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Preface

This book is based on a one-semester course on Nuclear and Particle Physics
that we have taught to undergraduate juniors and seniors at the University
of Rochester. Naturally, the previous experience and background of our
students determined to a large extent the level at which we presented the
material. This ranged from a very qualitative and hand-waving exposition
to one class that consisted of a mix of about six engineering and math
majors, to relatively formal and quantitative developments for classes that
were composed of about ten to fifteen well-prépared physics majors. It will
not come as a great surprise that, independent of the degree of sophistica-
tion of our students, they were invariably fascinated by the subject matter,
which provided great wonderment and stimulation to them. In class, we
strove to stress the general underlying ideas of nuclear and particle physics,
and we hope that in transforming our lecture notes into this more formal
text, we have not committed the common sin of sacrificing physical content
and beauty for difficulty and rigor.

It is quite remarkable how much has changed since we first wrote this
book in 1989. The field of heavy-ion collisions has blossomed, the top quark
and the T neutrino were discovered, a very small direct contribution to CP
violation has been confirmed in K° decays, large C'P violation was found in
interactions of neutral B mesons, the Standard Model has gained complete
acceptance, and many exciting ideas have been proposed for possibilities
for physics beyond the scale of the Standard Model. Furthermore, the con-
firmation of a finite mass for neutrinos has revealed the first chink in the
armor, and a clear need for expansion of the Standard Model. The devel-
opments in the related field of cosmology have, if anything, been even more
dramatic. We were tempted to include some of these in this second edition
of our book, but fearing that this might expand it beyond its current scope

vii



viii Nuclear and Particle Physics

and sensible length, we decided not to pursue that option. Nevertheless, we
have updated the original material, clarified several previous discussions,
and added problems to help test the understanding of the material.

Apologies

This book is intended primarily for use in a senior undergraduate course,
and particularly for students who have had previous contact with quantum
mechanics. In fact, more than just slight contact is required in order to
appreciate many of the subtleties we have infused into the manuscript.
A one-semester course in Quantum Mechanics should be of great help in
navigating through the fantastic world of nuclear and particle phenomena.
Although, in principle, our book is self-contained, there are parts of several
chapters that will be daunting. For example, the sections on Relativistic
Variables and Quantum Treatment of Rutherford Scattering in Chapter 1,
some of the more formal material in Chapters 10, 11, 13, and 14, and the
section on Time Development and Analysis of the K° - System in Chap-
ter 12, are all especially demanding. Although the treatment of the mass
matrix for the kaon system may be considered too advanced, and not essen-
tial for the overall development of the material in the book, we believe that
the other sections are quite important. (Also, we felt that mathematically
advanced students would appreciate some of the more challenging excur-
sions.) Nevertheless, if deemed necessary, the formal concepts in these
harder sections can be de-emphasized in favor of their phenomenological
content.

Having chosen a somewhat historical development for particle physics,
we had difficulty in infusing the quark structure of hadrons early into our
logical development. We felt that this early introduction was important
for familiarizing students with the systematics of hadrons and their con-
stituents. To achieve this goal, we introduced the properties of quarks in
the Problems section of Chapter 9, well before the discussion of their rele-
vance in the Standard Model in Chapter 13. Although this might not be the
best approach, it should nevertheless provide students, through problems,
with the valuable experience of interpreting hadrons in terms of their quark
content, and in reducing the possible confusion and frustration caused by
keeping track of the many different hadrons.
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Units and Tables of Nuclear and Particle Properties

We use the cgs system of units throughout the text, except that energy,
mass, and momentum are specified in terms of eV. This often requires the
use of hic to convert from cgs to the mixed system. Whenever possible,
we have shown explicitly in the text how such change in units is made.
Periodically, when we depart from our normal convention, as we do for
the case of magnetic moments, we warn the reader of this change, and
again offer examples or problems to ease the transition between different
conventions.

We have found that the best source of information on properties of nu-
clei and particles, as well as on fundamental constants, is the all-inclusive
CRC Handbook of Chemistry and Physics (CRC Press, Inc.) Because every
library has copies of this work, we have not provided such detailed informa-
tion in our manuscript, and urge students to consult the CRC tables when
need arises. We have, nevertheless, included some useful physical constants
in an appendix to this book.

Other References

The subjects of nuclear and particle physics share a common heritage.
The theoretical origins of the two fields and their reliance on quantum
mechanics, as well as the evolution of their experimental techniques, provide
much overlap in content. It is therefore sensible to present these two areas
of physics, especially at the undergraduate level, in a unified manner. And,
in fact, there are several excellent texts that have recently been published,
or extensively revised, that provide the kind of combined exposition that we
have presented. The books Subatomic Physics by Hans Frauenfelder and
Ernest Henley (Prentice-Hall, Inc.), Particles and Nuclei by B. Povh, et al
(Springer-Verlag), and Nuclear and Particle Physics by W. S. C. Williams
(Oxford University Press) are particularly worthy of noting, because they
offer a panoramic view of nuclear and particle physics of the kind that we
have attempted to give in our book. We believe that the emphasis in all
three of these works is sufficiently different and original to make them all
complementary and of value to students learning these two exciting fields
of physics.
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Chapter 1

Rutherford Scattering

1.1 Introductory Remarks

Matter has distinct levels of structure. For example, atoms, once consid-
ered the ultimate building blocks, are themselves composed of nuclei and
electrons. The nucleus, in turn, consists of protons and neutrons, which
we now believe are made of quarks and gluons. Gaining an understanding
of the fundamental structure of matter has not been an easy achievement,
primarily because the dimensions of the constituents are so small. For ex-
ample, the typical size of an atom is about 10~8cm, the average nucleus
is about 10~!2cm in diameter, neutrons and protons have radii of about
10~13¢m, while electrons and quarks are believed to be without structure
down to distances of at least 10~'6cm (namely, they behave as particles of
< 107 %cm in size).

The study of the structure of matter presents formidable challenges
both experimentally and theoretically, simply because we are dealing with
the sub-microscopic domain, where much of our classical intuition regard-
ing the behavior of objects fails us. Experimental investigations of atomic
spectra provided our first insights into atomic structure. These studies ulti-
mately led to the birth of quantum mechanics, which beautifully explained,
both qualitatively and quantitatively, not only the observed spectra and
the structure of the atom, but also clarified the nature of chemical bond-
ing, and a host of phenomena, in condensed matter. The remarkable success
of quantum theory in explaining atomic phenomena was mainly due to two
reasons. First, the interaction responsible for holding the atom together
is the long-ranged electromagnetic force, whose properties were well un-
derstood in the classical domain, and whose principles carried over quite
readily to the quantum regime. Second, the strength of the electromagnetic



2 Nuclear and Particle Physics

coupling is weak enough (recall that the dimensionless coupling constant
is represented by the fine structure constant, & = gic = 13L7) so that the
properties of even complex atomic systems can be estimated reliably using
approximations based on perturbative quantum mechanical calculations.
Peering beyond the atom into the nuclear domain, however, the situation
changes drastically. The force that holds the nucleus together — the nuclear
force as we will call it — is obviously very strong since it holds the positively
charged protons together inside a small nucleus, despite the presence of the
Coulomb force that acts to repel them. Furthermore, the nuclear force is
short-ranged, and therefore, unlike the electromagnetic force, more difficult
to probe. (We know that the nuclear force is short-ranged because its ef-
fect can hardly be noticed outside of the nucleus.) There is no classical
equivalent for such a force and, therefore, without any intuition to guide
us, we are at a clear disadvantage in trying to unravel the structure of the
nucleus.

It is because of the lack of classical analogies that experiments play such
important roles in deciphering the fundamental structure of subatomic mat-
ter. Experiments provide information on properties of nuclei and on their
constituents, at the very smallest length scales; these data are then used to
construct theoretical models of nuclei and of the nuclear force. Of course,
the kinds of experiments that can be performed in this domain present in-
teresting challenges in their own right, and we will discuss some of the tech-
niques used in the field in Chapter 7. In general, much of the experimental
information, both in nuclear and particle physics, is derived from scatter-
ing measurements — similar, in principle, to those that Ernest Rutherford
and his collaborators performed in discovering the nucleus. In such exper-
iments, beams of energetic particles are directed into a fixed target, or,
alternately, two beams of energetic particles are made to collide. In either
case, the results of collisions in such scattering experiments provide invalu-
able, and often the only attainable, information about subatomic systems.
Since the basic principles in most of these experiments are quite similar, we
will next sketch the ideas behind the pioneering work of Rutherford and his
colleagues that was carried out at the University of Manchester, England,
around 1910 and which provided the foundation for nuclear and particle
physics.
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1.2 Rutherford Scattering

The series of measurements performed by Hans Geiger and Ernest Marsden
under Rutherford’s direction at Manchester provide a classic example of a
“fixed target” experiment. The target was a thin metal foil of relatively
large atomic number, while the projectiles consisted of a collimated beam
of low energy a-particles, which, as we will see in the next chapter, are
nothing more than the nuclei of helium atoms. The basic outcome of these
experiments was that most of the a-particles went straight through the foil
with very little angular deviation. Occasionally, however, the deflections
were quite large. A detailed analysis of these observations revealed the
structure of the target, which ultimately led to the nuclear model of the
atom.

To fully appreciate the beauty of these experiments, it is essential to
analyze the results in their proper historical context. Prior to this work,
the only popular model of the atom was due to Joseph Thomson, who visu-
alized the electrically neutral atom as a “plum pudding” where negatively
charged electrons were embedded, like raisins, within a uniform distribution
of positive charge. If this model were correct, one would expect only small
deviations in the a-particles’ trajectories (primarily due to scattering from
the electrons), unlike what was found by Geiger and Marsden. To see this,
let us do a few simple kinematic calculations. Because the velocities of the
a-particles in these experiments were well below 0.1¢ (where ¢ refers to the
speed of light), we will ignore relativistic effects.

Let us assume that an a-particle with mass m, and initial velocity ¥
collides head-on with a target particle of mass m,, which is initially at
rest (see Fig. 1.1). After the collision, both particles move with respective
velocities 7, and ¥;. Assuming that the collision is elastic (namely, that no
kinetic energy is converted or lost in the process), momentum and energy
conservation yield the following relations.

Momentum conservation:

Moy = Ma¥a + My,
mg
or ’l_)‘o =1’)’a+—vt. (11)
[s4
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Mar B it \

Fig. 1.1 Collision of a particle of mass m, and velocity #p with a target particle of
mass mz.

Energy conservation:

1 1 1
3 mavg = 3 mavf, + 5 mtvf,
Ny
or va =2+ — vz, (1.2)

(21

where we have labeled ()% = @; - 0; as vZ, for i = 0, a and t. Squaring the
relation in Eq. (1.1) and comparing with Eq. (1.2), we obtain

a 24

2
me me my
2 2 2 - o 2 2
v=(vi+|— ) vy +2—Tp T | =v2+—0
0 ("‘ (m) ¢ Ma e b

or v (1 - gi) = 27, - . (1.3)
x

It is clear from this analysis that, if m; < m,, then the left hand side of
Eq. (1.3) is positive and, conseqently, from the right hand side we conclude
that the motion of the a-particle and the target must be essentially along
the incident direction. In other words, in such a case, one would expect
only small deviations in the trajectory of the a~-particle. On the other hand,
if m; >> My, then the left hand side of Eq. (1.3) is negative, which implies
large angles between the trajectories of the a-particle and the recoiling
nucleus, or large-angle scattering. To get a feeling for the magnitude of the
numbers, let us recall that the masses of the electron and the a-particle
have the following approximate values
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me = 0.5MeV/c?,

ma & 4 x 10° MeV/c2. (1.4)
Therefore, if we identify
my = Me,
then,
mt —4q
— =~ 107%. 1.5
7L 10 (1.5)

Now, from Eq. (1.3) it follows that ve = v; < 2vq, and then Eq. (1.2) yields
Va # vo. Therefore, meve = mq 2= v, < 2 X 1074 mave = 2 X 1074 myuvy,
and the magnitude of the momentum transfer to the electron target is
therefore < 107* of the incident momentum. Consequently, the change
in the momentum of the a-particle is quite small and, in the framework
of the “plum pudding” model of the atom, we would expect only slight
deviations in the a-trajectory after scattering from atomic electrons; thus,
the outcome of the experiments, namely the occasional scatters through
large angles, would pose a serious puzzle. On the other hand, if we accept
the nuclear model, wherein the atom has a positively charged core (the
nucleus) containing most of the mass of the atom, and electrons moving
around it, then the experimental observations would follow quite naturally.
For example, setting the mass of the target to that of the gold nucleus

my = may ~ 2 x 10° MeV/c?, (1.6)
yields
my
— =~ 50. 1.7
™ an

A simple analysis of Eq. (1.3) gives v; < ZZa%a  and from Eq. (1.2)
we again obtain that v, & vg. Therefore, msv; < 2myva & 2meue. This
means that the nucleus can carry away up to twice the incident momentum,
which implies that the a-particle can recoil backwards with a momentum
essentially equal and opposite to its initial value. Such large momentum
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transfers to the nucleus can, therefore, provide large scattering angles. Con-
sequently, in the Rutherford picture, we would expect those a-particles that
scatter off the atomic electrons in gold to have only small-angle deflections
in their trajectories, while the a-particles that occasionally scatter off the
massive nuclear centers to suffer large angular deviations.

The analysis of the scattering process, however, is not this straight-
forward, and this is simply because we have completely ignored the forces
involved in the problem.! We know that a particle with charge Ze produces
a Coulomb potential of the form

U@ = 28, (1.8)

r

We also know that two electrically charged particles separated by a distance
r = |F] experience a Coulomb force giving rise to a potential energy

Vi) = . (1.9)

Here Ze and Z'e are the charges of the two particles. An important point
to note about the Coulomb force is that it is conservative and central. A
force is said to be conservative if it can be related to the potential energy
through a gradient, namely

F(/) = -VV(#), (1.10)

and it is defined to be central if

V(@) = V(i) = V(). (L11)

In other words, the potential energy associated with a central force depends
only on the distance between the particles and not on their angular coor-
dinates. Because the description of scattering in a central potential is no
more complicated than that in a Coulomb potential, we will first discuss
the general case.

" Let us consider the classical scattering of a particle from a fixed center.
We will assume that the particle is incident along the z-axis with an initial

1We have also tacitly assumed, in the context of the Thomson model, that contribu-
tions to large-angle scattering from the diffuse positively charged nuclear matter can be
ignored. This is, in fact, the case, as discussed by Thomson in his historic paper.
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velocity @p. (It is worth noting that, outside the foil, the incident and the
outgoing trajectories are essentially straight lines, and that all the deflec-
tion occurs at close distances of the order of atomic dimensions, where the
interaction is most intense.) If we assume that the potential (force) falls off
at infinity, then conservation of energy would imply that the total energy
equals the initial energy

1
E = — mv? = constant > 0. (1.12)

2

Equivalently, we can relate the incident velocity to the total energy

vo = \/Qg (1.13)

Let us describe the motion of the particle using spherical coordinates with
the fixed center as the origin (see Fig. 1.2). If r denotes the radial coordi-
nate of the incident particle, and x the angle with respect to the z-axis, then
the potential (being central) would be independent of x. Consequently, the
angular momentum will be a constant during the entire motion. (That is,
since 7 and F are collinear, the torque 7 x F vanishes, and the angular
momentum 7 X m# cannot change.) For the incident particle, the angu-
lar momentum is clearly perpendicular to the plane of motion and has a
magnitude ¢ = muvob, where b is known as the impact parameter. The im-
pact parameter represents the transverse distance that the incident particle
would fly by the source if there was no force acting. Using Eq. (1.13), we
can obtain the following relation

£=m % =bV2mkE,
m
or 5 = ——. (1.14)

From its definition, the angular momentum can also be related to the
angular frequency, X, as follows

d .
£ =|F x mv] = |mF x (—T 7+ 7'@£ )2) | = mr? X = mr?x,  (1.15)
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Tig. 1.2 The scattering of a particle of mass m, with initial (asymptotic) velocity o,
from a center of force at the origin.

where, as usual, we have defined a unit vector ¥ perpendicular to 7 = rf,
with #(F) = 7#F + rx expressed in terms of a radial and an angular compo-
nent of the velocity, and the dot above a variable stands for differentiation
with respect to time. Equation (1.15) can be rewritten as

dx £
= = —. 1.16
dt mr2 ( )
The energy is identical at every point of the trajectory, and can be
written as

1 (dr\® 1, [dx\?
E—-2—m<gt—) +§mr (E) +V(r)

1 (dr\? 1 ,( ¢\
_§m(—c—{t—) +§mr (?n?) + V{(r),

1 dr\? 2
or gm (E) =FE- 53 V(r),

or I [-—2-. (E—V(r)— e )r (1.17)

a im 2mr?

The term -l—ig is referred to as the centrifugal barrier, which for £ # 0 can

Im
be considered as a repulsive contribution to an overall effective potential
2 A . .
Ver(r) =V (r) + 257. Both positive and negative roots are allowed in Eq.
(1.17), but we have chosen the negative root because the radial coordinate

decreases with time until the point of closest approach, and that is the time
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domain we will be examining.? Rearranging the factors in Eq. (1.17) and
using Eq. (1.15), we obtain

[t (%) )
6

_t [,.2 (1 _ V_(Tl) ._b2]%. (1.18)

mrb E

From Egs. (1.16) and (1.18), we now obtain

‘ ¢ dt
W= P g ¥
_ l dr
T mr? R 3’
merb I:TZ (1 - ﬂE_Z) - b2]
or dy=- bdr . (1.19)

(X111

r [r2 (1 - ‘—’g-l) —b2]

Integrating this between the initial point and the point of closest ap-
proach, we obtain

2The motion is completely symmetric about the point of closest approach (r = rg),
and consequently the positive and negative roots provide identical information. In fact,
if the a-particle approached the target with the velocity vo along the exiting trajectory
in Fig. 1.2, it would then emerge on the entering trajectory, with the same asymptotic
velocity. A simple way to see that this is true is to imagine the collision as observed
from both above and below the plane of scattering shown in Fig. 1.2. Viewed from these
two perspectives, the motion in Fig. 1.2 appears as the mirror image of the reversed
trajectory. This symmetry is a consequence of time-reversal invariance of the equations
of motion, a concept that will be discussed in Chapter 11.
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% o _/To bdr
0 “ rlrr (1-Yp) —p] "
I e dr
or X, = b/r0 - [Tz (1 - ﬂEﬂ) - bz] I (1.20)

The point of closest approach is determined by noting that, as the par-
ticle approaches from infinity, its velocity decreases continuously (assuming
the repulsive potential for the case of an a-particle approaching a nucleus),
until the point of closest approach, where the radial velocity (%) vanishes
and subsequently changes sign. That is, beyond this point, the velocity of
the particle increases again. Therefore, at the distance of closest approach,
when r = rg, both the radial and the absolute velocities attain a minimum,

and we have

dr

@l =0

T=Trg

which, from Eqs. (1.17) and (1.18), means that

e2
E—V(To)—W=O,
0
or 1l (1 - Y-(E’l)-)) b2 =0. (1.21)

Thus, given a specific form of the potential, we can determine rg, and
therefore xo, as a function of the impact parameter .2 Defining the scat-
tering angle 8 as the change in the asymptotic angles of the trajectory, we
get

dr
T
[0 %) -]
] E
3We note that, in general, with £ # 0 and E > 0, that is, for b # 0, ‘% is maximum
at 7 = ro (see Eq. (1.16)). Also, for £ # 0, even for an attractive Coulomb potential,
there will be a finite result for ro as determined from Eq. (1.21). This is because the

centrifugal barrier for £ # 0 acts as a repulsive potential that dominates over Coulomb
attraction at small distances. ’

9:7r—2xo:7r—2b/ (1.22)
r0 P
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Consequently, given an impact parameter b, and a fixed energy E, the
scattering angle of a particle in a potential can, at least in principle, be
completely determined.

As an application of the general result, let us now return to the scat-
tering of a charged particle from a repulsive Coulomb potential, for which
the potential energy is given by Eq. (1.9)

V(r) = , (1.23)

where Z'e represents the charge of the incident particle and Ze the charge of
the scattering center. (The scattering of an a-particle from a nucleus would
then correspond to Z' = 2, with Ze representing the nuclear charge.) The
distance of closest approach can be obtained from Eq. (1.21)

o ZZ'e?
7‘0 -

To—b2=0,

1.2 ' 2
ZZEe + (ZZEez) + 42
"2
Since the radial coordinate can by definition only be positive, we conclude
that

(1.24)

or rg=

Z7'e? 42 E?

Consequently, from Eq. (1.22), we obtain

6=7r—2b/ dr _.
o r[r? (1~ 224 2]

(1.26)
Let us define a new variable

(1.27)

which gives
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1 2B 42 E?
== (1 1 Gzay ) : (1.28)

From Eq. (1.27), we obtain

da::—ir-' or dr:—d—x

r2’ z2’

and, in terms of this new variable, we can write

0
6=m—2b (—d—f) e —"
SR [;‘f - 2= -]

——7r+2b/ . (1.29)

2
ZZ’e b2$2)

Now, using the following result from the integral tables

dz 1 _ B+ 2vz
/\/Cm == cos™! (—W), (1.30)

we obtain
1 ZZ'e2 +2b2 0
0 =m+2bx 3 cos™!

(ZZ’e2) + 42

Zo

Il

2W°E .
t 2

7w+ 2cos™! ZZ
4b2E2

ZZ’

4b2 E?
(ZZ7e%)2

(1.31)

=7+ 2cos™! )—2cos 1

=7 +2cos ! e
1+ (zbzf2 7

quiivalently, we can write



Rutherford Scattering 13

(Z77e%)?
or 1 = cos? ( W) = gin? 6__1
14 (é—b;,g%g 2 2 coseczg ’

2bE — cot é
O ZZie 9’
ZZ'e? 0

or b= 5 cot 3 (1.32)

This relates the scattering angle, which is a measurable quantity, to the
impact parameter which cannot be observed directly. Note that, for fixed
b, E and Z', the scattering angle is larger for a larger value of Z. This is
consistent with our intuition in that the Coulomb potential is stronger for
larger Z, and leads to a larger deflection. Similarly, for a fixed b, Z and
Z', the scattering angle is larger when E is smaller. Qualitatively, we can
understand this as follows. When the particle has low energy, its velocity
is smaller and, therefore, it spends more time in the potential and suffers a
greater amount of scattering. Finally, for fixed Z, Z' and F, the scattering
angle is larger for smaller b. Namely, when the impact parameter is small,
the particle feels the force more strongly and hence the deflection is larger.
Equation (1.32) therefore incorporates all the qualitative features that we
expect of scattering in the Coulomb field.

1.3 Scattering Cross Section

As we have seen, the scattering of a particle in a potential is completely
determined once we know the impact parameter and the energy of the
particle; and, for a fixed incident energy, the deflection is therefore defined
by just the impact parameter. To perform an experiment, we prepare an
incident flux of beam particles of known energy, and measure the number
of particles scattered out of the beam at different 8. Because this number
is determined entirely by the impact parameters involved in the collisions,
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such measurements reflect these impact parameters and thereby the range
of the interaction and the effective size of the scattering center.

Let Ny denote the number of particles incident on the target foil per
unit area per unit time. Because we assume the target density in the
foil to be low, this flux will always be uniform over the thickness of the
target material. Any incident particle with impact parameter between b and
b + db relative to any scattering center will undergo an angular deflection
between # and 8 — df, and will scatter into a solid angle df2. (The larger the
impact parameter, the smaller is the scattering angle.) The number of such
particles scattered per unit time is 2w Ny b db, since 27b db is the relevant
area of the circular ring around each scattering center through which any
particle must pass in order to be emitted into the solid angle between 6 and
6 — dé. It may seem puzzling that we do not have to be concerned with the
fact that we have many target particles in our foil, and that any single beam
particle, in principle, comes within some impact parameter of all of them!
This would clearly provide a great complication to our analysis. But we
are assuming that our foil is exceedingly thin, so that multiple collisions of
one beam particle are negligible; and we also have the Rutherford atomic
model in mind, which means that the separation between nuclei is vast
relative to their size. Normally, very large impact parameters provide very
little scattering, so it is the trajectory that comes nearest to any single
nuclear center that matters most. (And, of course, the effect of electrons,
because of their small mass, is also quite negligible.) When the thickness
or density of the medium cannot be ignored, other interesting phenomena,
involving coherence and interference between scattering centers, come into
play. Cherenkov radiation and the density effect in ionization have origin
in such ramifications (see Chapters 6 and 7).

Annular Ring

/ of Area =
Annular Ring of R 2 2nRsin® Rd6
Area = 2rbdb _— 7 % = R24Q

—

Scattering
Center

Fig. 1.3 Incident particles within the area 27bdb of any scattering center are emitted
into the annular ring of area R2d(} at angle 4.
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For a central potential, at any impact parameter b, we can think of the
scattering center as presenting an effective transverse cross-sectional area
Ao = 2xb db for scattering of an incident particle by an angle 8 into d<Q.
Because the specific relationship between b and 6 (e.g., Eq. (1.32)) depends
rather explicitly on the nature of the force, for example, whether it has r—2
behavior, or whether it is central, and so forth, in general, A can depend
on both 6 and ¢, so that we can write

Ac(8,4) = bdbdg = —% (6, $)dQ = —3—; (6, ¢) sinfdf dp,  (1.33)

which defines the differential cross section g—g, and where the negative sign
reflects the fact that § decreases as b increases. When there is no azimuthal
dependence in the scattering — é.g., when the interaction has spherical sym-
metry — we can integrate over ¢ (as we already did implicitly in our discus-
sion of the annular rings of area 27b db) and write

Ac(8) = —Z—S (8)27 sin 8dO = 2xb db

L g = L
dQ sin@ df
We wish to note that, since the Coulomb potential is central (depends only
on distance and not on angle), we have assumed azimuthal symmetry in the
scattering. This means that all positions along the annular ring of radius
b are equivalent and that the differential cross section is only a function of
the angle 8 and not ¢. It follows, therefore, that measuring the yield as a
function of 8, or the differential cross section, is equivalent to measuring
the entire effect of the scattering.

In subatomic experiments, the unit, normally used to measure cross-
sectional area is the barn, which is defined as 10724 cm?. This is a very small
quantity ~ but then we have to remember that the typical size of a nucleus
is about 10~!2cm and, therefore, the cross-sectional area for a medium-size
nucleus (if we assume it to be a sphere) would be of the order of a barn.
This is, consequently, a relatively natural unit for such measurements. The
units of solid angle are steradians, and 4x sr corresponds to a sum over all
solid angles around a point — that is, all § and ¢. We can also define a total
scattering cross section by integrating the differential cross section over all
angles

or (1.34)
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oTOT = /dQ dQ(o ) = 27r/ do smejﬂ @), (1.35)

where, in the last step, we have again assumed azimuthal symmetry. (If
there is any ¢-dependence observed in the scattering, the last step in Eq.
(1.35) would not hold.) The total cross section represents, in some sense,
the effective size that the source of the potential presents for scattering at
all possible impact parameters.

Let us now calculate the cross section for Rutherford scattering. We
know from Eq. (1.32) that

- Z7'e? . 0
T~ TE 7
1t follows, therefore, that
122'e? 0
% = —52—; cosec? 7 (1.36)

The negative sign in Eq. (1.36) again reflects the fact that, as b increases,
0 decreases, and that there is less deflection for larger impact parameter.
Substituting this back into the definition of the scattering cross section, we
obtain

do b db  [(ZZ'e*\’ 0 (Z7e\? 1
E(e)_“sin0@‘< iE ) cosec 5_( iE ) sin® (1.87)

If we now integrate this relation over § (note from Eq. (1.34) that, because
there is no azimuthal dependence, d} = 27 sin# df), we obtain the total
cross section

do N ., do
OTQOT = dQ (9) dQ = 27!’/0 df sind Eﬁ (9)

Z7'e? 1 .0 1

This divergence may seem troublesome, but it is consistent with our earlier
discussion. Namely, the total cross section reflects the largest values of im-
pact parameter a particle can have and still undergo scattering. In the case
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of the Coulomb potential, the long-ranged force extends to infinity and,
consequently, a particle very far away from the center will still experience
the Coulomb force, albeit only very slightly, and this is the origin of the
divergence. Because the Coulomb force drops off rapidly with distance, and
does not lead to any appreciable scattering beyond some finite value of the
impact parameter, it is therefore appropriate to cut off the angular inte-
gration at some finite § = 85 > 0°, corresponding to some realistic cutoff
for the impact parameter. This cutoff provides a finite oroT for observable
scattering angles (that is, for 8 > 6p), which can be compared with experi-
mental measurements. Finally, we should point out that our results cannot
be valid for impact parameters much larger than the innermost electron
levels in atoms because such electrons will shield and thereby reduce the
effective nuclear charge.

1.4 Measuring Cross Sections

Let us now see how we would go about performing a measurement in order
to extract a cross section. Macroscopically, we have a beam of a-particles
(Geiger and Marsden used a collimated source of a-particles from a sample
of radioactive radon), a thin foil, and some scintillating material for detect-
ing the scattered particles. This was, initially, a thin coat of ZnS phosphor
deposited on a glass screen, and viewed by eye through a telescope. The
telescope was able to rotate in one plane and thereby trace out the counting
rate as a function of § (but not @). Schematically, the apparatus can be
represented as in Fig. 1.4.

Now, if we have our flux of Ny a-particles per unit area per second
impinging on the thin foil, then some of these will pass through essentially
undeflected, while others will be scattered through an angle between 6 — df
and 8, corresponding to impact parameters between b + db and b. Here df
can be regarded as the angle subtended by the aperture of the telescope.
In fact, the telescope views a small area of the screen given approximately
by Rdf# - Rsinfd¢ = R2d(}, where R is the distance from the foil to the
point of observation on the screen. The scattered particles that appear in
this part of the screen are those that pass through and emerge from the
part of the annular ring of impact radius b, width db, and arc length bd¢.
Had Geiger and Marsden constructed a circle of telescopes about the beam
center to view the a-particles emitted for all values of ¢ for any particular
fixed angle 8, they would have certainly increased their event rate by Z—g,
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but at the substantial cost of greatly complicating their experiment.

Area of
Telescope
= Rd6 Rsin@dy

\
Telescope

- Swivels 4
Source P @ in Plane R
,z .
‘ Rsiné
Collimators Foil Telescope sl
" Phosphorescent Travels
ZnS Screen Along @

Fig. 1.4 Sketch of the macroscopic geometry of Rutherford scattering.

