)

where A corresponds to the vector potential introduced in Eq. (10.78), and
4> is the scalar potential. The contents of Eqs. (13.33) can be expressed
equally well in terms of these potentials. An important consequence of the
definitions in Eq. (13.34) is that the electric and the magnetic fields are
not sensitive to the following local changes or redefinitions of the gauge
potentials

1 da(r,t)

5A = Va(r,t). (13.35)

Namely, under the transformation given in Eq. (13.35), where a(f,t) is an
arbitrary scalar function of space-time coordinates, the E and B fields do
not change

6B = (V x SA) = V x (Va) = 0. (13.36)

The transformations in Eq. (13.35) are, in fact, equivalent to the gauge
transformation introduced in Eq. (10.79), where a{r) was the static, po-
sition dependent, phase of the transformation. Because the E and the
B fields do not change under the gauge transformations of Eq. (13.35),
Maxwell's equations must therefore also be invariant under such redefini-
tions of the potentials. This invariance corresponds to the UQ{1) symmetry
of electromagnetic interactions.

A direct consequence of this gauge invariance of Maxwell's equations is
that it provides solutions corresponding to transverse electromagnetic waves
that propagate at the speed of light. To see this, we can take the curl of
the third equation, and substitute for V x B using the fourth equation of
Eq. (13.33), as follows
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Expanding V x (V x E), we get

c at \c at I

and setting V • E = 0, we obtain

Consequently, Eq. (13.37) follows from Eq. (13.33) and the feature that
the electric field is transverse to the direction of.propagation of the E field.
In fact, Eq. (13.37) describes a relativistic traveling wave propagating at
the speed of light. Similarly, the other pair of Maxwell's equations yield

(f2-?S^=o- <i 3 - 3 8 )
When these fields are quantized, they correspond to massless particles (pho-
tons) that reflect the long-range nature of the Coulomb interaction.

To see that masslessness of a gauge particle is a consequence of gauge
invariance, let us write the equation for a traveling wave, but for a particle of
mass m (this is known as the Proca Equation, after Alexandre Proca, with
the corresponding equation for a spin-zero field being the Klein-Gordon
equation)

(~2 i a2 m v \ .

These equations follow from a set of Maxwell-like equations for massive
vector fields (J = 1) of the type

(13.37)

(13.39)
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9 9

V ^ = —jp"*>

V - B = O,

The fact that Eq. (13.39) is a consequence of Eq. (13.40) can be checked
as follows

- . / m2c2 \ -.2~_ I d2E m2cdl

or v V v V) v ^ ~ ?- aF + ~^" at'

where in the last step we used the definition of E in Eq. (13.34). Similarly,
the equation for the J3-field can be derived from the other pair of equations
in (13.40). Thus, the modified Maxwell's equations given in Eq. (13.40)
lead to massive traveling waves, which upon quantization yield massive
particles. Unfortunately, unlike Maxwell's equations in (13.33), the set
of equations in (13.40) depend explicitly on the gauge potentials and are
therefore no longer invariant under the gauge transformation of Eq. (13.35),
unless m = 0, which demonstrates the intimate connection between the

(13.40)

(13.41)
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masslessness of gauge particles and gauge invariance, namely that gauge
invariance holds only for massless gauge bosons.

The preceding analysis also points to the difficulty of generalizing the
gauge principle to all forces. This is because, unlike the electromagnetic
interaction, the strong and the weak forces are short ranged. If all of
the forces had their origin in the existence of local symmetries, and had
dynamics similar to those of Maxwell's equations, then it would follow that
they should all describe long-range interactions, which is, of course, not the
case. The resolution to the puzzle of how the weak and the strong forces can
be short ranged, despite their apparent origin in a gauge principle, is quite
interesting. The mechanisms responsible for the short-ranged character of
the two forces are entirely different, and we discuss first how the weak forces
can become short ranged.

13.11 Symmetry Breaking

The meaning of symmetries can be quite subtle. As we have already seen,
the invariance of the dynamical equations of a system under a set of trans-
formations defines a symmetry of the system, whose presence can be in-
ferred from the properties of its Hamiltonian. But even if a set of dynami-
cal equations is invariant under some set of transformations, the solutions
(physical states) of the system need not possess that symmetry. Thus, as a
heuristic example, let us consider magnetism, which can be thought of as
arising from the interaction of spins (s) situated on a lattice, and which,
for a ferromagnet, can be described by a Hamiltonian of the form

ff = - ^ V ? i + 1 , (13.42)
i

where K, a positive quantity, denotes the strength of coupling between spins
at nearest-neighbor sites. If all the spins are rotated by a constant angle,
their inner product is not affected, and consequently such rotations corre-
spond to a global symmetry of the Hamiltonian for a ferromagnet. On the
other hand, we can recognize from the structure of the Hamiltonian that
the ground state of the system - namely, the state with the lowest energy
value - has all spins parallel. Thus, a typical configuration of the spins
in the ground state can be represented as in Fig. 13.3. The ground state
configuration therefore picks out, at random, a preferred direction in space,
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and consequently breaks the rotational symmetry of the Hamiltonian.

t t t t t t

Fig. 13.3 Aligned spins in the ground state of a ferromagnet.

When the solution to a set of dynamical equations violates an inherent
symmetry of these equations, we say that the symmetry of the system is
broken spontaneously. In the case of the ground state of a ferromagnet, the
spins have a long-range correlation, in that they all point along one specific
direction. This kind of result appears to be a general feature of spontaneous
breaking of symmetry, that is, when a symmetry is broken spontaneously,
certain correlations become long-ranged, and can be thought to originate
from the presence of zero-mass particles in the quantum mechanical theory.
In other words, when there is spontaneous symmetry breaking, the spec-
trum of states of a relativistic quantum theory develops massless particles.

A more quantitative (albeit still heuristic) way to see the above result
is to consider the two-dimensional classical Hamiltonian:

-Imuj2(x2+y2) + ±(x2+y2)2, A > 0. (13.43)

Except for the negative rather than positive sign of the the second term, this
is the Hamiltonian for a two-dimensional classical anharmonic oscillator.
This Hamiltonian is invariant under rotations about the z axis, and such
rotations are therefore a global symmetry of this system. The lowest energy
solution, or the ground state of this system, clearly, requires the kinetic
energy to vanish, since that is a positive quantity. Consequently,-it follows
that the minima for total energy must coincide with those of the potential.
The extrema of the potential can be obtained by setting the derivatives
with respect to x and y to zero

^-=x{-muj2 + \(x2+y2))=0,

— =y(-moj2 + X(x2+y2))=0. (13.44)
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Thus, the coordinates at the extrema of the potential satisfy the relation

Zmin = 2/min = 0, (13.45)

Or Z m i n + 2 / m i n = ^ - (13.46)

V

I

. ' /

r t r 2 , . . 2 _ ma>
1 *min + ymin = - J -

Fig. 13.4 A sketch of the potential in Eq. (13.43).

Prom the form of the potential (see Fig. 13.4), it can be seen that
the point a;mjn = ymin — 0 corresponds to a local maximum, which is a
solution that is unstable under perturbation. The potential has the shape
of a symmetric Mexican sombrero, with a continuous set of (a;min, 2/min)
coordinates on the circle of Eq. (13.46) specifying the minimum value. If,
for simplicity, we choose to define the minimum by

2/min = 0,

Zmin = y ^ y - , (13.47)

then this choice has the effect of picking out a preferred direction in space,
which breaks the rotational invariance of the system. Small motion (oscil-
lations) around this minimum determines its stability, which can be inves-
tigated by expanding the potential about the coordinates in Eq. (13.47)



Standard Model I 335

V(xmin + x,y) = - - moj2 ((zmin + x)2 + j/2)

+ j ((xmin + xf + y2)2, (13.48)

which, upon expansion to second order in x and y, and on substitution for
aWn from Eq. (13.47), yields

2 4

^ (zmin +x,y) = -r— + muj2x2 + higher orders. (13.49)

Consequently, the small oscillations along the x-axis are harmonic at an
equivalent frequency of u)x — \f2 u>, whereas the frequency of oscillation
along the y-axis can be characterized by uiy = 0.

The small oscillations around the classical ground state also bring out
the essential features of correlations in the quantum mechanical ground
state, as follows. Prom Eq. (13.49), keeping terms only up to quadratic
order, we see that for small oscillations the Hamiltonian takes the form

H = £+*L + msa>-nM. (13.5<»
2m 2m 4A

Consequently, the equation of motion along the y-axis satisfies

y{t) = constant = c,

or y(t) = y(0) + ct. (13.51)

In quantum field theory, correlations are defined by the vacuum (or ground-
state) expectation value of bilinear operator products involving different
space-time points. Here, in analogy, we can write time correlations for..^(i),
as follows2

(0\y(t)y(0)\0) = (0\y(0)y(0)+cty(0)\0)

= <0|!/(0)y(0)|0>, (13.52)

where we have used the fact that the second term vanishes when we in-
tegrate it over all space. That is, if the ground state has definite parity,

2Note that in quantum theory y{t) is a coordinate operator.
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the expectation value of 2/(0) has to be zero for the integration in y. The
expectation value in Eq. (13.52) is therefore independent of time, implying
a long-time correlation. This is the simple analog to a long-distance corre-
lation found for such systems in quantum field theories, and a result that
is observed in the spin system of a ferromagnet.

We could have, of course, chosen any alternative solution to Eq. (13.46)
such as

2-min = 2/min = \ „ . • (13.53)
V ^A

In fact, for any solution of Eq. (13.46), it is easy to show that we can
define normal modes of oscillation such that the frequency of oscillation
for one of the modes is v̂ 2 w, while the frequency for the orthogonal mode
vanishes. Qualitatively, this can be discerned from the form of the potential:
irrespective of which point is chosen as the minimum, the motion along
the valley of the potential requires no expense of energy, and therefore
corresponds to the mode with zero frequency. However, motion in the
orthogonal direction requires energy, and therefore corresponds to a finite
frequency.

Our result is a general feature of all theories that have spontaneous
symmetry breaking, and, correspondingly, in such theories, the quantum
mechanical system develops states of zero energy. For relativistic quantum
mechanical systems, such states can be identified with massless particle
states. In addition, the orthogonal mode with non-vanishing frequency
corresponds to a massive particle. The massless particles, which, as we
have emphasized, arise as a consequence of the spontaneous breaking of a
global symmetry, are known as Nambu-Goldstone bosons (after Yoichiro
Nambu and Jeffrey Goldstone). We should also mention that our simple
example is to be regarded as purely illustrative of the basic features of
spontaneous symmetry breaking, in that Nambu-Goldstone bosons appear
only in relativistic field theories with two or more spatial dimensions. When
the spontaneous symmetry breaking is of a local rather than of a global
symmetry, the Nambu-Goldstone particles become transformed into the
longitudinal modes of the gauge bosons. As a consequence, the resultant
gauge bosons develop mass, or, equivalently, the corresponding "electric"
and "magnetic" fields lose their purely transverse character.

The preceding discussion suggests a mechanism whereby the gauge
bosons of the weak interaction can develop a mass and thereby give rise
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to a short-ranged force. Conventionally, this is known as the Higgs mecha-
nism (after Peter Higgs, but also discovered independently by Robert Brout
and Francois Englert, and by Gerald Guralnik, Richard Hagen and Thomas
Kibble), and for the weak interactions, the massive partner of the Nambu-
Goldstone boson (corresponding to the mode with frequency \/2 u>) is a
scalar particle referred to as the Higgs boson. The Higgs boson has yet to
be observed, and it is not clear whether, if found, it will be a fundamental
and structureless particle. Thus, in this kind of scenario, we expect the
local weak-isospin symmetry to be broken spontaneously, and we therefore
do not expect weak isospin to be a good (conserved) quantum number in
weak interactions, which agrees with observation.3 In fact, even the weak
hypercharge symmetry is spontaneously broken. The breaking in weak
isospin and weak hypercharge, however, compensate each other such that
the particular combination in Eq. (13.30), corresponding to electric-charge
symmetry, remains unbroken. Correspondingly, the photon remains mass-
less, but the weak gauge bosons, namely the W^ and Z°, become massive
objects, with mw± ~ 80.4 GeV/c2 and mza ~ 91.19 GeV/c2. They are
assumed to be elementary particles that can decay into lepton-anti-lepton
or quark-antiquark pairs, as can be surmised from Fig. 13.2, and as will be
discussed in the next chapter.

