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Preface

This text is intended as an introduction to elementary probability theory and
stochastic processes. It is particularly well suited for those wanting to see how
probability theory can be applied to the study of phenomena in fields such as engi-
neering, computer science, management science, the physical and social sciences,
and operations research.

It is generally felt that there are two approaches to the study of probability the-
ory. One approach is heuristic and nonrigorous and attempts to develop in the
student an intuitive feel for the subject that enables him or her to “think proba-
bilistically.” The other approach attempts a rigorous development of probability
by using the tools of measure theory. It is the first approach that is employed
in this text. However, because it is extremely important in both understanding
and applying probability theory to be able to “think probabilistically,” this text
should also be useful to students interested primarily in the second approach.

New to This Edition

The tenth edition includes new text material, examples, and exercises chosen not
only for their inherent interest and applicability but also for their usefulness in
strengthening the reader’s probabilistic knowledge and intuition. The new text
material includes Section 2.7, which builds on the inclusion/exclusion identity to
find the distribution of the number of events that occur; and Section 3.6.6 on left
skip free random walks, which can be used to model the fortunes of an investor
(or gambler) who always invests 1 and then receives a nonnegative integral return.
Section 4.2 has additional material on Markov chains that shows how to modify a
given chain when trying to determine such things as the probability that the chain
ever enters a given class of states by some time, or the conditional distribution of
the state at some time given that the class has never been entered. A new remark
in Section 7.2 shows that results from the classical insurance ruin model also hold
in other important ruin models. There is new material on exponential queueing
models, including, in Section 2.2, a determination of the mean and variance of
the number of lost customers in a busy period of a finite capacity queue, as well as



xii Preface

the new Section 8.3.3 on birth and death queueing models. Section 11.8.2 gives
a new approach that can be used to simulate the exact stationary distribution of
a Markov chain that satisfies a certain property.

Among the newly added examples are 1.11, which is concerned with a multiple
player gambling problem; 3.20, which finds the variance in the matching rounds
problem; 3.30, which deals with the characteristics of a random selection from a
population; and 4.25, which deals with the stationary distribution of a Markov
chain.

Course

Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability
theory (involving Chapters 1-3 and parts of others) or a course in elementary
stochastic processes. The textbook is designed to be flexible enough to be used
in a variety of possible courses. For example, I have used Chapters 5 and 8, with
smatterings from Chapters 4 and 6, as the basis of an introductory course in
queueing theory.

Examples and Exercises

Many examples are worked out throughout the text, and there are also a large
number of exercises to be solved by students. More than 100 of these exercises
have been starred and their solutions provided at the end of the text. These starred
problems can be used for independent study and test preparation. An Instructor’s
Manual, containing solutions to all exercises, is available free to instructors who
adopt the book for class.

Organization

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 an
axiomatic framework is presented, while in Chapter 2 the important concept of
a random variable is introduced. Subsection 2.6.1 gives a simple derivation of
the joint distribution of the sample mean and sample variance of a normal data
sample.

Chapter 3 is concerned with the subject matter of conditional probability and
conditional expectation. “Conditioning” is one of the key tools of probability
theory, and it is stressed throughout the book. When properly used, conditioning
often enables us to easily solve problems that at first glance seem quite diffi-
cult. The final section of this chapter presents applications to (1) a computer list
problem, (2) a random graph, and (3) the Polya urn model and its relation to
the Bose-Einstein distribution. Subsection 3.6.5 presents k-record values and the
surprising Ignatov’s theorem.
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In Chapter 4 we come into contact with our first random, or stochastic, pro-
cess, known as a Markov chain, which is widely applicable to the study of many
real-world phenomena. Applications to genetics and production processes are
presented. The concept of time reversibility is introduced and its usefulness illus-
trated. Subsection 4.5.3 presents an analysis, based on random walk theory, of a
probabilistic algorithm for the satisfiability problem. Section 4.6 deals with the
mean times spent in transient states by a Markov chain. Section 4.9 introduces
Markov chain Monte Carlo methods. In the final section we consider a model
for optimally making decisions known as a Markovian decision process.

In Chapter 5 we are concerned with a type of stochastic process known as a
counting process. In particular, we study a kind of counting process known as
a Poisson process. The intimate relationship between this process and the expo-
nential distribution is discussed. New derivations for the Poisson and nonhomo-
geneous Poisson processes are discussed. Examples relating to analyzing greedy
algorithms, minimizing highway encounters, collecting coupons, and tracking
the AIDS virus, as well as material on compound Poisson processes, are included
in this chapter. Subsection 5.2.4 gives a simple derivation of the convolution of
exponential random variables.

Chapter 6 considers Markov chains in continuous time with an emphasis on
birth and death models. Time reversibility is shown to be a useful concept, as it
is in the study of discrete-time Markov chains. Section 6.7 presents the compu-
tationally important technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of counting
process more general than the Poisson. By making use of renewal reward pro-
cesses, limiting results are obtained and applied to various fields. Section 7.9
presents new results concerning the distribution of time until a certain pattern
occurs when a sequence of independent and identically distributed random vari-
ables is observed. In Subsection 7.9.1, we show how renewal theory can be used
to derive both the mean and the variance of the length of time until a specified
pattern appears, as well as the mean time until one of a finite number of specified
patterns appears. In Subsection 7.9.2, we suppose that the random variables are
equally likely to take on any of m possible values, and compute an expression
for the mean time until a run of m distinct values occurs. In Subsection 7.9.3, we
suppose the random variables are continuous and derive an expression for the
mean time until a run of m consecutive increasing values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some prelimi-
naries dealing with basic cost identities and types of limiting probabilities, we
consider exponential queueing models and show how such models can be ana-
lyzed. Included in the models we study is the important class known as a network
of queues. We then study models in which some of the distributions are allowed to
be arbitrary. Included are Subsection 8.6.3 dealing with an optimization problem
concerning a single server, general service time queue, and Section 8.8, concerned
with a single server, general service time queue in which the arrival source is a
finite number of potential users.
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Chapter 9 is concerned with reliability theory. This chapter will probably be
of greatest interest to the engineer and operations researcher. Subsection 9.6.1
illustrates a method for determining an upper bound for the expected life of a
parallel system of not necessarily independent components and Subsection 9.7.1
analyzes a series structure reliability model in which components enter a state of
suspended animation when one of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its
relationship to the duality theorem of linear programming is indicated. We show
how the arbitrage theorem leads to the Black—-Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic
models that are analytically intractable. Methods for generating the values of
arbitrarily distributed random variables are discussed, as are variance reduction
methods for increasing the efficiency of the simulation. Subsection 11.6.4 intro-
duces the valuable simulation technique of importance sampling, and indicates
the usefulness of tilted distributions when applying this method.
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1.1 Introduction

Any realistic model of a real-world phenomenon must take into account the possi-
bility of randomness. That is, more often than not, the quantities we are interested
in will not be predictable in advance but, rather, will exhibit an inherent varia-
tion that should be taken into account by the model. This is usually accomplished
by allowing the model to be probabilistic in nature. Such a model is, naturally
enough, referred to as a probability model.

The majority of the chapters of this book will be concerned with different
probability models of natural phenomena. Clearly, in order to master both the
“model building” and the subsequent analysis of these models, we must have a
certain knowledge of basic probability theory. The remainder of this chapter, as
well as the next two chapters, will be concerned with a study of this subject.

1.2 Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not
predictable in advance. However, while the outcome of the experiment will not
be known in advance, let us suppose that the set of all possible outcomes is known.
This set of all possible outcomes of an experiment is known as the sample space
of the experiment and is denoted by S.

Introduction to Probability Models, ISBN: 9780123756862
Copyright © 2010 by Elsevier, Inc. All rights reserved.



2 Introduction to Probability Theory

Some examples are the following.

1. If the experiment consists of the flipping of a coin, then
S={(H,T)

where H means that the outcome of the toss is a head and T that it is a tail.
2. 1If the experiment consists of rolling a die, then the sample space is

§$=1{1,2,3,4,5,6}

where the outcome i means that i appeared on the die, i = 1,2,3,4, 5, 6.
3. [If the experiments consists of flipping two coins, then the sample space consists of the
following four points:

S = {(H;H)’ (Hs T)a (TaH)s (T: T)}

The outcome will be (H, H) if both coins come up heads; it will be (H, T) if the
first coin comes up heads and the second comes up tails; it will be (T, H) if the
first comes up tails and the second heads; and it will be (T, T) if both coins come
up tails.

4. If the experiment consists of rolling two dice, then the sample space consists of the
following 36 points:

(1,1, (1,2), (1,3), (1,4), (1,5), (1,6)
2,1, 2,2), 2,3), 2,4), 2,5), 2,6)
G, 1), 3,2), (3,3), 3,4, (3,5), (3,6)
4,1, 4,2), 4,3), (4,4), 4,5), (4,6)
(5,1, (5,2), (5,3), (5,4), (5,5), (5,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

where the outcome (4, /) is said to occur if i appears on the first die and j on the second
die.

5. 1If the experiment consists of measuring the lifetime of a car, then the sample space
consists of all nonnegative real numbers. That is,

S =1[0,00)* |

Any subset E of the sample space S is known as an event. Some examples of
events are the following.

1. In Example (1), if E = {H}, then E is the event that a head appears on the flip of the
coin. Similarly, if E = {T}, then E would be the event that a tail appears.

2. In Example (2), if E = {1}, then E is the event that one appears on the roll of the
die. If E = {2,4, 6}, then E would be the event that an even number appears on
the roll.

* The set (a,b) is defined to consist of all points x such that a < x < b. The set [a, b] is defined
to consist of all points x such that a < x < b. The sets (a, b] and [a, b) are defined, respectively, to
consist of all points x such that a < x < b and all points x such that a < x < b.
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3. In Example (3), if E = {(H,H), (H,T)}, then E is the event that a head appears on
the first coin.

4. In Example (4),if E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, then E is the event
that the sum of the dice equals seven.

5’. InExample (5),if E = (2, 6), then E is the event that the car lasts between two and six
years. |

We say that the event E occurs when the outcome of the experiment lies in E.
For any two events E and F of a sample space S we define the new event EU F
to consist of all outcomes that are either in E or in F or in both E and F. That is,
the event E U F will occur if either E or F occurs. For example, in (1) if E = {H}
and F = {T}, then

EUF={H, T}

That is, E U F would be the whole sample space S. In (2) if E = {1, 3,5} and
F ={1,2,3}, then

EUF ={1,2,3,5)

and thus E U F would occur if the outcome of the die is 1 or 2 or 3 or 5. The
event E U F is often referred to as the union of the event E and the event F.

For any two events E and F, we may also define the new event EF, sometimes
written E N F, and referred to as the intersection of E and F, as follows. EF consists
of all outcomes which are both in E and in F. That is, the event EF will occur
only if both E and F occur. For example, in (2) if E = {1, 3,5} and F = {1, 2, 3},
then

EF = {1,3}

and thus EF would occur if the outcome of the die is either 1 or 3. In Exam-
ple (1) if E = {H} and F = {T}, then the event EF would not consist of any
outcomes and hence could not occur. To give such an event a name, we shall
refer to it as the null event and denote it by &. (That is, & refers to the event
consisting of no outcomes.) If EF = @, then E and F are said to be mutually
exclusive.

We also define unions and intersections of more than two events in a simi-
lar manner. If E1, E,, ... are events, then the union of these events, denoted by
Us—1 En, is defined to be the event that consists of all outcomes that are in E,,
for at least one value of 7 = 1,2,.... Similarly, the intersection of the events E,,,
denoted by (52 E,, is defined to be the event consisting of those outcomes that
are in all of the events E,,,n =1,2,....

Finally, for any event E we define the new event E°, referred to as the
complement of E, to consist of all outcomes in the sample space S that are not
in E. That is, E€ will occur if and only if E does not occur. In Example (4)
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if E = {(1,6),(2,5),(3,4),4,3),(5,2),(6,1)}, then E° will occur if the sum of
the dice does not equal seven. Also note that since the experiment must result in
some outcome, it follows that §¢ = &.

1.3 Probabilities Defined on Events

Consider an experiment whose sample space is S. For each event E of the sample
space S, we assume that a number P(E) is defined and satisfies the following three
conditions:

(i) 0<PE) L.
(i) P(S) = 1.
(iii) For any sequence of events E1, E, ... that are mutually exclusive, that is, events for
which E,E,, = @ when n # m, then

P < [j E,,) = iP(En)
n=1 n=1

We refer to P(E) as the probability of the event E.

Example 1.1 In the coin tossing example, if we assume that a head is equally
likely to appear as a tail, then we would have

P({H}) = P{T) = 3

On the other hand, if we had a biased coin and felt that a head was twice as likely
to appear as a tail, then we would have

P{H) =%, P(TH =3 N

Example 1.2 In the die tossing example, if we supposed that all six numbers
were equally likely to appear, then we would have

P({1}) = P(2}) = P({3}) = P({4}) = P({5}) = P({6}) = ¢

From (iii) it would follow that the probability of getting an even number would
equal

P({2,4,6}) = P({2}) + P({4}) + P({6})
-1 ]
=2

Remark We have chosen to give a rather formal definition of probabilities as
being functions defined on the events of a sample space. However, it turns out
that these probabilities have a nice intuitive property. Namely, if our experiment
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is repeated over and over again then (with probability 1) the proportion of time
that event E occurs will just be P(E).

Since the events E and E¢ are always mutually exclusive and since EU E€ = S
we have by (ii) and (iii) that

1 = P(S) = P(E UE®) = P(E) + P(EY)
or
P(ES) = 1 — P(E) (1.1)

In words, Equation (1.1) states that the probability that an event does not occur
is one minus the probability that it does occur.

We shall now derive a formula for P(E U F), the probability of all outcomes
either in E or in F. To do so, consider P(E) + P(F), which is the probability of all
outcomes in E plus the probability of all points in F. Since any outcome that is
in both E and F will be counted twice in P(E) + P(F) and only once in P(EU F),
we must have

P(E) + P(F) = P(EUF) + P(EF)
or equivalently
P(EUF) = P(E) + P(F) — P(EF) (1.2)

Note that when E and F are mutually exclusive (that is, when EF = &), then
Equation (1.2) states that

P(EUF) = P(E) + P(F) — P(9)
= P(E) + P(F)

a result which also follows from condition (iii). (Why is P(&J) = 0?)

Example 1.3 Suppose that we toss two coins, and suppose that we assume that
each of the four outcomes in the sample space

S={(H,H),H,T),(T,H), (T, T)}
is equally likely and hence has probability le' Let
E={(H5H)a (HaT)} and F={(H’H)9(T9H)}

That is, E is the event that the first coin falls heads, and F is the event that the
second coin falls heads.
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By Equation (1.2) we have that P(E U F), the probability that either the first or
the second coin falls heads, is given by

P(EUF) = P(E) + P(F) — P(EF)

=1+ 31 -P{H,H)
1— 3

T

ENTN

This probability could, of course, have been computed directly since
P(EUF) = P({H, H), (H,T),(T,H)}) = } m

We may also calculate the probability that any one of the three events E or F
or G occurs. This is done as follows:

P(EUFUG) = P(EUF)UG)
which by Equation (1.2) equals
P(EUF) + P(G) — P((EUF)G)

Now we leave it for you to show that the events (E U F)G and EG U FG are
equivalent, and hence the preceding equals

P(EUFUG)
— P(E) + P(F) — P(EF) + P(G) — P(EG U FG)
= P(E) + P(F) — P(EF) + P(G) — P(EG) — P(FG) + P(EGFG)
= P(E) + P(F) + P(G) — P(EF) — P(EG) — P(FG) + P(EFG) (1.3)

In fact, it can be shown by induction that, for any » events E1, E», E3, ..., E,,

P(E{UE,U---UE,) =Y P(E)— Y PEE)+ Y  P(EEE)

i<j i<j<k
— Y PEEELE)
i<j<k<l
+ o+ (=D"MP(E{E, - -Ep) (1.4)

In words, Equation (1.4), known as the inclusion-exclusion identity, states that
the probability of the union of 7 events equals the sum of the probabilities of
these events taken one at a time minus the sum of the probabilities of these events
taken two at a time plus the sum of the probabilities of these events taken three
at a time, and so on.
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1.4 Conditional Probabilities

Suppose that we toss two dice and that each of the 36 possible outcomes is equally
likely to occur and hence has probability % Suppose that we observe that the
first die is a four. Then, given this information, what is the probability that the
sum of the two dice equals six? To calculate this probability we reason as follows:
Given that the initial die is a four, it follows that there can be at most six possible
outcomes of our experiment, namely, (4, 1), (4,2), (4,3), (4,4), (4,5), and (4, 6).
Since each of these outcomes originally had the same probability of occurring,
they should still have equal probabilities. That is, given that the first die is a four,
then the (conditional) probability of each of the outcomes (4, 1), (4,2), (4,3),
4,4, (4,5, (4,6) is % while the (conditional) probability of the other 30 points
in the sample space is 0. Hence, the desired probability will be %.

If we let E and F denote, respectively, the event that the sum of the dice is
six and the event that the first die is a four, then the probability just obtained
is called the conditional probability that E occurs given that F has occurred and
is denoted by

P(E|F)

A general formula for P(E|F) that is valid for all events E and F is derived in the
same manner as the preceding. Namely, if the event F occurs, then in order for
E to occur it is necessary for the actual occurrence to be a point in both E and
in F, that is, it must be in EF. Now, because we know that F has occurred, it
follows that F becomes our new sample space and hence the probability that the
event EF occurs will equal the probability of EF relative to the probability of F.
That is,

P(EF
P(E|F) = % (1.5)

Note that Equation (1.5) is only well defined when P(F) > 0 and hence P(E|F)
is only defined when P(F) > 0.

Example 1.4 Suppose cards numbered one through ten are placed in a hat,
mixed up, and then one of the cards is drawn. If we are told that the number
on the drawn card is at least five, then what is the conditional probability that
it is ten?

Solution: Let E denote the event that the number of the drawn card is ten,
and let F be the event that it is at least five. The desired probability is P(E|F).
Now, from Equation (1.5)

P(EF
P(E|F) = P((—F))
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However, EF = E since the number of the card will be both ten and at least
five if and only if it is number ten. Hence,

1
P(Eu:):%:g [}
10

Example 1.5 A family has two children. What is the conditional probability that
both are boys given that at least one of them is a boy? Assume that the sample
space S is given by S = {(b, b), (b, ), (g,b), (g,£)}, and all outcomes are equally
likely. ((b, g) means, for instance, that the older child is a boy and the younger
child a girl.)

Solution: Letting B denote the event that both children are boys, and A the
event that at least one of them is a boy, then the desired probability is given by
P(BA)
P(A)
_ P{(b, b)) _
P{(b,b),(b,8), (g, D)}

P(BJA) =

! [
3

EN[SSENTN

Example 1.6 Bev can either take a course in computers or in chemistry. If Bev
takes the computer course, then she will receive an A grade with probability 4 2] ; if
she takes the chemistry course then she will receive an A grade with probability 1 3
Bev decides to base her decision on the flip of a fair coin. What is the probability
that Bev will get an A in chemistry?

Solution: If we let C be the event that Bev takes chemistry and A denote the
event that she receives an A in whatever course she takes, then the desired
probability is P(AC). This is calculated by using Equation (1.5) as follows:

P(AC) = P(C)P(A|C)
11 _ 1
=237% u
Example 1.7 Suppose an urn contains seven black balls and five white balls. We
draw two balls from the urn without replacement. Assuming that each ball in the
urn is equally likely to be drawn, what is the probability that both drawn balls
are black?

Solution: Let F and E denote, respectively, the events that the first and second
balls drawn are black. Now, given that the first ball selected is black there are
six remammg black balls and five white balls, and so P(E|F) = 11 As P(F) is

clearly - 13> our desired probability is

P(EF) = P(F)P(E|F)

= L6 _ 42
= 12171 T 132 u
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Example 1.8 Suppose that each of three men at a party throws his hat into the
center of the room. The hats are first mixed up and then each man randomly selects
a hat. What is the probability that none of the three men selects his own hat?

Solution: We shall solve this by first calculating the complementary probabil-
ity that at least one man selects his own hat. Let us denote by E;, i = 1,2, 3,
the event that the ith man selects his own hat. To calculate the probability
P(E1 U E U E3), we first note that
P(E)=3, i=123
P(EE) =1, i#j (1.6)
P(E\E2E3) = ¢

To see why Equation (1.6) is correct, consider first
P(E;E;) = P(E;)P(E;|E;)

Now P(E;), the probability that the ith man selects his own hat, is clearly %
since he is equally likely to select any of the three hats. On the other hand,
given that the ith man has selected his own hat, then there remain two hats
that the jth man may select, and as one of these two is his own hat, it follows
that with probability % he will select it. That is, P(E;|E;) = % and so

To calculate P(E1E;E3) we write

P(E1E2E3) = P(E1E2)P(E3|E E))
= tP(E3|EqEp)

However, given that the first two men get their own hats it follows that the
third man must also get his own hat (since there are no other hats left). That
is, P(E3|E1E>) = 1 and so

P(E1E2E3) = ¢
Now, from Equation (1.4) we have that

P(E1 UEy UE3) = P(Eq) + P(Ey) + P(E3) — P(E1E)
— P(EqE3) — P(E2E3) + P(E1E2E3)
S
2

=3
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Hence, the probability that none of the men selects his own hat is
1

2‘—_
1-2=1. m

1.5 Independent Events

Two events E and F are said to be independent if
P(EF) = P(E)P(F)

By Equation (1.5) this implies that E and F are independent if
P(E|F) = P(E)

(which also implies that P(F|E) = P(F)). That is, E and F are independent if
knowledge that F has occurred does not affect the probability that E occurs.
That is, the occurrence of E is independent of whether or not F occurs.

Two events E and F that are not independent are said to be dependent.

Example 1.9 Suppose we toss two fair dice. Let E1 denote the event that the
sum of the dice is six and F denote the event that the first die equals four. Then

P(E{F) = P({4,2}) = 3=
while
P(E{)P(F) = 35_6% - ﬁ

and hence Eq and F are not independent. Intuitively, the reason for this is clear
for if we are interested in the possibility of throwing a six (with two dice), then we
will be quite happy if the first die lands four (or any of the numbers 1, 2, 3, 4, 5)
because then we still have a possibility of getting a total of six. On the other hand,
if the first die landed six, then we would be unhappy as we would no longer have
a chance of getting a total of six. In other words, our chance of getting a total
of six depends on the outcome of the first die and hence E; and F cannot be
independent.

Let E; be the event that the sum of the dice equals seven. Is E; independent
of F? The answer is yes since

P(E2F) = P({(4,3)) = &
while

P(Ep)P(F) = ¢} = 3¢
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We leave it for you to present the intuitive argument why the event that the sum of
the dice equals seven is independent of the outcome on the first die. [ ]

The definition of independence can be extended to more than two events.
The events Ei,Ej,...,E, are said to be independent if for every subset
Eiv,Ey,...,Ey, v < n, of these events

P(EyEy ---Ey) = P(Ey)P(Ey) - - P(Ey)

Intuitively, the events Ei,Ej,...,E, are independent if knowledge of the
occurrence of any of these events has no effect on the probability of any other
event.

Example 1.10 (Pairwise Independent Events That Are Not Independent) Let a
ball be drawn from an urn containing four balls, numbered 1, 2, 3, 4. Let E =
{1,2}, F = {1,3}, G = {1,4}. If all four outcomes are assumed equally likely,
then

P(EF) = P(E)P(F) =

P(EG) = P(E)P(G) = 1,
P(FG) = P(F)P(G) = 1

1
%>

However,
1 = P(EFG) # P(E)P(F)P(G)

Hence, even though the events E, F, G are pairwise independent, they are not
jointly independent. [ |

Example 1.11 There are r players, with player 7 initially having #; units,
n; > 0,i =1,...,r. At each stage, two of the players are chosen to play a game,
with the winner of the game receiving 1 unit from the loser. Any player whose
fortune drops to 0 is eliminated, and this continues until a single player has
all » = 37, n; units, with that player designated as the victor. Assuming that
the results of successive games are independent, and that each game is equally
likely to be won by either of its two players, find the probability that player i is
the victor.

Solution: To begin, suppose that there are # players, with each player initially
having 1 unit. Consider player i. Each stage she plays will be equally likely to
result in her either winning or losing 1 unit, with the results from each stage
being independent. In addition, she will continue to play stages until her fortune
becomes either 0 or 7. Because this is the same for all players, it follows that
each player has the same chance of being the victor. Consequently, each player
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has player probability 1/# of being the victor. Now, suppose these # players
are divided into 7 teams, with team 7 containing #; players, i = 1,...,7. That
is, suppose players 1,...,71 constitute team 1, players n1 + 1,...,1n1 + mp
constitute team 2 and so on. Then the probability that the victor is a member
of team i is 1;/n. But because team i initially has a total fortune of #; units,
i=1,...,r, and each game played by members of different teams results in
the fortune of the winner’s team increasing by 1 and that of the loser’s team
decreasing by 1, it is easy to see that the probability that the victor is from
team 7 is exactly the desired probability. Moreover, our argument also shows
that the result is true no matter how the choices of the players in each stage
are made. [ |

Suppose that a sequence of experiments, each of which results in either a
“success” or a “failure,” is to be performed. Let E;,i > 1, denote the event
that the ith experiment results in a success. If, for all i1, 42, ..., i,

n
P(E,E;, -+ E;,) = [ P(E;)
j=1

we say that the sequence of experiments consists of independent trials.

1.6 Bayes’ Formula
Let E and F be events. We may express E as
E=EFUEF°

because in order for a point to be in E, it must either be in both E and F, or it
must be in E and not in F. Since EF and EF¢ are mutually exclusive, we have that

P(E) = P(EF) + P(EF°)
— P(E|F)P(F) + P(E|F°)P(F°)
= P(E|F)P(F) + P(E|F°)(1 — P(F)) (1.7)

Equation (1.7) states that the probability of the event E is a weighted average
of the conditional probability of E given that F has occurred and the condi-
tional probability of E given that F has not occurred, each conditional proba-
bility being given as much weight as the event on which it is conditioned has of
occurring.

Example 1.12 Consider two urns. The first contains two white and seven black
balls, and the second contains five white and six black balls. We flip a fair coin and
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then draw a ball from the first urn or the second urn depending on whether the
outcome was heads or tails. What is the conditional probability that the outcome
of the toss was heads given that a white ball was selected?

Solution: Let W be the event that a white ball is drawn, and let H be the
event that the coin comes up heads. The desired probability P(H|W) may be
calculated as follows:

P(HW)  P(W|H)P(H)

P(W)  P(W)

_ P(W|H)P(H)

" P(W|H)P(H) 4+ P(W|H¢)P(H°)

21 22

T .
1tz ¢

P(H|W) =

ol

Example 1.13 In answering a question on a multiple-choice test a student
either knows the answer or guesses. Let p be the probability that she knows
the answer and 1 — p the probability that she guesses. Assume that a student
who guesses at the answer will be correct with probability 1/m, where m is
the number of multiple-choice alternatives. What is the conditional probabil-
ity that a student knew the answer to a question given that she answered it
correctly?

Solution: Let C and K denote respectively the event that the student answers
the question correctly and the event that she actually knows the answer.
Now

P(KC) P(C|K)P(K)

P(C) ~ P(CIK)P(K) + P(C|K®)P(K®)
. p

T+ A/mA—p)

_ mp

1+ (m—1p

P(K|C) =

Thus, for example, ifm = 5,p = %, then the probability that a student knew the
answer to a question she correctly answered is %. [ |

Example 1.14 A laboratory blood test is 95 percent effective in detecting a cer-
tain disease when it is, in fact, present. However, the test also yields a “false
positive” result for 1 percent of the healthy persons tested. (That is, if a healthy
person is tested, then, with probability 0.01, the test result will imply he has the
disease.) If 0.5 percent of the population actually has the disease, what is the
probability a person has the disease given that his test result is positive?
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Solution: Let D be the event that the tested person has the disease, and E
the event that his test result is positive. The desired probability P(DI|E) is
obtained by

P(DE) _ P(E|D)P(D)
P(E) ~ P(E|D)P(D) + P(E|D¢)P(D¢)
B (0.95)(0.005)

~(0.95)(0.005) + (0.01)(0.995)

95

=592 ~ 0.323

P(DIE) =

Thus, only 32 percent of those persons whose test results are positive actually
have the disease. [ ]

Equation (1.7) may be generalized in the following manner. Suppose that
Fi,Fa,...,F,are mutually exclusive events such that | Ji_; F; = S. In other words,
exactly one of the events Fy, Fa, ..., F, will occur. By writing

E= O EF;
i=1

and using the fact that the events EF;, i = 1,...,#n, are mutually exclusive, we
obtain that

P(E) =) P(EF)

i=1

= > P(E|F)P(F)) (1.8)

i=1

Thus, Equation (1.8) shows how, for given events Fy, Fy,. .., F,, of which one
and only one must occur, we can compute P(E) by first “conditioning” upon
which one of the F; occurs. That is, it states that P(E) is equal to a weighted
average of P(E|F;), each term being weighted by the probability of the event on
which it is conditioned.

Suppose now that E has occurred and we are interested in determining which
one of the F; also occurred. By Equation (1.8) we have that

P(EF)
P(E)

_ nP(E|F,-)P(F,~) (1.9)

> i1 P(E|F)P(F;)

P(F|E) =

Equation (1.9) is known as Bayes’ formula.
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Example 1.15 You know that a certain letter is equally likely to be in any one
of three different folders. Let «; be the probability that you will find your letter
upon making a quick examination of folder i if the letter is, in fact, in folder
i, i = 1,2,3. (We may have o; < 1.) Suppose you look in folder 1 and do not
find the letter. What is the probability that the letter is in folder 1?

Solution: Let F;, i = 1,2, 3 be the event that the letter is in folder i; and let
E be the event that a search of folder 1 does not come up with the letter. We
desire P(F1|E). From Bayes’ formula we obtain

P(FIE) = —
> i=1 P(EIF)P(F)
_ O-apy 1w -
A-apj+3+3 33—
Exercises

1. A box contains three marbles: one red, one green, and one blue. Consider an exper-
iment that consists of taking one marble from the box then replacing it in the box
and drawing a second marble from the box. What is the sample space? If, at all
times, each marble in the box is equally likely to be selected, what is the probability
of each point in the sample space?

*2. Repeat Exercise 1 when the second marble is drawn without replacing the first
marble.

3. A coinis to be tossed until a head appears twice in a row. What is the sample space
for this experiment? If the coin is fair, what is the probability that it will be tossed
exactly four times?

4. Let E,F, G be three events. Find expressions for the events that of E, F, G
(a) only F occurs,

(b) both E and F but not G occur,
(c) at least one event occurs,

(d) atleast two events occur,

(e) all three events occur,

(f) none occurs,

(g) at most one occurs,

(h) at most two occur.

*5. An individual uses the following gambling system at Las Vegas. He bets $1 that
the roulette wheel will come up red. If he wins, he quits. If he loses then he makes
the same bet a second time only this time he bets $2; and then regardless of the
outcome, quits. Assuming that he has a probability of % of winning each bet, what
is the probability that he goes home a winner? Why is this system not used by
everyone?

6. Show that E(FUG) = EFUEG.

7. Show that (EU F)¢ = E°F°.

P(E|F1)P(Fy)
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10.

11.
12.

13.

14.

15.
16.
*17.

18.

If P(E) = 0.9 and P(F) = 0.8, show that P(EF) > 0.7. In general, show that
P(EF) > P(E) + P(F) — 1

This is known as Bonferroni’s inequality.
We say that E C F if every point in E is also in F. Show that if E C F, then

P(F) = P(E) + P(FE®) > P(E)

Show that
P ( U E,-) <) _P(E)
i=1 i=1

This is known as Boole’s inequality.

Hint: Either use Equation (1.2) and mathematical induction, or else show that
U~ Ei = UL, Fi, where F; = Eq, F; = E; ﬂ;;% El?, and use property (iii) of a
probability.

If two fair dice are tossed, what is the probability that the sumisi, i =2,3,...,12?

Let E and F be mutually exclusive events in the sample space of an experiment.
Suppose that the experiment is repeated until either event E or event F occurs.
What does the sample space of this new super experiment look like? Show that the
probability that event E occurs before event F is P(E)/ [P(E) + P(F)].

Hint: Argue that the probability that the original experiment is performed 7 times
and E appears on the nth time is P(E) x (1—p)"~1,n=1,2,..., where p = P(E) +
P(F). Add these probabilities to get the desired answer.

The dice game craps is played as follows. The player throws two dice, and if the sum
is seven or eleven, then she wins. If the sum is two, three, or twelve, then she loses.
If the sum is anything else, then she continues throwing until she either throws that
number again (in which case she wins) or she throws a seven (in which case she
loses). Calculate the probability that the player wins.

The probability of winning on a single toss of the dice is p. A starts, and if he
fails, he passes the dice to B, who then attempts to win on her toss. They continue
tossing the dice back and forth until one of them wins. What are their respective
probabilities of winning?

Argue that E= EFUEF, EUF = EU FE*.
Use Exercise 15 to show that P(E U F) = P(E) + P(F) — P(EF).

Suppose each of three persons tosses a coin. If the outcome of one of the tosses
differs from the other outcomes, then the game ends. If not, then the persons start
over and retoss their coins. Assuming fair coins, what is the probability that the
game will end with the first round of tosses? If all three coins are biased and have
probability % of landing heads, what is the probability that the game will end at
the first round?

Assume that each child who is born is equally likely to be a boy or a girl. If a family
has two children, what is the probability that both are girls given that (a) the eldest
is a girl, (b) at least one is a girl?
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*19.

20.

21.

22.

23.

24.

*25.

26.

*27.

Two dice are rolled. What is the probability that at least one is a six? If the two
faces are different, what is the probability that at least one is a six?

Three dice are thrown. What is the probability the same number appears on exactly
two of the three dice?

Suppose that 5 percent of men and 0.25 percent of women are color-blind. A color-
blind person is chosen at random. What is the probability of this person being male?
Assume that there are an equal number of males and females.

A and B play until one has 2 more points than the other. Assuming that each point
is independently won by A with probability p, what is the probability they will play
a total of 2x points? What is the probability that A will win?

For events Eq, E, ..., E, show that

P(E1E; - -+ Ey) = P(E1)P(E|E1)P(E3|E1Ep) - - - P(E4|Eq -+ - Ej_1)

In an election, candidate A receives 7 votes and candidate B receives m votes, where
n > m. Assume that in the count of the votes all possible orderings of the n + m
votes are equally likely. Let P, ,,, denote the probability that from the first vote on
A is always in the lead. Find

(a) Py (b) P31 (¢) Pun (d) P3p (e) P4p

(f) Pup (g) Paj3 (h) Ps3 (i) Psa4

(j) Make a conjecture as to the value of P, .

Two cards are randomly selected from a deck of 52 playing cards.

(a) What is the probability they constitute a pair (that is, that they are of the same
denomination)?

(b) What is the conditional probability they constitute a pair given that they are
of different suits?

A deck of 52 playing cards, containing all 4 aces, is randomly divided into 4 piles

of 13 cards each. Define events E1, E;, E3, and E4 as follows:

Eq1 = {the first pile has exactly 1 ace},
E» = {the second pile has exactly 1 ace},
E3 = {the third pile has exactly 1 ace},
E4 = {the fourth pile has exactly 1 ace}

Use Exercise 23 to find P(E1E»E3E4), the probability that each pile has an ace.
Suppose in Exercise 26 we had defined the events E;, i = 1,2,3,4, by

E1 = {one of the piles contains the ace of spades},
E; = {the ace of spades and the ace of hearts are in different piles},

E3 = {the ace of spades, the ace of hearts, and the
ace of diamonds are in different piles},

E4 = {all 4 aces are in different piles}

Now use Exercise 23 to find P(E1EyE3E4), the probability that each pile has an
ace. Compare your answer with the one you obtained in Exercise 26.
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28.

29.

31.

*32.

33.

34.

35.

36.

37.

38.

39.

If the occurrence of B makes A more likely, does the occurrence of A make B more
likely?

Suppose that P(E) = 0.6. What can you say about P(E|F) when

(a) E and F are mutually exclusive?

(by ECF?

(c) FCE?

Bill and George go target shooting together. Both shoot at a target at the same time.

Suppose Bill hits the target with probability 0.7, whereas George, independently,

hits the target with probability 0.4.

(a) Given that exactly one shot hit the target, what is the probability that it was
George’s shot?

(b) Given that the target is hit, what is the probability that George hit it?

What is the conditional probability that the first die is six given that the sum of the
dice is seven?

Suppose all 7 men at a party throw their hats in the center of the room. Each man
then randomly selects a hat. Show that the probability that none of the 7z men selects
his own hat is

1 1 1 (=n"

FTR TR TR

Note that as # — oo this converges to e~ 1. Is this surprising?

In a class there are four freshman boys, six freshman girls, and six sophomore boys.
How many sophomore girls must be present if sex and class are to be independent
when a student is selected at random?

Mr. Jones has devised a gambling system for winning at roulette. When he bets, he
bets on red, and places a bet only when the ten previous spins of the roulette have
landed on a black number. He reasons that his chance of winning is quite large
since the probability of eleven consecutive spins resulting in black is quite small.
What do you think of this system?

A fair coin is continually flipped. What is the probability that the first four flips are

(a) H,H,H, H?

(b) T,H,H,H?

(c) What is the probability that the pattern T, H, H, H occurs before the pattern
H, H, H, H>

Consider two boxes, one containing one black and one white marble, the other,

two black and one white marble. A box is selected at random and a marble is

drawn at random from the selected box. What is the probability that the marble is
black?

In Exercise 36, what is the probability that the first box was the one selected given
that the marble is white?

Urn 1 contains two white balls and one black ball, while urn 2 contains one white
ball and five black balls. One ball is drawn at random from urn 1 and placed in urn
2. A ball is then drawn from urn 2. It happens to be white. What is the probability
that the transferred ball was white?

Stores A, B, and C have 50, 75, and 100 employees, and, respectively, 50, 60, and
70 percent of these are women. Resignations are equally likely among all employees,
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41.

42.

43.

44,

*45.

46.

47.

regardless of sex. One employee resigns and this is a woman. What is the probability
that she works in store C?

(a) A gambler has in his pocket a fair coin and a two-headed coin. He selects
one of the coins at random, and when he flips it, it shows heads. What is the
probability that it is the fair coin?

(b) Suppose that he flips the same coin a second time and again it shows heads.
Now what is the probability that it is the fair coin?

(c) Suppose that he flips the same coin a third time and it shows tails. Now what
is the probability that it is the fair coin?

In a certain species of rats, black dominates over brown. Suppose that a black rat

with two black parents has a brown sibling.

(a) What is the probability that this rat is a pure black rat (as opposed to being a
hybrid with one black and one brown gene)?

(b) Suppose that when the black rat is mated with a brown rat, all five of their
offspring are black. Now, what is the probability that the rat is a pure black
rat?

There are three coins in a box. One is a two-headed coin, another is a fair coin,
and the third is a biased coin that comes up heads 75 percent of the time. When
one of the three coins is selected at random and flipped, it shows heads. What is
the probability that it was the two-headed coin?

Suppose we have ten coins which are such that if the ith one is flipped then heads will
appear with probability i/10,i = 1,2,...,10. When one of the coins is randomly
selected and flipped, it shows heads. What is the conditional probability that it was
the fifth coin?

Urn 1 has five white and seven black balls. Urn 2 has three white and twelve black
balls. We flip a fair coin. If the outcome is heads, then a ball from urn 1 is selected,
while if the outcome is tails, then a ball from urn 2 is selected. Suppose that a white
ball is selected. What is the probability that the coin landed tails?

An urn contains b black balls and 7 red balls. One of the balls is drawn at random,
but when it is put back in the urn ¢ additional balls of the same color are put in with
it. Now suppose that we draw another ball. Show that the probability that the first
ball drawn was black given that the second ball drawn was red is b/(b + 7 + ¢).

Three prisoners are informed by their jailer that one of them has been chosen at
random to be executed, and the other two are to be freed. Prisoner A asks the jailer
to tell him privately which of his fellow prisoners will be set free, claiming that
there would be no harm in divulging this information, since he already knows that
at least one will go free. The jailer refuses to answer this question, pointing out
that if A knew which of his fellows were to be set free, then his own probability of
being executed would rise from % to %, since he would then be one of two prisoners.

What do you think of the jailer’s reasoning?
For a fixed event B, show that the collection P(A|B), defined for all events A, satisfies
the three conditions for a probability. Conclude from this that

P(A|B) = P(A|BC)P(C|B) + P(A|BC)P(C*|B)

Then directly verify the preceding equation.
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*48. Sixty percent of the families in a certain community own their own car, thirty
percent own their own home, and twenty percent own both their own car and their
own home. If a family is randomly chosen, what is the probability that this family
owns a car or a house but not both?
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Random Variables 5.

L el A

2.1 Random Variables

It frequently occurs that in performing an experiment we are mainly interested in
some functions of the outcome as opposed to the outcome itself. For instance, in
tossing dice we are often interested in the sum of the two dice and are not really
concerned about the actual outcome. That is, we may be interested in knowing
that the sum is seven and not be concerned over whether the actual outcome was
(1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1). These quantities of interest,
or more formally, these real-valued functions defined on the sample space, are
known as random variables.

Since the value of a random variable is determined by the outcome of the
experiment, we may assign probabilities to the possible values of the random
variable.

Example 2.1 Letting X denote the random variable that is defined as the sum of
two fair dice; then

P{X =2} = P{(1, 1)} = %,

PX =3} = P((1,2), (2, 1)} = &,

P{X =4} =P{(1,3),2,2),3, 1)} = %’

PIX =5} = P{(1,4),(2,3),(3,2), 4, D} = 55,

P{X = 6) = P{(1,5),(2,4),3,3),(4,2),(5, 1)} = 5,

Introduction to Probability Models, ISBN: 9780123756862
Copyright © 2010 by Elsevier, Inc. All rights reserved.
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P{X =7} =P{(1,6),(2,95),3,4),(4,3),(5,2),(6, )} = %,
P(X =8} = P{(2,6),3,5),(4,4),(5,3),(6,2)} = 3,
P{X =9} = P{(3,6),(4,5),(5,4),(6,3)} = 55,
P{X =10} = P{(4,6),(5,5),(6,4)} = 33_6’
P{X = 11} = P{(5,6),(6,5)} = 5,
P{X =12} = P{(6,6)} = 1= (2.1)
In other words, the random variable X can take on any integral value between
two and twelve, and the probability that it takes on each value is given by Equa-

tion (2.1). Since X must take on one of the values two through twelve, we must
have

12 12
1=P{U{X=n}} =ZP{X=n}
=2 n=2

which may be checked from Equation (2.1). [ ]

Example 2.2 For a second example, suppose that our experiment consists of
tossing two fair coins. Letting Y denote the number of heads appearing, then Y is
a random variable taking on one of the values 0, 1, 2 with respective probabilities

P{Y =0} = P{(T, D)} = 1,
P{Y =1} = P((T,H),H,T)} = 3,
P(Y =2} = P{(H,H)} = }

Of course, P{Y =0} + P{Y =1} + P{Y =2} = 1. [ |

Example 2.3 Suppose that we toss a coin having a probability p of coming
up heads, until the first head appears. Letting N denote the number of flips
required, then assuming that the outcome of successive flips are independent,
N is a random variable taking on one of the values 1,2, 3,..., with respective
probabilities

P{N = 1} = P{H} = p,
P{N =2} = P((T,H)} = (1 — p)p,
P{N = 3} = P{(T, T, H)} = (1 — p)*p,

PN=n}=P{(T,T,...,T,H)}=1-p)" 'p, n=>1
N e’

n—1
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As a check, note that

P (G{N = n}) = iP{N = n}
n=1 n=1

=py A-p"!
n=1

_ b
1-(1-p

=1 ]

Example 2.4 Suppose that our experiment consists of seeing how long a battery
can operate before wearing down. Suppose also that we are not primarily inter-
ested in the actual lifetime of the battery but are concerned only about whether
or not the battery lasts at least two years. In this case, we may define the random
variable I by

I 1, if the lifetime of battery is two or more years
o, otherwise

If E denotes the event that the battery lasts two or more years, then the random
variable I is known as the indicator random variable for event E. (Note that I
equals 1 or 0 depending on whether or not E occurs.) [ |

Example 2.5 Suppose that independent trials, each of which results in any of m
possible outcomes with respective probabilities p1, ..., pm, » joq pi = 1, are con-
tinually performed. Let X denote the number of trials needed until each outcome
has occurred at least once.

Rather than directly considering P{X = n} we will first determine P{X > n},
the probability that at least one of the outcomes has not yet occurred after n
trials. Letting A; denote the event that outcome i has not yet occurred after the
first n trials, i = 1,...,m, then

PIX>n}=P (LWJA,)
i=1
= ZP(AZ») - Z ZP(A,A,)
i=1

i<j

+ Y D Y PAAAR) — -+ (=D)AL - Ay

i<j<k
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Now, P(A;) is the probability that each of the first # trials results in a non-i
outcome, and so by independence

P(A) =1 —pd)”

Similarly, P(A;A)) is the probability that the first # trials all result in a non-7 and
non-j outcome, and so

P(AA) =1 —p;i —p)"

As all of the other probabilities are similar, we see that

m

PIX>np=Y (1=p)" =D Y (1 —pi—p)
i=1 i<j
+ Y Y A —pi—pi—pp)" — -

i<j<k

Since P{X = n} = P{X > n — 1} — P{X > n}, we see, upon using the algebraic
identity (1 —a)"~! — (1 —a)" = a(1 — a)"" ', that

PX=np= pil=p)"" =YY pi+ppA—pi—p)""

i=1 i<j

S i b PO —pi—p =) = W

i<j<k

In all of the preceding examples, the random variables of interest took on
either a finite or a countable number of possible values.* Such random variables
are called discrete. However, there also exist random variables that take on a
continuum of possible values. These are known as continuous random variables.
One example is the random variable denoting the lifetime of a car, when the car’s
lifetime is assumed to take on any value in some interval (a, b).

The cumulative distribution function (cdf) (or more simply the distribution
function) F(-) of the random variable X is defined for any real number b, —co <
b < o0, by

F(b) = P{X < b}

In words, F(b) denotes the probability that the random variable X takes on a
value that is less than or equal to b. Some properties of the cdf F are

* A set is countable if its elements can be put in a one-to-one correspondence with the sequence of
positive integers.
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(i) F(b) is a nondecreasing function of b,
(ii) limy_ o, F(b) = F(co) = 1,
(iii) limy_, _o, F(b) = F(—o0) = 0.

Property (i) follows since for a < b the event {X < a} is contained in the event
{X < b}, and so it must have a smaller probability. Properties (ii) and (iii) follow
since X must take on some finite value.

All probability questions about X can be answered in terms of the cdf F(-). For
example,

P{a < X < b} = F(b) — F(a) foralla <b

This follows since we may calculate P{a < X < b} by first computing the proba-
bility that X < b (that is, F(b)) and then subtracting from this the probability
that X < g (that is, F(a)).