Now, the fraction of the incident particles that approach our nuclear
targets within the small areas Ao = bdgdb at impact parameters b, is,
in fact, the same fraction —-—-— that will be removed from the beam and
scattered into the area deQ that is being viewed at angles (4, ¢} of the
screen. This fraction is identical to the ratio of the sum of all the small
bdgdb areas for the N nuclear centers within the foil, divided by the entire
area (S) of the foil, or, stated in another way, it is the probability for the
incident particles to enter within the N little areas, divided by the total
probability of hitting the foil

_dn _ Nbdgdd _ N

For a foil of thickness t, density p, atomic weight A, N = (%) Ap, where
Ap is Avogadro’s number of atoms per mole. Thus, for the number of a-
particles scattered per unit time into the detector at angles (0, ¢), we can
write

dn = Nopt

(9 ¢)dS2

dn NoptAo da

or

For any given detector situated at angles (6, ¢) relative to the beam axis,
and subtending a solid angle dQ (which is determined by the transverse
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dimensions of the detector — its area/R?), we will observe dn counts per
second

dn = Ny % g—g (6, $)d0. (1.41)

This is a general expression, valid for any scattering process, independent
of the existence of a theory that might be able to provide a specific formula
for —3%. Thus, the counts observed in any experiment will be proportional
to the number of incident beam particles, the number of scattering centers
per unit area of target material, to the solid angle subtended by the detec-
tor, and to an effective cross section that each scattering center presents
for bringing about the process of interest. (We are still assuming that cor-
rections due to multiple collisions are small, that is, we are dealing with
thin targets.) Geiger and Marsden performed very detailed measurements
of dn as a function of 6, using different target material (of relatively large
Z), different a-particle sources of different energy, different thicknesses of
foil, and found their data to be in complete agreement with Rutherford’s
prediction, as given in Eq. (1.37). That is, knowing Np, % and df?, they
measured dn, and extracted a form for the differential cross section that
agreed beautifully with Rutherford’s prediction, and thereby verified the
presence of nuclei within atoms. It should be recognized that, although
Geiger and Marsden’s measurements provided clear evidence for the exis-
tence of a nuclear center, these experiments shed very little light on the
nature of the nuclear force. The low-energy a-particles never penetrated
into the nucleus of the atom because of the repulsion from the nuclear
Coulomb barrier.

1.5 Laboratory Frame and the Center-of-Mass Frame

So far, we have discussed collisions of a particle with a fixed center. In
reality, however, the target also moves (recoils) as a result of the scatter-
ing. In some experiments we may be interested in colliding two beams of
particles of comparable energy with each other. Although such situations
may appear to be extremely complicated at first glance, when the potential
is central, the problem can be reduced to the one we have just studied; this
can be achieved through the separation of the motion of the center of mass.

Let us assume that we have two particles with masses m; and ma,
at coordinates 7; and 73, interacting through a central potential. The
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equations for the motion can be written as
mify = ViV (|71 — 7)),
77’L27._"'2 - -62V('F1 - FQl), (1.42)

where V is the gradient operator which has the following form in spherical
coordinates

. .8 6 o ¢ 0
V Ti 5~+E 66¢+risin9i 8(}51

i=1,2. (1.43)

Since the potential energy depends only on the relative separation of the
two particles, let us define the variables:

7= Fl - F27
= myf + mafa
Rey = — = (1.44)
m1 + mgy

where 7 denotes the coordinate of m; relative to msg, and RCM defines the
coordinate of the center-of-mass of the system (see Fig. 1.5). From Egs.
(1.42) and (1.44) we can easily obtain the following:

o k= Gy = -2,

(my + mz)ﬁ(;M = M}LfCM =0, or ﬁCM = constant x R, (1.45)

where we have used the fact that V(|7]) = V(r) depends only on the radial
coordinate 7, and not on the angular variables associated with 7, and where
we have defined

M = my + my = total mass of the system,

= ™2 _ «reduced” mass of the system. (1.46)
my + ma
It is clear from the above analysis that, when the potential is central, the
motion of two particles can be decoupled when rewritten in terms of a
relative coordinate and the coordinate of the center of mass.
We also note from Eq. (1.45) that the motion of the center-of-mass is

trivial in the sense that it corresponds to that of a free, non-accelerating,
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Fig. 1.5 Position of the center of mass and the definition of the relative coordinate for
the two particles with masses mi and ma.

particle. In other words, the center-of-mass moves in the laboratory with

a constant velocity (ﬁCM is fixed) independent of the specific form of the
potential. The dynamics is contained completely in the motion of a ficti-
tious particle with the reduced mass p and coordinate 7. In the frame in
which the center-of-mass is at rest, the complete dynamics, then, becomes
equivalent to the motion of a single particle, with mass p, scattering from a
fixed central potential, a situation that we have already analyzed in detail.
A simplification that occurs in the center-of-mass frame is that the sum of
the momenta of the interacting objects vanishes, which follows from Eq.

(1.44) when Roum is set to zero. Because of this, it is more common to
define the center-of-mass frame as the frame in which the total momentum
vanishes, and we often refer to the center-of-mass frame equivalently as the
center-of-momentum frame.

To understand how various quantities can be transformed between the
laboratory frame and the center-of-mass frame, let us return to the scat-
tering from a fixed target. We assume that the particle with mass ms is
initially at rest in the laboratory frame, and the particle of mass m; is inci-
dent along the z-axis with a velocity v;. Let the scattering angle of particle
m, in the laboratory frame be given by 6p.p, and its speed after scattering
by v. For this case, the center-of-mass moves along the z-axis with a speed

vcMm

miun
my1 +mg

vom = Rom = (1.47)

In the center-of-mass, the two particles therefore move towards each other
along the z-axis (see Fig. 1.6)



22 Nuclear and Particle Physics
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Fig. 1.6 Collision of m with mz2, as viewed in the Lab and in the center-of-mass frame.

- Mat
V1=V -UOMTF T,
mi1 + me
- mivy
Uy = VoM = —————. (1.48)
my -+ ma

where ©; and 7y are the speeds of beam and target particle, respectively,
as viewed in the center-of-mass frame. Here we see explicitly that the
momenta of the two particles in the center-of-mass are equal and opposite.
For elastic scattering, the magnitudes of the velocities of the particles
do not in the collision, but the angles at which they emerge depend on
the dynamics. Let Ocm denote the scattering angle as measured in the
center-of-mass frame. Note that because O¢y represents the change in the
direction of the relative position vector (7) as a result of the collision, it
must be identical to the scattering angle for the particle with reduced mass.
To obtain a relation between 01,1, and Oy, we note that the velocities in
the laboratory frame and in the center-of-mass frame are related through
the velocity of the center-of-mass. In particular, after scattering, the z-
components of the velocities of particle of mass m; are related through

vcosfLap — YoM = 11 cosbom,

or wcosfL., = 71 cosbom + veu, (1.49)

while, the components of the velocities perpendicular to the z-axis are re-
lated through
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vsinfra, = U1 sinfom. (1.50)

From Egs. (1.50) and (1.49), we obtain the non-relativistic result
sin 00M sin 90M

tané = = 1.51
anVLab = o fom + %84 cosfom + ¢’ (1-51)

where we have defined

(=M _ T (1.52)
(] mo
and where the last equality in Eq. (1.52) holds only for elastic scattering.
For future use, we rewrite Eq. (1.51) in an alternative form

cosOcom + ¢
(1 +2¢cosfem + 42)%‘

where we have used the transformation of the final velocity to the center-
of-mass frame for the case of elastic scattering.

Using the relationship between 6r,, and 6oy, we can also relate the
differential cross sections in the two frames, arguing as follows. The par-
ticles that scatter through an angle 61,1, into the solid angle dQp,p in the
laboratory frame are the same ones that scatter by fcy into the corre-
sponding solid angle dQ2cy in the center-of-mass frame. (That is, these are
two equivalent ways of looking at the same process.) Because ¢ is trans-
verse to the boost direction between the two reference frames, it follows
that d@rap = doom. Thus, ignoring the azimuthal coordinate, we must
have

cosOap = , (1.53)

do . do
T (BLab) sin BrapdbLap = ont

(Bcm) sinfomdfcm,

do (BLas) = do ( )d(cosecm)
dQLab Lab/ = dQCM M d(COSeLab).

or (1.54)

The right hand side of Eq. (1.54) can be evaluated using Eq. (1.53), leading
to
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do (Bran) = do (0 )(1+2Ccos00M+C2)%
dan T Aoy - M |1+ {cosbcm|

(1.55)

1.6 Relativistic Variables

In the Appendix we review the basics of special relativity, and use those
results here to discuss briefly the kinematics in terms of relativistic vari-
ables. In the scattering of any two particles with rest masses m; and m.,
the velocity of the center-of-mass is obtained from the ratio of the total
relativistic momentum and the total relativistic energy

c E) + E»
If m, refers to the mass of the projectile and ms to that of a target particle,
then using laboratory variables, we obtain (with the target initially at rest)

= ]310 ]316

cM = = 1.57
Z E; + myc? VP + mict + moc? ’ ( )
where our convention is to define || = P; for i = 1,2. At very low energies,
- namely when m;c? > Pjc, this reduces to our nonrelativistic expression of
Eq. (1.47)

my ’1716 . ma ’Ul

= . 1.58
mic? +mac?  (my + ma)c (1:58)

Bom =

At very high energies, when myic? € Pic and maoc? < Pic, we can write
the following for the value of Som

! ] — mat

Bom = |Bom| = = B
2 2
Ji+(me) +me

When my; and m, are comparable, Eq. (1.59) simplifies to SBom =

==

(%L)z (1.59)

(1 - 7—”1—,215), and, for this case, ycm becomes



Rutherford Scattering 25

yom = (1 - B2) " & [(1+ Bom) (1~ Bom)] 2

~ [(2) (%)]_% = \/flzc. (1.60)

In general, we can obtain an expression for yopm in the following way.
We note from Eq. (1.57) that

P22
9 1
N i 1.61
IBCM (El T m202)2 ) ( )
so that
2 B} + 2E1mac® + mict — PPc?
1-— ﬂOM = 2\2
(El + mac )
_ mict + miet + 2Bymyc? (1.62)

(El + m2c2)2 ’

where we have substituted m2c¢? for E2 — P2c?. Tt therefore follows that

_ E1 + mayc?
(m2ct + mict + 2E1mac?)?

D=

vom = (1 - Bém)~ , (1.63)

which, in the high-energy limit of E; ~ Pic 3> m;c® and Pic 3> mac?,
reduces to the result of Eq. (1.60).

The quantity in the denominator of Eq. (1.63), despite its appearance,
is an invariant scalar. This can be deduced by evaluating the square of the
following four-vector in the laboratory frame (132 =0)

X a\2
s = (E1 +E2)2 - (Pl +P2) C2
= (B1 + mac?)® — P2 = E? + mc* + 2Eympc® — P22
= mic* + mict + 2E;myc?. (1.64)

Because s is a scalar, it has the same value when calculated in any reference
frame. In particular, it has a simple meaning in the center-of-mass frame,
where the two particles have equal and opposite momenta (i.e., the total
momentum vanishes in the center-of-mass frame)
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— - 2
§= m%c4 + m%c4 +2Eimac? = (Biom + EQCM)z - (Pch + chM) c?

2
= (Exom + Eaom)® = (EEXT)". (1.65)
Thus s is the square of the total energy available in the center-of-mass.

Hence, for mo initially at rest, we can write

Yo = Ey + m202 _ anbT
- TOT - TOT *
ECM ECM

(1.66)

The variable s is used frequently in describing high energy collisions, and
EZLOT is often referred to as /s. Clearly, from its structure in Eq. (1.65),
g can also be regarded as the rest mass or the invariant mass of the two
colliding objects.

In discussing scattering, it is often convenient to define another invariant
called t, the square of the four-momentum transfer in a collision. This
variable is just the square of the difference in the energy-momentum four-
vectors of the projectile before and after the scattering

t= (B —E;')2 G —ﬁf)zcz. (1.67)

Because momentum and energy are conserved separately in all collisions,
we can express t just as well in terms of target variables

t= (B -55) - (B[ -B) & (1.68)

Furthermore, since, just as s, t is also an invariant scalar, we can calculate
its value in any reference frame. In particular, let us analyze this quantity
in the center-of-mass frame. For simplicity, we will restrict ourselves to the

case of elastic scattering, for which IﬁéM\ = ‘ﬁéMl = ‘ﬁCM| and conse-

quently E&y; = Efy, for the two particles in the center-of-mass frame. It
follows from Eq. (1.67) that

2 -2 - .
t=- (PIfCM + Picn — 2Plgy - PfCM) ¢

= ~2PZ%\c*(1 — cosfom)- (1.69)
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where we have set lﬁ{CMl = IP}CMl = Pgopm, and where gy denotes the
scattering angle in the center-of-mass frame. Since —1 < cosfom < 1, we
conclude that for elastic scattering through any finite angle, ¢ < 0. On
the other hand, from its definition in Eq. (1.67), we can also think of ¢ as
the square of the mass of an exchanged particle (with energy E{ — Ef and
momentum 13{ — P} that mediates the scattering. Consequently, we must
conclude that if such an exchange process can be used to describe scatter-
ing, then the object being exchanged cannot be physical since it has an
imaginary rest mass. This means that although this “virtual” object can-
not be detected, if the picture is correct, its consequences can be calculated
and observed. Diagrams of the kind shown in Fig. 1.7, were pioneered by
Richard Feynman in the calculation of scattering amplitudes in quantum
electrodynamics (QED) and are referred to as Feynman diagrams (graphs).

i -
my, By, py my, Eva Pxf

VE (E-EY, G-5)

i "
mg, E3, p2 My, Ezfv Pg

Fig. 1.7 Exchange of a mediating object of mass v/% in the collision of masses m; and
ma.

For convenience, let us define a variable ¢? given by ¢2c? = —t. In the
laboratory frame, we have that ﬁgLab = 0 and, therefore, from Eq. (1.68)
we obtain

2.2 _ f 2)? f 2
e =- [(E2Lab — maC ) - (P2Labc) ]

s o ,
- [(E;Lab) - (P ZfLabc> — 2B ymac® + m%c“]
= - [2m§c4 — ZE{Labmzcz]

= 2mac? (Eszab - m2c2) = 2m202T2fLab,

or ¢*=2myT} ., (1.70)
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where, in the last step, we replaced EgLab by T2fLab + mac?. Thus, in the
nonrelativistic limit, where Thrab & 3 mav3, ¢° is just the square of the mo-
mentum transferred to the target, namely ¢*> ~ (mqvy)%2. We consequently
expect g2 to reflect the “hardness” of a collision, with small ¢ being charac-
terized by long-range (R ~ ?) soft collisions. Referring back to Eq. (1.69),
we see that small ¢ must correspond to small . We also see that, for
small fcm, ¢ ~ P05y ~ p2, or the square of the transverse momentum
developed as a result of the collision.
We will leave it to the reader to show, with the help of Appendix A,
that the relativistic equivalent of Eq. (1.51) is
ﬂ~ sin fom
yom(B cos fom + Bom)’

tanfrap = (1.71)

where fc is the velocity of the scattered particle in the center-of-mass frame.
Note also that Eq. (1.71) reduces to Eq. (1.51) in the limit of low velocities.

Finally, let us rewrite the Rutherford cross section of Eq. (1.37) in
terms of the momentum transferred between the two objects involved in
the scattering process. From Eq. (1.69) (and the relation between ¢ and
q?), we can deduce that

P40

dg*> = —2P2%d(cosf) = (1.72)

where we have ignored the small difference between center-of-mass and
Lab variables (Pirap = Picm = P = myug). Specializing to the case of
Rutherford scattering at low velocities and, for convenience, setting m =
my <€ ma, and v = vg in Eq. (1.37), we obtain

do _ (ZZ'62)2 1
4 ()

do _ 4n(ZZ'e*)* 1

aE T T

(1.73)
The ¢—* divergence of the cross section is characteristic of Coulomb scat-
tering, and reflects the r~! dependence of the potential. It is important
to recognize that there is a distribution in ¢2, with different events having
different momentum transfers. The rapid fall-off with ¢? implies that the
typical value of momentum transfer is small. The dispersion in this mean
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has important physical consequences that will be brought up in Chapter
6. Although the minimum value of ¢? can be zero, this corresponds to no
scattering; the maximum value (a rare occurrence, indeed!) is 4P?. Al-
though Eq. (1.73) was obtained using nonrelativistic kinematics, it also
holds, in fact, as v2 — ¢? (see, however, our comments in the section “Sizes
of Nuclei” in Chapter 2).

1.7 Quantum Treatment of Rutherford Scattering

We arrived at Eq. (1.73) through a rather circuitous classical route. We
will now end this section by sketching how the Rutherford cross section
can be calculated using quantum mechanics. This will be done through
an application of Fermi’s Golden Rule,* according to which the transition
probability to continuum states per unit time in perturbation theory is
given by

P :%lHﬁPP(Ef) o (1.74)

where p(Ey) is the density of final states and H #i denotes the matrix el-
ement of the perturbation Hamiltonian between the initial and the final
states

Hys = (fIB1) = [ @ro3(HE W), (1.75)

For the case of elastic Rutherford scattering, the wave functions are plane
waves, corresponding to free-particle states approaching (¢) and leaving (f)
the scattering center, and the perturbation Hamiltonian is the Coulomb po-
tential energy given in Eq. (1.23). For the incident and outgoing momenta

7 and 7', respectively, we can define the wave vectors k = g and k' = ﬁh—',
and a momentum transfer that results from the scattering ¢ = A(k' — k).
Except for an overall normalization of the wave functions, our matrix ele-

ment Hy; can now be written as

Hyi = / ! d3r ek T V(r) e T = . Brv(r) ex?T. (1.76)
space space

4A discussion of this famous result for transitions between states can be found in
standard texts on quantum mechanics.



30 Nuclear and Particle Physics

The integral on the right is the Fourier transform of V(r), and can be
thought of as the potential energy in momentum space. Doing the integra-
tion,® we find that

L 1,2 2
V(@) = /nll Brv(r) exd™ = (2Z'¢") (4nk’) eq)2(47rh )

space

: (1.77)

Evaluating the density of final states,® substituting into Eq. (1.74), and
relating the transition probability to the scattering cross section, leads to
the same expression as obtained in Eq. (1.73). Thus Rutherford’s result,
without any apparent reference to A, is also in agreement with quantum
mechanics (when effects of intrinsic spin are ignored).

Problems

1.1 Using Eq. (1.38) calculate the approximate total cross sections for
Rutherford scattering of a 10 MeV a-particle from a lead nucleus for impact
parameters b less than 10712, 1071° and 108 cm. How well do these agree
with the values of 7627

1.2 Prove that Eq. (1.55) follows from the relations in Egs. (1.53) and
(1.54).

1.3 Sketch cosfyan as a function of cosfcy for the nonrelativistic elastic
scattering of particles of unequal mass, for the cases when { = 0.05 and
¢ =20 in Egs. (1.52) and (1.53).

1.4 What would be the approximate counting rate observed in the Ruther-

T

ford scattering of 10 MeV a-particles off lead foil at an angle of § = % in
the laboratory? Assume an incident flux of 108 a-particles per second on
the foil, a foil 0.1 cm thick, and a detector of transverse area 1 cm x 1
cm placed 100 cm from the interaction point, and density of lead of 11.3
g/cm®. What would be the counting rate at § = 5°7 By about how much

5The Fourier transform corresponds to a generalization of the Fourier decomposition
of functions into series. Transforms of different functions can be found in mathemati-
cal tables and are useful for a variety of applications in physics. See, for example, L.
Schiff, Quantum Mechanics, (New York, McGraw Hill, 1968); A. Das and A. C. Melissi-
nos, Quantum Mechanics, (New York, Gordon & Breach, 1986); A. Das, Lectures on
Quantum Mechanics, (New Delhi, Hindustan Book Agency 2003).

6See a discussion of this issue, and matters pertaining to this entire section, in A. Das
and A. C. Melissinos, Quantum Mechanics, pp 199-204, A. Das, Lectures on Quantum
Mechanics, (New Delhi, Hindustan Book Agency 2003).
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would your answers change if the above angles were specified for the center-
of-mass — be quantitative, but use approximations where necessary. (Why
don’t you have to know the area of the foil?)

1.5 Sketch the cross section in the laboratory frame as a function of cos 0,y
for the elastic scattering of equal-mass particles when dggM is isotropic and
equal to 100 mb/sr. What would be your result for { = 0.05 in Eq. (1.52)7

(You may use approximations where necessary.)

1.6 Certain radioactive nuclei emit a particles. If the kinetic energy of
these a particles is 4 MeV, what is their velocity if you assume them to
be nonrelativistic? How large an error do you make in neglecting special
relativity in the calculation of v? What is the closest that such an a particle
can get to the center of a Au nucleus?

1.7 An electron of momentum 0.511 MeV/c is observed in the laboratory.
' —1
What are its 8 = %, v = (1 — 8%) " 2, kinetic energy, and total energy?

1.8 What are the approximate values of the kinetic energy er the recoil-
ing lead nucleus and the momentum transfers (in eV units) at the cutoffs
specified in Problem 1.17

1.9 Taking the ultrarelativistic limit of Eq. (1.71), find an approximate
expression for frap at oM = 7, and evaluate frap for yom = 10 and
vom = 100. Does the approximation hold best for particles with small or

large mass values?

1.10 What is the minimum impact parameter needed to deflect 7.7 MeV a-
particles from gold nuclei by at least 1°7 What about by at least 30°7 What
is the ratio of probabilities for deflections of 8 > 1° relative to 8 > 30°7
(See the CRC Handbook for the density of gold.)

1.11 Consider a collimated source of 8 MeV a-particles that provides 10%
afsec that impinge on a 0.1 mm gold foil. What counting rate would you
expect in a detector that subtends an annular cone of A8 = 0.05 rad, at
a scattering angle of 8 = 90°?7 Compare this to the rate at § = 5°. Is
there a problem? Is it serious (see Problem 1.12). (Hint: You can use the
small-angle approximation where appropriate, and find the density of gold
in the CRC Handbook.)

1.12 Consider the expression Eq. (1.41) for Rutherford Scattering of a-
particles from gold nuclei. Integrate this over all angles to obtain n. In
principle, n cannot exceed Ny, the number of incident particles. Why?
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What cut-off value for # would be required in the integral, that is, some 8 =
6o > 0, to assure that n does not exceed Ny in Problem 1.47 (Hint: After
integrating, use the small-angle approximation to simplify the calculation.)
Using the Heisenberg uncertainty principle Ap, Az ~ A, where Az is some
transverse distance corresponding to a change in transverse momentum of
Ap, = pinbo = vV2mE#§,, calculate the distances Az to which you have to
restrict the description of the scattering. Are these distances sufficiently
restrictive? Explain!

Suggested Readings
Geiger, H. and E. Marsden, Philos. Mag. 25, 604 (1913).

Rutherford, E., Philos. Mag. 21 669, (1911).
Thomson, J. J., Cambridge Lit. Phil. Soc. 15, 465 (1910).



Chapter 2

Nuclear Phenomenology

2.1 Introductory Remarks

The original Rutherford-scattering experiments demonstrated that each
atom had a positively charged central core that we call its nucleus. How-
ever, even the original experiments of Geiger and Marsden showed devi-
ations from the Rutherford formula at a-particle energies above 25 MeV,
and especially for scattering from nuclei of low-Z. Also, in the late 1920s,
James Chadwick noticed serious discrepancies between expectations from
Coulomb scattering and the elastic scattering of a-particles on helium. The
observed differences could not be attributed to expected quantum effects,
first calculated by Neville Mott. All this indicated very clearly that there
was more than just the Coulomb force involved in nuclear scattering.
Prior to the discovery of the neutron by Chadwick in 1932, it was
thought that the nucleus contained protons and electrons, but it is now
recognized that the nucleus consists of protons and neutrons — collectively
known as nucleons. Most of what we know about nuclei and the nuclear
force has been obtained through decades of painstaking experimentation. In
what follows, we will merely summarize the main features of the physics of
the nucleus, and only occasionally present some of the crucial experimental
underpinnings that led to the elucidation of nuclear phenomena.

2.2 Properties of Nuclei

2.2.1 Labeling of Nucle:

The nucleus of any atom X, can be labeled uniquely by its electric charge or
atomic number Z, and its total number of nucleons A4, and is conventionally

33
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represented as “XZ. Alternatively, it can be specified by the number of
protons (Z) and the number of neutrons (INV = A — Z). Because the whole
atom is electrically neutral, the nucleus must be surrounded by a cloud
of Z electrons. A great many nuclei, with different Z and A values have
been found in nature or produced in the laboratory. Nuclei with the same
number of protons but different number of neutrons are known as isotopes;
thus 4XZ and 4’ XZ are isotopes of nucleus X, and all such atoms have
similar chemical properties. Nuclei that have the same total number of
nucleons but different number of protons are called isobars; thus 4XZ and
AYZ' are isobars. Just as an atom can be found in its ground state as well
as in an excited state, so also can a nucleus be excited to higher levels, and
such states are referred to as a resonances or isomers of the ground state.

2.2.2 Masses of Nuclei

As we already mentioned, a nucleus, 4XZ, contains Z protons and (A — Z)
neutrons. Thus, naively, we would expect the mass of the nucleus to be
M(A,Z) = Zmy + (A — Z)my, (2.1)
where m, and m, denote, respectively, the mass of the proton and the
neutron, with
my, ~ 938 - 27 MeV/c?,
my, = 939 - 56 MeV/c?. (2.2)

However, the measured values of nuclear masses reveal that the mass of a
nucleus is smaller than the sum of the masses of its constituents.! Namely,

1As an aside about masses, we should point out that isotope charts usually give
masses of neutral atoms and not of nuclei. To get the nuclear mass one must subtract the
electron masses (Zm.) from the atomic weights (ignoring the small differences in electron
bindings). Unfortunately, chemists and physicists use different mass scales. Chemists
assign 16.0 atomic mass units (amu) to the “natural” isotopic mixture of oxygen found
on earth, while physicists assign 16.0 amu to the atom of 108, One amu is the mass
in grams of one fictitious atom that has an atomic weight of 1.0000 gm. Thus 1 amu
= (Ag") gm = 1.6606 x10724 gm. (The latest value for Ao is (6.022098-% 0.000006)
%x10?% mole~!.) There is also the unified mass unit “u”, defined as T1§ of the mass of
the 12C atom. We will use mp = 1.00728 amu = 938.27 MeV/c? = 1.6726 x 10724 g,
and mp = mp + 1.29332 MeV/c2.



Nuclear Phenomenology 35

M(A,Z) < Zmp+ (A= Z)mp,. (2.3)

This explains why an isolated nucleus cannot just fall apart into its con-
stituents, because that would violate the principle of conservation of energy.
The mass deficit, defined as

AM(A,Z) = M(A, Z) — Zmp — (A — Z)ma, (2.4)

is negative, and can be thought of as being proportional to the nuclear
binding energy (B.E.); the absolute value of AM is related to the mini-
mum energy required to break up the nucleus into its components. Thus
a negative B.E. will assure that the nucleus holds together, and the more
negative is the value of AM, the more stable is the nucleus. The mass
deficit and the B.E. are related simply through c?

B.E. = AM(A,Z)c?, (2.5)

where c is the speed of light. Thus, —AMc? or — B.E. is the amount of
energy required to release all the nucleons from their captivity within the
nucleus. It is also useful to define a binding energy per nucleon, or average
energy needed to release a nucleon from a nucleus, as

B _-BE. —AM(A,2)c

A T4 A
L Emet i D MU ZNE (2.6)

This quantity has been measured for a wide range of stable nuclei (see Fig.
2.1) and, except for some fine structure that we will discuss later, shows
some remarkable features.

For low-mass nuclei (A < 20), —% oscillates somewhat and increases
rapidly with A, and then saturates, reaching a peak value of about 9 MeV
per nucleon near 4 = 60; for larger 4, % drops very slowly. An approximate
average value of % for a wide range of nuclei can therefore be taken as about
8 MeV per nucleon. As we will see, these characteristics have important
implications for the nature of the nuclear force and the structure of the
nucleus. One immediate deduction is that if we deposit about 8 MeV of
kinetic energy inside the nucleus, and transfer it all to one nucleon, then we
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Fig. 2.1 The binding energy per nucleon for the most stable nuclei.

can, in principle, free that nucleon from the binding of the strong force, and
it can escape the nucleus and materialize. To appreciate the significance of
this observation, let us recall that all quantum-mechanical objects display
wave behavior. In fact, for any particle with momentum p, we have an
associated wavelength (according to de Broglie’s hypothesis)

X =<, (2.7)

where /i and X are respectively Planck’s constant and the wavelength A
divided by 27 (referred to as the reduced wavelength). (The de Broglie
bound-state requirement corresponds to 2zr = n), and X consequently
reflects a typical radial size.) Now, let us assume that we transfer about 8
MeV of kinetic energy to a nucleon within a nucleus. Being quite massive (m
~ 940 MeV/c?), the nucleon will be essentially non-relativistic. Calculating
its wavelength from non-relativistic kinematics, we obtain

E _h ke
P V2mT  VomerT
197 MeV ~fm 197

oY ——

~ ~ ' fm ~ 1.6 fm,
V2% 940 x 8 MeV 120 m

X =
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or X = 1.6x1073cm, (2.8)

where 1 fm is a femto-meter (107**m) or one fermi (after Enrico Fermi).
This wavelength is within the typical range of nuclear dimensions, and it is
therefore reasonable to expect to localize nucleons of such energies within
the nucleus. Consequently, a nucleon with about 8 MeV of kinetic energy
(or 120 MeV/c momentum) could either be absorbed into or emitted from
a nucleus. On the other hand, if electrons were present inside a nucleus, a
kinetic energy of about 8 MeV would make them relativistic, and in this
case pc = T =~ 8 MeV would yield a far larger de Broglie wavelength

s _ B e B 197MeV—fm
T p T T 8MeV ~ 8MeV

~ 25fm ~ 2.5 x 10~ 2cm. (2.9)

With a de Broglie wavelength substantially larger than any nuclear radius,
it would be unnatural to imagine an electron of ~ 8 MeV energy residing
inside a nucleus. Well, then what about an electron with momentum of 120
MeV/c 7 That kind of electron could, in principle, fit into a nucleus, but
it would have 120 MeV of energy, and would therefore not be consistent
with the energy scales of ~ 8 MeV characterizing nuclear binding. This
is, of course, a rather heuristic argument against the presence of electrons
within nuclei, but more direct experimental observations also support this
deduction. (We will return later to other implications of £.)