Returning to our example of the ferromagnet, we note that, although
the ground state spontaneously breaks rotational invariance because the
aligned spins pick out a preferred spatial direction, when we heat up such a
system, the thermal motion randomizes the spin orientations. Above some
critical high temperature or energy, the spins indeed become randomly ori-
ented, thereby restoring rotational invariance. This feature is also found
in quantum mechanical field theories with spontaneous symmetry break-
ing. Namely, for theories displaying spontaneous breaking of symmetry,

3This statement may confuse the intrepid reader, who by applying Eq. (13.30) to the
W and Z bosons will deduce that they can be regarded as Y = 0 objects. In fact-j-going
further, the reader would conclude that all the transitions shown in Fig. 13.2, and the
weak decays discussed in Chapter 9, conserve both weak hypercharge and weak isospin.
It would, however, be incorrect to surmise that these quantum numbers are always
conserved. We know that weak isospin must be a broken symmetry, because, for example,
otherwise the masses of the members of the weak isospin doublets would be identical. In
addition, the Higgs boson, in the context of the Standard Model, has I = \, but Higgs
bosons interact with quarks and with W and Z bosons {H —> W+ + W~, H —» Z + Z,
etc.). This, clearly, cannot happen if weak isospin is conserved. Consequently, the
breaking of weak isospin must affect the usual fermionic transitions, and violations of
weak isospin in the more common processes are expected from higher-order contributions
in the Higgs sector.
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the symmetry is indeed restored above a certain temperature or energy. If
we apply these ideas to weak interactions, we expect that, beyond some en-
ergy scale, weak-isospin symmetry is restored, and consequently the weak
gauge bosons become massless, just.like the photon. And, as was pointed
out in connection with Eq. (9.7), because the strengths of the weak and
the electromagnetic interactions become comparable at high momentum
transfers, the two forces may indeed be unified at sufficiently high energy.

13.12 Chromodynamics (QCD) and Confinement

As we have just seen, the short-range nature of the weak interaction can be
argued to arise from spontaneous breaking of local weak-isospin symmetry.
However, the short-range nature of the strong nuclear force has a completely
different origin. The dynamical theory of quarks and gluons that describes
color interactions is known as Quantum Chromodynamics (QCD), and is a
gauge theory of the non-Abelian color symmetry group SU(3). This the-
ory is very similar to Quantum Electrodynamics (QED), which describes
the electromagnetic interactions of charges with photons. As we have men-
tioned, QED is a gauge theory of phase transformations corresponding to
the commuting symmetry group UQ(1). Being a gauge theory of color sym-
metry, QCD also contains massless gauge bosons (namely gluons) that have
properties similar to photons.

There are, however, essential differences between the two theories, which
arise because of the different nature of the two symmetry groups. As we
noted previously, the photon, which is the carrier of the force between
charged particles, is itself charge neutral, and, as a result, the photon
does not interact with itself. In contrast, the gluon, which is the medi-
ator of color interactions, also carries color charge, and consequently has
self-interactions. Another consequence of the non-Abelian nature of the
color symmetry is related to how color-neutral states are formed. Con-
sider, for example, a red-colored quark. We can obtain a color-neutral
system by combining the red quark with an antired (red) antiquark. This
is very much how electric charges add, namely,

red + red = color neutral. (13.54)

However, because three quarks with distinct colors can also yield a color-
neutral baryon, there must therefore be an alternative way of obtaining a
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color-neutral combination from three colored quarks, and this must be

red + blue + green = color neutral, (13.55)

which is clearly different from the way electric charges add together.
This difference between color charge and electric charge has important

physical consequences. For example, a classical test particle carrying pos-
itive electric charge polarizes a dielectric medium by creating pairs of op-
positely charged particles (dipoles). Due to the nature of the Coulomb in-
teraction, the negatively-charged parts of the dipoles are attracted towards
the test particle, while the positively-charged parts are repelled (see Fig.
13.5). As a consequence, the charge of the test particle is shielded, and the
effective charge seen at large distance is smaller than the true charge carried
by the test particle. (Recall that the electric field in a dielectric medium is
reduced relative to that in vacuum by the value of the dielectric constant
of the medium.) In fact, the effective charge depends on the distance (or
scale) at which we probe the test particle. The magnitude of the charge
increases as we probe it at ever smaller distances, and only asymptotically
(at largest momentum transfers) do we obtain the true point charge of the
test particle. Since the distance probed is inversely proportional to the
momentum transfer, it is stated conventionally that the effective electric
charge, or the strength of the electromagnetic interaction, increases with
momentum transfer, and, as we have just argued, this is purely a conse-
quence of the screening of electric charge in a dielectric medium. Because
of the presence of quantum fluctuations, a similar effect arises for charged
particles in vacuum, the impact of which is that the fine structure constant
a = j ^ increases, albeit only slightly, with momentum transfer. This has
been confirmed in high-energy e+e" scattering, where a(^/s = mzoc2) is
found to be j^f-Q, or « 7% larger than at low energy.

* ^ i . ^ * "effective N . Effective S

+ I I . .
Distance Momentum Transfer

Fig. 13.5 Polarization of a dielectric medium around a positive electric charge, and the
effective value of the charge as a function of probing distance and of momentum transfer.



340 Nuclear and Particle Physics

In contrast, a test particle carrying color charge polarizes the medium
in two ways. First, just as in the case of QED, it can create pairs of par-
ticles with opposite color charge. But it can also create three particles of
distinct color, while still maintaining overall color neutrality. Consequently,
for the color force, the effect of color charge on a polarized medium is more
complex. A detailed analysis of QCD reveals that the color charge of a test
particle is, in fact, anti-screened. In other words, far away from the test
particle, the magnitude of the effective color charge is larger than that car-
ried by the test particle. In fact, as we probe deeper, the magnitude of this
charge decreases. Thus, the qualitative dependence of the color charge on
probing distance, or on the probing momentum transfer, is exactly opposite
of that for electromagnetic interactions (see Fig. 13.6). This implies that
the strength of the strong interactions decreases with increasing momen-
tum transfer, and vanishes asymptotically. Conventionally, this is referred
to as asymptotic freedom, and refers to the fact that, at infinite energies,
quarks behave as essentially free particles, because the effective strength of
the coupling for interactions vanishes in this limit. (Asymptotic freedom of
QCD was discovered independently by David Politzer, by David Gross and
Frank Wilczek, and by Gerard 't Hooft.) This principle has the additional
implication that, in very high energy collisions, hadrons consist of quarks
that act as essentially free and independent particles. This limit of QCD
for high-energy hadrons is known as the parton model, to which we alluded
in the beginning of this chapter, and which agrees with many aspects of
high-energy scattering.

The very fact that the strength of coupling in QCD decreases at high
energies is extremely important, because it means that the effect of color
interactions can be calculated perturbatively at small distances or large
momentum transfers. Consequently, the predictions of QCD are expected
to be particularly accurate at large momentum scales, and can be checked
in experiments at high energies. At present, all such predictions are in
excellent agreement with data (see next chapter).

At low energies, color interactions become stronger, thereby making
perturbative calculations less reliable. But this property also points to
the possibility that, as color couplings increase, quarks can form bound
states, namely the colorless hadrons. In fact, as we have indicated, quarks
alone cannot account for the properties of hadrons. As inferred from high-
energy collisions, quarks carry only about one half of the momentum of the
hadrons, the rest has to be attributed to the presence of other point-like
constituents that appear to be electrically neutral, and have spin J = 1.
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These constituents can be identified with the color gluons.

^effective ^ / ^effective \ .

Distance Momentum Transfer

Fig. 13.6 The effective value of color charge as a function of probing distance and of
momentum transfer.

There have been many attempts to understand the low-energy, non-
perturbative, behavior of QCD. The present qualitative picture can be
summarized best by a phenomenological linear potential between quarks
and antiquarks of the form

V(r) oc kr. (13.56)

This kind of picture works particularly well for describing the interactions
of the heavier quarks. Intuitively, we can think of the qq system as being
connected through a string. As a bound qq pair is forced to separate, the po-
tential between the two constituents increases. At some separation length,
it becomes energetically more favorable for the qq pair to split into two qq
pairs. Pictorially, we can describe the process as shown in Fig. 13.7. In
other words, the strong color attraction increases with separation distance
between the quarks, and therefore precludes the possibility of observing an
isolated quark.4 This effect, known as confinement, is, of course, consistent
with observation. That is, all observed particles appear to be color neutral,
and there has never been any evidence for the production of an isolated
quark or gluon with color charge. When additional quarks are produced
in high-energy collisions, they are always found in states whose total color
adds up to zero (i.e., color neutral). As these quarks leave the region of
their production, they dress themselves (become converted) into hadrons,
and their presence can be inferred from a jet of particles that is formed from
their initial energy. Similarly, gluons emitted in hadronic interactions also
become dressed into hadrons and produce jets of particles as they leave the
point of collision. While we presently believe in the confinement of quarks

4The splitting of a qq pairs is similar to what happens when a bar magnet is cut into
two. The net result is two separate bar magnets rather than a north and a south pole.
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and gluons, a detailed proof of this requirement within the context of QCD
is still lacking.

q q q q 1 1 1 1

Fig. 13.7 Creation of a new qq pair from the vacuum when the separation between the
original qq pair is increased.

In the context of the Standard Model, the strong nuclear force between
hadrons can be thought of as a residual-color Van der Waals force, analo-
gous to the Van der Waals force that describes the residual electromagnetic
interactions of charge-neutral molecules. Namely, just as the Van der Waals
force reflects the presence of charged atomic constituents that can interact
through the Coulomb force, the strong nuclear force reflects the presence of
far more strongly interacting color objects that are present within hadrons.
The Van der Waals force falls off far more rapidly with distance than the
Coulomb force, which suggests that a similar effect could be expected for
the case of color, which would explain the origin of the short-range nature
of the strong force between hadrons, both within as well as outside of nuclei.

13.13 Quark-Gluon Plasma

We have argued that quarks are confined within hadrons. However, in-
creasing the temperature of our hadronic system, and thereby the random
thermal motion of its constituents, could eventually lead to a complete
disintegration of the hadron into free quarks and gluons, defining a new
transformed kind of matter known as the quark-gluon plasma phase. This
phase is quite similar to the plasma state of charged particles that exists
inside the sun and the stars, where electrons and protons from ionized
hydrogen atoms move about freely. The best theoretical evidence that a
transition between the confined and the deconfined phase of quarks takes
place as the temperature increases, comes from extensive computer simu-
lations based on QCD. This kind of a quark-gluon plasma phase of matter
was likely to have existed right after the Big Bang, when the temperature in
the universe was very high. The phase is characterized by a large number of
rapidly moving charged quarks that scatter and therefore radiate photons,
leading to enhanced direct single-photon production. In addition, because
of the high temperatures (or high energies), the production of quarks would
not be limited to just low-mass flavors, but would also increase the produc-
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tion of quarks with more exotic flavors, such as strangeness and charm.
Experimental verification of such signals in high-energy interactions is an
interesting area of research, and is being pursued in heavy-ion collisions at
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labo-
ratory. These collider experiments study interactions of large-A nuclei, each
with energies of several hundred GeV per nucleon. The energy and matter
densities in these experiments are expected to be large enough to observe
the transformation of normal nuclei into free quark-gluon systems. The at-
tempts to test such ideas are quite challenging. The expected properties of
the quark-gluon plasma phase are not as yet completely formulated, and,
furthermore, the experimental signatures for the presence of the quark-
gluon plasma are also not entirely clear. In spite of this uncertainty, or
perhaps because of it, it is exceedingly interesting to learn whether such
states of matter can be produced in the laboratory.