If we desire the probability that X is strictly smaller than b, we may calculate
this probability by

P{X < b} = lim P{X <b—h)
h—0+
= lim F(b—h)
h—0+
where lim,_, o+ means that we are taking the limit as & decreases to 0. Note that

P{X < b} does not necessarily equal F(b) since F(b) also includes the probability
that X equals b.

2.2 Discrete Random Variables

As was previously mentioned, a random variable that can take on at most a
countable number of possible values is said to be discrete. For a discrete random
variable X, we define the probability mass function p(a) of X by

p(a) = P(X = a)

The probability mass function p(a) is positive for at most a countable number of
values of a. That is, if X must assume one of the values x1, x>, ..., then

p(x;)) > 0, i=1,2,...

px) =0, all other values of x

Since X must take on one of the values x;, we have

Y b =1
=1
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N= ol o

1 2 3

Figure 2.1 Graph of F(x).

The cumulative distribution function F can be expressed in terms of p(a) by

F@) = ) p@)

all x;<a
For instance, suppose X has a probability mass function given by
ph=3  pPQ=3 PO=g

then, the cumulative distribution function F of X is given by

0, a<1

3, l<a<2
Fa) = 2 2<a<3

6> =

1 3<a

-

This is graphically presented in Figure 2.1.
Discrete random variables are often classified according to their probability
mass functions. We now consider some of these random variables.

2.2.1 The Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as either
a “success” or as a “failure” is performed. If we let X equal 1 if the outcome
is a success and O if it is a failure, then the probability mass function of X is
given by

p(0)=PX=0}=1-p,

p(1) = P(X = 1} = p (22)

where p, 0 < p < 1, is the probability that the trial is a “success.”
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A random variable X is said to be a Bernoulli random variable if its probability
mass function is given by Equation (2.2) for some p € (0, 1).

2.2.2 The Binomial Random Variable

Suppose that 7 independent trials, each of which results in a “success” with
probability p and in a “failure” with probability 1 — p, are to be performed. If X
represents the number of successes that occur in the # trials, then X is said to be
a binomial random variable with parameters (1, p).

The probability mass function of a binomial random variable having parame-
ters (n,p) is given by

p(i) = (?)p"(l -p)", i=0,1,...,n (2.3)

where

n\ n!
(i)  (m—1)i!

equals the number of different groups of 7 objects that can be chosen from a set
of n objects. The validity of Equation (2.3) may be verified by first noting that the
probability of any particular sequence of the # outcomes containing i successes
and 7 — i failures is, by the assumed independence of trials, p’(1 — p)”~. Equa-
tion (2.3) then follows since there are () different sequences of the 7 outcomes
leading to i successes and 7 —i failures. For instance, if # = 3,7 = 2, then there are
G) = 3 ways in which the three trials can result in two successes. Namely, any
one of the three outcomes (s,s,f), (s,f,s), (f,s,s), where the outcome (s, s, )
means that the first two trials are successes and the third a failure. Since each
of the three outcomes (s,s,f), (s,f,s), (f,s,s) has a probability p?>(1 — p) of

occurring the desired probability is thus (;)pz(l - D).
Note that, by the binomial theorem, the probabilities sum to one, that is,

o = (n i n—i _ n_
gp(th(i)p(l—p) =@p+0-p) =1

i=0
Example 2.6 Four fair coins are flipped. If the outcomes are assumed indepen-
dent, what is the probability that two heads and two tails are obtained?

Solution: Letting X equal the number of heads (“successes”) that appear,
then X is a binomial random variable with parameters (n = 4, p = %).
Hence, by Equation (2.3),

=) (' (2) =3 .
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Example 2.7 It is known that any item produced by a certain machine will
be defective with probability 0.1, independently of any other item. What is the
probability that in a sample of three items, at most one will be defective?

Solution: If X is the number of defective items in the sample, then X is a bino-
mial random variable with parameters (3, 0.1). Hence, the desired probability
is given by

PIX=0}+PX=1}= (3) 0.1)°(0.9)3 + (i) 0.1)10.92=0.972 =

Example 2.8 Suppose that an airplane engine will fail, when in flight, with prob-
ability 1 — p independently from engine to engine; suppose that the airplane will
make a successful flight if at least 50 percent of its engines remain operative. For
what values of p is a four-engine plane preferable to a two-engine plane?

Solution: Because each engine is assumed to fail or function independently
of what happens with the other engines, it follows that the number of engines
remaining operative is a binomial random variable. Hence, the probability that
a four-engine plane makes a successful flight is

(5)rpa-or+ (5)ra-o+ (3)pa-p’
=6p*(1—p)* +4p>(1 —p) + p*
whereas the corresponding probability for a two-engine plane is
@p(l —p)+ @pz =2p(1 —p) +p?
Hence the four-engine plane is safer if
6p°(1—p)* +4p>(1 = p) +p* = 2p(1 —p) +p*
or equivalently if
6p(L—p* +4p*A—p)+p>=2-p
which simplifies to
3p° -8 +7p—220 or (p—1)>Gp-2)=0
which is equivalent to

3p-2>0 or p>

SN
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Hence, the four-engine plane is safer when the engine success probability is at
least as large as %, whereas the two-engine plane is safer when this probability

falls below % [ ]

Example 2.9 Suppose that a particular trait of a person (such as eye color
or left handedness) is classified on the basis of one pair of genes and suppose
that d represents a dominant gene and r a recessive gene. Thus a person with
dd genes is pure dominance, one with 7r is pure recessive, and one with rd
is hybrid. The pure dominance and the hybrid are alike in appearance. Chil-
dren receive one gene from each parent. If, with respect to a particular trait,
two hybrid parents have a total of four children, what is the probability that
exactly three of the four children have the outward appearance of the dominant
gene?

Solution: If we assume that each child is equally likely to inherit either of two
genes from each parent, the probabilities that the child of two hybrid parents
will have dd, rr, or rd pairs of genes are, respectively, }U }‘, % Hence, because
an offspring will have the outward appearance of the dominant gene if its gene
pair is either dd or rd, it follows that the number of such children is binomially
distributed with parameters (4, %). Thus the desired probability is

4 3 1
3V (LY 227 -
3/\4 4 64
Remark on Terminology If X is a binomial random variable with parameters
(n,p), then we say that X has a binomial distribution with parameters (7, p).

2.2.3 The Geometric Random Variable

Suppose that independent trials, each having probability p of being a success, are
performed until a success occurs. If we let X be the number of trials required
until the first success, then X is said to be a geometric random variable with
parameter p. Its probability mass function is given by

pm)=PX=ny=1-p)"'p, n=12,... (2.4)

Equation (2.4) follows since in order for X to equal # it is necessary and suf-
ficient that the first 7 — 1 trials be failures and the nth trial a success. Equa-
tion (2.4) follows since the outcomes of the successive trials are assumed to be
independent.

To check that p(n) is a probability mass function, we note that

WIOE pZ(l p) =
n=1
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2.2.4 The Poisson Random Variable

A random variable X, taking on one of the values 0,1,2,..., is said to be a
Poisson random variable with parameter A, if for some A > 0,

2
p(i) = P{X =i} =e_k,—', i=0,1,... (2.5)
i!
Equation (2.5) defines a probability mass function since

00 00 )J
dopiy=ety S=ee =1
i=0 =0

The Poisson random variable has a wide range of applications in a diverse number
of areas, as will be seen in Chapter 5.

An important property of the Poisson random variable is that it may be used
to approximate a binomial random variable when the binomial parameter 7 is
large and p is small. To see this, suppose that X is a binomial random variable
with parameters (7, p), and let A = np. Then

PX =i} = p'—pyt

(n— i)l

L N PN R
~atals) ()

_nn—1)--(m—i+ 1N A —r/n)"
- ni il (1 —A/n)i

Now, for # large and p small

A\ D m—i+1 A\
(1--) neh, Moz Demzmit D (1__)%1

n n'

Hence, for n large and p small,
)\j

P{X =i}~ e**,—‘

i!

Example 2.10 Suppose that the number of typographical errors on a single page
of this book has a Poisson distribution with parameter A = 1. Calculate the
probability that there is at least one error on this page.

Solution:

PIX>1}=1-P(X=0}=1-¢"120.633 ]
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Example 2.11 If the number of accidents occurring on a highway each day is a
Poisson random variable with parameter A = 3, what is the probability that no
accidents occur today?

Solution:
P{X=0}=e¢3~0.05 [

Example 2.12 Consider an experiment that consists of counting the number of
a-particles given off in a one-second interval by one gram of radioactive material.
If we know from past experience that, on the average, 3.2 such a-particles are
given off, what is a good approximation to the probability that no more than
two a-particles will appear?

Solution: If we think of the gram of radioactive material as consisting of a
large number # of atoms each of which has probability 3.2/n of disintegrat-
ing and sending off an a-particle during the second considered, then we see
that, to a very close approximation, the number of a-particles given off will
be a Poisson random variable with parameter A = 3.2. Hence the desired
probability is

2
LG22

P{X <2} =¢ 32 4 3.20732 22 0.382 ]

2.3 Continuous Random Variables

In this section, we shall concern ourselves with random variables whose set of
possible values is uncountable. Let X be such a random variable. We say that
X is a continuous random variable if there exists a nonnegative function f(x),
defined for all real x € (—o0, 00), having the property that for any set B of real
numbers

P{X € B} = /f(x) dx (2.6)
B

The function f(x) is called the probability density function of the random vari-
able X.

In words, Equation (2.6) states that the probability that X will be in B may be
obtained by integrating the probability density function over the set B. Since X
must assume some value, f(x) must satisfy

1 = P{X € (—00,00)} = /oof(x) dx
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All probability statements about X can be answered in terms of f (x). For instance,
letting B = [a, b], we obtain from Equation (2.6) that

b
Pla<X <b)= / £(x) dx (2.7)
a
If we let a = b in the preceding, then
a
P{X =a} = / f(x)dx=0

In words, this equation states that the probability that a continuous random
variable will assume any particular value is zero.

The relationship between the cumulative distribution F(-) and the probability
density f(-) is expressed by

F(a) = P{X € (—00,4a]} = /a f(x)dx

Differentiating both sides of the preceding yields

d
Lf@=1@

That is, the density is the derivative of the cumulative distribution function.
A somewhat more intuitive interpretation of the density function may be obtained
from Equation (2.7) as follows:

s & a+e/2
p{a_z5Xga+Z}:/g_s/zf(x)dxwf(a)

when ¢ is small. In other words, the probability that X will be contained in an
interval of length ¢ around the point a is approximately ¢f (@). From this, we see
that f(a) is a measure of how likely it is that the random variable will be near a.

There are several important continuous random variables that appear fre-
quently in probability theory. The remainder of this section is devoted to a study
of certain of these random variables.

2.3.1 The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval (0,1) if
its probability density function is given by

0<x <1
otherwise

fx) = {(1)
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Note that the preceding is a density function since f(x) > 0 and

o0 1
/ f(x)dx:/ dx =1
—00 0

Since f(x) > 0 only when x € (0, 1), it follows that X must assume a value in
(0, 1). Also, since f (x) is constant for x € (0, 1), X is just as likely to be “near” any
value in (0, 1) as any other value. To check this, note that, forany0 <a < b < 1,

b
P{ﬂSXSb}=/ fx)dx=b—a

In other words, the probability that X is in any particular subinterval of (0, 1)
equals the length of that subinterval.

In general, we say that X is a uniform random variable on the interval («, B) if
its probability density function is given by

1 .
f(x)=[/3—a’ fa<x<p (2.8)

0, otherwise

Example 2.13 Calculate the cumulative distribution function of a random vari-
able uniformly distributed over (e, ).

Solution: Since F(a) = ffoo f(x) dx, we obtain from Equation (2.8) that

0, a<a
a—ao
F(a) = " a<a<p
1, a>B |

Example 2.14 If X is uniformly distributed over (0, 10), calculate the probability
that (a) X <3, (b) X >7,(c) 1 < X < 6.

Solution:
f03 dx 3
P(X - =2
X <3 =" =1
10
7 ax _ 3
PX>7 =90~ 10
6
d
P{1<X<6}=f1 *_1 m
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2.3.2 Exponential Random Variables

A continuous random variable whose probability density function is given, for
some A > 0, by

re X, ifx>0

f(x):{o, ifx <0

is said to be an exponential random variable with parameter A. These random
variables will be extensively studied in Chapter 5, so we will content ourselves
here with just calculating the cumulative distribution function F:

a
F(a) = / re Mdx =1—e 9, a>0
0
Note that F(c0) = fooo re M dx = 1, as, of course, it must.

2.3.3 Gamma Random Variables
A continuous random variable whose density is given by

re X ()Lx)afl

f(x) = M)

0, ifx<0

ifx>0

for some A > 0, o > 0 is said to be a gamma random variable with parameters
a, 1. The quantity I'(@) is called the gamma function and is defined by

() =/ e *x* 1 dx
0

It is easy to show by induction that for integral «, say, a = 7,

I'n)=@m-—1)!

2.3.4 Normal Random Variables

We say that X is a normal random variable (or simply that X is normally
distributed) with parameters 1 and o? if the density of X is given by

e—(x—mz/z&’

fx) =

1
—_ —00 < X < 00
V2r o
This density function is a bell-shaped curve that is symmetric around u (see
Figure 2.2).
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<« - u +oo —p-

Figure 2.2 Normal density function.

An important fact about normal random variables is that if X is normally
distributed with parameters i and o then Y = «X + B is normally distributed
with parameters au + B and a?02. To prove this, suppose first that « > 0 and
note that Fy(-)*, the cumulative distribution function of the random variable Y,
is given by

Fy(a) =P{Y < a}

=PlaX + g <a}
—p {X <4z 5}
o
- (*57)
o

@ple 1 S,
— —(x=w)°/20° 4

'~ 2o ¥
1 —(v — (ap + B))*
- ./700 V271 ao P { 20202 } dv (2.9)

where the last equality is obtained by the change in variables v = ax + B.
However, since Fy(a) = [* « [Y(@) dv, it follows from Equation (2.9) that the
probability density function fy(-) is given by

I —( — (ap + B)?
maa P Z(OlU)2

frw) =

}, — 00 <V <00

Hence, Y is normally distributed with parameters au + B and (xo)?. A similar
result is also true when o < 0.

* When there is more than one random variable under consideration, we shall denote the cumulative
distribution function of a random variable Z by F,(-). Similarly, we shall denote the density of Z

by ().
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One implication of the preceding result is that if X is normally distributed with
parameters i and o2 then Y = (X —u)/o is normally distributed with parameters
0 and 1. Such a random variable Y is said to have the standard or unit normal
distribution.

2.4 Expectation of a Random Variable

2.4.1 The Discrete Case

If X is a discrete random variable having a probability mass function p(x), then
the expected value of X is defined by

EXl= ) xp()
x:p(x)>0

In other words, the expected value of X is a weighted average of the possible

values that X can take on, each value being weighted by the probability that X
assumes that value. For example, if the probability mass function of X is given by

p(D)=1=p2
then
EX1=1h)+20) =3

is just an ordinary average of the two possible values 1 and 2 that X can assume.
On the other hand, if

ph=3  pQ)=3
then
EX]=13)+23) =3

is a weighted average of the two possible values 1 and 2 where the value 2 is
given twice as much weight as the value 1 since p(2) = 2p(1).
Example 2.15 Find E[X] where X is the outcome when we roll a fair die.

Solution: Since p(1) =p2) =p3) = pA) = p(5) = p(6) = %, we obtain
EXI=1H) +2H) + 3D +4d) + 5 +6(1) =1 u

Example 2.16 (Expectation of a Bernoulli Random Variable) Calculate E[X]
when X is a Bernoulli random variable with parameter p.
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Solution: Since p(0) =1 — p, p(1) = p, we have
E[X]=01-p) +1(p) =
Thus, the expected number of successes in a single trial is just the probability

that the trial will be a success. [ ]

Example 2.17 (Expectation of a Binomial Random Variable) Calculate E[X]
when X is binomially distributed with parameters 7 and p.

Solution:

n

EIX]=)_ip(i)

=0

= Zi(’f)p"(l —py

=Z Z),l,p( —p)

N

=Z—(n A

i=1

~ (i-DU
_np;(n—i)!(i—l)!p (=0

n—1
-1
=y (" pra et
k=0

=nplp + (1 —p)1"~!
= np
where the second from the last equality follows by letting £ = i — 1. Thus,

the expected number of successes in # independent trials is # multiplied by the
probability that a trial results in a success. [ |

Example 2.18 (Expectation of a Geometric Random Variable) Calculate the
expectation of a geometric random variable having parameter p.

Solution: By Equation (2.4), we have

o]

EX]=) np(1—p)""

n=1

o
=p) ng""!
n=1
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In words, the expected number of independent trials we need to perform until
we attain our first success equals the reciprocal of the probability that any one
trial results in a success. n

Example 2.19 (Expectation of a Poisson Random Variable) Calculate E[X] if X
is a Poisson random variable with parameter A.

Solution: From Equation (2.5), we have

]

Exi= Y

7!

where we have used the identity Y 32 ) A% /k! = ¢*. [ ]

2.4.2 The Continuous Case

We may also define the expected value of a continuous random variable. This
is done as follows. If X is a continuous random variable having a probability
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density function f (x), then the expected value of X is defined by

E[X] = /OO xf (x) dx

Example 2.20 (Expectation of a Uniform Random Variable) Calculate the expec-
tation of a random variable uniformly distributed over (o, 8).

Solution: From Equation (2.8) we have

p
E[X]:/ X dx
o ﬂ_a

,32—052
T 26-w
Bt
2

In other words, the expected value of a random variable uniformly distributed
over the interval (o, B) is just the midpoint of the interval. [ ]

Example 2.21 (Expectation of an Exponential Random Variable) Let X be expo-
nentially distributed with parameter A. Calculate E[X].

Solution:
o0
E[X] :/ xhe M dx
0
Integrating by parts (dv = re ¥, u = x) yields

o0
E[X] = —xe ** 80 + / e dx
0

e*)»x 0

=0—
A

0
|

1
A
Example 2.22 (Expectation of a Normal Random Variable) Calculate E[X] when

X is normally distributed with parameters u and o?.

Solution:

E[X] = 1 /Oo xe—(—1*/20% 4.
VZ?TG —00
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Writing x as (x — ) + p yields

E[X] ! f Oo( Yo~ Cem?/20% g 4 ! / ety
= X — e X e X
V2o J-co a : V210 J-oo

Letting y = x — u leads to

E[X]szl_n/ ye_yz/ZUzdy+Mf f(x)dx
O J—o0 —00

where f(x) is the normal density. By symmetry, the first integral must be 0,
and so

E[X]=M/ fx)dx = u

2.4.3 Expectation of a Function of a Random Variable

Suppose now that we are given a random variable X and its probability distri-
bution (that is, its probability mass function in the discrete case or its probability
density function in the continuous case). Suppose also that we are interested in
calculating not the expected value of X, but the expected value of some function
of X, say, g(X). How do we go about doing this? One way is as follows. Since
g(X) is itself a random variable, it must have a probability distribution, which
should be computable from a knowledge of the distribution of X. Once we have
obtained the distribution of g(X), we can then compute E[g(X)] by the definition
of the expectation.

Example 2.23 Suppose X has the following probability mass function:
p(0) =0.2, p(1) =0.5, p2)=0.3

Calculate E[X?].

Solution: Letting Y = X2, we have that Y is a random variable that can take
on one of the values 0%, 12,22 with respective probabilities

py(0) = P{Y = 0%} = 0.2,
py(1) =P{Y = 1%} =0.5,
py(4) = P{Y =22} =0.3

Hence,

E[X?] = E[Y] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7
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Note that
1.7 = E[X?] # (E[X])?* = 1.21 [}

Example 2.24 Let X be uniformly distributed over (0, 1). Calculate E[X?3].

Solution: Letting Y = X3, we calculate the distribution of Y as follows. For
O<acx<l,

Fy(a) = P{Y < a}
=P(X’ < a)

= P{X <a'/3)

— 43

where the last equality follows since X is uniformly distributed over (0, 1). By
differentiating Fy (a), we obtain the density of Y, namely,

fr@=3%a"??  0<a<1

Hence,

1
=/ a%cfz/3 da
0

1
:%/ a'® da
0

1
a4/3|0

E[X3]=E[Y]=/ afy(a) da

1

3

1
=1 m
While the foregoing procedure will, in theory, always enable us to compute
the expectation of any function of X from a knowledge of the distribution of
X, there is, fortunately, an easier way to do this. The following proposition

shows how we can calculate the expectation of g(X) without first determining
its distribution.

Proposition 2.1 (a) If X is a discrete random variable with probability mass
function p(x), then for any real-valued function g,

EgX)]= ) g@pw)
x:p(x)>0
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(b) If X is a continuous random variable with probability density function f (x),

then for any real-valued function g,

E[g(X)]=/ g(0f (x) dx

Example 2.25 Applying the proposition to Example 2.23 yields

E[X?] = 0%(0.2) + (1%)(0.5) + (2%)(0.3) = 1.7

which, of course, checks with the result derived in Example 2.23.

Example 2.26 Applying the proposition to Example 2.24 yields

1
E[X’] = / X3 dx (since f(x) =1,0 <x < 1)
0

_1
=13

A simple corollary of Proposition 2.1 is the following.

Corollary 2.2 If @ and b are constants, then
E[aX + bl =aE[X]+ b
Proof. In the discrete case,

ElaX +bl= ) (ax + b)p(x)

x:p(x)>0
=a Y xp@+b Y p&)
x:p(x)>0 x:p(x)>0
=aE[X]+ b

In the continuous case,
ElaX + b] = / (ax + b)f (x) dx

:a/oo xf(x)dx—i—b/Oo f(x)dx

=aE[X]+ b

The expected value of a random variable X, E[X], is also referred to as the mean
or the first moment of X. The quantity E[X"], n > 1, is called the nth moment
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of X. By Proposition 2.1, we note that

Z x"p(x), if X is discrete
: 0
E[Xn] — x:p(x)>

o
/ x"f(x) dx, if X is continuous

—00

Another quantity of interest is the variance of a random variable X, denoted
by Var(X), which is defined by

Var(X) = E[(X — E[X])?]

Thus, the variance of X measures the expected square of the deviation of X from
its expected value.

Example 2.27 (Variance of the Normal Random Variable) Let X be normally
distributed with parameters u and o2. Find Var(X).

Solution: Recalling (see Example 2.22) that E[X] = u, we have that
Var(X) = E[(X — )]

«/_1 / e — e g
X —u)-e X
2mo —00

Substituting y = (x — w)/o yields

Var(X) = yszyz/2 dy

UZ 00
V2T /;oo
Integrating by parts (u =y, dv = ye‘yz/ 2dy) gives

2 o0
Var(X) = jﬁ (_ye—yl/zloooo +/ e—yZ/Z dy)

—0oQ
2 00
o 2
= — efy /2 d
kY 2 [oo Y
= 0’2
Another derivation of Var(X) will be given in Example 2.42. |

Suppose that X is continuous with density f, and let E[X] = u. Then,

Var(X) = E[(X — w)?]
= E[X? —2uX + u?]
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= /oo (x* = 2ux + pud)f (x) dx

:/OO x2f (x) dx—Z/L/OO xf(x)dx+u2/Oo f(x)dx

- ~
= E[X*] - 2up + p*
= E[X?] — 2

A similar proof holds in the discrete case, and so we obtain the useful identity
Var(X) = E[X?] - (E[X])?

Example 2.28 Calculate Var(X) when X represents the outcome when a fair die
is rolled.

Solution: As previously noted in Example 2.15, E[X] = % Also,

EXCI=1(4) +2 () +3° (5) +42 (8) +5° (&) +¢° (3) = (5) o
Hence,

Var(X) = 2 — (%)2 _

JanT
Qe
|

2.5 Jointly Distributed Random Variables

2.5.1 Joint Distribution Functions

Thus far, we have concerned ourselves with the probability distribution of a single
random variable. However, we are often interested in probability statements con-
cerning two or more random variables. To deal with such probabilities, we define,
for any two random variables X and Y, the joint cumulative probability distri-
bution function of X and Y by

F(a,b) =P{X <a,Y < b}, —00 < a,b < o0

The distribution of X can be obtained from the joint distribution of X and Y as
follows:

Fx(a) = P{X < a}
=P{X <a, Y < o0}
= F(a, o0)
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Similarly, the cumulative distribution function of Y is given by
Fy(b) = P{Y < b} = F(co, b)

In the case where X and Y are both discrete random variables, it is convenient to
define the joint probability mass function of X and Y by

plx,y) =P{X=x, Y=y}
The probability mass function of X may be obtained from p(x,y) by

px) =Y px,y

y:p(x,y)>0
Similarly,
pYO) = Y pxy)
x:p(x,y)>0

We say that X and Y are jointly continuous if there exists a function f(x, y),
defined for all real x and y, having the property that for all sets A and B of real
numbers

P{XeA,YeB}://f(x,y)dxdy
BJA

The function f(x,y) is called the joint probability density function of X and Y.
The probability density of X can be obtained from a knowledge of f(x, y) by the
following reasoning:

P{XeA}=P{XeA, Ye(—o0,00)}
= [ fouydxdy
-0 JA

= / fx (x) dx
A
where

fx(x) = / f(x,y)dy

is thus the probability density function of X. Similarly, the probability density
function of Y is given by

fr(y) = / f(x,y)dx
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Because
a b
Fla,b) = P(X <a,Y < b) = / / fxay)dy dx

differentiation yields

d2
——Fab)=f@b)

Thus, as in the single variable case, differentiating the probability distribution
function gives the probability density function.

A variation of Proposition 2.1 states that if X and Y are random variables and
g is a function of two variables, then

E[gX,V)] = Z Zg(x, NP(x,y) in the discrete case
y x

o0 o
= f / g, Mf (x,y) dx dy in the continuous case
—o0J —00

For example, if g(X,Y) = X + Y, then, in the continuous case,

E[X—i—Y]—/ / (x + y)f(x,y)dxdy

/ f xf (x,y) dx dy + / / ¥ (x, ) dx dy

= E[X] + E[Y]

where the first integral is evaluated by using the variation of Proposition 2.1 with
g(x,y) = x, and the second with g(x,y) = y.

The same result holds in the discrete case and, combined with the corollary in
Section 2.4.3, yields that for any constants a, b

E[aX + bY] = aE[X] + bE[Y] (2.10)

Joint probability distributions may also be defined for # random variables.
The details are exactly the same as when # = 2 and are left as an exercise. The
corresponding result to Equation (2.10) states thatif X1, X5, ..., X, are nrandom
variables, then for any # constants ay,as, ..., dx,

Ela1X1 + a2 X + -+ + ayXy] = a1 E[Xq] + @2 E[X3] + -+ - + a4 E[X},]
(2.11)
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Example 2.29 Calculate the expected sum obtained when three fair dice are
rolled.

Solution: Let X denote the sum obtained. Then X = X; + X, + X3 where
X; represents the value of the ith die. Thus,

EIX] = E[X1] + EIXo] + E[X;] =3 (}) = 2 u

Example 2.30 As another example of the usefulness of Equation (2.11), let us
use it to obtain the expectation of a binomial random variable having parameters
n and p. Recalling that such a random variable X represents the number of
successes in 7 trials when each trial has probability p of being a success, we
have

X=X1+X2+ -+ X,

where

X — 1, if the ith trial is a success
70, if the ith trial is a failure

Hence, X; is a Bernoulli random variable having expectation E[X;] = 1(p) +
0(1 — p) = p. Thus,

E[X]=E[Xi]+ E[X2] + -+ + E[Xu] =np

This derivation should be compared with the one presented in Example 2.17. B

Example 2.31 At a party N men throw their hats into the center of a room. The
hats are mixed up and each man randomly selects one. Find the expected number
of men who select their own hats.

Solution: Letting X denote the number of men that select their own hats, we
can best compute E[X] by noting that

X=X +X2+ -+ Xn

where

X — 1, if the ith man selects his own hat
70, otherwise

Now, because the ith man is equally likely to select any of the N hats, it follows
that

1
P{X; = 1} = P{ith man selects his own hat} = N



48 Random Variables

and so

E[X;] =1P{X; =1} + OP{X; =0} = %

Hence, from Equation (2.11) we obtain

1
EIX] = E[X1] + - - + E[Xx] = <ﬁ)N _

Hence, no matter how many people are at the party, on the average exactly
one of the men will select his own hat. [ ]

Example 2.32 Suppose there are 25 different types of coupons and suppose that
each time one obtains a coupon, it is equally likely to be any one of the 25 types.
Compute the expected number of different types that are contained in a set of 10
coupons.

Solution: Let X denote the number of different types in the set of 10 coupons.
We compute E[X] by using the representation

X=X1+ -+ X35

where

X — 1, if at least one type i coupon is in the set of 10
70, otherwise

Now,

E[X;] = P{X; =1}
= Pf{at least one type i coupon is in the set of 10}
= 1 — P{no type i coupons are in the set of 10}

. (%)10

when the last equality follows since each of the 10 coupons will (independently)
not be a type i with probability %. Hence,

E[X] = E[X1] +--- + E[X25] = 25[1 - (%)10] "

2.5.2 Independent Random Variables

The random variables X and Y are said to be independent if, for all a, b,

P{X <a, Y < b} = P{X <a)P{Y < b) (2.12)
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In other words, X and Y are independent if, for all 2 and b, the events E, = {X < a}
and Fj, = {Y < b} are independent.

In terms of the joint distribution function F of X and Y, we have that X and
Y are independent if

F(a, b) = Fx(a)Fy(b) forall a, b
When X and Y are discrete, the condition of independence reduces to

px,y) = pxx)py(y) (2.13)

while if X and Y are jointly continuous, independence reduces to
fx, y) = fx()fy () (2.14)

To prove this statement, consider first the discrete version, and suppose that the
joint probability mass function p(x, y) satisfies Equation (2.13). Then

PX<a, Y<bl=Y) > pl,y)

ysb x<a

=YD px®py()

yfb x<a

=Y py > px@)

yfb x<a
=P{Y <blP{X <a)
and so X and Y are independent. That Equation (2.14) implies independence in

the continuous case is proven in the same manner and is left as an exercise.
An important result concerning independence is the following.

Proposition 2.3 If X and Y are independent, then for any functions & and g

E[g(X)h(Y)] = E[g(X)]E[A(Y)]
Proof. Suppose that X and Y are jointly continuous. Then
Elg00n 1 = [ [ ewhof e ydxdy
= [ [ soomoitxpy o dxay

= / h)fy(y) dy / g(0)fx(x) dx
= E[h(Y)]E[g(X)]

The proof in the discrete case is similar. [ ]
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2.5.3 Covariance and Variance of Sums of Random Variables
The covariance of any two random variables X and Y, denoted by Cov(X, Y), is
defined by
Cov(X,Y) = E[(X — E[XD(Y — E[Y]D)]
= E[XY — YE[X] — XE[Y] + E[X]E[Y]]
= E[XY] — E[Y]E[X] — E[X]E[Y] + E[X]E[Y]
= E[XY] — E[X]E[Y]
Note that if X and Y are independent, then by Proposition 2.3 it follows that
Cov(X,Y)=0.

Let us consider now the special case where X and Y are indicator variables
for whether or not the events A and B occur. That is, for events A and B,

define

X — 1, if A occurs v — 1, if B occurs
10, otherwise, 0, otherwise

Then,
Cov(X,Y) = E[XY] — E[X]E[Y]

and, because XY will equal 1 or 0 depending on whether or not both X and Y
equal 1, we see that

Cov(X,Y)=P(X =1,Y = 1} — P{X = 1}P{Y = 1)
From this we see that

Cov(X,Y)> 0 P{X=1,Y =1} > P{X = 1}P{Y = 1}

PIX=1Y=1}
P{X =1}

SPY=1X=1}>P{Y =1}

> P{Y =1}

That is, the covariance of X and Y is positive if the outcome X = 1 makes it
more likely that Y = 1 (which, as is easily seen by symmetry, also implies the
reverse).

In general it can be shown that a positive value of Cov(X, Y) is an indication
that Y tends to increase as X does, whereas a negative value indicates that Y
tends to decrease as X increases.
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Example 2.33 The joint density function of X, Y is

1
f(x, )’) = _e—()/-HC/)/), 0< X,y <0
y

(a) Verify that the preceding is a joint density function.
(b) Find Cov (X, Y).

Solution: To show that f(x,y) is a joint density function we need to show it
is nonnegative, which is immediate, and that [%_ [0 f(x,y)dydx = 1. We
prove the latter as follows:

/ / f(x,y)dydx:/ / 1e_(yJ“x/y)dydx
—00 J —0 0 (-
:/ e_y/ 1e_x/ya'xdy
0 oy

= / e_ydy
0

=1

To obtain Cov(X, Y), note that the density funtion of Y is
1
fr(y)=e” / e Ndx = e
0oy

Thus, Y is an exponential random variable with parameter 1, showing (see
Example 2.21) that

ElY]=1

We compute E[X] and E[XY] as follows:

E[X] = /OO /oo xf (x,y)dy dx

oo o x
:/ e_y/ —e *Vdx dy
0 o Yy

Now, [y° ’)—je—x/ydx is the expected value of an exponential random variable
with parameter 1/y, and thus is equal to y. Consequently,

E[X]= / ye Ydy =1
0
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Also

E[XY]=/ / xyf(x,y)dy dx

x o0 x
= / ye*y/ e Vdx dy
0 0o Y

x
= / ye Vdy
0

Integration by parts (dv = e dy,u = y?) gives
[e ) 00 (e.¢]
E[XY] = f ye Vdy = —y*e 0 + / 2ye Ydy = 2E[Y] =2
0 0

Consequently,

Cov(X,Y) = E[XY] — E[X]E[Y] = 1 ]

The following are important properties of covariance.

Properties of Covariance

For any random variables X, Y, Z and constant c,

1. Cov(X, X) = Var(X),

2. Cov(X,Y) = Cov(Y,X),

3. Cov(cX,Y) =cCov(X,Y),

4. Cov(X,Y + Z) = Cov(X,Y) + Cov(X, 2).

Whereas the first three properties are immediate, the final one is easily proven
as follows:

Cov(X,Y + Z) = E[X(Y + Z)] — E[X]E[Y + Z]
= E[XY] — E[X]E[Y] + E[XZ] — E[X]E[Z]
= Cov(X, Y) + Cov(X, Z)

The fourth property listed easily generalizes to give the following result:
n m n m
Cov [ X, > V| => > Cov(X;,Y)) (2.15)
=1 j=1 i=1 j=1

A useful expression for the variance of the sum of random variables can be
obtained from Equation (2.15) as follows:

n n n
Var (Z X,’) = Cov (Z X, Z Xj)
i=1 i=1 =1
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= Xn: Xn: COV(X;‘, X,’)

i=1 j=1
- ZCOV(X,,X) + ZZ Cov(X;, X))
=1 j#i
= ZVar(X) + 22 >~ Cov(Xi, X)) (2.16)
=1 j<i
If X;,i = 1,...,n are independent random variables, then Equation (2.16)
reduces to

Var (Z X,-) = ZVar(Xi)
i=1 i=1

Definition 2.1 If Xy,..., X, are independent and identically distributed, then
the random variable X = )" ; X;/n is called the sample mean.

The following proposition shows that the covariance between the sample mean
and a deviation from that sample mean is zero. It will be needed in Section 2.6.1.

Proposition 2.4 Suppose that X1,...,X,, are independent and identically dis-
tributed with expected value u and variance 0. Then,

(a) E[X]=p
(b) Var(X) =o?/n.
() Cov(X,X;—X)=0,i=1,...,n

Proof. Parts (a) and (b) are easily established as follows:

E[X] = ZE[X] = i,

2

_ 1 1\ & o
Var(X) = <;> Var (; X,-) = <;) ;Var(Xi) =—
To establish part (c) we reason as follows:

Cov(X, X; — X) = Cov(X, X;) — Cov(X, X)

1 3
= ;Cov<x,» + ZX,-,Xl) — Var(X)

j#i

~Leovxixy + 1c x.x) -
= ov(Xj, z)+; OVZI’ ) R
j#i
0'2 0'2

= _ :0

n n
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where the final equality used the fact that X; and 3, ,; X; are independent and
thus have covariance 0. ]

Equation (2.16) is often useful when computing variances.

Example 2.34 (Variance of a Binomial Random Variable) Compute the variance
of a binomial random variable X with parameters 7 and p.

Solution: Since such a random variable represents the number of successes in
n independent trials when each trial has a common probability p of being a
success, we may write

X=X; 44X,

where the X; are independent Bernoulli random variables such that

1, if the sth trial is a success
X; = :
0, otherwise

Hence, from Equation (2.16) we obtain

Var(X) = Var(Xq) + --- + Var(X,,)

But
Var(X;) = E[X}] — (E[X;])*
= E[Xi] - (EIX;)*  since X] = X;
=p-p°
and thus
Var(X) = np(1 — p) -

Example 2.35 (Sampling from a Finite Population: The Hypergeometric) Con-
sider a population of N individuals, some of whom are in favor of a certain
proposition. In particular suppose that Np of them are in favor and N — Np are
opposed, where p is assumed to be unknown. We are interested in estimating p,
the fraction of the population that is for the proposition, by randomly choosing
and then determining the positions of # members of the population.

In such situations as described in the preceding, it is common to use the fraction
of the sampled population that is in favor of the proposition as an estimator of
p. Hence, if we let

X — 1, if the ith person chosen is in favor
70, otherwise
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then the usual estimator of p is Y ;- ; Xi/n. Let us now compute its mean and
variance. Now,

E [Z Xi] = > E[X)]
i=1 1
= np

where the final equality follows since the ith person chosen is equally likely to be
any of the N individuals in the population and so has probability Np/N of being
in favor.

n n
Var (Z X,-) = ZVar(Xi) + ZZ ZCOV(XZ‘,X,')
1 1 i<j
Now, since X; is a Bernoulli random variable with mean p, it follows that
Var(X;) = p(1 —p)
Also, for i #j,
Cov(X;, X)) = E[X;X;] — E[XG]E[X]]
=PX;=1,X;=1}-p*
=P{X;=1P{X;=1|X; =1} - p?

_NpNp-1)
N N-1 b

where the last equality follows since if the ith person to be chosen is in favor,
then the jth person chosen is equally likely to be any of the other N — 1 of which
Np — 1 are in favor. Thus, we see that

Var (Z XZ-> —np(1 —p) + 2(2) [% B pz]
1

nn—Dpd —p)
N-1

=np(l—p) —
and so the mean and variance of our estimator are given by

[53)

1

X | pl—p) (m—Dp—p)
Var [Xl: 7j| B n B n(N—1)




56 Random Variables

Some remarks are in order: As the mean of the estimator is the unknown value p,
we would like its variance to be as small as possible (why is this?), and we see by
the preceding that, as a function of the population size N, the variance increases
as N increases. The limiting value, as N — oo, of the variance is p(1 — p)/n,
which is not surprising since for N large each of the X; will be (approximately)
independent random variables, and thus Y 7 X; will have an (approximately)
binomial distribution with parameters 7 and p.

The random variable ) 7 X; can be thought of as representing the number
of white balls obtained when # balls are randomly selected from a population
consisting of Np white and N — Np black balls. (Identify a person who favors the
proposition with a white ball and one against with a black ball.) Such a random
variable is called hypergeometric and has a probability mass function given by

(¥) (%)

" k n—k

P Xi=k} = |
D
n

It is often important to be able to calculate the distribution of X + Y from the

distributions of X and Y when X and Y are independent. Suppose first that X

and Y are continuous, X having probability density / and Y having probability

density g. Then, letting Fx vy (a) be the cumulative distribution function of X + Y,
we have

Fxyy(@ =P(X + Y <a}

= / f f(x)g(y) dx dy
x+y=<a
oo pra—y

= / / f(x)g(y) dx dy

0 a—y
=/ (/ f(x)dx>g(y)dy

o
— [ Bxa-yemdy 2.17)
—0Q

The cumulative distribution function Fx_ v is called the convolution of the distri-
butions Fx and Fy (the cumulative distribution functions of X and Y, respec-
tively).

By differentiating Equation (2.17), we obtain that the probability density func-
tion fxty(a) of X + Y is given by

d o0
frav@ =+ / Fxa—y)g) dy
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)
=/ T (Fx(a = y)g() dy

—00

=/ Fla— g dy (2.18)

Example 2.36 (Sum of Two Independent Uniform Random Variables) If X and
Y are independent random variables both uniformly distributed on (0, 1), then
calculate the probability density of X + Y.

Solution: From Equation (2.18), since

0<a<l1
otherwise

1
fla) =g = {0:
we obtain

1
fx+y (@) =/0 fla—ydy

For 0 < a < 1, this yields

Feay (@ = fo dy=a

For 1 <a < 2, we get

1
fx+Y(d)=/ ldy=2—a

Hence,
a, 0<a<l1
fx+v(@ =12 —a, l<a<?2
0, otherwise n

Rather than deriving a general expression for the distribution of X + Y in the
discrete case, we shall consider an example.

Example 2.37 (Sums of Independent Poisson Random Variables) Let X and Y be
independent Poisson random variables with respective means A1 and 1. Calculate
the distribution of X + Y.

Solution: Since the event {X + Y = n} may be written as the union of the
disjoint events {X =k, Y =n —k}, 0 < k < n, we have
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P{X+Y=n}:ZP{X=k, Y =n— k)
k=0

= ZP{X =kIP{Y =n—k)}
k=0
An—k

— Ze—)q l —)»2 2
k' (n—k)!

n kyn—k
)» )\
—(A +22)
e Zk'(n—k)'

e—(A1+12) n!

kyn—k
A A

! 11

n! = k\(n — k)!

e~ (A1+22)
= n—(kl + A2)"

In words, X1 + X5 has a Poisson distribution with mean A1 + A». [ ]

The concept of independence may, of course, be defined for more than two
random variables. In general, the # random variables X1, X>,...,X,, are said
to be independent if, for all values a1,a2,...,a,,

P{X1 <a1,Xp <ay,..., Xpn < an} =P{X1 <a1}P{Xo <ap}---P{Xy < ayn}

Example 2.38 Let Xi,...,X, be independent and identically distributed
continuous random variables with probability distribution F and density func-
tion F' = f. If we let X(;, denote the ith smallest of these random variables, then
Xy, - -.»X(n) are called the order statistics. To obtain the distribution of X,
note that X ;) will be less than or equal to x if and only if at least 7 of the 7z random
variables X1,..., X, are less than or equal to x. Hence,

PX@ <x) =) <Z> (F@)*(1 = Fax)™™
k=i

Differentiation yields that the density function of X; is as follows:

fxo®) =) ) (Z)k(F(x))“(l — F(x)"*
k=i

@Y (Z) (n — R)(F@)F( - Fx)y" ™+
k=i
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—f(x)Z k),(k )(F<x)>k (1 - Py *

—f) Z o TE D Pt Fay

_ n— k=1,1 _ n—k
—f(x)Z R )

—f(x) Z mw(x»f—l(l — Fx))"

j=i+1

= T WEE 1~ e

The preceding density is quite intuitive, since in order for X, to equal x, i — 1
of the n values X1,..., X, must be less than x; n — i of them must be greater
than x; and one must be equal to x. Now, the probability density that every
member of a specified set of i — 1 of the X; is less than x, every member of
another specified set of #n — i is greater than x, and the remaining value is equal
to x is (F(x))'~1(1 — F(x))"~f (x). Therefore, since there are n!/[(i — 1)!(n — i)!]
different partitions of the # random variables into the three groups, we obtain
the preceding density function. [ ]

2.5.4 Joint Probability Distribution of Functions of Random Variables

Let X1 and X> be jointly continuous random variables with joint probability den-
sity function f(x1,x2). It is sometimes necessary to obtain the joint distribution
of the random variables Y7 and Y, that arise as functions of X; and X». Specifi-
cally, suppose that Y1 = g1(X1,X>) and Y, = g2(X1, X») for some functions g1
and g».

Assume that the functions g1 and g satisfy the following conditions:

1. The equations y; = g1(x1,x2) and y» = g2(x1,x2) can be uniquely solved for x1
and x; in terms of y; and y, with solutions given by, say, x1 = h1(y1,y2),X2 =

ha(y1,¥2).
2. The functions g1 and g have continuous partial derivatives at all points (x1,x7)
and are such that the following 2 x 2 determinant

g1 981

0x1  0x3 d0g1 dgy  0g1 022
Jx1,x2) = —S1f% L L

gy  0g ox1 0xp  0x2 0x1

dx1 0x)

at all points (x1,x2).
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Under these two conditions it can be shown that the random variables Y7 and Y,
are jointly continuous with joint density function given by

Fry, 015 92) = fxy.x (31, x2) 1] (1, %2) 7! (2.19)

where x1 = h1(y1,¥2),x2 = h2(y1, 2).
A proof of Equation (2.19) would proceed along the following lines:

P{Y| <y1, Y2 <y} = / x1, %, (%1, x2) dx1 dx) (2.20)

(21,%2):
81(x1,%2)<y1
82(x1,%2)<y2

The joint density function can now be obtained by differentiating Equation (2.20)
with respect to y1 and y;. That the result of this differentiation will be equal to
the right-hand side of Equation (2.19) is an exercise in advanced calculus whose
proof will not be presented in the present text.

Example 2.39 If X and Y are independent gamma random variables with param-
eters (@, A) and (B, A), respectively, compute the joint density of U = X + Y and
V=X/X+Y).

Solution: The joint density of X and Y is given by

re M (ax)e 1 pemy ()uy)ﬁf1

fxy(x,y) = T )
_ My e 1yp-1
INCIINC2)
Now, if g1(x,y) =x + v, g2(x,y) = x/(x + y), then
o1 _ %1y 0% _ _y = & _ X
ox oy ’ x (x4 y)?2’ oy (x + y)?
and so
1 1 1
Jery=|_ v e

(x+y? (x+y)?

Finally, because the equations # = x 4+ vy, v = x/(x + y) have as their solutions
x =uv, y = u(l — v), we see that

fu,v(u,v) = fx,yluv, u(l —v)lu

re M () A=l =11 — )BT (0 + B)
(@ + B) C(a)(B)
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Hence X + Y and X/(X + Y) are independent, with X + Y having a
gamma distribution with parameters (¢ + 8, 1) and X/(X + Y) having density
function

_ F(O[ + ,3) a—1 _ B—1
fvw) = —F(a)r‘(ﬂ)v 1 —-v)f, 0<v<l1

This is called the beta density with parameters («, ).