2.2.3 Sizes of Nuclei

The size of a subatomic object must be defined rather carefully. For a

quantum mechanical system, the size normally refers to the expectation

value of the coordinate operator in an appropriate state. For an atom, this .
would correspond to the average coordinate of the outermost electron. This

can usually be calculated, at least perturbatively. In the nuclear domain,

there is no simple expression for the force, and we therefore have to rely on

interpretation of experiments to determine size.

There are several ways to go about this. First, for the low-energy
Rutherford-scattering experiment, when the impact parameter is zero,
namely when the projectile collides head-on with the scattering center, the
distance of closest approach is a minimum (see Eq. (1.25)), given by
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min _ £2'€?

0 B
Such particles will, of course, be scattered backwards (§ = x), and this
distance of closest approach provides an upper bound on the size of the
nucleus. The assumption is that low energy a-particles cannot overcome the
repulsive Coulomb barrier of the nucleus, and therefore cannot penetrate
into the nucleus. Such low energy measurements yield relatively poor upper
limits, typically,

(2.10)

Rayw $32x107%2cm,  Rag $2x107cm. (2.11)

An alternative way to measure the sizes of nuclei is to scatter very high
energy charged particles such as electrons off nuclei. For head-on collisions
(i.e., when the impact parameter vanishes) we see from Eq. (2.10) that as
FE increases

riin 0. (2.12)

That is, higher-energy particles probe deeper into the nucleus. Because
electrons interact mainly through the electromagnetic force, and are not
sensitive to the nuclear force, they are influenced primarily by the electric-
charge structure of the nucleus. In other words, using electron scattering,
we can deduce the distribution of charge (the “form factor”) in a nucleus,
and the radius of the charge distribution can be defined as an effective
size of the nucleus. At relativistic energies, the magnetic moment of the
electron also contributes to the scattering cross section. Neville Mott was
first to formulate Rutherford scattering in the quantum domain, and to
include such spin effects. Systematic studies of the scattering of high-energy
electrons, initiated by Robert Hofstadter and his colleagues during the late
1950s, revealed the effects of spin and the extended nature of the nuclear
charge distribution, including that of the proton.

For any given spatial charge distribution p(7) normalized to unity, we
can define a form factor of the target in terms of its Fourier transform F(¢)
in momentum transfer, as given in Eq. (1.77)

F(§) = / L drp(®) ek i, (2.13)

space
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In general, this form factor modifies the cross section for elastic scattering
of electrons from a point-like center, as follows

do 2 [ do
=P (55) (214)

where the subscripted differential cross section is the Mott cross section
for the scattering of point particles, which for high-energy scattering of
electrons on a massive nuclear target can be related to the Rutherford
formula as

do ) 6 < do )
— =4cos’- [ = (2.15)
(dQ Mott 2 \dQ Ruther ford

Thus, deviations from the distribution expected for point-scattering provide
a measure of size (and structure) of the objects involved in the collision. Be-
cause electrons are thought to be point particles, the observed distribution,
therefore, reflects the size of the nuclear target.

There is yet another way of studying sizes of nuclei by taking advantage
of the strong force. In particular, the relatively weak Coulomb interaction
can be neglected in the elastic scattering of sufficiently energetic strongly-
interacting particles (such as 7 mesons, protons, etc.) from nuclear targets.
Such projectiles interact quite readily with nuclei, and are thereby “ab-
sorbed” out of the beam — very similar to the way light gets removed by
an absorbing disc. The result of the absorption is a diffraction pattern —
again, similar to that observed in the scattering of light from a slit or grat-
ing. The size of the nucleus, which acts in many ways as an absorbing disc,
can therefore be inferred from the diffraction pattern.

All these phenomenological investigations have provided a remarkably
simple relation for the radial size of the nucleus as a function of its nucleon
number A

R =roAS
~1.2x 1071343 cm = 1.245 fm. (2.16)

From the preceding we can conclude that nuclei have enormous mass den-
sities of ~ 10'4gm/cm?®, and that nucleons are tightly packed inside the
nucleus.
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Fig. 2.2 Differential elastic cross sections for scattering of «+ mesons of momentum of
~ 270 MeV/c from carbon and calcium targets. The unit mb is 10~3 of a barn (see
p. 15). Using the de Broglie wavelength for the «+, and the optical analogy for the
first minimum in the scattering, yields nuclear radii close to values expected from Eq.
(2.16); also, the ratio of the angles at the minima for the two targets scale as the radii’
of these nuclei. (Data are based on C. H. Q. Ingram in Meson-Nuclear Physics - 1979,
AIP Conference Proc. No. 54.)

2.2.4 Nuclear Spins and Dipole Moments

Both the proton and the neutron have spin angular momentum of %h. Fur-
thermore, just as electrons in an atom can have orbital angular momentum,
so also can nucleons inside a nucleus. We know from quantum mechanics
that orbital angular momentum can take on only integral values. The total
angular momentum of the constituents — namely, the vector sum of the or-
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bital and intrinsic spin angular momenta — defines the spin of the nucleus.
Thus, it is not surprising that nuclei with even atomic number have inte-
gral nuclear spin whereas nuclei with odd atomic number have half-integral
nuclear spin. However, what is surprising is that all nuclei with an even
number of protons and an even number of neutrons (even-even nuclei) have
zero nuclear spin. It is equally surprising that large nuclei have very small
nuclear spins in their ground states. These facts lend credence to the hy-
pothesis that spins of nucleons inside a nucleus are very strongly paired so
as to cancel their overall effect.

Every charged particle has a magnetic dipole moment associated with
its spin, given by

€

955 (2.17)

ﬁ ==
where e, m and § are the charge, mass and the intrinsic spin of the charged
particle. The constant g is known as the Landé factor, which for a point
particle, such as the electron, is expected to have the value g = 2. (In fact,
small deviations at the level of 103 have been observed for the “point-like”
electron, but this agrees with expectation from field-theoretical calculations
based on quantum electrodynamics, or QED.) When g # 2, the particle is
said to possess an anomalous magnetic moment, which is usually ascribed
to the particle having a substructure. For the electron (with |S.| = % k),
the dipole moment p, & pp, where pp is the Bohr magneton, defined as

eh

MeC

=5.79 x 107! MeV/T, (2.18)

where a magnetic field of 1 tesla (T) corresponds to 10% gauss (G). The
magnetic dipole moment for nucleons is measured in terms of the nuclear
magneton, defined using the proton mass

eh
by = (2.19)

T 2mye’
From the ratio of %-:l, we deduce that the Bohr magneton is about 2000

times larger than the nuclear magneton.
The magnetic moments of the proton and the neutron are
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tp = 2.79 un,
b A —1.91 pp. (2.20)

Consequently, both nucleons have large anomalous contributions to their
moments. This provides indirect evidence that these particles have addi-
tional structure. In fact, since the neutron is electrically neutral, its sizable
magnetic moment is particularly dramatic, and points to the fact that the
neutron must have an extended charge distribution. The measurement
of magnetic dipole moments for different nuclei has yielded the surprising
result that all their values lie between —3 u and 10 . This again is ev-
idence for strong pairing inside the nucleus. Furthermore, this also shows
that electrons cannot be present inside nuclei because it would then be par-
ticularly hard to explain the small values of nuclear moments, since even
one electron would produce a moment a thousand times that observed for
nuclei.

2.2.5 Stability of Nuclei

When we examine the characteristics of stable nuclei, we find that for
A < 40 the number of protons equals the number of neutrons (N = Z).
But beyond A = 40, stable nuclei have N =~ 1.7Z; namely, neutrons far
outnumber protons (see Fig. 2.3). This can be understood from the fact
that, in larger nuclei, the charge density, and therefore the destabilizing
effect of Coulomb repulsion, is smaller when there is a neutron excess.

Furthermore, a survey of the stable nuclei (see Table 2.1) reveals that
even-even nuclei are the ones most abundant in nature. This again lends
support to the strong-pairing hypothesis, namely that pairing of nucleons
leads to nuclear stability.

Table 2.1 Number of stable nuclei in nature.

N Z  Number of Stable Nuclei

Even Even 156
Even Odd 48
Odd Even 50

0Odd 0Odd 5
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2.2.6 Instability of Nuclei

In 1896, through sheer accident, Henri Becquerel discovered natural ra-
dioactivity. He was studying fluorescent properties of uranium salts by
exposing the material to the sun and then photographing the emission spec-
trum. Because the weather was cloudy, he stored the compound as well as
some photographic plates inside a desk drawer. When he subsequently de-
veloped the plates, he noticed that they were overexposed, and surmised
that the uranium compound must have emitted penetrating radiation of
a variety quite different from fluorescence. This was the first observation
of natural nuclear radioactivity, and subsequent studies have revealed that
such spontaneous emission is a common phenomenon, especially for large
nuclei.

Nuclear radioactivity involves the emission of essentially three kinds of
radiation: a-radiation, S-radiation and y-radiation. Each of these emana-
tions has distinct properties that can be characterized in the following way.
Consider a radioactive source located at the bottom of a narrow and deep
cavity within a piece of lead. Because lead easily absorbs nuclear radiation,
the cavity will therefore function as a source of a well collimated beam of
radiation (see Fig. 2.4). If a magnetic field is applied perpendicular to
the plane of the paper in Fig. 2.4, the beam will bend if it contains any
charged components. The direction of bending will depend on the sign of

120 +

100 |

Neutron Number N

Atomic Number Z

Fig. 2.3 Neutron number as a function of atomic number for a representative sample
of most stable nuclei.
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the electric charge, and the amount of bending will be determined by the
momentum of the particles. Such simple experiments demonstrated that
a-rays have positive charge, and because most of them arrived close to the
same spot on the screen, they indicated that the a-particles in the beam
were essentially mono-energetic, with typical velocities of about 0.1 ¢. Fur-
thermore, the range of a-particles was found to be relatively short. (We
will discuss in Chapter 7 how such measurements can be carried out.) In
contrast, the most common forms of §-rays were found to bend in a di-
rection opposite to that of a-rays, indicating that S-radiation consisted
of negatively charged particles. The S-particles were observed to be well
dispersed along the screen, which meant that, unlike the a-particles, the
B-particles had a continuous spectrum of velocities, which were as high as
0.99c¢. Other measurements revealed that g-particles had longer ranges and
were less ionizing than a-particles. (We will discuss ionization in more de-
tail in Chapter 6.) It took about 3 mm of lead to stop typical S-particles,
while a piece of paper sufficed to stop a-particles. Finally, a third form
of emission, namely ~-radiation, was observed to arrive undeflected at the
center of the screen, suggesting that these objects had no charge. In fact,
~-rays behaved in all respects like electromagnetic radiation, and it was
therefore concluded that they were photons that traveled with the speed
of light. Measurements revealed that ~-rays had much longer ranges and
produced even less ionization per unit path than S-rays. It took typically
several cm of lead to completely stop (absorb) ~y-rays.

o ¥ B
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Fig. 2.4 Separation of «, # and ~-rays in a magnetic field.

It is, of course, also possible to deflect charged particles using an elec-
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tric field. In fact, by applying an electric field in the plane of the paper
in Fig. 2.4, perpendicular to both B and to the beam axis, and adjusting
the magnitudes of the electric and the magnetic fields, the deflection of
any charged particle can be varied, and even completely canceled. For a
given electric and magnetic field, the deflection is a function of the charge
and mass of the radioactive emission, and such measurements of deflections
revealed that a-particles carried two units of positive charge and four units
of atomic mass. In other words, a-particles were merely the very stable nu-
clei of helium atoms, namely *He?. Similarly, through such measurements,
(B-particles were identified as electrons. Thus, the most common forms of
natural nuclear radiation, namely a-rays, B-rays and ~-rays correspond,
respectively, to the spontaneous emission of helium nuclei, electrons and
energetic photons by heavy nuclei. It should be recognized, however, that
any nuclear fragment can also be regarded as a form of radiation. (More
quantitative aspects of &, 8 and -y emission will be treated in Chapter 4.)

2.3 Nature of the Nuclear Force

In addition to determining the properties of nuclei, scattering experiments
also provide more global information on the character of the nuclear force,
as we will summarize below, ,

First of all, it is clear that the nuclear force has no classical analog. The
gravitational attraction between nucleons is far too weak to bind them to-
gether. And the nuclear force cannot have an electromagnetic origin, since
the nucleus of the deuteron contains only one proton and one neutron, and
the neutron, being charge-neutral, has only very weak electromagnetic in-
teractions (due to its magnetic dipole moment). In fact, the electromagnetic
interaction (namely Coulomb repulsion) primarily destabilizes the nucleus.

It is also clear that the nuclear force must be extremely short-ranged.
For example, the structure of the atom is explained exceedingly well just
by the electromagnetic interaction. Consequently, the range of the nuclear
force cannot be much greater than the size of the nucleus, simply because,
otherwise, it would affect the excellent agreement between theory and ex-
perimental observations in atomic physics. This argument would suggest
that the range of the nuclear force is limited to about 10~*3cm — 10~*2cm,
which corresponds to the approximate size of nuclei. ,

Other important evidence for the short-ranged nature of the nuclear
force comes from the fact that the binding energy per nucleon is a constant,
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essentially independent of the size of the nucleus. In fact, if the nuclear
force had a long range like the Coulomb force, then given A nucleons,
there would be 1 A(A — 1) pairwise interactions between them (that is, the
total number of independent combinations for A nucleons, taken two at
a time). Correspondingly, the binding energy, which basically reflects the
total potential energy of all possible interactions among the nucleons, would
grow with the number of nucleons as

B o A(A - 1). (2.21)

Thus, for large values of A, we would have

g o< A. (2.22)

In other words, if the force between any two nucleons were independent
of the presence of other nucleons, the binding energy per nucleon would
grow linearly with A. This is, in fact, what happens for the Coulomb force,
and it is primarily because a long-ranged force does not saturate, in the
sense. that any single particle can interact with as many other particles
as are available. The net effect of this kind of force is that the binding
becomes ever tighter as the number of interacting objects increases, and,
as a result, the size of the interaction region remains fairly constant. This
is the situation for the case of atomic binding, where atoms with a large
number of electrons have sizes comparable to those with few electrons.

For the case of .nuclei, however, we see from Fig. 2.1 that the binding
energy per nucleon is essentially constant, and therefore we conclude that
the nuclear force must saturate. Namely, any given nucleon can interact
with only a finite number of nucleons in its neighborhood. Adding more
nucleons to a nucleus therefore only increases the size of the nucleus but
not the binding energy per nucleon. As we have seen before in Eq. (2.16),
the size of a nucleus grows slowly with atomic number in a way so as to
keep the nuclear density essentially fixed. These observations again lend
support to the fact that the nuclear force is short-ranged.

In general, to keep the nucleons within a nucleus, the nuclear force must
be attractive. However, experiments in which high energy particles were
scattered off nuclei have revealed that the nuclear force has a repulsive
core. Namely, we find that below a certain length scale, the nuclear force
changes from attractive to repulsive. (The presence of the repulsive core
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is best attributed to a quark substructure of the nucleon.) Conceptually,
this result is appealing because, if the nuclear force were attractive at all
distances, then the nucleus would collapse in on itself. Pictorially, we can
represent the behavior of the nuclear force through a square-well potential
that an incident nucleon can sense as it moves toward the nuclear center
(see Fig. 2.5).
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Fig. 2.5 Approximate description of the nuclear potential as a function of distance to
the center. The repulsive core is sensed only at small distances (§ < R).

Because low energy particles cannot probe short-distance behavior in the
nucleus, to an excellent approximation the repulsive core can be ignored in
problems pertaining to low-energy nuclear structure, and the nuclear force
can be represented adequately through just a square-well potential.

We should point out that we do not expect the nuclear density nor the
nuclear force to cut off suddenly at some r = R, and so the square well
is meant to represent only the general effects of the nuclear force. It is
more appropriate for incident neutrons than, for example, for protons, or
for other incident nuclei, which, in addition, are subject to the repulsive
Coulomb potential due to the positive charge of the nucleus (see Fig. 2.6).
In the presence of Coulomb repulsion, an incident proton of total energy Eq
senses the Coulomb barrier as it approaches the nucleus. Classically, the
proton cannot get closer than r = ri®, because, for R < r < r§™, V(r)
would exceed Ep, and the kinetic energy would have to be negative, which
is not physically possible. However, ignoring the repulsive core for 7 < 4 in
Fig. 2.5, a neutron of same energy could penetrate into the nuclear center.

It was once the hope that low-energy scattering experiments could be
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used to obtain the exact shape of the nuclear potential, but it turns out
that the results of the scattering are not very sensitive to the details of
the shape, but primarily to the range and the height of the potential. The
square well is one of several forms of potentials that can provide a good
phenomenological description of the nuclear force.

The fact that the nuclear force can be described through a potential
energy function of the kind shown in Fig 2.5, suggests on the basis of
quantum theory that nuclear systems can have discrete energy levels and
corresponding bound states similar to the type found in atomic systems.
The presence of such nuclear quantum states, and the transitions between
them, have been confirmed in a variety of ways. They can be inferred from
scattering experiments and through studies of the energies observed for
emitted nuclear radiation. The modeling of ground levels and excited nu-
clear states formed one of the early testing grounds for quantum mechanics.
Some of the experimental evidence for nuclear levels, and several successful
nuclear models, will be described in the following chapters.

Coulomb
L Repulsion vir)
~
~
~
Vir) e — e — S — e Ey

1 Neutron

Fig. 2.6 The potential energy of a proton and a neutron incident on a nuclear target.
(Recall that, as a charged particle enters the nucleus, it sees less of the total nuclear
charge, and the character of the classical potential changes from % to (3R? — r?), and
consequently the potential remains finite at r = 0.)

Studies of mirror nuclei,? and the scattering of protons and neutrons,
demonstrate the interesting fact that, once we correct for known Coulomb
effects, the force between two neutrons is the same as the force between two
protons, which also coincides with the force between a proton and a neutron.
This property of the nuclear force is referred to as charge independence.
Namely, the strong nuclear force between two particles is independent of the

2Mirror nuclei are isobars that have proton and neutron numbers interchanged as in
AXZ and 4YA-Z (e.g., 1508 and 15N7). Such pairs of nuclei have the same number of
n-p interactions, but differ in their number of p-p and n-n interactions.
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electric charge carried by these particles. This is a remarkable result and,
as we will see in Chapter 9, it leads to the concept of strong isotopic-spin
symmetry. Very briefly, this symmetry implies that, just as the “spin-up”
and the “spin-down” states of an electron correspond to two different spin
states of the same particle, so the proton and the neutron correspond to
two states of the same particle called the nucleon. If we could turn off the
Coulomb field, the neutron and the proton would be indistinguishable in
their nuclear interactions. This is analogous to the indistinguishability of
spin up and spin down states in the absence of a magnetic field. We will
discuss this symmetry in more detail in Chapter 9.

Let us examine the question of range of the nuclear force from a some-
what different perspective, and note that the electromagnetic force between
two interacting charged particles can be understood as a result of an ex-
change of a photon between them. Photon propagation is described by the
Maxwell Equations, which correspond to propagation at the speed of light
(see Chapter 13). Consequently, we presume that the photon is massless.
Furthermore, the Coulomb force is represented by the potential

V(r) % (2.23)

which, of course, shows explicitly that it is a long-ranged force.
For the case when the exchanged particle is massive, Hideki Yukawa
showed in 1934 that the corresponding potential takes the form

r

V(r) o« ——, (2.24)

me
k

where m is the mass of the particle mediating the interaction.

In the limit that m vanishes, we recover the Coulomb potential of Eq.
(2.23), and conclude again that the range of the Coulomb force is infinite,
which is consistent with experiment. From the form of the Yukawa poten-
tial, the range for the interaction is given by some characteristic value of'r,
which also corresponds to the Compton wavelength of the object of mass m

[
X =—. 2.25
— (2.25)
Therefore, once we know the mass of the exchanged particle, we can predict
the range of the force. Conversely, if we know the range of the force, we



50 Nuclear and Particle Physics

can also predict the mass of the particle being exchanged. For the case of
the nuclear force, a simple calculation shows that

_h
 xc’

2 _ hc _ 197MeV-fm

=¥ ®12x10-Bem ~ 164 MeV. (2.26)

or mc

But this is approximately the mass of the well known 7 meson (pion). There
are, in fact, three pions, with masses
Myt = Mg- = 139.6 MeV/c?,

myo = 135 MeV/c2. (2.27)

This suggests that pions might be the mediators of the nuclear force. We
will return later to a discussion of pions, other mesons, and their place in
the development of the full story of charge independence of the strong force.

Problems

2.1 Calculate the approximate density of nuclear matter in gm Jem®. What
would be the mass of a neutron star that had the diameter of an orange?

2.2 Calculate the difference between the binding energy of a nucleus of 12C
and the sum of the binding energies of three *He nuclei (a-particles). As-
suming that 12C is composed of three a-particles in a triangular structure,
with three effective “a-bonds” between them, what would be the binding
energy per a-bond? (See CRC Handbook for Chemistry and Physics for
mass values.)

2.3 Calculate the binding energy of the last neutron in *He and the last
proton in *0. How do these compare with £ for these nuclei? What does
this tell you about the stability of *He relative to->He, and of 60O relative.
to ®N7? [Hint: the binding energy of the last neutron needed to form a
nucleus (A,Z) is given by [M(A —1,Z) + m, — M(A, Z)] 2. An analogous
expression holds for the last proton.].

2.4 Starting with cgs quantities, calculate the value of up = 2;:: -, and

convert it to MeV/T units. (Hint: you can relate forces and magnetic
fields through the Lorentz force F = 9—'7:—3.)
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2.5 Assume that the spin of a proton can be represented by a positive
pion moving at a speed c in a circular orbit of radius 107!% cm about a
neutral center. Calculate the current and the magnetic moment associated
with this motion. Compare this with the known magnetic moment of the
proton. (Hint: recall that using cgs units you can write a magnetic moment

—

i= () A, where I is the current flowing around the area A.)

2.6 We argued previously that the 7+ mesons in Fig. 2.2 scattered not
from individual nucleons, but rather (coherently) from the entire nuclei.
In fact, the first minima (n = 1) corresponded to 6 = %, with R being

consistent with 1.24%. At higher energies, when larger momenta can be
transferred to nuclei, it is possible to dislodge a single proton or neutron
from the nucleus. When this happens, the 1 mesons can be termed to
scatter elastically from quasi “free” nucleons. How would this affect the
diffraction pattern in Fig. 2.27 What about if you could scatter from very
small point-like constituents within nucleons? (Would the fact that a =+
is not a point particle affect your answer?)

2.7 Normally, in optics, one looks at the diffraction pattern as a function
of angle #. In this case, the value of 8 at the first minimum changes with
wavelength or momentum. Can you see any advantage to using a vari-
able such as ¢ ~ p% ~ (pf)? to examine diffraction patterns at different
scattering energies? Sketch how the pattern might look for scattering of
7T mesons of different energies from nuclear targets. Now, as energy in-
creases, and larger ¢ become possible, what would be the effect of having
nucleon substructure within the nucleus? What about point substructure
within the nucleon? (Does your answer depend on whether the 7+ has such
substructure?)

2.8 What are the frequencies that correspond to typical splitting of lines
for nuclear magnetic moments in magnetic fields of ~ 5 tesla?

2.9 Show that when non-relativistic neutrons of kinetic energy FEy collide
head-on with stationary nuclei of mass number A, the smallest energy that
elastically-scattered neutrons can have is given approximately by

A-1\?
Enin = Eo (:m) .

What will be the approximate energies of the neutrons after one, two, and
any number j of such consecutive collisions, if the target nucleus is hydro-
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gen, carbon, and iron?

2.10 Using the results of Problem 2.9, calculate the number of collisions
needed to reduce the energy of a 2 MeV neutron to 0.1 MeV through elastic
collisions between the neutron and carbon nuclei.

2.11 For ¢ << 1, the exponential in the elastic form factor of Eq. (2.13)
can be approximated as 1+ik-7— 1 (k-7)?, where k = £¢. Calculate |F(q)|?
in terms of a root-mean-square radius of the charge distribution R = +/(r?),

for p(r) described by (a) a uniform distribution of charge within r = R, and
2

(b) a Gaussian p(r) = %\/ge_%f, and show that in both cases |F(g)|? falls
off approximately exponentially with ¢?. (Hint: Use symmetry arguments
to eliminate the & - 7 term by recognizing that E-7=kez+ kyy+k.z. Also,
note that for a spherically symmetric p(r), (z2) = (y?) = (%) = 3(r?), and

(r¥y = [4nridr r?p(r).)
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Chapter 3

Nuclear Models

3.1 Introductory Remarks

A variety of early experiments demonstrated that the character of the nu-
clear force differed markedly from any previously encountered in classical
physics. However, a quantitative description of the nuclear force has turned
out to be elusive. As we learned from atomic physics, where the correct level
structure was found only after the classical Coulomb interaction between
the nucleus and the electrons was extended to the atomic domain through
gquantum mechanics, knowing the properties of a force is only the first step
in developing a theory of structure. Although neutrons and protons were
known to be the nuclear constituents, the absence of a fundamental under-
standing of the nuclear force made it difficult to determine the structure
of the nucleus. It is not surprising therefore that, instead of a theory, phe-
nomenological models of the nucleus were constructed to accommodate the
many remarkable experimental findings. In the following, we describe only
a few such models. We should also keep in mind that, unlike the case of
atomic physics, most of these nuclear models were proposed to explain only
limited aspec;cs of the data, which is precisely what they do.

3.2 Liquid Drop Model

The liquid drop model of the nucleus was one of the earliest phenomenolog-
ical successes constructed to account for the binding energy of a nucleus.
As we have already discussed, experiments revealed that nuclei were es-
sentially spherical objects, with sizes that could be characterized by radii
proportional to A%, which suggested that nuclear densities were almost in-
dependent of nucleon number. This leads quite naturally to a model that

53
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envisions the nucleus as an incompressible liquid droplet, with nucleons
playing the role analogous to molecules in a drop of normal liquid. In this
picture, known as the liguid drop model, the individual quantum properties
of nucleons are completely ignored.

As in the case of a liquid drop, the nucleus is imagined as composed of
a stable central core of nucleons for which the nuclear force is completely
saturated, and a surface layer of nucleons that is not bound as tightly
(forces not saturated). This weaker binding at the surface decreases the
effective binding energy per nucleon (—IA?), and provides a “surface tension”,
or an attraction of the surface nucleons towards the center (see Fig. 3.1).
If, as experiments suggest, a constant binding energy (B.E.) per nucleon
can be attributed to the saturation of the nuclear force, then on the basis
of these considerations we can write a general form for the binding energy
of a nucleus as follows

B.E. = —a;4 + ay A3, (3.1)

where the first term represents a volume energy for the case of uniform
saturated binding (remember that volume o« R® o A), and the second
term corrects for any over-estimation due to the surface tension. It is clear
that the correction to the binding energy per nucleon in Eq. (3.1) is higher
for lighter nuclei because these have a larger surface-to-volume ratio of
nucleons. That is, small nuclei have relatively more nucleons on the surface
than in the core. This can explain why the binding energy per nucleon is
smaller for lighter nuclei.

Fig. 3.1 Surface layer and core of nucleus in the liquid drop model.
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In this same model, the small decrease in binding energy per nucleon for
very heavy nuclei can be understood as due to Coulomb repulsion. Namely,
if the nucleus has Z protons, then the electrostatic (Coulomb) energy of
these protons, which has a destabilizing effect, has the form « —ZR;. Thus,
adding such a positive term to reduce the binding strength, we can write

2
B.E. = —CL1A + (ZQA% + as %, (32)
3

The three terms in Eq. (3.2) arise from purely classical considerations.
Unfortunately, they do not accommodate the fact that lighter nuclei with
an equal number of protons and neutrons are particularly stable. In other
words, Eq. (3.2) does not lead to stronger binding and greater stability
(that is, more negative B.E.) for light nuclei that have N = Z. Similarly,
Eq. (3.2) does not provide the natural abundance of even-even nuclei nor
the paucity of odd-odd nuclei. Such observations can be understood mainly
as arising from quantum effects (spin, statistics, etc.). Within the frame-
work of the liquid drop model, they can be included by generalizing the
empirical formula for binding energy to contain additional phenomenologi-
cal terms

z? (N — Z)?

B.E. = —a1A+a2A§ +a3 — + a4 :}:asA_%, (33)
A3 A

where all the coefficients a;, as, as, a4, as are assumed to be positive.
Note that the fourth term implies that, unless V = Z, the binding energy
will contain a positive contribution that will destabilize the nucleus. For
small Z, where destabilization from the a3 term is not very important,
the a4 term reflects the stability of N = Z nuclei. In the last term, the
positive sign is chosen for odd-odd nuclei, implying that such nuclei are
relatively unstable. On the other hand, for even-even nuclei, the sign is
taken as negative, implying greater stability and, therefore, abundance of
such nuclei in nature. For odd-A nuclei, the value of as is chosen to be
zero, primarily because the binding energy for such nuclei can be described
quite well without the last term in Eq. (3.3).

The arbitrary coeflicients can be determined by fitting the empirical
formula to experimentally observed binding energies for a wide range of
nuclei. The following set of values provides a rather good fit
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a; ~ 15.6 MeV, az =~ 16.8 MeV, as = 0.72MeV,

a4 & 23.3MeV, as ~ 34 MeV. (3.4)

Given the phenomenological formula for the binding energy, we can also
write an equivalent empirical relation for masses of nuclei as follows (see
Egs. (2.4) and (2.5))

B.E
M(A,Z):(A—Z)mn+Zmp+7
a
= (A= Z)mp + Zm, — — A
a9 2 as Z2 Qg (A—ZZ)2 as ,_3
+c~2A3+E2—;1—%+'C7—T—:EC—2A 7. (3.5)

This expression, known as the Bethe-Weizsicker semi-empirical mass for-
mula, can be used to predict stability and masses of unknown nuclei of
arbitrary A and Z. It also plays a crucial role in a quantitative under-
standing of the theory of fission, as we will see in Chapter 5.

3.3 The Fermi-Gas Model

The Fermi-gas model was one of the earliest attempts to incorporate quan-
tum mechanical effects into the discussion of nuclear structure. It assumes
that a nucleus can be regarded as a gas of free protons and neutrons con-
fined to a very small region of space, namely to the nuclear volume. Un-
der such conditions, the nucleons would be expected to populate discrete
(quantized) energy levels within the nucleus. We can think of the protons
and neutrons as moving inside a spherically symmetric well, whose range
is given by the radius of the nucleus, and whose depth can be adjusted to
obtain the correct biﬁding energy. Because protons carry electric charge,
as discussed in Chapter 2, they sense a potential that differs from that
sensed by neutrons. The observed energy levels for neutrons and protons
will therefore differ somewhat, depending on the specific range and depth
of the individual potentials. We will see in Chapter 9 that all elementary
particles can be classified as either bosons or fermions, and that protons
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and neutrons being fermions obey Fermi-Dirac statistics. According to the
Pauli exclusion principle, this implies that any given energy level can be
filled by at most two “identical” nucleons (i.e., in the sense of same energy
and charge) of opposite spin projection.