Problems

13.1 Prove that Eq. (13.49) follows from Eq. (13.48).

13.2 According to the quark model, wave functions of baryons are antisym-
metric in color. Construct a wave function for the A + + that is explicitly
antisymmetric under the exchange of any two of its quark constituents in
color space.
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Chapter 14

Standard Model and Confrontation
with Data

14.1 Introductory Remarks

We have mentioned several times that the Standard Model appears to be
in complete agreement with all measurements. In fact, with the exception
of the surprising result that neutrinos possess finite mass, there have been
no confirmed deviations between data and predictions of the Model. In this
chapter, we provide comparisons with data, and expand somewhat on the
phenomenological implications of the Standard Model.

14.2 Comparisons with Data

As example of the kind of agreement that has been observed between ex-
pectations from QCD and collisions studied at high energies, we show in
Figs. 14.1 and 14.2, respectively, the data and theoretical predictions for
production of W and Z bosons and for production of particle jets (quarks
and gluons that form, or evolve into, color-neutral particles) in antiproton-
proton collisions. The differential production cross section as a function of
any variable, e.g., transverse momentum PT, can be written schematically
in QCD, in terms of the elastic scattering of a parton a from hadron A and
a parton 6 from hadron B, as

- — = / dxb-—fA{xa,n) fB(xb,fi)dxa, (14-1)
dpr J dpr

where the term j 3 - refers to the point cross section for elastic scattering
of the two partons, and can be calculated from fundamental principles
of quantized field theory, X{ is the fraction of the momentum of hadron
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I carried by parton i, fj(xi,fj.) represents the momentum distribution of
parton i within hadron I at the scale q2 = fi2. That is, just as for the
case of a in QED, and the strength of the color interaction in QCD, the
parton distribution function f(xi,/j.) also depends on ("runs with") the
momentum scale in any collision. Such dependence of parameters on q2

is usually referred to as the scaling violation of QCD. In fact, given some
f(xi,no) at q2 = fj,Q, it is possible to calculate within QCD the resulting
function f(xi,fi) at some other q2 = /j2, using what are known as the
DGLAP evolution equations (after Yuri Dokshitzer, Vladimir Gribov, Lev
Lipatov, Guido Altarelli and Giorgio Parisi). The integrations in Eq. (14.1)
have to be performed over all values of the Zj.

"Wand Z Production Cross Sections^--'

: yJ%^ A UA1
i /y^ T • UA2
. Y "CDF

1
VI(TeV)

Fig. 14.1 The cross section for W and Z production in pp collisions compared to the-
oretical predictions based on the Standard Model. (From A. G. Clark, Techniques and
Concepts of High Energy VI, Plenum Press, T. Ferbel, ed. (1991).)

The primary uncertainty in the theory (displayed as the allowed regions
between the two sets of smooth curves in Fig. 14.1) stems from the inability
to predict the content and the momentum distributions of constituents that
are bound within hadrons. This is an issue related to confinement and
interactions of quarks and gluons at low momentum transfer, which cannot
be calculated reliably in perturbation theory. However, as implied in the
beginning of Chapter 13, parton distribution functions f(xi,fio) at some
known scale q2 = /UQ, can be extracted from other reactions (e.g., from
electron scattering off protons), and then applied to predict results for
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Fig. 14.2 Cross section and prediction from QCD for production of particle jets at large
momentum transfers in pp collisions at sfs ~ 1.8 TeV. (From A. G. Clark, loc cit.)

collisions of any partons located within separate hadrons. Thus, for the
case of W production, the main contribution to the yield arises from the
interaction of 12 (or d) quarks in the antiproton that fuse with d (or u)
quarks within the proton to produce a W~ (or W+), and possible remnant
jets of particles. The uncertainty on the gluon content of hadrons is larger
than for quarks, because photons, W and Z bosons can interact directly
with quarks, but only indirectly (at higher order in perturbation theory)
with gluons, as can be inferred from Fig. 14.3.

For the case of jet production in hadron-hadron collisions, any parton
in one of the interacting hadrons can scatter elastically off any parton in
the other hadron, and then both partons can evolve into jets. Clearly, the
scattered partons can appear at large angles relative to the collision axis,
while the other (unscattered) constituents tend to evolve into color-neutral
states at small angles along the collision axis. In fact, since momentum must
be conserved in the direction transverse to the collision axis, we expect the
scattered-parton jets to be emitted back-to-back. Two typical events of this
kind are shown in Fig. 14.4. This kind of display is referred to as a lego
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plot. The height of any entry is proportional to the energy observed in that
region of coordinates. The axes correspond to the azimuth (<j>) around the
collision axis, and the polar angle 9 relative to the collision axis. The jets
are observed at 180° relative to each other in azimuth, reflecting collisions
between constituents contained within the hadrons.

Fig. 14.3 Interactions of v^ and e with constituents of the nucleon through weak
"charged currents" involving W exchange, and through electroweak "neutral currents"
involving Z° and 7 exchange. To be sensed by the exchanged object, gluons must first
dissociate into virtual qq pairs. The quark struck by the virtual boson evolves into a jet
of normal (colorless) particles. For this to happen, more color ("soft gluons") must be
exchanged between the interacting colored parton and the colored parton-remnants of
the nucleon to assure that the total color in the final physical state remains the same
as in the initial state. Nevertheless, the production of jets reflects the parton content of
the nucleon.

14.3 Cabibbo Angle and the "GIM" Mechanism

We showed in Fig. 13.2 how W and Z bosons can produce transitions
between members of the same weak isospin doublet. However, if W and
Z bosons could not also provide transitions among particles belonging to
different multiplets, it would clearly present a great puzzle concerning the
origin of the |A£| = 1 strangeness-changing weak decays. The solution to
this issue comes from our previous observation that strangeness is a quan-
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Fig. 14.4 Energy flowing in the direction transverse to the collision axis for production
of particle jets in pp collisions at y/s ~ 600 GeV. (From L. DiLella, Techniques and
Concepts of High Energy Physics IV, Plenum Press, T. Ferbel, ed. (1987).)

turn number that is not conserved in weak interactions. Consequently, the
eigenstates of the weak Hamiltonian are different from those of the strong
Hamiltonian, and, in particular, do not have unique strangeness. In analogy
with our analysis of the K°-K° system, we can try to redefine the quark
doublet eigenstates of the weak Hamiltonian as mixed states of the doublets
of Eq. (13.2). Before the discovery of the charm quark, and based on the
experimental results available at that time, Nicola Cabibbo showed that all
data were consistent with altering the doublet corresponding to the first
family of quarks as follows

(:) - (;) • <-'

where the newly denned state d! is a mixture of d and s quarks

d! = cos6c d + sin6c s. (14.3)

This kind of state clearly does not have a unique strangeness quantum
number, and, if the weak gauge bosons can give rise to transitions within
the u, d! multiplet, then they can, in fact, induce strangeness-changing
processes. The angle 9C parameterizing the mixing between the d and s
quarks in Eq. (14.3) is commonly called the Cabibbo angle, and its value
determines the relative rates for processes such as
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W+ —> us,

W+ —>• ud,

Z° —> uu,

Z° —•>• ds. (14.4)

The Cabibbo angle can be determined experimentally through a comparison
of AS = 0 and AS = 1 transitions, and has the value sin 6C = 0.23. Figure
14.5 shows how the decay of a K° into a ir+ and a vr~ can now be described
in the Standard Model.

S T^ U

W+^-i +

i ^ j ^ r
d u J

Fig. 14.5 Strangeness-changing transitions in the Standard Model. A dd pair produced
from the vacuum (in the middle graph) combines with the other quarks to produce a TT+
and a 7r~ for the final state of the K° decay.
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While the Cabibbo hypothesis accommodated most of the W^ induced
decays, certain strangeness-changing processes, particularly involving lep-
tonic decay modes of the K° remained puzzling. For example

\T{K+ -> /x+iv) RS 0.5 x 108 sec"1,

\T{K°L ->• H+IJ,-) » 0.14 sec"1, (14.5)

leading to

The smallness of this ratio could not be explained within the framework
of the Cabibbo analysis. In fact, further investigation of this problem led
Sheldon Glashow, John Illiopoulos and Luciano Maiani to propose the ex-
istence of a fourth quark (charm quark) in a doublet structure of the type
given in Eq. (14.2), namely,

t ) • <147)
with

s' = — sin 9C d + cos 0c s.

This, indeed, leads to a resolution of all the leptonic decay modes of the
strange mesons, and this proposal is commonly referred to as the "GIM
mechanism".

The ideas of Cabibbo and GIM can be summarized by saying that for
the two doublets

C O *•* ( » • ) •
the weak eigenstates are related to the eigenstates of the strong Hamiltonian
through the following unitary matrix

(14.6)
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/d'\ /cos0c sin0c\ /d\
= • (14-8)

\s' J \-smOc cosOcJ \sj

14.4 CKM Matrix

With the subsequent discovery of the b and t quarks, the Standard Model
is now characterized by three doublets of quarks of the form

( " ) [ ) and ( ] . (14.9)
\dfj \s'J \b'J

The relation between the three states d!, s' and b' and the eigenstates d, s,
and b is somewhat more complicated and involves a 3 x 3 matrix, which is
known as the Cabibbo-Kobayashi-Maskawa unitary matrix

fd'\ /Vud Vus Vub\ fd\

s' = Vcd Vcs Vcb\ s \ . (14.10)

Kb1) \Vtd Vu VtJ \b)

The elements of this matrix reflect the couplings of the W boson to all
the possible quark pairs, e.g., W —>• tb, cb, cs, etc. Clearly, the dominant
transitions in W decay are to members of the same doublet, and therefore,
to first order, the diagonal elements of the matrix are expected to be large
(close to unity) and the off-diagonal elements small. In writing down the
original 3 x 3 matrix (prior to the discovery of the b and t quarks!), Makoto
Kobayashi and Toshihide Maskawa noted that this kind of matrix repre-
sentation introduces at least one complex phase into the Standard Model,
which can then encompass the phenomenon of CP violation in transitions
of neutral mesons, as discussed in Chapter 12.

With the generalization of Eq. (14.10), in which all quarks of same
electric charge can mix, and the quark eigenstates of the weak Hamiltonian
b', s', and d' correspond to specific superpositions of the d, s, and b quarks,
the Standard Model can accommodate all measured particle decays and
transitions. For example, the CP violating decays of the K° mesons can be
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calculated from the kind of processes indicated in Fig. 14.6 and Fig. 14.7,
for the indirect and direct terms in the CP violating processes, respectively.

s u'c>t d

*"—£ £ *—
K° W+l | W + K3

• — ^ — • — ^ — • —
d «.c,t s

S W+ A
• = - • K A M A T - * 2

— • — L A A A A J — •
d w+ s

Fig. 14.6 The AS = 2 transition "box diagrams" via two consecutive weak processes
that are responsible for K°-K° mixing and indirect CP violation in K° decay.

S W + 1

—•_/wvy>-^ n+

K° <> (

» 2 * n~
d d

Fig. 14.7 The AS = 1 transition, or "penguin diagram", that is responsible for direct
CP violation in K° decay.

14.5 Higgs Boson and sin2 9w

We will remark only briefly on the connection between electrodynamics
and the weak interaction. Sheldon Glashow and Abdus Salam and Steven
Weinberg, independently formulated the Electroweak Model, which is one
of the cornerstones of the Standard Model. Electroweak theory relates the
strengths of the electromagnetic and weak interactions of the fundamental
particles through the weak mixing angle, 6w, and through the masses of
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the gauge bosons. In particular, we can write the following relations for the
parameters

sin26W = - ^ - \ = \-T^L = 0.23, (14.11)

where a is the fine structure "constant" and Gp is the weak (Fermi) cou-
pling constant. The value of 6w has been measured in different scattering
experiments, and the masses of the W and Z gauge bosons have been mea-
sured in pp and in e+e~ collisions. Except for one or two possibly serious,
but not considered firm discrepancies, all current experimental data are
consistent with Relation (14.11) and with all the other predictions of the
electroweak theory of the Standard Model.

Finally, a word about the yet to be observed Higgs boson. In the Stan-
dard Model, the Higgs, through its interactions, is responsible for generating
masses of the gauge bosons. It also provides a mechanism for generating
masses of all fundamental fermions because of their coupling to the Higgs.
In fact, the strength of the Hqq coupling (e.g., H —> qq, either through a
virtual or physical transition) reflects the mass of the quark. The stronger
the coupling strength, the larger is the mass of q. The J — 0 Higgs field
permeates the entire universe, and the observed masses of all fundamen-
tal particles are characterized by their interactions with the Higgs field in
vacuum.