This result is quite interesting. For suppose there are n + m jobs to be
performed, with each (independently) taking an exponential amount of time
with rate A for performance, and suppose that we have two workers to perform
these jobs. Worker Iwill dojobs 1,2, ..., 7, and worker Il will do the remaining
m jobs. If we let X and Y denote the total working times of workers I and II,
respectively, then upon using the preceding result it follows that X and Y will
be independent gamma random variables having parameters (1, 1) and (m, 1),
respectively. Then the preceding result yields that independently of the working
time needed to complete all # + 2 jobs (that is, of X + Y), the proportion
of this work that will be performed by worker I has a beta distribution with
parameters (7, m1). [ |

When the joint density function of the # random variables X1, X>,...,X,, is
given and we want to compute the joint density function of Y1, Y, ..., Y}, where

legl(X1’~~-7Xn)’ YZZgZ(Xl)""Xn)a st
Y, Zgn(Xl,-'-,Xn)

the approach is the same. Namely, we assume that the functions g; have contin-
uous partial derivatives and that the Jacobian determinant J(x1,...,x,) # 0 at
all points (x1,...,x;,), where

0x1  0x2 0xy

_|9g2 9% 0g2

J(x15. 0 5x0) = Bx1 9% o,
0x1 0x2) 0%,

Furthermore, we suppose that the equations y;=g1(x1,...,%1), Y2=g&2
(X15-vesXn)s s Yn=8n(x1,...,X,) have a unique solution, say, x1=h
Ve --sYn)s--sXn=hy(Y1,...,¥n). Under these assumptions the joint density
function of the random variables Y; is given by

Xy 01 o3 Yn) = X X (K -5 X)) [J (X1 %) |71

where x; = hi(y1,...,¥n),i=1,2,...,n.
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2.6 Moment Generating Functions

The moment generating function ¢(t) of the random variable X is defined for all
values ¢ by

¢(t) = E[¢']
Z e p(x), if X is discrete

o
/ e f(x) dx, if X is continuous

—00

We call ¢(#) the moment generating function because all of the moments of X
can be obtained by successively differentiating ¢(¢). For example,

/ _ d tX
¢t = EE[E ]

e[ge)]
= E[Xe™X]
Hence,
¢'(0) = E[X]
Similarly,

% _i ’
¢ (1) =@

_d
= EE[Xe ]

=E [%(Xetx )]
= E[X?%eX]
and so
¢"(0) = E[X?]
In general, the nth derivative of ¢(#) evaluated at ¢ = 0 equals E[X"], that is,
¢"(0) = E[X"], n>1

We now compute ¢(¢) for some common distributions.
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Example 2.40 (The Binomial Distribution with Parameters 7 and p)

¢ (1) = E[eX]
=3 o (Z)p/e(l _ pynk
k=0
= (Z) (e (1 —py"
k=0

=@ +1-p)"
Hence,
¢ (1) = n(pe’ +1—p)"'pe’
and so
E[X]=¢'(0) = np

which checks with the result obtained in Example 2.17. Differentiating a second
time yields
¢"(t) = n(n— D(pe' +1—p)"2(pe")* + n(pe’ + 1 —p)"~'pe’
and so
E[X*] = ¢"(0) = n(n — 1)p* + np
Thus, the variance of X is given by
Var(X) = E[X*] — (E[X])*

=nn— 1)p2 + np — an2
=np(l —p) u

Example 2.41 (The Poisson Distribution with Mean 1)
() = E[e™]

[e'¢) _
etne )L)Ln

n=0 ’
o0 t\n
o (re?)
=e Z —=
n=0

_ t
—e Ae)»e

n!

=exp{r(e’ — 1)}
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Differentiation yields

¢'(1) = e’ exp{a(e’ — 1)},
¢" () = (L)) exp{r(e’ — 1)} + rel exp{r(e’ — 1)}
and so
E[X] = ¢'(0) = A,
E[X*]1 = ¢"(0) = % + 2,
Var(X) = E[X?] — (E[X])?
= A

Thus, both the mean and the variance of the Poisson equal A. [ ]

Example 2.42 (The Exponential Distribution with Parameter 1)
() = E[e™]

0
= / e re M dx
0

o0
= A/ e~ DXy
0

= — fort < A
t

We note by the preceding derivation that, for the exponential distribution, ¢(#)
is only defined for values of ¢ less than A. Differentiation of ¢(¢) yields
2\

¢(t)=m

¢ (1) = G2

Hence,
’ 1 2 1 2
E[X]=¢(0)=X, E[X]=¢(O)=k_2
The variance of X is thus given by

Var(X) = E[X?] — (E[X])? = ,\iz ]

Example 2.43 (The Normal Distribution with Parameters u and 62) The moment
generating function of a standard normal random variable Z is obtained as
follows.
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E[etZ] — txefxz/Z dx

1 0
— e
VZJT /;oo

1 o 2
— e —2tx)/2 dx
V21 J-0
= etz/l—l2 - e~ @022 gy
VAT J—o00
_ et2/2

If Z is a standard normal, then X = 0Z + u is normal with parameters yu and
o2; therefore,

2,2
t
o) = E[etX] _ E[et((rZ+lL)] — etME[etaZ] — exp {02 " /,Lt}
By differentiating we obtain

2.2
(1) = (u+ to?) exp {% + Mt} ,

d)//(t) _( 2\2 0_2t2 2 Uztl
= (u + to")“exp 5 + utp + o”exp 5 + ut

and so

E[X] = ¢'(0) = p,
E[X*] = ¢"(0) = u* + o*

implying that
Var(X) = E[X?] — E(X])?

Tables 2.1 and 2.2 give the moment generating function for some common
distributions.

An important property of moment generating functions is that the moment
generating function of the sum of independent random variables is just the prod-
uct of the individual moment generating functions. To see this, suppose that
X and Y are independent and have moment generating functions ¢x(#) and
¢y (t), respectively. Then ¢xy(#), the moment generating function of X + Y,
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Table 2.1
Discrete Probability Moment
probability mass generating
distribution function, p(x) function, ¢(#) Mean Variance
Binomial with (D @ —py*=, (pet + (1 — p))* np np(1 —p)
parameters 7, p, x=0.1.....n
O S p E 1 bl b b
)\'x
Poisson with _”\—‘, exp{r(e’ — 1)} by A
parameter X
A>0 x=0,1,2,...
! 1 1-
Geometric with p(1 —p)*—1, piet - 2[7
parameter x=1.2. .. I=(=pe p p
0 <p< 1 y &y
Table 2.2
Continuous Moment
probability Probability density generating
distribution function, f(x) function, ¢(¢) Mean Variance
- th _ ta V)
Uniform ) = bfa’a<x<b eb e a—|2—b (blza)
over (a, b) 0, otherwise to—a
—Ax 1 1
Exponential with  f(x) = ée X z 8 o - =
parameter A > 0 > x At A A
re M (x)n 1 n
A
Gamma with f(x) = n—1nr x>0 (—) r —
r—t x A2
parameters 0, x <0
(nyA), A >0
. 1 o212 5
Normal with f(x) = — exp § ut + - m o
parameters V2o
(1s0%) x exp{—(x — w)?*/20%},
—00 < X < 00
is given by

dx+y(t) = E[ XV
— E[etXetY]
= E[¢""]E[¢"]
= ¢px (H)py(?)

where the next to the last equality follows from Proposition 2.3 since X and Y

are independent.
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Another important result is that the moment generating function uniquely
determines the distribution. That is, there exists a one-to-one correspondence
between the moment generating function and the distribution function of a ran-
dom variable.

Example 2.44 (Sums of Independent Binomial Random Variables) If X and Y
are independent binomial random variables with parameters (7, p) and (m,p),
respectively, then what is the distribution of X + Y?

Solution: The moment generating function of X + Y is given by

dx1+v (@) = ox(Dy(t) = (pe' + 1 —p)'(pe’ + 1 —p)™
= (pe' + 1 —p)"*"
But (pe’ + (1 — p))™*" is just the moment generating function of a binomial

random variable having parameters m + n and p. Thus, this must be the
distribution of X + Y. [ |

Example 2.45 (Sums of Independent Poisson Random Variables) Calculate the
distribution of X + Y when X and Y are independent Poisson random variables
with means A1 and A2, respectively.

Solution:

ox+v (@) = dx(t) ¢y (¥)

— e}»] (et—l)ekz(et—l)

_ o1HA)(E D)

Hence, X + Y is Poisson distributed with mean A1 + A;, verifying the result
given in Example 2.37. ]

Example 2.46 (Sums of Independent Normal Random Variables) Show that if X

and Y are independent normal random variables with parameters (,ul,o%) and

(/,Lz,o’%), respectively, then X + Y is normal with mean uq + w2 and variance
2 2

o1 +05.

Solution:

dx+y () = dx )y ()
_ J%tz a%tz
= CXp T + /L]t exp T —+ ,let

2 2\ 42
+ o)t
zexp{u

2 + (u1 + Mz)t}
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which is the moment generating function of a normal random variable with
mean puq + uy and variance o% + a%. Hence, the result follows since the
moment generating function uniquely determines the distribution. [ ]

Example 2.47 (The Poisson Paradigm) We showed in Section 2.2.4 that the num-
ber of successes that occur in 7 independent trials, each of which results in a suc-
cess with probability p is, when 7 is large and p small, approximately a Poisson
random variable with parameter A = np. This result, however, can be substan-
tially strengthened. First it is not necessary that the trials have the same success
probability, only that all the success probabilities are small. To see that this is
the case, suppose that the trials are independent, with trial i resulting in a success
with probability p;, where all the p;, i = 1,...,7n are small. Letting X; equal 1 if
trial 7 is a success, and 0 otherwise, it follows that the number of successes, call
it X, can be expressed as

X = Xn:X,-
i=1

Using that X; is a Bernoulli (or binary) random variable, its moment generating
function is

E[eX] =pie' +1—pi=1+pi(e' — 1)

Now, using the result that, for |x| small,
ef~1+x

it follows, because p;(e’ — 1) is small when p; is small, that
E[¢™] = 1+ pi(e' = 1) ~ expipi(e’ — 1))

Because the moment generating function of a sum of independent random vari-
ables is the product of their moment generating functions, the preceding implies
that

Ele™) ~ [ | explpite' — 1)) = exp{Zmet - 1>}

i=1

But the right side of the preceding is the moment generating function of a Poisson
random variable with mean ), p;, thus arguing that this is approximately the
distribution of X.

Not only is it not necessary for the trials to have the same success probability for
the number of successes to approximately have a Poisson distribution, they need
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not even be independent, provided that their dependence is weak. For instance,
recall the matching problem (Example 2.31) where # people randomly select hats
from a set consisting of one hat from each person. By regarding the random
selections of hats as constituting # trials, where we say that trial i is a success if
person i chooses his or her own hat, it follows that, with A; being the event that
trial i is a success,

1 1 .
P(A) = - and P(A;lA)) = P J#i

Hence, whereas the trials are not independent, their dependence appears, for
large 7, to be weak. Because of this weak dependence, and the small trial success
probabilities, it would seem that the number of matches should approximately
have a Poisson distribution with mean 1 when # is large, and this is shown to be
the case in Example 3.23.

The statement that “the number of successes in # trials that are either inde-
pendent or at most weakly dependent is, when the trial success probabilities are
all small, approximately a Poisson random variable” is known as the Poisson
paradigm. [ ]

Remark For a nonnegative random variable X, it is often convenient to define
its Laplace transform g(t), t > 0, by

g(t) = p(—1t) = E[e™X]

That is, the Laplace transform evaluated at ¢ is just the moment generating func-
tion evaluated at —¢. The advantage of dealing with the Laplace transform, rather
than the moment generating function, when the random variable is nonnegative
is thatif X > 0 and ¢ > 0, then

0<e™X <1

That is, the Laplace transform is always between 0 and 1. As in the case of
moment generating functions, it remains true that nonnegative random variables
that have the same Laplace transform must also have the same distribution. W

It is also possible to define the joint moment generating function of two or
more random variables. This is done as follows. For any # random variables
X1,..., Xy, the joint moment generating function, ¢(t1,...,t,), is defined for all
real values of #1,...,¢, by

Dt ... ty) = E[e@1 X1+ +mXn)

It can be shown that ¢(t1,...,t,) uniquely determines the joint distribution of
X1,...,X,.
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Example 2.48 (The Multivariate Normal Distribution) Let Z1,...,Z, be a set of
n independent standard normal random variables. If, for some constants a;;, 1 <
i<m,1<j<mnyand u;,1 <i <m,

X1y =anZ1+ -+ a1nly + 11,
Xo =anZy + -+ awmly + u2,

Xi=anZi+ -+ ainln + Wi,

Xm=amZ1+ -+ amnln + m

then the random variables X1,...,X,, are said to have a multivariate normal
distribution.

It follows from the fact that the sum of independent normal random variables
is itself a normal random variable that each X; is a normal random variable with
mean and variance given by

E[XZ] = Wi

n
Var(X;) = Z a,-zl»
=1

Let us now determine
é(t1,. -5 tm) = Elexp{t1 Xy + -+ + 8 X}l
the joint moment generating function of X, . .., X;,. The first thing to note is that
since ) ;" 1t;X; is itself a linear combination of the independent normal random

variables Z1,...,Z,, it is also normally distributed. Its mean and variance are
respectively

m m
E |:Z tiXi:| = Z Lilki
i=1 i=1

and
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Now, if Y is a normal random variable with mean p and variance o2, then
2
Ele"] = ¢y(0)li=1 = "+
Thus, we see that

m

Gty - b)) =€XP A D listi +

=1

m

m
Z Z titjCOV(X,', X,‘)
i=1

j=1

TR

which shows that the joint distribution of X1,..., X}, is completely determined
from a knowledge of the values of E[X;] and Cov(X;, X;), i,j = 1,...,m. [ |

2.6.1 The Joint Distribution of the Sample Mean and Sample Variance
from a Normal Population

Let X1, ..., X, be independent and identically distributed random variables, each
with mean p and variance 0. The random variable $? defined by

n

goy - X7

. n—1
i=1

is called the sample variance of these data. To compute E[S?] we use the identity

D X=X =3 (Xi—w? - X - p? (2.21)
i=1 i=1

which is proven as follows:
n _ n _
Y X=X =) Xi—p+p-X)7
i=1 i=1
n _ _ n
=D Xi=w? +un =X+ 2= X) Y (Xi— )
i=1 i=1
" - - -
=2 Xi = + (= X)? + 2 = X) (X — npr)
i=1

=) Xi—w* +n(n—X)* = 2n(n - X)?
i=1

and Identity (2.21) follows.
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Using Identity (2.21) gives

El(n = 1S*1 = ) El(X; — "] = nE[(X — )]
i=1
=no* —n Var(X)
= (n—1)o? from Proposition 2.4(b)

Thus, we obtain from the preceding that
E[$?] = o?

We will now determine the joint distribution of the sample mean X =
37 1 Xi/n and the sample variance S?> when the X; have a normal distribution.
To begin we need the concept of a chi-squared random variable.

Definition 2.2 IfZq,...,Z, areindependent standard normal random variables,
then the random variable 3%, Z? is said to be a chi-squared random variable
with n degrees of freedom.

We shall now compute the moment generating function of "7, Z2. To begin,
note that

2 1 o0 2 2 2
ElexpliZ})] = —— f o2 g
T J—00
1 © 29 2
= «/?/ e X 127" dx where 6% = (1 —2¢)7!
T J—o00
=0
=1-20)"12
Hence,
E [exp {tZZf” = [ Etexptez2 = (1 — 26)~/2
i=1 i=1

Now, let X1,..., X, be independent normal random variables, each with mean
w and variance o2, and let X = Y4 Xi/nand $? denote their sample mean and
sample variance. Since the sum of independent normal random variables is also
a normal random variable, it follows that X is a normal random variable with
expected value u and variance o2 /. In addition, from Proposition 2.4,

Cov(X,X; — X) =0, i=1,...,n (2.22)
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Also, since X, X1 — X,X» — X,..., X, — X are all linear combinations of
the independent standard normal random variables (X; — w) /o i=1,...,n,
it follows that the random variables X, X; — X, X2 — X,...,X,, — X have a
joint distribution that is multivariate normal However, 1f we let Y be a nor-
mal random variable with mean p and variance o?/n that is independent of
X1, ..., Xy, then the random variables Y, X1 — X, X» — X, ..., X, — X also have
a multlvarlate normal distribution, and by Equation (2. 22) they have the same
expected values and covariances as the random variables X, X; — X, i =1,...,n.
Thus, since a multivariate normal distribution is completely determmed by its
expected values and covariances, we can conclude that the random vectors
Y, X1 —X,Xo —X,...,X, — X and X, X1 — X, X2 — X,...,X,, — X have the
same joint dlstrlbutlon thus showing that X is 1ndependent of the sequence of
deviations X; — X, i=1,...,n

Since X is independent of the sequence of deviations X; — X,i = 1,...,n, it
follows that it is also independent of the sample variance

n '__2
2oy Xi=%)

n—1
i=1

To determine the distribution of §2, use Identity (2.21) to obtain

(n—1)s* = Z(X —w? —nX —p?
=1

Dividing both sides of this equation by o2 yields

- 2
n—=1§*  (X—p\ ¢ Xi-w?
; +<U/ﬁ) _; =, (2.23)

Now, Y7 ,(X; — w)?/o? is the sum of the squares of 7 independent stan-
dard normal random variables, and so is a chi-squared random variable with
n degrees of freedomy; it thus has moment generating function (1 — 2£)~"/2. Also
[(X — 1)/ (0/+/n)]? is the square of a standard normal random variable and so is
a chi-squared random variable with one degree of freedom; it thus has moment
generating function (1 — 2¢)~ /2. In addition, we have previously seen that the
two random variables on the left side of Equation (2.23) are independent. There-
fore, because the moment generating function of the sum of independent random
variables is equal to the product of their individual moment generating functions,
we obtain that

E[et(n—l)sz/az](l _ Zt)—l/z — (1 _ zt)—n/z
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or

E[et(n—l)Sz/oz] —(1- zt)—(n—l)/l

But because (1 — 2£)~~1D/2 is the moment generating function of a chi-squared
random variable with 7 — 1 degrees of freedom, we can conclude, since the
moment generating function uniquely determines the distribution of the random
variable, that this is the distribution of (z — 1)§%/0?.

Summing up, we have shown the following.

Proposition 2.5 If X1,...,X,, are independent and identically distributed nor-
mal random variables with mean p and variance o2, then the sample mean X
and the sample variance S? are independent. X is a normal random variable with
mean y and variance o2 /n; (n — 1)S% /o is a chi-squared random variable with
n — 1 degrees of freedom.

2.7 The Distribution of the Number of Events that Occur

Consider arbitrary events A1, ..., A, and let X denote the number of these events
that occur. We will determine the probability mass function of X. To begin, for
1<k<mn,let

Se= Y. PAy...Aj)

1 <..<ip

equal the sum of the probabilities of all the (};) intersections of k distinct events,
and note that the inclusion-exclusion identity states that

P(X > 0) =P A) =81 — S + 83 —--- + (=1)"*1s,

Now, fix k of the # events — say A;,,...,A;, — and let

ip

A=nk

/=1A

ij
be the event that all k of these events occur. Also, let

B = Njgfiy,..i} Af

be the event that none of the other # — k events occur. Consequently, AB is the
event that A;, ..., A;, are the only events to occur. Because

A =ABUAB*
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we have
P(A) = P(AB) + P(AB°)
or, equivalently,

P(AB) = P(A) — P(AB°)

Because B¢ occurs if at least one of the events A;,j ¢ {i,...,i}, occur, we

see that

A

B = Ujg( j

i15eesip)
Thus,
P(AB) = P(A Ujg(iy,..i,y A)) = P(Ujgiy, i) AA))

Applying the inclusion-exclusion identity gives
P(AB®) = Z P(AA;) — Z P(AA;Aj)
{151k} J1<j2@{i1, ik}

+ Y. PAAALAL) — ...

J1<j2</3¢{i1, s}

Using that A = ﬂ;f‘zlAl-l., the preceding shows that the probability that the k events

Ai,...,Aj, are the only events to occur is

P(A) — P(AB°) = P(Aj, ... A;) — Z P(Aj ... A A)
JAi i)
+ ) PAy ... ARALAL)
J1<72&{i15e 51k}

— Z P(A,‘l .. 'AikAflAszi3) + .-

71</2<j3¢{i15--ik}

Summing the preceding over all sets of k distinct indices yields

PX=k= > PA,...AY— Y Y PA;...AA)

i1 <...<ij i <<y JE{i15ennip)

+ Z Z P(Ajy - Ay Ajy Ajy) — -

1 <...<ip f1<j2#{115- 50k}

(2.24)
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First, note that

> PA; . Ap) =S,

i <...<ip

Now, consider
> 2 PA.AAp
N <...<ip j¢{i1,.... 0}

The probability of every intersection of k + 1 distinct events Ay, ..., A, Will

appear (kzl) times in this multiple summation. This is so because each choice of
k of its indices to play the role of i1,...,4, and the other to play the role of j
results in the addition of the term P(A, ... Ay, ,). Hence,

DS P(Aﬁ...A,-kA,»):(kZl) S Py Ay

1 <...<ip j&{i1,..0p} my<..<mpiq
k+1
= < k > Sk+]
Similarly, because the probability of every intersection of k + 2 distinct events

. A .
Amys ..oy Ay, will appear ( Z ) times in Zi1<...<ik Zi1<i2¢{i1,---,ik} P(A;, ... A,
Aj Aj), it follows that

k42
Z Z P(Aiy ... A Aj Ajy) = ( k )Sk+2

i <...<ip f1<j2&{i15- sk}

Repeating this argument for the rest of the multiple summations in (2.24) yields
the result

k+1 k+2
P(XZk)ZSk—< b )Sk+1+< L )S/e+z—---+(—1)"_k(Z)Sn

The preceding can be written as
b
p

Using this we will now prove that

n i1
PX = k)= (D (; B 1>sj
j=k
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The proof uses a backwards mathematical induction that starts with k = n. Now,

when k = n the preceding identity states that
PX=n=3S,
which is true. So assume that
- ket (7 —1
P(X=k+1)= .Z (=D +’< B )s,
j=k+1

But then
PX>k)=PX=k)+PX>k+1)

=Y (=D @s, + ) (D (’ . 1)5,-
=k

j=k+1

=S+ Y. (—1)k+’[(2> - (l b )157

j=k+1

n /i1
=S+ Y. (_1)k+l</]e ~ 1)57

j=k+1

— - _ 1kt j—1 .
_,»_Zk( 1) <k—1 S;

which completes the proof.

2.8 Limit Theorems

We start this section by proving a result known as Markov’s inequality.

Proposition 2.6 (Markov's Inequality) If X is a random variable that takes only

nonnegative values, then for any value a > 0

PIX 2 a) < T2

Proof. We give a proof for the case where X is continuous with density f.

E[X] = /Ooxf(x) dx
0

= /axf(x)dx + /Ooxf(x)dx
0

a
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> /Ooxf(x)dx

/Ooaf(x) dx

=a/oof(x)dx
= aP{X > a}

v

and the result is proven.
As a corollary, we obtain the following.

Proposition 2.7 (Chebyshev's Inequality) If X is a random variable with mean
w and variance o2, then, for any value k > 0,

2
POX — il z k) < 75

Proof. Since (X — )2 is a nonnegative random variable, we can apply Markov’s
inequality (with @ = k2) to obtain

2
PUX — ) > ) < LX)
k2
But since (X — w)? > k% if and only if |X — u| > k, the preceding is equi-
valent to

E[(X — n)? 2
PUX — 2 k) < =0 = 7

and the proof is complete.

The importance of Markov’s and Chebyshev’s inequalities is that they enable
us to derive bounds on probabilities when only the mean, or both the mean
and the variance, of the probability distribution are known. Of course, if the
actual distribution were known, then the desired probabilities could be exactly
computed, and we would not need to resort to bounds.

Example 2.49 Suppose we know that the number of items produced in a factory
during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s production will be at least
10002

(b) If the variance of a week’s production is known to equal 100, then what can be said
about the probability that this week’s production will be between 400 and 600?
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Solution: Let X be the number of items that will be produced in a week.
(a) By Markov’s inequality,
E[X] 500 1

PIX > 1 _ 200
(X = 1000} = 3550 = 1000 = 2

(b) By Chebyshev’s inequality,

P{|X — 500 > 100} < o _ 1
- =~ (100)2 100
Hence,
1 99
P(IX = 500] <100} = 1 — — = —

and so the probability that this week’s production will be between 400 and
600 is at least 0.99. [ |

The following theorem, known as the strong law of large numbers, is probably
the most well-known result in probability theory. It states that the average of
a sequence of independent random variables having the same distribution will,
with probability 1, converge to the mean of that distribution.

Theorem 2.1 (Strong Law of Large Numbers) Let X1, X>,... be a sequence of
independent random variables having a common distribution, and let E[X;] = u.
Then, with probability 1,

X1+Xo+ -+ X,
n

—> U asn — 00

As an example of the preceding, suppose that a sequence of independent trials
is performed. Let E be a fixed event and denote by P(E) the probability that E
occurs on any particular trial. Letting

x. - | if E occurs on the ith trial
L0, if E does not occur on the ith trial

we have by the strong law of large numbers that, with probability 1,

X1+ + Xy
n

E[X] = P(E) (2.25)

Since X1 + - - + X, represents the number of times that the event E occurs in the
first n trials, we may interpret Equation (2.25) as stating that, with probability
1, the limiting proportion of time that the event E occurs is just P(E).
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Running neck and neck with the strong law of large numbers for the honor
of being probability theory’s number one result is the central limit theorem.
Besides its theoretical interest and importance, this theorem provides a simple
method for computing approximate probabilities for sums of independent ran-
dom variables. It also explains the remarkable fact that the empirical frequen-
cies of so many natural “populations” exhibit a bell-shaped (that is, normal)
curve.

Theorem 2.2 (Central Limit Theorem) Let Xj, X5, ... be a sequence of indepen-
dent, identically distributed random variables, each with mean z and variance 0.
Then the distribution of

X1+Xo 4+ -+ X, —nu
aﬁ

tends to the standard normal as # — oo. That is,

“en — a
P { X1+Xo 4+ -+ Xy —nu < a} N 1 / /2 dy
Ux/ﬁ V2t J—0

as 7n — OoQ.

Note that like the other results of this section, this theorem holds for any
distribution of the X;s; herein lies its power.

If X is binomially distributed with parameters # and p, then X has the same
distribution as the sum of # independent Bernoulli random variables, each with
parameter p. (Recall that the Bernoulli random variable is just a binomial random
variable whose parameter 7 equals 1.) Hence, the distribution of

X—E[X] X-—mnp
VVarX)  J/up(1 —p)

approaches the standard normal distribution as n approaches oco. The nor-
mal approximation will, in general, be quite good for values of n satisfying
np(1 —p) = 10.

Example 2.50 (Normal Approximation to the Binomial) Let X be the number
of times that a fair coin, flipped 40 times, lands heads. Find the probability
that X = 20. Use the normal approximation and then compare it to the exact
solution.

Solution: Since the binomial is a discrete random variable, and the normal
a continuous random variable, it leads to a better approximation to write the
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desired probability as

P{X = 20} = P{19.5 < X < 20.5)
{ 19.5-20 X -20 20.5- 20}
= P < <
/10 V10 V10

= P{—0.16 < H < 0.16}
/10

~ ¢(0.16) — &(-0.16)

where ®(x), the probability that the standard normal is less than x is given by

d(x) = \/LZ_T[/ e—y2/2 dy

By the symmetry of the standard normal distribution
®(—0.16) = P{N(0, 1) > 0.16} = 1 — (0.16)

where N (0, 1) is a standard normal random variable. Hence, the desired prob-
ability is approximated by

P{X =20} ~2®(0.16) — 1
Using Table 2.3, we obtain
P{X = 20} ~ 0.1272

The exact result is

40\ /1\*
= (5)(3)

which can be shown to equal 0.1268. [ |

Example 2.51 Let X;,7 = 1,2,...,10 be independent random variables, each
being uniformly distributed over (0, 1). Estimate P{Z%O X; > 7}

Solution: Since E[X;] = %, Var(X;) = % we have by the central limit theorem
that

P{iXi>7}:P %OX"_5> /-5
1 \/10(%) \/10(%)
~1—®(2.2)
—0.0139 m
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Table 2.3 Area ®(x) under the Standard Normal Curve to the Left of x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 007 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5597 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8557 0.8599 0.8621
0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

NN mRmrEmmm mmmme-m O
=0 Voo NAA»Nn W= O O
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W N

Example 2.52 The lifetime of a special type of battery is a random variable with
mean 40 hours and standard deviation 20 hours. A battery is used until it fails,
at which point it is replaced by a new one. Assuming a stockpile of 25 such
batteries, the lifetimes of which are independent, approximate the probability
that over 1100 hours of use can be obtained.
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Solution: If we let X; denote the lifetime of the ith battery to be put in use,
then we desire p = P{Xy + --- + X5 > 1100}, which is approximated as
follows:

p:P{Xl o+ X5 — 1000 1100—1000}
20V/25 20V/25
~ P{N(0,1) > 1}
=1-o(1)
~0.1587 |

We now present a heuristic proof of the central limit theorem. Suppose first that
the X; have mean 0 and variance 1, and let E[¢*X] denote their common moment
generating function. Then, the moment generating function of W is

E |:exp {t (W) }i| — E[etxl/\/ﬁetXZ/ﬁ . _etXn/\/ﬁ]

= (E[e™/ ‘/ﬁ])" by independence
Now, for 7 large, we obtain from the Taylor series expansion of e” that

X 2X?
XV 4 24

Jn 2n

Taking expectations shows that when 7 is large

2 2

Jn 2n
tZ
=1+ because E[X] = 0, E[X?] = 1

Therefore, we obtain that when # is large

oo (= (4 5)

When 7 goes to oo the approximation can be shown to become exact and we
have

‘ X1+ + X\ 2
o () -
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Thus, the moment generating function of % converges to the moment

generating function of a (standard) normal random variable with mean 0 and
variance 1. Using this, it can be proven that the distribution function of the

X1+ +Xn
Nz

random variable converges to the standard normal distribution func-

tion O.
When the X; have mean p and variance o2, the random variables % have
mean 0 and variance 1. Thus, the preceding shows that

X, — X, — e+ X, —
P{ 1—u+Xo—pu+---+X, “5a}->q>(a)
o/n

which proves the central limit theorem.

2.9 Stochastic Processes

A stochastic process {X(t),t € T} is a collection of random variables. That is,
for each t € T,X(¢) is a random variable. The index ¢ is often interpreted as
time and, as a result, we refer to X (¢) as the state of the process at time ¢. For
example, X(¢) might equal the total number of customers that have entered a
supermarket by time #; or the number of customers in the supermarket at time
t; or the total amount of sales that have been recorded in the market by time ¢;
etc.

The set T is called the index set of the process. When T is a countable set
the stochastic process is said to be a discrete-time process. If T is an interval of
the real line, the stochastic process is said to be a continuous-time process. For
instance, {X,,7 = 0,1,...} is a discrete-time stochastic process indexed by the
nonnegative integers; while {X(¢),# > 0} is a continuous-time stochastic process
indexed by the nonnegative real numbers.

The state space of a stochastic process is defined as the set of all possible values
that the random variables X(¢) can assume.

Thus, a stochastic process is a family of random variables that describes the
evolution through time of some (physical) process. We shall see much of stochastic
processes in the following chapters of this text.

Example 2.53 Consider a particle that moves along a set of m + 1 nodes, labeled
0,1,...,m, that are arranged around a circle (see Figure 2.3). At each step the
particle is equally likely to move one position in either the clockwise or counter-
clockwise direction. That is, if X, is the position of the particle after its nth step
then

PXpp1 =i+ 11Xy =i} =P X1 =i — 11Xy =i} = 3
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Figure 2.3 Particle moving around a circle.

where i + 1 = 0 when i = m, and i — 1 = m when i = 0. Suppose now that
the particle starts at 0 and continues to move around according to the preceding
rules until all the nodes 1,2, ..., have been visited. What is the probability that
node 7,i = 1,...,m, is the last one visited?

Solution: Surprisingly enough, the probability that node i is the last node
visited can be determined without any computations. To do so, consider the
first time that the particle is at one of the two neighbors of node i, that is, the
first time that the particle is at one of the nodesi—1 ori + 1 (withm + 1 = 0).
Suppose itis at node i—1 (the argument in the alternative situation is identical).
Since neither node i nor 7 + 1 has yet been visited, it follows that i will be the
last node visited if and only if i + 1 is visited before 7. This is so because in
order to visit i + 1 before 7 the particle will have to visit all the nodes on the
counterclockwise path from i — 1 to i + 1 before it visits 7. But the probability
that a particle at node i — 1 will visit i + 1 before i is just the probability that a
particle will progress 7 — 1 steps in a specified direction before progressing one
step in the other direction. That is, it is equal to the probability that a gambler
who starts with one unit, and wins one when a fair coin turns up heads and
loses one when it turns up tails, will have his fortune go up by 7 — 1 before he
goes broke. Hence, because the preceding implies that the probability that node
i is the last node visited is the same for all 7, and because these probabilities
must sum to 1, we obtain

P{i is the last node visited} = 1/m, i=1,...,m [ ]
Remark The argument used in Example 2.53 also shows that a gambler who is

equally likely to either win or lose one unit on each gamble will be down 7 before
being up 1 with probability 1/(z + 1); or equivalently,

P{gambler is up 1 before being down n} = #
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Suppose now we want the probability that the gambler is up 2 before being
down n. Upon conditioning on whether he reaches up 1 before down 7, we
obtain that

P{gambler is up 2 before being down 7}
n

n+1

= P{up 2 before down n|up 1 before down 7}

P{up 1 before down 7 + 1}L
n+1

n+1 n _n
n+2n+1 n+2

Repeating this argument yields that

n

P{gambler is up k before being down n} = p——"

Exercises

1. An urn contains five red, three orange, and two blue balls. Two balls are randomly
selected. What is the sample space of this experiment? Let X represent the number
of orange balls selected. What are the possible values of X? Calculate P{X = 0}.

2. Let X represent the difference between the number of heads and the number of tails
obtained when a coin is tossed 7 times. What are the possible values of X?

3. In Exercise 2, if the coin is assumed fair, then, for # = 2, what are the probabilities
associated with the values that X can take on?

*4, Suppose a die is rolled twice. What are the possible values that the following random
variables can take on?
(a) The maximum value to appear in the two rolls.
(b) The minimum value to appear in the two rolls.
(¢) The sum of the two rolls.
(d) The value of the first roll minus the value of the second roll.

5. [If the die in Exercise 4 is assumed fair, calculate the probabilities associated with
the random variables in (i)—(iv).

6. Suppose five fair coins are tossed. Let E be the event that all coins land heads. Define
the random variable Ig

I — 1, if E occurs
E=1o, if E€ occurs

For what outcomes in the original sample space does I equal 1? What is P{Ir = 1}?

7. Suppose a coin having probability 0.7 of coming up heads is tossed three times.
Let X denote the number of heads that appear in the three tosses. Determine the
probability mass function of X.
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8.

9.

10.
*11.

12.

13.

14.

15.

*16.

Suppose the distribution function of X is given by

0, b<0
Fby=1L, o0<b<1
1, 1<b<oo

What is the probability mass function of X?
If the distribution function of F is given by

0, b<0

%, 0<b<1
- %, 1<b<2
)= %, 2<b<3

9

10> 3§b<3.5

1, b>3.5

calculate the probability mass function of X.
Suppose three fair dice are rolled. What is the probability at most one six appears?

A ball is drawn from an urn containing three white and three black balls. After the
ball is drawn, it is then replaced and another ball is drawn. This goes on indefinitely.
What is the probability that of the first four balls drawn, exactly two are white?

On a multiple-choice exam with three possible answers for each of the five questions,
what is the probability that a student would get four or more correct answers just
by guessing?

An individual claims to have extrasensory perception (ESP). As a test, a fair coin is
flipped ten times, and he is asked to predict in advance the outcome. Our individual
gets seven out of ten correct. What is the probability he would have done at least
this well if he had no ESP? (Explain why the relevant probability is P{X > 7} and
not P{X = 7}.)

Suppose X has a binomial distribution with parameters 6 and % Show that X = 3
is the most likely outcome.

Let X be binomially distributed with parameters 7z and p. Show that as k goes from

0 to n, P(X = k) increases monotonically, then decreases monotonically reaching

its largest value

(a) in the case that (m + 1)p is an integer, when k equals either (z + 1)p — 1 or
(n+ Dp,

(b) in the case that (z + 1)p is not an integer, when k satisfies (7 + 1)p —1 < k <
(n+ Dp.

Hint: Consider P{X = k}/P{X = k — 1} and see for what values of k it is greater

or less than 1.

An airline knows that 5 percent of the people making reservations on a certain
flight will not show up. Consequently, their policy is to sell 52 tickets for a flight
that can hold only 50 passengers. What is the probability that there will be a seat
available for every passenger who shows up?



88

Random Variables

17.

18.
19.

20.

21.

22.

%23,

24.

Suppose that an experiment can result in one of 7 possible outcomes, the ith outcome
having probability p;, i = 1,...,7, >;_; pi = 1. If n of these experiments are
performed, and if the outcome of any one of the 7 does not affect the outcome of
the other # — 1 experiments, then show that the probability that the first outcome
appears x1 times, the second x; times, and the rth x, times is

n!

Y pY whenxp 4 x4k =a
x1!x! L%,

This is known as the multinomial distribution.
Show that when 7 = 2 the multinomial reduces to the binomial.

In Exercise 17, let X; denote the number of times the ith outcome appears, i =
1,...,7. What is the probability mass function of X1 + X5 + ... + X}.?

A television store owner figures that 50 percent of the customers entering his store
will purchase an ordinary television set, 20 percent will purchase a color television
set, and 30 percent will just be browsing. If five customers enter his store on a
certain day, what is the probability that two customers purchase color sets, one
customer purchases an ordinary set, and two customers purchase nothing?

In Exercise 20, what is the probability that our store owner sells three or more
televisions on that day?

If a fair coin is successively flipped, find the probability that a head first appears on
the fifth trial.

A coin having probability p of coming up heads is successively flipped until the rth
head appears. Argue that X, the number of flips required, will be n, n > r, with
probability

NX=HH=<1:;)ﬁﬂ—pW”, ner

This is known as the negative binomial distribution.
Hint: How many successes must there be in the first 7z — 1 trials?

The probability mass function of X is given by

Y k-1
;oae):(’r__1 )ﬁa—mﬁ k=0,1,...

Give a possible interpretation of the random variable X.

Hint: See Exercise 23.

In Exercises 25 and 26, suppose that two teams are playing a series of games,
each of which is independently won by team A with probability p and by team B
with probability 1 — p. The winner of the series is the first team to win i games.

25.

26.

If i = 4, find the probability that a total of 7 games are played. Also show that this
probability is maximized when p = 1/2.

Find the expected number of games that are played when

(a) i=2;

(b) i=3.

In both cases, show that this number is maximized when p = 1/2.
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*27.

28.

29.

30.

31.

32.

33.

34.

A fair coin is independently flipped 7 times, k times by A and # — k times by B.
Show that the probability that A and B flip the same number of heads is equal to
the probability that there are a total of k heads.

Suppose that we want to generate a random variable X that is equally likely to
be either 0 or 1, and that all we have at our disposal is a biased coin that, when
flipped, lands on heads with some (unknown) probability p. Consider the following
procedure:

Flip the coin, and let 01, either heads or tails, be the result.

Flip the coin again, and let 0, be the result.

If 01 and 0; are the same, return to step 1.

If 0, is heads, set X = 0, otherwise set X = 1.

=

(a) Show that the random variable X generated by this procedure is equally likely
to be either 0 or 1.

(b) Could we use a simpler procedure that continues to flip the coin until the last
two flips are different, and then sets X = 0 if the final flip is a head, and sets
X =1ifitis a tail?

Consider 7 independent flips of a coin having probability p of landing heads. Say

a changeover occurs whenever an outcome differs from the one preceding it. For

instance, if the results of the flipsare H H T H T H H T, then there are a total of

five changeovers. If p = 1/2, what is the probability there are k changeovers?

Let X be a Poisson random variable with parameter A. Show that P{X = i} increases
monotonically and then decreases monotonically as i increases, reaching its maxi-
mum when i is the largest integer not exceeding A.

Hint: Consider P{X = i}/P{X =i — 1}.

Compare the Poisson approximation with the correct binomial probability for the
following cases:

(a) P{X =2} whenn=238,p=0.1.

(b) P{X =9} whenn =10, p = 0.95.

(c) P{X =0} whenn=10,p=0.1.

(d) P{X=4}whenn=9,p=0.2.

If you buy a lottery ticket in 50 lotteries, in each of which your chance of winning
a prize is ﬁ, what is the (approximate) probability that you will win a prize (a)
at least once, (b) exactly once, (c) at least twice?

Let X be a random variable with probability density

_ C(l—xz), -1<x<1
feo = {0, otherwise

(a) What is the value of ¢?
(b) What is the cumulative distribution function of X?

Let the probability density of X be given by

c(4x — 2x2), O<x<?2

0, otherwise

f(x)={
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(a) What is the value of ¢?
(b) Pf3<x<3}=2
35. The density of X is given by
_[10/x2, for x > 10
fx) = {0, for x < 10
What is the distribution of X? Find P{X > 20}.
36. A point is uniformly distributed within the disk of radius 1. That is, its density is
fe,y=C, 0<x*4+y*<1
Find the probability that its distance from the origin is less than x, 0 < x < 1.

37. Let Xy, X2,...,X, be independent random variables, each having a uniform distri-
bution over (0,1). Let M = maximum (X1, X5, ..., X,). Show that the distribution
function of M, Fp(-), is given by

Fu(x) = x", 0<x<1
What is the probability density function of M?
*38. If the density function of X equals
—2x
ce™ ¥, 0<x<o0
fx) = {0, x <0
find c. What is P{X > 2}?

39. The random variable X has the following probability mass function:

ph=3, pQ=3%  pebH=1
Calculate E[X].

40. Suppose that two teams are playing a series of games, each of which is independently
won by team A with probability p and by team B with probability 1 —p. The winner
of the series is the first team to win four games. Find the expected number of games
that are played, and evaluate this quantity when p = 1/2.

41. Consider the case of arbitrary p in Exercise 29. Compute the expected number of
changeovers.

42. Suppose that each coupon obtained is, independent of what has been previously

obtained, equally likely to be any of m different types. Find the expected number
of coupons one needs to obtain in order to have at least one of each type.

Hint: Let X be the number needed. It is useful to represent X by

where each Xj is a geometric random variable.
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43.

44,

45.

46.

An urn contains # + m balls, of which 7 are red and m are black. They are with-
drawn from the urn, one at a time and without replacement. Let X be the number
of red balls removed before the first black ball is chosen. We are interested in deter-
mining E[X]. To obtain this quantity, number the red balls from 1 to 7. Now define
the random variables X;, i = 1,...,n, by
X — {1, if red ball 7 is taken before any black ball is chosen
70, otherwise

(a) Express X in terms of the X;.

(b) Find E[X].

In Exercise 43, let Y denote the number of red balls chosen after the first but before

the second black ball has been chosen.

(a) Express Y as the sum of #» random variables, each of which is equal to either
Oorl.

(b) Find E[Y].

(c) Compare E[Y] to E[X] obtained in Exercise 43.

(d) Can you explain the result obtained in part (c)?

A total of 7 keys are to be put, one at a time, in k boxes, with each key indepen-

dently being put in box i with probability p;, Zle pi = 1. Each time a key is put

in a nonempty box, we say that a collision occurs. Find the expected number of

collisions.

If X is a nonnegative integer valued random variable, show that

(a) EX]=) P(X>n=) P(X>n
n=1 n=0

Hint: Define the sequence of random variables I,,, n > 1, by

1, ifn<X
n=No, ifn>X

Now express X in terms of the I,,.

(b) If X and Y are both nonnegative integer valued random variables, show
that

EIXY]=) > PX=nY >m)

n=1m=1

Consider three trials, each of which is either a success or not. Let X denote the
number of successes. Suppose that E[X] = 1.8.

(a) What is the largest possible value of P{X = 3}?

(b) What is the smallest possible value of P{X = 3}?

In both cases, construct a probability scenario that results in P{X = 3} having the
desired value.
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*48.

*49.
50.

51.

52.

53.
54.

55.

56.

If X is a nonnegative random variable, and g is a differential function with g(0) = 0,
then

Elg(X)] = /O P(X > 0g(t)dt

Prove the preceding when X is a continuous random variable.
Prove that E[X2] > (E[X])%. When do we have equality?

Let ¢ be a constant. Show that
(a) Var(cX) = CZVar(X);
(b) Var(c + X) = Var(X).

A coin, having probability p of landing heads, is flipped until a head appears for
the 7 th time. Let N denote the number of flips required. Calculate E[N].

Hint: There is an easy way of doing this. It involves writing N as the sum of r
geometric random variables.

(a) Calculate E[X] for the maximum random variable of Exercise 37.
(b) Calculate E[X] for X as in Exercise 33.
(c) Calculate E[X] for X as in Exercise 34.

If X is uniform over (0, 1), calculate E[X”] and Var(X").
Let X and Y each take on either the value 1 or —1. Let

p(1, ) =P(X=1,Y =1},
pd, 1) =P{X=1,Y = -1},
p(-1, 1) =P{X =—-1,Y =1},

p(-1, 1) =P(X = -1, Y = -1}

Suppose that E[X] = E[Y] = 0. Show that

Let p = 2p(1, 1). Find

(c) Var(X);

(d) Var(Y);

(e) Cov(X,Y).

Suppose that the joint probability mass function of X and Y is

PX=iY=)) = (’_)e*ZW/;'!, 0<i<j
1

(a) Find the probability mass function of Y.

(b) Find the probability mass function of X.

(c) Find the probability mass function of Y — X.

There are n types of coupons. Each newly obtained coupon is, independently, type
i with probability p;, i = 1,...,7. Find the expected number and the variance of
the number of distinct types obtained in a collection of k coupons.
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57.

S8.

59.

60.

61.

62.

63.
*64.

65.
66.

67.

Suppose that X and Y are independent binomial random variables with parameters
(n,p) and (m,p). Argue probabilistically (no computations necessary) that X + Y
is binomial with parameters (1 + m, p).

An urn contains 27 balls, of which 7 are red. The balls are randomly removed in 7
successive pairs. Let X denote the number of pairs in which both balls are red.

(a) Find E[X].

(b) Find Var(X).

Let X1, X5, X3, and X4 be independent continuous random variables with a com-

mon distribution function F and let
p=P{X1 < X5 > X3 < X4}

(a) Argue that the value of p is the same for all continuous distribution functions F.
(b) Find p by integrating the joint density function over the appropriate region.
(c) Find p by using the fact that all 4! possible orderings of X1, ..., X4 are equally

likely.
Calculate the moment generating function of the uniform distribution on (0, 1).
Obtain E[X] and Var[X] by differentiating.

Let X and W be the working and subsequent repair times of a certain machine. Let
Y = X + W and suppose that the joint probability density of X and Y is

fxy@,y) =12, 0<x<y<oo

Find the density of X.
Find the density of Y.
Find the joint density of X and W.
Find the density of W.

In deciding upon the appropriate premium to charge, insurance companies some-
times use the exponential principle, defined as follows. With X as the random
amount that it will have to pay in claims, the premium charged by the insurance
company is

a
b
c
d

_1 aX
P= P ln(E[e ])

where a is some specified positive constant. Find P when X is an exponential random
variable with parameter A, and a = oA, where 0 < o < 1.