Since the lowest levels in a well have strongest binding, to achieve great-
est stability for the ground state, we expect the energy levels to fill from
the bottom up. The highest level that is completely filled defines what is
referred to as the fermi level, of energy Ep. If there is no fermion beyond
the fermi level, the binding energy of the last nucleon is given simply by Ep.
Otherwise, the energy of the fermion in the next level reflects the binding
energy of the last nucleon.

If the depths of the wells for neutrons and protons were the same, then,
in heavier nuclei, where the number of neutrons exceeds the number of pro-
tons, the fermi level for neutrons would lie higher than for protons. If this
were the case, then the binding energy of the last nucleon would be charge
dependent, namely different for protons and neutrons. This is inconsistent
with experiment, and leads us to conclude that, to have fermi levels of same
energy for neutrons and protons, protons must move in shallower potential
wells (see Fig. 3.2). In fact, if this were not the case, all such nuclei would
be unstable, and neutrons would drop down to lower proton levels through
B~ emission (8~ decay is discussed in Chapter 4).

N
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v, "l‘“’r'f T C

Neutrons Protons

Fig. 3.2 Ground-state energy levels for neutrons and protons in nuclei.

Let us next relate the energy of the fermi level to the number of fermions.
We define the momentum associated with the fermi level through
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P
EF = %-’ (3-6)

where m is the mass of a nucleon. Ignoring the presence of fermions beyond
the fermi level, we can write the volume for states in momentum space as

4
Vor = 3 Pp- (3.7)

If V denotes the physical nuclear volume, then the total volume for states
in what we may call “phase space” is given by the product

4 4m
Vror =V x VpF =‘?7‘3AX ?p%

= (%E)z A (rop,)®, (38)

which is proportional to the total number of quantum states of the system.
We know from the Heisenberg uncertainty principle that, for any quantum
state, the same components of momentum and position obey the inequality

AzAp, > g (3.9)

This relation can be used to provide a restriction on the minimum volume

that can be associated with any physical state of the system, which can be
shown to be

Vstate = (277}74)3 = h3- (310)

It follows, therefore, that the number of fermions that can fill states up to
and including the fermi level is

_ o Vror _ 2 4r\® s 4 ToPr \®
nr =2 R T @nhy (3) A (ropr) _97rA( K ) JCRR

where the factor of 2 arises because each state can be occupied by two
fermions with opposite spins.
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For simplicity, let us now consider a nucleus with N = Z = %, and

assume that all the states up to and including the fermi level are filled. In
this case we have

., A 4 roPr \3
N_Z_E“§}FA( A ) :
hofor\?®
‘s

In other words, the fermi momentum for this case is a constant, independent
of the nucleon number. It follows that

21 /(R /or\} 232 [he\?
EF = p—F = — | — _7r ~ — _C
2m  2m \ 1o 8 2mc? \ ro
2.32 Ez
2% 940 \ 1.2

~

2
) MeV = 33 MeV. (3.13)

Taking the average binding energy per nucleon of about —8 MeV to repre-
sent the binding of the last nucleon, it follows from our simple approxima-
tion that the depth of the potential well is about 40 MeV, namely,

Vo = Er + B ~ 40 MeV. (3.14)

This result is consistent with the value of V; obtained through other con-
siderations. The Fermi-gas model has been used to study excited states of
complex nuclei, which can be accessed by “raising the temperature” of the
nucleon gas (i.e., by adding kinetic energy to the nucleus). The model can
also be shown to account in a natural way for the presence of the a4 term
in the Bethe-Weizsécker mass formula of Eq. (3.5).

3.4 Shell Model

The shell model of the nucleus is based on its analog in atomic physics,
namely the orbital structure of electrons in complex atoms. The model can
account for many crucial nuclear properties, and we will therefore review
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several features of atomic structure before discussing the application to the
nuclear domain

As we know, the binding of electrons to a nucleus in a complex atom
is attributed to the central Coulomb potential. Electron orbits and energy
levels for such a quantum system can be obtained by solving the appropri-
ate Schrodinger equation. In general, the solutions are quite complicated
because they involve the Coulomb field of the nucleus as well as that of
the other electrons, and cannot be obtained in closed analytic form. Nev-
ertheless, certain characteristic features of the motion of an electron in a
hydrogen atom have general relevance, and we will discuss these first. For
example, the orbits and atomic energy levels that electrons can occupy are
labeled by a principal quantum number n (this determines the eigenvalue of
the energy in the case of hydrogen), which can assume only integral values

n=123,.... (3.15)

In addition, for any given value of the principal quantum number, there are
energy-degenerate levels with orbital angular momentum given by

£=0,1,2,...,(n —1). (3.16)

For any given orbital angular momentum, there are (24 + 1) sub-states
(my) with different projections of the orbital angular momentum along any
chosen axis

me=—0,—£+1,...,0,1,....0— 1,0 (3.17)

Due to the rotational symmetry of the Coulomb potential, all such sub-
states are degenerate in energy. Furthermore, since electrons have an in-
trinsic spin angular momentum of %, each of the above states can be oc-
cupied by an electron with spin “up” or “down”, corresponding to the
spin-projection quantum number

1
and, again, the energy corresponding to either of these spin configurations

will be the same.
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Thus, any energy eigenstate in a hydrogen atom is labeled by four quan-
tum numbers, namely (n, £, mg, ms). For a given value of n, it follows that
the number of such degenerate energy states is given by

n—1

ng=2» (20+1)
£=0

n—1
=2<2 Z+n>
£=0
1
=2 (2 X §n(n—1)+n)

=2(n? —n+n) = 2n’ (3.19)

However, all of these states are degenerate only if there is no preferred di-
rection in space that can break the rotational symmetry of the Coulomb
interaction. That is, when there is a preferred direction, for example, de-
fined by some magnetic field, then the energy of the system can also depend
on the my and m,; quantum numbers. Consequently, an interaction term
such as —fi- B added to the Coulomb potential can split the degenerate en-
ergy levels. Interactions such as spin-orbit coupling (see Fig. 3.3), between
the spin magnetic moment of the electron (i 5"') and the magnetic field
(B « L) due to the motion of the nucleus (as observed in the electron’s
rest frame), can change the energies of levels and thereby remove some of
the degeneracies. In particular, spin-orbit interactions in atoms lead to a
fine structure in the energy levels that has been well-studied. Because the
effects of such interactions are usually quite small, they are often neglected
in elementary discussions of atomic physics; however, as we shall see, they
provide a key element in determining the nature of nuclear structure.
Consequently, ignoring fine structure, we can view the hydrogen atom
as consisting of allowed electron orbits corresponding to shells of a given
value of n, with each shell containing degenerate sub-shells specified by
the value of the orbital angular momentum. Going beyond hydrogen, and
introducing the electron-electron Coulomb interactions, leads to a splitting
in any energy level n according to the ¢-value of the state. The larger the ¢,
the more aspherical is the orbit, which produces less average binding, and
a greater shift up in energy. The degeneracy in m, and m, is not affected
greatly, even in more complex atoms. Any shell can still accommodate only
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Motion Relative to Proton Motion Relative to Electron

Fig. 3.3 Spin-orbit coupling of the electron and proton in a hydrogen atom. Classically,
the orbital motion of an electron is equivalent to a magnetic field due to the circulating
proton. Thus a [l - Bp term is equivalent to an L - S operator for the electron.

2n? electrons, in consistency with the Pauli principle. It also follows that
if a shell or a sub-shell is filled, we have

> my=0. (3:20)

In other words, there is a strong pairing effect for closed shells, and from
the antisymmetry of the fermionic wave function (see Chapter 9) it can be
shown that we get in general

L=0=34,

J=L+8§8=0. (3.21)

For any atom containing a closed shell or a closed sub-shell, all electrons
are paired off and consequently no valence electrons are available. As a
result, such atoms will be chemically inert. In fact, if we examine the inert
elements, we find that they have just such structure. For example, both
electrons in the He (Z = 2) atom fill up the shell corresponding to n = 1.
Similarly, Ne (Z = 10) has closed shells corresponding to n =1 and n = 2.
Ar (Z = 18) has closed shells corresponding to n = 1,2, and closed sub-
shells corresponding to n = 3, £ = 0,1. The electrons in Kr (Z = 36) fill up
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- shells corresponding to n = 1,2,3, as well as the sub-shells corresponding
ton =4, £ = 0,1. Finally, Xe (Z = 54) has closed shells corresponding
ton = 1,2,3, and closed sub-shells corresponding ton =4, £=0,1,2, as
well as n = 5, £ = 0,1. (The energies of the oblong n = 4, £ = 3 levels lie
above the more spherical n = 5, £ = 0, 1 levels; the latter therefore get filled
first.) These inert elements are exceedingly stable. In fact, their ionization
energies are particularly large, as is consistent with their greater stability.
The above atomic numbers, namely,

Z =2,10,18, 36, 54, (3.22)

are called the magic numbers of atomic physics and correspond to closed-
shell structures.

In nuclei, there is also evidence for magic numbers. In fact, although
the binding energy per nucleon varies smoothly on a broad scale, a close
examination shows peaks corresponding to specific values of nucleon num-
bers:

N = 2,8,20,28, 50,82, 126, ,
Z =2,8,20,28,50,82. (3.23)

Nuclei with either proton or neutron number corresponding to any of these
magic values appear to be particularly stable, and are referred to as magic
nuclei. Nuclei where both the proton and the neutron numbers are magic
(e.g., “He?, 1608, 208Ph®2) are kriown as doubly magic, and have even greater
stability. »

In addition to stronger binding of magic nuclei, other interesting fea-
tures also suggest that nuclei possess shell structure. For example, magic
nuclei have many more stable isotopes and isotones than their neighbors
do. (Isotones are nuclei with the same number of neutrons but a different
number of protons.) Thus Sn (Z = 50) has ten stable isotopes, whereas
In (Z = 49) and Sb (Z = 51) have only two each. Similarly, for N = 20,
there are five stable isotones, whereas N = 19 has none, and N = 21 has
only one, 4°K'?  which is not very stable (has a mean life of about 10°
years.) Also, we know that a departure from a spherical charge distribu-
tion inside a nucleus can give rise to an electric quadrupole moment. Such
moments are known to vanish for magic nuclei, whereas neighboring nuclei
display large values. Again, this is reminiscent of behavior expected from
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shell structure. Similarly, neutron-capture cross sections — measured by
scattering neutrons from nuclei of different neutron number — show a sharp
drop for magic nuclei relative to their neighbors. This again suggests a shell
structure for neutrons within nuclei.

Although there are many suggestive indications for shell structure in
nuclei, in trying to set up and solve an appropriate Schrédinger equation,
we face two essential differences from the case of atoms. First, there is no
apparent central core that can provide the binding potential. Consequently,
for the nuclear analog, we must picture the nucleons as moving in some
effective mean potential within the nucleus. Second, whereas the well-
understood Coulomb potential provides binding in atoms, the exact form
of the nuclear potential is unknown. Nevertheless, since we are interested
in obtaining shell structure, it is not unreasonable to first assume that the
mean potential in-which the nucleons move is central. The Schrédinger
equation for a central potential V (r) has the form

(__2’% 9 4 V(r)) (7 = Bo(7),

or (62 + 2}2—? (B - V(r))) () =0, (3.24)

where E is the energy eigenvalue. Because we assume that the potential is
spherically symmetric, the energy eigenstates will also be eigenstates of the
angular momentum operator. (In other words, the system has rotational
invariance, as a result of which its angular momentum will be conserved.
The angular momentum operator will therefore commute with the Hamil-
tonian of the system, and will have simultaneous eigenstates.) The energy
eigenstates can therefore be labeled by the angular momentum quantum
numbers. Under these circumstances it is convenient to use spherical coor-
dinates, in which case we can write

r2 Or Or  R2r?

L2 (3.25)

where L? is the angular momentum operator in coordinate space, whose
eigenstates are the spherical harmonics Yy ,, (0, ¢), satisfying
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1 6 . ,0 1 &
snd 50 sin 6 30 + snZo 352 Ye,me (0, ¢)

R28(L + )Yy, (0, ¢),

E21}l,m¢ (9, ¢) _hz

f

L,Yem,(0,0) = —ih —a% Ye,m, (0, $) = imYe m, (6, ). (3.26)

Now, writing the Schrodinger wave function in separable form, namely?!

Ynem, (7;') = uni‘ﬁ n,mg (07 ¢)a (327)

where n, £ and my are, respectively, the radial, orbital and projection quan-
tum numbers, and substituting Eq. (3.27) back into Eq. (3.24), we obtain
the radial equation

( @ m (qu ~V(r) - Wﬂl)) tne(r) = 0. (3.28)

dr?2 | h2 2mr?

The radial equation has the form of a one-dimensional Schrédinger equa-
tion, but with two differences. First, for £ # 0, there is an additional
potential term due to a centrifugal barrier resulting from the orbital mo-
tion. Second, the boundary condition for the radial wave function une(r) is
that it must vanish both at infinite separation as well as at the origin. (This
is essential for having a normalizable wave function.} The radial quantum
number n defines directly the number of nodes in the radial solution, and
also determines the energies of the states. (Compare this with the hydrogen
atom, where the number of nodes in the radial solution is given by n—£—1.)
In the general case n and £ are therefore not correlated, and can take on
any integral values.

I1The symmetry of a wave function, that is, its response to some particular trans-
formation, has important consequences. We will discuss these issues in greater detail
in Chapters 10 and 11, when we get to particle physics. Here we only wish to point
out that, under inversion of coordinates, namely 7 -+ —7, the length r does not change,
6 — n—8, and ¢ — 7+ ¢. The net effect of this transformation is that the Yy ,, (6, ¢),
and therefore the total wave function, picks up a phase of (—1)¢. This defines the “par-
ity” of a state. Thus when £ is even, there is no change in sign of the wave function and
the parity of the state is termed even. When the sign changes (for odd £), the parity of
the level is termed odd. Atomic and nuclear states have unique parity — they are either
even or odd, but not mixtures of the two. (See the Appendix B for a discussion of the
properties of the Y ,,(8,¢).)
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It is not possible to extract any additional information about the energy
levels of a nucleus without assuming some specific form for the potential.
Two simple potentials that are used commonly to solve Eq. (3.28) are the
infinite square well and the harmonic oscillator. Although these potentials
yield exact solutions for the system, they are not realistic because, among
other things, they do not provide the possibility of barrier penetration
through quantum tunneling. A more realistic potential, such as a finite
square well, can yield only numerical solutions and is therefore not very
useful for gaining overall insights. Fortunately, the qualitative features
of the solutions are not very sensitive to the specific form used for the
potential, and so in what follows we will restrict ourselves to the simpler
potentials.

3.4.1 Infinite Square Well

This potential is defined by

oo r> R,
Vir) = (3.29)
0 otherwise,

where R denotes the nuclear radius. The radial equation for R > r > 0
takes the form

dar? ' R2 2mr2

( Rk (E"‘ - w)) ne(r) = 0. (3.30)

The solutions that are regular at the origin are given by the oscillatory
“spherical Bessel” functions (see Appendix C), namely

Une(r) = je(kner), (3.31)

2mE,
bnt = ) =57 (3.32)

Since the height of the well is infinite, nucleons cannot escape, and con-
sequently the radial wave function must vanish at the boundary. In other
words, we must have

where
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une(R) = je(kneR) =0, £=0,1,2,3,...,

and n=12,3,..., forany £. (3.33)

This boundary condition leads to the quantization of energy levels. In fact,
the energy eigenvalue corresponding to any ky, is given by the nth zero of
the ¢th spherical Bessel function. Since the zeros of Bessel functions are
all distinct (nondegenerate), it follows that in the present case there is no
degeneracy in energy corresponding to different combinations of n and £
values. Rotational invariance, however, still provides a (2 + 1) degeneracy
in energy levels that corresponds to different m, values for a given £. Also,
because nucleons have a spin angular momentum of %, as usual, each state
can accommodate two neutrons or two protons, in consistency with the
Pauli principle. Thus, we conclude that, for the case of an infinite square
well, each shell can contain 2(2¢ + 1) protons or neutrons. It now follows
that, for n = 1, closed shells can occur for any of the following proton or
neutron bold-faced numbers

2,24+6=8,8+10=18,18+14=32,32+18=50,.... (3.34)

It is heartening to see that we can obtain several of the known magic
numbers. But, unfortunately, this simple analysis does not, yield the desired
magic numbers 20, 82, and 126. (We should add that we were somewhat
careless in presenting the above results, in that we ignored all but then =1
solutions. The specific order in which energy levels are filled depends on the
exact values of the zeros of the different Bessel functions. Taking other n
values into account does not greatly affect our overall conclusions, namely,
that the infinite square well potential does not reproduce all the nuclear
magic numbers.)

3.4.2 Harmonic Oscillator
The radial equation for the three-dimensional harmonic- oscillator potential

1
Vir) = 5 mw?r?, (3.35)

takes the form
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( ot <E"‘ - % mu’r? w)) Une(r) =0.  (3.36)

dr? " B2 2mr?
The solutions are related to the associated Laguerre polynomials, as follows
2 241
Une(r) x €™ R rftiL 2, (1 / % 7') , (3.37)
2
and the energy eigenvalues of the bound states are given by
1
Eng:hw<2n+f——§) , n=123,...,
and £=0,1,2,..., forany n. (3.38)

By defining a quantum number A, this can be rewritten in the more familiar
form of the analysis based on Cartesian coordinates, namely, with

A=2n+£-2, (3.39)

we have

EngzhLu(A—i-;) A=0,1,2,..., (3.40)

where the ground state A = 0 has the characteristic non-vanishing zero-
point energy.

As in the case of the infinite square well, rotational invariance implies
a (2¢ + 1)-fold degeneracy for every value of £, corresponding to different
my values. However, there is more degeneracy in the energy eigenvalues
corresponding to different £ and n combinations that yield the same A. In
fact, we note from Eq. (3.39) that when A is an even integer, then all the.
states with the following (£, n) values

(t,n) = (0, A—;ﬁ) (2, %) (4, %) A1), (341)

will be degenerate in energy. Similarly, if A is an odd integer, the states
with (£,n) values
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= (1), (5 250), (5. 450,

will have the same energy. Thus, the total number of degenerate states
corresponding to some even value of A is

A

np = Z 2(2¢+1)

£=0,2,4,.

Mmb

=) 2(4k+1)
k=0
“2 (i3 ()« (A1)
=2<%+1> A+1)=(A+1)(A+2). (3.43)

Similarly, for a given odd value of A, the total number of degenerate states
is

k
=2 (4x%’—\;—1<A—2"—1+1) +3<%+1))
1)(A—1+3)=(A+1)(A+2). (3.44)

Thus, we see that, for any value of A, the total degeneracy of states is given
by
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na = (A+1)(A+2). (3.45)

It now follows that, for the three-dimensional harmonic oscillator potential,
closed shells can occur for proton or neutron numbers of 2, 8, 20, 40, 70,
etc. Once again, this model predicts some of the magic numbers, but not
all of them.

3.4.3 Spin-Orbit Potential

It was fairly clear by the 1940s that a central potential could not reproduce
all the magic numbers. The crucial breakthrough came in 1949 when Maria
Goeppert Mayer and Hans Jensen suggested — once again following the lead
from atomic physics — that inside the nucleus, in addition to the central
potential, there is a strong spin-orbit interaction, and therefore the total
potential sensed by a nucleon has the form

Veor =V(r) - f(r)L - §, (3.46)

where I and S are the orbital and the spin angular momentum operators
for a nucleon, and f(r) is an arbitrary function of the radial coordinates. In
atomic physics, a spin-orbit interaction splits the two degenerate j = £+ %
energy levels and produces a fine structure. The spin-orbit interaction in
Eq. (3.46) has precisely the same form as in atomic physics, except for the
presence of the function f(r). Also, the sign of this interaction must be
chosen to be consistent with the data, so that the state with j = £+ % can
have a lower energy than the state with j = £ — %, which is opposite to
what happens in atoms.
Now, the total angular momentum operator is given by

=

J=L+§, (3.47)

and therefore

-1?- 8% (3.48)
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where we have used the fact that orbital and spin angular momentum op-
erators commute, and therefore their order in a product does not matter.
Thus, in a state with definite £, s, and j values (that is, a quantum state
can be labeled either by the eigenvalues £, my, s, m, or ¢, s, 7, m;, and it
is the second basis that is appropriate for our calculation), we have

(L) = (3 (J?

S (2 -2 - 5%)

=%2[j(j+1)-é(€+l)~s(5+1)]

BT, 3
-5 [+ n-aern-3
Loy for j = £+ 3,

=<7, _ 1 (3.49)
—7(£+1) fOI'_] ’——Z""i,

where we have substituted s = % for the spin of a nucleon.
The shifts in the energies from their degenerate central values can be
written as

2
AE,, (j . %) = —%—E Er [ne (P 2F(r),

Ay (j=t-3) =G [arpnarse), (50

so that the total splitting between the two levels becomes

A = AEp <j:e—%> — AE,, (j=€+%>

NG (H%) [ 5. (3.51)

We see that the splitting due to the spin-orbit interaction is larger for
higher values of orbital angular momentum, and can consequently produce
level crossing. Namely, for large ¢, the splitting of any two neighboring
degenerate levels can shift the j = ¢ — % state of the initially lower level
to lie above the j = £+ % state of the previously higher level. Thus, as
shown in Fig. 3.4, for an appropriately chosen f(r), the energy levels for
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a finite square well can split upon the addition of a spin-orbit interaction.
And we can therefore conclude that by including a spin-orbit interaction we
can reproduce all the desired magic numbers, and thereby accommodate a
shell-like structure in nuclei. The energy level diagram of Fig. 3.4 is labeled
according to the spectroscopic notation of atomic physics, namely as (n.L;).
The multiplicity of any final level is given, as usual, by (27 + 1). We have
not shown the levels beyond 1G z; these are 2D 8, 2D 3 35 1 1H u, and so
forth.

//-————- 1G7/2 8
/
/
16 s
\
\
\ .
\__ 1Gy, 10 h
//____——- 2P1/2 2 22
2P <7 1Fs, 6
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Fig. 3.4 Energy levels in a single-particle shell model. The boxed integers correspond
to the magic nuclear numbers.

— 1P1/2

It is worth pointing out that in our discussion of the energy spectrum, we
have treated protons and neutrons on an equal footing. It is clear, however,
that the effect of the Coulomb potential must shift the energy levels for
protons to somewhat higher values. Upon applying such corrections, it
is found that the qualitative features of the spectrum remain essentially
'unchanged.
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3.4.4 Predictions of the Shell Model

The shell model accounts for a wide variety of properties of complex nuclei:
For example, it provides the correct spin-parity assignment for the ground
states of a large number of odd-A nuclei. According to the model, the
proton and the neutron levels fill up independently and, due to the Pauli
exclusion principle, only two neutrons or two protons can occupy any given
level (with their intrinsic spins anti-parallel). If we assume that nucleons
pair off in every filled level, yielding zero total angular momentum, then the
last unpaired nucleon must determine the spin-parity of the ground state.
An immediate consequence of this picture is that the ground states of all
even-even nuclei must have zero spin, which is experimentally correct. The
single-particle shell model cannot predict the ground-state spins of odd-odd
nuclei because there is no a priori constraint on how unpaired protons and
neutrons should couple.

Let us next examine the spin-parity assignments of several odd-A nuclei
in greater detail. Consider the isobars 13C® and *N”. (Note that these are,
in fact, mirror nuclei.) The six protons in !?C and the six neutrons in 13N
should be completely paired off, while the remaining seven nucleons in both
cases should fill the following shells

(15%)2 (1P%>4 (1P%)1 . (3.52)

Thus, the last unpaired nucleon — a neutron for *3C® and a proton for 3N7 —
has total angular momentum j = % and orbital angular momentum ¢ = 1.
(Recall, from our previous comments in the footnote pertaining to Eq.
(3.27), that £ = 1 corresponds to a state of odd parity.) Hence, according
to the shell model, the spin-parity of the ground state for these nuclei is
expected to be (%)ﬁ, which is, in fact, the observed value. Similarly, for
the isobars 170® and 1”F®, the nine neutrons for 7O% and nine protons for
17E9 will fill the following levels

(15%)2 (113%)4 (113%)2 (1D%)1 . (3.53)

The total angular momentum of the last unpaired nucleon in the £ = 2
state is 2. Thus, the spin-parity of these nuclei is expected to be (§)+,
which is again consistent with experiment.

For 33516, the measured value of the ground state spin-parity is ( —g—)+
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According to the shell model, the seventeen neutrons will fill up the levels
as follows

(15%)2 (1P%)4 (113%)2 (117%)6 (25%)2 (11)%)1 , (3.54)

once again leading to a prediction consistent with experiment. However,
certain spin-parity assignments of the shell model do not agree with obser-
vation. For example, the neutrons in 4"Ti?? would be expected to fill the
levels as

(15%)2 (113%)4 (113%)2 (10%)6 (25%)2 (11)_3_)4 (1F%)5, (3.55)

leading to a ground state spin-parity of (1), whereas the experimental
value is (3)”. Such discrepancies can be remedied by slightly modifying
the assumptions of the single-particle shell model to allow pairing between
all “valence” nucleons, namely between any nucleons that occupy unfilled
levels. '

The shell model can also be used to calculate magnetic moments of
nuclei. As measurements show, the proton and the neutron have intrinsic
dipole moments of 2.79 uny and —1.91 pp, respectively. Thus, we expect
the intrinsic magnetic moment of any unpaired nucleon to contribute to
the total magnetic moment of the nucleus. In addition, since protons are
charged, the orbital motion of any unpaired proton can also contribute to
the magnetic moment of the nucleus. For the deuteron, for example, if we
assume that the proton and the neutron are in 15 1 states, then, without
orbital angular momentum for the proton (¢ = 0), we expect the magnetic
moment of the deuteron to be the sum of the intrinsic dipole moments of
the proton and the neutron

pa = 2.79 puy — 1.91 py = 0.88 . (3.56)

The observed magnetic moment of the deuteron is 0.86 uy — in good agree-
ment with expectation. The nucleus of tritium (*H') has two neutrons
and one proton, all in the 1S 1 state. Since the neutrons are paired, they
should not contribute to the magnetic moment. The unpaired proton, hav-
ing £ = 0, will have no contribution from its orbital motion. Consequently,
the total magnetic moment of 3H! should be the same as that of the un-
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paired proton, namely 2.79 i, which is in good agreement with measured
value of 2.98 un. For 3He?, the unpaired nucleon is a neutron in a 1S 1
state. Consequently, the total magnetic moment should be the same as
that of the neutron, which is —1.91 uy, again, close to the observed value
of —2.13 uy. “He® (a-particle) has a closed shell structure (in fact, it is
doubly magic), and the shell model would therefore predict no spin and no
magnetic moment, which is indeed experimentally correct. In 1°BS, the five
protons and the five neutrons have the same level structure, namely,

(18%)2 (IP%)S . (3.57)

Thus, there is one unpaired proton and one unpaired neutron. The unpaired
proton will be in an £ = 1 state, and therefore the orbital motion will

contribute yu = 27;3& - £ = pyn to the total magnetic moment, which will
yield a value
219 uny — 1.9 uny + puy = 1.88 un. (3.58)

This compares quite well with the measured value of 1.80 uy.

We see therefore that the shell model, in addition to providing the known
magic numbers, also describes other important properties of light nuclei.
For heavy nuclei, however, there is marked difference between the predic-
tions of the shell model and the measured quantities.

3.5 Collective Model

For heavy nuclei, many predictions of the single-particle shell model do not
agree quantitatively with experiment. The discrepancies are particularly
severe for magnetic dipole moments. Also, the shell model predicts van-
ishingly small quadrupole moments for closed shells, and quadrupole mo-
ments of opposite sign for neighboring nuclei with atomic numbers Z + 1.
Although this agrees qualitatively with experiment, the measured values of
quadrupole moments are very different from the predictions. In fact, some
heavy nuclei appear to have large permanent electric quadrupole moments,
suggesting a nonsphericity in the shape of these nuclei. This is certainly
not consistent with the assumptions of the shell model, where rotational
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symmetry plays a crucial role.?

In a revival of the liquid drop model, Aage Bohr noted that many prop-
erties of heavy nuclei could be attributed to a surface motion of the nuclear
liquid drop. Furthermore, James Rainwater showed that excellent agree-
ment between the expected and measured values of magnetic dipole and
electric quadrupole moments could be obtained under the assumption that
the liquid drop had an aspherical shape. These successes presented some-
what of a dilemma because the liquid drop model and the single-particle
shell model had fundamentally opposite viewpoints about the nature of
nuclear structure. Individual particle characteristics, such as intrinsic spin
and orbital angular momentum, play no role in a liquid drop picture, where
collective motion that involves the entire nucleus has prime importance. On
the other hand, individual nucleon properties, especially of the valence nu-
cleons, are crucial to the success of the independent-particle shell model.
The shell model had yielded too many important nuclear features to be
abandoned outright, and a reconciliation between the two extreme views
was needed.

The reconciliation was brought about by Aage Bohr, Ben Mottelson
and James Rainwater who proposed a collective model for the nucleus that
provided many features that were not present in either the shell or the liquid
drop model. In what follows, we describe this model only qualitatively. Its
basic assumption is that a nucleus consists of a hard core of nucleons in
the filled shells, and outer valence nucleons that behave like the surface
molecules in a liquid drop. The surface motion (rotation) of the valence
nucleons introduces a nonsphericity in the central core, which in turn affects
the quantum states of the valence nucleons. In other words, one can think
of the surface motion as a perturbation that causes the quantum states
of the valence nucleons to change from the unperturbed states of the shell
model. This adjustment accounts for the difference in predictions for dipole
and quadrupole moments from those given by the shell model.

Physically, one can view the collective model as a shell model with a po-
tential that is not spherically symmetric. Spherically symmetric nuclei are,
of course, insensitive to rotations, and consequently rotational motion can-
not produce additional (rotational) energy levels in such nuclei. Aspherical
nuclei, on the other hand, can have additional energy levels because of the
presence of rotational and vibrational degrees of freedom. These types of

2Finite quadrupole moments of charge distributions arise when the second moments
(x?), (y?) and (22} differ from each other, namely when the distribution of charge is not
spherical. ’
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effects modify the predictions of the simple shell model. In particular, large
nonsphericity in nuclei can provide large permanent dipole and quadrupole
moments. Mathematically, these ideas can be incorporated as follows. For
simplicity, we assume the nucleus to be an ellipsoid defined by the form

2
az® + by’ + % = R?, (3.59)

where a and b are parameters related to the deformation from a spherical
shape of radius B. The mean potential for nuclear motion can then be
chosen as

0 for az? + by? + 22 < g2
V(z,y,2) = ab =7 (3.60)

oo otherwise.