At present, the best direct limit on the mass of the Higgs boson is from
the experiments performed at LEP, which indicate that mHo > 114 GeV/c2.
Because of the fact that the Higgs interacts with and gives mass to all
the fundamental particles, the internal consistency of the Standard Model,
through radiative corrections (virtual contributions of the type where a
Higgs dissociates into virtual ti pairs, which then recombine to reform the
Higgs, or where a W breaks up into a virtual system of WH°, which again
recombine), also provides limits and a connection between mt, mw a n d
nifto. The latest correlation is exhibited in Fig. 14.8, and suggests that,
in the context of the Standard Model, the constraints from the measured
values of mt and mw, as well as from other electroweak measurements
(not direct measurements of mt and mw), require the Higgs mass to be
below 200 GeV/c2. The experiments currently underway at the Tevatron
at Fermilab, and being planned at the LHC at CERN, are bound to provide
a definitive answer to the existence of this universe-permeating Higgs field.
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Fig. 14.8 The correlation between the known masses of the W boson and the top quark,
and the unknown mass of the Higgs boson. The area within the dotted ellipse corresponds
to the directly measured values of the masses of the top quark (mt) and of the W
boson (mw), obtained at the Tevatron and at theCERN LEP e+e~ collider. The best
values are given by the center of the ellipse, with the boundary indicating one standard-
deviation limits on the essentially independent measurements. The continuous contour
corresponds to the same result, but now based on the indirect extraction of mt and mw
from other electroweak measurements at the LEP and SLD (SLAC) e+e~ experiments.
Here the masses are correlated, but independent of the direct measurements. The lines
correspond to values of the Higgs mass (mn) as a function of mt and mw in the Standard
Model. The overlap of the lines with the two contours testify to the internal consistency
of the Standard Model, and point to the small expected value of raj/. (Based on LEP
Electroweak Working Group, http://lepewwg.web.cern.ch.)

Problems

14.1 The mass of the top quark is larger than that of the W boson. It
is consequently not surprising that the top quark decays into a W and a
b quark {t -> W + b). The expected width (]?) of the top quark in the
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Standard Model is « 1.5 GeV. (a) What can you say about the lifetime
of the top quark? (b) If QCD color interactions can be characterized by
the fly-by time of two hadrons (time needed to exchange gluons), what is
the ratio of lifetime to interaction time for top quarks? (c) Because of the
rapid fall-off in parton distributions f(x,n) with increasing x, the peak of
the production cross section for ti events in pp collisions occurs essentially
at threshold. What is the typical momentum of the b quark in pp collisions
that yield ti events, (d) What are the typical x values of the colliding
partons that can produce ti events at the Tevatron (yfs = 2 TeV)? What
about at the LHC (s/s = 14 TeV)? (Hint: s = xa x\, s, where s is the value
of the square of the energy in the rest frame of the partonic collision of a
and b. Can you prove this?)

14.2 In discussing weak decays proceeding through W or Z bosons, we
have focused primarily on the fundamental transitions among quarks and
leptons. However, such decays often involve hadrons that contain spectator
quarks, in addition to the partons that participate in the weak interaction
(see Fig. 14.3). For example, Fig. 14.5 shows a diagram for the decay of
a K° into a TT+TT" pair. Using similar quark-line diagrams, draw processes
for the following decays: (a) K+ -t ir+ + TT°, (b) n -> p + e~ + ve, (c)
7T+ -> fi+ + Vy., (d) K° ->• 7i- + e+ + ve.

14.3 Draw quark-line diagrams for the following reactions: (a) ir~ + p -»
A0 + K°, (b) 7T+ + p -> £+ + K+, (c) 7T+ + n -> TT° + p, (d) p + p ->•
A° + K+ + 7T+, (e) p + p->K+ + K~.

14.4 Draw quark-line diagrams for the following weak interactions, and
include any required intermediate W or Z bosons: (a) ve + n ->• ve + n, (b)
VV- + P ->• /"+ + n, (c) K~ + p -¥ A0 + 7T0.

14.5 One of the main reasons for the introduction of the GIM mechanism
was the need to suppress flavor-changing neutral currents, in order to reduce
the rate for K\ —>• n+n~ to its observed small value, (a) Draw the quark-
line diagram for this transition involving W bosons (via a higher-order box
diagram), and the possible contribution from Z° exchange, (b) Show that
the Z° contribution vanishes once the weak states of Eq. (14.8) are used
to calculate that contribution. (Hint: Contrast the transition elements
(d'd'\Z°), (s's'\Z°), and (d's'\Z°) by considering {d'd'), (s's1), and (d's1).)

14.6 Consider the scattering of an electron from a proton (of mass mp),
as shown in Fig. 14.3. Let W be the invariant mass of the entire recoil-
ing hadronic system, and Q and P (except for multiplicative factors of c)



Standard Model II 357

the four-momenta of the exchanged vector boson and target proton, re-
spectively, and E, E' and 9 the incident energy, the scattered energy and
scattering angle of the electron in the laboratory (i.e., the rest frame of the
proton). Defining Q2 as (k' — k)2c2 — v2, where k' and k are the three-
momenta of the scattered and incident electron, and v is the difference in
electron energy, show that for very high energies, (a) Q2 = AEE' sin2 | ,
(b) W2 = m2p + ^ - S£. (c)What is the smallest value that W can
assume? What type of scattering does that correspond to? (d) What is the
largest Q2 possible? What does that correspond to? What is the mass of
the vector boson in this case? (e) What is the largest possible value of W?

14.7 Now consider the scattering of Problem 14.6 in a frame in which the
proton has an exceedingly large three-momentum, so that its mass mp can
be ignored, as can the transverse momenta of all its partons. Now, suppose
that the collision involves a parton carrying a fraction x of the proton's
four-momentum, and that it absorbs the exchanged "four-momentum" Q.
(a) First, show that in the laboratory frame Q-P = mpvc2. (b) Now, prove
that, for very large Q2 (corresponding to deep-inelastic scattering), and in
particular when Q2 > x2m2vc^, x — 2m vc* • (c) ^ o t ^ a s a i u n c t i ° n 0 I

2 ^ 1 for W = mp, W = y/Emp and W = 3mp. (d) Indicate the regions
in (c) that correspond to x < 1, x < 0.5 and x < 0.1. (e) Identify the
approximate location of the point corresponding to E = 10 GeV, E' = 1
GeV and 9 = | , and the point corresponding to E = 10 GeV, E' = 4 GeV
and 9 ~ j , on the plot in part (c).
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Chapter 15

Beyond the Standard Model

15.1 Introductory Remarks

The Standard Model of fundamental strong, weak and electromagnetic in-
teractions is a gauge theory involving quarks and leptons based on the
symmetry group 5f/coior(3) x SUL{2) X Uy(l)- As we have argued, the
weak isospin and hypercharge symmetries, or the symmetry groups SUL{2)

and UY(1), are spontaneously broken. As a result, the weak gauge bosons
become massive, and the symmetry at low energy reduces to the gauge
symmetry of electromagnetism and of color symmetry, namely SUcoior(3)
x UQ(1). Ignoring the finer technical points, this is essentially the spirit
of the Standard Model. The Standard Model leads to many interesting
perturbative predictions, and all of them appear to hold true. In fact, the
agreement between experiment and theory is quite remarkable (see previous
chapter). Thus, it seems reasonable to conclude that the Standard Model
leads to a correct description of fundamental interactions at low energies.
However, the Standard Model has many parameters, e.g., masses of the lep-
tons, quarks, gauge bosons, and of the Higgs, various coupling strengths,
and the elements of the CKM matrix, with all values seemingly perplexing
and ad hoc. Furthermore, the Standard Model does not incorporate gravity,
which is another fundamental force that might be expected to unify with
the other fundamental forces at some large mass scale.

The recent discovery that neutrinos carry mass implies, in analogy with
the situation for quarks and neutral mesons, that neutrinos too can mix.
In fact, the interesting possibility of neutrino mixing was suggested long
before it was required by any available data (by Ziro Maki, Masami Naka-
gawa, Shoichi Sakata and Bruno Pontecorvo). Following the observation of
neutrino oscillations at the Super-Kamiokande experiment, which was led
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by Yoji Totsuka at the Kamioka Laboratory in Japan, a new series of ex-
periments is about to be launched to measure the elements of the "MNKP"
lepton-flavor mixing matrix

fv'e\ /Ue,e t/e'p Ue,T\ /Ve\

v'ti - U»'e U»'» UH'T "n , (15.1)

\v'J \UT,e UT^ UT,T) \vTj

where the primed states refer to the mixed eigenstates of the weak Hamilto-
nian and the unprimed states are the states of definite lepton-flavor quan-
tum number. The number of independent elements and the number of
possible phases depends on the nature of the neutrino, namely whether it
is a Dirac (with v and v distinct) or a Majorana particle (with v and v
indistinguishable).

Although a finite neutrino mass does not call for the abandonment of
the Standard Model, there are certain other puzzles, particularly in the
context of the unification of all forces, that point to its inadequacy. One
such puzzle, known as the hierarchy problem, can be sketched as follows. In
field theory, the mass of any particle is determined from a sum over all of its
interactions leading to its self-energy. For the Higgs boson, in particular,
its interactions in the vacuum, give rise to radiative corrections to its mass
(from virtual loops of the kind mentioned in the previous chapter). These
corrections can be written in the form

Sm2H Kg2{K2+m%w), (15.2)

where A corresponds to a cutoff in energy, beyond which effects from any
new forces become important (e.g., from quantum gravity), rriEW is the
mass of any object contributing to a virtual loop relevant to the electroweak
scale of < TeV, and g refers to the coupling of that object to the Higgs bo-
son. Because the scale at which quantum gravity, the only other known
force, becomes dominant is expected to be of the order of A « 1019 GeV
(see later), the corrections to mjj would naturally be of that same order, as
would therefore be the value of the mass of the Higgs. But we just argued
in Chapter 14 that experiments exclude the possibility for m# outside of
the range of 114-200 GeV/c2. This implies that there must exist new in-
teractions at a scale well below that of quantum gravity (i.e., of order 1
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TeV) that would lend stability to the mass of the Higgs, and not require a
fortuitous and highly unlikely cancellation to 16 decimal places in the sum
over all contributions of the kind given in Eq. (15.2).

Hence, although aside from the issue of neutrino mass, there does not
seem to be great reason to look beyond the Standard Model, there are many
theoretical motivations to do just that! In this chapter, we will describe
various attempts to look beyond the Standard Model.

15.2 Grand Unification

Examining the properties of the quark and lepton multiplets (families), it
appears that the electric charges of all fundamental particles can be re-
garded as quantized in units of | e. We recall that angular momentum
is quantized in units of \h. However, this quantization arises because the
algebra of angular momentum is non-commutative. In other words, it is a
general feature of non-commutative (non Abelian) symmetry groups that
they give rise to conserved charges that have discrete, quantized, values.
In contrast, the symmetry that gives rise to a conserved electric charge
corresponds to a phase transformation that is described by the commuting
UQ(1) symmetry group. This symmetry group does not require the corre-
sponding conserved charge to take on quantized values, and, consequently,
within the framework of the Standard Model, the quantization of electric
charge must be regarded as a great mystery. However, if for some reason,
all these symmetries - namely, the Uy(l), SUL(2) and SUco\or(3) groups
- were part of a larger non-commutative symmetry group, then that could
explain the origin of quantization of electric charge.

In addition, a certain phenomenological symmetry seems to exist be-
tween quarks and leptons, in that for every lepton family, there is a family
of quarks with three different colors:

(15.3)
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where a labels the color degree of freedom.
A quark-lepton symmetry might be expected if quarks and leptons cor-

responded simply to different states of the same particle. For example, if
each quark had four colors, with the fourth color reflecting the lepton quan-
tum number, then this would lead naturally to an equal number of lepton
and quark families.