Calculate the moment generating function of a geometric random variable.

Show that the sum of independent identically distributed exponential random vari-
ables has a gamma distribution.

Consider Example 2.48. Find Cov(X;, X;) in terms of the ays.

Use Chebyshev’s inequality to prove the weak law of large numbers. Namely, if
X1, X3,... are independent and identically distributed with mean u and variance
o2 then, for any ¢ > 0,

P{ X1 +Xo 4+ + X,

n
Suppose that X is a random variable with mean 10 and variance 15. What can we
say about P{5 < X < 15}?

—u‘>s}—>0 asn — oo
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68.

69.

*70.

71.

*72.

73.

74.

Let X1, X2,...,Xj0 be independent Poisson random variables with mean 1.

(a) Use the Markov inequality to get a bound on P{X; + --- + Xq0 > 15}.

(b) Use the central limit theorem to approximate P{X1 + --- + Xj9 > 15}.

If X is normally distributed with mean 1 and variance 4, use the tables to find
P{2 < X < 3}

Show that

"k 1
. . 1
nhlréo ¢ kzo kT2

Hint: Let X,, be Poisson with mean 7. Use the central limit theorem to show that
P{X, <n} — %

Let X denote the number of white balls selected when k balls are chosen at random
from an urn containing # white and m black balls.

(a) Compute P{X = 1}.

(b) Let,fori=1,2,....k;j=1,2,...,n,

1, if the ith ball selected is white
X; = .
0, otherwise

1, if white ball j is selected
Y, = .
/ 0, otherwise

Compute E[X] in two ways by expressing X first as a function of the X;s and then
of the Yjs.

Show that Var(X) = 1 when X is the number of men who select their own hats in
Example 2.31.

For the multinomial distribution (Exercise 17), let N; denote the number of times
outcome 7 occurs. Find

(a) E[Nil;

(b) Var(N));

() Cov(Nj, Nj);

(d) Compute the expected number of outcomes that do not occur.

Let X1, X5,... be a sequence of independent identically distributed continuous
random variables. We say that a record occurs at time 7 if X, > max(X1,..., X,;_1).
That is, X, is a record if it is larger than each of X1,...,X,,_1. Show

(a) P{a record occurs at time n} = 1/n;

(b) E[number of records by time n] = > ; 1/i;

(c) Var(number of records by time n) = Y7, (i — 1)/i%;

(d) Let N = min{n: n > 1 and a record occurs at time #}. Show E[N] = co.

Hint: For (ii) and (iii) represent the number of records as the sum of indicator (that
is, Bernoulli) random variables.
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75. Letay < ajy < --- < a, denote a set of # numbers, and consider any permutation
of these numbers. We say that there is an inversion of @; and 4; in the permuta-
tion if i < j and 4; precedes 4;. For instance the permutation 4, 2, 1, 5, 3 has §
inversions—(4, 2), (4, 1), (4, 3), (2, 1), (5, 3). Consider now a random permutation
of ay, aj,...,a,—in the sense that each of the n! permutations is equally likely to
be chosen—and let N denote the number of inversions in this permutation. Also, let

N; = number of k: k < i, a; precedes a;, in the permutation

and note that N = "7 | N;.

(a) Show that N1,..., N, are independent random variables.
(b) What is the distribution of N;?
(c) Compute E[N] and Var(N).

76. Let X and Y be independent random variables with means 1, and py and variances
o} and 03%. Show that

Var(XY) = 0305 + u%af + uiayz
77. Let X and Y be independent normal random variables, each having parameters p
and o2. Show that X + Y is independent of X — Y.

Hint: Find their joint moment generating function.

78. Let ¢(t1,...,t,) denote the joint moment generating function of X1,..., X,.
(a) Explain how the moment generating function of X;, ¢x, (%), can be obtained
from ¢(t1,. .., ).
(b) Show that X1,..., X, are independent if and only if

d)(tl, BRIEY tﬂ) = ¢x1 (tl) e d)X,, (tn)
79. With K(#) = log(E [¢*X]), show that
K'(0) = E[X], K"(0) = Var(X)

80. Let X denote the number of the events Aq,...,A,, that occur. Express E[X],
Var(X), and E [(f)] in terms of the quantities S, = >, . _; P(A; ... Aj),
k=1,...,n
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3.1 Introduction

One of the most useful concepts in probability theory is that of conditional
probability and conditional expectation. The reason is twofold. First, in practice,
we are often interested in calculating probabilities and expectations when some
partial information is available; hence, the desired probabilities and expectations
are conditional ones. Secondly, in calculating a desired probability or expecta-
tion it is often extremely useful to first “condition” on some appropriate random
variable.

3.2 The Discrete Case

Recall that for any two events E and F, the conditional probability of E given F
is defined, as long as P(F) > 0, by

P(EF)

Introduction to Probability Models, ISBN: 9780123756862
Copyright © 2010 by Elsevier, Inc. All rights reserved.
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Hence, if X and Y are discrete random variables, then it is natural to define
the conditional probability mass function of X given that Y =y, by

pxy(xly) = P{X = x|Y =y}
P X=x,Y=y)
- Py =y}
_ px,y)
)

for all values of y such that P{Y = y}> 0. Similarly, the conditional proba-
bility distribution function of X given that Y =1y is defined, for all y such that
P{Y =y} > 0, by

Fxjy(xly) = P{X < x]Y =y}
=Y pxv(aly)

asx
Finally, the conditional expectation of X given that Y =y is defined by

EIX|Y =y] = Z xP{X = x|Y =y}

=Y xpxjy(xly)

In other words, the definitions are exactly as before with the exception that
everything is now conditional on the event that Y = y. If X is independent of Y,
then the conditional mass function, distribution, and expectation are the same as
the unconditional ones. This follows, since if X is independent of Y, then

pxy(xly) = P{X = x|Y = y}

Example 3.1 Suppose that p(x,y), the joint probability mass function of X
and Y, is given by

p(1,1)=0.5, p(1,2)=0.1, p2,1)=0.1, p2,2)=0.3

Calculate the conditional probability mass function of X given that Y = 1.

Solution: We first note that

py() =) plx, 1) =p,1) +p2,1) =06
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99
Hence,
pxiy(1|1) = P{X = 1Y =1}
_PX=1,Y=1j
T PlY=1)
_p(1)
py(1)
_3
6
Similarly,
p2,1) 1
21 ) = ——— = — [ |
pxy(2|1) ov() 6

Example 3.2 If X; and X, are independent binomial random variables with

respective parameters (n1,p) and (12, p), calculate the conditional probability
mass function of Xj given that X7 + X, = m.

Solution: Withg=1—p,

P(Xy =k, X1 + X2 =m
P{X1 = kX1 + Xo =m) = {;{Xﬁ;ﬁ:fn} )

_PXy =k, Xy =m—k)
T PXy 4+ Xo =m)

 P(X1 = kP{Xs = m — k)
B P{X1+ Xy =m)

1\ kb on—k ny m—k ny—m+k
_ (e)ta (2t

(n1 + n2>pmqn1 +ny—m

m

where we have used that X7 + X3 is a binomial random variable with param-

eters (1 +n2,p) (see Example 2.44). Thus, the conditional probability mass
function of X1, given that X + X, = m, is

(2) (")
P(X1 = kIX) + X5 = m) = \kJ\m—k]

(nl + nz) G-1)
m
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The distribution given by Equation (3.1), first seen in Example 2.35, is known
as the hypergeometric distribution. It is the distribution of the number of blue
balls that are chosen when a sample of m balls is randomly chosen from an
urn that contains 71 blue and 7, red balls. (To intuitively see why the con-
ditional distribution is hypergeometric, consider 71 + 7, independent trials
that each result in a success with probability p; let X; represent the number
of successes in the first 721 trials and let X, represent the number of successes
in the final 7, trials. Because all trials have the same probability of being a
success, each of the ("1+"2) subsets of m trials is equally likely to be the success
trials; thus, the number of the # success trials that are among the first 71 trials
is a hypergeometric random variable.) [ |

Example 3.3 If X and Y are independent Poisson random variables with respec-
tive means Aq and A, calculate the conditional expected value of X given that
X+Y=n

Solution: Let us first calculate the conditional probability mass function of X
given that X + Y = n. We obtain

P(X =k, X+ Y =n)
P{X+Y =mn}
P(X =k, Y =n—k)

T PX+Y=n
P(X = k}P{Y = n— k)

T O PX+Y=n

PIX=kX+Y=n=

where the last equality follows from the assumed independence of X and Y.
Recalling (see Example 2.37) that X + Y has a Poisson distribution with mean
A1 + A2, the preceding equation equals

PIX=kIX+Y=n)=—0 —

oo akyn—k
T (m= Rk (A + M)

-2 )
ERVIACYESY M+ A2

In other words, the conditional distribution of X given that X + Y = # is the
binomial distribution with parameters #z and A1/(A1 + A2). Hence,

e Mk gmhapnk [e<*1+lﬂ(x1 +—x2)n}‘4
n!

Al
M+ A

E(XIX4+Y=n}=n
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Example 3.4 Consider an experiment that results in one of three possible
outcomes with outcome i occurring with probability p;,i = 1,2, 3, Zle pi=1.
Suppose that 7 independent replications of this experiment are performed and
let X;, i = 1,2, 3, denote the number of times outcome i appears. Determine the
conditional expectation of X given that X, = m.

Solution: For k < n—m,

P{X1 =k, X5 = m)

P(Xq = k|Xs = m) = PG = ]

Now if X1 = k and X, = m, then it follows that X3 =n — k — m.
However,

P{Xlzk, Xz:m, X3=n—k—m}
n!

_ : (n—k—m)
k'm!(n — k —m)!

pro DS (3.2)

This follows since any particular sequence of the 7 experiments having out-
come 1 appearing k times, outcome 2 m times, and outcome 3 (7 — k —m) times
has probability p]i‘pg”pgn_k_m) of occurring. Since there are n!/[klm!(n—k—m)!]
such sequences, Equation (3.2) follows.

Therefore, we have

n!

: kym, (n—k—m)
pPib2 P3
il (1 — b — 17)!
P(X{ = k|Xy = m) = klm!(n n!/e m)!
oy — Py (1 —p2)

where we have used the fact that X, has a binomial distribution with param-
eters 7 and p,. Hence,

(n —m)! pi (s N
PXG = kiXa = m) = o (1 —P2> (1 —Pz)

or equivalently, writing p3 =1 — p1 — pa,

_ k n—m—k
P{Xl = k|X2 = m} = <n km> (1 glp2> (1 — 1 glp2>

In other words, the conditional distribution of X1, given that X, = m, is bino-
mial with parameters # — m and p1/(1 — p2). Consequently,

p1
1—p2

E[X11Xo =m] = (n—m)
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Remarks

(i) The desired conditional probability in Example 3.4 could also have been computed
in the following manner. Consider the # — m experiments that did not result in out-
come 2. For each of these experiments, the probability that outcome 1 was obtained
is given by

P{outcome 1, not outcome 2}

P{outcome 1|not outcome 2} =
{ | J P{not outcome 2}

P1
1-p2

It therefore follows that, given X, = m, the number of times outcome 1 occurs is
binomially distributed with parameters n — m and p1/(1 — p2).

(i) Conditional expectations possess all of the properties of ordinary expectations. For
instance, such identities as

E [ZXiIY = y} =Y EIX;|Y =]
i=1 i=1
remain valid. u
Example 3.5 There are # components. On a rainy day, component 7 will function
with probability p;; on a nonrainy day, component i will function with proba-
bility g;, for i = 1,...,n. It will rain tomorrow with probability «. Calculate the

conditional expected number of components that function tomorrow, given that
it rains.

Solution: Let

X — 1, if component i functions tomorrow
*7 10, otherwise

Then, with Y defined to equal 1 if it rains tomorrow, and 0 otherwise, the
desired conditional expectation is obtained as follows.

E [ixiw - 1] - iE[XdY =1]
t=1

=1

= Zpi |
i=1

3.3 The Continuous Case

If X and Y have a joint probability density function f(x, y), then the conditional
probability density function of X, given that Y = v, is defined for all values of y
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such that fy(y) > 0, by

f(x,y)
fy ()

fxy (xly) =

To motivate this definition, multiply the left side by dx and the right side by
(dx dy)/dy to get

f(x,y)dx dy

fy(y) dy
U Plx <X <x+dx, y<Y <y+dy}
- Ply<Y <y +dy

=Px <X <x+dxly<Y<y+dy}

fxy (xly) dx =

In other words, for small values dx and dy, fx|y(x|y) dx is approximately the
conditional probability that X is between x and x + dx given that Y is between
yand y + dy.

The conditional expectation of X, given that Y =y, is defined for all values of
y such that fy(y) > 0, by

o0

E[X|Y =y] = / xfx|y (x|y) dx

Example 3.6 Suppose the joint density of X and Y is given by

6xy2—x—vy), 0<x<1,0<y<1
fx,y) =

0, otherwise

Compute the conditional expectation of X given that Y =y, where 0 <y < 1.

Solution: We first compute the conditional density

fxiy (xly) = f f(;(yy))
. xy2—x—y)
Bl fol 6xy(2 —x —y)dx
_ bxy(2—x—1y)
y(4 = 3y)
_6x2—x—y)

4 —3y
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Hence,
L6x2(2 —x —y)dx
E[X|Y = ]=/
LT Ay
_2-y2-%
- 4-3y
_S5—4y -
8 —6y

Example 3.7 Suppose the joint density of X and Y is given by

dy(x —y)e ® Y, 0 <x<00,0<y<x

f(x,y)z{

0, otherwise

Compute E[X]Y = y].

Solution: The conditional density of X, given that Y =1y, is given by

f(x,y)

fy ()

_ Ay(x—y)e &Y
) Ay — e @ dx

fxy (xly) =

x>y

X

__ (x—ye”
fyoo (x —y)e™™ dx

X

(x —ye~

=" x> by letting w = x —
T 10e- 0+ dig y (by g )

= (=", x>y

where the final equality used that [;°we™dw is the expected value of an
exponential random variable with mean 1. Therefore, with W being exponen-
tial with mean 1,

o]

E[X|Y =y] = / x(x —y)e”* Y dx
y

:/ (w + yywe™ dw
0

= E[W?] + yE[W]
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Example 3.8 The joint density of X and Y is given by

%ye’xy, 0<x<o00,0<y<2

fx,y) =
0, otherwise
What is E[eX/2|Y = 1]?

Solution: The conditional density of X, given that Y = 1, is given by

flx,1)
fr(1)

1,—x
ze

- fooo%e_x dx -

fxy(x|1) =

efx

Hence, by Proposition 2.1,

o0
E[eX/ZIYz 1] :/ &2 fxy (x| 1) dx
0
o0
:/ 2o dx
0
=2 n

Example 3.9 Let X; and X, be independent exponential random variables with
rates w1 and uy. Find the conditional density of X1 given that X1 + X, =¢.

Solution: To begin, let us first note that if f(x,y) is the joint density of X, Y,
then the joint density of X and X + Y is

fx, x4y (x,t) = f(x,t — x)

To verify the preceding, note that

P(ng,X+Y<t)=// f(u,v)dv du
uLxu+v<t

X t—u
= / / f(u,v)dv du

X t
[ / Fuyy — wydy du

where the final equation made the change of variable v = y — u. Differentiating
the preceding joint distribution function first with respect to ¢ and then with
respect to x yields the verification.
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Applying the preceding to our example yields

le,Xl-i-Xz (x,1)
fX1 +X3 (®)
w1 e_‘“x/,Lze_“Z(t_x)

fx11x+X, (x]t) =

, 0<x<t
fX1+X2(t)
— Ce—(ﬂl—ﬂz)x, 0<x<t

where

_ pipoe M
fX1+X2 (®)

NOW, if 1 = U2, then
fxx+x, xl) =C, 0<x<t

yielding that C = 1/¢ and that X7 given Xy + X, = ¢ is uniformly distributed
on (0,1). On the other hand, if u1 # w2, then we use

t C
1= / x5 (|1 dx = ——— (1 — e~ W71ty
0 H1— g2

to obtain

1 — 12
€= 1 — e—(m1—p2)t

thus yielding the result:

(1 — pp)e”H1mmx
1 — e~ (m1—p2)t

X 1x,+X, (x]) =

An interesting byproduct of our analysis is that

fx4x, () = T o T | et u

pippe 2t | putre, ifpr=pr=p
= , if pr # o

3.4 Computing Expectations by Conditioning

Let us denote by E[X]|Y] that function of the random variable Y whose value at
Y = yis E[X|Y = y]. Note that E[X]|Y] is itself a random variable. An extremely
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important property of conditional expectation is that for all random variables X
and Y

E[X] = E[E[X]Y]] (3.3)
If Y is a discrete random variable, then Equation (3.3) states that

E[X] =) EIX|Y =yIP{Y = y) (3.3a)
y

while if Y is continuous with density fy(y), then Equation (3.3) says that

E[X] = / EIX|Y = ylfy () dy (3.3b)

—00

We now give a proof of Equation (3.3) in the case where X and Y are both
discrete random variables.

Proof of Equation (3.3) When X and Y Are Discrete. We must show that

E[X]=)_EIX|Y =yIP{Y =y} (3.4)
y

Now, the right side of the preceding can be written

D EIX|Y =yIP{Y =y} =Y > xP{X =x|Y = y}P{Y = y)
y y X

P{X=st=)’}
= L —— A
N e

=ZZ xP{X=x,Y =y}
y X

=Y x) PX=x,Y=y)
x oy

= xP{X =x}
= E[X]

and the result is obtained. [ |

One way to understand Equation (3.4) is to interpret it as follows. It states that
to calculate E[X] we may take a weighted average of the conditional expected
value of X given that Y = v, each of the terms E[X|Y = y] being weighted by the
probability of the event on which it is conditioned.
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The following examples will indicate the usefulness of Equation (3.3).

Example 3.10 Sam will read either one chapter of his probability book or one
chapter of his history book. If the number of misprints in a chapter of his prob-
ability book is Poisson distributed with mean 2 and if the number of misprints
in his history chapter is Poisson distributed with mean 5, then assuming Sam is
equally likely to choose either book, what is the expected number of misprints
that Sam will come across?

Solution: Letting X denote the number of misprints and letting

y — 1, if Sam chooses his history book
~ |2, if Sam chooses his probability book

then

E[X]1=E[X|Y =11P{Y =1} + E[X|Y = 2]P{Y =2}
=5(3) +2(3)
_7 n

Example 3.11 (The Expectation of the Sum of a Random Number of Random
Variables) Suppose that the expected number of accidents per week at an indus-
trial plant is four. Suppose also that the numbers of workers injured in each
accident are independent random variables with a common mean of 2. Assume
also that the number of workers injured in each accident is independent of the
number of accidents that occur. What is the expected number of injuries during
a week?

Solution: Letting N denote the number of accidents and X; the number injured
in the ith accident, i = 1,2,..., then the total number of injuries can be
expressed as Zf»\ilXi. Now,

)]

E[XIT: Xi|N=ni| =E|:2j: Xi|N=ni|

n
=E |:Z X,C| by the independence of X; and N
1

But

= nE[X]



3.4 Computing Expectations by Conditioning 109

which yields

N
E[Z X,-|N:| = NE[X]
i=1
and thus
N
E[Z Xi] = E[NE[X]] = EINIE[X]
i=1

Therefore, in our example, the expected number of injuries during a week
equals 4 x 2 = 8. [ |

The random variable Zf\il X;, equal to the sum of a random number N of inde-
pendent and identically distributed random variables that are also independent
of N, is called a compound random variable. As just shown in Example 3.11, the
expected value of a compound random variable is E[X]E[N]. Its variance will
be derived in Example 3.19.

Example 3.12 (The Mean of a Geometric Distribution) A coin, having probability
p of coming up heads, is to be successively flipped until the first head appears.
What is the expected number of flips required?

Solution: Let N be the number of flips required, and let

Y — {1, if the first flip results in a head

0, if the first flip results in a tail
Now,

E[N] = E[N|Y = 1]P{Y = 1} + E[N|Y = 0]P{Y = 0}
= pE[N|Y = 1] + (1 — p)E[N|Y = 0] (3.5)

However,
E[N|Y=1]=1, E[N|Y=0]=1+ E[N] (3.6)

To see why Equation (3.6) is true, consider E[N|Y = 1]. Since Y =1, we know
that the first flip resulted in heads and so, clearly, the expected number of flips
required is 1. On the other hand if Y = 0, then the first flip resulted in tails.
However, since the successive flips are assumed independent, it follows that,
after the first tail, the expected additional number of flips until the first head
is just E[N]. Hence E[N|Y = 0] = 1 + E[N]. Substituting Equation (3.6)
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into Equation (3.5) yields
E[N]=p+ (1 —p)(1 + E[N])
or

Because the random variable N is a geometric random variable with proba-
bility mass function p(1) = p(1 — p)"~1, its expectation could easily have been
computed from E[N] = ) 7° np(n) without recourse to conditional expectation.
However, if you attempt to obtain the solution to our next example without
using conditional expectation, you will quickly learn what a useful technique
“conditioning” can be.

Example 3.13 A miner is trapped in a mine containing three doors. The first
door leads to a tunnel that takes him to safety after two hours of travel. The
second door leads to a tunnel that returns him to the mine after three hours of
travel. The third door leads to a tunnel that returns him to his mine after five
hours. Assuming that the miner is at all times equally likely to choose any one of
the doors, what is the expected length of time until the miner reaches safety?

Solution: Let X denote the time until the miner reaches safety, and let Y denote
the door he initially chooses. Now,

E[X] = E[X|Y = 1]P{Y = 1} + E[X|Y = 2]P{Y = 2}
+ E[X|Y = 3]P{Y = 3}
= J(EIX|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

However,
EX|Y=1]=2,
E[X|Y =2] =3+ E[X],
E[X|Y =3] =35+ E[X], (3.7)

To understand why this is correct consider, for instance, E[X|Y = 2], and rea-
son as follows. If the miner chooses the second door, then he spends three
hours in the tunnel and then returns to the mine. But once he returns to the
mine the problem is as before, and hence his expected additional time until
safety is just E[X]. Hence E[X|Y = 2] = 3 + E[X]. The argument behind the
other equalities in Equation (3.7) is similar. Hence,

E[X]=1(2+3+EX]+S+E[X]) or E[X]=10 [}



3.4 Computing Expectations by Conditioning 111

Example 3.14 (The Matching Rounds Problem) Suppose in Example 2.31 that
those choosing their own hats depart, while the others (those without a match)
put their selected hats in the center of the room, mix them up, and then res-
elect. Also, suppose that this process continues until each individual has his
own hat.

(a) Find E[R,,] where R, is the number of rounds that are necessary when # individuals
are initially present.

(b) Find E[S,] where S, is the total number of selections made by the 7 individuals,
n=>2.

(c) Find the expected number of false selections made by one of the # people, n > 2.

Solution: (a) It follows from the results of Example 2.31 that no matter how
many people remain there will, on average, be one match per round. Hence,
one might suggest that E[R,] = #. This turns out to be true, and an induction
proof will now be given. Because it is obvious that E[R] = 1, assume that
E[Ry] =k fork =1,...,n— 1. To compute E[R,], start by conditioning on
X, the number of matches that occur in the first round. This gives

E[R,] =) E[Rs|X, = ilP{X, = i}
i=0

Now, given a total of i matches in the initial round, the number of rounds
needed will equal 1 plus the number of rounds that are required when n — i
persons are to be matched with their hats. Therefore,

E[R,] =) (1 + E[R,_)P{X, = i}
i=0

=1+ E[R,P{X, = 0} + Y _ E[R,_jIP(X, = i}

=1

=1+ E[RuIP{Xs = 0} + ) _(n = )P{Xy = i}
i=1
by the induction hypothesis
=1+ E[R,P{X,; = 0} + (1 — P{X,, = 0}) — E[X,,]

= E[R,]P{X;, = 0} + n(1 — P{X,, = 0})
where the final equality used the result, established in Example 2.31, that

E[X,] = 1. Since the preceding equation implies that E[R,] = 7, the result
is proven.
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(b) For n > 2, conditioning on X,,, the number of matches in round 1, gives
n
E[Sy] = ) EISulXn = ilP{X, = i}
i=0

= Z(ﬂ + E[Su—iDP{X, = 1}
i=0

=n+ ) ElSu-ilP{Xy = i)
i=0

where E[Sg] = 0. To solve the preceding equation, rewrite it as
E[Su] =n + E[S,-x,]

Now, if there were exactly one match in each round, then it would take a total
of 1 +2 + .- +n=nm + 1)/2 selections. Thus, let us try a solution of
the form E[S,] = an + bn?*. For the preceding equation to be satisfied by a
solution of this type, for # > 2, we need

an + bn* = n + E[a(n — X)) + b(n — X,)?]
or, equivalently,
an + bn* = n + a(n — E[X,,]) + b(n2 —2nE[X,] + E[Xﬁ])

Now, using the results of Example 2.31 and Exercise 72 of Chapter 2 that
E[X,] = Var(X,,) = 1, the preceding will be satisfied if

an +bn* =n+an—a+ bn* —2nb + 2b
and this will be valid provided that b = 1/2,a = 1. That is,
E[S,]1=n+ n?/)2
satisfies the recursive equation for E[S,,].
The formal proof that E[S,] = #n + #*/2, n > 2, is obtained by induction
on 7. It is true when n = 2 (since, in this case, the number of selections is

twice the number of rounds and the number of rounds is a geometric random
variable with parameter p = 1/2). Now, the recursion gives

E[Sy] =7+ E[S,IP(X, = 0} + Y  E[S,_iIP{X, =i}
=1
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Hence, upon assuming that E[Sg] = E[S{] = 0, E[S,] = k + k?/2, for k =
2,...,n— 1 and using that P{X,, = n — 1} = 0, we see that

E[Sy] =7+ E[SyIP(Xy = 0} + Y _ [n—i + (n — )*/21P{X,, = i}
=1

=n+ E[S,]P{X,, = 0} + (n + n*/2)(1 — P{X,, = 0})
— (n 4 DE[X,] + E[X2]/2

Substituting the identities E[X,,] = 1, E[Xﬁ] = 2 in the preceding shows that
E[S,] =n + n*/2

and the induction proof is complete.
(c) If we let C; denote the number of hats chosen by personj, j = 1,...,7 then

n
> G=5,
j=1

Taking expectations, and using the fact that each C; has the same mean, yields
the result

EIG]1 = E[S,)/n =1+ n/2
Hence, the expected number of false selections by person j is

E[C; — 1] = n/2. u

Example 3.15 Independent trials, each of which is a success with probability p,
are performed until there are k consecutive successes. What is the mean number
of necessary trials?

Solution: Let N, denote the number of necessary trials to obtain k consecutive
successes, and let M, denote its mean. We will obtain a recursive equation for
M}, by conditioning on Nj_ 1, the number of trials needed for k£ — 1 consecutive
successes. This yields

My, = E[Ng] = E[E[Ng|Ng_1]]
Now,

E[NEINgp_1] = Np—1 + 1 + (1 = p)E[N,]
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where the preceding follows since if it takes Nj_; trials to obtain & — 1
consecutive successes, then either the next trial is a success and we have our
k in a row or it is a failure and we must begin anew. Taking expectations of
both sides of the preceding yields

My =M1 +1+ 1A -p)M,
or

1 M_
Mk=_+L
p p

Since N1, the time of the first success, is geometric with parameter p, we see that

1
M =~
p

and, recursively

1 1

MZ =—-+ =,
p o p*
1 1 1

My=-+=+—
pop* P

and, in general,

1 1 1

M=+ + 5+ +— n
p P p

Example 3.16 (Analyzing the Quick-Sort Algorithm) Suppose we are given a set
of n distinct values—x1,...,x,—and we desire to put these values in increas-
ing order or, as it is commonly called, to sort them. An efficient procedure for
accomplishing this is the quick-sort algorithm, which is defined recursively as
follows: When n = 2 the algorithm compares the two values and puts them
in the appropriate order. When # > 2 it starts by choosing at random one of
the n values—say, x;,—and then compares each of the other #n — 1 values with
x;, noting which are smaller and which are larger than x;. Letting S; denote the
set of elements smaller than x;, and S; the set of elements greater than x;, the
algorithm now sorts the set S; and the set S;. The final ordering, therefore, con-
sists of the ordered set of the elements in §;, then x;, and then the ordered set
of the elements in S;. For instance, suppose that the set of elements is 10, 5, 8,
2, 1, 4, 7. We start by choosing one of these values at random (that is, each
of the 7 values has probability of % of being chosen). Suppose, for instance,
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that the value 4 is chosen. We then compare 4 with each of the other six values
to obtain

{2,1}, 4, {10, 5, 8,7}
We now sort the set {2, 1} to obtain
1,2,4,{10,5,8,7}

Next we choose a value at random from {10, 5, 8, 7}—say 7 is chosen—and com-
pare each of the other three values with 7 to obtain

1,2,4,5,7,{10,8}
Finally, we sort {10, 8} to end up with
1,2,4,5,7,8,10

One measure of the effectiveness of this algorithm is the expected number of
comparisons that it makes. Let us denote by M,, the expected number of com-
parisons needed by the quick-sort algorithm to sort a set of n distinct values.
To obtain a recursion for M,, we condition on the rank of the initial value selected
to obtain

n

1

M, = Z E[number of comparisons|value selected is jth smallest];
=1

Now, if the initial value selected is the jth smallest, then the set of values smaller

than it is of size j — 1, and the set of values greater than it is of size #n — j. Hence,
as n — 1 comparisons with the initial value chosen must be made, we see that

n
1
M=) (=1 +Mj 1+ M, )~

=1
2 n—1
=n—1+=> Mg (since My =0)
n
k=1
or, equivalently,
n—1

nM, =nn—1) —i—ZZMk
k=1
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To solve the preceding, note that upon replacing # by # + 1 we obtain
n
"+ DMyy1 = (n+ Dn+2) " My
k=1

Hence, upon subtraction,

(n+ DHM,11 — nM,, = 2n + 2M,,
or

n+ DMy11 =+ 2)M,, + 2n

Therefore,

Mn+1_ 2n + Mn
n+2 m+Dm+2) n+1

Iterating this gives

Mn+1 2n 2(72 — 1) M,,_l

n+2=(n+1)(n+2)+n(n+1) n

n—1
n—=k .
22;)(71—1—1—/@)(714—2—/@) since M1 =0

Hence,

n—1
n—=~k
M”“22("+2)l§)(n+1—/e)(n+2—k)

i i
:2(n+2);m, n>1

Using the identity i/(i + 1)(i + 2) =2/ + 2)—1/(i + 1), we can approximate
M1 for large 7 as follows:

52 o1
M"+1:2(n+2)[zi+2_§i+1:|

i=1

n+22 n+1 1
~2(n+2)|:/ —dx—/ —dx]
3 X 2 X
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=2(n+ 2)[2log(n + 2) —log(n + 1) + log2 — 2log 3]

=2(n+2) [log(n+2) +10g:Ii + 10g2—210g3]

~2(n+2)log(n +2) [ |

Although we usually employ the conditional expectation identity to more easily
enable us to compute an unconditional expectation, in our next example we show
how it can sometimes be used to obtain the conditional expectation.

Example 3.17 In the match problem of Example 2.31 involving #, n > 1, indi-
viduals, find the conditional expected number of matches given that the first
person did not have a match.

Solution: Let X denote the number of matches, and let X7 equal 1 if the first
person has a match and 0 otherwise. Then,

E[X] = E[X|X1 = 0]P{X; = 0} + E[X|X1 = 1]P{X; = 1}

n—1 1
= E[X|X; = 0] — + E[X|X1 =1] -

But, from Example 2.31
E[X] =1

Moreover, given that the first person has a match, the expected number of
matches is equal to 1 plus the expected number of matches when 7 — 1 people
select among their own # — 1 hats, showing that

E[X|X; =1]=2
Therefore, we obtain the result

n—2

E[X|X;1=0]=
n—1

3.4.1 Computing Variances by Conditioning

Conditional expectations can also be used to compute the variance of a random
variable. Specifically, we can use

Var(X) = E[X?] — (E[X])*

and then use conditioning to obtain both E[X] and E[X?]. We illustrate this
technique by determining the variance of a geometric random variable.
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Example 3.18 (Variance of the Geometric Random Variable) Independent trials,
each resulting in a success with probability p, are performed in sequence. Let N
be the trial number of the first success. Find Var(N).

Solution: Let Y = 1 if the first trial results in a success, and Y = 0 otherwise.
Var(N) = E[N?] — (E[N])?

To calculate E[N?2] and E[N] we condition on Y. For instance,
E[N?] = E[E[N?|Y]]

However,

EIN?2lY =11 =1,
E[N2]Y = 0] = E[(1 + N)?]

These two equations are true since if the first trial results in a success, then
clearly N=1 and so N2=1. On the other hand, if the first trial results in
a failure, then the total number of trials necessary for the first success will
equal one (the first trial that results in failure) plus the necessary number of
additional trials. Since this latter quantity has the same distribution as N, we
get that E[N?|Y = 0] = E[(1 4+ N)?]. Hence, we see that

E[N?] = E[N?|Y = 1]P{Y = 1} + E[N?|Y = 0]P{Y = 0}
=p+ E[(1+ N)?1(1 —p)
=1+ (1 —p)ER2N + N?]

Since, as was shown in Example 3.11, E[N] = 1/p, this yields

2(1 —
E[N?] =1+ % + (1 - p)E[N?]
or
E[N?| = 2 —217
p
Therefore,

Var(N) = E[N?] — (E[N])?

p? P
_1-p
=
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Another way to use conditioning to obtain the variance of a random variable
is to apply the conditional variance formula. The conditional variance of X given
that Y = vy is defined by

Var(X|Y = y) = E[(X — E[X|Y = y)?|Y =]

That is, the conditional variance is defined in exactly the same manner as the
ordinary variance with the exception that all probabilities are determined con-
ditional on the event that Y = y. Expanding the right side of the preceding and
taking expectation term by term yields

Var(X|Y = y) = E[X?|Y = y] — (E[X|Y = y])*

Letting Var(X|Y) denote that function of Y whose value when Y=y is
Var(X|Y = y), we have the following result.

Proposition 3.1 (The Conditional Variance Formula)
Var(X) = E[Var(X|Y)] + Var(E[X|Y]) (3.8)
Proof.
E[Var(X|Y)] = E[E[X?|Y] - (E[X|Y])?]
= E[EIX?|Y]] — E[(EIX|Y])?]
= E[X?*] - E[(E[X|Y])?]
and

Var(E[X|Y]) = E[(E[X|Y])2] - (E[E[X|Y]])2
= E[(EIX|YD?] — (E[XD)?

Therefore,
E[Var(X|Y)] + Var(E[X|Y]) = E[X?] — (E[X])?

which completes the proof. [ ]

Example 3.19 (The Variance of a Compound Random Variable) Let Xj,
X3, ... be independent and identically distributed random variables with distri-
bution F having mean p and variance o2, and assume that they are independent
of the nonnegative integer valued random variable N. As noted in Example 3.11,
where its expected value was determined, the random variable § = Zf\il X; is
called a compound random variable. Find its variance.
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Solution: Whereas we could obtain E[S?] by conditioning on N, let us instead
use the conditional variance formula. Now,

N
Var(S|N = »n) = Var (ZX,-|N = n)

=1

n
= Var (ZX,WN = n)
i=1
n
= Var (Z Xi)
i=1

= 7102

By the same reasoning,
E[SIN =n]l=nu
Therefore,
Var(SIN) = No?, E[SIN]= Nu
and the conditional variance formula gives
Var(S) = E[No?] + Var(Nu) = 6*E[N] + p*Var(N)

If N is a Poisson random variable, then S = Zf\il X; is called a compound
Poisson random variable. Because the variance of a Poisson random variable
is equal to its mean, it follows that for a compound Poisson random variable
having E[N] = A

Var(S) = Ao + An? = AE[X?]
where X has the distribution F. [ ]

Example 3.20 (The Variance in the Matching Rounds Problem) Consider the
matching rounds problem of Example 3.14, and let V,, = Var(R,,) denote the
variance of the number of rounds needed when there are initially 7 people. Using
the conditional variance formula, we will show that

Vi=n, n>=2

The proof of the preceding is by induction on 7. To begin, note that when n = 2
the number of rounds needed is geometric with parameter p = 1/2 and so

1-p
V) = =2
pZ




3.4 Computing Expectations by Conditioning 121

So assume the induction hypothesis that

Vi=j, 2<j<n
and now consider the case when there are » individuals. If X is the number of
matches in the first round then, conditional on X, the number of rounds R,, is
distributed as 1 plus the number of rounds needed when there are initially 7 — X

individuals. Consequently,

E[R,;|X] =1+ E[R,_x]
=1+n—X byExample 3.14

Also, with Vj = 0,
Var(R,|X) = Var(R,—x) = V,_x
Hence, by the conditional variance formula

Vi = E[Var(R,|X)] + Var(E[R,|X])
= E[V,_x] + Var(X)

=YV, jP(X =) + Var(X)
j=0

= V,P(X =0) + YV, iP(X =) + Var(X)
j=1

Because P(X =n—1) =0, it follows from the preceding and the induction hypoth-
esis that

Va=V,P(X=0)+ Y (n—j)P(X =) + Var(X)
j=1
= V,P(X = 0) + n(1 — P(X = 0)) — E[X] + Var(X)

As it is easily shown (see Example 2.31 and Exercise 72 of Chapter 2) that E[X] =
Var(X) = 1, the preceding gives

V, = V,P(X = 0) + n(1 — P(X = 0))

thus proving the result. [ |
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3.5 Computing Probabilities by Conditioning
Not only can we obtain expectations by first conditioning on an appropriate
random variable, but we may also use this approach to compute probabilities.

To see this, let E denote an arbitrary event and define the indicator random
variable X by

X — 1, if E occurs
~ 10, if E does not occur

It follows from the definition of X that

E[X] = P(E),
E[X|Y =y] = P(E|Y =v), for any random variable Y

Therefore, from Equations (3.3a) and (3.3b) we obtain
P(E) =) P(E|Y =y)P(Y =y), if Yis discrete
y
oo
= / P(E|Y = y)fy(y) dy, if Y is continuous
—00
Example 3.21 Suppose that X and Y are independent continuous random vari-

ables having densities fx and fy, respectively. Compute P{X < Y}.

Solution: Conditioning on the value of Y yields

PIX<Y}= /_Z P{X < Y|Y =ylfy(y) dy
= fz P{X < y|Y = y}fy(y) dy
= [ rx <t dy
-/ Z Fx0)fy ) dy
where
B = [ yoo (o) d =

Example 3.22 An insurance company supposes that the number of accidents
that each of its policyholders will have in a year is Poisson distributed, with the
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mean of the Poisson depending on the policyholder. If the Poisson mean of a
randomly chosen policyholder has a gamma distribution with density function

g =xret, A=0

what is the probability that a randomly chosen policyholder has exactly 7 acci-
dents next year?

Solution: Let X denote the number of accidents that a randomly chosen pol-
icyholder has next year. Letting Y be the Poisson mean number of accidents
for this policyholder, then conditioning on Y yields

P{X =n} = /00 P{X =n|Y = A}g(h)dr
0

00 A
= / e re Tt da
0 n!
1 00
— ; A kn+l€_2A da

However, because

—=2A n+1
h()) = w’ P
(n+ 1!

is the density function of a gamma (7 + 2,2) random variable, its integral is 1.
Therefore,

1 /‘X’ 2072+ 2p)"H! dh— 2m+2 /Oo it =20 gy
0 (n+ 1)! n+ D! Jo

showing that

n+1

on+2 u

P(X =n} =

Example 3.23 Suppose that the number of people who visit a yoga studio each
day is a Poisson random variable with mean A. Suppose further that each person
who visits is, independently, female with probability p or male with probabil-
ity 1 —p. Find the joint probability that exactly # women and 7 men visit the
academy today.

Solution: Let N; denote the number of women and N; the number of men
who visit the academy today. Also, let N = N1 + N» be the total number of
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people who visit. Conditioning on N gives

o
P{Ny =n, Ny =m} =Y P{Nj =n, Ny =m|N =i} P{N =i}
i=0

Because P{N] =7, N, =m|N = i} =0 wheni # n + m, the preceding equation
yields

}Ln-i-m
P{N1 =n, Np =m} =P{Ny =n, Np =m|N =n+ m}e_k—
(n 4+ m)!

Given that n + m people visit it follows, because each of these n + m is
independently a woman with probability p, that the conditional probability
that 7 of them are women (and 7 are men) is just the binomial probability of
n successes in 7z + m trials. Therefore,

B B B n+m\_, o n+m
P{Ny| =n, Np =m} = < . )P (I —-p)”e o
_(n+m)! o —ap —r(1=p) ATpT
=y P =pTee (7 + m)!
_ —\p ()\P)n —A(1-p) ()‘-(1 - P))m
=€ n! ¢ m!

Because the preceding joint probability mass function factors into two prod-
ucts, one of which depends only on 7 and the other only on 1, it follows that
N1 and N are independent. Moreover, because

P{N; = n} = ZP{Nl =n, Ny = m}

m=0

_ 00" i": r-p CA =", 0)"
n! — m! n!

and, similarly,

a1 (L= )"

P{N2 = m} =e
m!

we can conclude that Ny and N are independent Poisson random variables
with respective means Ap and A(1 — p). Therefore, this example establishes the
important result that when each of a Poisson number of events is independently
classified either as being type 1 with probability p or type 2 with probability
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1 — p, then the numbers of type 1 and type 2 events are independent Poisson
random variables. u

The result of Example 3.23 generalizes to the case where each of a Poisson
distributed number of events, N, with mean X is independently classified as
being one of k types, with the probability that it is type i being p;,i = 1,...,k,
Zle pi = 1.If N; is the number that are classified as type i, then N1, ..., N are
independent Poisson random variables with respective means Ap1, ..., Apg. This
follows, since for n = Zle n;

P(N{ =n1,...,Np =np) =P(Ny =n1,...,Np =n,|[N =n)P(N =n)

n! m o
_711!~-~nk!p1 pk

e A" n!

k
=[1e 0" /ni!

i=1
where the second equality used that, given a total of # events, the numbers of
each type has a multinomial distribution with parameters (1, p1, ..., pp).

Example 3.24 (The Distribution of the Sum of Independent Bernoulli Random
Variables) Let X1,...,X, be independent Bernoulli random variables, with X;
having parameter p;, i = 1,...,n. Thatis, P{X; = 1} = p;, P{X; =0} = q; =
1 —p,. Suppose we want to compute the probability mass function of their sum,
X1 + -+ + X,;. To do so, we will recursively obtain the probability mass function
of X1 +--- + Xy, first for k = 1, then k = 2, and on up to k = n. To begin, let

Pr(n) =P{Xq + -+ Xp =7}
and note that
k k
Petk) =] ]pi» Pe(0)=]]a
i=1 i=1
For 0 < < k, conditioning on X}, yields the recursion
Pr()) =P{Xq+ - + Xp =7I1Xp = Upp + P{X1+ -+ + X = jI1 Xy = 0}qp
=P{X1+ -+ X1 =7 — 1Xp = 1}py
+ P{X1+ -+ X1 =/1X = O}y

=PX1+-+ X1 =7 —Upp + P{Xq + - + Xp1 =71
=pr Pro1G— 1) + qr Pr_q(h)
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Starting with P1(1) = p1, P1(0) = g1, the preceding equations can be recursively
solved to obtain the functions P2 (j), P3(j), up to P,(j). [ ]

Example 3.25 (The Best Prize Problem) Suppose that we are to be presented
with » distinct prizes in sequence. After being presented with a prize we must
immediately decide whether to accept it or reject it and consider the next prize.
The only information we are given when deciding whether to accept a prize is the
relative rank of that prize compared to ones already seen. That is, for instance,
when the fifth prize is presented we learn how it compares with the first four
prizes already seen. Suppose that once a prize is rejected it is lost, and that our
objective is to maximize the probability of obtaining the best prize. Assuming
that all 7! orderings of the prizes are equally likely, how well can we do?

Solution: Rather surprisingly, we can do quite well. To see this, fix a value
k,0 < k < n, and consider the strategy that rejects the first k prizes and then
accepts the first one that is better than all of those first k. Let P, (best) denote
the probability that the best prize is selected when this strategy is employed.
To compute this probability, condition on X, the position of the best prize.
This gives

Py(best) = Y Py(best|X = i)P(X = i)
i=1

1 n
=— Y Pg(best|X =1i)
n
i=1

Now, if the overall best prize is among the first k, then no prize is ever selected
under the strategy considered. On the other hand, if the best prize is in posi-
tion i, where i > k, then the best prize will be selected if the best of the first
k prizes is also the best of the first i — 1 prizes (for then none of the prizes in
positions k + 1,k + 2,...,i — 1 would be selected). Hence, we see that

Pp(best|X =i) =0, ifi<k
Py (best|X = i) = P{best of first i — 1 is among the first k}
—k/G—1), ifi>k

From the preceding, we obtain

ke 1
Pk(best):; Z |

i=k+1

k(11
%—/ —dx
n Jp x
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Now, if we consider the function
X n
g0 = ~log ()

then

o= dus(2) -1

and so
g =0=logn/x)=1=x=mn/e

Thus, since Py (best) &~ g(k), we see that the best strategy of the type considered
is to let the first 72/e prizes go by and then accept the first one to appear that
is better than all of those. In addition, since g(n/¢) = 1/e, the probability that
this strategy selects the best prize is approximately 1/e ~ 0.36788.

Remark Most students are quite surprised by the size of the probability of
obtaining the best prize, thinking that this probability would be close to 0 when
n is large. However, even without going through the calculations, a little thought
reveals that the probability of obtaining the best prize can be made to be rea-
sonably large. Consider the strategy of letting half of the prizes go by, and then
selecting the first one to appear that is better than all of those. The probability
that a prize is actually selected is the probability that the overall best is among
the second half and this is 1/2. In addition, given that a prize is selected, at the
time of selection that prize would have been the best of more than #/2 prizes
to have appeared, and would thus have probability of at least 1/2 of being the
overall best. Hence, the strategy of letting the first half of all prizes go by and then
accepting the first one that is better than all of those prizes results in a probability
greater than 1/4 of obtaining the best prize. [ |

Example 3.26 At a party # men take off their hats. The hats are then mixed up
and each man randomly selects one. We say that a match occurs if a man selects
his own hat. What is the probability of no matches? What is the probability of
exactly k£ matches?