Needless to say, more realistic calculations in the collective model provide
even better descriptions of nuclear properties, but they also become far
more complicated.

One of the important predictions of the collective model is the existence
of rotational and vibrational levels in a nucleus. These levels can be derived
much the same way as is done for the case of molecules. Thus, we can choose
the Hamiltonian for rotations to be

2

H= 50 (3.61)
with eigenvalues t;@;—le h?, where the effective moment of inertia I is a func-
tion of the nuclear shape. If there is rotation about an axis perpendicular
to the symmetry axis of the ellipsoid, it can then be shown that the angu-
lar momentum of the rotational levels can only be even. Thus, we see that
rotational and vibrational levels in a nucleus are predicted with specific val-
ues of angular momentum and parity. Such excitations have indeed been
found through the observation of photon quadrupole transitions (Af = 2)
between levels.

Finally, the collective model accommodates quite naturally the decrease,
with increasing A, of the spacing between the first excited state and the
ground level in even-even nuclei, as well as the fact that the spacing is
largest for nuclei with closed shells. The first follows simply because the
moment of inertia grows with A, which decreases the energy eigenvalue
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of the first excited rotational state. The latter is due to the fact that a
nucleus with a closed shell should not have a rotational level because such
a nucleus would tend to be spherical. On the other hand, such a nucleus
can have vibrational excitations. However, vibrational excitations involve
the entire core and not just the surface. The core being much more massive,
implies that the energy level for vibration will lie far higher, and the spacing
between the ground state and the first excited state will be much greater.

3.6 Superdeformed Nuclei

Throughout our discussion of nuclear phenomena we have emphasized that
nuclei tend to have relatively small intrinsic spins. We can imagine that
under certain circumstances nuclei could be greatly deformed and yet not
fission (see Chapter 5). In fact, particularly stable superdeformed nuclei
have been predicted to exist for values of A between 150 and 190. Such
nuclei were expected to be spheroidal in character, with semi-major and
semi-minor axes differing by about a factor of two. During the late 1980s,
a series of experiments was carried out on the scattering of heavy ions on
heavy ions. When such collisions take place, superdeformed nuclei are pro-
duced with remarkably large angular momenta of about 60 7. These nuclei
de-excite through a series of (quadrupole) emissions of ~50 keV v-rays
down to lower levels that have more symmetric nuclear shapes. However,
because the observed level spacings (photon-energies) remain essentially
fixed, this poses a problem from the point of view of the collective model,
where we would expect the moment of inertia to decrease with a decrease
in deformation. In fact, different nuclei appear to have essentially identical
emissions as they “spin down”. This is an even greater puzzle, because of
the known effects of nucleon pairing on binding energy and level spacing.
This is currently a very active area of study in nuclear physics, that may
yet offer additional surprises.

Problems

3.1 The Bethe-Weizsdcker formula of Eq. (3.5) provides an excellent repre-
sentation of the mass systematics of nuclei. Show explicitly that, for fixed
A, M(A, Z) has a minimum value. Is there evidence for the “valley of sta-
bility” observed in Fig. 2.37 What is the stablest nucleus with A = 167
What about A = 2087 (You can differentiate Eq. (3.5), or simply plot M



Nuclear Models 79

as a function of Z.)

3.2 Using Eq. (3.3) compute the total binding energy and the value of
B for ®Be*, 12CS, 50Fe?® and 208Pb%?. How do these values compare with
experiment? (See CRC Handbook of Chemistry and Physics for data.)

3.3 You might conclude from Problem 3.2 that 8Be? is stable. This is, in
fact, not the case. Can you provide a model to explain this result? (Hint:
see Problem 2.2.)

3.4 Calculate the binding energy of the last neutron in N7 and of the last
proton in %08, and contrast with the last neutron in N7 and in 1608.

3.5 What would you expect for the spin and parity of the ground states of
23Nall, 35C1'7 and *'Ca2° on the basis of the single-particle shell model?
Do these predictions agree with experimental values? What about the
magnetic moments of these nuclei? (See CRC Handbook for data.)

3.6 Consider a somewhat more sophisticated model for the anomalous con-
tribution to the magnetic moment of a nucleon. Assume that the proton
can be regarded as a fixed neutral center with a 7™ meson circling about
in an £ = 1 orbit. Similarly, take a neutron as an effective proton center

with a 7~ meson in an £ = 1 orbit around it. Using m, = 140 MeV/c?,

eh
2myc

calculate y = ( ) ¢, and compare results with those of Problem 2.5.

3.7 The ground state of 37Ba?® has spin-parity %+. That is, its spin is &

and parity +. The first two excited states have spin parity %+ and 3.
According to the shell model, what assignments would be expected for these
excited states? (Hint: The surprise has to do with “pairing energy”.)
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Chapter 4

Nuclear Radiation

4.1 Introductory Remarks

In previous chapters we indicated that many nuclei are unstable and often
emit a, B or 7y particles. We will now discuss several more quantitative as-
pects of nuclear radioactivity and its historical impact on our understanding
of nuclear structure and nuclear transmutation.

4.2 Alpha Decay

As we have seen before, a-decay represents the disintegration of a parent
nucleus to a daughter through the emission of the nucleus of a helium atom,
and the transition can be characterized as

AXZ — A4y Z-2 4 4t (4.1)

As we will see in Chapter 5, a-decay can be regarded as the spontaneous
fission of the parent nucleus into two daughter nuclei with highly asymmet-
ric masses. If we assume that the parent nucleus is initially at rest, then
conservation of energy requires

Mpc® = Mpc® +Tp + Muc? + T, (4.2)

where Mp, Mp and M, are the masses of the parent, daughter and the
a-particle, respectively. Similarly, Tp and T, represent the kinetic energies
of the daughter and of the a-particle. Equation (4.2) can also be rewritten
as

81
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Tp +Ta = (Mp — Mp — M,) c® = AMc2. (4.3)

Although the right hand side of Eq. (4.3) involves nuclear masses, we can,
in fact, use atomic masses in the expression since the masses of the electrons
cancel. Thus, we can write

Tp+Ta=(M(AZ) — MA-4,Z-2)-M4,2)=Q,  (4.4)

where we have defined the disintegration energy or )-value as the difference
in the rest masses of the initial and final states. It is clear that @ also
equals the sum of the kinetic energies of the final state particles. For non-
relativistic particles, the kinetic energies can be written as

1.
TD = §MD’U%),
1 2
To = §M04va1 (45)

with vp and v, representing the magnitude of the velocities of the daughter
and of the a-particle.

Since the parent nucleus decays from rest, the daughter nucleus and the
a-particle must necessarily move in opposite directions to conserve momen-
tum, satisfying

Mpvp = Myva,
M,
or up = M—; Vg (4.6)

When the mass of the daughter nucleus is much greater than that of the a-
particle, then vp < v,, and consequently the kinetic energy of the daughter
nucleus is far smaller than that of the a-particle.

Let us eliminate vp and write expressions for Tp and T, in terms of
the @-value
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1 1
Tp +Ta = 5 Mpup + 5 Moo

=N

M, \? 1
= - Mp (M—D’va) +§MQ’UZ

1 o [ Mo
= — My, (M—D+1)

M
or Tp+Ty=T1, MetMD 4.7)
Mp

Using Eq. (4.4), this can be rewritten as

(]

[\V]

Mp 1
T, = ———=—Q=———0. 4.8
¢ Ma+MDQ 1+—A%DQ (4.8)

The kinetic energy of the emitted a-particle cannot be negative, that is,
T, > 0. Consequently, for a-decay to occur, we must have an exothermic
process

AM >0, Q>0. (4.9)

For massive nuclei, which is our main interest, most of the energy is carried
off by the a-particle. The kinetic energy of the daughter nucleus is obtained
from Eqs. (4.4) and (4.8)

M,

To=Q-Tu= 373 tp

Q— T<T (4.10)

If we use the approximation Me ~ we can then write
PP Mp A 4

A—-4
Tan =170,

4
Tp =~ ZQ’ (4.11)

which can be used to estimate the energy released in the decay.

We note from Eq. (4.8) that the kinetic energy (and therefore the mag-
nitude of the velocity) of the a-particle in the decay is unique, which is
consistent with our earlier discussion. This is a direct consequence of the
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fact that the process is a two body decay of a parent initially at rest. Care-
ful measurements, however, have revealed a fine splitting in the energies of
a-particles emitted from any radioactive material, corresponding to possi-
bly different Q values. The most energetic a-particles are observed to be
produced alone, but less energetic a-decays are always accompanied by the
emission of photons. This suggests the presence of energy levels and of an
underlying quantum structure of discrete states in nuclei. If this is correct,
then a parent nucleus can transform to the ground state of the daughter
nucleus by emitting an a-particle with energy corresponding to the entire
@ value, or it can decay to an excited state of the daughter nucleus, in
which case the effective ) value is lower. And, as in the case of atomic
transitions, the daughter nucleus can subsequently de-excite to its ground
state by emitting a photon. Hence, the decay chain would involve

AXZ _ A—-4y*Z—2 + 4He2,

with

A~dy*Z—2 A-d4yZ-2

— + 1. (4.12)

The difference in the two @ values would then correspond to the energy
of the emitted photon. For example, the spectrum of observed a-particle
energies in the decay of ?28Th to ??*Ra can be associated schematically
with the level structure shown in Fig. 4.1.

Ground State
of 228Th

0.299 MeV

0.253 MeV
Excited 0.217 MeV

States of
224g,

0.084 MeV

Ground State
of 22%Ra

Fig. 4.1 a-particle transitions observed in the decay of 228 Th.
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The underlying level structure shown in Fig. 4.1 can be determined by
measuring the kinetic energies of the different a-particles observed in these
decays, which in turn yield the @ values for the transitions through Eq.
(4.8). Based on the assumption of discrete nuclear levels, the difference in
the @ values will then yield the expected energies of the emitted photons.
The measured energies of such accompanying (coincident) photons have, in
fact, confirmed the overall picture and .therefore the existence of discrete
nuclear levels.

Exzample 1

Consider the a-decay of 240py®

240Pu94 ; 236U92 + 4He2

The emitted a-particles are observed to have energies of 5.17 MeV and 5.12
MeV. Substituting these two values into the first relation in Eq. (4.11)

we obtain the two @ values

2
Oy ~ %g x 5.17MeV = 1.017 x 5.17 MeV ~ 5.26 MeV,
240

Q2 ~ 236 x 5.12MeV = 1.017 x 5.12MeV = 5.21 MeV.

Thus, when 240Pu decays with disintegration energy Q2 ~ 5.21 MeV, the
daughter nucleus 226U%2 is left in an excited state and transforms to the
ground state by emitting a photon of energy

@1 — Q2 ~526MeV —5.21 MeV =0.05 MeV.

This is, indeed, consistent with the observed energy of 0.045 MeV for the
photon. Thus, we can conclude from such studies of a-decays that there
are discrete energy levels in nuclei, very much like those found in atoms,
and that the spacing between nuclear levels is about 100 keV, whereas the
corresponding spacing in atomic levels is of the order of 1 eV.
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4.3 Barrier Penetration

The a-particles emitted in nuclear decay have typical energies of about 5
MeV. When such low-energy particles are scattered from a heavy nucleus
they cannot penetrate the Coulomb barrier and get sufficiently close to the
nucleus to interact through the strong force. The height of the Coulomb
barrier for A a2 200 is about 20-25 MeV, and a 5 MeV a-particle therefore
cannot overcome this barrier to get absorbed into the center. On the other
hand, a low-energy a-particle that is bound in a nuclear potential well
sees that same barrier, and yet is able to escape. How this could happen
constituted a great puzzle, until it was recognized that the emission of
a-particles was a quantum-mechanical phenomenon.

E f-———

—_—— Incoming a-particle
" TS with Energy Eo < E

V(r)

;
\ Energy Level

for g-particle
Bound within
Nucleus

Fig. 4.2 Potential energy function for an a-particle interacting with a nucleus.

The first quantitative understanding of a-decay came in 1929 from the
work of George Gamow and of Ronald Gurney and Edward Condon. As-
suming that the a-particle and the daughter nucleus exist within the parent
nucleus prior to its dissociation, we can treat the problem as an a-particle
moving in the potential of the daughter nucleus, with the Coulomb poten-
tial preventing their separation (see Fig. 4.2). For concreteness, consider
the decay

232Th —s 228Ra +* He. (4.13)

The kinetic energy of the emitted a-particle is observed to be E = 4.05
MeV, and the lifetime of ?32Th is 7 = 1.39 x 10'° years. The radius of
the thorium nucleus obtained from the formula R = 1.2 x 10~134% cm is
~ 7.4 x 10712 cm.
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The a-particle must penetrate the Coulomb barrier in order for the
decay to take place. The calculation of barrier penetration for a three-
dimensional Coulomb potential is rather complicated. However, since we
are interested only in order-of-magnitude estimates, we will ignore the an-
gular dependence of the Schrédinger equation and consider the potential
as effectively one-dimensional. Furthermore, we will replace the Coulomb
potential by a square barrier of equal area, which approximates the effect of
the Coulomb repulsion, and is calculationally much simpler (see Fig. 4.3).
As long as Vy is chosen so that it is larger than E, then the transmission
through the barrier is sensitive primarily to the product of +/V5 — E and a,
and not to the precise value of V5. For Z = 90, we can choose

Vo = 14 MeV,
2a = 33 fm = 33 x 10713 cm. (4.14)
A straightforward quantum-mechanical treatment of the transmission

through the square barrier shown in Fig. 4.3, yields the following transmis-
sion coefficient

4k k
T = L , (4.15)
1+ [1+ () Jsinh2 2xa
with
IM 3
kl = l: ﬁ2a (E‘*'UO)] )
2M.,,
o 2]
oM H
k= [—h— (Vo - E)] , (4.16)

where M, is the rest mass and E is the kinetic energy of the emitted «
particle (outside of the barrier). For Myc? ~ 4000 MeV, E = 4.05 MeV,
Vo = 14 MeV and Uy ~ 40 MeV (the calculation is not very sensitive to
the depth of the nuclear potential), we have
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N

1
K== [2Moc* (Vo — E)]

1
~ 197 MeV—fm

k~09fm?,

[2 x 4000 MeV (14 — 4) MeV]? ~ 1.4fm™",

ky =~ 3.0fm L. (4.17)

Now, 2ka ~ 33fm x 1.4 fm~! & 46, which means that 2xa > 1, and allows
us to write

2

s 12 e2ha\? | T
sinh® 2ka = =g~y > 1. (4.18)

Vo ~VR)+E

2=

r=R r=R

-Up— -Up

Fig. 4.3 Potential energy for scattering of 4 MeV a-particle from 228 Ra, and the equiv-
alent one-dimensional square-well potential.

We see that the transmission coefficient T is determined essentially by this
exponent, and is not very sensitive to the choice of k; and k. Because we
are interested only in estimating T', we can therefore simplify Eq. (4.15) by
taking the limit of large k; (i.e., k¥ > &% and kf >> k?). In this limit, the
transmission coefficient of Eq. (4.15) becomes
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4k? k. _
N ™ (sinh? 2ka) ™1
1
~ 4o - E) ( E ) [46_% [2M.(Vo — E))#
Vo E+ Uy
1

4(10) [ 4\7, _
N (ﬁ) (4e792)
~35xe x4 x107%. (4.19)

Thus, the a-particle has an exceedingly small probability for penetrating
the barrier. This explains why low energy a-particles cannot be absorbed by
heavy nuclei. However, for an a-particle bound in a nucleus, the situation
is quite different. The kinetic energy of the a-particle within the well is

Ty = Uy + E = 44 MeV, (4.20)

and the corresponding velocity is

o, _, [
M, M,c?

/2 x 44 MeV

Being confined to a small region of & 1072 c¢m, the a-particle will bounce
against the barrier with a frequency given approximately by

Va =

vo _ 0.15 x 3 x 10'% cm/sec

R~ 74x10-13cm
~ 6.0 x 10% /sec. (4.22)

Every time the a-particle hits the barrier, the probability of escape is given
by Eq. (4.19). We conclude therefore, that the probability for the a-particle
to escape per second is simply
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P(a-emission) =~ %—’-T ~ 6.0 x 102! /sec x 4 x 10740
~ 2.4 x 10718 /sec. (4.23)

This is what is called the decay constant (denoted by A), and is the prob-
ability of décay per unit time. The mean lifetime for the decay process (to
be discussed in the next chapter) is the inverse of the decay constant

1
P(a-emission)
N 1
™ 2.4 x 10-18/sec

T =

~ 0.4 x 108 sec

~ 1.3 x 1010 yrs. (4.24)

This lifetime is remarkably close to the observed value.

We have presented an oversimplified calculation of a-decay. The quanti-
tative result for the coeflicient, therefore, cannot be trusted in detail. Nev-
ertheless, in general, for V4 > E, the decay constant can be represented
as

4 1
P(a-emission)  E¥e~# [2Ma(Vo =~ E)]Z, (4.25)

This shows that the probability for decay is quite sensitive to the mass
and the energy of the a-particle. In particular, it shows why spontaneous
fission through barrier penetration into heavier daughter nuclei (of large
M), a subject that we will discuss more fully in the next chapter, is a
slow process. It also connects the decay constant and the lifetime for a
process with the energy of the a-particle. We note that P(a-emission) is
proportional to E 7, and, as a result, the larger the F, the shorter is the
lifetime. That is, for large E, the decay is fast, which is consistent with
naive expectation. We also note from Eq. (4.25) that, for V5 > E, and
Vo — E)% varying slowly with E, we can write approximately

log P(a-emission) o (log E + constant). (4.26)
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This result provides a quantitative relationship between the decay constant
and the energy of the decaying particle, and is known as the Geiger-Nuttal
rule. This relation was discovered in data prior to the development of the
theoretical formulation.

4.4 Beta Decay

A nucleus with an over abundance of neutrons (i.e., with a value of —"Z!
greater than that for stable nuclei) can transform to a more stable nucleus
by emitting an electron. This kind of process is known as 3-decay, and the
transformation can be denoted by

AXZ — AyZH p e, (4.27)

From electric-charge conservation, it follows that the proton number of
the daughter nucleus in such decays increases by one unit. However, the
nucleon number remains unchanged. There are two other processes that
are also referred to as B-decays. In one case, a proton-rich nucleus emits a.
positron (positrons are antiparticles of electrons, and have the same mass
as electrons but positive electric charge), and thereby reduces the nuclear
charge by one unit. In this case, the process can be represented by

AXZ 5 AyZ-1 et (4.28)

In addition, a proton-rich nucleus can also reduce its nuclear charge by one
unit by absorbing an atomic electron. This process is referred to as electron
capture, and can be represented as

AXZ 4= — AYZTL (4.29)

The electron is normally captured from an inner K-shell of an atom. As a
result, the outer electrons of the atom cascade down to fill the lower atomic
levels, and one or more X-rays are usually emitted. In all three of these
processes, the nuclear transformation can be characterized by AA = 0 and
|AZ | =1.

Because only the electron and the recoiling daughter nucleus were ob-
served in f-decay, the process was initially assumed to be a two body
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disintegration, very much like a-decay. Thus, for the decay in Eq. (4.27),
where the parent nucleus is at rest, conservation of energy requires

Ex = Ey + E.- = Ey + T, +mec?,

or T,- =(Ex —Ey - mecé) = (Mx — My —me)c® - Ty
=Q-Ty ~Q. (4.30)

In other words, for a two-body process, just as in a-decay, the lighter emit-
ted particle, (the electron), would be expected to carry away most of the
released energy, which would have a unique value given by Eq. (4.30). How-
ever, as we have already discussed in Chapter 2, these electrons are emitted
with a continuous spectrum of energies. In fact, the observed differential
distribution in the number of emitted electrons as a function of their en-
ergy has the shape given in Fig. 4.4, and, within experimental accuracy,
has an endpoint (the maximum energy of any emitted electron) given by
the value in Eq. (4.30). That is, the electrons have a spectrum of energies,
with most values lying well below that predicted by energy conservation in
two-body decays. When this was first observed, it appeared to threaten the
survival of one of the most cherished conservation laws in physics, namely
energy conservation! In addition, a consideration of the change in angular
momentum in S-decay processes reveals that angular momentum could not
be conserved if the decays produced only two particles in the final state.
Examining the decay in Eq. (4.27), we note that the number of nucleons
does not change in the transition. However, an electron, which is a fermion,
is emitted in the process. The electron, as well as each of the nucleons, have
spin angular momentum of % Consequently, independent of any possible
change in the value of the orbital angular momentum, which must always
have integral value, it is clear that angular momentum cannot be conserved
in this kind of a process.

For a while, it seemed that the principles of conservation of momentum,
energy and angular momentum might not apply in S-decay. This would
have implied, through Emmy Noether’s theorem (discussed in Chapter 10),
that the universe is not isotropic, and that there is an absolute coordinate
system and an absolute time scale, all of which would have severely im-
pacted physical behavior. Physics, as we know it, would have had to be
abandoned. To extricate science from this abyss, Wolfgang Pauli proposed
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n(E)

Trnax

Electron Energy

Fig. 4.4 The energy spectrum of electrons emitted in B-decay.

that an additional particle, one that was difficult to detect, was emitted in
B-decay. Conservation of electric charge required this particle to be electri-
cally neutral, just like the neutron and the photon. Ostensibly, this would
explain why it was so hard to detect this particle. We know now that
this neutral particle, the neutrino, does not interact readily with matter,
and this is the main reason why it is so difficult to observe. Because the
maximum energies for electrons emitted in S-decay corresponded to the
disintegration energy of the nucleus, it meant that this new particle had
to be essentially massless. Furthermore, if the postulated neutrino were to
restore the conservation of angular momentum, then it would have to be
a fermion with spin angular momentum ’2—1 In some ways, such a particle
would resemble a neutron, except that it would be much lighter, and Fermi
therefore coined for it the name neutrino (diminutive for neutron), and it
is denoted by the Greek letter v.

Every elementary particle appears to have an antiparticle, and the neu-
trino is no exception; its antiparticle is known as the antineutrino (¥). Since
both the neutrino and the antineutrino are electrically neutral, an interest-
ing question is what specific property distinguishes them from each other.
The neutron and the antineutron are also neutral, but they have magnetic
dipole moments of opposite sign, and, as we will discuss in Chapters 9 and
11, opposite nucleon or “baryon” numbers that distinguish them. However,
the neutrino is an essentially massless point particle, without structure, and
has neither nucleon number nor a magnetic dipole moment. (Until the dis-
covery of neutrino mizing or oscillations in the late 1990s, all neutrinos
were thought to have been massless. We will touch on this development in
Chapter 12.) Experiments on 8 decay indicate that neutrinos that accom-
pany positrons (“v.+”) are left handed, whereas the ones that accompany
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electrons (“v,-”) are right-handed, where by left-handed we mean that
the particle has its spin pointing opposite to its momentum, and by right-
handed that it has its spin pointing in the direction of its line of flight.
(This convention is opposite to the definitions of left-handed and right-
handed polarizations used in optics.) If we define e~ as the particle and et
as its antiparticle, then it is tempting to call the v,- the antineutrino (7)
and the v+ the neutrino (v.). (This assignment will be justified shortly.)
Consequently, the handedness is one of the distinguishing characteristics
between a neutrino and its antiparticle (antineutrino), and has far-reaching
consequences, as we will see later. Using our new nomenclature, we can
rewrite our three 3-decay processes as

AXZ — AYIH 4 e 17,
AXZ — AYZ—-] +e++y7
AXZ fe= — AYZ-t 4y, (4.31)

If the parent nucleus decays from rest, then conservation of energy for
electron emission will yield

Mpc? =Tp + Mpc® + To- +mec?® + Ty +m,c2,
or Tp+Te- +Ty=(Mp— Mp—m. —my)
=AM =Q, (4.32)

where Mp, Mp, m. and m, are, respectively, the masses of the parent
nucleus, the daughter nucleus, the electron and the antineutrino. Simi-
larly, Tp, T.- and T represent the kinetic energies of the decay daughter
nucleus, the electron and antineutrino. We see from Eq. (4.32) that elec-
tron emission can take place only if the disintegration energy @ is positive,
that is, when the mass of the parent nucleus is greater than the sum of
the masses of the decay products. In fact, neglecting small differences in
atomic binding energies, we conclude that electron emission will take place

if

Q= (M(A7Z) _M(A7Z+1) _mV)cz
~ (M(A,Z)— M(A,Z+ 1) >0, (4.33)
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where M (A, Z) represents the atomic weight, including the atomic elec-
trons, and we have neglected the small mass of the neutrino. Furthermore,
because the daughter nucleus is much heavier than either the electron or
the antineutrino, the small recoil energy of the daughter can be ignored,
and for any -decay we can write

T,- + Ty~ Q. - (439)

It is now clear that, with a 7 in the final state, the energy of the electron is no
longer unique. In fact, any continuous value 0 < T,- < @ is kinematically
allowed, and the maximum electron energy, corresponding to Iy = 0, is
given by the endpoint value of Eq. (4.32)

(Te-)max = @- (4.35)

Pauli’s postulate therefore accommodates the continuous energy spectrum
in B-decay, and simultaneously restores all the accepted conservation laws.
For completeness, let us note that the disintegration energy for positron
emission is given by
Q= (Mp—Mp—me —m,,)c2

=(M(A,Z) — M(A,Z - 1) - 2m, ~m,)c*
~(M(A,Z) — M(A,Z —1) - 2m.)c?, (4.36)

where, again, all the M (A, Z) in the last line of Eq. (4.36) refer to full
atomic weights, and ) must be positive for the decay to occur. Similarly,
electron capture can take place only if

Q= (Mp+me— Mp - ml/)02

=(M(A,Z)-M(A,Z-1)—m,)c?
~ (M(A,Z) - M(A,Z —1))¢® > 0. (4.37)

As stated before, all of these relations neglect the a2 eV differences in bind-
ing energies of electrons in atoms.

Just as a proton or a neutron is defined to be a nucleon with nucleon or
baryon number +1, so is an electron defined to be a lepton with a lepton
number +1. A positron, being the antiparticle of an electron, has lepton
number —1, just as an antiproton or an antineutron has nucleon number
—1. We will see in Chapter 9 that both lepton number and nucleon number
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appear to be conserved in all interactions; we can therefore conclude from
the three processes in Eq. (4.31) that neutrinos must also be leptons with
lepton number +1, while the lepton number for antineutrinos is —1.

4.4.1 Lepton Number

Three charged leptons appear to exist in nature, all with their own associ-
ated neutrinos, namely (e~,v.), (u™,v,) and (77, v;). The muon and the
7 lepton have properties similar to that of the electron, but are far more
massive. The three types of neutrinos are also known to be distinct from
one another. For example, when neutrinos produced in a decay such as
nt — pt + v, are allowed to interact with matter, they never produce
charged leptons other than p~. That is,

v+ AXZ o5 AYZH 4y,
v, +AXE f AYEHL 4o
v+ AXZ A AYER Lo (4.38)

and v, interacting with matter produce electrons

ve + AXZ 5 AYZF e
ve+ AXZ A AYZH 4y,
Ve + AXZ f AYZHL 4 o, (4.39)

Similarly, although not studied as extensively, v, produces 7, and not e~
or p~. This family structure for leptons and their antiparticles plays a
major role in constructing theories of fundamental interactions.

4.4.2 Neutrino Mass

The issue of whether neutrinos have mass has important ramifications. As
is clear from Egs. (4.33) and (4.35), the mass of the neutrino can be
determined from the end point of the g-spectrum. If m, = 0, then the end
point of the spectrum is tangential to the abscissa, whereas if m, # 0, then
the end point is tangential to the ordinate (see Fig. 4.5). Thus, the shape
of the B-spectrum near the end point can be used to extract the mass of the
neutrino. However, in practice, the shape at the end point is very sensitive
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to measurement resolution. There are also other methods of determining
the masses of neutrinos, and at present the most stringent direct limit on
the mass of the electron neutrino is m,, < 2 eV/c?.

m, 0

Electron Energy Electron Energy
Fig. 4.5 Dependence of the end point of the 8 spectrum on the mass of the neutrino.

A small but finite neutrino mass is interesting from a cosmological per-
spective because a massive neutrino can contribute to the mass of the uni-
verse as dark matter. A finite mass for the neutrino leads naturally to
concepts such as mixing between different neutrino states, and to the pos-
sibility of conversion of one species to another, much in the spirit of beat
phenomena and energy exchange observed for weakly-coupled oscillators.
The possibility of neutrino mixing provides one of the experimental meth-
ods for establishing a non-vanishing neutrino mass. For example, starting
out with v, we can look for the evolution of e~ production in matter as a
function of distance traveled by the neutrino. In fact, measurements of the
neutrino flux from the sun and from interactions of cosmic rays, performed
by Ray Davis and Masatoshi Koshiba and their collaborators, imply that
there is a finite probability for different types of neutrinos to transform into
each other, which requires that neutrinos have finite mass. (These kinds of
issues will be discussed in greater detail in Chapter 12.)

4.4.3 The Weak Interaction
The B-decay processes of Eq. (4.31) can be written equivalently as

n—pte +7,,
p—n+et +u,,
p+e” —n+u,. (4.40)

Because a neutron is more massive than a proton, a free neutron can de-
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cay as in Eq. (4.40). However, by the same token, since the proton is
lighter than a neutron, a proton cannot S-decay in free space. That is,
a proton can undergo S-decay, but only inside a nucleus. Free neutrons,
on the other hand, do decay in the laboratory with lifetimes of about 900
sec. This lifetime is much longer than the time scales involved in nuclear
and electromagnetic reactions. (We note that the typical time scale for a
nuclear reaction is about 10722 gec, while the corresponding time scale for
an electromagnetic process is about 1076 sec.) Thus, we conclude that
although B-decay is a nuclear phenomenon, it does not involve the strong
nuclear force. (Its origin also cannot be electromagnetic.) This result led
Fermi to postulate the existence of a new force that is responsible for g-
decay. It is called the weak force, and is short-ranged, since it is effective
only within the nuclear domain. The weakness of the strength of this force
is responsible for the long lifetimes observed in S-decays. In terms of rel-
ative strengths, the nuclear, electromagnetic, weak and the gravitational
interactions can be characterized by the ratios 1 : 1072 : 1075 : 1073%. As
in the case of electromagnetism, the weak coupling strength of this force
also allows us to calculate any of its effects through perturbative techniques.