The idea that quarks and leptons are different manifestations of one
object, raises the very interesting possibility that the interactions of lep-
tons and quarks, which appear to be rather different - leptons interacting
weakly through the Z° and W^, and quarks interacting strongly through
the color gluons - might also be related. That is, it would only make sense
for these particles to be grouped together if the strong and the weak forces
corresponded to different manifestations of a single fundamental force. This
kind of simplification, namely that the three fundamental forces are differ-
ent manifestations of one truly basic force, would lead to an elegance of
the fundamental laws of nature that would be esthetically pleasing. This is
the concept known as grand unification, and it can be examined in theories
reaching beyond the Standard Model.

Because the strengths of coupling for the three forces are rather differ-
ent, it is therefore not a priori clear in what way the separate forces can be
regarded as manifestations of a single force. But our previous observations
concerning the dependence of coupling constants on momentum scale (or
distance) now become telling. We have argued that electric charge grows
with momentum transfer, whereas the effective charge associated with non-
Abelian symmetries, such as color, decreases with momentum. It is there-
fore conceivable that, at some large energy, the three coupling strengths
could become equal, and the three kinds of interactions would therefore
not be distinguishable, and could be described by a single force that would
operate above the unifying energy scale. At low energies, that single force
would simply separate into three of the four known fundamental forces of
nature.

To understand how such a separation of forces can be achieved, we
must recognize that, in order to incorporate quarks and leptons into a single
family, we must also enlarge the overall symmetry group. (This prescription
would also lead more naturally to the quantization of electric charge.) There
are several symmetry groups, with different degrees of complexity, that can
be used to implement the ideas of grand unification. Simplest is a symmetry
group known as SU(5), which is analogous to isospin, and corresponds
to a rotation in an internal space of five dimensions. In this particular
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model (suggested by Howard Georgi and Sheldon Glashow), it is assumed
that the symmetry of the fundamental interactions beyond the unifying
energy scale corresponds to a local symmetry based on this larger SU(5)
group. Below the unification scale, however, the local symmetry breaks
down spontaneously to the low-energy symmetry group of the Standard
Model - namely 5i7Coior(3) x SUL(2) X C/y (1) - which subsequently breaks
down spontaneously to an even lower symmetry group of SUco\or(3) x UQ(1)
at the electroweak energy scale. This kind of mechanism can explain how
a single force at very high energy can manifest itself as three separate
forces at low energy. Extrapolating the couplings observed for the three
interactions at low energy (from the electroweak scale) to higher energy, a
detailed analysis and some theoretical prejudice suggest that the unification
scale is close to 1015 GeV.

With SU(5) as the symmetry group, each family of quarks and leptons
can be incorporated consistently into a five-dimensional multiplet, and a
ten-dimensional antisymmetric matrix of states. The five-dimensional mul-
tiplet consists of right-handed particles, whereas the ten-dimensional mul-
tiplet contains only left handed particles. Explicitly, these multiplets take
the form

/ d r e d \ /0 wsreen S b l u e u r e d dred \

dblue 0 ured u blue dblue

dgreen , 0 u sreen dgreen . (15.4)

e+ 0 e+

U JR V o JL

The particle representations for other unifying groups are more complex,
but, generically, we can represent a multiplet of a unifying group-as

( ! ) • ( 1 5 5 )

with each multiplet necessarily containing both quarks and leptons.
As we discussed previously, the gauge bosons of the unifying group

provide transitions among members of a given multiplet. Thus, from the
structure of the multiplet in Eq. (15.5), we conclude that, in grand unified

(15.5)
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theories, there will be transitions between quarks and leptons caused by-
some new massive gauge bosons (when the symmetry is broken). Of course,
this implies that baryon and lepton numbers need not be conserved in such
theories, and, as a consequence, the proton will decay. For the case of
5(7(5), the process shown in Fig. 15.1 corresponds to a proton decaying
into a 7T° and e+

p—>7r° + e+. (15.6)

"u : „ 1
J u ^ -uj

d 2 e+

Fig. 15.1 Mechanism for proton decay involving the X gauge boson of SU(5).

We considered this decay in Chapter 9 in the context of baryon-number
conservation. The lifetime of the proton can, in fact, be calculated in grand
unified models. From the observed stability of the universe, we would,
of course, expect the proton to be quite long lived. In fact, geochemical
experiments indicate that the lifetime of the proton rp is

TP > 1.6 x 1025 years (independent of mode). (15-7)

The limits are far stronger (> 1031 — 1034 years) for specific decay modes
of the kind given in Eq. (15.6), and disagree with the shorter lifetimes ex-
pected from simplest grand unified theory (GUT) based on the symmetry
group SU(5), and therefore rule out this possibility. There are, however,
other models of grand unification (with more parameters and greater flex-
ibility) that are still consistent with all current limits on rp.

The idea of grand unification has also had considerable influence on
cosmology - the study of the evolution of the universe. This application
rests on the fact that when a symmetry is spontaneously broken, the system
undergoes a phase transition. A way to see this is to consider again the
example of the ferromagnet. At very high temperatures, thermal motion
orients the spins in a random fashion, and therefore prevents the establish-
ment of any order. Rotations are consequently a symmetry of the system.
As the temperature drops, thermal motion diminishes, leading to a ground
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state where spins are aligned, and the inherent rotational symmetry is there-
fore no longer apparent. Consequently, at a lower temperature, the system
makes a transition to an ordered phase.

The above concepts can be applied to the evolution of our universe. In
particular, immediately after the Big Bang, the temperature in the uni-
verse must have been exceedingly high, and, assuming the validity of grand
unification, we expect that the larger symmetry of grand unified theories
reflected the symmetry of the universe at that time. As the universe ex-
panded and cooled to below the temperature corresponding to the unifi-
cation scale, the symmetry of the system reduced to that of the Standard
Model. In other words, there was a phase transition. Such transitions are
normally exothermic, and energy is consequently released in the process.
Recalling that energy is the source of the gravitational force, we would infer
that such a phase transition would have influenced the dynamical evolution
of the universe. In fact, using concepts of particle physics, it can be shown
explicitly that such a phase transition would have led to an epoch where
the universe expanded exponentially, and much faster than predicted by
older cosmological models. This conjecture (made by Alan Guth) has the
added benefit that it solves several other important problems in standard
cosmology.

Grand unified theories may also provide a natural explanation for the
baryon asymmetry of our universe. The argument is based on the observed
ratio of the number of baryons to the number of photons, which has the
value

^ « 4 x l O - 1 0 .

The photons (mostly from the 3K background radiation - remnant of the
Big Bang) have typical energies of about 10~4 eV. This means that the
visible energy in our universe is mainly in the form of matter (that is, matter
dominated). As we have seen, grand unified theories can lead to baryon
nonconservation through processes such as proton decay. Furthermore, if
CP violation is built into such theories, they can then provide a baryon
asymmetry and a prediction for the ^ ratio, which comes out relatively
close to the observed value. It is worth emphasizing that models based on
GUTs are the only ones where the ratio ^ is calculable, and can thereby
provide a possible understanding of the origin of the baryon asymmetry in
the universe.
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However, in detail, the situation is not so clear. It appears that most of
the matter in the universe (w 95%) is of unknown origin. About 25% of this
is referred to as dark matter, and is not baryonic in character (neutrinos
contribute only a small fraction of this). The main part of the content
of the universe has a repulsive pressure-like quality, and is referred to as
dark energy, which is supposedly responsible for the origin of the recently
discovered acceleration in the expansion of the universe. The origin of the
baryon asymmetry reflected in ^a. is still not fully understood, and will
likely require input from physics beyond the Standard Model in order to
be accommodated.

15.3 Supersymmetry (SUSY)

Thus far, our discussions of symmetry have been restricted to transforma-
tions that relate similar kinds of particles. For example, a rotation can
take a spin-up electron to a spin-down electron state. An isospin rotation
can take a proton state to a neutron state, or a n+ meson state to a TT°
meson state, and so on. Thus, the conventional symmetry transformations
rotate bosonic states to other bosonic states, and fermionic states to other
fermionic states. A novel form of symmetry transformation would be one
that would rotate a bosonic state to a fermionic state, and vice versa. If
this were possible, it would imply that bosons and fermions could be merely
different manifestations of the same state, and in some sense would corre-
spond to an ultimate form of unification. For a long time, it was believed
that this kind of symmetry transformation was not possible to implement in
physical theories. Nevertheless, such transformations can be defined, and,
in fact, there are theories that are invariant under such transformations.
These transformations are known as supersymmetry (SUSY) transforma-
tions, and the corresponding theories invariant under such transformations
are called supersymmetric theories.

To get a qualitative understanding of supersymmetry, let us consider a
simple quantum mechanical example. For a bosonic harmonic oscillator in
one dimension, the Hamiltonian can be written in terms of creation and
annihilation operators as

HB = T (aBaz + a B < l B ) ' (15'8^
where a# and aB lower and raise, respectively, the number of quanta in a
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state, and they satisfy the commutation relations

[aB,aB] = 0= [4J ,0BJ >

[ a B , 4 ] = l . (15.9)

The Hamiltonian of Eq. (15.8) can also be written in the more familiar
form

HB=hu (aBaB + 0 . (15.10)

The energy spectrum of this Hamiltonian, and the associated quantum
states with their corresponding energy eigenvalues, take the form

\nB)—>EnB=hu(nB + ^ \ , nB = 0,1,2,. . . . (15.11)

We note, in particular, that the ground state energy of the system has the
value

Eo = Y- (15'12)

Quantum mechanical oscillators can also satisfy Fermi-Dirac statistics,
and in this case, the Hamiltonian has the form

HF = Y (ajpOF ~ « F 4 ) • (15.13)

Being fermionic operators, ap and aF satisfy the anti-commutation rela-
tions

4=0= (4) ,

aFaF + aFap = 1. (15.14)

Using Eq. (15.14), we can also rewrite the Hamiltonian for the fermionic
oscillator as



368 Nuclear and Particle Physics

HF = HUJ (aFaF - ^) . (15.15)

This kind of system has only two energy eigenstates, and the corresponding
energy eigenvalues are given by

\nF) —>EnF=hu (nF - ^ J , nF = 0,1. (15.16)

The simplicity of this spectrum is purely a consequence of Fermi-Dirac
statistics, according to which any physical state can have either one
fermionic quantum (nF = 1) or be the empty (bosonic) ground state con-
taining no fermions (nF = 0).

If we now consider a mixed bosonic and fermionic oscillator of the same
frequency, the Hamiltonian becomes

H = HB + HF = ho (a}BaB + aFaFy (15.17)

Very roughly speaking, this Hamiltonian is invariant under an interchange
of bosons and fermions

"aB" «—» "aF". (15.18)

A way to see this from Eqs. (15.11) and (15.16) is to note that the energy
spectrum of this system can be represented as

\nB,nF) —> EnB,nF = hjj{nB +nF),

nF = 0,1 and nB = 0,1,2,. . . . (15.19)

Thus, for any nB > 1, the bosonic state \nB,nF = 0) and the fermionic
state \nB - l,nF = 1) are degenerate in energy, with eigenvalue

E = hunB. (15.20)

This degeneracy is a consequence of the invariance of the Hamiltonian in Eq.
(15.17) under supersymmetry. Without going into details, we simply note
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that generators of supersymmetry transformations exist for this example,
and can be identified with

QF = afBaF,

QF = aFaB, (15.21)

which can be shown to satisfy the anti-commutation relations

[QF,QF]+ = QFQF + QFQF = ^ - (15.22)

The operators QF and QF, in analogy with raising and lowering operators
of angular momentum, transform a bosonic state to a fermionic one of same
energy, and vice versa. (It is worth emphasizing that the ground state for
the supersymmetric oscillator, as can be seen from Eq. (15.19), has zero
energy. This is, in fact, a general property of all supersymmetric theories,
and has bearing on the nature of spontaneous symmetry breaking in such
theories.)

Supersymmetry is not only a beautiful concept, but it also solves many
technical difficulties, e.g., the hierarchy problem of unified theories. With-
out supersymmetry, it is exceedingly difficult to understand why the par-
ticles of the Standard Model are so light, when the scale of their unifying
interaction is at least « 1015 GeV. The presence of supersymmetry can
rather naturally prevent the Higgs and other fundamental particles from be-
coming far more massive, because the contributions of particles and their
SUSY partners come in with opposite sign in Eq. (15.2), and therefore
cancel exactly the g2A2 contribution term-by-term.