Solution: Let E denote the event that no matches occur, and to make explicit
the dependence on 7, write P,, = P(E). We start by conditioning on whether
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or not the first man selects his own hat—call these events M and M¢. Then
P, = P(E) = P(E|M)P(M) + P(E|M)P(M°)
Clearly, P(E|M) = 0, and so

P, = P(E|MC)”;—1 (3.9)

Now, P(E|M¢) is the probability of no matches when # — 1 men select from a
set of # — 1 hats that does not contain the hat of one of these men. This can
happen in either of two mutually exclusive ways. Either there are no matches
and the extra man does not select the extra hat (this being the hat of the man
that chose first), or there are no matches and the extra man does select the extra
hat. The probability of the first of these events is just P,_1, which is seen by
regarding the extra hat as “belonging” to the extra man. Because the second
event has probability [1/(z — 1)]P,_3, we have

1
P(ElMC) =P, 1+ —=Py2
n—1

and thus, from Equation (3.9),

n—1 1
P, = Py 1+ =P,
n n

or, equivalently,
1
Py — Py Z_Z(Pn—l —Py2) (310)

However, because P,, is the probability of no matches when 7 men select among
their own hats, we have

P =0, P)=

D=

and so, from Equation (3.10),

(P2 — Py) 1 1 1
P3_P2:_T=—§ or P3=Z_§’

(P3—Py) 1 1 1 1
Pambi=——g— =g o Pi=5-5+5

and, in general, we see that
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To obtain the probability of exactly k matches, we consider any fixed group
of k men. The probability that they, and only they, select their own hats is

11 1 P _ (n—k)!
nn—lu.n—(k—l) nok =

! Pn—k

where P,_; is the conditional probability that the other #» — k men, selecting
among their own hats, have no matches. Because there are (}) choices of a set
of k men, the desired probability of exactly k matches is

O R
Py 20 30 T (n—k)
k! k!

which, for # large, is approximately equal to e~ /k!.

Remark The recursive equation, Equation (3.10), could also have been obtained
by using the concept of a cycle, where we say that the sequence of distinct individu-
alsii,i,. .., i, constitutes a cycle if i1 chooses i’s hat, 75 chooses i3’s hat, ..., i,_4
chooses #;’s hat, and i, chooses i1’s hat. Note that every individual is part of a
cycle, and that a cycle of size £ = 1 occurs when someone chooses his or her own
hat. With E being, as before, the event that no matches occur, it follows upon
conditioning on the size of the cycle containing a specified person, say person 1,
that

P, =P(E)=>_ PE|C=kPC=k) (3.11)
k=1

where C is the size of the cycle that contains person 1. Now, call person 1 the
first person, and note that C = k if the first person does not choose 1’s hat;
the person whose hat was chosen by the first person—call this person the second
person—does not choose 1°s hat; the person whose hat was chosen by the second
person—call this person the third person—does not choose 1’s hat; .. . ., the person
whose hat was chosen by the (k — 1)st person does choose 1’s hat. Consequently,

n—1n-2 n—k+1 1 _1
n—1 n—k+2n—k+1 n

P(C=k) = (3.12)

That is, the size of the cycle that contains a specified person is equally likely to
be any of the values 1,2, ...,7n. Moreover, since C = 1 means that 1 chooses his
or her own hat, it follows that

P(EIC=1)=0 (3.13)
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On the other hand, if C = k, then the set of hats chosen by the k individuals
in this cycle is exactly the set of hats of these individuals. Hence, conditional on
C = k, the problem reduces to determining the probability of no matches when
n — k people randomly choose among their own 7 — k hats. Therefore, for k > 1

PEIC=k) =P,
Substituting (3.12), (3.13), and (3.14) back into Equation (3.11) gives

1 n
P, =~ > Pug (3.14)
k=2
which is easily shown to be equivalent to Equation (3.10). [ ]

Example 3.27 (The Ballot Problem) In an election, candidate A receives n votes,
and candidate B receives m votes where 7 > m. Assuming that all orderings are
equally likely, show that the probability that A is always ahead in the count of
votes is (n — m)/(n + m).

Solution: Let P, ,, denote the desired probability. By conditioning on which
candidate receives the last vote counted we have

P, m = P{A always ahead|A receives last vote}
n

+ P{A always ahead|B receives last vote}
n—+m

Now, given that A receives the last vote, we can see that the probability that A
is always ahead is the same as if A had received a total of # — 1 and B a total
of m votes. Because a similar result is true when we are given that B receives
the last vote, we see from the preceding that

n m
Pn,m = 7+ mPn—l,m + mPn,m—l (315)

We can now prove that P, ,, = (n — m)/(n + m) by induction on 7 + m. As
it is true when # 4+ m = 1, that is, P19 = 1, assume it whenever # + m = k.
Then when #n + m = k + 1, we have by Equation (3.15) and the induction
hypothesis that

n n—1—-—m m n—m+1
Pn,m:
n+mn—1+m m+nn+m—1
_n—m
_n—i—m

and the result is proven. [ |
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The ballot problem has some interesting applications. For example, consider
successive flips of a coin that always land on “heads” with probability p, and let
us determine the probability distribution of the first time, after beginning, that
the total number of heads is equal to the total number of tails. The probability
that the first time this occurs is at time 27 can be obtained by first conditioning
on the total number of heads in the first 27 trials. This yields

P{first time equal = 27}

= P{first time equal = 2#|n heads in first 27} (2:)17"(1 —-p)"

Now, given a total of # heads in the first 2 flips we can see that all possible
orderings of the 7 heads and # tails are equally likely, and thus the preceding
conditional probability is equivalent to the probability that in an election, in
which each candidate receives 7 votes, one of the candidates is always ahead
in the counting until the last vote (which ties them). But by conditioning on
whomever receives the last vote, we see that this is just the probability in the
ballot problem when m = n — 1. Hence,
. 2n
Pffirst time equal = 2n} = P, ,,_1 ( i )p"(l —p)"

2
( ")p”(l —py"
_ n

a 2n—1

Suppose now that we wanted to determine the probability that the first time
there are i more heads than tails occurs after the (21 + #)th flip. Now, in order
for this to be the case, the following two events must occur:

(a) The first 21 + i tosses result in # + i heads and # tails; and
(b) The order in which the # + 7 heads and # tails occur is such that the number of heads
is never i more than the number of tails until after the final flip.

Now, it is easy to see that event (b) will occur if and only if the order of appearance
of the # + i heads and # tails is such that starting from the final flip and working
backwards heads is always in the lead. For instance, if there are 4 heads and 2
tails (n = 2, i = 2), then the outcome ____TH would not suffice because there
would have been 2 more heads than tails sometime before the sixth flip (since the
first 4 flips resulted in 2 more heads than tails).

Now, the probability of the event specified in (a) is just the binomial probability
of getting # + 7 heads and # tails in 2n + i flips of the coin.

We must now determine the conditional probability of the event specified in
(b) given that there are # + i heads and # tails in the first 27 + i flips. To do so,
note first that given that there are a total of # + i heads and 7 tails in the first
2n + i flips, all possible orderings of these flips are equally likely. As a result,
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the conditional probability of (b) given (a) is just the probability that a random

ordering of # + i heads and # tails will, when counted in reverse order, always

have more heads than tails. Since all reverse orderings are also equally likely, it

follows from the ballot problem that this conditional probability is i/(2n + 7).
That is, we have shown that

2 ] .
Pla) = ( "; ’)p"*’(l — )

P{bla} =

2n+1i
and so

i
2n+i

P{first time heads leads by i is after flip 272 + i} = <2nn+ l)p"”(l —-p)

Example 3.28 Let Uy, Uy, ... be a sequence of independent uniform (0, 1) ran-
dom variables, and let

N =min{n >2: U, > U,,_1}
and
M=mn{n>1:U;+---+ U, > 1}

That is, N is the index of the first uniform random variable that is larger than
its immediate predecessor, and M is the number of uniform random variables
we need sum to exceed 1. Surprisingly, N and M have the same probability
distribution, and their common mean is e!

Solution: It is easy to find the distribution of N. Since all n! possible orderings
of Uq,..., U, are equally likely, we have

P{N >n}=P{U; > Uy >--->U,} =1/n!

To show that P{M > n} = 1/n!, we will use mathematical induction. However,
to give ourselves a stronger result to use as the induction hypothesis, we will
prove the stronger result that for 0 < x < 1,P{M(x) > n} = x"/nl,n > 1,
where

M(x)=min{fn > 1: Uy + --- + U,, > x}

is the minimum number of uniforms that need be summed to exceed x. To
prove that P{M(x) > n} = x"/n!, note first that it is true for n = 1 since

P{M(x) > 1} =P{U; < x} =x
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So assume that for all 0 < x < 1, P{M(x) > n} = x"/n!. To determine
P{M(x) > n + 1}, condition on Uj to obtain

1
P{M(x)>n+l}=/ P{M(x) > n+ 1|U; =y} dy
0
=/ PIM(x) > 1+ 1|U; = y) dy
0
:/xP{M(x—y)>n} dy
0

= / w dy by the induction hypothesis
0 n.

where the third equality of the preceding follows from the fact that given Uy =
y, M(x) is distributed as 1 plus the number of uniforms that need be summed
to exceed x — y. Thus, the induction is complete and we have shown that for
O<x<l,n>1,

P{M(x) > n} = x"" /n!

Letting x = 1 shows that N and M have the same distribution. Finally, we have
o o
E[M]:E[N]:ZP{N>71}=Z 1/nl=e [}
n=0 n=0

Example 3.29 Let X1, X3,... be independent continuous random variables with
a common distribution function F and density f = F’, and suppose that they are
to be observed one at a time in sequence. Let

N = min{n > 2: X, = second largest of X1,...,X,}
and let

M = min{n > 2: X,, = second smallest of X1,...,X,]}
Which random variable—Xp;, the first random variable which when observed

is the second largest of those that have been seen, or X}y, the first one that on
observation is the second smallest to have been seen—tends to be larger?
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Solution: To calculate the probability density function of Xy, it is natural to
condition on the value of Nj so let us start by determining its probability mass
function. Now, if we let

A; = {X; # second largest of X1,...,X;}, i>2

then, for n > 2,
PN = n} = P(AyA3 -+~ Ap_1AS)

Since the X; are independent and identically distributed it follows that, for
any m > 1, knowing the rank ordering of the variables X1,..., X, yields no
information about the set of m values {Xi,...,X,,}. That is, for instance,
knowing that X; < X gives us no information about the values of min(X1, X»)
or max(X1, X>). It follows from this that the events A;, i > 2 are independent.
Also, since X; is equally likely to be the largest, or the second largest, ..., or
the ith largest of X1,..., X it follows that P{A;} = (i — 1)/i, i > 2. Therefore,
we see that

123 n-21 1

N = = 33 i " - D)

Hence, conditioning on N yields that the probability density function of Xy is
as follows:

o]

1
fen@ =) e LN

n=2

Now, since the ordering of the variables X1, ..., X, is independent of the set
of values {Xy,...,X,}, it follows that the event {N =#} is independent of
{X1,...,X,}. From this, it follows that the conditional distribution of X given
that N =# is equal to the distribution of the second largest from a set of # ran-
dom variables having distribution F. Thus, using the results of Example 2.38
concerning the density function of such a random variable, we obtain

]

B 1 n! "2
fn (%) = ; =D = Fe T 1 = Fe)

=f(@) (1 —F@x) Y (F)

=0

=f(x)

Thus, rather surprisingly, Xy has the same distribution as X1, namely, F. Also,
if we now let W; = —X;, i > 1, then W) will be the value of the first W;, which
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on observation is the second largest of all those that have been seen. Hence,
by the preceding, it follows that W has the same distribution as Wy. That is,
— X has the same distribution as — X, and so X also has distribution F! In
other words, whether we stop at the first random variable that is the second
largest of all those presently observed, or we stop at the first one that is the
second smallest of all those presently observed, we will end up with a random
variable having distribution F.

Whereas the preceding result is quite surprising, it is a special case of a
general result known as Ignatov’s theorem, which yields even more surprises.
For instance, for k > 1, let

N, = min{n > k: X,, = kth largest of X1,...,X,}

Therefore, N, is what we previously called N, and Xy, is the first random
variable that upon observation is the kth largest of all those observed up to
this point. It can then be shown by a similar argument as used in the preceding
that Xy, has distribution function F for all k (see Exercise 82 at the end of this
chapter). In addition, it can be shown that the random variables X, k > 1
are independent. (A statement and proof of Ignatov’s theorem in the case of
discrete random variables are given in Section 3.6.6.) [ ]

Example 3.30 A population consists of 7 families. Let X; denote the size of
family j, and suppose that X1, ..., X,, are independent random variables having
the common probability mass function

pk)=PX;=h), > pp=1
k=1

with mean u = X kpy. Suppose a member of the population is randomly chosen,
in that the selection is equally likely to be any of the members of the population,
and let S; be the event that the selected individual is from a family of size i. Argue
that

ipi

P(S;)) > —as m— o©
m

Solution: A heuristic argument for the preceding formula is that because each
family is of size i with probability p;, it follows that there are approximately
mp; families of size i when m is large. Thus, i#mp; members of the population

come from a family of size i, implying that the probability that the selected
djimp; o

For a more formal argument, let N; denote the number of families that are
of size i. That is,

individual is from a family of size i is approximately

N; =number {k:k=1,...,m: X, =1}
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Then, conditional on X = (X1, ..., X;»)
iN;

PSiIX) = STX
k=1

Hence,

P(S;) = E[P(Si1X)]

e ]
Zk:1 Xk

_ E|: iNi/m i|
- 22;1 Xp/m

Because each family is independently of size i with probability p;, it follows by

the strong law of large numbers that N;/m, the fraction of families that are of

size i, converges to p; as m — o0o. Also by the strong law of large numbers,

Y iy Xg/m — E[X] = p as m — oo. Consequently, with probability 1,
iNi/m — b as m — o0

221:1 Xp/m H

Because the random variable % converges to % so does its expecta-
k=1

tion, which proves the result. (While it is now always the case that lim,,_ oo

Y,, = ¢ implies that lim,,_, o E[Y;,] = ¢, the implication is true when the Y,

are uniformly bounded random variables, and the random variables Z"iNiXk
k=1

are all between 0 and 1.) [ ]

The use of conditioning can also result in a more computationally efficient
solution than a direct calculation. This is illustrated by our next example.

Example 3.31 Consider 7 independent trials in which each trial results in one
of the outcomes 1,...,k with respective probabilities p1,...,pg, Zle pi=1.
Suppose further that #n > k, and that we are interested in determining the prob-
ability that each outcome occurs at least once. If we let A; denote the event that
outcome ¢ does not occur in any of the # trials, then the desired probability is
1- P(Uf—q=1 A}), and it can be obtained by using the inclusion-exclusion theorem
as follows:

k k
P UAi = Z P(A)) — ZZ P(A;A))
i=1 i=1 i i

+ 350 PAAAY — -+ (~DFIPA; - Ap)

i =i k>j



3.5 Computing Probabilities by Conditioning 137

where
P(A) =1 —-p)"
PAA)) = (1 —pi—p))”, i<j
PAAA) = —pi—pj—pp)", i<j<k

The difficulty with the preceding solution is that its computation requires the
calculation of 2% — 1 terms, each of which is a quantity raised to the power 7.
The preceding solution is thus computationally inefficient when k is large. Let us
now see how to make use of conditioning to obtain an efficient solution.

To begin, note that if we start by conditioning on Nj, (the number of times
that outcome k occurs) then when N}, > 0 the resulting conditional probability
will equal the probability that all of the outcomes 1, ...,k — 1 occur at least once
when 7 — N, trials are performed, and each results in outcome 7 with probability
pMZ;:fph i=1,...,k— 1. We could then use a similar conditioning step on
these terms.

To follow through on the preceding idea, let A,,, ,, for m < n, r < k, denote the
event that each of the outcomes 1, ..., 7 occurs at least once when m independent
trials are performed, where each trial results in one of the outcomes 1,...,7
with respective probabilities p1 /Py, ..., /Py, where P, = Z,Lﬂ?j- Let P(m,r) =
P(A,) and note that P(n, k) is the desired probability. To obtain an expression
for P(m,r), condition on the number of times that outcome r occurs. This gives

m i m—
P(m,r) = ZP{AW,JV occurs | times}(m> (%) (1 - %)

=0 4

m—r+1 j m—j
_ =™V (B (1-Er
S () () (8)

Starting with

Pm,1)=1, ifm>1
Pm,1)=0, ifm=0

we can use the preceding recursion to obtain the quantities P(m,2), m =
2,...,n — (k — 2), and then the quantities P(m,3), m = 3,...,n — (k — 3),
and so on, up to P(m,k — 1), m = k—1,...,n— 1. At this point we can then use
the recursion to compute P(#, k). It is not difficult to check that the amount of
computation needed is a polynomial function of k£, which will be much smaller
than 2% when k is large. [ |

As noted previously, conditional expectations given that Y = y are exactly
the same as ordinary expectations except that all probabilities are computed
conditional on the event that Y = y. As such, conditional expectations satisfy all
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the properties of ordinary expectations. For instance, the analog of

ZE[X|W = w|P{W =w)}, if W is discrete
EX1=1%
/ E[X|W = wlfww) dw, if W is continuous

is
E[X|Y =y]
ZE[XHX/ =w,Y =y]P{W =w|Y =y}, if Wis discrete
w

/ EXIW =w,Y = ylfw)y(wly) dw, if W is continuous
w

If E[X|Y, W] is defined to be that function of Y and W that, when Y =y and
W = w, is equal to E[X|Y = y, W = w], then the preceding can be written as

E[X|Y] = E[E[X|Y, W]|Y]

Example 3.32 An automobile insurance company classifies each of its policy-
holders as being of one of the types i = 1,...,k. It supposes that the numbers
of accidents that a type i policyholder has in successive years are independent
Poisson random variables with mean A;,i = 1,...,k. The probability that a
newly insured policyholder is type i is p;, Zle pi = 1. Given that a policyholder
had 7 accidents in her first year, what is the expected number that she has in her
second year? What is the conditional probability that she has 7 accidents in her
second year?

Solution: Let N; denote the number of accidents the policyholder has in year
i,i =1,2. To obtain E[N;|N; = #n], condition on her risk type T.

k
E[NaINy =nl= Y _E[Na|T =/,Ny = n]P{T = jIN; = n}
j=1
k
=Y EIN2|T =/IP{T = j|N1 = n}
j=1

k
=Y XP(T =jIN; =n)
=1

]
k —Aiynt+l, .
_ Z;‘:l e /)‘7' pj

E
2j=1€ 1D
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where the final equality used that

P{T =j,N; = n}
P(N; = n)

_ PN =aT=/IP(T=j)
Y% PNy =u|T = j)P(T =}

P(T = jINi = n} =

pje i n!

k —Aj
27:1 p/e 7)\.7/7’1'

The conditional probability that the policyholder has 7 accidents in year 2
given that she had 7 in year 1 can also be obtained by conditioning on her type.

k
P{Np =m|Ny =n} = Y P(Ny =m|T =j,N; = m}P(T = j|N; = n}

m

j=1
k
Z 1 DT =jINy =)

k —2hiymtn,
2j—1€ AT

PRy
m' Z/:l e 7)\.;1pl

Another way to calculate P{N, = m|Ny = n} is first to write

P{Ny =m,N1 = n}

P{Ny = m|N1 =n} = PNy = 1]

and then determine both the numerator and denominator by conditioning on T.
This yields
S P{Ny = m,Ni = u|T = j}p;

P{Ny = m|N1 =n} = 3 -
SE L PNy = #lT = jip;

koM
C Xjmie am e ah;
ko =k 7
dj—1€ b

k —2; g mn,
. Z;‘:le 7)‘/ pj -
- ko~

ml Yy e IAp;




140 Conditional Probability and Conditional Expectation

3.6 Some Applications

3.6.1 A List Model

Consider # elements—e1, e3, . .., e,—that are initially arranged in some ordered
list. At each unit of time a request is made for one of these elements—e; being
requested, independently of the past, with probability P;. After being requested
the element is then moved to the front of the list. That is, for instance, if the
present ordering is e1, €2, e3, e4 and e3 is requested, then the next ordering is
€3, €1, €2, €4.

We are interested in determining the expected position of the element requested
after this process has been in operation for a long time. However, before com-
puting this expectation, let us note two possible applications of this model. In the
first we have a stack of reference books. At each unit of time a book is randomly
selected and is then returned to the top of the stack. In the second application we
have a computer receiving requests for elements stored in its memory. The request
probabilities for the elements may not be known, so to reduce the average time it
takes the computer to locate the element requested (which is proportional to the
position of the requested element if the computer locates the element by starting
at the beginning and then going down the list), the computer is programmed to
replace the requested element at the beginning of the list.

To compute the expected position of the element requested, we start by con-
ditioning on which element is selected. This yields

E [ position of element requested ]

n
= Z E [ position|e; is selected 1P;
i=1

n
= Z E [ position of ¢;|e; is selected 1P;
i=1

n
=Y El[position of ¢; |P; (3.16)
i=1

where the final equality used that the position of ¢; and the event that ¢; is selected
are independent because, regardless of its position, ¢; is selected with probabil-
ity P;.

Now,

position of ¢; = 1 + Z I;
j#i
where

I— 1, if ¢j precedes e;
7710, otherwise
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and so,

E[position of ¢;1=1 + Z E[I;]
j#i
=1+ Z Pfe;j precedes e;} (3.17)
j#i
To compute P{e; precedes e;}, note that e; will precede e; if the most recent request

for either of them was for e;. But given that a request is for either ¢; or e;, the
probability that it is for e; is

Plejle; or ¢} = 5
ejle; or ej} = P+,
and, thus,
P.
Pfe; precedes ¢;} = P —ijP
i j

Hence, from Equations (3.16) and (3.17) we see that

p;
P, + P,’

n
E{position of element requested} = 1 + Z P; Z
i=1 i

This list model will be further analyzed in Section 4.8, where we will assume a
different reordering rule—namely, that the element requested is moved one closer
to the front of the list as opposed to being moved to the front of the list as assumed
here. We will show there that the average position of the requested element is
less under the one-closer rule than it is under the front-of-the-line rule.

3.6.2 A Random Graph

A graph consists of a set V of elements called nodes and a set A of pairs of
elements of V called arcs. A graph can be represented graphically by drawing
circles for nodes and drawing lines between nodes i and j whenever (i,7) is an
arc. For instance if V = {1,2,3,4} and A = {(1,2),(1,4), (2, 3),(1,2),(3,3)},
then we can represent this graph as shown in Figure 3.1. Note that the arcs have
no direction (a graph in which the arcs are ordered pairs of nodes is called a
directed graph); and that in the figure there are multiple arcs connecting nodes 1
and 2, and a self-arc (called a self-loop) from node 3 to itself.

We say that there exists a path from node i to node j, i # j, if there exists
a sequence of nodes i,i1,...,i,j such that (4,i1), (i1,42),..., (is,j) are all arcs.
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N

Figure 3.2 A disconnected graph.

Figure 3.1 A graph.

If there is a path between each of the (5) distinct pair of nodes we say that

the graph is connected. The graph in Figure 3.1 is connected but the graph in
Figure 3.2 is not. Consider now the following graph where V = {1,2,...,#n} and
A = {(1,X(@i)), i = 1,...,n} where the X (i) are independent random variables
such that

P{X@G) =j} = %, j=12,...,n
In other words from each node i we select at random one of the # nodes (including
possibly the node i itself) and then join node i and the selected node with an arc.
Such a graph is commonly referred to as a random graph.

We are interested in determining the probability that the random graph so
obtained is connected. As a prelude, starting at some node—say, node 1—let us
follow the sequence of nodes, 1, X(1), X?(1),..., where X"*(1) = X(X"~1(1));
and define N to equal the first k£ such that Xk(1) is not a new node. In other
words,

N = 1st k such that X*(1) € {1, X(1),..., X1 (1)}

We can represent this as shown in Figure 3.3 where the arc from XN=1(1) goes
back to a node previously visited.
To obtain the probability that the graph is connected we first condition on N
to obtain
n
P{graph is connected} = Z P{connected|N = k}P{N = k} (3.18)
k=1
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)

N P -
<D (X)) ) () X

Figure 3.3

Now, given that N = k, the k nodes 1, X(1),...,X* 1(1) are connected to each
other, and there are no other arcs emanating out of these nodes. In other words,
if we regard these k nodes as being one supernode, the situation is the same as if
we had one supernode and # — k ordinary nodes with arcs emanating from the
ordinary nodes—each arc going into the supernode with probability k/n. The
solution in this situation is obtained from Lemma 3.2 by taking r = n — k.

Lemma 3.2 Given a random graph consisting of nodes 0,1,...,7 and r arcs—
namely, (i, Y;),i=1,...,r, where

1
j  with probability ——, j=1,...,r

Y; = 7 —i/; k’
0 with probability P
then
P{graph is connected} = ——

r+k

(In other words, for the preceding graph there are » + 1 nodes— ordinary
nodes and one supernode. Out of each ordinary node an arc is chosen. The arc
goes to the supernode with probability k/(r + k) and to each of the ordinary ones
with probability 1/(r + k). There is no arc emanating out of the supernode.)

Proof. The proof is by induction on r. As it is true when » = 1 for any &, assume
it true for all values less than r. Now, in the case under consideration, let us first
condition on the number of arcs (j, ¥;) for which Y; = 0. This yields

P{connected}

= Z P{connected|i of the Y; = O}(:) (r—i—ik) <1’—|—Lk> (3.19)

i=0

Now, given that exactly i of the arcs are into the supernode (see Figure 3.4), the
situation for the remaining r — i arcs which do not go into the supernode is the
same as if we had 7 — i ordinary nodes and one supernode with an arc going
out of each of the ordinary nodes—into the supernode with probability i/7 and
into each ordinary node with probability 1/r. But by the induction hypothesis
the probability that this would lead to a connected graph is i/r.
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o

o

Figure 3.4 The situation given that 7 of the r arcs are into the supernode.

Hence,
P{connected|i of the Y; = 0} = !
,

and from Equation (3.19)

"ifr ko
P{connected} = Z(; ;(Z) <r n k>

+k
1 ) .
=—-E |:b1nom1al <r, >i|
7 r+k

_ k
T r+k

()

which completes the proof of the lemma.

Hence, as the situation given N =k is exactly as described by Lemma 3.2 when

r = n — k, we see that, for the original graph,

P{graph is connected|N = k} = k
n

and, from Equation (3.18),

E(N
P{graph is connected} = EN)
n

To compute E(N) we use the identity

o0

E(N) = Z P{N > i}
i=1

(3.20)
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which can be proved by defining indicator variables I;, i > 1, by

1, ifi<N

I; =
! 0, ifi>N

=> PN >i) (3.21)

Now, the event {N > i} occurs if the nodes 1, X(1),..., X" ~1(1) are all distinct.
Hence,

=) (-=2) (m—i+1)
=— e .
(n—1)!

(n —i)ni—1

PIN > i}

and so, from Equations (3.20) and (3.21),

- 1
P{graph is connected} = (n — 1)! Z —
= (n—1in
(n— 112w . .
=——=2 & byj=n—i (3.22)
=0

We can also use Equation (3.22) to obtain a simple approximate expression
for the probability that the graph is connected when # is large. To do so, we first
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note that if X is a Poisson random variable with mean #», then

n—1 ni
P{X < n} = €_n —'
=0

Since a Poisson random variable with mean 7 can be regarded as being the sum
of n independent Poisson random variables each with mean 1, it follows from the
central limit theorem that for # large such a random variable has approximately
a normal distribution and as such has probability % of being less than its mean.
That is, for n large,

P{X<n}%%

and so for # large,
W e
25~ 7

Hence, from Equation (3.22), for # large,

e"(n—1)!

P{graph is connected} ~ P
n

By employing an approximation due to Stirling that states that for z large,

nl ~ nt 2o 20

we see that, for n large,

—1\"
P{graph is connected} ~ 3 T D e (n )
n— n

—-1\”" 1\"
lim <n > = lim (1 - —) =1
n— 00 n n— 00 n

we see that, for # large,

P{graph i ted) i
raph is connected} ~ | ——
grap 20— 1)

Now a graph is said to consist of 7 connected components if its nodes can be
partitioned into 7 subsets so that each of the subsets is connected and there are
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Figure 3.5 A graph having three connected components.

no arcs between nodes in different subsets. For instance, the graph in Figure 3.5
consists of three connected components—namely, {1, 2, 3}, {4, 5}, and {6}. Let C
denote the number of connected components of our random graph and let

P,(i) = P{C = i}

where we use the notation P, (i) to make explicit the dependence on 7, the number
of nodes. Since a connected graph is by definition a graph consisting of exactly
one component, from Equation (3.22) we have

P,(1) = P{C = 1}

G =y

=0/

(3.23)

To obtain P,(2), the probability of exactly two components, let us first fix atten-
tion on some particular node—say, node 1. In order that a given set of £ — 1
other nodes—say, nodes 2, ..., k—will along with node 1 constitute one con-
nected component, and the remaining # — k a second connected component, we
must have

(i) X@) €{1,2,...,k},foralli=1,... k.

(i) X@) efk+1,...,n},foralli=k+1,...,n.

(iii) The nodes 1,2,...,k form a connected subgraph.
(iv) Thenodes k + 1,...,7n form a connected subgraph.

The probability of the preceding occurring is clearly

k k _k n—k
(—) (" ) PL(1)P,_i(1)
n n

and because there are (Zj) ways of choosing a set of £ — 1 nodes from the nodes
2 through n, we have

n—1

_1 k k _k n—k
P2 =) (Z B 1) (;) (" - ) Pe(1)P,_(1)

k=1




148 Conditional Probability and Conditional Expectation

Figure 3.6 A cycle.

and so P,(2) can be computed from Equation (3.23). In general, the recursive
formula for P, (i) is given by

n—i+1 k n—k
-1\ [k —k
Pyi)= ) (Z ~ 1) (;) (" - ) PPy (i — 1)

k=1

To compute E[C], the expected number of connected components, first note that
every connected component of our random graph must contain exactly one cycle
(a cycle is a set of arcs of the form (i, 1), (i1,42),..., (le—1 i), (ig,?) for distinct
nodes 7,i1,...,i). For example, Figure 3.6 depicts a cycle.

The fact that every connected component of our random graph must contain
exactly one cycle is most easily proved by noting that if the connected component
consists of 7 nodes, then it must also have 7 arcs and, hence, must contain exactly
one cycle (why?). Thus, we see that

E[C] = E[number of cycles]
= E[Z 1(5)]
S

= EU®)]
N

where the sum is over all subsets S C {1,2,...,#} and

1, if the nodes in S are all the nodes of a cycle

I(S):{

0, otherwise
Now, if S consists of k nodes, say 1,...,k, then
E[1(S)] = P{1,X(1),... ,inl(l) are all distinct and contained in

1,...,kand X*(1) = 1}
k—1k-2 11 (k-1

n n nn nk
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Hence, because there are (Z) subsets of size k we see that

z k—1)!
E[C]:Z(Z>(—)

k
k=1 "

3.6.3 Uniform Priors, Polya’s Urn Model, and Bose-Einstein Statistics

Suppose that # independent trials, each of which is a success with probability p,
are performed. If we let X denote the total number of successes, then X is a
binomial random variable such that

P{X = kip} = (Z) kA —py % k=0,1,...,n

However, let us now suppose that whereas the trials all have the same success
probability p, its value is not predetermined but is chosen according to a uniform
distribution on (0, 1). (For instance, a coin may be chosen at random from a huge
bin of coins representing a uniform spread over all possible values of p, the coin’s
probability of coming up heads. The chosen coin is then flipped # times.) In this
case, by conditioning on the actual value of p, we have

1
PIX = k) = /0 PIX = kip}f (0) dp

tin k n—k
=f <k>p(1—p) dp
0

Now, it can be shown that

1 R\(n — k)!
kA —pyrhdp = ——— 24
| ot —prtp =S (324
and thus
[\ k= R)!
rx=h= ()55
1

:m, k:o,l,...,ﬂ (3'2‘5)

In other words, each of the # + 1 possible values of X is equally likely.
As an alternate way of describing the preceding experiment, let us compute the
conditional probability that the (» + 1)st trial will result in a success given a total
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of k successes (and r — k failures) in the first 7 trials.

P{(r + 1)st trial is a success|k successes in first 7}

P{(r + 1)st is a success, k successes in first r trials}

P{k successes in first r trials}

_ fol P{(r + 1)st is a success, k in first 7|p} dp
o 1/(r+ 1)

1
=(r+ 1)/ (,:)pk“(l —p)*dp
0

E+ DI — k) .
= (r+ 1)(2)% by Equation (3.24)

_k+1
T r42

(3.26)

That is, if the first 7 trials result in k successes, then the next trial will be a success
with probability (k + 1)/(r + 2).

It follows from Equation (3.26) that an alternative description of the stochastic
process of the successive outcomes of the trials can be described as follows: There
is an urn that initially contains one white and one black ball. At each stage a ball
is randomly drawn and is then replaced along with another ball of the same color.
Thus, for instance, if of the first r balls drawn, k were white, then the urn at the
time of the (r 4+ 1)th draw would consist of & + 1 white and r — k + 1 black, and
thus the next ball would be white with probability (k + 1)/(r + 2). If we identify
the drawing of a white ball with a successful trial, then we see that this yields an
alternate description of the original model. This latter urn model is called Polya’s
urn model.

Remarks

(i) In the special case when k = r, Equation (3.26) is sometimes called Laplace’s rule
of succession, after the French mathematician Pierre de Laplace. In Laplace’s era,
this “rule” provoked much controversy, for people attempted to employ it in diverse
situations where its validity was questionable. For instance, it was used to justify
such propositions as “If you have dined twice at a restaurant and both meals were
good, then the next meal also will be good with probability 5,” and “Since the
sun has risen the past 1,826,213 days, so will it rise tomorrow with probability
1,826,214/1,826,215.” The trouble with such claims resides in the fact that it is
not at all clear the situation they are describing can be modeled as consisting of
independent trials having a common probability of success that is itself uniformly
chosen.

(i) In the original description of the experiment, we referred to the successive trials as
being independent, and in fact they are independent when the success probability is
known. However, when p is regarded as a random variable, the successive outcomes
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are no longer independent because knowing whether an outcome is a success or not
gives us some information about p, which in turn yields information about the other
outcomes.

The preceding can be generalized to situations in which each trial has more
than two possible outcomes. Suppose that # independent trials, each resulting
in one of m possible outcomes 1, ..., m, with respective probabilities p1, ..., P
are performed. If we let X; denote the number of type i outcomes that result in
the » trials, i = 1,...,m, then the vector X1, ..., X,, will have the multinomial
distribution given by

n! X1 x
PIX1 = x1,X2 = X2, ., Xon = Xmlp) = ——— p'p3 - py
x1! X!

where x1, . ..,x,, is any vector of nonnegative integers that sum to 7. Now let us
suppose that the vector p = (p1, ..., D) is not specified, but instead is chosen by
a “uniform” distribution. Such a distribution would be of the form

¢, 0<p;,<Li=1,...,m, Zq"p,'zl
0, otherwise

f(pl,apm):{

The preceding multivariate distribution is a special case of what is known as
the Dirichlet distribution, and it is not difficult to show, using the fact that the
distribution must integrate to 1, that c = (m — 1)!.

The unconditional distribution of the vector X is given by

PIX1 =11 .y X = ) = /f~~fP{X1 = %1,y X = XDt o )

(m — 1)!n! x X
Xl[(Plau‘,Pm)dPl“'de:m/["'/ml"'Pmmdpl"'dpm
T s

XTpi=1
Now it can be shown that

x . _ x1! !
//m/pllm A o = =) (3:27)

0<p;<1
Z’lnpi:l

and thus, using the fact that )"7"x; = 1, we see that

_ nlm—1)!
C m+m—1)
-1
_ (” - 1) (3.28)

m—1

P{X1 =x1,...,Xm =xm}
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Hence, all of the (”Jr’fI]) possible outcomes (there are ("F”7 ) possible
nonnegative integer valued solutions of x1 + -+ + x, = n) of the vector

(X1,...,Xm) are equally likely. The probability distribution given by Equa-
tion (3.28) is sometimes called the Bose—Einstein distribution.

To obtain an alternative description of the foregoing, let us compute the con-
ditional probability that the (z + 1)st outcome is of type j if the first # trials have
resulted in x; type i outcomes, i = 1,...,m, Y {'x; = n. This is given by

P{(n + D)stisj|x; typeiinfirstn, i =1,...,m}

_ P{(n+ Dstisj, x; type i in firstn, i = 1,...,m)

P{x; typeiinfirstn, i=1,...,m}

n'(m - 1)‘ .
/f /p p T pErdpy - dp
n+m—1\""
m—1
where the numerator is obtained by conditioning on the p vector and the denom-
inator is obtained by using Equation (3.28). By Equation (3.27), we have

P{(n + 1)stisj|x; typeiin firstn, i =1,...,m}

(xj + Dnl(m — 1)!
(n + m)!
(m—1)n!
(n+m—1)!
_ 5+l (3.29)

n+m

Using Equation (3.29), we can now present an urn model description of the
stochastic process of successive outcomes. Namely, consider an urn that initially
contains one of each of m types of balls. Balls are then randomly drawn and are
replaced along with another of the same type. Hence, if in the first # drawings
there have been a total of x; type j balls drawn, then the urn immediately before the
(n + 1)st draw will contain x; + 1 type j balls out of a total of 72 + 7, and so the
probability of a type j on the (12 + 1)st draw will be given by Equation (3.29).

Remark Consider a situation where n particles are to be distributed at random
among m possible regions; and suppose that the regions appear, at least before
the experiment, to have the same physical characteristics. It would thus seem that
the most likely distribution for the number of particles that fall into each of the
regions is the multinomial distribution with p; = 1/m. (This, of course, would
correspond to each particle, independent of the others, being equally likely to fall
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in any of the m regions.) Physicists studying how particles distribute themselves
observed the behavior of such particles as photons and atoms containing an
even number of elementary particles. However, when they studied the resulting
data, they were amazed to discover that the observed frequencies did not fol-
low the multinomial distribution but rather seemed to follow the Bose-FEinstein
distribution. They were amazed because they could not imagine a physical model
for the distribution of particles that would result in all possible outcomes being
equally likely. (For instance, if 10 particles are to distribute themselves between
two regions, it hardly seems reasonable that it is just as likely that both regions
will contain 5 particles as it is that all 10 will fall in region 1 or that all 10 will
fall in region 2.)

However, from the results of this section we now have a better understanding
of the cause of the physicists’ dilemma. In fact, two possible hypotheses present
themselves. First, it may be that the data gathered by the physicists were actually
obtained under a variety of different situations, each having its own characteristic
p vector that gave rise to a uniform spread over all possible p vectors. A second
possibility (suggested by the urn model interpretation) is that the particles select
their regions sequentially and a given particle’s probability of falling in a region is
roughly proportional to the fraction of the landed particles that are in that region.
(In other words, the particles presently in a region provide an “attractive” force
on elements that have not yet landed.)

3.6.4 Mean Time for Patterns

Let X = (X1, X2,...) be a sequence of independent and identically distributed
discrete random variables such that

pi =P{X; =i}

For a given subsequence, or pattern, i1,... i, let T = T(i1,...,i,) denote the
number of random variables that we need to observe until the pattern appears.
For instance, if the subsequence of interest is 3,5,1 and the sequence is X =
(5,3,1,3,5,3,5,1,6,2,...) then T = 8. We want to determine E[T].

To begin, let us consider whether the pattern has an overlap, where we say that
the pattern i1,i,...,%, has an overlap if for some k,1 < k < n, the sequence
of its final k elements is the same as that of its first k elements. That is, it has an
overlap if for some 1 < k < n,

(in—k+1,-~-ain)=(il:-“aik), k<n
For instance, the pattern 3, 5, 1 has no overlaps, whereas the pattern 3, 3, 3 does.

Case 1 The pattern has no overlaps.
In this case we will argue that T will equal j + #» if and only if the pattern
does not occur within the first j values, and the next n values are iy,...,i,.
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That is,
T =/ +ne (T > j’ (Xj+19~ . -5Xi+n) = (1155 in)} (330)

To verify (3.30), note first that T = j + # clearly implies both that T > j and
that (Xj41,...,Xj1n) = (i1, ...,74). On the other hand, suppose that

T>j and Xjt1s- s Xjgn) = (15 -5 1n) (3.31)

Let k < n. Because (i1, ...,45) # (iy_pi1s---»in), it follows that T # j + k. But
(3.31) implies that T < j + 7, so we can conclude that T =j + n. Thus we have
verified (3.30).

Using (3.30), we see that

PIT =)+ n} = P(T > j, Xjs1,. - Xjin) = (it o)}

However, whether T > j is determined by the values X1, ..., X;, and is thus inde-
pendent of X; 1,...,X;;,. Consequently,

P{T =j 4 n} = P{T > j}P{(Xjs1,- > Xjpn) = (i1, ..., in)}
=P{T > jip

where
p= pilpiz v 'Pin

Summing both sides of the preceding over all j yields

1= "P(T=j+n =p)y P(T>j}=pE[T]
j=0 7=0

or
1
E[T] = -
p

Case 2 The pattern has overlaps.

For patterns having overlaps there is a simple trick that will enable us to obtain
E[T] by making use of the result for nonoverlapping patterns. To make the anal-
ysis more transparent, consider a specific pattern, say P = (3,5,1,3,5). Let x
be a value that does not appear in the pattern, and let T, denote the time until
the pattern P, = (3,5, 1, 3, 5, x) appears. That is, Ty is the time of occurrence of
the new pattern that puts x at the end of the original pattern. Because x did not
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appear in the original pattern it follows that the new pattern has no overlaps;
thus,

1
E[Tx] = -
p

X,

where p = [T/_; pi; = p3p3p1. Because the new pattern can occur only after the
original one, write

T.=T+A

where T is the time at which the pattern P = (3, 5,1, 3, 5) occurs, and A is the
additional time after the occurrence of the pattern P until P, occurs. Also, let
E[Tyli1,...4] denote the expected additional time after time » until the pattern
P, appears given that the first 7 data values are i1, ..., i,. Conditioning on X, the
next data value after the occurrence of the pattern (3, 5,1, 3, 5), gives

14 E[Txl3,5,11, if i=1

o+ B3, ifi=3
EIAIX =il = if i=x
1+ E[Ty], ifi#£1,3,%
Therefore,

E[Ti] = E[T]+ E[A]
= E[T]1+ 1+ E[Tx|3,5, 11p1 + E[Tx[3]p3 + E[Tx](1 — p1 — p3 — Px)
(3.32)

But

E[Ty] =E[T(3,5,1)] + E[Tx|3,5,1]
giving

E[T,|3,5,11 = E[T,x] — E[T(3,5,1)]
Similarly,

E[Tx|3] = E[Tx] — E[T(3)]
Substituting back into Equation (3.32) gives

PxE[Ty] = E[T] + 1 —p1E[T(3,5, )] = p3E[T(3)]
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But, by the result in the nonoverlapping case,

1 1
E[T(3,5,1)]= ———, E[T3)]=—
e ) p3psp1 LTE)] p3

yielding the result

1 1 1

E[T] = pxE[T. —_— ==t —

= s =0 F s

For another illustration of the technique, let us reconsider Example 3.15, which
is concerned with finding the expected time until # consecutive successes occur
in independent Bernoulli trials. That is, we want E[T], when the pattern is P =
(1,1,...,1). Then, with x # 1 we consider the nonoverlapping pattern P, =
(1,...,1,x),andlet Ty be its occurrence time. With A and X as previously defined,
we have

1+ E[A], ifi=1
E[AIX =il = {1, if i=x
14+ E[Ty], if i#1,x

Therefore,
E[A] = 1 + E[A]p1 + E[Tx](1 — p1 — px)
or

1—p1—ps
+E[Tx]#

E[A] =
Al 1-p1 1-p4

Consequently,

E[T] = E[T«] — E[A]

_ pxE[Ty]1 -1

11—

_A/p" -1
1-p1

where the final equality used that E[Ty] = P’f%

The mean occurrence time of any overlapping pattern P = (i1,...,i,) can
be obtained by the preceding method. Namely, let T, be the time until the
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nonoverlapping pattern Py, = (71, ..., ix, x) occurs; then use the identity
E[T,] = E[T] + E[A]
; then condition on the next data value after P

to relate E[T] and E[Ty] = prx
occurs to obtain an expression for E[A] in terms of quantities of the form

E[Tx|il; cee ,ir] = E[Tx] - E[T(il, cee air)]

If (i1,...,4;) is nonoverlapping, use the nonoverlapping result to obtain
E[T(i1,...,iy)]; otherwise, repeat the process on the subpattern (i1,..., ).

Remark We can utilize the preceding technique even when the pattern iy, ..., i,
includes all the distinct data values. For instance, in coin tossing the pattern of
interest might be &, ¢, 4. Even in such cases, we should let x be a data value that
is not in the pattern and use the preceding technique (even though p, = 0).
Because p, will appear only in the final answer in the expression pE[Tx] = 1%,
by interpreting this fraction as 1/p we obtain the correct answer. (A rigorous
approach, yielding the same result, would be to reduce one of the positive p; by
€, take px = €, solve for E[T], and then let € go to 0.) [ ]

3.6.5 The k-Record Values of Discrete Random Variables

Let X1,X>2,... be independent and identically distributed random variables
whose set of possible values is the positive integers, and let P{X = j},j > 1, denote
their common probability mass function. Suppose that these random variables
are observed in sequence, and say that X, is a k-record value if

X; > X, forexactly k of the valuesi, i=1,...,n

That is, the #th value in the sequence is a k-record value if exactly k of the first #
values (including X;,) are at least as large as it. Let Rj, denote the ordered set of
k-record values.

It is a rather surprising result that not only do the sequences of k-record val-
ues have the same probability distributions for all k, these sequences are also
independent of each other. This result is known as Ignatov’s theorem.

Theorem 3.1 (Ignatov’s Theorem) R;, k& > 1, are independent and identically
distributed random vectors.

Proof. Define a series of subsequences of the data sequence Xi, X, ... by letting
the ith subsequence consist of all data values that are at least as large as i, i > 1.
For instance, if the data sequence is

2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, ...
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then the subsequences are as follows:
2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1,...

1:
2: 2,5,6,9,8,3,4,5,7,8,2,3,4,2,5,6,...
3: 5,6,9,8,3,4,5,7,8,3,4,5,6,...