As we have noted before, nuclei do not contain electrons. Consequently,
electrons produced in B-decay cannot originate from within the nucleus.
Rather, they must be produced at the time of the decay. This is quite
analogous to the situation in atomic transitions, where photons do not exist
within atoms, but are produced during the transitions. Just as a transition
in an atom can be understood as being induced, for example, by a dipole
interaction, and can be calculated using perturbation theory, in a similar
way, -decay can be understood as being induced by the weak force of the
weak-interaction Hamiltonian. The transition probability per unit time,
or the “width”, for the process can also be calculated from perturbation
theory using Fermi’s Golden Rule (discussed in Chapter 1)

27
P =~ HpPo(Ey), (441)
where p(Ey) is the density of states for the decay products, and Hy; de-

notes the matrix element of the weak-interaction Hamiltonian, Hyy, taken
between the initial and the final states

Hyi = (f|Huwxli) = / &>z Y7 (z) Huitpi(z). (4.42)
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From Eq. (4.40) we see that the weak-interaction Hamiltonian must connect
four fermionic states, otherwise the matrix element in Eq. (4.42) would not
describe S-decay. The Hamiltonian for the theory of g-decay as proposed
by Fermi - also known as the four-fermion interaction or current-current
interaction — was relativistic, and based on the properties of the Dirac
equation for fermions. Over the years, experimental studies have greatly
restricted the structure of the four-fermion theory to a form that is in
excellent agreement with all experimental measurements of low energy S-
decay processes.

—— —

sy Sy
——— s
2 2
Mirror image of v v in B-decay

Fig. 4.6 Sketch of the momentum and spin vector of a neutrino and its mirror (inverted)
image.

One of the features of the modern form of the theory is that there
are only left-handed neutrinos and right-handed antineutrinos, which ac-
commodates quite naturally the large violation of parity observed in weak
interactions. A system is parity-invariant if it does not change under re-
flection of spatial coordinates, that is, if it is indistinguishable from its
mirror image. For the left-handed neutrinos emitted in S-decay, however,
the mirror reflected process, that is, the mirror image, will involve right
handed neutrinos. This follows because under reflection ¥ — —7, § — ~7,
and § must transform as [ = 7# x § = (—7) x (=) = L. (Handedness
can be defined as r%%.) Therefore, as shown in Fig. 4.6, the direction of
motion changes under reflection, but spin, being an angular momentum,
does not, leading to a change in the handedness. (We urge the reader to
look at a rotating screw and its image in a mirror, to become convinced
that the sense of rotation is preserved under reflection.) Thus, we see that
the process of S~decay is distinguishable from its mirror image. However,
since to all intents right-handed neutrinos (and left-handed antineutrinos)
do not appear in nature, the parity transformed process, in effect, does not
exist, and consequently parity must be violated in weak interactions. This
agrees completely with experiment, and these issues will be discussed again
in later chapters.
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4.5 Gamma Decay

As we have already seen, when a heavy nucleus disintegrates by emitting
an a-particle or a f-particle, the daughter nucleus may be left in an excited
state. If the excited nucleus does not break apart or emit another particle,
it can de-excite to the ground state by emitting a high energy photon or
gamma () ray. As we saw in Example 1, the characteristic spacing of
nuclear energy levels is about 50 keV, and typical energies of nuclear vy-rays
can therefore range from a fraction to several MeV. Because this kind of
de-excitation is electromagnetic, we expect lifetimes for such processes to
be about 1076 sec.! As in atomic transitions, the photon carries away at
least one unit of angular momentum (the photon, being described by the
vector electromagnetic field, has spin angular momentum of %), and the
process conserves parity.

The study of the emission and absorption of nuclear «-rays, forms an
essential part of the development of nuclear spectroscopy. The subject has
a direct parallel in the study of atomic spectroscopy, however, there are
important differences. Consider, for example, a system initially in a state
of energy E; making a transition to a state with energy E, through the
absorption or emission of a photon of frequency v. In such processes, we
can define what are known as resonant or recoilless transitions, for which

hv=7F (Ei - Ef) 5 (4.43)

where “—” corresponds to absorption and “+” to emission. Thus, in prin-
ciple, measuring v determines the level spacings. However, in absorbing or
emitting a photon, any system must, in fact, recoil to conserve momentum.
If M denotes the mass of the final-state object and v the magnitude of its
recoil velocity, it then follows from conservation of momentum that

% = M. (4.44)

Consequently, conservation of energy yields to a modified version of Eq.
(4.43)

!When we speak about “typical” lifetimes for different interactions, it should be
recognized that these can vary substantially for any specific process because of differences
in the phase space and transition operators under different circumstances. Thus, for
example, electromagnetic reactions have “typical” lifetimes ranging between = 10~1°
sec in certain particle decays to &~ 10~8 sec for atomic dipole transitions.
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1
E, - Ef =:Fh1/+§Mv2,

h1/+L hy 2
=¥ QM \ (¢ /)’

h2v?
or hv = F (Ez - E_f - -2—]-\—4—0—2—) = q:(Ei - Ef - AER), (445)
where AER denotes the kinetic energy of the recoil.

Now, every unstable energy level has a “natural” width 6E =T and a
lifetime 7, which can be related through the uncertainty principle:

)
or I'w o~ uncertainty in (E; — Ey). (4.46)

In other words, the exact value of an energy level is uncertain, and cannot

be defined in any given transition to better than ~ I'. Consequently, if

the kinetic energy of the recoil is such that AEg « I', then Eq. (4.45)

is essentially equivalent to Eq. (4.43), and resonant absorption can take

place. On the other hand, if AEg > T, it is then impossible to excite the

system to a higher level through resonant absorption within the bounds (or
“umbrella”) provided by the uncertainty relation.

To appreciate this more fully, consider an atom with A = 50. The
typical spacing of atomic levels is of the order of 1 eV, and we will therefore
consider absorption of a photon of energy of hv = 1 eV. For the atom, we
have M¢? =~ 50 x 103 MeV =5 x 101° eV, and, consequently,

(w)>  1(eV)?
2Mc2 T 2x5x 1010V

Because typical lifetimes associated with excited atomic levels are about
10~8 sec, we see that

AEg =

=107 eV. (4.47)

h 6.6 x 10722
'~ ; ~ W MeV-sec

=6.6 x 1071 MeV = 6.6 x 102 eV. (4.48)
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Consequently, AEr <« I', and, for atomic transitions, resonant absorption
can therefore take place.

In contrast, typical nuclear spacings have hv > 100 keV = 10° eV. If
we consider again a nucleus with A = 50, we still have Mc? ~ 5 x 1010 eV,
but now, with the higher photon energy, the nuclear recoil energy is given
by

() (10°eV)?
ABR = 2Mc2 T 101 eV

If we assume a typical lifetime of about 10~12 sec for a nuclear level, then

=10"teV. (4.49)

I~ h _6.6x 10~22 MeV-sec
T 10—12 gec

=6.6 x 107" MeV = 6.6 x 107 eV. (4.50)

It is clear, therefore, that for such nuclear transitions AEg > T, and
resonant absorption cannot occur.

In fact, for resonant absorption to take place in nuclei, the recoil
energy must somehow be reduced, and this is done beautifully through
what ‘is known as the Mdssbauer effect (named after its discoverer Rudolf
Méssbauer). The basic idea rests on the fact that, the heavier the recoiling
system, the smaller is the recoil energy (see Eq. (4.49)). An enormous
increase in the mass of the recoil can be achieved by freezing the nucleus
into a rigid crystal lattice, which, of course, has a much larger mass than
a single nucleus. As a result, the mass of the recoiling system becomes
the mass of the macroscopic crystal, thereby increasing the effective mass
of the recoil by many orders of magnitude, and consequently making the
recoil energy AER negligible relative to I'. Because of this feature, the
Moéssbauer technique can provide exceedingly precise estimates of widths
of levels. For example, level widths in iron have been measured to an accu-
racy of about 10”7 eV, which leads to an accuracy of about 1 part in 102
in level spacing. The technique is therefore extremely useful in determining
hyperfine splittings of nuclear energy levels.

Problems

4.1 Calculate the @ values for the following a-decays between ground-state
levels of the nuclei: (a) ***Po = 20“Pb + « and (b) **°Th — ?26Ra + a.
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What are the kinetic energies of the a-particles and of the nuclei in the
final state if the decays proceed from rest?

4.2 Estimate the relative contribution of the centrifugal barrier and the
Coulomb barrier in the scattering of a 4 MeV o-particle from 236U, In
particular, consider impact parameters of b = 1fm and & = 7fm. What
are the orbital quantum numbers in such collisions. (Hint: |L] ~ |7 x §| ~
hkb ~ Re.)

4.3 Free neutrons decay into protons, electrons and antineutrinos, with a
mean life of 889 sec. If the neutron-proton mass difference is taken as 1.3
MeV/c?, calculate to at least 10% accuracy the maximum kinetic energies
that electrons and protons can have. What would be the maximum energy
that the antineutrinos can have? (Assume decay from rest and that the
antineutrino is massless.)

4.4 If the stable isotope of sodium is 22Na, what kind of radioactivity would
you expect from (a) 22Na and (b) 24Na?

4.5 Specify any additional particles needed in the following weak reactions
to assure the conservation of lepton number: (a) p= = e+ ? (b) 7+ —
et ?7 e+ 4XZ 297 D y,+n =7 (e) 4XZ - AYZ1 47
) Tet+p—>7

4.6 Calculate the typical kinetic energy expected of an a-particle confined
within a nucleus if its emitted energy is 10 MeV. What is the momentum
of such an a-particle inside the nucleus and after it is emitted. Is the
wavelength of such an a-particle acceptable for it to be contained within a
nucleus of 12C? What about 238U?

4.7 When you examine the dependence of Z on N for stable nuclei, you
find that Bt emitters lie above the region of stability (have proton excess)
and B~ emitters lie below that region (have neutron excess). For example,
8B emits AT, while 2B emits 8. Stable nuclei are those that do not seem
to have sufficient mass for either emission to take place, that is, they are
the nuclei with greatest binding or smallest mass. As discussed in Problem
3.1, this suggests that stable nuclei should correspond to a “valley” in
the M-Z space, that is, specified by %—Ag— = 0. Using the semi-empirical
mass formula for M, show that the relationship between Z and A for this
valley of stability is Z ~ (m). Several nuclei with Z beyond 110
were discovered in the late 1990s. Is it possible that there could be more
“islands” of stability for Z >1207 Consider, for specifics, the possibility



104 Nuclear and Particle Physics

of binding of Z = 125, Z = 126, and Z = 164. Even more massive nuclei
have been hypothesized with Z > 200. These would have rather exotic
bubble-like or toroidal structure. Why would such structures be expected
to be more stable than spherical nuclei?
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Chapter 5

Applications of Nuclear Physics

5.1 Introductory Remarks

Studies of properties of nuclei and of the nuclear force have contributed
significantly to the formulation of the fundamental laws of nature. The
understanding of physical laws has in the past led to applications that have
benefited mankind. For example, the principles of electromagnetism led to
the commercialization of electricity, which has proven indispensable in our
daily life. Similarly, the explanation of atomic phenomena has given us the
laser, the transistor and a host of amazing devices. Needless to say, many
applications have also arisen from our understanding of nuclear physics.
However, because these developments have been put to both constructive as
well as destructive use, they have often led to controversy. In this chapter,
we will describe only a few of these applications and the principles behind
them.

5.2 Nuclear Fission

Neutrons, being electrically neutral, do not sense the direct Coulomb force.
As a consequence, unlike protons that are repulsed by the nuclear charge,
low energy neutrons can get quite close to the nuclei and interact with
them through the attractive nuclear potential to form bound states. In the
early days of nuclear physics, the capture of low energy neutrons within
nuclei was promoted as a technique for producing new nuclei of higher 4
values. In experiments designed to make transuranic elements through neu-
tron capture, it was often observed that scattering of low energy thermal
neutrons (at room temperature T' ~ 300K, kT ~ 216 eV) from odd-A nuclei
such as 233U did not produce heavier nuclei, but instead the parent nucleus

105
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fragmented into two smaller-mass daughter nuclei. Such fragmentation of
a heavy nucleus into two medium-size nuclei and any other remnants is
known as nuclear fission. Certain heavy nuclei can also undergo sponta-
neous fission with only minimal external perturbation. A typical example
of induced fission of an odd-A nucleus is given by the absorption of thermal
neutrons by 235U

BU+n— " Last 8 Br+n. © o (51)

On the other hand, the scattering of thermal neutrons from even-A nuclei
such as 238U does not produce fragmentation. Nevertheless, fission can take
place in such nuclei when the neutrons have kinetic energies of the order of
2 MeV.

Fission, therefore, appears to be an inherent characteristic of large nu-
clei, and it has come to play an important role in our lives because the
process can release a large amount of energy. An estimate of the energy
released in the fission of a heavy nucleus can be obtained from the graph
of the binding energy per nucleon (see Fig. 2.1). The binding energy
per nucleon is smaller for very large-A values than for medium-A nuclei,
where it attains a maximum. The process of fission therefore involves the
breakup of a comparatively lightly bound heavy nucleus into two tightly
bound medium-A4 nuclei, and as a result this must lead to a release of en-
ergy. Thus, if we use —7.5 MeV as the approximate binding energy per .
nucleon for 235U and about —8.4 MeV for the fission products (recall that
% is defined as the negative of the binding energy per nucleon), we then
obtain an energy release of about 0.9 MeV per nucleon in a typical fission.
Consequently, the total energy released per fission of one 233U nucleus, and

shared among the end products, can be estimated to be

235 x 0.9 MeV = 211.5MeV =~ 200 MeV. (5.2)

This is, indeed, a lot of kinetic energy, and consequently the harnessing of
‘nuclear fission can, in principle, provide a substantial source of power.

5.2.1 Basic Theory of Fission

The phenomenon of nuclear fission can be understood both qualitatively
and quantitatively on the basis of the liquid drop model. Qualitatively,
the model assumes nuclei to be spherical, and this is indeed consistent
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with much of the data. However, for very large nuclei, a spherical shape
need not necessarily be stable. Furthermore, an external perturbation,
such as an incident neutron, can create surface waves that can lead to a
change in the shape of a liquid drop. The liquid drop can, for example,
elongate as a result of the perturbation. If the produced deformation is
sufficiently large, Coulomb repulsion between the elongated portions of the
drop can produce a two-lobe structure that can push the lobes further
apart, causing a complete split or fission of the initial nuclear drop into two
droplets. On the other hand, if the initial deformation is not very large,
then the deformed liquid drop can form an excited state of the compound
nucleus (consisting of the incident neutron and the parent nucleus of nucleon
number A), which can eventually de-excite to a lower energy state of a
nucleus with nucleon number (A + 1) through the emission of a photon.
This second scenario is commonly referred to as the radiative capture of a
neutron. These processes are represented pictorially in Fig. 5.1.

@ﬁ_,(X)_*QQ
. () o

Radiative

Deexcitation

Fig. 5.1 Neutron absorption leading either to fission or to radiative capture.

The liquid drop model also provides an excellent quantitative descrip-
tion of nuclear fission. As we have already seen, the model provides a
natural and successful parameterization of the binding energy of nuclei.
The empirical formula for the binding energy (see Eq. (3.3)) has three
classical terms that depend explicitly on the shape of the drop, namely
the volume energy, the surface energy and the Coulomb energy. We can
therefore perform a simple classical calculation to analyze the stability of
a liquid drop under any external perturbation. Thus, if we assume that
a spherical liquid drop of radius R deforms very slightly under some ex-
ternal perturbation to an ellipsoid of the same volume (recall that nuclear
matter behaves like an incompressible liquid), with semi-major and semi-
minor axes a and b, respectively, we can write a and b in terms of a small
parameter of deformation e, as (see Fig. 5.2)
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a=R(1+e),
R

(See Problem 5.13 for the connection between the parameter € and the
usual eccentricity of an ellipsoid.) This choice of parametrization guaran-
tees that the volume of the liquid drop remains unchanged

V= %ﬂ# = % mab®. (5.4)

External
Perturbation

a=R(1+¢€)
b

= 1
(1+e)l2

Fig. 5.2 Deformation of a sphere into an ellipsoid of same volume.

Since the volume is identical for the sphere and for the ellipsoid, the
volume energy will be the same for both the original and the deformed
liquid drops. However, the surface energy and the Coulomb energy will
differ for the two cases. In fact, it can be shown (by comparing the surface
area of an ellipsoid to that of a sphere) that the surface energy for the
ellipsoid assumes the form

2
azA3 — 0y A3 (1 +z 62) , (5.5)
while the Coulomb energy changes to
Z? A 1,
G3E—>031—4—%(—g€). (5.6)

The above deformation increases the surface energy while decreasing the
Coulomb term. The stability of the droplet therefore depends on how these
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two terms compete with each other. The total change in binding energy
due to the deformation can now be written as

A = B.E. (ellipsoid) — B.E. (sphere)

2 2 1 Z?
= g 6202A§ - 5 620,3 :—4—;
1 2 Z?
= '5 €2A§ (2(12 — a3 7) - (57)

Clearly, if this energy difference is positive, then the spherical drop will be
more tightly bound and consequently stable under a small external pertur-
bation. In fact, from the values of ay and a3 given in Eq. (3.4), namely
az =~ 16.8 MeV and a3 ~ 0.72 MeV, we find that A > 0 when

2

VA
202—0131- >0,

2

or ZI <ar (5.8)

This simple classical analysis shows therefore that a spherical nucleus
is stable under infinitesimal perturbations only if Z2 < 47A. There are,
of course, quantum-mechanical corrections that have to be considered, but
they do not affect the qualitative features of the result, namely that spher-
ical nuclei with Z% > 47A are expected to be highly unstable and subject
to spontaneous fission. Because large nuclei have Z < 1A (see Fig. 2.3),
it follows, in fact, that they all satisfy Z2 < 47A, and a spherical shape
therefore provides them maximal binding. However, even for Z2? < 47A4,
the binding energy of two daughter nuclei can be smaller than the binding
energy of a spherical parent nucleus, in which case, the spherical parent can
fission, and thereby transform to a state of lower energy.

Let us consider the simple example of a parent nucleus fragmenting into
two identical daughter nuclei. (We are therefore assuming that both the A
and Z values for the parent nucleus are even.) Neglecting the quantum-
mechanical terms, namely the terms with a4 an(iag, in Eq. (3.2), we can
calculate the difference in the binding energy of the initial nucleus and the
fission products when they are far apart from each other. Since the volume
energy cancels out, we obtain
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272

2 1\# Z? 3)?
:a2A3 (1—2(5) )+0/3E<1_2((%2?>

A(BE.) =B.E. (4,7) — 2 BE. (A 5)

2
as A (1~ 2%) +ay %(1—2-%). (5.9)

3

Using the values of a3 and a3 from Eq. (3.4), we obtain

2
A(B.E.) ~ A3 (—0.27 az +0.38 ag 27)

2
= A} (—0.27 x 16.8 MeV -+ 0.38 x 0.72 MeV %)

2 Z?

~ 0.27 A3 (—16.5 + 7) MeV. (5.10)
This calculation shows therefore that for Z% > 16.5 A, we will have A(B.E.)
> 0, which corresponds to the condition that the two daughter nuclei will
be more tightly bound than the parent nucleus. It follows therefore that
for 16.5 A < Z? < 47 A, when the spherical shape of the parent nucleus is
stable under small perturbations, it is, nevertheless, energetically favorable

for the parent to fragment into two lighter nuclei. '
Our previous discussion can now be incorporated more quantitatively
into a graph of the potential energy of the two fission fragments as a func-
tion of their separation distance (see Fig. 5.3). When the two daughter
nuclei are far apart, their potential energy relative to the parent is given by
Eq. (5.10). For A = 240 and Z =~ 92, this corresponds'to ~ 200 MeV for
two smaller nuclei of comparable size. As the fragments are brought closer
together, they sense the repulsive Coulomb potential, which increases as the
separation between them decreases. For r = rp, approximately when the
daughter nuclei start touching, the Coulomb potential is at its maximum,
and is of the order of = 250 MeV. (This reduces by = 10-15% for daugh-
ter nuclei with asymmetric Z-values of ~ 2:1.) For r < rg, the two nuclei
begin to fuse into a single deformed nucleus and, as we have discussed,
there are two possibilities for the evolution of the system. (Note that when
r < 1o, the value of r provides an effective measure of the elongation of the
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deformed nucleus and is therefore proportional to the deformation param-
eter e given in Eq. (5.3).) First, when Z2 > 47 A, the spherical shape is
unstable, and that the energy decreases quadratically with deformation (see
Eq. (5.7)). This corresponds to Branch-I in the potential energy. In this
situation, at the slightest perturbation, the spherical parent nucleus evolves
into two separate nuclei because continued separation of the original object
is energetically favorable for all r values. The nucleus will therefore “roll
downhill” very rapidly, and spontaneously fission. When Z2 < 47 A, the
spherical parent nucleus corresponds to a stable bound state whose energy
increases quadratically with deformation. This is represented by Branch-II
of the potential-energy graph. In this case, classically, the parent nucleus
will be at the bottom of the potential well, but, due to quantum corrections,
the ground state acquires a zero-point energy given by some Ep. If E. de-
notes the peak of the Coulomb barrier, then this is the classical amount of
energy a nucleus must have in order to undergo fission. In other words, a
nucleus must acquire an amount of energy E, — Ey in order to split apart.
This is known as the activation energy, and its value is typically between
6-8 MeV for nuclei with A =~ 240. For Branch-II, the parent nucleus can
also fission through quantum mechanical tunneling through the barrier.
However, the probability for this, as mentioned in our treatment of barrier
penetration in Chapter 4, is exceedingly small since the fragment masses
are large and, correspondingly, the lifetime for such a process will be quite
long. Because the evolution of nuclei into two daughter nuclei on Branch-I
is always energetically favorable, such fissions will be very fast.

Vi(r) 1

E.

Eo ——

ro r ——

Fig. 5.3 Potential energy for the interaction of two medium-size nuclei as a function of
their separation distance. The nuclei just touch at r = rp, and coalesce at r = 0.

This elementary theory of fission, based on the liquid drop model, is due
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to Niels Bohr and John Wheeler, and although classical in its conception,
it, leads to a surprisingly good understanding of both natural and induced
fission. It explains, in particular, why thermal neutrons induce fission in
2357J, whereas only higher-energy neutrons can produce fission of 238U. This
difference can be argued in two ways. First, from a qualitative viewpoint,
because 235U is an odd-even nucleus and 238U is even-even, it follows that
the ground state of 235U will lie higher (less tightly bound) in the potential
well of its fragments than that of 233U. Hence, to induce fission, a smaller
perturbation will be needed for 235U than for 233 U. More quantitatively, we
can estimate the activation energy that is required for the fissioning of 236U
and 2%9U; this can be calculated as about 5 MeV for the former and over
6 MeV for the latter. Now, in capturing another neutron, 23°U becomes
an even-even compound nucleus, and the process therefore changes an odd-
even nucleus to a more tightly bound even-even nucleus; consequently, this
kind of transformation releases energy (the binding energy of the last neu-
tron is —6.5 MeV), which is sufficient for providing the activation energy
needed for the compound nucleus to fission into its fragments. The kinetic
energy of the incident neutron is irrelevant in this process, and hence even
thermal neutrons can induce fission in 223U, In contrast, the capture of a
neutron by 238U, changes it from an even-even to an odd-even nucleus. In
other words, neutron capture in this case changes a tightly bound nucleus
to a less tightly bound one, which is a less exothermic process (the binding
energy of the last neutron in 23°U is —4.8 MeV, short of the more than
6 MeV required for fission). It is for this reason that higher energy neu-
trons, of energy greater than 1.2 MeV, are needed to provide the additional
activation energy required for 228U to fission. We also wish to note, that
although the pairing term (i.e., the last term in Eq. (3.2)) is negative for
even-even nuclei and zero for odd-even nuclei, and reflects the qualitative
behavior of the two systems, this term alone does not account for the entire
difference observed in the neutron induced fission of 235U and 238U.

In the preceding example, we assumed that the fission fragments have
equal mass, which would appear to be most natural. In general, however,
the fission fragments have quite asymmetrical mass distributions (this re-
duces the effective size of the Coulomb barrier). In fact, masses of daughter
nuclei tend to cluster around nucleon numbers of A ~ 95 and A ~ 140.
Thus far there is no fundamental understanding of this particular cluster-
ing. Just after fission, daughter nuclei are usually left in excited states
and they decay to ground states through neutron emission or evaporation.
Thus, neutrons are often produced along with the larger fission products.
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In general, the original fission products, being neutron rich, do not lie on
the stability line in the N-Z plane but above it, and eventually decay to
the stability line through §~ emission.

5.2.2 Chain Reaction

It is clear from the above discussion that each nuclear fission produces
a large amount of energy. This in itself would not be very interesting,
because what is needed for useful applications is a steady supply of energy.
What makes fission attractive as a possible source of commercial power is
the fact that neutrons are often produced along with the daughter nuclei.
For example, in 235U, an average of 2.5 neutrons are produced per nuclear
fission. Since such neutrons can induce additional fission, they can, in
principle, sustain a continuous process, and thereby provide a useful output
of energy.

Let us define the ratio of neutrons produced in the successive stages of
fission by

k= Number of neutrons produced in the (n + 1) stage of fission
" Number of neutrons produced in the n stage of fission

(5.11)

If this ratio is less than unity, i.e., if £ < 1, the process is called sub-critical.
It is clear that in this case the fissioning of some sample of material cannot
continue indefinitely, and eventually the reaction stops. This condition
is therefore not very useful for generating power. If k& = 1, namely, the
number of neutrons inducing fission remains constant at every stage, then
the process is called eritical. In this case, a continued reaction rate is
possible. This is the most desirable condition for providing a constant
supply of power in a nuclear reactor. When k > 1, then more and more
neutrons are produced at every stage of fission, causing a runaway chain
reaction. This scenario is called supercritical, and it causes the output
energy to grow rapidly, leading to an uncontrollable explosion. Needless to
say, this kind of condition finds application in the design of nuclear weapons.

In a controlled environment, such as a nuclear reactor, the chain reaction
can be put to practical use for generating power. Very briefly, a nuclear
reactor consists of several components, the most important of which is the
core (see Fig. 5.4). The core contains the fissile material, or fuel elements,
the control rods and the moderator. Natural uranium can be used as the
fuel in a reactor. However, because natural uranium is a mixture of 235U
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and 238U, and 2%°U has a shorter lifetime- (about 7 x 108 yr) than 238U
(about 5 x 10° yr), the natural mixture contains only a small fraction of
235U (the ratio of 23°U to 238U in natural uranium is about 1:138). As
a result, most of the thermal neutrons incident on such a sample will be
captured radiatively by 233U nuclei, and will not induce fission. It is for
this reason that enriched uranium, which is essentially pure 233U, is used
as fuel in nuclear reactors.

Retractable
Control Rods

—Fuel Elements

&-——Moderator Material

Fig. 5.4 Sketch of the elements of the core of a reactor.

The control rods in a reactor are often made of cadmium, which has
a high absorption cross section for neutrons. Therefore, by retracting or
inserting the control rods, the number of neutrons available for inducing
fission can be regulated. This mechanism is the key element in maintain-
ing a constant k-value and, therefore a constant power output. The fuel
elements are usually surrounded by a moderator, whose main function is
to slow down any fast neutrons that may be produced in the course of
fission, so that they will have a larger probability of being absorbed and
" thereby induce more fission (higher energy neutrons have smaller absorp-
tion cross sections). It is advantageous to have moderator material that is
inexpensive, and with a negligible cross section for absorption of neutrons.
Heavy water (D20), for example, is preferred as a moderator over normal
water (H20) because the cross section for neutron capture by protons in
normal water (to make deuterons) is much larger than that for capture by
deuterons in heavy water (to make tritium nuclei).

In a power plant (see Fig. 5.5), the reactor core is immersed in a coolant
(often water), which removes the heat energy produced in the core, and
keeps the core at sufficiently-low temperature to prevent a meltdown. (The
heat is generated from energy deposited by the fission remnants as they
ionize the material in the core.) The entire set up is surrounded by heavy
shielding needed to minimize any leakage of radiation. When the nuclear
reactor starts operation, the value of k is set slightly higher than unity,
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and is maintained at that value until the desired power output is achieved,
after which point the k-value is lowered to unity. As we have just noted,
the coolant removes the heat energy produced in the fission process, and
this can then be used to boil water and produce steam. The steam, in turn,
can run turbines that generate electricity. This is, of course, only a very
basic outline of the design and functioning of a nuclear power reactor. In
practice, the design and construction is far more complicated, especially
because of the many safety features needed to avoid accidents.

A, %

Steam Driven
Turbine

AN

Core Electricity
Generator
Coolant Heat \
ea
Water Supply
/ / ‘ Exchange and P
Shield Condenser

Fig. 5.5 Sketch of the main elements in a nuclear power plant.

Finally, it is interesting to calculate the maximum energy expected from
a nuclear reactor. As we have seen, the fission of one 233U nucleus yields
~~ 200 MeV or 3.2 x 107! joules. Now, one gram of any element contains
42 atoms, where Ao is Avogadro’s number, and one gram of 2°°U contains
therefore about 6 x 1= ~ 3 x 102! atoms. It therefore follows that the

235
complete fission of one gram of 235U can yield a total energy of

~ 3 x 102! x 3.2 x 10~ joules
~ 10! joules
~ 1 MWD (MegaWatt-Day). (5.12)

That is, the fission of one gram of 23°U can produce one MW of power for
an entire day. To compare this yield to the energy expected from one gram
of coal, we recall that burning one ton of coal yields a thermal energy of
0.36 MWD. Thus, ignoring relative efficiency of converting the energy to
electric power, a gram of completely fissioned 23°U yields about ~ 3 x 10°
more energy than a gram of coal.
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5.3 Nuclear Fusion

The data for the binding energy per nucleon has an interesting structure
in that it shows a maximum for medium-size nuclei with A =~ 60. As we
have seen, the subsequent slow decrease in this value for increasing A is
what makes nuclear fission possible. For lighter nuclei, the binding energy
per nucleon falls much more sharply, indicating that, with the exception of
magic nuclei, lighter nuclei are less tightly bound than medium-size nuclei.
We can therefore imagine using a process just opposite of fission that can
serve as another source for generating energy. Namely, if we combine (fuse)
two light nuclei into a relatively heavy and tightly bound nucleus, this can
then lead to a release of energy due to the difference in binding energies of
the initial and the final states. This process is known as nuclear fusion, and
the energy released per nucleon is comparable to that in fission. However,
since lighter nuclei contain fewer nucleons, the total energy released per
fusion is smaller. On the other hand, since there is an abundance of light
and stable nuclei in nature, fusion provides an attractive alternative for
generating power. Fusion is, in fact, the mechanism responsible for energy
generation in the interior of the sun and of other stars.