There are many other reasons that have prompted the examination of
supersymmetric grand unified theories. For the simplest supersymmetric
GUTs, the calculated proton lifetime, again, turns out to be inconsistent
with the current experimental lower limits on rp, but there are other super-
symmetric models where this is not the case, and such models are therefore
viable. The main difficulty with accepting supersymmetric theories lies
in the fact that the suggested doubling of the spectrum of fundamental
particles in SUSY, that is, the required existence of bosonic partners for
all fermions, and vice versa (in analogy with the two degeneracies of Eq.
(15.19)) has yet to be verified in the laboratory. It is expected, however,
that if supersymmetry is a true symmetry of nature, these new SUSY par-



370 Nuclear and Particle Physics

tides will be detected directly in experiments at the Tevatron or at the
LHC.

Finally, a brief comment on the nature of spontaneous symmetry break-
ing at the electroweak scale, which remains an interesting and open ques-
tion. We have noted that the spontaneous breakdown of a symmetry gives
rise to fundamental massive particles, and that the massive Higgs boson
of electroweak symmetry breaking has yet to be observed. There are two
alternative scenarios for symmetry breaking. One involves a breaking that
is induced by composite rather than fundamental bosons. "Technicolor"
theories are those in which the symmetry is spontaneously broken by a com-
posite state consisting of a fermion-antifermion pair (usually taken to be
it). These theories have an additional symmetry group known as the tech-
nicolor group, where new quarks, carrying new technicolor charges, form
bound states that spontaneously break the low-energy symmetry of the
Standard Model. At present, however, technicolor theories do not appear
to reduce in a natural way to the SUco\or(Z) x SULC2) X Uy(l) structure
of the Standard Model. We will return to the other interesting alternative
for spontaneous electroweak symmetry breaking in the final section of this
chapter.

15.4 Gravity, Supergravity and Superstrings

Grand unified theories, whether standard or the supersymmetric kind, are
not complete because they leave out one of the four fundamental forces,
namely gravitation. As we have seen, this force is very weak, and can
be ignored for interactions involving the current sub-TeV energy scales.
However, from the form of the gravitational potential energy

m2
ygrav(r) = GN — , (15.23)

it is possible for this force to become appreciable at very small distances.
In fact, for distances of the order of the Planck length of « 10~33 cm,
or for equivalent energy scales of the order of 1019 GeV, the effect of the
gravitational interaction cannot be neglected. This can be seen heuristically
in the following way. Considering two relativistic particles with energy
E = pc, we can write the relation in Eq. (15.23) as
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yg r a v = ^ l . (15.24)

Using the uncertainty principle, we can substitute

and, therefore, express the potential energy as

Vgrav*^xEx(?p)2. (15.26)

Prom Eq. (15.26), we can deduce the energy scale at which the gravitational
potential energy can no longer be neglected. This should correspond to the
range when V R J E , namely,

GN (E\2

Vgrav « ~ X E X ( ^ j « E,

OT ( f ) 2 ^ ^ > < 1 0 3 9 ( G e V / c 2 ) 2 '
or E « 1019 GeV. (15.27)

Hence, at such energies, the effects of gravitation cannot be ignored. Since
the unification scale is expected to be about 1015 GeV, which is relatively
close to the Planck scale, a consistent description of the fundamental inter-
actions at these energies should therefore include gravity.

The primary reason why gravity is avoided in all such considerations is
because Einstein's theory of gravity does not readily lend itself to quanti-
zation. In fact, if we naively quantize Einstein's theory, it yields divergent
results for any calculated cross section. Divergences are not unheard-of
features in quantum field theories, and, in fact, most relativistic quantum
field theories contain divergences. However, in all these theories there is a
systematic procedure for extracting meaningful physical quantities from the
seemingly infinite results. This procedure, referred to as renormalization,
fails for Einstein's gravity.

(15.25)



372 Nuclear and Particle Physics

Supersymmetric theories, on the other hand, are known to have much
better divergence behavior. Consequently, it is natural to consider super-
symmetrizing Einstein's theory of gravity to see if this improves its diver-
gence properties. (Supersymmetrizing Einstein's theory does not affect its
desirable classical predictions, because any such modification to the the-
ory proceeds through the addition of supersymmetric fermionic partners
of gravity, which have no classical analog, and consequently do not con-
tribute in the classical limit.) Supersymmetrized quantum gravity is found
to have a local supersymmetry invariance, which is related to the fact that
Einstein's gravity has no preferred reference frame. This supersymmetric
gauge theory is known as supergravity, and it has indeed better divergence
structure than ordinary quantum theories of gravity. Nevertheless, even the
most sophisticated form of supergravity theory does not appear to be com-
pletely free of divergences. In addition, these theories also do not appear
to reduce naturally to the Standard Model.

The divergences in relativistic quantum theories can be traced primarily
to the presumed local nature of interactions. That is, to the assumption
that all decays, emissions, or collisions, take place at specific space-time
points, which implies that there is no uncertainty in their positions. This is
essentially because we are dealing with point particles, and as a consequence
such interactions have Aa; = 0, and the uncertainty principle therefore re-
quires infinite uncertainty in the conjugate momentum. This is the origin
of divergences in ordinary quantum theories. A way to remedy this prob-
lem is to regard the fundamental constituents not as point particles, but
rather as one dimensional objects of infinitesimal size (of the order of 10~33

cm). In that case, the interaction vertices are no longer completely local-
ized (see Fig. 15.2), uncertainties in momentum transfers become finite,
and divergences disappear. Theories that describe particles as objects of
infinitesimal extension are known as string theories, and they appear to
incorporate gravity in a natural manner. This possibility offers the only
currently known prescription for a fully quantized theory of gravity that
does not suffer from problems of divergence.

Broadly speaking, there are two kinds of string theories - bosonic string
theories and superstring (supersymmetric string) theories. They are quite
elegant and incorporate many interesting symmetries. However, they can
be formulated in a consistent manner only in 10 (for superstrings) or 26
(for bosonic strings) space-time dimensions. Of the two possibilities, super-
strings appear to be more interesting for a variety of reasons. Furthermore,
even within the framework of superstring theories, there are five consistent
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Fig. 15.2 Difference between a point-like (left) and a string-like (right) interaction.

possible theories involving different gauge groups. If string theories are to
describe the unique theory of the world, the possibility of five such theories
presents a natural dilemma. In the past few years, however, a lot of work
has been done showing that the string theories possess duality symmetries
- of the kind that may be present in Maxwell's theory (in the presence of
Dirac monopoles), where the roles of electric and the magnetic fields can be
interchanged. These duality symmetries have proven to be fundamental in
many ways. First, they show that the five distinct superstring theories can
be mapped into each other under a duality transformation, so that they
need not be regarded as distinct theories. Second, they also suggest that
there may be a more fundamental theory in 11 dimensions (conventionally
called the M-theory), with the five superstring theories corresponding to dif-
ferent dimensional reductions of this fundamental theory. The existence of
an eleven-dimensional fundamental theory is also esthetically satisfying in
that its low energy limit can be identified with the eleven-dimensional super-
gravity theory (which is the largest possible supergravity theory). Duality
symmetries also provide a way of learning the behavior of string theories in
regions of strong coupling, based on calculations of their dual equivalents
in regions of weak coupling. There have been many other exciting devel-
opments in this field that we cannot go into, but we simply point out that
one of the main unresolved problems of string theories is the ambiguity in
selecting the relevant physical sector of the theory upon reduction from ten
to four space-time dimensions. That is, the dimensional reduction provides
many possible ground states (vacuum states), and there is no guiding prin-
ciple, at the moment, for selecting the correct physical one. Much more
work remains to be done in this field before clean experimental tests can be
formulated, nevertheless, the existence of supersymmetry is a key aspect
and requirement of string theories.

Finally, we end our thumbnail sketch of physics beyond the Standard
Model with a rather remarkable recent suggestion for eliminating (or, at the
very least, minimizing) the hierarchy problem, in light of the possibility that
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the universe has as many as ten dimensions. It is normally assumed that
quantum gravity becomes important for particle interactions at energies
close to the Planck scale. But this is based on the small value of G^ in
our three-dimensional worldview. It was assumed in the past that, if extra
dimensions did exist, they would have "curled up" in the first moments
of the Big Bang, at the scale of the order of the Planck length, or string
size. But, if these extra dimensions are, in fact, large compared to the
Planck length, but not as small as the length characterizing the electroweak
scale, it would then be possible to sense the impact of these "large" extra
dimensions through the observation of enhanced effects of gravity in particle
interactions. This possibility would require a modification of Newton's Law
at exceedingly small distances that can be probed only through interactions
of point-like particles (see Problem 15.3). In the suggested scenario, the
onset of quantum gravity would take place at distances of ss 10~17 cm, or
at an energy scale of w 1 TeV. With quantum gravity operating this close
to the electroweak scale, it would obviate the need for a huge value of A
in Eq. (15.2), and allow the force of gravitation to be the possible cause
of electroweak symmetry breaking. Although intoxicating in concept, this
idea has not as yet gained any support from experiment. Again, it is hoped
that the LHC might shed further light on this issue.

Problems

15.1 Show that Eq. (15.22) follows from the definitions given in Eq.
(15.21).

15.2 Using dimensional analysis, and the known value of GN, show that
you can write Gjv = jjpr, where Mp is the Planck mass or scale. What
is the value of Mp in GeV units? Applying the uncertainty principle, you
can define a Planck length and a Planck time, as in Eq. (15.25). What are
these values in cm and sec, respectively?

15.3 Ignoring, for the moment powers of he, Newton's law for n extra
dimensions can be written as

W f ) « Mn+2 r n + l .

where m\ and 7712 are the interacting masses, and M$ corresponds to the
effective Planck scale for n + 3 spatial dimensions. Assuming that these n
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extra dimensions are compactified over equal radii R, then V(r) for r >> R,
that is, from the perspective of our 3-dimensional space, becomes

V (r) -> 1 m i m 2

Now, using the fact that Mj+ 2iJn must equal Mj,, calculate J? in meters for
n = 1,2,3, and oo, with Ms set to the desired value of » 1 TeV/c2. From
what you know of Newton's law, is it possible to have n — 1? (ffinf: Clearly,
you cannot ignore he in calculating i?! Using the fact that (Me) x (R) w ?i,
and Problem 15.2, should enable you to get the right answers.)
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Appendix A

Special Relativity

Essentially all of particle physics and many areas of nuclear physics deal
with particles that travel at relativistic velocities, namely velocities that are
close to the speed of light c. In this appendix we will therefore summarize
some of the basic concepts and results of special relativity that are needed
for interpreting relativistic processes.

Starting off with the assumption that the laws of physics do not depend
on the relative motion of observers at rest in different inertial frames, and
that the speed of light (in vacuum) is a constant of nature that is inde-
pendent of the inertial frame, Albert Einstein showed that the space-time
coordinates of an event observed in two such frames can be related through
the Lorentz transformation. That is, for two inertial frames that move with
a relative velocity v = vz = /3c with respect to each other, the relationship
between the coordinates of any event in the two frames can be expressed
as

ct'=j(ct-pz),

x' = x,
(A.I)

y -y,

z'= >y{z - 0ct),

where we have chosen to define the z-axis as the direction of relative motion
of our two coordinate frames (with primed and unprimed coordinates), and
7 = (1 — j32)~2. The relations given in Eq. (A.I) can be written in the
form of a matrix as

377
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/ct'\ / 7 0 0 -/3j\ /ct\

x' 0 1 0 0 x
(A.2)

y' 0 0 1 0 y

\z') \-/3y 0 0 7 / \z)

The inverse transformation involves just a change in the sign of v (and
therefore of /?),

/ct\ / 7 0 0 /?7\ /ct'\

x 0 1 0 0 x'
(A.21)

y 0 0 1 0 y'

\zj \Pj 0 0 7 / \z' J
For a general Lorentz transformation, the matrix connecting the coordi-
nates of the two reference frames is more complicated. But since we can
always define the z-axis by the direction of relative motion, without affect-
ing the physical situation, we will continue to use this simpler matrix for
our transformations.