A\YAR\VARWV]

and so on. ‘
Let X; be the jth element of subsequence i. That is, X is the jth data value

that is at least as large as i. An important observation is that i is a k-record value
if and only if Xfe = i. That is, i will be a k-record value if and only if the kth
value to be at least as large as 7 is equal to i. (For instance, for the preceding data,
since the fifth value to be at least as large as 3 is equal to 3 it follows that 3 is a
five-record value.) Now, it is not difficult to see that, independent of which values
in the first subsequence are equal to 1, the values in the second subsequence are
independent and identically distributed according to the mass function

P{value in second subsequence =j} = P{X =j|X >2}, j=>2

Similarly, independent of which values in the first subsequence are equal to 1 and
which values in the second subsequence are equal to 2, the values in the third
subsequence are independent and identically distributed according to the mass
function

P{value in third subsequence =j} = P{X =j|X >3}, j>3

and so on. It therefore follows that the events {X; =i}, i>1,j > 1, are
independent and

P{i is a k-record value} = P{XZ =i} =P{X =1iX >i}

It now follows from the independence of the events {Xi = 7}, i > 1, and the
fact that P{i is a k-record value} does not depend on k, that Rj, has the same
distribution for all & > 1. In addition, it follows from the independence of the
events {X;< = 1}, that the random vectors Ry, k > 1, are also independent. W

Suppose now that the X;, i > 1 are independent finite-valued random variables
with probability mass function

pi=PX=i), i=1,...,m
and let
T = min{n : X; > X,, for exactly k of the values i, i =1,...,n}

denote the first k-record index. We will now determine its mean.
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Proposition 3.3 Let A; = p;/ Z,—";l- pj, i=1,...,m. Then

m—1

ElTl=k+ k-1 %
i=1

Proof. To begin, suppose that the observed random variables X1, X», ... take on
one of the values i,7 + 1,...,m with respective probabilities

. pj .
PX=jl=——"T1——, j=i...,
X =/} P A

Let T; denote the first k-record index when the observed data have the preceding
mass function, and note that since the each data value is at least 7 it follows that
the k-record value will equal i, and T; will equal k, if X} = i. As a result,

E[T;| X, =i1=k

On the other hand, if X; > i then the k-record value will exceed 7, and so
all data values equal to 7 can be disregarded when searching for the k-record
value. In addition, since each data value greater than  will have probability mass
function

bj

PIX=jX>i}=—
Pict -+

, j=i+1,....m

it follows that the total number of data values greater than 7 that need be observed
until a k-record value appears has the same distribution as T;y1. Hence,

E[Tj|X > 1] = E[Tit1 + Ni| X}, > i]

where T, 1 is the total number of variables greater than i that we need observe to
obtain a k-record, and N; is the number of values equal to i that are observed in
that time. Now, given that X; > i and that T;; 1 = n (n > k) it follows that the
time to observe T;; 1 values greater than i has the same distribution as the number
of trials to obtain 7 successes given that trial k is a success and that each trial is
independently a success with probability 1 —p;/ 3 ~;pj = 1 —4;. Thus, since the
number of trials needed to obtain a success is a geometric random variable with
mean 1/(1 — 1;), we see that

Tipn =1  Tipn— 4
1— A o 1—2

E[Ti|Tit1, X > il =1+
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Taking expectations gives

Tiv1 — A
1—2

E[T;21] — X;
E[Ti|Xk>i]=E[ Xk>z}:&

1—2
Thus, upon conditioning on whether X}, = 7, we obtain

E[T;] = E[T;| Xy, = i]x; + E[T;1X), > 11(1 — ;)
= (k— DA; + E[T;41]

Starting with E[T,,] = k, the preceding gives

E[Ty-1]1= (k= DArpm +k
E[Tm72] = (k - 1))Vm72 + (k - 1))\m71 + k
m—1
=(k—1) Y r+k
j=m—2
m—1
E[Tp3l=k=Drp3+ k-1 > 2+k
j=m—2
m—1
=(k-1) > x+k

j=m—3

In general,

m—1
EIT]=k-1)> 1+k

j=i

and the result follows since T = Tj. [ ]

3.6.6 Left Skip Free Random Walks

Let X;,i > 1 be independent and identically distributed random variables. Let
P; = P(X; =) and suppose that

oo
> p=1

j=—1

That is, the possible values of the X; are —1,0,1,.... If we take

So=0, Su=) X
i=1
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then the sequence of random variables S,,, 7 > 0 is called a left skip free random
walk. (It is called left skip free because S, can decrease from S,,_1 by at most 1.)

For an application consider a gambler who makes a sequence of identical bets,
for which he can lose at most 1 on each bet. Then if X; represents the gam-
bler’s winnings on bet #, then S, would represent his total winnings after the first
n bets.

Suppose that the gambler is playing in an unfair game, in the sense that
E[X;] <0, and let v = —E[X;]. Also, let Tp = 0, and for k > 0, let T_; denote
the number of bets until the gambler is losing k. That is,

T_, =min{n: S, = —k}

It should be noted that T_;, < oo; that is, the random walk will eventually hit —k.
This is so because, by the strong law of large numbers, S,,/7n — E[X;] < 0, which
implies that S,, — —oo. We are interested in determining E[T_] and Var(T_,).
(It can be shown that both are finite when E[X;] < 0.)

The key to the analysis is to note that the number of bets until one’s for-
tune decreases by k can be expressed as the number of bets until it decreases
by 1 (namely, T_1), plus the additional number of bets after the decrease is
1 until the total decrease is 2 (namely, T_» — T_1), plus the additional num-
ber of bets after the decrease is 2 until it is 3 (namely, T_3 — T_;), and so on.
That is,

k

Te=Ta+) (T=T )
=2

However, because the results of all bets are independent and identically dis-
tributed, it follows that T_1, T_,—T_1,T_3—=T_5,...,T_;,—T_(_4) are all inde-
pendent and identically distributed. (That is, starting at any instant, the number
of additional bets until the gambler’s fortune is one less than it is at that instant is
independent of prior results and has the same distribution as T_1.) Consequently,
the mean and variance of T_j, the sum of these k random variables, are

E[T_i] = kE[T_4]
and
Var(T_p) = kVar(T_1)
We now compute the mean and variance of T_; by conditioning on X1, the
result of the initial bet. Now, given X1, T_1 is equal to 1 plus the number of

bets it takes until the gambler’s fortune decreases by X; + 1 from what it
is after the initial bet. Consequently, given X1, T_1 has the same distribution
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as 1 + T_(x,+1). Hence,

E[T_1|X1] =1+ E[T_x,+n] =1+ (X1 + DE[T_{]
Var(T_11X1) = Var(T_(x,+1)) = (X1 + 1)Var(T_1)

Consequently,
E[T_11=E[E[T_1|X1]] =14 (—v + 1D)E[T_1]

or
1
E[T_1] =~
v

which shows that

k
EIT 4=~ (3.33)

Similarly, with 2 = Var(X}), the conditional variance formula yields

Var(T_1) = E[(X1 + D)Var(T_1)] + Var(X1E[T_1])

= (1 —v)Var(T_1) + (E[T_1])*c>
0_2

= (1 —v)Var(T_1) + —
v

thus showing that

o2

Val‘(T_l) = -3
(4

and yielding the result

2
Var(T_y) = l% (3.34)

There are many interesting results about skip free random walks. For instance,
the hitting time theorem.

Proposition 3.4 (The Hitting Time Theorem)

P(T_, =n) = SP(S,Z =-k), n>1
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Proof. The proof is by induction on 7. Now, when # = 1 we must prove
P(T_ = 1) = kP(S; = —k)

However, the preceding is true when k& = 1 because
P(T_1=1)=P@S;=-1)=P_,

and it is true when k > 1 because
P(T_,=1)=0=P(S; = —k), k>1

Thus the result is true when # = 1. So assume that for a fixed value #» > 1 and
allk > 0

P(T_p=n—1)= nl‘%lp(sn,1 = —k) (3.35)

Now consider P(T_; = 7). Conditioning on X7 yields
o
P(T_y=m =Y P(T_=nX1 =P
j=—1
Now, if the gambler wins j on his initial bet, then the first time that he is down
k will occur after bet # if the first time that his cumulative losses after the initial
gamble is k + j occurs after an additional # — 1 bets. That is,

P(T_p=nX1=))=P(IT_p4jy=n—1)

Consequently,

P(T_y=n)= Y P(T_=nX;=))P

i=—1
o
= D P(T_gsj=n—1P;
i=—1

o]

+7 .
= Y i P(Si1 =~k + P,
=1 "

where the last equality follows by Induction Hypothesis (3.35). Using that

P(Sy = —kIX1 =)) = P{Sp-1=—(k + )}
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the preceding yields

k47 .
P(T_, =n) = Z nTiP(Sn = —kIX1 =))P;
j=—1
s Rt s, = kX =)
= n—1

= Y P = iSs = —k)P(S; = —k)
j=—1

n—1.

k o
= P(Sy = —k) {— Y PXi =ISy =—k)
j=—1

n—1
j=—1

1 o
+—— ) P =IS: = —k)]

k
n—1

= P(S, = —k) { + %E[XHS,, = —k]} (3.36)

However,

—k = E[Sn|Sn = _k]
=E[X1 + ... + Xu|S, = —k]

=Y E[XilSy = —kI
=1
= nE[X1|S, = —k]
where the final equation follows because X1, ..., X}, are independent and identi-

cally distributed and thus the distribution of X; given that X1 + ... + X,, = —k
is the same for all 7. Hence,

k
E[X11S, = —k] = -

Substituting the preceding into (3.36) gives

P(T_, =n) = P(S, = %)(L _ ! k) = SP(Sn = —k)

n—1 n—1n

and completes the proof. [ |
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Suppose that after 7 bets the gambler is down k. Then the conditional proba-
bility that this is the first time he has ever been down k is

P(T_]e =n, Sn = —k)
P(S, = —k)
P(T_k = ﬂ)
T PGS, =k

= S (by the hitting time theorem)

P(T_p = n|Sy = —k) =

Let us suppose for the remainder of this section that —v = E[X] < 0.
Combining the hitting time theorem with our previously derived result about
E[T_,] gives the following:

k
— =E[T_;]
= Z nP(T_p =n)
n=1
=Y kP(S, =—k)

N
Il
—_

where the final equality used the hitting time theorem. Hence,

o
1
> PSy=—k) =-
v
n=1
Let I, be an indicator variable for the event that S,, = —k. That is, let
I 1, ifS,=-
700, ifS, #—k

and note that

oo
total time gambler’s fortune is —k = Z I,

n=1

Taking expectations gives

o0
1
E[total time gambler’s fortune is —k] = Z P, =—-k)= - (3.37)
v
n=1
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Now, let « be the probability that the random walk is always negative after the
initial movement. That is,

a=DPS, <0foralln>1)

To determine o note that each time the gambler’s fortune is —k the probability
that it will never again hit —k (because all cumulative winnings starting at that
time are negative) is o. Hence, the number of times that the gambler’s fortune is
—k is a geometric random variable with parameter o, and thus has mean 1/a.
Consequently, from (3.37)

od0=v

Let us now define L_; to equal the last time that the random walk hits —k.
Because L_j will equal # if S, = —k and the sequence of cumulative winnings
from time 7 onwards is always negative, we see that

P(L_, =n) = P(S, = —k)a = P(S, = —k)v

Hence,

E[L_;]=)Y nP(L_j=n)

n=0

=v) nP(S,=—k)
n=0

o0
=v Z nZP(T,k =n) by the hitting time theorem

n=0
=2 Zn P(T_, =n)

n=0

v

= L EIT2,]
= z{EZ[T—k] + Var(T_p)}
_k
Ty 2

3.7 An Identity for Compound Random Variables

Let X1, X3, ... be a sequence of independent and identically distributed random
variables, and let S, = Y"/ ; X; be the sum of the first # of them, n > 0, where
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So = 0. Recall that if N is a nonnegative integer valued random variable that is
independent of the sequence X1, X>, ... then

N
SN=)_Xi
i=1

is said to be a compound random variable, with the distribution of N called
the compounding distribution. In this subsection we will first derive an identity
involving such random variables. We will then specialize to where the X; are
positive integer valued random variables, prove a corollary of the identity, and
then use this corollary to develop a recursive formula for the probability mass
function of S, for a variety of common compounding distributions.

To begin, let M be a random variable that is independent of the sequence
X1, X2, ..., and which is such that

nP{N = n}

=1,2,...

Proposition 3.5 (The Compound Random Variable Identity) For any function &
E[SNR(SN)] = EINIE[X1h(Sm)]

Proof.

N
E[Snh(Sn)] = E [Z X:-h(SN)}

i=1

00 N
- ZE [Z X;h(SN)IN = n:| P{N = n)

n=0 i=1

(by conditioning on N)

= ZE [Z Xih(S,)IN = n:| P{N = n}

n=0 i=1
=> E [Z X,-h(Sn):| P{N = n}
n=0 i=1
(by independence of N and X1,...,X})
= > > E[Xih(S)]P{N = n)

n=0 i=1
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Now, because Xi,...,X, are independent and identically distributed, and
h(Sy) = k(X1 + -+ + X,,) is a symmetric function of X1,...,X,, it follows
that the distribution of X;A(S,,) is the same for all i = 1,...,n. Therefore, con-
tinuing the preceding string of equalities yields

E[SNA(SN)] = ) nE[X1h(S,)IPN = n)
n=0

= E[N] Z E[X1h(S,)]P{M = n} (definition of M)
n=0

= EIN] ) E[X1h(S)IM = n]P{M = n}
n=0
(independence of M and Xy, ..., X,)

= E[N] ) EIX1h(S\)IM = n]P{M = n)
n=0
= E[NIE[X1h(Sm)]
which proves the proposition. [ |

Suppose now that the X; are positive integer valued random variables, and let
g =PXi=j}, j>0

The successive values of P{Sy = k} can often be obtained from the following
corollary to Proposition 3.5.

Corollary 3.6
P{Sy =0} = P{N =0}
k

1
P{Sn =k} = EE[N] E joiP{Sm—1 =k —j}, k>0
j=1

Proof. For k fixed, let

1, ifx=k
h(’”:{o, if x £ k

and note that SyA(SN) is either equal to k if Sy = k or is equal to 0 otherwise.
Therefore,

E[SNh(SN)] = kP{Sn = k}
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and the compound identity yields

kP{SNn = k} = E[N]E[X1h(Sm)]

= E[N1)_ EIXih(Sm)IX1 = flo
j=1

= E[N1) _JE[R(SMm)IX1 = jley

= E[N]) _jP{Sm = kIX; = j}o; (3.38)
j=1

Now,

M
PiSw = kIX1 =) =P 13X =k[X =i}
i=1

M
—P /+in=k’X1 :j}
=2

M
=P j+ZX,:/e}
i=2

M-1
T S
i=1

=P{Sm—1=k—j}

The next to last equality followed because X, ..., Xy and X1,...,Xy_1 have
the same joint distribution; namely that of M — 1 independent random variables
that all have the distribution of X, where M — 1 is independent of these random
variables. Thus the proof follows from Equation (3.38). [ |

When the distributions of M — 1 and N are related, the preceding corollary
can be a useful recursion for computing the probability mass function of Sy, as
is illustrated in the following subsections.

3.7.1 Poisson Compounding Distribution
If N is the Poisson distribution with mean A, then
PIM—1=n)=P{M=n+1)

_ (n+1DHP{N=n+1}
- E[N]
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1 N n+1
= — e~
R De e
n
:ei)h)\‘—
n!

Consequently, M — 1 is also Poisson with mean A. Thus, with
P, = P{Sny = n}

the recursion given by Corollary 3.6 can be written
Pyp=e

k
A .
Pk:E E 70‘]'Pk—j9 k>0
j=1

Remark When the X; are identically 1, the preceding recursion reduces to the
well-known identity for a Poisson random variable having mean A:

PIN=0}=¢""

A
PIN=n})=2P(N=n—-1), n>1
n
Example 3.33 Let S be a compound Poisson random variable with A = 4 and

PiX;=i}=1/4, i=1,2,3,4

Let us use the recursion given by Corollary 3.6 to determine P{S = 5}. It gives

Py = ra1Pg = et

A 3 _
Py = z(ot1P1 + 202Pp) = € 4

A 13
P; = g(alpz + 2a2P1 + 3a3Pg) = ?e_4

A 73
P4y = Z(Ot1P3 + 200 Py + 3a3P1 + 4a4Pp) = ﬁeflt

N 501
Ps = g(a1P4 + 2a2P3 + 303P2 + 4a4P1 + SasPo) = me“‘
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3.7.2 Binomial Compounding Distribution
Suppose that N is a binomial random variable with parameters  and p. Then,

_ (m+DP{N=n+1}

PM—1=n}= N
_ ”r‘; 1 (n _: 1>pn+1(1 _ pyrn-1
- n:;; 1 (r—1— :z!)!(n + 1) A=
= Ay

Thus, M — 1 is a binomial random variable with parameters » — 1, p.
Fixing p, let N(r) be a binomial random variable with parameters r and p,

and let

Py(k) = P{Sn(r) = k}
Then, Corollary 3.6 yields
Pr(0) = (1 - P)r

k
Pik) =2 Y ey Pratk =), k>0
=1

For instance, letting k equal 1, then 2, and then 3 gives

P,(1) = rpar (1 —p)"~!

P(2) = % [@1Pr_1(1) + 202P,_1 (0)]

%[(r — Dpai(l = p) % + 202(1 = p) ]
P3) = Pl 1@ + 20,1 (1) + 303P,1(0)]

_ algrp . —21),7 [ = 2)pert (1 = ) + 202 (1 = p)"?]

2
“;”’ (r— Dpar( —p) 2 + asrp(l — py~!

+
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3.7.3 A Compounding Distribution Related to the Negative Binomial

Suppose, for a fixed value of p, 0 < p < 1, the compounding random variable N
has a probability mass function

n+r—1

P{N:n}:( _q

)pr(l_p)na ﬂ:O,l,...
Such a random variable can be thought of as being the number of failures that
occur before a total of 7 successes have been amassed when each trial is inde-
pendently a success with probability p. (There will be 7 such failures if the rth
success occurs on trial # + 7. Consequently, N + 7 is a negative binomial random
variable with parameters » and p.) Using that the mean of the negative binomial
random variable N + 7 is E[N + r] = r/p, we see that E[N] = rlp%p.

Regard p as fixed, and call N an NB(r) random variable. The random variable
M — 1 has probability mass function

_ (m+ DP{N=n+1)
o E[N]

_(71+1)p n+r\ ., _ oyl
‘r<1—p>(r—1)p(l P)

n+n! ., .
= WP 11 —p)

=("jiﬁ”%1—m”

In other words, M — 1 is an NB(r + 1) random variable.
Letting, for an NB(r) random variable N,

PIM — 1 = n}

Py(k) = P{Sn = k}
Corollary 3.6 yields

P,(0) = p"
P,(k) = r(lk_p P gia,' Prottk—j), k>0
Thus,
P,(1) = ’(1;” L1 Py (0)

= rpr(l _p)ala
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P2 = ’(12—;”)[a11),+1<1> + 202P,1(0)]
= “12—;’”[0%0 + Dp™ (1 = p) + 200p™],
P,(3) = r(lg)—_pp)[alprﬂ(Z) + 205P11(1) + 303Pr11(0)]
and so on.
Exercises

1. If X and Y are both discrete, show that > px;y(x|y) = 1 for all y such that
py(®) > 0.
*2. Let X7 and X3 be independent geometric random variables having the same param-
eter p. Guess the value of

P{Xy =i|X1 + Xy =n}

Hint: Suppose a coin having probability p of coming up heads is continually
flipped. If the second head occurs on flip number 7, what is the conditional proba-
bility that the first head was on flip number ¢, i =1,...,7—1?

Verify your guess analytically.
3. The joint probability mass function of X and Y, p(x,y), is given by

p, =1, pan=1, p3,1=1,
p(1,2) =3, p2,2)=0, p(3,2) =1,
p(1,3)=0, p2,3H=1, p3,3=1
Compute E[X|Y =i] fori=1,2,3.
4. In Exercise 3, are the random variables X and Y independent?

5. An urn contains three white, six red, and five black balls. Six of these balls are
randomly selected from the urn. Let X and Y denote respectively the number of
white and black balls selected. Compute the conditional probability mass function
of X given that Y = 3. Also compute E[X|Y = 1].

*6. Repeat Exercise 5 but under the assumption that when a ball is selected its color is
noted, and it is then replaced in the urn before the next selection is made.

7. Suppose p(x,v,z), the joint probability mass function of the random variables X,
Y, and Z, is given by

P, L, =g, p2,1L,1)=1,
p1,1,2) =3¢, p@R,1,2) =,
p(1,2,1) = £, p2,2,1)=0,
p(1,2,2)=0, p2,2,2)=1
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What is E[X|Y = 2]? What is E[X|Y = 2,Z = 1]?
8. An unbiased die is successively rolled. Let X and Y denote, respectively,
the number of rolls necessary to obtain a six and a five. Find (a) E[X],
(b) EIX]Y = 1], (c) E[X]Y = 5].
9. Show in the discrete case that if X and Y are independent, then
E[X|Y =y] = E[X] forally
10. Suppose X and Y are independent continuous random variables. Show that
E[X|Y =y] =E[X] forally
11. The joint density of X and Y is
22
fen =220, 0<y<o, —y<x<y
Show that E[X|Y = y] = 0.
12. The joint density of X and Y is given by
e_x/ye_y
flx,y) = ———, O<x<oo, O<y<oo
y
Show E[X|Y = y] = y.
*13. Let X be exponential with mean 1/A; that is,
fx(x) =xre ™, 0<x<o0
Find E[X|X > 1].
14. Let X be uniform over (0, 1). Find E[X|X < 1].
15. The joint density of X and Y is given by
-
fe,y)=—, 0<x<y, 0<y<oo
y
Compute E[X2|Y =yl
16. The random variables X and Y are said to have a bivariate normal distribution if

their joint density function is given by

1
- exp{-—
2moxoyy/ 1 — p? { 2(1—p?)

% (x — Mx)z _ 2p(x — px)(y — Hy) n (y - l/vy)2
Oy 0x0y oy

for —oo < x < 00, —00 < y < 00, where oy, 0y, iy and p are constants such
bl y 5 s VY Mxs :u)la P
that =1 < p <1, ox > 0,0y > 0, —00 < y < 00, =00 < Uy < OO.

f(x,J/) =




Exercises 175

17.

18.

*19.

20.

21.

(a) Show that X is normally distributed with mean u, and variance o,%, and Y is
normally distributed with mean p, and variance 03.

(b) Show that the conditional density of X given that Y =y is normal with mean
Ux + (pox/oy)(y — 1ty) and variance o,%(l — %),
The quantity p is called the correlation between X and Y. It can be shown that

EIX = p) (Y = py)]
p= OxOy
_ Cov(X,Y)

Ox0y

Let Y be a gamma random variable with parameters (s, «). That is, its density is
fr)=Ce ¥y, y>0

where C is a constant that does not depend on y. Suppose also that the conditional
distribution of X given that Y = y is Poisson with mean y. That is,

PIX=iY =y} =eYy//il, i>0

Show that the conditional distribution of Y given that X = i is the gamma distri-
bution with parameters (s + i, + 1).

Let X1,..., X, be independent random variables having a common distribution
function that is specified up to an unknown parameter 0. Let T = T'(X) be a function
of the data X = (Xq,..., Xy). If the conditional distribution of X1,..., X, given
T(X) does not depend on 0 then T'(X) is said to be a sufficient statistic for 6. In the
following cases, show that T(X) = > { X; is a sufficient statistic for 6.

(a) The X; are normal with mean 6 and variance 1.

(b) The density of X; is f(x) = e~%%, x > 0.

(c) The mass function of X; is p(x) = *(1 — )%, x=0,1,0 <6 < 1.

(d) The X; are Poisson random variables with mean 6.

Prove that if X and Y are jointly continuous, then

EIX] = / EIX]Y = ylfy () dy

—0Q

An individual whose level of exposure to a certain pathogen is x will contract the
disease caused by this pathogen with probability P(x). If the exposure level of a
randomly chosen member of the population has probability density function £,
determine the conditional probability density of the exposure level of that member
given that he or she

(a) has the disease.

(b) does not have the disease.

(c) Show that when P(x) increases in x, then the ratio of the density of part (a) to

that of part (b) also increases in x.

Consider Example 3.13, which refers to a miner trapped in a mine. Let N denote
the total number of doors selected before the miner reaches safety. Also, let T;
denote the travel time corresponding to the ith choice, i > 1. Again let X denote
the time when the miner reaches safety.
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22.

*23.

24.

25.

26.

a) Give an identity that relates X to N and the T;.

b) What is E[N]?

¢) Whatis E[TN]?

d) What is E[Y N T;IN = n]?

e) Using the preceding, what is E[X]?

Suppose that independent trials, each of which is equally likely to have any of m
possible outcomes, are performed until the same outcome occurs k consecutive
times. If N denotes the number of trials, show that

k
mt —1
E[N] = p—

Some people believe that the successive digits in the expansion of 7 = 3.14159....
are “uniformly” distributed. That is, they believe that these digits have all the
appearance of being independent choices from a distribution that is equally likely
to be any of the digits from 0 through 9. Possible evidence against this hypothesis
is the fact that starting with the 24,658,601st digit there is a run of nine successive
7s. Is this information consistent with the hypothesis of a uniform distribution?

To answer this, we note from the preceding that if the uniform hypothesis were
correct, then the expected number of digits until a run of nine of the same value
occurs is

10% = 1)/9 = 111,111,111

Thus, the actual value of approximately 25 million is roughly 22 percent of the
theoretical mean. However, it can be shown that under the uniformity assumption
the standard deviation of N will be approximately equal to the mean. As a result, the
observed value is approximately 0.78 standard deviations less than its theoretical
mean and is thus quite consistent with the uniformity assumption.

A coin having probability p of coming up heads is successively flipped until two of
the most recent three flips are heads. Let N denote the number of flips. (Note that
if the first two flips are heads, then N = 2.) Find E[N].

A coin, having probability p of landing heads, is continually flipped until at least

one head and one tail have been flipped.

(a) Find the expected number of flips needed.

(b) Find the expected number of flips that land on heads.

(c) Find the expected number of flips that land on tails.

(d) Repeat part (a) in the case where flipping is continued until a total of at least
two heads and one tail have been flipped.

Independent trials, resulting in one of the outcomes 1, 2, 3 with respective proba-

bilities p1,p2, 3, Yoy pi = 1, are performed.

(a) Let N denote the number of trials needed until the initial outcome has occurred
exactly 3 times. For instance, if the trial results are 3,2,1,2,3,2,3then N = 7.
Find E[N].

(b) Find the expected number of trials needed until both outcome 1 and outcome 2
have occurred.

You have two opponents with whom you alternate play. Whenever you play A,
you win with probability p4; whenever you play B, you win with probability pp,
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27.

28.

29.

30.

31.

32.

where pg > pa. If your objective is to minimize the expected number of games you
need to play to win two in a row, should you start with A or with B?

Hint: Let E[N;] denote the mean number of games needed if you initially play i.
Derive an expression for E[Ny4] that involves E[Ng]; write down the equivalent
expression for E[Np] and then subtract.

A coin that comes up heads with probability p is continually flipped until the pattern
T, T, H appears. (That is, you stop flipping when the most recent flip lands heads,
and the two immediately preceding it lands tails.) Let X denote the number of flips
made, and find E[X].

Polya’s urn model supposes that an urn initially contains 7 red and b blue balls. At
each stage a ball is randomly selected from the urn and is then returned along with
m other balls of the same color. Let X be the number of red balls drawn in the
first k selections.

(a) Find E[X1].

(b) Find E[X1].

(c) Find E[X;].

(d) Conjecture the value of E[X}], and then verify your conjecture by a condition-

ing argument.
(e) Give an intuitive proof for your conjecture.

Hint: Number the initial 7 red and b blue balls, so the urn contains one type i red
ball, for each i = 1,...,r; as well as one type j blue ball, for eachj = 1,...,b.
Now suppose that whenever a red ball is chosen it is returned along with 7 others
of the same type, and similarly whenever a blue ball is chosen it is returned along
with m others of the same type. Now, use a symmetry argument to determine the
probability that any given selection is red.

Two players take turns shooting at a target, with each shot by player i hitting the

target with probability p;, i = 1,2. Shooting ends when two consecutive shots hit

the target. Let u; denote the mean number of shots taken when player 7 shoots first,

i=1,2.

(a) Find pq and u;.

(b) Let h; denote the mean number of times that the target is hit when player i
shoots first, i = 1,2. Find k1 and h;.

Let X;, i > 0 be independent and identically distributed random variables with
probability mass function

p(H=PXi=j}, j=1,...,m Y P(i=1
j=1

Find E[N], where N = min{n > 0 : X,, = Xg}.

Each element in a sequence of binary data is either 1 with probability p or 0 with
probability 1 — p. A maximal subsequence of consecutive values having identical
outcomes is called a run. For instance, if the outcome sequence is 1,1,0,1,1,1,0,
the first run is of length 2, the second is of length 1, and the third is of length 3.

(a) Find the expected length of the first run.

(b) Find the expected length of the second run.

Independent trials, each resulting in success with probability p, are performed.
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33.

34.

35.

36.

37.

38.

39.

(a) Find the expected number of trials needed for there to have been both at least
n successes or at least m failures.

Hint: Is it useful to know the result of the first # + m trials?

(b) Find the expected number of trials needed for there to have been either at least
n successes or at least #z failures.

Hint: Make use of the result from part (a).

If R; denotes the random amount that is earned in period 7, then Y22, g~ IR;,
where 0 < B < 1 is a specified constant, is called the total discounted reward with
discount factor B. Let T be a geometric random variable with parameter 1 — 8
that is independent of the R;. Show that the expected total discounted reward
is equal to the expected total (undiscounted) reward earned by time T. That is,
show that

o0 T
E [Z ﬁi_lRi:| =E|[) R;
i=1

i=1

A set of  dice is thrown. All those that land on six are put aside, and the others are

again thrown. This is repeated until all the dice have landed on six. Let N denote

the number of throws needed. (For instance, suppose that # = 3 and that on the

initial throw exactly two of the dice land on six. Then the other die will be thrown,

and if it lands on six, then N = 2.) Let m,, = E[N].

(a) Derive a recursive formula for 7,, and use it to calculate m2;, i = 2, 3,4 and to
show that ms ~ 13.024.

(b) Let X; denote the number of dice rolled on the ith throw. Find E[Zf\il X;l.

Consider # multinomial trials, where each trial independently results in outcome i

with probability p;, Zle pi = 1. With X; equal to the number of trials that result

in outcome i, find E[X1|X;, > 0].

Let pg = P{X = 0} and suppose that 0 < pg < 1.Let u = E[X]and 62 = Var(X).

(a) Find E[X|X # 0].

(b) Find Var(X|X # 0).

A manuscript is sent to a typing firm consisting of typists A, B, and C. If it is typed

by A, then the number of errors made is a Poisson random variable with mean 2.6;

if typed by B, then the number of errors is a Poisson random variable with mean 3;

and if typed by C, then it is a Poisson random variable with mean 3.4. Let X denote

the number of errors in the typed manuscript. Assume that each typist is equally

likely to do the work.

(a) Find E[X].

(b) Find Var(X).

Let U be a uniform (0, 1) random variable. Suppose that 7 trials are to be performed

and that conditional on U = u these trials will be independent with a common

success probability #. Compute the mean and variance of the number of successes

that occur in these trials.

A deck of n cards, numbered 1 through 7, is randomly shuffled so that all 7! possible
permutations are equally likely. The cards are then turned over one at a time until
card number 1 appears. These upturned cards constitute the first cycle. We now
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40.

41.

*42.

determine (by looking at the upturned cards) the lowest numbered card that has

not yet appeared, and we continue to turn the cards face up until that card appears.

This new set of cards represents the second cycle. We again determine the lowest

numbered of the remaining cards and turn the cards until it appears, and so on until

all cards have been turned over. Let #1,, denote the mean number of cycles.

(a) Derive a recursive formula for m1, in terms of my, k=1,...,n— 1.

(b) Starting with m19 = 0, use the recursion to find m11,m2,m3, and my4.

(c) Conjecture a general formula for m,,.

(d) Prove your formula by induction on n. That is, show it is valid for n = 1, then
assume it is true for any of the values 1,...,7 — 1 and show that this implies
it is true for 7.

(e) Let X; equal 1 if one of the cycles ends with card i, and let it equal O otherwise,
i=1,...,n. Express the number of cycles in terms of these X;.

(f) Use the representation in part (e) to determine #1,,.

(g) Are the random variables X1,..., X, independent? Explain.

(h) Find the variance of the number of cycles.

A prisoner is trapped in a cell containing three doors. The first door leads to a

tunnel that returns him to his cell after two days of travel. The second leads to a

tunnel that returns him to his cell after three days of travel. The third door leads

immediately to freedom.

(a) Assuming that the prisoner will always select doors 1, 2, and 3 with prob-
abilities 0.5, 0.3, 0.2, what is the expected number of days until he reaches
freedom?

(b) Assuming that the prisoner is always equally likely to choose among those
doors that he has not used, what is the expected number of days until he
reaches freedom? (In this version, for instance, if the prisoner initially tries
door 1, then when he returns to the cell, he will now select only from doors 2
and 3.)

(c) For parts (a) and (b) find the variance of the number of days until the prisoner
reaches freedom.

A rat is trapped in a maze. Initially it has to choose one of two directions. If it
goes to the right, then it will wander around in the maze for three minutes and will
then return to its initial position. If it goes to the left, then with probability % it
will depart the maze after two minutes of traveling, and with probability % it will
return to its initial position after five minutes of traveling. Assuming that the rat is
at all times equally likely to go to the left or the right, what is the expected number
of minutes that it will be trapped in the maze?

If X;,i =1,...,n are independent normal random variables, with X; having mean

w; and variance 1, then the random variable Y 7, Xi2 is said to be a noncentral

chi-squared random variable.

(a) if X is a normal random variable having mean w and variance 1 show, for
|t < 1/2, that the moment generating function of X2 is

tlz
(1-20)" et

(b) Derive the moment generating function of the noncentral chi-squared random
variable Y7 ; Xl-2, and show that its distribution depends on the sequence of
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44.
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46.

means i1, ..., 4, only through the sum of their squares. As a result, we say
that Y7 ; Xi2 is a noncentral chi-squared random variable with parameters n
and6=>"7", M%-

(¢) Ifall u; = 0, then > 7 Xi2 is called a chi-squared random variable with
n degrees of freedom. Determine, by differentiating its moment generating
function, its expected value and variance.

(d) Let K be a Poisson random variable with mean 6/2, and suppose that condi-
tional on K = k, the random variable W has a chi-squared distribution with
n + 2k degrees of freedom. Show, by computing its moment generating func-
tion, that W is a noncentral chi-squared random variable with parameters #
and 6.

(e) Find the expected value and variance of a noncentral chi-squared random
variable with parameters 7 and 6.

The density function of a chi-squared random variable having 7 degrees of freedom
can be shown to be
%e*x/z(x/Z)g’l

Fn/2) , x>0

flx) =

where T'(¢) is the gamma function defined by
o0
() :/ e xdx, t>0
0

Integration by parts can be employed to show that '(¢) = (¢(—1)I'(¢t—1), when ¢ > 1.
If Z and x2 are independent random variables with Z having a standard normal
distribution and 2 having a chi-square distribution with 7 degrees of freedom, then
the random variable T defined by

Zz

is said to have a t-distribution with n degrees of freedom. Compute its mean and
variance when n > 2.

T =

The number of customers entering a store on a given day is Poisson distributed with
mean A = 10. The amount of money spent by a customer is uniformly distributed
over (0,100). Find the mean and variance of the amount of money that the store
takes in on a given day.

An individual traveling on the real line is trying to reach the origin. However,
the larger the desired step, the greater is the variance in the result of that step.
Specifically, whenever the person is at location x, he next moves to a location
having mean 0 and variance gx2. Let X,, denote the position of the individual after
having taken 7 steps. Supposing that Xy = x¢, find

(a) E[Xal;

(b) Var(X,).

(a) Show that
Cov(X,Y) = Cov(X,E[Y | X))
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(b) Suppose, that, for constants a and b,
E[Y|X]=a+ bX

Show that
b = Cov(X,Y)/Var(X)

If E[Y | X] = 1, show that
Var(X'Y) > Var(X)

Suppose that we want to predict the value of a random variable X by using one
of the predictors Yq,...,Y,, each of which satisfies E[Y;|X] = X. Show that the
predictor Y; that minimizes E[(Y; — X)?] is the one whose variance is smallest.

Hint: Compute Var(Y;) by using the conditional variance formula.

A and B play a series of games with A winning each game with probability p. The
overall winner is the first player to have won two more games than the other.

(a) Find the probability that A is the overall winner.

(b) Find the expected number of games played.

There are three coins in a barrel. These coins, when flipped, will come up heads

with respective probabilities 0.3, 0.5, 0.7. A coin is randomly selected from among

these three and is then flipped ten times. Let N be the number of heads obtained

on the ten flips.

(a) Find P{N = 0}.

(b) Find P{N =#n},n=0,1,...,10.

(¢) Does N have a binomial distribution?

(d) Ifyouwin $1 each time a head appears and you lose $1 each time a tail appears,
is this a fair game? Explain.

If X is geometric with parameter p, find the probability that X is even.

Suppose that X and Y are independent random variables with probability density
functions fx and fy. Determine a one-dimensional integral expression for P{X +
Y < x}.

Suppose X is a Poisson random variable with mean A. The parameter A is itself a
random variable whose distribution is exponential with mean 1. Show that P{X =
np = (3"

A coin is randomly selected from a group of ten coins, the nth coin having a prob-
ability 7/10 of coming up heads. The coin is then repeatedly flipped until a head
appears. Let N denote the number of flips necessary. What is the probability dis-
tribution of N? Is N a geometric random variable? When would N be a geometric
random variable; that is, what would have to be done differently?

You are invited to a party. Suppose the times at which invitees are independent
uniform (0,1) random variables. Suppose that, aside from yourself, the number of
other people who are invited is a Poisson random variable with mean 10.

(a) Find the expected number of people who arrive before you.

(b) Find the probability that you are the nth person to arrive.
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Data indicate that the number of traffic accidents in Berkeley on a rainy day is a
Poisson random variable with mean 9, whereas on a dry day it is a Poisson random
variable with mean 3. Let X denote the number of traffic accidents tomorrow. If it
will rain tomorrow with probability 0.6, find

(a) E[X];

(b) P{X =0};

(¢c) Var(X).

The number of storms in the upcoming rainy season is Poisson distributed but with
a parameter value that is uniformly distributed over (0, 5). That is, A is uniformly
distributed over (0, 5), and given that A = A, the number of storms is Poisson with
mean A. Find the probability there are at least three storms this season.

A collection of 7 coins is flipped. The outcomes are independent, and the ith coin
comes up heads with probability «;,i = 1,...,7. Suppose that for some value of
i 1<j<na = % Find the probability that the total number of heads to appear
on the 7 coins is an even number.

Suppose each new coupon collected is, independent of the past, a type i coupon

with probability p;. A total of # coupons is to be collected. Let A; be the event that

there is at least one type 7 in this set. For i # j, compute P(A;A;) by

(a) conditioning on Nj, the number of type i coupons in the set of 7 coupons;

(b) conditioning on F;, the first time a type i coupon is collected;

(c) using the identity P(A; U Aj) = P(A;) + P(A;) — P(A;A)).

Two players alternate flipping a coin that comes up heads with probability p. The

first one to obtain a head is declared the winner. We are interested in the probability

that the first player to flip is the winner. Before determining this probability, which

we will call f(p), answer the following questions.

(a) Do you think that f(p) is a monotone function of p? If so, is it increasing or
decreasing?

(b) What do you think is the value of limy,_, 1 f(p)?

(c) What do you think is the value of lim,_.o f(p)?

(d) Find £(p).

Suppose in Exercise 29 that the shooting ends when the target has been hit twice.

Let m; denote the mean number of shots needed for the first hit when player 7 shoots

first, i = 1,2. Also, let P;, i = 1,2, denote the probability that the first hit is by

player 1, when player i shoots first.

(a) Find mq and m;.

(b) Find P and P5.

For the remainder of the problem, assume that player 1 shoots first.

(c) Find the probability that the final hit was by 1.

(d) Find the probability that both hits were by 1.

(e) Find the probability that both hits were by 2.

(f) Find the mean number of shots taken.

A, B, and C are evenly matched tennis players. Initially A and B play a set, and
the winner then plays C. This continues, with the winner always playing the
waiting player, until one of the players has won two sets in a row. That player
is then declared the overall winner. Find the probability that A is the overall
winner.
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Suppose there are 7 types of coupons, and that the type of each new coupon obtained

is independent of past selections and is equally likely to be any of the » types.

Suppose one continues collecting until a complete set of at least one of each type is

obtained.

(a) Find the probability that there is exactly one type i coupon in the final
collection.

Hint: Condition on T, the number of types that are collected before the first type
i appears.

(b) Find the expected number of types that appear exactly once in the final
collection.

A and B roll a pair of dice in turn, with A rolling first. A’s objective is to obtain a
sum of 6, and B’s is to obtain a sum of 7. The game ends when either player reaches
his or her objective, and that player is declared the winner.

(a) Find the probability that A is the winner.

(b) Find the expected number of rolls of the dice.

(c) Find the variance of the number of rolls of the dice.

The number of red balls in an urn that contains # balls is a random variable that is
equally likely to be any of the values 0, 1,...,7. Thatis,

1

m, iZO,...,n

P{i red,n — i non-red} =

The 7 balls are then randomly removed one at a time. Let Y), denote the number of

red balls in the first k selections, k = 1,...,n.

(a) Find P{Y, =j},j=0,...,n.

(b) Find P{Y, 1 =j},j=0,...,n

(c) What do you think is the value of P{Y, =j},j =0,...,n?

(d) Verify your answer to part (c) by a backwards induction argument. That is,
check that your answer is correct when k = 7, and then show that whenever
it is true for kit is also true for k — 1,k =1,...,n.

The opponents of soccer team A are of two types: either they are a class 1 or a
class 2 team. The number of goals team A scores against a class i opponent is a
Poisson random variable with mean A;, where A1 = 2, A, = 3. This weekend the
team has two games against teams they are not very familiar with. Assuming that
the first team they play is a class 1 team with probability 0.6 and the second is,
independently of the class of the first team, a class 1 team with probability 0.3,
determine

(a) the expected number of goals team A will score this weekend.

(b) the probability that team A will score a total of five goals.

A coin having probability p of coming up heads is continually flipped. Let P;()
denote the probability that a run of j successive heads occurs within the first 7
flips.

(a) Argue that

Pj(n) =Pj(n—1) + p/(1 — p)[1 — Pj(n —j — 1]

(b) By conditioning on the first non-head to appear, derive another equation
relating P;() to the quantities Pj(n — k), k =1,...,].
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In a knockout tennis tournament of 2” contestants, the players are paired and
play a match. The losers depart, the remaining 27~ players are paired, and they
play a match. This continues for # rounds, after which a single player remains
unbeaten and is declared the winner. Suppose that the contestants are numbered 1
through 2", and that whenever two players contest a match, the lower numbered
one wins with probability p. Also suppose that the pairings of the remaining players
are always done at random so that all possible pairings for that round are equally
likely.

(a) What is the probability that player 1 wins the tournament?

(b) What is the probability that player 2 wins the tournament?

Hint: Imagine that the random pairings are done in advance of the tournament.

That is, the first-round pairings are randomly determined; the 2"~ first-round pairs

are then themselves randomly paired, with the winners of each pair to play in round

2; these 2”=2 groupings (of four players each) are then randomly paired, with the

winners of each grouping to play in round 3, and so on. Say that players i and j are

scheduled to meet in round k if, provided they both win their first K — 1 matches,

they will meet in round k. Now condition on the round in which players 1 and 2

are scheduled to meet.

In the match problem, say that (i), < j, is a pair if i chooses j’s hat and j chooses

i’s hat.

(a) Find the expected number of pairs.

(b) Let Q, denote the probability that there are no pairs, and derive a recursive
formula for Q, in terms of Q;,j < .

Hint: Use the cycle concept.

(c) Use the recursion of part (b) to find QOs.

Let N denote the number of cycles that result in the match problem.
(a) Let M,, = E[N], and derive an equation for M,, in terms of My,...,M,_1.
(b) Let C; denote the size of the cycle that contains person j. Argue that

N=>"1/G
=1

and use the preceding to determine E[N].
(c) Find the probability that persons 1,2, ...,k are all in the same cycle.
(d) Find the probability that 1,2,...,k is a cycle.

Use Equation (3.14) to obtain Equation (3.10).

Hint: First multiply both sides of Equation (3.14) by 7, then write a new equation
by replacing 7 with # — 1, and then subtract the former from the latter.

In Example 3.28 show that the conditional distribution of N given that U; = y is
the same as the conditional distribution of M given that U; = 1 — y. Also, show
that

EINIU; =y] =EM|U; =1 -yl =1+ ¢

Suppose that we continually roll a die until the sum of all throws exceeds 100. What
is the most likely value of this total when you stop?
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There are five components. The components act independently, with component i
working with probability p;, i = 1,2, 3,4, 5. These components form a system as
shown in Figure 3.7.

The system is said to work if a signal originating at the left end of the diagram can
reach the right end, where it can pass through a component only if that component
is working. (For instance, if components 1 and 4 both work, then the system also
works.) What is the probability that the system works?

This problem will present another proof of the ballot problem of Example 3.27.
(a) Argue that

P,m =1 — P{A and B are tied at some point}
(b) Explain why

P{A receives first vote and they are eventually tied}

= P{B receives first vote and they are eventually tied}

Hint: Any outcome in which they are eventually tied with A receiving the first vote
corresponds to an outcome in which they are eventually tied with B receiving the
first vote. Explain this correspondence.

(c) Argue that P{eventually tied} = 2m/(n + m), and conclude that Py, ,,, = (n —
m)/(n + m).

Consider a gambler who on each bet either wins 1 with probability 18/38 or loses

1 with probability 20/38. (These are the probabilities if the bet is that a roulette

wheel will land on a specified color.) The gambler will quit either when he or she

is winning a total of 5 or after 100 plays. What is the probability he or she plays

exactly 15 times?

Show that

(a) E[XY|Y =yl =yE[X|]Y =y]

(b) E[g(X,YV)|Y =yl = E[g(X, Y =]

(c) E[XY]= E[YE[X|Y]]

In the ballot problem (Example 3.27), compute P{A is never behind}.

An urn contains # white and 2 black balls that are removed one at a time. If
n > m, show that the probability that there are always more white than black balls



186 Conditional Probability and Conditional Expectation

in the urn (until, of course, the urn is empty) equals (12 — 1) /(n + m). Explain why
this probability is equal to the probability that the set of withdrawn balls always
contains more white than black balls. (This latter probability is (1 — m)/(n + m)
by the ballot problem.)

80. A coin that comes up heads with probability p is flipped 7 consecutive times. What
is the probability that starting with the first flip there are always more heads than
tails that have appeared?

81. Let X;,i>1, be independent uniform (0, 1) random variables, and define N by
N =min{n: X,, < X,,_1}

where X = x. Let f(x) = E[N].

(a) Derive an integral equation for f(x) by conditioning on Xj.
) Differentiate both sides of the equation derived in part (a).
(c) Solve the resulting equation obtained in part (b).
)

(d) For a second approach to determining f(x) argue that
(1- x)/e—l
PIN> k)= — 2
N>k ="

(e) Use part (d) to obtain f(x).
82. Let X1,X>,... be independent continuous random variables with a common dis-
tribution function F and density f = F/, and for k > 1 let

Np = min{n > k: X,, = kth largest of X1,...,X,}

(a) Show that P{N}, = n} = %,n > k.
(b) Argue that

i+k—2
i

fn, @) = FEE@)* Y <

i=0

)(F(x))"

(c) Prove the following identity:
o0 .
al=k =Z<’+1:_2>(1—a)", O<a<1l,k>2
=0

Hint: Use induction. First prove it when k = 2, and then assume it for k. To prove
it for k + 1, use the fact that

S i+ k-1 N (i+k=2 ,
<l+z’ >(1_“)1=Z<l+i )(1_‘1)1

i=1 =1
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where the preceding used the combinatorial identity

<m> (m P 1) (m ) 1)

)= . + | .