In principle, fusion can take place when two light nuclei are brought
close enough to each other so that they can overlap and fuse, and thereby
release energy. However, for this to happen, the Coulomb barrier between
the two nuclei has to be overcome. The value of the repulsive Coulomb
energy is a maximum when the two nuclei are just touching, and has the
form '

_ ZZ'é?
" R+R’
where Z and Z' are the atomic numbers of the two nuclei, and R and R’
are their respective radii. Recalling Eq. (2.16), we can rewrite this as

VCoulomb (513)

v _é heZZ'

Coulomb = e T2[4% 1 (4)Htm

_ 1 197MeV-fm 27

C 137 1.2fm A% 4 (A3
ZZ

&8 —4——— MeV =
VERNVOE

% A% MeV, (5.14)
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where A and A’ are the nucleon numbers of the two light nuclei, and the final
expression is obtained by setting A ~ A' ~ 2Z ~ 2Z’'. Thus, the Coulomb
barrier between two nuclei of A ~ 8 is about 4 MeV. Consequently, for
fusion to take place, we must provide kinetic energies of the order of a few
MeV to overcome the Coulomb barrier (clearly, the exact value depends on
the specific nuclear masses and charges).

It would therefore appear that a natural way to achieve fusion is by
colliding two energetic beams of light nuclei. In such a process, however,
most of the nuclei get scattered elastically and, as a result, this turns out
to be an inefficient way of inducing fusion. An alternative method is to
heat up the relevant nuclei to high temperatures to provide them with
sufficient kinetic energy to overcome the Coulomb barrier. To estimate
these temperatures, let us assume that each of the nuclei needs a kinetic
energy of about 2 MeV (that is, the Coulomb barrier is roughly 4 MeV).
Recalling that room temperature (300 K) corresponds to 41—0 eV, we obtain
that 2 MeV corresponds to

2 x 10%V
(i) eV

Although this is beyond the typical scale of ~ 107 K temperatures found
inside the sun and the stars, the Maxwellian tail of the spectrum in the
sun goes out far enough to provide the required excursions in energy, and
explains why fusion can take place in stellar interiors. There is a variety of
fusion reactions that can take place inside stars, and we will describe only
two of the “burning cycles”.

Our sun has a mass of about 103° kg, which consists primarily of about
1058 hydrogen atoms. Consequently, we expect that the main source of
energy in the sun is derived from the burning of hydrogen. This happens
through the proton-proton cycle, as suggested initially by Hans Bethe

x 300K ~ 10'° K. (5.15)

'H+ 'H — 2H+ et + v, +0.42MeV,
'H+ 2H — 3He + v + 5.49 MeV,
*He + ®He — *He+ 2 (*H) + 12.86 MeV. (5.16)

The large amount of kinetic energy released in the last step is due to the fact
that the “He nucleus is doubly magic, and is bound extremely tightly. The
final kinetic energies are shared among the end-products of the reactions,
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and can be deposited in the stellar material. Thus, in effect, a proton-
proton cycle burns four hydrogen atoms to obtain

6 (*H) — *He+2(*H)+2e" 4+ 20, + 27 +24.68 MeV,
or 4(*H) — “He+2e" +2v, + 27+ 24.68 MeV. (5.17)

The atoms inside the sun are in a highly ionized plasma state, and con-
sequently the positrons (e*) emitted in this cycle can annihilate with the
prevalent electrons and contribute to an increase in the total release of en-
ergy. Similarly, the produced photons can interact with stellar matter, and
deposit. their energy. From the fact that the age of the universe is about
1019 yr, and from the power output of the sun, we can estimate that the
sun will continue to burn for about another 10° yr before it runs out of fuel
for fusion.

Another fusion cycle that plays a fundamental role within stars is the
carbon or CNO cycle. The helium preduced in the proton-proton cycle can
produce carbon nuclei through the reaction

3 (*He) — 2C 4 7.27MeV. : (5.18)

Subsequently, the carbon nucleus absorbs a hydrogen nucleus leading to

120 4+ 'H — BN 49+ 1.95MeV,
BN — BC+et + v, +1.20MeV,
B4+ 'H — YN+ v+ 7.55MeV,
UN+ 'H — 50 +4+7.34MeV,
50— N +et + v, + 1.68 MeV,
N+ 'H — 2C + “He +4.96 MeV. (5.19)

Thus, in the full carbon cycle, we effectively get

20+ 4(*H) — C+ *He+2e +2v, + 37+ 24.68 MeV,
or 4(*H) — *He+2et +2v, + 37+ 24.68 MeV. (5.20)
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The types of burning cycles that take place in different stars determine
their specific evolution.

Finally, we mention that there is a considerably large effort world-wide
to achieve controlled thermonuclear fusion. In fact, the following reactions
have already been observed under laboratory conditions

H+ %H — “He+n+17.6 MeV,
H + 2H — 3%He+n +3.2MeV,
H+ ’H — *H+ 'H+4.0MeV. (5.21)

The main difficulty in producing fusion on a large scale lies in the problem
of containing the fuel material sufficiently long at the high temperatures
needed to penetrate the Coulomb barrier. At present there are two popu-
lar methods vying for this goal. One is magnetic confinement, wherein a
hot plasma of 2H and ®H circulates and fuses within a region of confining
electromagnetic fields. The other is inertial confinement, wherein electro-
magnetic energy (laser light or beams of heavily ionizing ions) is injected
into a small region that contains the fuel material. However, much work
remains to be done before fusion can be put to practical use.

5.4 Radioactive Decay

As we have seen, unstable nuclei can often transmute into other nuclei
through the emission of «, 8 or y particles. Any such spontaneous transition
from one state to another is known as a radioactive decay, and in this
chapter we will describe some general properties of such processes.

As we mentioned before, radioactive decay can be described as a sta-
tistical process. Namely, if we have a large number of radioactive nuclei,
we cannot say specifically which nucleus will decay at any given time. But
there is a unique constant probability of decay associated with each nu-
cleus. Thus, if N denotes the number of radioactive nuclei of any specified
type, at a given time, and A is the constant probability for decay per unit
time (that is, the decay constant), then the change in the number of nuclei
during an infinitesimal time interval dt is defined by

dN = N(t +dt) ~ N(t) = —=N(t)\ dt. (5.22)



120 Nuclear and Particle Physics

The negative sign in the above equation represents, as usual, the fact that
the number of nuclei decreases as a result of decay. If we assume Ny to be
the initial number of nuclei at ¢t = 0, then the number of nuclei N(t) at any
later time can be obtained from Eq. (5.22) as

dN
W —_ —A dt,
N t
or / ﬂ = —)\/ dt,
No N 0
N(t
or In Iéo) = —At, 7
or N(t) = Noe ™. (5.23)

In other words, for a radioactively decaying system, the number of nuclei
that survive decreases exponentially, and vanishes only at infinite times.
This is the characteristic law for all such statistical decay processes.

There are several time scales that can be associated with a radioactive
system. We can denote by t1 the time interval during which half of the
nuclei in the sample decay. It then follows that

N (t ):%:Noe_'\t%,

1
2

or /\t% =In2,
and
In2  0.693

If the decay constant is known (or can be calculated), then the half-life
ty can be obtained and compared directly with measured values. Another
useful time scale for describing decays is the average or mean life of a
radioactive material. This can be calculated using Eq. (5.23)
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[ tN@®)d
[ N(tdt

_ Ny f0°°te—)\t dt
- NO fooo et dt
A1

=7

where the definite integrals can be performed directly or found in tables
(they are related to “Gamma” functions). Consequently, as we mentioned
in the previous chapter in connection with barrier penetration, the mean
life of the sample is the inverse of the decay constant. Furthermore, 7 is
related to the half-life through the multiplicative constant In2 = 0.693.

We noted before that Eq. (5.23) implied that it would take an infinite
amount of time for the total sample to disintegrate. Nevertheless, after
several half-lives, the number of decaying nuclei is often too small to be
detected. The number of disintegrations per unit time, or the activity, of a
material is defined as follows

dN
A(t) = ‘Et— = AN(t) = )\Noe_)‘t. (526)
The activity is clearly a function of time and, in fact, also falls off exponen-
tially with time. For example, for 22°Ra, whose half-life is 1620 years, we
have t3 = 1620yr = 1.62x 10%yr ~ 1.62 x 10° x 3.1 x 10"sec ~ 5 x 10'%sec.
Consequently,

3\ 0.693 0.693
- t% ~ 5 x 1010 gec

~ 1.4 x 107 /sec. (5.27)

If the radioactive sample at t = 0 consists of one gram of 226Ra, then the
original number of radioactive nuclei in the sample is

1 23
No ~ Q%Q—g— ~ 2.7 x 102, (5.28)

and the activity of the sample at £ = 0 is consequently



122 Nuclear and Particle Physics

At =0) = AN
~ 1.4 x 1071 x 2.7 x 10?* /sec

~ 3.7 x 10" disintegrations/sec. (5.29)

This initial activity falls off exponentially in time with the same decay
constant as given in Eq. (5.27).

The natural activity of 226 Ra has been used to define a unit of radioac-
tivity. Thus, any sample with 3.7 x 100 disintegrations per second is said
to have a radioactivity of 1 curie (Ci), named after Pierre Curie. Typi-
cal laboratory samples usually have far smaller radioactivities of the order
of a millicurie = 1 m Ci = 10~% Ci = 3.7 x 107 disintegrations/sec, or a
microcurie = 1 p Ci = 1078 Ci = 3.7 x 10* disintegrations/sec. A more
rational unit of activity is known as the rutherford (rd), defined as 10°
disintegrations/sec. An activity of 1 micro-rutherford (urd) in a material
corresponds therefore to 1 disintegration per second, and is referred to as
one becquerel (Bq).

Ezample 1

Let us suppose that we have a small sample of radioactive substance that
has a mean life 7 of 10 seconds. At some time t = 0 we observe 108
disintegrations per second. At a later time ¢, we would expect from Eq.
(5.26) that the activity would be

A(t) = A(0)e ™.

Thus if we want the number of disintegrations expected in any 10 sec in-
terval centered on t, this would be

t45 1 ot [t+5
AN(t) = / deA(t) = 5 A(O)e |
t

. t—5
-5
t—5

= TA(o)e—')‘t|t+5 = 7.4(0) (e—/\(t—S) _ e—,\(t+5)) )

Let us suppose that we wish to know AN(t) at ¢ = 1000 sec. Then, for a
10 sec interval centered on ¢ = 1000, we would predict
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AN(1000) = 7.A(0) [e~ ¥ — e~ 18]

5

= rA(0)e™? (el-osfﬁ - e‘m)

205 (vt )~ (-1 ))

- 10 10% x 10% x 10

5 108 .
1000e ~ 10° x 2.7 4 x 10 counts

~ TA(0)

In fact, the general expression for an arbitrary At would be

t [ At At
AN(t) =7A0) e 7 (e 2T —e 2r) )
which for At <« 7 reduces to

AN(#) = TA(0 )fi— = = A(0) Ate .

Clearly, the expected number of disintegrations for our chosen time inter-
val will drop with time. There is, of course, no a priori way of determining
specifically which of our nuclei will disintegrate; we know only the expected
average number of disintegrations. In statistical processes, where the prob-
ability of any occurrence (p) is small, but there is a large sample of events
(V) that can contribute to the process, Poisson statistics can be used to
describe the system. For Poisson statistics, when the expected mean is
AN = pN, then the error or standard deviation on the mean can be shown
to be just v/pN = VAN. (Note that for our chosen interval of At = 10
sec, the probability p = AAt = 1072 « 1, and therefore Poisson statistics
are appropriate.)

Going back to our specific example, where AN is4 x 108, we must now
interpret the predicted result as follows. We can state that, in any given ex-
periment performed to count AN, we will rarely observe the exact expected
mean number of AN counts. What we will see is that, in about 68% of
such experiments (assuming a Gaussian approximation for the error), the
observed counting rate will fall between AN — VAN and AN + vVAN.
Thus, if we expect AN = 4 x 10° counts, then g is only 5 x 107%, so
the fluctuations about the mean will be at the level of = 0.05%. However,
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if we wish to look at the counting rate at a somewhat later time of ¢ = 10*
sec, then AN(t = 10%) will be far smaller

AN(10*) =~ 10° x 10 x e~ ~ 450,

and VAN will be = 21, and the relative deviations from the expected value
will therefore be larger and easier to observe.

5.4.1 Radioactive Equilibrium

As we have indicated, upon decay, a radioactive parent nucleus produces
what is called a daughter nucleus. The daughter nucleus can either be sta-
ble or radioactive. If it is radioactive, then it decays into a granddaughter
nucleus and so on. Thus, each radioactive parent nucleus initiates a series
of decays, with each decay-product having its own characteristic decay con-
stant and, therefore, a different half-life. In general, the mean life of the
parent nucleus is much longer than that of any other member of the decay
chain, and this will be important for the observations that follow.
Consider a radioactive sample of material where the parent nucleus has
a very long life time, and therefore the number of parent nuclei barely
changes during some small time interval. Let us suppose that the daugh-
ter, granddaughter, etc., decay comparatively fast. After a certain lapse in
time, a situation may develop where the number of nuclei of any member
of the decay chain stops changing. In such a case, one says that radioac-
tive equilibrium has set in. To see when this can occur, let us denote
by Ny, N3, N3,... the number of nuclei of species 1,2,3,... in the series,

at some specified time, and by Aj, A2, As, ..., respectively, the decay con-
stants for these members of the decay chain. The equations governing the
time-evolution of the populations Ny, No, N3, ... can be deduced from the

contributions to the change in any species, as follows. The daughter nu
clei are produced at a rate of A; N7 due to the decay of the parent nuclei
(see Eq. (5.22)), and they in turn decay at a rate of Ay N3. The difference
between the two gives the net rate of change of the daughter nuclei. For
any nucleus in the chain, there will be a similar increase in population from
the feed-down and a decrease from decay, except for the parent nucleus, for
which there is no feed-down possible. Thus, for the change in the number
of parent, daughter, granddaughter nuclei, etc., in a time interval At, we
can write
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AN, = — A1V, At,
ANQ = /\1N1At - AzNzAt,
AN; = ANy At — AaN3At,

(5.30)

Dividing Eq. (5.30) by At, and taking the limit of infinitesimal time in-
tervals, we can rewrite relations (5.30) in terms of our species numbers
Ny, Ns, N3, ..., as follows

% = -\ Vg,
%\;—2 = ANy = ANy,
E%%B' = ANy — A3lVs,
(5.31)
We say that a secular equilibrium is reached when
av, _dNy _dNs (5.32)

dt  dt  dt
Note that by assumption, n is very large, and the change in N is therefore
very small (%l = 0). Clearly, Eq. (5.32) holds only when

)\1N1 = )\2N2 = >\3N3 = ... (533)
or, equivalently, when
& = & = & = (5.34)
T1 p RS .

Consequently, under these conditions, the daughter, the granddaughter,
etc., will all be in equilibrium with each other, as well as with the parent
nucleus (i.e., their numbers will effectively not change with time).
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5.4.2 Natural Radioactivity and Radioactive Dating

There are about 60 radioactive nuclei found in nature. This is much smaller
than the order of ~ 1000 radioactive isotopes that have been produced
artificially in laboratories. If, at the time of the formation of our planet, all
isotopes were almost equally abundant, then their absence in nature can
be used to estimate the age of the Solar System. In fact, our Solar System
is believed to be about 10 billion years old (10'° yr), it is therefore not
surprising that during this time most of the radioactive nuclei with shorter
lifetimes have completely decayed away.

The naturally occurring radioactive nuclei have atomic numbers mostly
between Z = 81 and Z = 92, and are characterized by substantial neutron
excess. Nevertheless, the presence of a large number of protons in these
nuclei leads to strong Coulomb repulsion and instability. Such nuclei can
decay by successive emission of one or more a particles (two protons and
two neutrons). The resulting daughter nuclei, will therefore have an even
larger neutron to proton ratio and will tend to decay through the emission
of B~ particles. The granddaughters may still be unstable and decay again
through the emission of more a-particles. This chain of a and § decays
will continue until the nucleus reaches the N-Z stability band (Fig. 2.3).
Because an a-particle has four nucleons, the alternate a and £ decays will
define a radioactive nuclear series with atomic mass numbers that differ by
four nucleon units. This leads naturally to the four known series of heavy
o-emitters, whose daughter remnants differ progressively by four nucleons
in their values of A

A=4n Thorium series,
A=4n+1 Neptunium series,
) (5.35)
A=4n+2 Uranium-Radium series,
A=4n+3 Uranium-Actinium series,

where n is an integer. Each of the series is labeled using the historical name
of its parent nucleus, which is the longest-lived nuclide in the decay chain.
(The parent of the “actinium” series is, in fact, 235U.) From the measured
values of the mean lives of the parents
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7(thorium 2*2Th*®) ~ 1.39 x 10y,
7(neptunium 7N, %%) ~ 2.2 x 10°%yr,
r(uranium 233U%2) = 4.5 x 10%r,
7(“actinium” 22%U%) ~ 7.15 x 108y, (5.36)

and from the fact that the age of the universe is about 100 yr, we should
not expect to find any of the radioactive isotopes of the Neptunium series
on earth. In fact, we have natural evidence only for the parents of the other
three series. It is also curious that isotopes of lead define the stable ends
for each of these three series, namely, 208Pb®%2, 206pp82 and 207Pp82 . corre-
sponding to the Thorium, Uranium and the Actinium series, respectively.
In addition to the heavier nuclei, there exist a few medium-size nuclei in
nature, such as “*K'®(t; ~ 1.3 x 10° yr) and 11549 (ty 5 x 10 yr), that
are also radioactive.

One of the important applications of radioactivity is in determining the
age of organic material that may be thousands of years old. The method is
based on the following simple observation. Our atmosphere contains many
gases, including *N and !2C. Furthermore, the atmosphere is constantly
being bombarded with high energy cosmic rays, consisting of protons, heav-
ier nuclei, photons, and other particles. These cosmic rays interact with
nuclei in the atmosphere, and produce particles of lower energy. Any slow
neutrons produced in these collisions can be absorbed by *N to produce
an isotope of carbon that is radioactive

UNT 4 n — MCC 4 p. (5.37)

14C decays with a half-life of 5730 years through 3~ emission

MCl — UN" e +7,. (5.38)

At any particular time therefore, our atmosphere contains a large amount of
12C and a very small amount of 14C, both of which can form carbon dioxide
(CO3) molecules. Living organisms, such as plants, consume COz from the
atmosphere and consequently contain both of these carbon isotopes. The
intake of CO; stops with the death of the organism. Subsequently, 14C,
being radioactive, continues to decay, whereas the amount of '2C remains
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unchanged. As a result, the relative concentration of the two isotopes in any
fossil changes with time. By measuring directly the relative amounts.of 14C
and *2C in a fossil, and comparing this result with that in a corresponding
living organism, we can estimate the age of the fossil. Alternatively, we
can compare the activity of 14C in a fossil with that in a living organism
and thereby also deduce the fossil’s age. The second method is known as
radioactive dating, or **C dating, and finds great use in archaeological and
anthropological studies. The idea of carbon dating was suggested initially
by Walter Libby.

Ezxzample 2

As an example, consider a piece of wood, weighing 50 g, which has an
activity of 320 disintegrations/minute from 4C. The corresponding activity
in a living plant is 12 disintegrations/minute/gm, and we wish to determine
the age of the wood. (The half-life of *C is t; = 5730 yr, and X = &%)

2
We are given that the initial and current activities are

A(t = 0) = 12/min/gm,

320, .
At) = ~Ba/mln/gm.

From the definition of activity, we can relate the activities at our two times
as follows

L AN () = ANge™ = A(t = 0)e™ .

Al = 17

Therefore, we obtain

or t= x 0.626

1 In 12 x50  5730yr
A 320 / ~ 0.693

~ 5170 years.

In other words, the piece of wood is about 5170 years old. Recently, carbon
dating techniques have greatly improved through the use of nuclear mass
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spectrometers, which can measure directly very small differences in the
concentrations of 14C and '2C in any material. Using sample sizes of about
1 mg (as opposed to 1 gram in the older counting method), measurements
with sensitivity of ~ 107* in the *C/'2C ratio have been achieved. In
our example we have ignored variations in concentrations of 14C stemming
from any time dependence in the flux of cosmic rays, or from other, more
recent, sources such as atmospheric nuclear testing. Such effects can be
detected and must be taken into account in radioactive carbon dating.

Problems

5.1 To study neutron absorption cross sections at very low energies, one
must often slow down (moderate) energetic (=~ 1 MeV) neutrons that are
produced in reactors. Show that paraffin would be a better moderator
than aluminum, by specifically calculating the maximum energy that a 1
MeV neutron can transfer in a collision with a proton (within paraffin) as
opposed to that with an Al nucleus.

5.2 Calculate the energy released when 1 gm of 235U fissions into '*®La and
87Br. Compare this to the energy released in fusing deuterium and tritium
nuclei in 1 gm of tritiated water with 1 gm of deuterated water (i.e., ToO
and D;0).

5.3 The counting rate for a radioactive source is measured for one minute
intervals every hour, and the resulting counts are: 107, 84, 65, 50, 36, 48,
33, 25, ... Plot the counting rate versus time, and from the graph roughly
estimate the mean life and the half-life. Recalling that the expected error
on N counts is VN , do the data points seem reasonable? (Hint: use “semi-
log” paper to plot log N vs t.)

5.4 A relic from an Egyptian tomb con:cains 1 gm of carbon with a measured
4

activity of 4 x 10~'2Ci. If the ratio of % nuclei in a live tree is 1.3 x 10~12,

how old is the relic? Assume the half-life of 14C is 5730 yr.

5.5 If the lifetime of the proton is 10%3 yr, how many proton decays would
you expect per year in a mass of 10® metric tons of water? What would be
the approximate number expected in the year 20507

5.6 Calculate the surface energies and Coulomb energies for the following
nuclei

228Th 234U 236U 240Pu 243Pu
’ ) ’ ’ .
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Based on your calculations which nuclei would you expect to fission most
easily?

5.7 If the efficiency for conversion of heat to electricity is only 5%, calculate
the rate of consumption of ?3*U fuel in a nuclear reactor operating at a
power level of 500 MW of electricity.

5.8 In the fission of 235U, the mass ratio of the two produced fission frag-
ments is 1.5. What is the ratio of the velocities of these fragments?

5.9 How much energy is liberated when 1 gram of hydrogen atoms is con-
verted into helium atoms through fusion? Compare this with the energy
liberated in the fission of 1 gm of 235U.

5.10 The half life of radioactive cobalt-60 is 5.26 yr.
a) Calculate its mean life and disintegration constant.

b) What is the activity of 1 gm of ®*Co? Express this in curies and in
rutherfords.

c) What is the mass of a 10-Ci sample of cobalt-607

5.11 Suppose that atoms of type 1 decay to type 2, which, in turn, decay
to stable atoms of type 3. The decay constants of 1 and 2 are A; and As,
respectively. Assume that at t = 0, N; = Ny and N> = N3 = 0. What are
the values for Ni(t), N2(t) and Ns(t) at any later time ¢7

5.12 The activity of a certain material decreases by a factor of 8 in a
time interval of 30 days. What is its half life, mean life and disintegration
constant?

5.13 For a prolate spheroid (ellipsoid) with eccentricity z, the semi-major
axis @ and semi-minor axis b in Fig. 5.2 are related through b = v/1 — z2 a.
If the volume and surface area of the nuclear ellipsoid are given, respectively,
as 2mab® and 2rb (b + &;1”‘—), defining € = 122, show that Eq. (5.5)
holds for small values of z." (Hint: Assume that the volume does not change
under distortion; expand functions of z, and keep all terms up to order z°.)
Using this result, roughly, how would you argue that Eq. (5:6) has the right

dependence?

5.14 Secular equilibrium can also be defined through the requirement that

4 (N2 _d (Ns\ _d (Na\ —_
dt\N,) " dt\N,)  dt \Ns e
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Assuming A1 € Az, A3, Aq ..., show explicitly that you retrieve the first
three relations in Eq. (5.33). What happens for the final state of the decay
chain? Is this sensible?
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Chapter 6

Energy Deposition in Media

6.1 Introductory Remarks

Physics is an experimental science and experiments provide the foundation
for our understanding of nature and of physical laws. As we have argued
repeatedly, nowhere has the need for experiments been greater than in the
development of nuclear and particle physics. In these sub-atomic domains,
scattering of particles from each other provides the primary source of in-
formation. The experiments are often quite challenging in their own right,
and the experimental techniques can be as fascinating as the underlying
structure they are meant to study. In this and in chapter the following two
chapters, we will discuss some of the principles and devices that form the
basis of experimentation in nuclear and particle physics. Most modern ex-
periments rely on the application of a variety of exceedingly sophisticated
electronic and computer tools. These tools provide the means for automat-
ically preselecting interactions of greatest interest and of handling of enor-
mous volumes of scientific data. We will not cover these important areas of
experimentation, but will rather restrict ourselves to the more general ideas
encountered in the acceleration of probe particles to high energies and in
the detection of particles produced in sub-atomic collisions. We begin with
the principles underlying the detection of different kinds of particles, and
defer the description of detectors and accelerators to following chapters.
In order to be detected, an object must leave some trace of its presence.
That is, it must deposit energy in its wake. Ideally, detectors should help us
observe particles without affecting them in any measurable way, but, as we
will see later, this is not always possible. Independent of the sizes or shapes
of particle detectors, their operation is usually based on the electromagnetic
interactions of particles with matter. Energetic charged particles, for exam-

133



134 Nuclear and Particle Physics

ple, can ionize atoms, and thereby release electrons that can subsequently
be accelerated to produce small detectable currents. Most electrically neu-
tral particles can also interact with matter and transfer some or all of their
energies to the charged nuclei or to the atomic electrons of the medium,
which in turn can yield detectable electric signals. Particles such as neu-
trinos, which have no electromagnetic interactions, and therefore have very
low probabilities for colliding in matter (that is, have small cross sections),
are therefore especially difficult to detect. We will now discuss some of the
more straightforward ways in which particles can deposit their energies in
matter. :

6.2 Charged Particles

When a charged particle moves through a medium, it interacts primarily
with the atomic electrons within that medium. If the particle has sufficient
kinetic energy, it can deposit that energy in the medium by ionizing the
atoms in its path or by exciting atoms or molecules to higher states; the
excited systems can subsequently drop down to their ground levels through
photon emission. When the charged particle is massive, its interactions with
the atomic electrons (Rutherford-like scattering) will not greatly affect its
trajectory (see the discussion in Chapter 1). A particle can also suffer
more catastrophic nuclear collisions, but these have smaller cross sections,
and are therefore relatively rare. Consequently, most of the energy that
a particle deposits in the medium can be attributed to its collisions with
atomic electrons.

A convenient variable that describes the ionization properties of any
medium is the stopping power S(7T'), which is defined as the amount of
kinetic energy lost by any incident object per unit length of path traversed
in the medium (this is often termed ionization-energy loss, or simply energy
loss):

ST) = -2 =i, (6.1)
where T is the kinetic energy of the particle, njon is the number of electron-
ion pairs formed per unit path length, and T denotes the average energy
needed to ionize an atom in the medium. (For large atomic numbers, I can
be approximated as 10Z in eV units.) The negative sign in Eq. (6.1) simply
reflects the fact that a particle’s energy decreases as it moves along (that is,
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the change in kinetic energy between z and z +dz, dT = T(z +dz) — T'(z),
is negative). For any given medium, the stopping power is, in general,
a function of the energy of the incident particle, and it must, of course,
also depend on the particle’s electric charge. We will see later that the
dependence on energy becomes very weak for relativistic particles.

Because the stopping power involves only electromagnetic interactions,
it can be calculated quite reliably. Hans Bethe and Felix Bloch derived the
following expression for relativistic particles

S(T) = 4rQ?%e*nZ [In (2m027’72ﬂ2) _ 52] ’ 6.2)

mpB2c?

where m is the rest mass of the electron, 8 = ¥ is the particle’s velocity
relative to the speed of light in vacuum, 7 is the particle’s Lorentz factor
(1- ﬂz)“%, ) = ze is its charge, Z is the atomic number of the medium,
and n is the number of atoms per unit volume (equal to ""'}#, as given in
Eq. (1.40)).

In natural a-decay of nuclei, the emitted a-particles have kinetic ener-
gies of the order of a few MeV, and because of their large mass (=~ 4000
MeV/c?) the relativistic corrections in Eq. (6.2) can be ignored, which
simplifies S(T") to

S(T) =

41Q%e’nZ [2m§2c2} . (6.3)

mf32c? T

However, for energetic particles produced in accelerator experiments, or for
electrons from nuclear B-emission, the relativistic corrections are usually
substantial, and Eq. (6.2) must be used. (In fact, for electrons, there are
additional small correction terms.) The above expressions for S(T') have
been confirmed for different kinds of media and various types of particles,
over a wide range of energies. )

In light of the arguments presented in Chapter 1, it may seem puzzling
that energy loss due to scattering from atomic electrons dominates over
that for scattering from nuclei. The reason for this is that large angular
deviations in elastic scattering correspond to large changes in the direction
of momenta, which need not be accompanied by significant energy loss. For
example, for the case of the elastic scattering of a-particles in the nuclear
Coulomb field, there is a significant change in the direction of momentum of
the a particle, but very little transfer of energy to the massive nucleus. On
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the other hand, scattering from the weakly-bound atomic electrons (and
ionization) represents an inelastic process that requires energy transfer.
To be more specific, a momentum transfer of 0.1 MeV/c to an electron
target would require an energy transfer of about 10 keV, while the same
momentum transfer to a gold nucleus would correspond to less than 0.1
eV of energy transfer. Consequently, the dependence of energy loss in
Eq. (6.2) on the inverse of the mass of the target, supports our previous
contention that, ignoring strong nuclear collisions, small-angle scattering
from atomic electrons is the dominant mechanism of energy deposition for
massive charged particles traversing matter.

Because of the 372 dependence in Eq. (6.2), at low particle velocities,
the ionization loss is quite sensitive to particle energy. In fact, this depen-
dence on v~? suggests that particles of different rest mass (M) but same
momentum (p) can be distinguished because of their different rates of en-
ergy loss. Although S(T') has no explicit dependence on particle mass, for
any fixed momentum, the effect of mass comes in through

2.2
S(T) 515 _ ]‘i—j.
Consequently, at low velocities (y = 1), particles of same momentum but
different mass will display significantly different energy loss.