The four coordinates (x° = ct, x1 = x, x2 = y, x3 — z), or (x°,x) are
referred to as the components of a space-time four-vector x. Now, just as the
scalar or dot product of any two common "three-vectors" S and R, namely
S • R, is invariant (remains the same) under a rotation of coordinates, so is
the following contraction of any two four-vectors x and y invariant under
any Lorentz transformation that consists of rotations and boosts

x-y = x°y° - x1y1 - x2y2 - x3y3 = x°y° -x-y. (A.3)

Similarly, the momentum vector P and the energy E of any particle,
also define a four-vector p, commonly referred to as the energy-momentum
four vector

P= ( | , / ) = (^,px,py,pz^ = (p°y,p2,p3). (AA)

Although the individual components of such energy-momentum four-
vectors are different in different inertial frames, they, can be related to
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one another through the same Lorentz transformation that relates the co-
ordinates, namely,

/ f \ / T O O - / ? 7 \ / f \
P'x 0 1 0 0 Px

(A5)
j * 0 0 1 0 P,,

\ P ^ / V-yS-y 0 0 7 / \ P Z /

Again, given any two energy-momentum four-vectors p = (p°,P) and q =
(q°, Q), the quantity p-q = (p°q° — P • Q) is independent of Lorentz frame,
that is, it is an invariant constant. In particular, p • p is also an invariant,
and for a particle with energy E and momentum P , we note that

E2
p-p= — - |P | 2 = constant. (A6)

Since this quantity is independent of reference frame, we can, in particular,
consider its value in the rest frame of the particle (P = 0), where we can
relate it to the square of the rest energy, namely,

c

where M is defined as the rest mass of the particle.
For any particle moving with a velocity v = /3c relative to a stationary

observer, the relativistic momentum and energy can be written as

P = Mjv — Mj/3c,

It follows from this that

*=f- and 7=WJ- (A8)

The total energy E can also be decomposed into the frame-independent
rest energy, Me2, and the relativistic kinetic energy T as

(A.6')

(A.7)
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E = T + Mc2. (A.9)

Consequently, the kinetic energy of any particle can be expressed in terms
of the momentum observed in any rest frame as

T = E - Me2 = i/(Mc2)2 + c2|P|2 - Me2,

or c\P\ = y/T2 + 2Mc2T. (A.10)

Because the sums and differences of any four-vectors are also four-
vectors, it follows that the "square" of the sum or difference of any number
of four-vectors is also a Lorentz invariant quantity. In particular, for any
set of four-vectors qi = {q1,q},q2,ql), if we define the sum of the q^ as a
four vector q = J2i <?«> then the square of the four-vector q2 is an invariant
quantity

'•(?*)'-(?-)>-(?rf)>-(?1')1- (An)
For example, when the qi represent the energy-momentum four-vectors of
some group of particles, the quantity q2 is related to the square of the rest
energy of the entire system. (When multiplied by c2, this is the quantity
we call s in Chapter 1.)

An unstable relativistic particle of energy E and momentum P, that has
a mean life r in its own rest frame, will have an observed mean life given
by the appropriate Lorentz transformation for a time interval; that is, if a
particle is produced at rest in the laboratory, its point of production will
coincide with its point of decay (x% = #1,2/2 = Vi,zi = z\) and its decay
time (t2 - ii) will be characterized by its mean life r. But if the particle
has velocity v — /?c = ^ in the laboratory, its mean life will be dilated.
The time interval in the laboratory is related to the one in the particle's
rest frame through the first of the relations in Eq. (A.I)

?2 ~ *i = 7(<2 - ti) - -c (z2 - «i). (A12)
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In the rest frame of the particle z2 = z\, and consequently the mean life
observed in the laboratory (r' = t'2 — t'^), is given by

r' = yr. (A.13)





Appendix B

Spherical Harmonics

The spherical harmonic functions Y(tm(9,<f>) are eigenstates of both the
square of the angular momentum operator L2, as well as of Lz, the projec-
tion of L on some specific axis z (see Eq. (3.26))

L2Yt,m{9, <j>) = hH{l + l)Yt,m{9,0),

LzYt,m{G,4>) = KmYl<m{e,4>).

The Ye!in(0, tf>) are products of periodic functions of 6 and of <j> that are often
encountered in quantum mechanics and in other areas where we seek solu-
tions to problems with spherical symmetry. The Y(tTn(9,^>) can be written
in terms of associated Legendre polynomials P^,m(cos0) and exponentials
in <f> as

where the associated Legendre functions are given by

*.»(*) = - ^ r ^ - ^ h ^ (*2-1}'' (B-3)
with x = cos9. The Pt,m(x) are denned such that the spherical harmonics
obey the following normalization relation over the full solid angle

/•2TT pit

/ / Ytm,(8, <j>)Yeim(6,cj>) sin9 ded<j> = 6eu6m>m, (BA)
J(f,=o Je=o
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where the 5nm are the Kronecker symbols (see Eq. (10.21)). It follows from
(B.2) that

*£»(*.# = (-l)mYt,-m. (5.5)

Some of the low-order spherical harmonics are

Fo,o(0,0) = ^ ,

V O7T

Ylfi{6,(t>) = \ ^-cos6,
V 47T

Y1<-1(6,<t>) = ^Smee-i«, (B.6)

Y2:2(6,<f>) = ^Sin29e2it

Y2,\{B,<I>) = -i/^sinflcosfle**,
V O7T



Appendix C

Spherical Bessel Functions

The spherical Bessel functions je(x) arise in solutions of the radial
Schrodinger equation in spherical coordinates. These functions are related
to the ordinary Bessel functions Je(x) that are usually encountered in sys-
tems that possess cylindrical symmetry. The relation between the two type
of functions are

h(x) = ^Je+h(x). (C.I)

The more standard Bessel functions are given by the expansion

J 'M-Er (Ai) ik+<+ir (a2)

where F refers to the factorial function ("Gamma" function).
Using identities to relate T functions of different argument, it can be

shown that the series obtained by substituting Eq. (C.2) into Eq. (C.I) can
be identified with expansions of simple periodic functions. In particular,
it follows that some of the lowest order spherical Bessel functions can be
written as

. . . sin a; . . . sinx cosx
jo(x) = —t 3i{x) = —2 — ,

. . . /3 1\ . 3cosz i ( a 3 )

All the je{x) are well behaved near x = 0. In fact, all but the £ = 0
function vanish at the origin, and jo(O) = 1. The solutions of the radial
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Schrodinger equation that are singular at the origin are known as the Neu-
mann functions, but such functions are not normalizable and therefore do
not correspond to physical solutions for bound quantum mechanical sys-
tems. They are, however, important in the study of problems that exclude
the origin, e.g., in the study of scattering.



Appendix D

Basics of Group Theory

A group consists of a set of elements (objects, quantities) - finite or infinite
in number - with a rule for combining the elements (multiplication rule)
such that the set is closed under multiplication. Thus, if G represents a
group, with (<?i,<72,- • • >5n) as its elements, then the combination of any
two of its elements #, and gj, denoted by gi • gj, also belongs to the group.
(Mathematically, g € G stands for the statement g belongs to G.) It
should be understood that the combination rule for the elements (namely,
the multiplication rule) does not necessarily have to be an ordinary product
of the elements. It can also be any other operation such as addition.

The set of elements have to satisfy several other properties in order to
define a group, and these are

(1) The multiplication (combination) of the elements must be associative,
namely,

0i • {92 • #3) = (Pi • 52) • 53 € G. (D.I)

(2) There must be an identity element of the group, denoted as /, such that
combining any element with the identity gives back the same element,

g.I = g = I.g. (D.2)

(3) For every element g € G, there must exist a unique inverse element
g~l S G, such that

g.g-l=I = g.g-\ (D.Z)
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For a simple example of a group, let us assume that G consists of all
the real numbers, both positive and negative. In this case, we can define

9i •92=9i+92- (DA)

With this combination formula, it is clear that the sum of any two real
numbers is again a real number, and G is therefore closed under multiplica-
tion. We also recognize that ordinary addition is associative, and, for our
example,

9i • (92 • 53) = 9i • (92 + 93) =91+92+93 = (51 • 92) • 93- (D.5)

Furthermore, we can identify the identity element with the number zero,
so that

g,I = g + 0 = g = I,g. (D.6)

Finally, for any real number g, we can identify its inverse as g~l = —g,
such that

9 • 9'1 = (9 + 9-1) = (9-g)=0 = I = g-1*g. (D.7)

This shows that the set of all real numbers define a group, with ordinary
addition representing the multiplication rule.

Let us next consider the set of all real phases, and denote them as

G = {U(a) = eta, with a real and in the range - 00 < a < 00}. (D.8)

The elements of this set are labeled by a continuous parameter, a, and
consequently this defines a continuous set. Note that if we choose ordinary
multiplication to be the combination formula, then

U(a) • U(p) = U{a)U(P) = eiaeip = e«a+ff> = U(a + 0). (D.9)

That is, we see that the combination is a phase and, therefore, belongs
to the set. The set G is consequently closed under multiplication. The
ordinary products are, of course, associative, and we have
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U(a) . [[/(/?) . U(j)} = U(a)[U(p)U(l)} = [U{a)U{P)]U{i)

= ei(a + ' i +T)=[/(a + J9 + 7 ) , G G .

For the identity element, we can choose the element with zero phase to
correspond to I = 1, so that

U(a) • I = eia x 1 = eia = [/(a) = 7 • C/(a). (£>.ll)

Furthermore, given a phase U(a), we can identify its inverse with U~1(a) =
U(—a), such that

U(a) • CT^a) = [/(alt/"1 (a) = U(a)U(-a)

= eiae-ia = l = I=U-1(a)»U(a). ^

Thus, the set of all real phases defines a group. For this case, the adjoint
(or complex conjugate) element is also the inverse element, namely,

C/f(a) =e-ia = U(-a) = U-1(a), for real a, (D.13)

and such groups are referred to as unitary groups. Furthermore, because the
group elements in this case are completely defined by a single parameter, the
group is denoted as the group U(l), or the unitary group in one dimension.

It is important to recognize that, in general, the combination rule for
the elements of any group need not be commutative. That is,

5i »92 + 92»9i- (-D-14)

In our simple example, however, we see that

U(a) • [/(/?) = U{a)U{0) = U(a + /?) - Utf) • U(a). (£>.15)

Thus, we say that the group 17(1) is commutative or Abelian.
In a similar manner, it can be shown that the set of all (2 x 2) unitary

matrices, with determinant (det) equaling unity, defines a group that has
ordinary matrix multiplication representing the combination rule for the
elements. This kind of group is known as the special (det = 1) unitary

(D.10)

(D.12)
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group in two dimensions, and is denoted by 517(2). An element of such a
group can also be represented as a phase of the form

U(a) = eiTls\ (D.16)

where a denotes a vector parameter that labels the phase, and T(a) cor-
responds to a 2 x 2 matrix.1 Note that for U(a) to be unitary, we must
have

U^(a) = U-1{a),

or e-iTHs)=e-iT(S)_ ( p 1 7 )

We conclude therefore that the matrices T(a) must be Hermitian. Further-
more, det U(a) can equal unity only if the matrices T(a) are traceless. This
can be seen by noting that, for any matrix A, we can write, in general,

detv4 = eTr l n A , (D.18)

where Tr refers to the trace of a matrix. Thus, requiring

detU(a) = l,

or e^mu(a)=lj

or eiTrTW = l. {D.19)

Because this must be true for any arbitrary vector a, we conclude that

Tr T(a) = 0. (D.20)

It is well known that there are only three linearly independent, Hermitian,
traceless 2 x 2 matrices, namely the Pauli matrices

lrThe effect of the exponentiated matrix is equivalent to the normal series expansion
of the operator: eiT^ =1 + iT(S) - ± T2{5) - i T3(<3) + . . .
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/O 1\ /O -A / I 0 \
* 1 = , <T2 , <T3 = . (I>.21)

For a general element of SU(2) we can therefore write

C/(<5) = eiT(5> = e* ̂  °«T', (£.22)

where, conventionally, we identify

2} = \<TJ. (D.23)

The phases or elements of SU(2) are therefore are labeled by three
continuous parameters a\, a2, 03. Furthermore, we note that, because
the matrix product is not commutative, for this case we have

U{d)U0) = e'E'-i " ^ V ^ ^ ? U0)U(a). (D.24)

The group SU(2) is, therefore, non-commutative or non-Abelian. However,
the properties of the group can be determined completely, once we know
the properties of the Tj matrices. These matrices satisfy the commutation
relations

[Tj,Tk] = \\ <Tj., \ °k = kju \ai = i£jkiTe, (D.25)

where EJU is the antisymmetric Levi-Civita symbol introduced in our dis-
cussion of continuous symmetries in Chapter 10, and this algebra is known
as the Lie algebra for the group SU{2).