1 i i—1

Now, use the induction hypothesis to evaluate the first term on the right side of the

preceding equation.
(d) Conclude that Xy, has distribution F.

An urn contains 7 balls, with ball 7 having weight w;,i = 1,...,7. The balls are
withdrawn from the urn one at a time according to the following scheme: When
S is the set of balls that remains, ball i, € §, is the next ball withdrawn with
probability w;/ 3 ;cgw;. Find the expected number of balls that are withdrawn
before ball i, =1,...,n.

In the list example of Section 3.6.1 suppose that the initial ordering at time # = 0 is
determined completely at random; that is, initially all #! permutations are equally
likely. Following the front-of-the-line rule, compute the expected position of the
element requested at time #.

Hint: To compute P{e; precedes e; at time ¢} condition on whether or not either ¢;
or e; has ever been requested prior to ¢.

In the list problem, when the P; are known, show that the best ordering (best in the
sense of minimizing the expected position of the element requested) is to place the
elements in decreasing order of their probabilities. That is, if Py > Py > --- > Py,
show that 1,2, ..., is the best ordering.

Consider the random graph of Section 3.6.2 when n = 5. Compute the probability
distribution of the number of components and verify your solution by using it to
compute E[C] and then comparing your solution with

N
S\ (k= 1)!
mo=3 ()5

k=1
(a) From the results of Section 3.6.3 we can conclude that there are (";’f}l)
nonnegative integer valued solutions of the equation x1 + -+ + x,, = n.

Prove this directly.
(b) How many positive integer valued solutions of x1 + - -+ + x,,;, = n are there?

Hint: Lety; =x; — 1.
(c) For the Bose-Einstein distribution, compute the probability that exactly k of
the X; are equal to 0.

In Section 3.6.3, we saw that if U is a random variable that is uniform on
(0,1) and if, conditional on U = p, X is binomial with parameters 7 and p, then

P(X =i} = i=0,1,...,n

n+1’

For another way of showing this result, let U, X1, X2, ..., X, be independent uni-
form (0, 1) random variables. Define X by

X=#i:X;,<U
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That is, if the # + 1 variables are ordered from smallest to largest, then U would
be in position X + 1.

(a) Whatis P{X = i}?

(b) Explain how this proves the result of Section 3.6.3.

Let I4,...,1I, be independent random variables, each of which is equally likely to
be either 0 or 1. A well-known nonparametric statistical test (called the signed rank
test) is concerned with determining P, (k) defined by

n
Pu(k)=P3> jli <k
j=1

Justify the following formula:
Pu(k) = 3Pu_1(k) + 3Pu_1(k — 1)

The number of accidents in each period is a Poisson random variable with mean 5.
With X,,,n > 1, equal to the number of accidents in period 7, find E[N] when

(a) N=min(n: X,,_» =2,X,,_1=1,X,, =0);

(b) N =min(z X, 3=2,X,2=1,X,_1 =0, X, = 2).

Find the expected number of flips of a coin, which comes up heads with probabil-
ity p, that are necessary to obtain the pattern h,t,h, h,t,h, ¢, h.

The number of coins that Josh spots when walking to work is a Poisson random

variable with mean 6. Each coin is equally likely to be a penny, a nickel, a dime, or

a quarter. Josh ignores the pennies but picks up the other coins.

(a) Find the expected amount of money that Josh picks up on his way to work.

(b) Find the variance of the amount of money that Josh picks up on his way to
work.

(c) Find the probability that Josh picks up exactly 25 cents on his way to work.

Consider a sequence of independent trials, each of which is equally likely to result in
any of the outcomes 0, 1,. .., . Say that a round begins with the first trial, and that
a new round begins each time outcome 0 occurs. Let N denote the number of trials
that it takes until all of the outcomes 1, ...,7— 1 have occurred in the same round.
Also, let T; denote the number of trials that it takes until j distinct outcomes have
occurred, and let I; denote the jth distinct outcome to occur. (Therefore, outcome
I; first occurs at trial T;.)
(a) Argue that the random vectors (I1,...,1I;) and (T4, ..., Ty,) are independent.
(b) Define X by letting X = j if outcome 0 is the jth distinct outcome to occur.
(Thus, Ix = 0.) Derive an equation for E[N]interms of E[T}],j =1,...,m — 1
by conditioning on X.
(c) Determine E[T}],j=1,...,m—1.

Hint: See Exercise 42 of Chapter 2.
(d) Find E[N].

Let N be a hypergeometric random variable having the distribution of the number
of white balls in a random sample of size r from a set of w white and b blue balls.
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That is,

P{N =n} =

where we use the convention that (’/") = 0 if either j < 0 or j > m. Now, consider

a compound random variable Sy = Zfil X, where the X; are positive integer

valued random variables with o; = P{X; = j}.

(a) With M as defined as in Section 3.7, find the distribution of M — 1.

(b) Suppressing its dependence on b, let P, ,(k) = P{Sn = k}, and derive a recur-
sion equation for P, (k).

(c) Use the recursion of (b) to find P, ,(2).

95. For the left skip free random walk of Section 3.6.6 let 8 = P(S,, < O for all #) be
the probability that the walk is never positive. Find g when E[X;] < 0.

96. Consider a large population of families, and suppose that the number of children in
the different families are independent Poisson random variables with mean A. Show
that the number of siblings of a randomly chosen child is also Poisson distributed
with mean A.

*97. Use the conditional variance formula to find the variance of a geometric random
variable.
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4.1 Introduction

Consider a process that has a value in each time period. Let X, denote its value
in time period 7, and suppose we want to make a probability model for the
sequence of successive values X, X1, X3 . ... The simplest model would probably
be to assume that the X, are independent random variables, but often such an
assumption is clearly unjustified. For instance, starting at some time suppose
that X, represents the price of one share of some security, such as Google, at
the end of # additional trading days. Then it certainly seems unreasonable to
suppose that the price at the end of day 7 + 1 is independent of the prices on days
n,n — 1,n — 2 and so on down to day 0. However, it might be reasonable to
suppose that the price at the end of trading day # + 1 depends on the previous
end-of-day prices only through the price at the end of day ». That is, it might be
reasonable to assume that the conditional distribution of X, 1 given all the past
end-of-day prices X,,, X;, — 1,..., X depends on these past prices only through
the price at the end of day n. Such an assumption defines a Markov chain, a
type of stochastic process that will be studied in this chapter, and which we now
formally define.

Let {X,,n = 0,1,2,...,} be a stochastic process that takes on a finite or
countable number of possible values. Unless otherwise mentioned, this set of
possible values of the process will be denoted by the set of nonnegative inte-
gers {0,1,2,...}. If X,, = i, then the process is said to be in state i at time 7.

Introduction to Probability Models, ISBN: 9780123756862
Copyright © 2010 by Elsevier, Inc. All rights reserved.
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We suppose that whenever the process is in state 7, there is a fixed probability P;;
that it will next be in state j. That is, we suppose that

P{iXpp1 =71Xn =6, X1 =dp1,..., X1 =01, X0 =ip} = Pj; (4.1)

for all states i, i1, . . .,iy—1,%,j and all # > 0. Such a stochastic process is known as
a Markov chain. Equation (4.1) may be interpreted as stating that, for a Markov
chain, the conditional distribution of any future state X,,; 1, given the past states
Xo, X1, ..., X,_1 and the present state X,,, is independent of the past states and
depends only on the present state.

The value P;; represents the probability that the process will, when in state i,
next make a transition into state j. Since probabilities are nonnegative and since
the process must make a transition into some state, we have

o0
Pj>0, ij=20; > Pj=1, i=0,1,...
j=0

Let P denote the matrix of one-step transition probabilities Pj;, so that

Poo Po1 Po

Pio P11 P12
P=| : : :

Py Pi1 Pp

Example 4.1 (Forecasting the Weather) Suppose that the chance of rain tomor-
row depends on previous weather conditions only through whether or not it is
raining today and not on past weather conditions. Suppose also that if it rains
today, then it will rain tomorrow with probability «; and if it does not rain today,
then it will rain tomorrow with probability B.

If we say that the process is in state 0 when it rains and state 1 when it does
not rain, then the preceding is a two-state Markov chain whose transition prob-
abilities are given by

o 1—«a

P=lpg 1-p

Example 4.2 (A Communications System) Consider a communications system
that transmits the digits 0 and 1. Each digit transmitted must pass through several
stages, at each of which there is a probability p that the digit entered will be
unchanged when it leaves. Letting X,, denote the digit entering the nth stage, then
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{Xn,n = 0,1,...} is a two-state Markov chain having a transition probability
matrix

=ity .
I—=p p

Example 4.3 On any given day Gary is either cheerful (C), so-so (S), or glum
(G). If he is cheerful today, then he will be C, S, or G tomorrow with respective
probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will be C, S, or
G tomorrow with probabilities 0.3, 0.4, 0.3. If he is glum today, then he will be
C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5.

Letting X, denote Gary’s mood on the nth day, then {X,,, 7 > 0} is a three-state
Markov chain (state 0 = C, state 1 = S, state 2 = G) with transition probability
matrix

0.5 04 0.1
P=|03 04 03 |
02 03 0.5

Example 4.4 (Transforming a Process into a Markov Chain)  Suppose that whether
or not it rains today depends on previous weather conditions through the last two
days. Specifically, suppose that if it has rained for the past two days, then it will
rain tomorrow with probability 0.7; if it rained today but not yesterday, then
it will rain tomorrow with probability 0.5; if it rained yesterday but not today,
then it will rain tomorrow with probability 0.4; if it has not rained in the past
two days, then it will rain tomorrow with probability 0.2.

If we let the state at time # depend only on whether or not it is raining at time 7,
then the preceding model is not a Markov chain (why not?). However, we can
transform this model into a Markov chain by saying that the state at any time
is determined by the weather conditions during both that day and the previous
day. In other words, we can say that the process is in

state 0 if it rained both today and yesterday,
state 1 if it rained today but not yesterday,

state 2 if it rained yesterday but not today,

state 3 if it did not rain either yesterday or today.

The preceding would then represent a four-state Markov chain having a transition
probability matrix

0.7 0 03 0
0.5 0 0.5 0
0 04 0 0.6
0 02 0 0.8

P=
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You should carefully check the matrix P, and make sure you understand how it
was obtained. ]

Example 4.5 (A Random Walk Model) A Markov chain whose state space is given
by the integers i = 0, £1,£2,... is said to be a random walk if, for some number
0<p<l1,

Piivi=p=1-Pij1, i=0,%£1,...

The preceding Markov chain is called a random walk for we may think of it as
being a model for an individual walking on a straight line who at each point of
time either takes one step to the right with probability p or one step to the left
with probability 1 — p. [ |

Example 4.6 (A Gambling Model) Consider a gambler who, at each play of the
game, either wins $1 with probability p or loses $1 with probability 1 — p. If we
suppose that our gambler quits playing either when he goes broke or he attains
a fortune of $N, then the gambler’s fortune is a Markov chain having transition
probabilities

Pijvi=p=1-P;1, i=1,2,...,N—1,
Poo =Pnn =1

States 0 and N are called absorbing states since once entered they are never left.
Note that the preceding is a finite state random walk with absorbing barriers
(states 0 and N). [ ]

Example 4.7 In most of Europe and Asia annual automobile insurance premi-
ums are determined by use of a Bonus Malus (Latin for Good-Bad) system. Each
policyholder is given a positive integer valued state and the annual premium
is a function of this state (along, of course, with the type of car being insured
and the level of insurance). A policyholder’s state changes from year to year
in response to the number of claims made by that policyholder. Because lower
numbered states correspond to lower annual premiums, a policyholder’s state
will usually decrease if he or she had no claims in the preceding year, and will
generally increase if he or she had at least one claim. (Thus, no claims is good
and typically results in a decreased premium, while claims are bad and typically
result in a higher premium.)

For a given Bonus Malus system, let s;(k) denote the next state of a policyholder
who was in state 7 in the previous year and who made a total of k claims in that
year. If we suppose that the number of yearly claims made by a particular policy-
holder is a Poisson random variable with parameter A, then the successive states
of this policyholder will constitute a Markov chain with transition probabilities
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Whereas there are usually many states (20 or so is not atypical), the following
table specifies a hypothetical Bonus Malus system having four states.

Next state if
State Annual Premium 0 claims 1 claim 2 claims > 3 claims
1 200 1 2 3 4
2 250 1 3 4 4
3 400 2 4 4 4
4 600 3 4 4 4

Thus, for instance, the table indicates that s;(0)=1; sy(1)=3; s2(k) =4,
k > 2. Consider a policyholder whose annual number of claims is a Poisson ran-
dom variable with parameter A. If g, is the probability that such a policyholder
makes k claims in a year, then

k>0

For the Bonus Malus system specified in the preceding table, the transition
probability matrix of the successive states of this policyholder is

a a1 a l—ay—a1—a
ao 0 al 1—610—611

0 ao 0 1—610

0 0 ay 1—ag

4.2 Chapman-Kolmogorov Equations

We have already defined the one-step transition probabilities P;;. We now define
the n-step transition probabilities P} to be the probability that a process in state i

will be in state j after # additional transitions. That is,
Py =PXpyr=jlXp=1i}, n>0,4j>0

Of course Pilj = Pj;. The Chapman-Kolmogorov equations provide a method for
computing these n-step transition probabilities. These equations are

o0
PZT”" = ZP;L Z; forall m,m > 0, all i,j (4.2)
k=0

n

and are most easily understood by noting that PIkPZ; represents the probability

that starting in i the process will go to state j in #n + m transitions through a
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path which takes it into state k at the nth transition. Hence, summing over all
intermediate states k yields the probability that the process will be in state j after
n + m transitions. Formally, we have

P = P{Xpim = j1X0 = i}

o
=Y PXnim =, Xn = kIX0 = i}
k=0

o
=Y PXntm = jIXu =k, Xo = i}P(X, = k| X0 = i}
k=0

[e'e)
_ m pn
=2 PiiPi
k=0

If we let P™ denote the matrix of #-step transition probabilities P%, then Equa-
tion (4.2) asserts that

petm — ptm | pm)

where the dot represents matrix multiplication.* Hence, in particular,
PP =pl+th —p.p=p2
and by induction
P(n) — P(n—l+1) — I)n—l .P = P*
That is, the n-step transition matrix may be obtained by multiplying the matrix

P by itself 7 times.

Example 4.8 Consider Example 4.1 in which the weather is considered as a
two-state Markov chain. If « = 0.7 and 8 = 0.4, then calculate the probability
that it will rain four days from today given that it is raining today.

Solution: The one-step transition probability matrix is given by

07 0.3
I’=H0.4 0.6H

*If A is an N x M matrix whose element in the ith row and jth column is a;; and B is an M x K
matrix whose element in the ith row and jth column is b;;, then A - B is defined to be the N x K matrix
whose element in the ith row and jth column is 224:1 aiby;.
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Hence,
P —p2 — 0.7 0.3 0.7 03
0.4 0.6 ||04 0.6
_Jo.61  0.39
T ][0.52 0.48]°
P& — (P22 = 0.61 0.39| [0.61 0.39
0.52 0.48| |0.52 0.48
_[0.5749  0.4251
~]10.5668 0.4332
and the desired probability Pgo equals 0.5749. m

Example 4.9 Consider Example 4.4. Given that it rained on Monday and
Tuesday, what is the probability that it will rain on Thursday?

Solution: The two-step transition matrix is given by

0.7 0 03 0 0.7 0 03 0
05 0 05 0 0.5 0 0.5 0
0 04 O 0.6 [0 04 O 0.6
0 02 0 0.8| |0 02 0 0.8

PP =p2 =

0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 020 0.48
0.10 0.16 0.10 0.64

Since rain on Thursday is equivalent to the process being in either state 0 or
. oy . . 2 2

state 1 on Thursday, the desired probability is given by Py, + Py, = 0.49 +

0.12 = 0.61. [ ]

Example 4.10 An urn always contains 2 balls. Ball colors are red and blue. At
each stage a ball is randomly chosen and then replaced by a new ball, which with
probability 0.8 is the same color, and with probability 0.2 is the opposite color,
as the ball it replaces. If initially both balls are red, find the probability that the
fifth ball selected is red.

Solution: To find the desired probability we first define an appropriate
Markov chain. This can be accomplished by noting that the probability that a
selection is red is determined by the composition of the urn at the time of the
selection. So, let us define X, to be the number of red balls in the urn after the
nth selection and subsequent replacement. Then X,,,# > 0, is a Markov chain
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with states 0, 1,2 and with transition probability matrix P given by

0.8 02 0
0.1 0.8 0.1
0 02 08

To understand the preceding, consider for instance P 9. Now, to go from 1
red ball in the urn to 0 red balls, the ball chosen must be red (which occurs
with probability 0.5) and it must then be replaced by a ball of opposite color
(which occurs with probability 0.2), showing that

P10 =(0.5)(0.2) =0.1

To determine the probability that the fifth selection is red, condition on the
number of red balls in the urn after the fourth selection. This yields

2
P(fifth selection is red) = Z P(fifth selection is red| X4 = )P(X4 = i| X = 2)
i=0

= (0)P3y + (0.5)P5 | + (DP3,

=0.5P3, + P3,
To calculate the preceding we compute P*. Doing so yields
P}, =0.4352, P3,=0.4872

giving the answer P(fifth selection is red) = 0.7048. [ ]

Example 4.11 Suppose that balls are successively distributed among 8 urns, with
each ball being equally likely to be put in any of these urns. What is the probability
that there will be exactly 3 nonempty urns after 9 balls have been distributed?

Solution: If we let X, be the number of nonempty urns after # balls have
been distributed, then X,,,7 > 0 is a Markov chain with states 0,1,..., 8 and
transition probabilities

Piij=i/8=1-P;;pq, i=0,1,...,8

The desired probability is P3’3 = P§,3, where the equality follows because
Po,1 =1. Now, starting with 1 occupied urn, if we had wanted to deter-
mine the entire probability distribution of the number of occupied urns after
8 additional balls had been distributed we would need to consider the transition
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probability matrix with states 1,2,...,8. However, because we only require
the probability, starting with a single occupied urn, that there are 3 occu-
pied urns after an additional 8 balls have been distributed we can make use
of the fact that the state of the Markov chain cannot decrease to collapse all
states 4,5, ...,8 into a single state 4 with the interpretation that the state is
4 whenever four or more of the urns are occupied. Consequently, we need
only determine the eight-step transition probability P§’3 of the Markov chain
with states 1,2, 3,4 having transition probability matrix P given by

18 7/8 0 0
0 2/8 6/8 0
0 0 3/8 5/8
o 0 o0 1

Raising the preceding matrix to the power 4 yields the matrix P* given by

0.0002 0.0256 0.2563 0.7178

0 0.0039 0.0952 0.9009

0 0 0.0198 0.9802

0 0 0 1
Hence,

P§’3 =0.0002 x 0.2563 + 0.0256 x 0.0952 + 0.2563 x 0.0198
+ 0.7178 x 0 = 0.00756 |

So far, all of the probabilities we have considered are conditional probabilities.
For instance, P}; is the probability that the state at time # is j given that the initial

state at time O is 7. If the unconditional distribution of the state at time 7 is
desired, it is necessary to specify the probability distribution of the initial state.
Let us denote this by

o0
o = P{Xo =i}, i>0<2}n=1)
i=0

All unconditional probabilities may be computed by conditioning on the initial
state. That is,

P{X, =j} = ) P{X, =jlXo = i}P{Xo =i}
=0

o0
—_— 7 .
=) Pjo;
=0
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For instance, if g = 0.4, a1 = 0.6, in Example 4.8, then the (unconditional)
probability that it will rain four days after we begin keeping weather records is

P{X4 = 0} = 0.4P%, + 0.6P7,
= (0.4)(0.5749) + (0.6)(0.5668)
= 0.5700

Consider a Markov chain with transition probabilities P;;. Let < be a set of
states, and suppose we are interested in the probability that the Markov chain
ever enters any of the states in &/ by time . That is, for a given state i ¢ &7, we
are interested in determining

B=PXy € o forsomek=1,...,m|Xg=1i)

To determine the preceding probability we will define a Markov chain {W,,,n >
0} whose states are the states that are not in ./ plus an additional state, which we
will call A in our general discussion (though in specific examples we will usually
give it a different name). Once the {W,,} Markov chain enters state A it remains
there forever.

The new Markov chain is defined as follows. Letting X,, denote the state at
time 7 of the Markov chain with transition probabilities P; ;, define

N =min{n: X, € &/}

and let N = oo if X, ¢ & for all n. In words, N is the first time the Markov
chain enters the set of states 7. Now, define

X, ifn<N
W"_{A, ifn>N

So the state of the {W,} process is equal to the state of the original Markov
chain up to the point when the original Markov chain enters a state in «7. At
that time the new process goes to state A and remains there forever. From this
description it follows that W,,n > 0 is a Markov chain with states i,i ¢ <7, A
and with transition probabilities Q; ;, given by

Qij=Pij, it i¢d,j¢ o
Qia=) Pij, if i¢o

jedd
Oan=1
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Because the original Markov chain will have entered a state in &/ by time m if
and only if the state at time 7 of the new Markov chain is A, we see that

P(X, € o« forsome k =1,...,m| Xy =1i)
=P(Wy = AlXo = i) = P(W,, = A|Wo = 1) = Oy

That is, the desired probability is equal to an m-step transition probability of the
new chain.

Example 4.12 A pensioner receives 2 (thousand dollars) at the beginning of
each month. The amount of money he needs to spend during a month is inde-
pendent of the amount he has and is equal to i with probability P;,i = 1,2, 3,4,
Z?:l P;=1. If the pensioner has more than 3 at the end of a month, he gives
the amount greater than 3 to his son. If, after receiving his payment at the
beginning of a month, the pensioner has a capital of 5, what is the proba-
bility that his capital is ever 1 or less at any time within the following four
months?

Solution: To find the desired probability, we consider a Markov chain
with the state equal to the amount the pensioner has at the end of a
month. Because we are interested in whether this amount ever falls as low
as 1, we will let 1 mean that the pensioner’s end-of-month fortune has
ever been less than or equal to 1. Because the pensioner will give any end-
of-month amount greater than 3 to his son, we need only consider the
Markov chain with states 1,2, 3 and transition probability matrix Q = [OQ; ]
given by

1 0 0
P34+ Py Py Py
Py P; P+ P,

To understand the preceding, consider Q3 1, the probability that a month that
ends with the pensioner having the amount 2 will be followed by a month that
ends with the pensioner having less than or equal to 1. Because the pensioner
will begin the new month with the amount 2 4+ 2 = 4, his ending capital will be
less than or equal to 1 if his expenses are either 3 or 4. Thus, Q> 1 = P3 + Ps4.
The other transition probabilities are similarly explained.

Suppose now that P; = 1/4, i = 1,2,3,4. The transition probability
matrix is

1 0 0
12 1/4 1/4
14 1/4 12
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Squaring this matrix and then squaring the result gives the matrix

1 0 0
20 13 21
256 256 256
201 21 34

56 256 256

Because the pensioner’s initial end-of-month capital was 3, the desired answer
is 0%, =201/256. ]

Suppose now that we want to compute the probability that the {X,,,n > 0}
chain, starting in state #, enters state j at time 2 without ever entering any of the
states in &7, where neither i nor j is in .«/. That is, for i, j ¢ &/, we are interested
in

a=PXyp=j,Xp ¢ A k=1,...,m—1Xo =)

Noting that the event that X,, =7, X}, ¢ «/,k =1,...,m — 1 is equivalent to the
event that W,,, = j, it follows that for i,j ¢ <7,

PXu=jXp ¢ A k=1,...,m—1|Xg =1 = P(W,,, =j|Xo =)
= P(Wy = jIWo = i) = QJ".

For instance, in Example 4.12, starting with 5 at the beginning of January, the
probability that the pensioner’s capital is 4 at the beginning of May without ever
having been less than or equal to 1 in that time is O} , = 21/256.

Example 4.13 Consider a Markov chain with states 1,2, 3,4, 5, and suppose
that we want to compute

P(X4=2,X3<2,X2<2,X1 <2 Xo=1)

That is, we want the probability that, starting in state 1, the chain is in state 2 at
time 4 and has never entered any of the states in the set &7 = {3, 4, 5}.

To compute this probability all we need to know are the transition probabilities
P11, P12, P21, P23. So, suppose that

P11 =03 P1p=03
P1=0.1 Py =0.2

Then we consider the Markov chain having states 1,2, 3 (we are giving state A
the name 3), and having the transition probability matrix Q as follows:

03 03 04
0.1 02 0.7
0 0 1
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The desired probability is Q‘l‘z. Raising Q to the power 4 yields the matrix

0.0095 0.0124 0.9781

0.0219 0.0285 0.9496
0 0 1

Hence, the desired probability is & = 0.0285. [ |
When i ¢ <7 butj € o we can determine the probability

a=PXy=jXp ¢ A k=1,...,m—1|Xo =1)
as follows.
o= ZP(szj,Xm_l =rnXp¢ A k=1,....m—2|Xo=1)
24

=Y PXm=jlXm1=nXp¢ o k=1,...,m—2,Xo=1)
ré.of

X PXpy1=1Xp ¢ A, k=1,...,m—2|Xg=1)

=Y P iPXpa1=0Xp ¢ A k=1,...,m—2|Xo=1)
4

=D POyt

réd
Also, when i € &7 we could determine
C=PXm=iXp ¢ A k=1,...,m—1|Xo = i)
by conditioning on the first transition to obtain

o= ZP(X’" =, Xp ¢ A k=1,.... m—1|Xg=i,X1 =r)P(X1 =7|Xo =1)
réof

=Y PXm1 =) Xp ¢ S k=1,...,m—2|Xg=1Pi,
r¢of

For instance, if i € &,j ¢ </ then the preceding equation yields
PXw =, Xp ¢ k=1,...,m=1Xo =) =} O/ Pi,

réof

We can also compute the conditional probability of X,, given that the chain
starts in state i and has not entered any state in </ by time 7, as follows.
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Fori,j ¢ o,

P{Xy=jIXo=1i,Xp ¢ A, k=1,...,n}
C PXp=jXp g A k=1, ,nXg=i} i
PXp ¢ o k=1,...,nXo =i} Y e OF,

4.3 Classification of States

State j is said to be accessible from state i if PZ > 0 for some # > 0. Note that this

implies that state j is accessible from state 7 if and only if, starting in , it is possible
that the process will ever enter state j. This is true since if j is not accessible from
i, then

o
P{ever enter j|start in i} = P{ U{X” = j}‘Xo = i}
n=0

o
<Y P(Xu=1Xo =1}

n=0

Two states i and j that are accessible to each other are said to communicate, and
we write i <> .
Note that any state communicates with itself since, by definition,

PY=PXg=ilXo=i}=1
The relation of communication satisfies the following three properties:

(i) State i communicates with state Z, all i > 0.
(i) If state : communicates with state j, then state j communicates with state i.
(iii) If state i communicates with state j, and state ; communicates with state k, then state
i communicates with state k.

Properties (i) and (ii) follow immediately from the definition of communication.
To prove (iii) suppose that i communicates with j, and j communicates with k.
Thus, there exist integers 7 and m such that Py > 0, P;Z > 0. Now by the

Chapman-Kolmogorov equations, we have

o0
n+m __ 7 P 1 P
Pi =) PRPy > PPl > 0
r=0
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Hence, state k is accessible from state i. Similarly, we can show that state i is
accessible from state k. Hence, states i and k£ communicate.

Two states that communicate are said to be in the same class. It is an easy
consequence of (i), (ii), and (iii) that any two classes of states are either identical
or disjoint. In other words, the concept of communication divides the state space
up into a number of separate classes. The Markov chain is said to be irreducible
if there is only one class, that is, if all states communicate with each other.

Example 4.14 Consider the Markov chain consisting of the three states 0, 1, 2
and having transition probability matrix

o)
I

[« R ST ST

[SSE N ST

W K= O

It is easy to verify that this Markov chain is irreducible. For example, it is possible
to go from state 0 to state 2 since

0—->1—2

That is, one way of getting from state 0 to state 2 is to go from state 0 to state 1
(with probability %) and then go from state 1 to state 2 (with probability }‘). [ |

Example 4.15 Consider a Markov chain consisting of the four states 0, 1, 2, 3
and having transition probability matrix

=~}
I

(@R NN ST ST

[« RN NN ST ST

—_ N= O O

O N O O

The classes of this Markov chain are {0, 1}, {2}, and {3}. Note that while state 0 (or
1) is accessible from state 2, the reverse is not true. Since state 3 is an absorbing
state, that is, P33 = 1, no other state is accessible from it. [ |

For any state i we let f; denote the probability that, starting in state , the process
will ever reenter state 7. State 7 is said to be recurrent if f; = 1 and transient if
fi <1.

Suppose that the process starts in state 7 and 7 is recurrent. Hence, with prob-
ability 1, the process will eventually reenter state i. However, by the definition
of a Markov chain, it follows that the process will be starting over again when it
reenters state i and, therefore, state 7 will eventually be visited again. Continual
repetition of this argument leads to the conclusion that if state i is recurrent then,
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starting in state i, the process will reenter state i again and again and again—in
fact, infinitely often.

On the other hand, suppose that state i is transient. Hence, each time the
process enters state i there will be a positive probability, namely, 1 — f;, that it
will never again enter that state. Therefore, starting in state Z, the probability that
the process will be in state 7 for exactly # time periods equals /"~ (1 —f;), n > 1.
In other words, if state i is transient then, starting in state i, the number of time
periods that the process will be in state i has a geometric distribution with finite
mean 1/(1 — f;).

From the preceding two paragraphs, it follows that state i is recurrent if and
only if, starting in state i, the expected number of time periods that the process
is in state i is infinite. But, letting

I - { 1, ifX,=i

n=00, ifX,#£i
we have that Y 7 I, represents the number of periods that the process is in
state i. Also,

00 )
n=0 n=0

o]
=Y P{X, =iXo =)
n=0

o0
= Z P!
n=0

We have thus proven the following.

Proposition 4.1 State i is

o0
recurrent if E P} = oo,

n=1

0
transient if ZPZ < 00

n=1

The argument leading to the preceding proposition is doubly important because
it also shows that a transient state will only be visited a finite number of times
(hence the name transient). This leads to the conclusion that in a finite-state
Markov chain not all states can be transient. To see this, suppose the states are
0,1,...,M and suppose that they are all transient. Then after a finite amount of
time (say, after time Tp) state O will never be visited, and after a time (say, T1)
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state 1 will never be visited, and after a time (say, T>) state 2 will never be visited,
and so on. Thus, after a finite time T = max{Ty, T4,..., Tm} no states will be
visited. But as the process must be in some state after time T we arrive at a
contradiction, which shows that at least one of the states must be recurrent.

Another use of Proposition 4.1 is that it enables us to show that recurrence is
a class property.

Corollary 4.2 If state i is recurrent, and state / communicates with state j, then
state j is recurrent.

Proof. To prove this we first note that, since state i communicates with state j,
there exist integers k and 7 such that Pfi >0, P > 0. Now, for any integer #

m+n+k m pn pk
gt = P PPy

This follows since the left side of the preceding is the probability of going from
jtojinm + n + k steps, while the right side is the probability of going from to j
in m + n + k steps via a path that goes from j to i in m steps, then from i to 7 in
an additional # steps, then from i to j in an additional k steps.

From the preceding we obtain, by summing over #, that

o o0

m+n+k m pk n __
D PR S PRPLY P =0
n=1 n=1

since P;;’Pfj > 0and )2 ; P? is infinite since state i is recurrent. Thus, by Propo-
sition 4.1 it follows that state j is also recurrent. [ |

Remarks

(i) Corollary 4.2 also implies that transience is a class property. For if state 7 is transient
and communicates with state j, then state j must also be transient. For if j were
recurrent then, by Corollary 4.2, i would also be recurrent and hence could not be
transient.

(i) Corollary 4.2 along with our previous result that not all states in a finite Markov
chain can be transient leads to the conclusion that all states of a finite irreducible
Markov chain are recurrent.

Example 4.16 Let the Markov chain consisting of the states 0, 1,2, 3 have the
transition probability matrix

o o 1 1
p_|1 0 0 0
01 0 0
0 1 0 0

Determine which states are transient and which are recurrent.
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Solution: It isa simple matter to check that all states communicate and, hence,
since this is a finite chain, all states must be recurrent. [ ]

Example 4.17 Consider the Markov chain having states 0, 1, 2, 3, 4 and

S N=Ne O O

=

Il
N =N Ty
B O O NI N
O NRNR O O
N, O O O O

Determine the recurrent state.

Solution: This chain consists of the three classes {0, 1}, {2,3}, and {4}. The
first two classes are recurrent and the third transient. [ ]

Example 4.18 (A Random Walk) Consider a Markov chain whose state space
consists of the integers i = 0,£1,+2,..., and has transition probabilities
given by

Pi,i+l =p= 1 _Pi,i—la i:O,:I:l,:l:Z,...

where 0 < p < 1. In other words, on each transition the process either moves one
step to the right (with probability p) or one step to the left (with probability 1—p).
One colorful interpretation of this process is that it represents the wanderings of
a drunken man as he walks along a straight line. Another is that it represents the
winnings of a gambler who on each play of the game either wins or loses one
dollar.

Since all states clearly communicate, it follows from Corollary 4.2 that they
are either all transient or all recurrent. So let us consider state 0 and attempt to
determine if )2 | Pg is finite or infinite.

Since it is impossible to be even (using the gambling model interpretation) after
an odd number of plays we must, of course, have that

Pl =0, n=1,2,...

On the other hand, we would be even after 2# trials if and only if we won »
of these and lost 7 of these. Because each play of the game results in a win with
probability p and a loss with probability 1 — p, the desired probability is thus the
binomial probability

2 2n)!
PG = (:)p”(l -p'= (ni)@(l -, n=1,23,...

n!
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By using an approximation, due to Stirling, which asserts that
nl ~n"12e7 20 (4.3)
where we say that a,, ~ b,, when lim,,—, » a,/b,, = 1, we obtain

(4p(1 = p))"
Jan

Now it is easy to verify, for positive a,, b,, that if a, ~ b,, then ) a, < oo if
and only if }~, b, < oo. Hence, Y, P}, will converge if and only if

2n
Ppo

o]

5 “4p(1 —p))”
Jn

n=1

does. However, 4p(1 — p) < 1 with equality holding if and only if p = % Hence,
Y 1Pl = ccifand only if p = % Thus, the chain is recurrent when p = % and
transient if p # %

When p = %, the preceding process is called a symmetric random walk. We
could also look at symmetric random walks in more than one dimension. For
instance, in the two-dimensional symmetric random walk the process would, at
each transition, either take one step to the left, right, up, or down, each having
probability %. That is, the state is the pair of integers (i,7) and the transition
probabilities are given by

1
Piji+1,) = Piiji-1,) = Paj),a,i+1) = Paj,Gi-1) = 3

By using the same method as in the one-dimensional case, we now show that this
Markov chain is also recurrent.

Since the preceding chain is irreducible, it follows that all states will be recurrent
if state 0 = (0, 0) is recurrent. So consider Pé(’)‘. Now after 2#n steps, the chain
will be back in its original location if for some 7,0 < i < 7, the 27 steps consist
of i steps to the left, i to the right, # — i up, and # — i down. Since each step
will be either of these four types with probability %, it follows that the desired
probability is a multinomial probability. That is,

n

2n __ (Zﬂ)' 1 "
Poo =2 ilil(n — 0)l(n — i)! <4)

=0

_ . @2n)!  nl n! 1\
C = mlal (=Dl (n— D)\ 4
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SO0
e

where the last equality uses the combinatorial identity

(-2002)

which follows upon noting that both sides represent the number of subgroups of
size n one can select from a set of 7 white and 7 black objects. Now,

2n 2n)!
( n > = il
(Zn)2n+1/2872nm
nint+lp—2n (271)
411
~ Jan

Hence, from Equation (4.4) we see that

by Stirling’s approximation

P~ —
n
which shows that )", P2 = oo, and thus all states are recurrent.

Interestingly enough, whereas the symmetric random walks in one and two
dimensions are both recurrent, all higher-dimensional symmetric random walks
turn out to be transient. (For instance, the three-dimensional symmetric random
walk is at each transition equally likely to move in any of six ways—either to the
left, right, up, down, in, or out.) [ ]

Remark For the one-dimensional random walk of Example 4.18 here is a direct
argument for establishing recurrence in the symmetric case, and for determining
the probability that it ever returns to state 0 in the nonsymmetric case. Let

B = Pfever return to 0}

To determine B, start by conditioning on the initial transition to obtain

B = P{ever return to 0|X; = 1}p + P{ever return to 0|X1 = —1}(1 — p)
(4.5)
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Now, let o denote the probability that the Markov chain will ever return to state 0
given that it is currently in state 1. Because the Markov chain will always increase
by 1 with probability p or decrease by 1 with probability 1 —p no matter what its
current state, note that « is also the probability that the Markov chain currently in
state i will ever enter state i — 1, for any 7. To obtain an equation for «, condition
on the next transition to obtain

a = P{ever return| X1 = 1, Xy = 0}(1 — p) + P{ever return| X = 1, X5 =2}p
=1—p + P{ever return|X; = 1, X5 =2}p
=1—p + pa?

where the final equation follows by noting that in order for the chain to ever go
from state 2 to state 0 it must first go to state 1—and the probability of that ever
happening is a—and if it does eventually go to state 1 then it must still go to state
0—and the conditional probability of that ever happening is also a. Therefore,

a:l—p—i—paz

The two roots of this equation are « = 1 and « = (1 —p)/p. Consequently, in the
case of the symmetric random walk where p = 1/2 we can conclude that « = 1.
By symmetry, the probability that the symmetric random walk will ever enter
state 0 given that it is currently in state —1 is also 1, proving that the symmetric
random walk is recurrent.

Suppose now that p > 1/2. In this case, it can be shown (see Exercise 17 at
the end of this chapter) that P{ever return to 0|X; = —1} = 1. Consequently,
Equation (4.5) reduces to

B=ap+1—p

Because the random walk is transient in this case we know that 8 < 1, showing
that a # 1. Therefore, @ = (1 — p)/p, yielding that

B=20-p), p>1/2
Similarly, when p < 1/2 we can show that 8 = 2p. Thus, in general

P{ever return to 0} = 2 min(p, 1 — p) ]
Example 4.19 (On the Ultimate Instability of the Aloha Protocol) Consider a
communications facility in which the numbers of messages arriving during each of
the time periods # = 1,2, ... are independent and identically distributed random

variables. Let a; = P{i arrivals}, and suppose that a9 + a1 < 1. Each arriving
message will transmit at the end of the period in which it arrives. If exactly
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one message is transmitted, then the transmission is successful and the message
leaves the system. However, if at any time two or more messages simultaneously
transmit, then a collision is deemed to occur and these messages remain in the
system. Once a message is involved in a collision it will, independently of all
else, transmit at the end of each additional period with probability p—the so-
called Aloha protocol (because it was first instituted at the University of Hawaii).
We will show that such a system is asymptotically unstable in the sense that the
number of successful transmissions will, with probability 1, be finite.

To begin let X, denote the number of messages in the facility at the beginning
of the nth period, and note that {X,,,# > 0} is a Markov chain. Now for k£ > 0
define the indicator variables I}, by

1,  if the first time that the chain departs state k it
I, = directly goes to state k — 1
0, otherwise

and let it be 0 if the system is never in state k, k > 0. (For instance, if the successive
states are 0,1, 3,4,..., then I3 = 0 since when the chain first departs state 3 it
goes to state 4; whereas, if they are 0,3,3,2,..., then I3 = 1 since this time it
goes to state 2.) Now,

oo
< Z P{I}, = 11k is ever visited} (4.6)

Now, P{I;, = 1|k is ever visited} is the probability that when state k is departed
the next state is k — 1. That is, it is the conditional probability that a transition
from k is to k — 1 given that it is not back into &, and so

Py
P{I, = 1|k is ever visited} = hk=1
1—Ppyp
Because

Pri_1 = aokp(1 — p)*~1,
Pri = aoll — kp(1 — )11 + a1 (1 — p)k
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which is seen by noting that if there are k messages present on the beginning of
a day, then (a) there will be & — 1 at the beginning of the next day if there are
no new messages that day and exactly one of the k£ messages transmits; and (b)
there will be k at the beginning of the next day if either

(i) there are no new messages and it is not the case that exactly one of the existing k
messages transmits, or

(ii) there is exactly one new message (which automatically transmits) and none of the
other k messages transmits.

Substitution of the preceding into Equation (4.6) yields

- > agkp(1 — p)k=1
E[S 1| <
[,g k} g 1—aoll — kp(1 — k=11 — a1 (1 — p)k
< 0

where the convergence follows by noting that when k is large the denominator of
the expression in the preceding sum converges to 1 — ag and so the convergence
or divergence of the sum is determined by whether or not the sum of the terms
in the numerator converge and Y ;- k(1 — P < 0.

Hence, E[Y_;7 I1] < 0o, which implies that Y32 1 I, < oo with probability 1
(for if there was a positive probability that ) _p> ;I could be oo, then its mean
would be 00). Hence, with probability 1, there will be only a finite number of
states that are initially departed via a successful transmission; or equivalently,
there will be some finite integer N such that whenever there are N or more
messages in the system, there will never again be a successful transmission. From
this (and the fact that such higher states will eventually be reached—why?) it
follows that, with probability 1, there will only be a finite number of successful
transmissions. |

Remark For a (slightly less than rigorous) probabilistic proof of Stirling’s
approximation, let X1X>, ... be independent Poisson random variables each hav-
ing mean 1. Let S, = > ;_; Xj, and note that both the mean and variance of
S, are equal to n. Now,

P{S,=n}=P{n—1<3S, <n}
=P{—1//n < (S, —n)//n < 0}

0 .
—1/2 —x2)2 when 7 is large, by the
/]/ﬂ(Zn) ¢ dx central limit theorem

o]

~ 2m) V21 //n)
= (27'(11)_1/2
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But S,, is Poisson with mean 7, and so

—n,n

n

e
PiSy=n) = —

Hence, for n large

e*ﬂ n

R (27171)71/2

n!

or, equivalently
nl ~ n"12e7 25

which is Stirling’s approximation.

4.4 Limiting Probabilities

In Example 4.8, we calculated P® for a two-state Markov chain; it turned out
to be

pe _ [|0-5749 04251
= 0.5668  0.4332

From this it follows that P® = P® . P® s given (to three significant places) by

p _ 0572 0.428
= ]0.570 0.430

Note that the matrix P® is almost identical to the matrix P, and secondly, that
each of the rows of P® has almost identical entries. In fact it seems that PZ is

converging to some value (as 7 — 00) that is the same for all i. In other words,
there seems to exist a limiting probability that the process will be in state j after
a large number of transitions, and this value is independent of the initial state.

To make the preceding heuristics more precise, two additional properties of
the states of a Markov chain need to be considered. State 7 is said to have period
d if P}; = 0 whenever # is not divisible by d, and d is the largest integer with this
property. For instance, starting in 7, it may be possible for the process to enter
state 7 only at the times 2,4,6,8, ..., in which case state i has period 2. A state
with period 1 is said to be aperiodic. It can be shown that periodicity is a class
property. That is, if state i has period d, and states i and j communicate, then
state j also has period d.
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If state 7 is recurrent, then it is said to be positive recurrent if, starting in i,
the expected time until the process returns to state i is finite. It can be shown
that positive recurrence is a class property. While there exist recurrent states that
are not positive recurrent,” it can be shown that in a finite-state Markov chain
all recurrent states are positive recurrent. Positive recurrent, aperiodic states are
called ergodic.

We are now ready for the following important theorem, which we state without
proof.

Theorem 4.1 For an irreducible ergodic Markov chain lim,,_ o0 PZ exists and is
independent of i. Furthermore, letting

mj= lim Py, j>0

n—0o0

then 7; is the unique nonnegative solution of
o0
mj =Y miPy, j=0,
=0
o
Y omi=1 (4.7)
j=0

Remarks

(i) Given that 7; = lim, 0 PZ- exists and is independent of the initial state i, it is not

difficult to (heuristically) see that the 7’s must satisfy Equation (4.7). Let us derive
an expression for P{X,,11 = j} by conditioning on the state at time 7. That is,

o0
PXos1 = j} = 3 P(Xs1 = j|Xn = i}P(Xy = i}
=0

=Y PiP(Xy=1i)

i=0

Letting # — o0, and assuming that we can bring the limit inside the summation,
leads to

00
;= Z P,‘,‘JT,'
i=0

(ii) It can be shown that 7;, the limiting probability that the process will be in state  at
time 7, also equals the long-run proportion of time that the process will be in state .

* Such states are called null recurrent.
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(iii) If the Markov chain is irreducible, then there will be a solution to
T = Zm‘l’i;‘, j=0,
i

anzl
j

if and only if the Markov chain is positive recurrent. If a solution exists then it will
be unique, and 7; will equal the long-run proportion of time that the Markov chain
is in state j. If the chain is aperiodic, then 7; is also the limiting probability that the
chain is in state j.

Example 4.20 Consider Example 4.1, in which we assume that if it rains today,
then it will rain tomorrow with probability «; and if it does not rain today, then
it will rain tomorrow with probability 8. If we say that the state is 0 when it rains
and 1 when it does not rain, then by Equation (4.7) the limiting probabilities g
and 71 are given by

o = amy + By,
m = {1-am + (1 - Py,

g+ =1
which yields that
B 11—«
T = ——— =
0 1+8—0a’ ! 1+8—«a

For example if « = 0.7 and 8 = 0.4, then the limiting probability of rain is
mo = % = 0.571. |

Example 4.21 Consider Example 4.3 in which the mood of an individual is
considered as a three-state Markov chain having a transition probability matrix

0.5 04 0.1
P=103 04 0.3
0.2 0.3 0.5

In the long run, what proportion of time is the process in each of the three states?

Solution: The limiting probabilities 7;,7 = 0, 1, 2, are obtained by solving the
set of equations in Equation (4.1). In this case these equations are

mo = 0.5m9 + 0.3711 + 0.277,
w1 = 0.4mg + 0.4m1 + 0.37m2,

7y = 0.1mg + 0.371 + 0.57),
mo+m +m =1
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Solving yields
21 2 18
T0=1%s 1 =7¢» T2=5 u

Example 4.22 (A Model of Class Mobility) A problem of interest to sociologists
is to determine the proportion of society that has an upper- or lower-class occu-
pation. One possible mathematical model would be to assume that transitions
between social classes of the successive generations in a family can be regarded
as transitions of a Markov chain. That is, we assume that the occupation of a
child depends only on his or her parent’s occupation. Let us suppose that such a
model is appropriate and that the transition probability matrix is given by

0.45 0.48 0.07
P=0.05 070 0.25 (4.8)
0.01 0.50 0.49

That is, for instance, we suppose that the child of a middle-class worker will
attain an upper-, middle-, or lower-class occupation with respective probabilities
0.05, 0.70, 0.25.