Independent of particle mass, the stopping power decreases with in-
creasing particle velocity, and S(T") displays a rather shallow minimum
when 8 = 3 (that is, the minimum occurs at higher momenta for more
massive particles). This minimum in Eq. (6.2) is due to the convolution of
the decrease in S(T") caused by the 372 dependence (3 saturates at § ~ 1
at high energies), and the rise caused by the ¢nvy? term that is due to rel-
ativistic effects. When the stopping power is displayed as a function of vf
or i, S(T') is almost independent of M, and we can therefore say that
S(T) “scales as” 78 or 45 (see Fig. 6.1).

The relativistic nvy? rise in S(T) for v8 > 3 (v > 0.96c) eventually
plateaus (saturates) because of the presence of long-range inter-atomic
screening effects (ignored in the Bethe-Bloch calculation). The total in-
crease in ionization is rarely greater than 50% beyond the value measured
for a “minimum-ionizing” particle, namely a particle that has v =~ 0.96¢.
The relativistic rise is best observed in gaseous media, and is only a several
percent effect for dense materials. Nevertheless, this can be used to distin-
guish different particle types through their small differences in energy loss
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in gaseous detectors for energies corresponding to v8 > 3.

At very high energies, after the saturation of the relativistic rise, ioniza-
tion loss becomes an energy-independent constant rate, and it is therefore
not possible to distinguish particle-types purely on the basis of ionization.
Except in gaseous media, the stopping power at high energies can be ap-
proximated quite adequately by the value when v8 & 3 (see next section).
We should also point out that, at very low energies, the stopping power in
Eq. (6.2) becomes unphysical (negative), reflecting the fact that ionization
loss is very small when the velocity of the particle is small. In this regime,
the details of the atomic-structure of the medium become important, and
the incident particle can even capture electrons from the medium to form
atomic systems of its own. -

1.6+
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s Media
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Fig. 6.1 Stopping power relative to its minimum value as a function of 7\% (or 48).

Once we know the stopping power, we can calculate the expected range
R of any particle in the medium, that is, the distance it will travel before
it runs out of kinetic energy and comes to a halt

R 0 T
dz dT
R:/ dz=/ =dlT = | . 6.4
0 r dT o S(T) 64

At low energies, two particles of same kinetic energy but different mass
can have substantially different ranges. For example, an electron with a
kinetic energy of 5 MeV has a range that is several hundred times that of
an a-particle of the same kinetic energy. At high energies, where the range
becomes essentially proportional to energy, the difference in path lengths
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for particles of same kinetic energy becomes less pronounced.

6.2.1 Units of Energy Loss and Range

The units of S(T) in Eq. (6.2) are ergs/cm in the cgs system. The more
common way to specify energy loss is in MeV/cm, or in terms of an equiva-
lent thickness of gm/cm?, that is, in MeV/(gm/cm?) of material. Similarly,
the range is commonly expressed in cm or in gm/cm?, where the two units
are related simply through the.density of the medium. When v8 =~ 3,
the minimum value of S(T) for a particle with z = 1 can be evaluated
approximately from Eq. (6.2) as follows

dret Ao (22 2,222
(%) (et
mc? 2 I

(12)(4.8 x 1071 esu)*(6 x 10?3 atoms/mole) (%Z)
(9.1 x 10728 gm)(3 x 101° cm/sec)? ()
1 <2><0.5><106er9>

Smin ~

~
~

10 Z eV

~5.2x1077(13.7—1n Z)p % erg/cm.

The In Z term is relatively small (< 4.5), and it varies slowly with Z. Let
us therefore use (Z) =~ 20 to get an approximate result

A
Smin & 5.6 x 107% p 1 erg/cm x 6.3 x 10° MeV /erg
Z
~3.5p 1 MeV/cm,

o Suin & 3.5 % MeV/(gm /cm®). (6.5)

As we mentioned before, Eq. (6.5) can also be used as a high-energy ap-
proximation for ionization loss in most media.
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Ezample 1

The range of a 5 MeV a-particle moving through air is given (in cm) approx-
imately by R = 0.318 T%, where T is in MeV units. If the stopping power
of aluminum relative to air is 1600, calculate the range of an a-particle in
aluminum in cm and in the equivalent thickness in gm/cm?.

The range in air is just 0.318 x 5% ~ 3.56 cm. Consequently, the range
in aluminum foil is 13—&5(’3—66 cm = 2.225 x 1072 cm. Now, using the density of
2.7 gm/cm? for aluminum, this yields an equivalent thickness of material of

(2.225 x 10~3 cm) x (2.7 gm/cm®) & 6.1 x 10~3 gm/cm?, or 6.1 mgm/cm®.

Example 2

Using the empirical formula for an electron’s range-energy relation at low-
energy, namely, R(gm/ cm®) = 0.53T(MeV) — 0.16, calculate the energy of
an electron that has a range in aluminum of 2.5 gm/cm?.

The energy in MeV would be

1
= Olﬁ (R +0.16) = —— (2.5 + 0.16) ~ 5.0 MeV..

0.53
Comparison of this with Example 1 shows that a 5 MeV electron has a
range that is about 400 times longer than that of an a-particle of the same
kinetic energy.

T

6.2.2 Straggling, Multiple Scattering, and Statistical
Processes

In our examples concerning the ranges of particles in matter, we calculated
values expected on the basis of phenomenological expressions. On the av-
erage, these predictions are quite accurate, but substantial variations are
observed from one event to-another. The magnitude of the dispersion in in-
dividual ranges about the mean depends on the mass of the particle. Thus,
the ranges of a-particles of same energy have relatively little dispersion (or
straggling) compared to that found for electrons stopping in matter.

The fundamental reason for such variations can be attributed to the
inherent statistical nature of scattering processes. The energy that is trans-
ferred from an incident particle to target particles is not just a fixed and
unique quantity, but rather has a range of values that are distributed ac-
cording to some functional form. Thus, for example, for Rutherford scat-
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tering, the distribution function is given by Eq. (1.73). Once a function of
this kind is known, we can calculate a mean value and a dispersion about
the mean for any chosen variable, such as, for example, the kinetic energy
transferred to the target. Any finite dispersion about the mean implies the
presence of variations in the process from one interaction to another. (We
have already witnessed the presence of similar fluctuations in our discussion
of natural radioactivity.) The range of a particle in matter is determined by
the sum over a series of independent collisions with atomic electrons in the
medium. It should therefore not be surprising that fluctuations in energy
transfer in individual collisions can lead to variations in ranges of particles
of same initial energy.

Another important effect that has statistical origin involves the angular
deviation experienced by particles in their Rutherford scattering off atomic
electrons in the medium. The consecutive collisions add up in a random
fashion and provide some net deflection of any incident particle from its
original line of flight. This “multiple-Coulomb scattering” also increases
the path length that any particle follows as it traverses a given thickness
of material. Because multiple scattering is a random process, the mean
angular deviation for an ensemble of many particles passing through some
thickness L of material must average to zero. However, the root-mean
square (rms), or standard deviation 8yms = 1/(6?) in the angle due to this
“random walk” is finite and equals approximately

(6.6)

where z is the charge of the incident particle (in units of €) of momentum p
(in MeV/c) and velocity B¢, and Xy is the radiation length of the medium
(see next section).

Example 3

Calculate the mean kinetic energy transferred to a target at rest in the

laboratory ({(T')), and the dispersion about that mean (AT'), for a process

that can be characterized by the cross section
da 6_8R2q2 '

= (6.7)
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This is, in fact, the approximate form of the dependence for scattering of
nucleons at small g2 from a nucleus of radius R in fm, and ¢? is in (GeV /c)?
units (¢f Problem 2.11).

The kinetic energy transferred to the target can be obtained from Eq.
(1.70) to be

2
=2
T—2M.

Hence, for the mean and for the second moment of T', we obtain

I dg? () 37" 1
)= = upesme = ToMEE
2 \2 _ep2.2
2_f0°°dq2(2lﬁ)egRq ~ 1
T = J& dgPe8F¢  ~ 128MZRY’ 6:8)
where, to evaluate the above integrals, we used the standard result
o0 ez n!
/0 dez"e™ " = prvsy (6.9)

Consequently, the dispersion in 7', defined by the square root of the vari-
ance, reduces to

AT = (T - (1))")]

1 1
= [(T? - (T)?]*? = .
(T = (T)*] 16 M R?
Thus, for this simple exponential dependence on ¢?, the dispersion, or root-
mean-square (rms) variation in (T} from scattering to scattering is just
equal to the mean value of T. Because M is almost equal to the atomic
weight A in GeV units, and R ~ 1.2 A3, we can write

(6.10)

AT = Tims = (T) = (2043)™1 GeV. (6.11)

From this example, we can $ee once again the very strong dependence
of the kinetic energy transfer on target mass. For protons interacting with
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protons, (T) =~ 0.05 GeV and momentum transfers are typically ~ 0.3
GeV/c, but for proton-lead collisions (T') ~ 7 keV!, and momentum trans-
fers are = 0.05 GeV/c. (These results, including our exponential formula
for g%, hold only for elastic reactions when nuclei do not break apart in the
course of the collision.) '

6.2.3 Energy Loss Through Bremsstrahlung

Although Eq. (6.2) was derived for the case of Rutherford scattering of
massive projectile particles, it also holds surprisingly well for incident, elec-
trons. The scattering of electrons in matter is more complicated because
electrons have small mass, and consequently relativistic corrections become
important for kinetic energies as low as several hundred keV. In addition,
electron projectiles can transfer substantial fractions of their energies to
the atomic electrons with which they collide, thereby producing what are
referred to as d-rays, or knock-on electrons, which cannot be distinguished
from the incident (i.e., scattered) electrons. This indistinguishability re-
quires more delicate quantum-mechanical treatment of the scattering cross
section. Despite these complications, Eq. (6.2) still provides an adequate
approximation to the ionization loss by electrons for energies in excess of
about 1 MeV. (The relativistic rise for electrons is somewhat smaller than
it is for massive particles.)

However, unlike massive particles, electrons usually suffer large acceler-
ations as a result of their interactions with atomic electric fields (and es-
pecially with the intense nuclear Coulomb fields). These accelerations can
then lead to radiation of electromagnetic waves. Such emission of photons,
or bremsstrahlung as it is termed, is an important mechanism for energy
loss, especially for ultra-relativistic electrons. (Bremsstrahlung can also be-
come significant for more massive particles, but only beyond 10'? eV, or
TeV energy scales.) Thus for the total energy loss by electrons traversing
matter we can write schematically,

(8. (DD o
dx tot dz ion dz brem

The ratio of the bremsstrahlung to ionization loss for high-energy electrons
can be shown to be approximately equal to
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(%)brem ~ TZ

(%)ion - 1200m62,

(6.13)

where Z is the atomic number of the medium, m is the rest mass of the
electron (projectile), and T is its kinetic energy in MeV. At high energies,
the ionization loss is constant (saturated by the density effect), and given
approximately by Eq. (6.5), and radiation dominates the total energy loss
in Eq. (6.12). (This is illustrated in Figure 6.2.) According to Eq. (6.13),
the radiated energy at high energies is proportional to the energy of the
electron, and for this regime it is useful to define the radiation length (Xj),
which is the distance that an electron travels before its energy drops to %
of its original value. From Egs. (6.5) and (6.13) we obtain

(Z—Dbrem = —%, with Xo =~ 1707A2- (in gm/cm?). (6.14)
Dividing X, by the density of the medium, or multiplying the right-hand
side of Eq. (6.14) by that density, converts the units to energy loss per
cm (see Eq. (6.5)). At high energies (8 > 3) it is also useful to write an
approximate expression for ionization loss in terms of the radiation length.
Defining a critical energy (T¢) as the energy at which energy loss due to
collisions (ionization) is the same as that due to bremsstrahlung, we can

write
ar\  _ (dT\ T
(d_z>brem Bl (a;>ion Bl —3(.(—)_7 (615)

where, from Eqgs. (6.5) and (6.14), we get T. ~ %2 (in MeV).

Except for smallest Z values, the above expressions provide quite satis-
factory approximations for calculating ionization-energy loss for any high-
energy particle of unit charge, and the radiation loss for high-energy elec-
trons. Substituting X, from Eq. (6.14), into Eq. (6.15), and setting
4 =22 for Z = 20, we get that (4£). ~ —1.6 MeV/(gm/cm?). This
high-energy approximation holds to = 30% accuracy for every medium,
except hydrogen.

An important consequence of Eq. (6.14) is that, because of
bremsstrahlung, high energy electrons lose their kinetic energy exponen-

tially with the distance traveled in matter. That is, integrating Eq. (6.14)
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between an initial kinetic energy Ty and some later value T, provides the
relation

Z
T = Tpe™ Xo. (6.16)

Thus, energetic electrons radiate most of their energy within several radi- -
ation lengths of material. This characteristic behavior is particularly im-
portant in the design of electron detectors. More massive ultra-relativistic
charged particles that do not radiate lose their energy through nuclear
(strong) collisions or just through ionization loss.

4
/7 <—Bremsstrahlung

lonization

|
~3mc? T, T

Fig. 6.2 Energy loss in matter as a function of electron energy.

Ezxample 4

As an example of the effects of multiple scattering, let us calculate the
typical angular deviation of a 5 MeV proton traversing 1 cm of argon gas
at atmospheric pressure and 0°C, and compare this to the case of an electron
of same kinetic energy.

The radiation length of gaseous argon at the stated conditions is ap-
proximately 105 m. The proton is non-relativistic, and its momentum can
therefore be approximated as

p=V2MT ~ /2 x 1000 MeV/c x 5 MeV ~ 100 MeV /c.

I Muons, as we will see, are massive charged particles that do not have strong interac-
tions, and therefore can neither radiate nor deposit their energies through large transfers
of momentum to nuclei. Consequently, muons have ranges that are essentially propor-
tional to their incident energies. Shielding radiation-sensitive equipment and personnel
from excessive exposure to high-energy muons is therefore an issue of substantial concern
at high-energy laboratories.
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The proton’s velocity can be calculated from

_ [T [exsMev
Y=V T\ 1000 Mev /2 T

The electron, on the other hand, is quite relativistic, and its momentum
can therefore be taken as

E T+mc
p=?_

=0 5.5 MeV/c.

The electron’s velocity is essentially equal to ¢. Thus from Eq. (6.6), for
the proton we obtain

P 20 0.01
ms ™~ 01 % 100 V 105

and for the electron we get

2 0.02 rad = 20 mrad,

. 2 foor
ms ™ ) % 5.5 Y 105

Consequently, as expected on the basis of their small mass, electrons are
scattered much farther away from their initial directions than the massive
protons. And because low energy electrons also have far longer ranges, they
also exhibit far greater dispersion or straggling than more massive particles
of same kinetic energy.

= 40 mrad.

6.3 Interactions of Photons with Matter

Because photons are electrically neutral, they do not experience the
Coulomb force the way charged particles do. We might therefore conclude;-
incorrectly, that they cannot ionize atoms. In fact, photons are the carriers
of electromagnetic force and can interact with matter in a variety of ways
that lead to ionization of atoms and to energy deposition in a medium, as
discussed below.

We can describe the attenuation of light (photons, X-rays or v-rays) in
a medium in terms of an effective ebsorption coefficient p, which reflects
the total cross section for interaction. In general, u will depend on the
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energy or frequency of the incident light. If I(z) represents the intensity of
photons at any point z in the medium, then the change in intensity dI in
an infinitesimal thickness of material dz can be written in terms of u as

dI = I(z + dz) ~ I(z) = ~pl(z) dz, (6.17)

where, as usual, the negative sign indicates that the intensity decreases
with traversed distance. Integrating the above expression from some initial
value Iy at £ = 0 to the final intensity I(z) at the point z, we obtain

dI
T =—H d.’l/',
I z
dI
or _ —u/ dz,
Io I 0
or I(z)=Ije #°. (6.18)

As in the case of other statistical processes, such as radioactive decay, we
can define a half-thickness, T, as the thickness of material that photons
must traverse in order for their intensity to fall to half of the original value.
This can be related to u, as follows. From Eq. (6.18), we can write

I(zy) = 520. = Iye "%,
which implies that
z1 =In2,
2
In2 .6
2 M H©

Ifx 1 is expressed in cm, then p must have units of cm™', and when z 1 is
glven in terms of gm/cm?, then p has units of cm?/gm. The value of ,u -1
is just the mean free path for absorption, or the average distance through
which a beam of photons will propagate before their number drops to % of
the initial value.

We will now turn to a brief discussion of the specific processes that

contribute to absorption of photons in any medium.
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6.3.1 Photoelectric Effect

In this process, a low-energy photon is absorbed by a bound electron, which
is subsequently emitted with kinetic energy T, (see Fig. 6.3). If we call the
energy needed to free the atomic electron I (this is the negative of the
binding energy), and the frequency of the photon v, then energy conserva-
tion requires that the Einstein relation holds, namely;

E7=hV=IB+Te,

or T,=hv-Ipg, (6.20)

where I'g sets the scale for the appropriate photon energies that are required
for the process to take place. The photoelectric effect has a large cross
section in the range of X-ray energies (keV), and, ignoring the absolute
normalization, scales approximately as

o~ )t for E, < mec?,
Z5
oR for E, > mec?. (6.21)

Thus the process is particularly important in high-Z atoms, and is not very
significant above the 1 MeV range of photon energies. When the emitted
electron originates from an inner shell of the atom, one of the outer electrons
drops down to fill the lower (more stable) empty level, and the emitted
electron is consequently accompanied by an X-ray photon produced in the
subsequent atomic transition.

Fig. 6.3 Pictorial representation of the photoelectric effect.
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6.3.2 Compton Scaltering

Compton scattering can be thought of as equivalent to a photoelectric effect
on a free electron. In conventional language, one can think of the process as
involving the collision of two classical particles — the photon, with energy
E = hv and momentum p = —}j:, and an electron at rest. Alternatively,
the process can be viewed as follows. The electron absorbs an incident
photon, and forms an electron-like system that has an unphysical mass (see
Problem 6.8); this virtual system (that is, “existing” only for very brief
times as determined through the uncertainty relation 7 = A—'r’riwf’ where
AE = Amc? is the uncertainty in the system’s energy) then de-excites into
a physical electron and to a photon of shifted frequency (or energy), as
shown in Fig. 6.4.

e [ Zin Zout

" Fig. 6.4 Pictorial representations of Compton scattering (left) and of pair production
(right).

The kinematics for the scattering assumes that the target electron is
free. This means that the results are not expected to hold for incident
photons of very low energy (much below 100 keV), where effects of atomic
binding can be important. Treating the photon as a particle of energy hv
and momentum h—c” (zero rest mass), and using fully relativistic momentum-
energy expressions for the electron, it is straightforward to show that the
kinematic relation between the frequency of the incident and the scattered
photon (¢'), at a photon scattering angle 6, is given by

v
- 1+ﬁg(1——c059)’

2

(6.22)

where m is the rest mass of the electron. From the above expression, we see
that, for any finite scattering angle, the energy of the scattered photon is
smaller than that of the incident one. The incident photon must therefore
transfer some of its energy to the electron, which consequently has a recoil
energy that depends on the scattering angle.

Relying on special relativity, the quantization of light (that is the par-



Energy Deposition in Media 149

ticle properties of photons), and quantum theory, the Compton reaction
served as one of the early major confirmations of the veracity of the new
ideas of 20th century physics. Again, ignoring absolute normalization, the
cross section for Compton scattering appears to scale as

Z
N — 6.23
on (6.23)
where Z is the atomic number of the medium. Compton scattering domi-
nates energy deposition in the 0.1 to 10 MeV range of photon energies.

6.3.3 Pair Production

When a photon has sufficient energy, it can be absorbed in matter and
produce a pair of oppositely charged particles. Such conversions can only
take place when no known conservation laws are violated in the process.
In addition to charge and momentum-energy conservation, other quantum
numbers may restrict the possible final states. The best known conversion
process, commonly referred to as pair production, involves the creation of
a positron-electron (e*e™) pair through the disappearance of a photon.

However, a massless photon cannot be converted into a pair of massive
particles without violating momentum-energy conservation. This is best
seen heuristically as follows. Let us suppose that the photon has a very
small rest mass (far smaller than the mass of an electron). Now, in the
photon’s rest frame, the energy is its rest mass, namely close to zero, while,
for the final state, the minimum energy is given by the sum of the rest
masses of the two particles, which by assumption is relatively large. It
follows therefore that a process such as pair production can only be observed
in a medium in which, for example, a recoiling nucleus can absorb any
momentum (but very little energy!) required to assure momentum-energy
conservation. Since the mass of the positron equals that of the electron,
‘the threshold for e*e™ pair production is essentially hv & 2mc?® = 2x 0.511
MeV- = 1.022 MeV (see Problem 6.9).

The pair production cross section scales essentially as Z2, where Z is
the atomic number of the medium. It rises rapidly from threshold, and
dominates all energy-loss mechanisms for photon energies > 10 MeV. At
very high energies (> 100 MeV), the ete™ pair cross section saturates,
and can be characterized by a constant mean free path for conversion (or
by a constant absorption coefficient) that essentially equals the electron
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radiation length of the medium,

Xpair = (Hpair) " =~ gxo. (6.24)
A natural question to ask is what happens to the positrons that are
created in the conversion of photons in matter? Because positrons are
the antiparticles of electrons, after production, they traverse matter, much
as electrons do, and deposit their energies through ionization or through
bremsstrahlung. Once a positron loses most of its kinetic energy, how-
ever, it captures an electron to form a hydrogen-like atom, referred to as
positronium, where the proton is replaced by a positron. Unlike hydrogen,
positronium atoms are unstable, and decay (annihilate) with lifetimes of
about 10710 sec to form two photons

et +e” — y+17. (6.25)

The process of annihilation produces photons of equal energy, back-to-back
in the laboratory. To conserve momentum-energy, each photon carries away
exactly 0.511 MeV. Thus pair annihilation provides a very clean signal for
detecting positrons, as well as for calibrating the low-energy response of
detectors.

The three processes that we have just discussed provide independent
contributions to the absorption of photons in any medium. We can there-
fore write the total absorption coefficient as the sum of the three separate
coefficients,

B = ppe + HComp + Hpair- (6.26)

The independent contributions as well as their sum, are shown as a function
of photon energy in Fig. 6.5.

Finally, referring back to our discussion of Rutherford scattering in
Chapter 1, we can relate any absorption coefficient to the scattering cross
section as follows. We argue that an object scattered out of the beam pro-
duces a drop in the beam intensity or an equivalent increase in the counting
rate for scattering. According to Eq. (1.39), the fraction of the incident
beam that is scattered, or lost, is proportional to the cross section per
nuclear scatterer (o) and to the thickness of target material (dz)
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K= Hpet Heomp + Hpair

0.1 1.0 10 100
Ey(MeV)

Fig. 6.5 Sketch of photon absorption coefficients as a function of energy for relatively
high-Z material.

dn _ Ao
']VO = —X po dz. (627)

This is just the negative of dTI, or the fraction of the beam that is attenuated
or absorbed, as given in Eq. (6.18). Equating the two terms, we obtain the
following relationship between any cross section and an absorption coeffi-
cient

A
p=p=0=no, (6.28)
A
where p has units of cm™!, when n is the number of scattering centers per
cm?®, and o is expressed in cm?. When u is given in units of cm?/gm, then
n corresponds to the number of atoms per gm of material.

Example 5

. The total absorption coefficient for 5 MeV photons in lead is about 0.04
cm?/gm. If the density of lead is taken as 11.3 grri/éma, what is the half-
thickness of lead for these «y-rays? What thickness of lead would be required
to reduce the intensity of such photons to 0.06 of the initial value?

The absorption coefficient in c¢cm™ can be calculated as py =
0.04 cm?/gm x 11.3 gm/cm® = 0.45 cm~!. Hence, Ty = 0—'%—95 =
¥ ~ 1.53 cm, which is the thickness of lead that will reduce the
photon intensity to half of its original value. To find the thickness needed
to reduce the intensity to 0.06 of the initial value, we use Eq. (6.18)
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= e BT

S~

or 0.06 =e #*

or In(0.06) = —uz,

_ _In(0.06) ___In(0.06)

T 045 m ~ 6.2 cm.

or

If we characterize the range of 5 MeV photons in matter by the inverse
of the absorption coefficient (that is, by the absorption length), we then
obtain a typical penetration length or range in lead of m_—q ~ 2.2 cm,
or equivalently 2.2 cm x 11.3 gm/cm?® ~ 25 gm/cm?. Comparing this with
the ranges of electrons and a-particles of similar energy, it is clear that
~-rays are far more penetrating at such low energies.

Ezxample 6

What is the cross section that corresponds to an absorption coefficient of
0.45 cm~? for photons in lead?
The relationship we need is given in Eq. (6.27), namely,

=~ = .

o
n

SRR

A
Ao
Using 4o = 6.02 x 1023, A = 207.2 gm, an
the cross section

[oW

p = 11.3 gm/cm?, we obtain

207.2gm 0.45cm™!
- ~ 1.37 x 107 %cm? = 13.7b.
7 (6.02 x 1023) <11'3 gm/cm3> 1.37 x 10" 8cm? = 13
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Ezxample 7

The radiation length of lead at high energy is 5.6 mm. What is the value
of the absorption coefficient, and what is the cross section for ete™ pair
production on a lead target?

From Eq. (6.24), we can calculate the absorption coefficient for pair
production as p = §)7(—0 ~ 1.39 cm™!, and, following Example 6, we can
calculate the cross section to be o =~ 42.3 b. This can be compared with the
total inelastic nuclear (strong) cross section for nucleon interactions with
lead at high energies, which is about 1.6 b. Consequently, we conclude
that the mean free path for nuclear collisions in lead is about 15 cm, as
opposed to the 0.6 cm radiation length that characterizes electromagnetic
interactions. At high energies, far less material is therefore required to
stop photons or electrons than particles that interact primarily through
the strong force.

6.4 Interactions of Neutrons

As we have already mentioned, neutrons are in most respects very similar
to protons. They are the constituents of nuclei, and have essentially the
same mass, same nucleon number and spin as protons. They are, however,
electrically neutral, and consequently, just like photons, cannot interact di-
rectly through the Coulomb force. (Although neutrons have small magnetic
dipole moments, these do not provide substantial interactions in media.)
Neutrons do not sense the nuclear Coulomb force, and as a result even
slow neutrons can be scattered or captured by the strong nuclear force.
When low-energy neutrons interact inelastically, they can leave nuclei in
excited states that can subsequently decay to ground levels through the
emission -of photons or other particles. Such emitted ~-rays or other par-
ticles can then be detected through their characteristic interactions with
matter. Elastically scattered neutrons can transfer some of their kinetic
energy to nuclear centers, which in recoiling can also provide signals (e.g.,
ionization) that can be used to reveal the presence of neutrons. In the elas-
tic scattering of neutrons from nuclei, just as for the case of ionization loss,
it is more difficult to transfer a sizable part of a neutron’s kinetic energy
to a nucleus if the nuclear mass is large (recall from Eq. (1.70) that, for
any momentum transfer g, the transfer of kinetic energy goes as -25:—4 with
nuclear mass M). As we have already mentioned, this is the reason that
hydrogen-rich paraffin is often used as a moderator to slow down energetic
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neutrons.

When neutrons are produced in collisions, they can be quite penetrating,
especially if their energies are in the range of several MeV, and there are no
hydrogen nuclei available for absorbing their kinetic energies. The neutron
shine, or “albedo”, at accelerators and reactors is often a major source
of background to experiments, and can only be reduced through use of
appropriate moderators and materials that have large neutron-absorption
cross sections (e.g., boron, which captures low energy neutrons through
0B +n — "Li+ a).

6.5 Interaction of Hadrons at High Energies

All particles that interact through the strong nuclear force are known col-
lectively as hadrons. Neutrons, protons, # mesons and K mesons, are the
most common hadrons. We will discuss the intrinsic properties of such par-
ticles in Chapter 11, but will describe here the overall character of their
interactions.

Protons are, of course, the nuclei of hydrogen atoms, and are therefore
the easiest hadrons to accelerate and to use as particle beams (see Chapter
8). When proton beams interact with other protons, or with larger target
nuclei, they can produce = mesons, K mesons, neutrons and other hadrons.
At low beam energies (below ~ 2 GeV), the interactions between pions
and nucleons, kaons and nucleons, and between twe nucleons, differ quite
markedly. At such low energies, the collision cross sections between any
two hadrons change rapidly (and often oscillate) with energy. All this is
because certain hadronic systems resonate at specific energies while others
do not. Beyond 5 GeV, the total cross sections for hadron-hadron inter-
actions change (drop) only slightly with increasing energy. They reach
minimum values, typically 20-40 mb (= 7R?), at ~ 70-100 GeV, and then
increase logarithmically with increasing beam energy.

' Hadronic collisions, in the main, involve very small momentum transfers;
small production angles, and interaction distances of the order of ~ 1 fm.
Central collisions, involving large momentum transfers are quite rare, but
very interesting from the point of view of developing an understanding of the
structure of hadrons. Typical momentum transfers in hadronic reactions
are of the order of ¢? ~ 0.1 (GeV/c)2. The mean multiplicity, or the average
number of particles (usually pions) produced in a typical hadronic collision,
grows logarithmically with incident energy, from =~ 3 particles at 5 GeV
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to = 12 at 500 GeV, with great fluctuations around the mean occurring
from one event to another. Thus when high-energy hadrons interact with
matter, they break apart the nuclei, produce mesons and other hadrons,
that can, in turn, interact again and deposit energy in the medium. This
is essentially independent of electric charge of the hadron, and therefore,
ignoring small differences due to Coulomb scattering, high-energy neutron
and proton interactions in matter are almost indistinguishable. Any energy
deposited by the primary or the secondary particles in matter can then be
used to estimate the energy of the incident hadron (see our discussion of
calorimeters in Chapter 7).

Problems

6.1 What is the minimum thickness of aluminum in cm that is needed to
stop a 3 MeV a particle? What about the thickness needed to stop a 3
MeV electron? (Use the approximate range-energy relationship provided
in Examples 1 and 2.) '

6.2 About how much steel in cm is required to stop a 500 GeV muon-if the -
muon deposits energy only via ionization loss? (Use Eq. (6.5) to calculate
your result.) Would you need a comparable amount of material to stop 500
GeV electrons? What about 500 GeV protons?

6.3 Multiple-scattering error often limits the ability to measure the direc-
-tion of motion of a charged particle. To what accuracy can the inci