Similarly, it can be shown that the set of all 3 x 3 unitary, matrices -
with det=l constitute a group known as 5(7(3). The set of all 3 x 3 real
orthogonal matrices with det=l define a group known as 50(3), and so on.
The properties of these groups are fully determined once their Lie algebras
are specified.





Appendix E

Table of Physical Constants

Constant Symbol Value

Avogadro's number Ao 6.0221420 x 1023 mole"1

Boltzmann's constant k 8.61734 x 10~5 eV/K

Electron charge e 4.8032042 x 10~10 esu

Mass of electron me 0.51099890 MeV/c2

9.1093819 x 10-28 gm

Fermi's constant GF{hc)3 1.16639 x 10~B GeV"2

Fine structure constant a = £ 137.0359998

Speed of light c 2.99792458 x 1010 cm/sec (exact)

Newton's gravitational constant GN 6.67 x 10~8 cm3/gm-sec2

6.71 x 10-39 he (GeV/c2)-2

("Reduced" Planck's constant) x c he 197.326960 MeV-fm

Review of Particle Physics, K. Hagiwara et al, Phys. Rev. D66, 010001
(2002). See also the latest CRC Handbook. The physical constants are
uncertain only in the last significant figure given in the table. The value of
c is termed exact, and is used to define the meter as the distance traveled
by light in 2 9 9 7 Q 2 4 5 8 of a second.
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Abelian, 257-259, 265, 325, 327, 338,
361-362, 389

Absorption:
coefficient, 151
and diffraction, 39, 40f
and K° regeneration, 295
of neutrons, 106-107, 114, 129p,

153
of photons, 145-146, 150-151
resonant, 101-102

Accelerators, 183, 205
Cockcroft-Walton, 184-185
colliding beams, 19, 26, 199-203
cyclotron, 187-189
electrostatic, 184-186
heavy-ion, 343
linear, 190-191, 201
resonance, 187-191
strong focusing, 197-199
synchronous, 191-199
tandem, 185
Van de Graaff, 185-186

Activity, 121-123
Alpha, (a) particle, 3, 43-45, 81-91

barrier penetration, 86-91
emission, 81-85
in natural radioactivity, 126-127
in solar fusion, 118-119

Alternating Gradient Synchrotron
(AGS), 198

Angular momentum, 70-72
conservation, 7, 92, 244, 249-252,

272, 274
coupling coefficients, 260-263
intrinsic, 40-42, 228-232, 270,

322-324
orbital, 7, 40-42, 59-66, 231, 252,

268-270, 322-324
Anomalous magnetic moment, 42,

51p, 79p
Antilinear operator, 278
Antineutrino, 93-96, 283
Antiparticles, 93, 213, 271, 281-282,

284, 287
Antiproton, 95, 213
Antiquark, 237p, 315-318
Antisymmetric state, 62, 213, 260,

273, 319-324
Asymptotic freedom, 340
Atomic binding, 46, 60
Atomic mass unit (amu), 34
Atomic number, 33

Barn, 15
Barrier penetration, 86-90, 111
Baryon asymmetry, 365-366
Baryon number, 215
Becquerel, 43, 122
Beta (/3) decay, 44-45, 91-99
Betatron oscillations, 196
Bethe-Block expression, 135
Bethe-Weizsacker formula, 56
Bose-Einstein statistics, 212
Bosons, 212-213

*p is for problem and f is for figure.
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Breit-Wigner form, 225-228
Bremsstrahlung, 142-144
Bubble chamber, 220f

Cabibbo angle, 349-351
Calorimeters, 175-177, 178f
Canonical transformation, 247
Carbon (CNO) cycle, 118
Carbon dating, 127-128
Center-of-mass, 19-28
Chain reaction, 113-115
Charge conjugation, 281-283
Charge independence, 48, 260-263
Cherenkov detectors, 173-174
CKM matrix, 352
Clebsch-Gordan coefficients, 263
Collective model, 75-78
Collider detector, 178-180
Colliding beams, 199-203, 205f
Color, 319-321, 325-326, 338-342
Compton scattering, 148-149
Confinement, 338-342
Conservation laws, 239
Continuous symmetries, 255-263
Cosmology, 365-366
Coulomb barrier, 47, 48f
CP violation, 295-300, 308-310

direct, 297-300, 353f
indirect, 297-300, 353f

CPT theorem, 283-284
Cross section, 13-17
Curie, 122
Cyclotron frequency, 188

Decay constant, 90, 119-122
Detailed balance, 278
Discrete symmetries, 267-284
Dispersion in energy transfer, 141
Drift chamber, 163f, 164.

Ehrenfest's theorem, 252
Elastic scattering, 39, 40f, 313-314
Electric dipole moment, 279-280
Electromagnetic decays, 100-102, 235
Electromagnetism, 328-332

Electron, 142-144, 216. See also Beta
decay

Elementary particles, 211-212
Energy in center-of-mass, 25-26
Exponential decay, 227-228
Extra dimensions, 373-374

Fermi-Dirac statistics, 57, 212-213
Fermi-gas model, 56-59
Fermilab, 197
Fermi level, 57
Fermions, 211-212
Fermi's Golden Rule, 29
Feynman graphs, 27
Fine structure constant (a), 2
Flavor, 224, 237p, 314, 321
Forces, 208-211
Form factor, 38-39, 314
Fourier transform, 29-30, 38, 228

Gamma ray (7), 44-45, 100-102
Gauge fields, 265, 326-328^
Gauge principle, 265, 332
Gauge transformation, 265, 329
Geiger-Miiller counters, 165
Gell-Mann-Nishijima relation,

223-225
Generators of transformations,

248-252, 256-259
GIM mechanism, 351-352
Glueballs, 324
Gluon, 324, 327-328, 338-343
Grand unification, 361-364
Graviton, 208
Group, 257, 387-391
GUT, 364

Hadronic interactions, 154-156
Hadronic weak-decays, 232-233
Hamiltonian formalism, 244-246
Harmonic oscillator, 67-70, 366-369
Hierarchy problem, 360, 373
Higgs mass, 354-355, 360-361

mechanism, 336-337, 353-355
Hilbert space, 258
Hypercharge:
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strong, 224
weak, 325-326, 337

Hyperon, 231

Impact parameter, 7-13
Inertial confinement, 119
Infinitesimal rotations, 249-252
Infinitesimal translations, 246-249
Intrinsic parity, 270-271
Invariance principle, 244
Ionization counters, 159-162
Ionization detectors, 157-165
Ionization loss, 134-139
Isobar, 34
Isomer, 34
Isotone, 63
Isotope, 34
Isotopic spin, 219-222, 260-263

Jets, 341, 347-348, 349f

K° — K° system, See Neutral kaons.
K° regeneration, 294-295
Kronecker delta, 245

Lagrangian formalism, 239-244
Lepton number, 215-217
Levi-Civita symbol, 258
LHC, 202-203
Linac, 190-191
Linear collider, 201
Liquid drop model, 53-56
Local symmetries, 263-265, 326-328
Lorentz transformation, 377

Magic nuclei, 63
Magnetic confinement, 119
Magnetic field, 164f, 187-188,

191-194, 196-197
Mass deficit, 35
Maxwell's equations, 328-332
Mean life, 90, 120-121, 225
Minimum ionizing, 136-138
Mirror nuclei, 48
MNKP matrix, 360
Momentum measurement, 164f

Momentum transfer, 26-29
Mb'ssbauer, 102
Multiple scattering, 139-140
Multiwire chambers, 162-163

Nambu-Goldstone boson, 336
Natural radioactivity, 43-45, 126-128
Neutral kaons, 287-310, 353f

mass matrix, 301-302
time development, 302-307
two-pion decay, 308-309

Neutrino, 93-97
Neutron interactions, 153-154
Noether, 239
Non-Abelian, 258. See also Abelian
Nuclear:

abundance, 42
binding energy, 35, 36f, 54-56
density, 39
fission, 106-113
force, 45-50
fusion, 116-117
magneton, 41
mass, 34-36, 56
model, 45-50, 53-78
radius, 37-40
reactor, 113-115
shape, 75-78, 107-109
shell model, 59-66, 70-75
spin, 40-42, 70-72
stability, 42, 43f

Nuclear mean free path, 130-131, 151
Nuclear-optical analogy, 39, 40f
Nuclear radiation, 43-45, 81-102

alpha (a) decay, 44-45, 81-91,
126-127

beta (/?) decay, 91-97
gamma (7) decay, 100-102

Pair production, 149-150
Parity inversion, 267-277
Particle spins, 228-232
Parton model, 313-314, 324, 340
Pauli matrices, 259, 391
Phase stability, 194-196
Photoelectric effect, 147
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Photomultiplier, 166-167 SLAC, 191
Photon, 49, 212, 228-229, 235, 337 50(3) group, 258, 391

See also Gamma ray Special relativity, 377-381
Photon absorption, 145-153 Spectrometers, 164f, 179-180
Physical constants, table of, 393 Spherical Bessel functions, 66,
Planck scale, 370-371, 374-375p 385-386
Poisson bracket, 245 Spherical harmonics, 65, 383-384
Poisson statistics, 123 Spin-orbit coupling, 62f, 70-72
Proportional counters, 162-164 Spontaneous symmetry breaking, 333
Proton lifetime, 364 Square well potential, 66-67
Proton-proton cycle, 117 SSC, 203

Standard Model, 313-357
Quadrupole magnet, 198-199 Stochastic cooling, 201
Quantum chromodynamics (QCD) Stopping power, 134

338-343, 345-348, 349f Straggling, 139
Quantum electrodynamics (QED), Strangeness, 217-219

41, 338-340 Strangeness oscillation, 293-294
Quark-gluon plasma, 342-343 Strings, 372-373
Quark-line diagram, 356p Strong focusing, 197-199
Quark model of hadrons, 315-325 SU{2) group, 258, 325, 327, 389-391

baryons, 318-320 SU(3) group, 326-327, 338, 391
mesons, 315-318, 321-324 SU{5) group, 363-364

Quarks, 237p, 314-315 Superdeformed nuclei, 78
sea, 324 Supergravity, 370-373
valence, 324 Superstrings, 372-373

Supersymmetric harmonic oscillator,
Radiation length, 143 366-369
Radioactive dating, 127-129 Supersymmetry (SUSY), 366-370
Radioactive decay, 119-124 Superweak theory^ 297
Radioactive equilibrium, 124-125 Surface energy, 54
Range, 137-139 Symmetries in quantum mechanics,
Range of nuclear force, 45-50 252-255
Relativistic rise, 136-137 Symmetry breaking, 332-338
Relativisitic variables, 24-29, 377-381 Symmetry transformations, 255
Resonances, 225-228 Synchrotron radiation, 190-191
RHIC, 343 Synchrotrons, 191-194
Rotational levels, 77
Rutherford scattering, 2-17 Time of flight, 169-172

Time reversal, 277-280
Sampling calorimeters, 177, 178f
Scintillation detectors, 165-169 [/(I) symmetry, 326-327, 389
Semiconductor detectors, 174-175
Semileptonic decays, 233-235 Vibrational levels, 78
Semileptonic K° decays, 309-310 Violation of parity, 274-277
Shell model, 59-75 Violation of quantum numbers,
Silicon detectors, 174-175, 178 232-235
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Volume energy, 54

W and Z bosons, 327, 328f, 337, 346f,
352-355

Weak interactions, 97-99, 232-235,
348-353

Weak isospin, 325-326, 337
Weak mixing angle, 353-354

X. gauge boson, 364f

Yukawa potential, 49