The limiting probabilities 7r; thus satisfy

7o = 0.4579 + 0.0571 + 0.01m,

w1 = 0.487m9 + 0.7071 + 0.507,,

my = 0.07my + 0.2571 + 0.497,,
mo+m+m =1

Hence,
w9 =0.07, w1 =0.62, m =0.31

In other words, a society in which social mobility between classes can be described
by a Markov chain with transition probability matrix given by Equation (4.8)
has, in the long run, 7 percent of its people in upper-class jobs, 62 percent of its
people in middle-class jobs, and 31 percent in lower-class jobs. [ ]

Example 4.23 (The Hardy-Weinberg Law and a Markov Chain in Genetics) Con-
sider a large population of individuals, each of whom possesses a particular pair
of genes, of which each individual gene is classified as being of type A or type
a. Assume that the proportions of individuals whose gene pairs are AA, aa, or
Aa are, respectively, po, qo, and 79 (po + go + 7o = 1). When two individuals
mate, each contributes one of his or her genes, chosen at random, to the resultant
offspring. Assuming that the mating occurs at random, in that each individual is
equally likely to mate with any other individual, we are interested in determining
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the proportions of individuals in the next generation whose genes are AA, aa,
or Aa. Calling these proportions p, g, and 7, they are easily obtained by focus-
ing attention on an individual of the next generation and then determining the
probabilities for the gene pair of that individual.

To begin, note that randomly choosing a parent and then randomly choos-
ing one of its genes is equivalent to just randomly choosing a gene from the total
gene population. By conditioning on the gene pair of the parent, we see that a
randomly chosen gene will be type A with probability

P{A} = P{A|AA}po + P{Alaa}qo + P{A|Aa}rg
= po +10/2

Similarly, it will be type a with probability
Pla} =qo +10/2

Thus, under random mating a randomly chosen member of the next generation
will be type AA with probability p, where

p = P{A}P{A} = (po + r0/2)?

Similarly, the randomly chosen member will be type aa with probability
q = P{a}P{a} = (q0 + r0/2)*

and will be type Aa with probability
r = 2P{A}P{a} = 2(po + r0/2)(q0 + 10/2)

Since each member of the next generation will independently be of each of the
three gene types with probabilities p, g, 7, it follows that the percentages of the
members of the next generation that are of type AA, aa, or Aa are respectively p,
q,and r.

If we now consider the total gene pool of this next generation, then p + 7/2, the
fraction of its genes that are A, will be unchanged from the previous generation.
This follows either by arguing that the total gene pool has not changed from
generation to generation or by the following simple algebra:

p+1/2 = (po +10/2)* + (po + 70/2)(q0 + 70/2)
= (po +7r0/2)[po + r0/2 + qo0 + 10/2]
=po +r9/2 since pg + 19+ qgo =1
= P{A} (4.9)
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Thus, the fractions of the gene pool that are A and a are the same as in the initial
generation. From this it follows that, under random mating, in all successive
generations after the initial one the percentages of the population having gene
pairs AA, aa, and Aa will remain fixed at the values p, g, and r. This is known
as the Hardy—Weinberg law.

Suppose now that the gene pair population has stabilized in the percentages p,
q,7,and let us follow the genetic history of a single individual and her descendants.
(For simplicity, assume that each individual has exactly one offspring.) So, for
a given individual, let X, denote the genetic state of her descendant in the nth
generation. The transition probability matrix of this Markov chain, namely,

AA aa Aa
r r
AA LA r
aa 0 + 4 + 4
ity Pty
p r q v p qg
Aal 5+7 2% 27373

is easily verified by conditioning on the state of the randomly chosen mate. It
is quite intuitive (why?) that the limiting probabilities for this Markov chain
(which also equal the fractions of the individual’s descendants that are in each of
the three genetic states) should just be p, ¢, and . To verify this we must show
that they satisfy Equation (4.7). Because one of the equations in Equation (4.7)
is redundant, it suffices to show that

r p s r 2
roslo=3) o5+ 3),
r q r r 2
q=4(4+z)“(z+2):(q+2>’

prg+r=1

But this follows from Equation (4.9), and thus the result is established. [ |

Example 4.24 Suppose that a production process changes states in accordance
with an irreducible, positive recurrent Markov chain having transition proba-
bilities Py, i,j = 1,...,n, and suppose that certain of the states are considered
acceptable and the remaining unacceptable. Let A denote the acceptable states
and A€ the unacceptable ones. If the production process is said to be “up” when
in an acceptable state and “down” when in an unacceptable state, determine

1. the rate at which the production process goes from up to down (that is, the rate of
breakdowns);
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2.
3.

the average length of time the process remains down when it goes down; and
the average length of time the process remains up when it goes up.

Solution: Let m,k = 1,...,n, denote the long-run proportions. Now for
i € A andj € A€ the rate at which the process enters state j from state 7 is

rate enter j from i = 7;P;;

and so the rate at which the production process enters state j from an acceptable
state is

rate enter j from A = Z miPj;
i€A
Hence, the rate at which it enters an unacceptable state from an acceptable one
(which is the rate at which breakdowns occur) is

rate breakdowns occur = Z Z miPj; (4.10)
jEAC icA

Now let U and D denote the average time the process remains up when it
goes up and down when it goes down. Because there is a single breakdown
every U + D time units on the average, it follows heuristically that

1
rate at which breakdowns occur = ———
U+ D

and so from Equation (4.10),
— _ZZn’, i (4.11)

To obtain a second equation relating U and D, consider the percentage of
time the process is up, which, of course, is equal to } ;. 4 7;. However, since the
process is up on the average U out of every U + D time units, it follows (again
somewhat heuristically) that the

. : U
proportion of up time = =

U+D

and so

U
=Y (4.12)
+ i€eA
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Hence, from Equations (4.11) and (4.12) we obtain
U ZieA T
Z;’eAc > iea TiPij
D 1-— ZieA i
ZjeAC ZieA T[iPii
_ ZieA‘ T
Djenc 2iea TiPij

For example, suppose the transition probability matrix is

Bl= b= O A=
NS NSNS NS

O B NI =
[N N )

where the acceptable (up) states are 1, 2 and the unacceptable (down) ones are
3, 4. The limiting probabilities satisfy

1 1 1
T =Ty + 37 + T4y,
1 1 1 1
Ty =Mz + M2z + W37 + W4z,
_ 1 1 1
T3 =Ty + M2y + 737,
mAmtrmtr=1

These solve to yield

A=
9
=
w
Il
Al»—\
ool
-

N
Il
Al»—\
[oe] O8]

3
T =1 T2 =
and thus

rate of breakdowns = 71 (P13 + P14) + m2 (P23 + P24)

= 2
=3

U % and D=2

Hence, on the average, breakdowns occur about 3% (or 28 percent) of the time.
They last, on the average, 2 time units, and then there follows a stretch of (on
the average) % time units when the system is up. [ |
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Remark The long run proportions 7;,j > 0, are often called stationary proba-
bilities. The reason being that if the initial state is chosen according to the proba-
bilities 7;,j > 0, then the probability of being in state j at any time 7 is also equal
to ;. That is, if

P Xo=jt=m, =20
then
P{X,=j}=m foralln,j>0

The preceding is easily proven by induction, for if we suppose it true for n — 1,
then writing

P{X, =j} =) P(Xy=jlXp-1 = i}P{Xy1 =)

i

= Z Pjm; by the induction hypothesis
i

= by Equation (4.7)

Example 4.25 Suppose the numbers of families that check into a hotel on succes-
sive days are independent Poisson random variables with mean A. Also suppose
that the number of days that a family stays in the hotel is a geometric random
variable with parameter p,0 < p < 1. (Thus, a family who spent the previous
night in the hotel will, independently of how long they have already spent in the
hotel, check out the next day with probability p.) Also suppose that all families
act mdependently of each other. Under these conditions it is easy to see that if
X, denotes the number of families that are checked in the hotel at the beginning
of day # then {X,,,n > 0} is a Markov chain. Find

(a) the transition probabilities of this Markov chain;
(b)  E[XnlXo =1l;
(c) the stationary probabilities of this Markov chain.

Solution: (a) To find P;, suppose there are i families checked into the hotel
at the beginning of a day. Because each of these i families will stay for another
day with probability g = 1 — p it follows that R;, the number of these families
that remain another day, is a binomial (7, q) random variable. So, letting N be
the number of new families that check in that day, we see that

Pij=PR;+N=))
Conditioning on R; and using that N is Poisson with mean A, we obtain

Pi:i = ZP(R; +N :/|Rl = k)(;)qkplk

k=0
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=Y P(N=j—kIR;= k)(,:)qkp"‘k

k=0

min(7,) ; .
=2 P(N=i—k>(k)qkp’k

k=0

min(i,f) M«_k ; A

—A k., i—k

=2 e (f—k)!<k)qp

k=0

(b) Using the preceding representation R; + N for the next state from state i,
we see that

E[Xn|Xn—1 =il = E[R; + N] = ig + A
Consequently,
E[Xu|Xn-1]1= Xn—lq + A
Taking expectations of both sides yields
E[Xy] = A + gE[X;-1]
Iterating the preceding gives
E[Xy] = A + qE[X;-1]
=X+ q( + gE[X,2])
=)+ gh + ¢ E[Xp-2]
= A+ qh + g (v + gE[X,3])
— A+ @+ ¢*h + PE[X, 3]
showing that

E[Xy] = 2 (1 +a+q*+... + q"”) + q"E[Xo]

and yielding the result

A1l —g") "
——— + 4"
> q

(¢) To find the stationary probabilities we will not directly use the complicated
transition probabilities derived in part (a). Rather we will make use of the fact
that the stationary probability distribution is the only distribution on the initial
state that results in the next state having the same distribution. Now, suppose
that the initial state X has a Poisson distribution with mean «. That is, assume
that the number of families initially in the hotel is Poisson with mean «. Let R
denote the number of these families that remain in the hotel at the beginning of
the next day. Then, using the result of Example 3.23 that if each of a Poisson

E[Xu|Xo =1] =
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distributed (with mean «) number of events occurs with probability g, then
the total number of these events that occur is Poisson distributed with mean
ag, it follows that R is a Poisson random variable with mean ag. In addition,
the number of new families that check in during the day, call it N, is Poisson
with mean A, and is independent of R. Hence, since the sum of independent
Poisson random variables is also Poisson distributed, it follows that R + N,
the number of guests at the beginning of the next day, is Poisson with mean
A + ag. Consequently, if we choose « so that

o=A+oaq

then the distribution of X1 would be the same as that of X(. But this means
that when the initial distribution of X is Poisson with mean o = ?—), then so
is the distribution of X1, implying that this is the stationary distribution. That
is, the stationary probabilities are

mi=eMP(p)iit, i=0

The preceding model has an important generalization. Namely, consider an
organization whose workers are of 7 distinct types. For instance, the organiza-
tion could be a law firm and its lawyers could either be juniors, associates, or
partners. Suppose that a worker who is currently type 7 will in the next period
become type j with probability g;; for j = 1,...,7 or will leave the organi-
zation with probability 1 — Z;:l qi,;- In addition, suppose that new workers
are hired each period, and that the numbers of types 1,...,7 workers hired
are independent Poisson random variables with means Aq,...,A,. If we let
Xy = (Xu(1),...,X,(r)), where X,,(i) is the number of type i workers in the
organization at the beginning of period 7, then X,,,# > 0 is a Markov chain. To
compute its stationary probability distribution, suppose that the initial state is
chosen so that the number of workers of different types are independent Poisson
random variables, with «; being the mean number of type i workers. That is,
suppose that Xy(1),. .., Xo(r) are independent Poisson random variables with
respective means «f, . .., a,. Also, let N;,j = 1,...,7, be the number of new
type j workers hired during the initial period. Now, fix i, and forj = 1,...,7,
let M;(j) be the number of the X((i) type i workers who become type j in
the next period. Then because each of the Poisson number X(i) of type i
workers will independently become type j with probability g, ;,7 = 1,...,7, it
follows from the remarks following Example 3.23 that M;(1),..., M;(r) are
independent Poisson random variables with M;(j) having mean ;g; ;. Because
Xo(1),...,Xo(r) are, by assumption, independent, we can also conclude that
the random variables M;(j),i,j = 1,...,r are all independent. Because the
sum of independent Poisson random variables is also Poisson distributed, the
preceding yields that the random variables

r
X1() =Nj+ Y _M(j), j=1,...,r
i=1
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are independent Poisson random variables with means

r
EX1(D]=A; + ZOH%‘,,’
i=1

Hence, if a1, ..., qa, satisfied

r
Oli=)»,'+2(xiq,"/‘, j=1,...,7
=1
then X; would have the same distribution as Xy. Consequently, if we let
of,...,ap be such that

7
a;’zki+2a?qi’i, j=1,...,7
=1

then the stationary distribution of the Markov chain is the distribution that
takes the number of workers in each type to be independent Poisson random
variables with means o9, ..., ay. That is,

lim P(X, = (k1,...,k)} =] e @) /ks!

n—>00 ]
i=1

It can be shown that there will be such values aio,j = 1,...,r, provided

that, with probability 1, each worker eventually leaves the organization. Also,
because there is a unique stationary distribution, there can only be one such
set of values. [ ]

For state j, define 7;; to be the expected number of transitions until a Markov
chain, starting in state j, returns to that state. Since, on the average, the chain will
spend 1 unit of time in state j for every #zj; units of time, it follows that

In words, the proportion of time in state j equals the inverse of the mean time
between visits to j. (The preceding is a special case of a general result, sometimes
called the strong law for renewal processes, which will be presented in Chapter 7.)

Example 4.26 (Mean Pattern Times in Markov Chain Generated Data) Consider
an irreducible Markov chain {X,,,# > 0} with transition probabilities P;; and
stationary probabilities 7;,j > 0. Starting in state 7, we are interested in deter-
mining the expected number of transitions until the pattern i1,4, ..., i, appears.
That is, with

N(i1,i2,...,4) = min{n > k: Xy ka1 =y s Xy = ip}
we are interested in

E[N(i1,12, ..., )Xo =7]
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Note that even if 1 = 7, the initial state X is not considered part of the pattern
sequence.

Let w(i,71) be the mean number of transitions for the chain to enter state iy,
given that the initial state is i,7 > 0. The quantities (i, 1) can be determined as
the solution of the following set of equations, obtained by conditioning on the
first transition out of state i:

pG,in) =1+ Pijulj,in), i>0
j#i

For the Markov chain {X,,,7 >0} associate a corresponding Markov chain,
which we will refer to as the k-chain, whose state at any time is the sequence
of the most recent k states of the original chain. (For instance, if & = 3 and
X, =4, X3 =1, X4 = 1, then the state of the k-chain at time 4 is (4,1, 1).) Let
7(j1,...,/r) be the stationary probabilities for the k-chain. Because 7(j1,...,/z)
is the proportion of time that the state of the original Markov chain & units ago
was j1 and the following k — 1 states, in sequence, were 2, . . ., jx, we can conclude
that

T(f1s - sjp) = 7 Py jy - 'ij—lal-k

Moreover, because the mean number of transitions between successive visits of
the k-chain to the state i1, 12, . .., is equal to the inverse of the stationary prob-
ability of that state, we have that

E[number of transitions between visits to i1, 42, . .., ]

i1y s ik)

Let A(i1,...,i) be the additional number of transitions needed until the pat-
tern appears, given that the first 7 transitions have taken the chain into states
X1 =ity s Xon = im.

We will now consider whether the pattern has overlaps, where we say that the
pattern #1,42,...,i; has an overlap of size j,j < k, if the sequence of its final j
elements is the same as that of its first j elements. That is, it has an overlap of
size j if

(ik—j+1s-~-,ik):(ila-“)ii), /<k

Case 1 The pattern 71,4, ...,4; has no overlaps.
Because there is no overlap, Equation (4.13) yields
1

E[N(G1,0,...,ip)|Xo =il = —————
(i1, .. 5 1g)
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Because the time until the pattern occurs is equal to the time until the chain enters
state i1 plus the additional time, we may write

E[N(i1, 2, .., 1)1 X0 = ip] = p(ip, i1) + E[AG1)]

The preceding two equations imply

1
E[A(i))] = m — (g, 1)

Using that
E[N(i1,i2,...,i)|Xo = 1] = u(r,i1) + E[A(i1)]

gives the result

L ) . 1 L
E[NG1,0,...,ip)|Xo =7l = p(r, i) + ———— — (g, 1)
(L1 y .o yip)

where

w(ity ..o ip) = i Piy iy 'Pik—laik

Case 2 Now suppose that the pattern has overlaps and let its largest overlap be
of size s. In this case the number of transitions between successive visits of the
k-chain to the state i1, iy,...,i is equal to the additional number of transitions
of the original chain until the pattern appears given that it has already made s
transitions with the results X1 = i1,..., X = is. Therefore, from Equation (4.13)

1

E[A(lla s 3i5)] = m

But because
N(G1,0,... i) = NG1,...,4) + A1, ..., 1)

we have

1

E[N(i1,1,...,ip)|Xo = 7] = E[N(i1,i2,...,i)|Xo = 1] + ———
(15 5iE)

We can now repeat the same procedure on the pattern #q,. . ., is, continuing to do
so until we reach one that has no overlap, and then apply the result from Case 1.
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For instance, suppose the desired pattern is 1,2,3,1,2,3,1,2. Then

E[N(1,2,3,1,2,3,1,2)|Xo = r] = E[N(1,2,3,1,2)| X = 7]
1
n(1,2,3,1,2,3,1,2)

_I_

Because the largest overlap of the pattern (1,2,3,1,2) is of size 2, the same
argument as in the preceding gives

=] =E[N,2)|Xy = — 5 T 5o
EIN(1,2,3,1,2)1Xp =] = EIN(LD)IXo = 1l + 75—

Because the pattern (1,2) has no overlap, we obtain from Case 1 that
1
EIN(1,2)|Xo =7l = pn(r, 1) + —— — n(2,1)
m(1,2)

Putting it together yields

E[N(laza 35 132933 192)|X0 =r]= ,LL(?‘, 1) +

1 1
+ -
”11)%,21)2,3133,1 anizP%JPg’l

T2

If the generated data is a sequence of independent and identically distributed
random variables, with each value equal to j with probability P;, then the Markov
chain has P;; = P;.In this case, wj = P;. Also, because the time to go from state i to
state j is a geometric random variable with parameter P;, we have u(i,7) = 1/P;.
Thus, the expected number of data values that need be generated before the
pattern 1,2,3,1,2,3,1,2 appears would be

1,1 LN S
Py PPy Py Pi{P3P3;  P{P;P}
1 1 1

= + +
P1P, ~ P3PIP3;  P3P3P}

The following result is quite useful.

Proposition 4.3 Let {X,,,7 > 1} be an irreducible Markov chain with stationary
probabilities 77;,j > 0, and let 7 be a bounded function on the state space. Then,
with probability 1,

N o0
lim Zn:l T(Xn) — Zr(l)ﬂ]

N—oo N ;
7=0
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Proof. If we let 2;(N) be the amount of time the Markov chain spends in state j
during time periods 1,..., N, then

N

D o r(Xw) = ai(N)r(j)

n=1 j=0
Since 4;(N)/N — m;j the result follows from the preceding upon dividing by N
and then letting N — oo. [ |

If we suppose that we earn a reward #(j) whenever the chain is in state j, then
Proposition 4.3 states that our average reward per unit time is Z]- r(j)m;.

Example 4.27 For the four state Bonus Malus automobile insurance system spec-
ified in Example 4.7, find the average annual premium paid by a policyholder
whose yearly number of claims is a Poisson random variable with mean 1/2.

Solution: With g, = 671/2(12_2!)’3’ we have
ap = 0.6065, a1 =0.3033, a, =0.0758

Therefore, the Markov chain of successive states has the following transition
probability matrix:

0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935

The stationary probabilities are given as the solution of

w1 = 0.606571 + 0.60657,,

my = 0.303371 + 0.606573,

w3 = 0.075871 + 0.30337, + 0.606574,
m 4ty +ra=1

Rewriting the first three of these equations gives

_1-0.6065

2= 706065 P
_m— 0.3033m;

= TT0.6065

w3 — 0.0758m1 — 0.3033m,

= 0.6065
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or

) = 0.64887m1,
w3 = 0.5697m1,
4 = 0.49007m

Using that Z?:l 7; = 1 gives the solution (rounded to four decimal places)
71 =0.3692, m =0.2395, 73 =0.2103, w4 =0.1809
Therefore, the average annual premium paid is

20071 + 2507, + 40073 4+ 6004 = 326.375 |

4.5 Some Applications

4.5.1 The Gambler’'s Ruin Problem

Consider a gambler who at each play of the game has probability p of winning
one unit and probability g = 1 — p of losing one unit. Assuming that successive
plays of the game are independent, what is the probability that, starting with i
units, the gambler’s fortune will reach N before reaching 0?

If we let X,, denote the player’s fortune at time #, then the process {X,,n =
0,1,2,...} is a Markov chain with transition probabilities

Poo = PnNn =1,
Pi,i+1:p=1_Pi,i717 l=1929’N_1

This Markov chain has three classes, namely, {0}, {1,2,...,N — 1}, and {N}; the
first and third class being recurrent and the second transient. Since each transient
state is visited only finitely often, it follows that, after some finite amount of time,
the gambler will either attain his goal of N or go broke.

LetP;,i =0,1,...,N, denote the probability that, starting with 7, the gambler’s
fortune will eventually reach N. By conditioning on the outcome of the initial
play of the game we obtain

Pi:pPi+1+qPi*19 i:1,2,...,N—1
or equivalently, since p + g =1,

pP; + qP;i = pPiy1 + qPi1
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or
A _490p. _p. F
Pz+1_Pz—[;(Pz_Pz—l)s 1—1a23‘~-;N_1
Hence, since Py = 0, we obtain from the preceding line that
q q
Py — Py = —(P1 —Po) = _P1,
p p

2
P;— P, = 1%(1’2 — P = (g) Py,

i—1
P;—P;_4 = %(Pifl - Py = (%) Pq,

N-1
PN —Pn-o1 = (g)(PN—l —PNno2) = (g) Py

Adding the first i — 1 of these equations yields

nen=rn(2) - (2) e ()]

or

1—(q/p) q

WP p T4
P; = —am v 7

iPy, ifd =1

Now, using the fact that Py = 1, we obtain

1-(q/p)
1—(q/pN’

%, iftp=
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and hence
1-(q/p) . 1
— P g
p, =1 1—G@/pN 2 (4.14)
i fp L
N’ =3

Note that, as N — oo,

a\ .
1—(—), ifp >
P, — p

1

0, ifp <

ST SR

Thus, if p > %, there is a positive probability that the gambler’s fortune will
increase indefinitely; while if p < %, the gambler will, with probability 1, go
broke against an infinitely rich adversary.

Example 4.28 Suppose Max and Patty decide to flip pennies; the one coming
closest to the wall wins. Patty, being the better player, has a probability 0.6 of
winning on each flip. (a) If Patty starts with five pennies and Max with ten, what
is the probability that Patty will wipe Max out? (b) What if Patty starts with 10
and Max with 20?

Solution: (a) The desired probability is obtained from Equation (4.14) by
letting i = 5, N = 15, and p = 0.6. Hence, the desired probability is

-

5
-6 Lo

1_( )15

(b) The desired probability is

I

IS8

. 10

—=~ 098 u
1_(2)0

e
[SV1] S [SV1] )
~ |~~—

For an application of the gambler’s ruin problem to drug testing, suppose that
two new drugs have been developed for treating a certain disease. Drug i has
a cure rate P;,i = 1,2, in the sense that each patient treated with drug i will
be cured with probability P;. These cure rates, however, are not known, and
suppose we are interested in a method for deciding whether Py > P, or P, > Pj.
To decide upon one of these alternatives, consider the following test: Pairs of
patients are treated sequentially with one member of the pair receiving drug 1
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and the other drug 2. The results for each pair are determined, and the testing
stops when the cumulative number of cures using one of the drugs exceeds the
cumulative number of cures when using the other by some fixed predetermined
number. More formally, let

1,  if the patient in the jth pair to receive drug number 1 is cured
0, otherwise

V. — 1, if the patient in the jth pair to receive drug number 2 is cured
7710, otherwise

For a predetermined positive integer M the test stops after pair N where N is
the first value of # such that either

Xi4+ - +Xy— Y14+ +Y)=M
or
Xi+ 4+ Xg— Y1+ 4+ Y)=-M

In the former case we then assert that P1 > P,, and in the latter that P, > Pj.

In order to help ascertain whether the preceding is a good test, one thing we
would like to know is the probability of it leading to an incorrect decision. That is,
for given Py and P, where P; > P;, what is the probability that the test will
incorrectly assert that Py > P1? To determine this probability, note that after
each pair is checked the cumulative difference of cures using drug 1 versus drug
2 will either go up by 1 with probability P1(1 — P,)—since this is the probability
that drug 1 leads to a cure and drug 2 does not—or go down by 1 with probability
(1—P1)P,, or remain the same with probability P1P, + (1 —P1)(1 — P;). Hence,
if we only consider those pairs in which the cumulative difference changes, then
the difference will go up 1 with probability

p = P{up 1jup 1 or down 1}
_ Pi(1—Py)
P1(1—-Py)+ (1—-P1)P2

and down 1 with probability

Pr(1—Py)
Pi(1—-Py)+ (1 —P1)P,

g=1-p=

Hence, the probability that the test will assert that P, > Pp is equal to the
probability that a gambler who wins each (one unit) bet with probability p will
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go down M before going up M. But Equation (4.14) with i = M, N = 2M, shows
that this probability is given by

_ M
P{test asserts that P > P1} =1 — %
_ 1
1+ /M

Thus, for instance, if Py = 0.6 and P, = 0.4 then the probability of an incorrect
decision is 0.017 when M = 5 and reduces to 0.0003 when M = 10.

4.5.2 A Model for Algorithmic Efficiency

The following optimization problem is called a linear program:

minimize X,
subject to Ax = b,
x>0

where A is an m x n matrix of fixed constants; ¢ = (c¢1,...,¢4) and b =
(b1,...,b,) are vectors of fixed constants; and x = (x1, ..., x,) is the n-vector of
nonnegative values that is to be chosen to minimize cx = ) "}' ; ¢;x;. Supposing
that # > m, it can be shown that the optimal x can always be chosen to have at
least # — m components equal to 0—that is, it can always be taken to be one of
the so-called extreme points of the feasibility region.

The simplex algorithm solves this linear program by moving from an extreme
point of the feasibility region to a better (in terms of the objective function cx)
extreme point (via the pivot operation) until the optimal is reached. Because there
can be as many as N = (') such extreme points, it would seem that this method
might take many iterations, but, surprisingly to some, this does not appear to be
the case in practice.

To obtain a feel for whether or not the preceding statement is surprising, let us
consider a simple probabilistic (Markov chain) model as to how the algorithm
moves along the extreme points. Specifically, we will suppose that if at any time
the algorithm is at the jth best extreme point then after the next pivot the resulting
extreme point is equally likely to be any of the j — 1 best. Under this assumption,
we show that the time to get from the Nth best to the best extreme point has
approximately, for large N, a normal distribution with mean and variance equal
to the logarithm (base ¢) of N.

Consider a Markov chain for which P11 = 1 and

P,'/' =

= heislix
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and let T; denote the number of transitions needed to go from state 7 to state 1.
A recursive formula for E[T;] can be obtained by conditioning on the initial
transition:

1 i—1
EUﬂ=1+;jTZ;HD]

Starting with E[T1] = 0, we successively see that

E[Tx] =1,
E[T31=1+ 3,
ETy=1+3a+1+H=1+1+1

and it is not difficult to guess and then prove inductively that

i—1

E[T)=) 1/j

j=1

However, to obtain a more complete description of Ty, we will use the repre-
sentation

I — 1, if the process ever enters j
/ 0, otherwise

The importance of the preceding representation stems from the following:

Proposition 4.4 Iy,...,IN_1 are independent and
Pili=1}=1/j, 1<j<N-1

Proof. Given [; 1,...,IN, let » = min{i: i > j,I; = 1} denote the lowest num-
bered state, greater than j, that is entered. Thus we know that the process enters
state # and the next state entered is one of the states 1,2,...,7. Hence, as the
next state from state n is equally likely to be any of the lower number states
1,2,...,n— 1 we see that

-1

P =1|Liyq,...,In} = -
/ " j/(n—1)

=1/
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Hence, P{I; = 1} = 1/j, and independence follows since the preceding conditional
probability does not depend on I 1,...,IN. [ ]

Corollary 4.5

(i) EITNI= X751 1/
(i) Var(Tn) = X5 (17 = 1/j).
(i) For N large, TN has approximately a normal distribution with mean log N and
variance log N.

Proof. Parts (i) and (ii) follow from Proposition 4.4 and the representation Ty =
le\i_ll I;. Part (iii) follows from the central limit theorem since

N g N2 N=1 gy
— < 1/'<1+/ —
[AE-SDNVEAIEY M-

or
N-1
logN < Z 1/j <1+ log(N—-1)
1
and so
N-1
log N ~ Z 1/j u
j=1

Returning to the simplex algorithm, if we assume that 7, 72, and #n — m are all
large, we have by Stirling’s approximation that

» 12
- (m) - (n — m)yn—m+1/2pm+1/2. 2 7
and so, letting ¢ = n/m,
log N ~ (mc + 3)log(mc) — (m(c — 1) + 1) log(m(c — 1))
— (m + 1) logm — 1 log(2m)
or

c
c—1

log N ~ m|:c log + log(c — 1):|

Now, as limy_ o0 x log[x/(x — 1)] = 1, it follows that, when c is large,

log N ~ m[1 + log(c — 1)]
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Thus, for instance, if 7 = 8000, 2 = 1000, then the number of necessary tran-
sitions is approximately normally distributed with mean and variance equal to
1000(1 + log7) ~ 3000. Hence, the number of necessary transitions would be
roughly between

3000 £+ 24/3000 or roughly 3000+ 110

95 percent of the time.

4.5.3 Using a Random Walk to Analyze a Probabilistic Algorithm for
the Satisfiability Problem

Consider a Markov chain with states 0,1, ...,7 having
Pop=1, Pijp1=p, Pii1i=q=1-p, 1<i<n

and suppose that we are interested in studying the time that it takes for the
chain to go from state 0 to state z. One approach to obtaining the mean time to
reach state # would be to let m; denote the mean time to go from state 7 to state
n,i=0,...,n— 1. If we then condition on the initial transition, we obtain the
following set of equations:

mo =1+ my,
m; = E[time to reach n|next state is i + 1]p
+ E[time to reach n|next state is i — 1]g
= +mip)p + (A +mi-1)q
=1+pmiy1 +qmiq, i=1,...,n—1
Whereas the preceding equations can be solved for m;,i = 0,...,7n—1, we do not
pursue their solution; we instead make use of the special structure of the Markov
chain to obtain a simpler set of equations. To start, let N; denote the number
of additional transitions that it takes the chain when it first enters state i until
it enters state i/ + 1. By the Markovian property, it follows that these random

variables N;, i = 0,...,7 — 1 are independent. Also, we can express Ny ,, the
number of transitions that it takes the chain to go from state 0 to state 7, as

n—1
Nos= > Ni (4.15)
i=0
Letting u; = E[N;] we obtain, upon conditioning on the next transition after the

chain enters state i, that fori =1,...,n—1

i = 1 + E[number of additional transitions to reach i + 1|chain to i — 1]g
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Now, if the chain next enters state i — 1, then in order for it to reach 7 + 1 it must
first return to state i and must then go from state 7 to state i + 1. Hence, we have
from the preceding that

ni =1+ E[N/, + N/lq

where N* | and N7 are, respectively, the additional number of transitions to
return to state ¢ from i — 1 and the number to then go from 7 to 7 + 1. Now, it
follows from the Markovian property that these random variables have, respec-
tively, the same distributions as N;_1 and N;. In addition, they are independent
(although we will only use this when we compute the variance of Ny ,,). Hence, we
see that

wi =14 g(ui—1 + u;)
or

1 .
/Li25+%“i—la i=1,...,n—1

Starting with g = 1, and letting @ = q/p, we obtain from the preceding recursion
that

u1r=1/p +a,

pa=1/p+al/p+a)=1/p+a/p+ao,

us=1/p +a(l/p +a/p +ao®
=1/p+o/p+o/p+a

In general, we see that
=Y d+d, i=1...,n-1 (4.16)

Using Equation (4.15), we now get

n—1i-1
E[No =1+~ Zza/+za
zl; 0

When p = %, and so o = 1, we see from the preceding that

ElNoyl=1+@n—-n+n—1=n*
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When p # %, we obtain

oa—a”

n—1
1 i
HNWJ=1+;atESZ;1—a%+1_a

1+« (¢ — o) o—o”
1 _1_
tIC P -« T—«
=1+2a”+1—(7z+1)a2+n—1
(1 —a)?

where the second equality used the fact that p = 1/(1 + «). Therefore, we see
that when @ > 1, or equivalently when p < %, the expected number of transi-
tions to reach # is an exponentially increasing function of #. On the other hand,
when p = %,E[No,n] = n?, and when p > %,E[No,n] is, for large 7, essentially
linear in 7.

Let us now compute Var(No,,). To do so, we will again make use of the repre-
sentation given by Equation (4.15). Letting v; = Var(N;), we start by determining
the v; recursively by using the conditional variance formula. Let S; = 1 if the first
transition out of state 7 is into state i + 1, and let S; = —1 if the transition is into
statei —1,i=1,...,n — 1. Then,

given that §; =1: N; =1
given that §; = —1: N; =1+ N/ ; + N/
Hence,
E[N;|S; = 1] =1,
E[N;|S;i = =11 =1+ pi1 + u;
implying that
Var(E[N;|S;]) = Var(E[N;[S;] — 1)
= (i1 + m)*q — (i1 + 1i)*q*
= gp(ii1 + 1i)?

Also, since N* | and N¥, the numbers of transitions to return from state i — 1
to 7 and to then go from state i to state i + 1 are, by the Markovian property,
independent random variables having the same distributions as N;_1 and N;,
respectively, we see that

Var(N,-|Sl- = 1) = O,
Var(Nj|$; = -1) =vi1 +v;
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Hence,
E[Var(N;|Sj)] = q(vi-1 + vi)
From the conditional variance formula, we thus obtain
vi = pq(pi-1 + 1) + qvi—1 + vi)
or, equivalently,
vi=qui1 + mi)? +avisy, i=1,...,n—1
Starting with v9 = 0, we obtain from the preceding recursion that

v1 = q(uo + 11,
v2 = q(u1 + u2)* + aq(uo + n1)?,
v3 = q(ua + 13)* + aq(ur + u2)* + aq(po + n1)*

In general, we have for i > 0,
vi=q Za’—’(w,1 + u)? (4.17)
j=1
Therefore, we see that
n—1 n—1 i o
VarNo) =D vi=q) Y o (o1 + up)?
i=0 i=1 j=1
where p; is given by Equation (4.16).

We see from Equations (4.16) and (4.17) that when p > %, and soa < 1,
that w; and v;, the mean and variance of the number of transitions to go from
state i to i + 1, do not increase too rapidly in i. For instance, when p = % it
follows from Equations (4.16) and (4.17) that

wi=2+1

and

1 i . i .
vi=5j=21<4;>2=8i=21;2
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Hence, since Np, is the sum of independent random variables, which are of

roughly similar magnitudes when p > %, it follows in this case from the cen-
tral limit theorem that Ny, is, for large 7, approximately normally distributed.

In particular, when p = %,No,n is approximately normal with mean 7% and
variance

n—1 i
Var(No,) =8 )/

i=1j=1
n—1n—1

=8 > 7
j=1 i=j

n—1
=8> (n—j)j*
j=1

n—1
A 8/ (n — x)x* dx
1

(3]

~ 2nt
Example 4.29 (The Satisfiability Problem) A Boolean variable x is one that takes

on either of two values: TRUE or FALSE. If x;,7 > 1 are Boolean variables, then
a Boolean clause of the form

x1 + X2 + x3

is TRUE if x1 is TRUE, or if x7 is FALSE, or if x3 is TRUE. That is, the symbol
“+” means “or” and x is TRUE if x is FALSE and vice versa. A Boolean formula
is a combination of clauses such as

(x1 + X2) * (x1 + x3) * (x2 + X3) * (X1 + X2) * (x1 + x2)

In the preceding, the terms between the parentheses represent clauses, and the
formula is TRUE if all the clauses are TRUE, and is FALSE otherwise. For a
given Boolean formula, the satisfiability problem is either to determine values
for the variables that result in the formula being TRUE, or to determine that the
formula is never true. For instance, one set of values that makes the preceding
formula TRUE is to set x1 = TRUE, x, = FALSE, and x3 =FALSE.

Consider a formula of the # Boolean variables x1,...,x, and suppose that
each clause in this formula refers to exactly two variables. We will now present
a probabilistic algorithm that will either find values that satisfy the formula or
determine to a high probability that it is not possible to satisfy it. To begin, start
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with an arbitrary setting of values. Then, at each stage choose a clause whose
value is FALSE, and randomly choose one of the Boolean variables in that clause
and change its value. That is, if the variable has value TRUE then change its
value to FALSE, and vice versa. If this new setting makes the formula TRUE
then stop, otherwise continue in the same fashion. If you have not stopped after
n*(1 + 4,/3) repetitions, then declare that the formula cannot be satisfied. We
will now argue that if there is a satisfiable assignment then this algorithm will
find such an assignment with a probability very close to 1.

Let us start by assuming that there is a satisfiable assignment of truth values
and let & be such an assignment. At each stage of the algorithm there is a certain
assignment of values. Let Y; denote the number of the 7 variables whose values at
the jth stage of the algorithm agree with their values in «7. For instance, suppose
that n = 3 and & consists of the settings x1 = x» = x3 = TRUE. If the assign-
ment of values at the jth step of the algorithm is x;1 = TRUE, x, = x3 = FALSE,
then Y; =1. Now, at each stage, the algorithm considers a clause that is not sat-
isfied, thus implying that at least one of the values of the two variables in this
clause does not agree with its value in «7. As a result, when we randomly choose
one of the variables in this clause then there is a probability of at least % that
Yiy1=Y; + 1 and at most % that Y;; 1 =Y; — 1. That is, independent of what
has previously transpired in the algorithm, at each stage the number of settings
in agreement with those in &7 will either increase or decrease by 1 and the prob-
ability of an increase is at least % (it is 1 if both variables have values different
from their values in 7). Thus, even though the process Y;,j > 0 is not itself a
Markov chain (why not?) it is intuitively clear that both the expectation and the
variance of the number of stages of the algorithm needed to obtain the values of
<7 will be less than or equal to the expectation and variance of the number of
transitions to go from state 0 to state 7 in the Markov chain of Section 4.5.2.
Hence, if the algorithm has not yet terminated because it found a set of satis-
fiable values different from that of &7, it will do so within an expected time of
at most 7> and with a standard deviation of at most 72,/2. In addition, since
the time for the Markov chain to go from 0 to # is approximately normal when
n is large we can be quite certain that a satisfiable assignment will be reached
by n* + 4(n? %) stages, and thus if one has not been found by this number
of stages of the algorithm we can be quite certain that there is no satisfiable
assignment.

Our analysis also makes it clear why we assumed that there are only two
variables in each clause. For if there were k, k > 2, variables in a clause then as
any clause that is not presently satisfied may have only one incorrect setting, a
randomly chosen variable whose value is changed might only increase the number
of values in agreement with &/ with probability 1/k and so we could only conclude
from our prior Markov chain results that the mean time to obtain the values in
7 is an exponential function of 7, which is not an efficient algorithm when # is
large. ]
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4.6 Mean Time Spent in Transient States

Consider now a finite state Markov chain and suppose that the states are num-
bered so that T = {1,2,...,t} denotes the set of transient states. Let

Py1 P2 oo Pyy
Pr=| i i
Py Pp - Py
and note that since Pt specifies only the transition probabilities from transient
states into transient states, some of its row sums are less than 1 (otherwise,
T would be a closed class of states).

For transient states i and j, let s;; denote the expected number of time periods

that the Markov chain is in state j, given that it starts in state i. Let §; ; = 1 when
i =j and let it be 0 otherwise. Condition on the initial transition to obtain

sij =i + ) Piksys
k

t
=8ij+ Y Pusy (4.18)
k=1

where the final equality follows since it is impossible to go from a recurrent to a
transient state, implying that s;; = 0 when k is a recurrent state.
Let S denote the matrix of values s;;,7,j = 1,...,¢. That is,

St S12 v S1r
S =

St1 Se2 S
In matrix notation, Equation (4.18) can be written as
S=1+ PTS

where I is the identity matrix of size #. Because the preceding equation is equiva-
lent to

I-PpS=1I
we obtain, upon multiplying both sides by (I — P)~ !,

S=aI-Pp)!
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That is, the quantities s;,i € T,j € T, can be obtained by inverting the matrix
I — Pr. (The existence of the inverse is easily established.)

Example 4.30 Consider the gambler’s ruin problem with p = 0.4 and N = 7.
Starting with 3 units, determine

(a) the expected amount of time the gambler has § units,

(b) the expected amount of time the gambler has 2 units.
Solution: The matrix Pr, which specifies P;,i,j € {1,2,3,4,5,6}, is as
follows:

1 2 3 4 ) 6

110 04 0 0 0 0

2106 0 04 0 0 0

310 0.6 0 04 O 0

Pr= 4|0 0 0.6 0 04 0
510 0 0 0.6 0 0.4

610 0 0 0 0.6 0

Inverting I — P gives

1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691

—_ (1 _ -1 _
S={I=Pr) = 1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149
Hence,
535 =0.9228, s3, =2.3677 |

Fori € T,j € T, the quantity fj;, equal to the probability that the Markov
chain ever makes a transition into state j given that it starts in state 7, is eas-
ily determined from Pr. To determine the relationship, let us start by deriving
an expression for s;; by conditioning on whether state j is ever entered. This
yields

sij = E[time in j|start in i, ever transit to j]f;
+ E[time in j|start in i, never transit to j](1 — f;;)
= @i + s;pfij + 8ij(1 — fi))
=8ij + fiisij
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since sj; is the expected number of additional time periods spent in state j
given that it is eventually entered from state i. Solving the preceding equation
yields

Sij

51'7' —
fi=——
Sji

Example 4.31 In Example 4.30, what is the probability that the gambler ever
has a fortune of 1?2

Solution: Since s3 1 = 1.4206 and s1,1 = 1.6149, then

1= 2L =0.8797
s1,1

As a check, note that f3 1 is just the probability that a gambler starting with
3 reaches 1 before 7. That is, it is the probability that the gambler’s fortune will
go down 2 before going up 4; which is the probability that a gambler starting
with 2 will go broke before reaching 6. Therefore,

1 —(0.6/0.4)2
=—— " =0.8797
far=—9= (0.6/0.4)6
which checks with our earlier answer. [ ]

Suppose we are interested in the expected time until the Markov chain enters
some sets of states A, which need not be the set of recurrent states. We can reduce
this back to the previous situation by making all states in A absorbing states. That
is, reset the transition probabilities of states in A to satisfy

Pi,,‘ = 1, ieA
This transforms the states of A into recurrent states, and transforms any state

outside of A from which an eventual transition into A is possible into a transient
state. Thus, our previous approach can be used.

4.7 Branching Processes

In this section we consider a class of Markov chains, known as branching pro-
cesses, which have a wide variety of applications in the biological, sociological,
and engineering sciences.

Consider a population consisting of individuals able to produce offspring of
the same kind. Suppose that each individual will, by the end of its lifetime, have
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produced j new offspring with probability P;,; > 0, independently of the numbers
produced by other individuals. We suppose that P; < 1 for all j > 0. The number
of individuals initially present, denoted by X, is called the size of the zeroth
generation. All offspring of the zeroth generation constitute the first generation
and their number is denoted by Xj. In general, let X,, denote the size of the nth
generation. It follows that {X,,,7 = 0,1,...} is a Markov chain having as its state
space the set of nonnegative integers.

Note that state 0 is a recurrent state, since clearly Pgg = 1. Also, if Py >
0, all other states are transient. This follows since Pj :Pf), which implies that
starting with i individuals there is a positive probability of at least P} that no
later generation will ever consist of 7 individuals. Moreover, since any finite set
of transient states {1,2,...,7n} will be visited only finitely often, this leads to the
important conclusion that, if Pg > 0, then the population will either die out or
its size will converge to infinity.

Let
o
w=7 jP
j=0

denote the mean number of offspring of a single individual, and let
o0
o? =) (j— w*P;
j=0

be the variance of the number of offspring produced by a single individual.
Let us suppose that X = 1, that is, initially there is a single individual present.
We calculate E[X,,] and Var(X,,) by first noting that we may write

Xn-1
Xp= )Y Z
i=1

where Z; represents the number of offspring of the ith individual of the (7 — 1)st
generation. By conditioning on X,,_1, we obtain

X1

=E|E| Y ZilXu
i=1

= E[Xy-1]
= pnE[X;1]
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where we have used the fact that E[Z;] = u. Since E[Xo] = 1, the preceding
yields

E[X1] = p,

E[X2] = nE[X1] = p?,

E[X,] = nE[X,—1] = n”
Similarly, Var(X,,) may be obtained by using the conditional variance formula
Var(X,) = E[Var(X,|X,,—1)] + Var(E[X;|X,,—1])

Now, given X,,_1, X, is just the sum of X,,_1 independent random variables each
having the distribution {P;,j > 0}. Hence,

E[XalXn-1] = Xu—1it, Var(XulXn—1) = Xy_10>

The conditional variance formula now yields

Var(X,,) = E[X,— 102] + Var(X,,_11)

=o? " + p*Var(X, 1)

o2y 1+M(2 2 4 u2Var(Xa))
Gz(u + 1) + wVar(X,_»)

=2 (W + ") + (0w + nVar(X,-3))

— 0’2(/,Ln71 + Mn + Mn+1) + /L6Var(Xn,3)

_ O_Z(Mnfl + 'u" 4+ M2n72) + /LGvar(XO)
=0 (W 4 PR
Therefore,

o1 (%), ifpu#1

no2, ifu=1

Var(X,) = (4.19)

Let 7y denote the probability that the population will eventually die out (under
the assumption that Xy = 1). More formally,

7o = lim P{X, = 0|Xo = 1)
n—oo



248 Markov Chains

The problem of determining the value of mg was first raised in connection with
the extinction of family surnames by Galton in 1889.
We first note that mg = 1 if u < 1. This follows since

W= EXyl =) jP{Xy = )
j=1

o0

>3 1-P{X, =)
j=1

=P{X, > 1)

Since u” — 0 when u < 1, it follows that P{X,, > 1} — 0, and hence
P{X, =0} — 1.

In fact, it can be shown that 79 = 1 even when u = 1. When p > 1, it turns
out that 7y < 1, and an equation determining 7o may be derived by conditioning
on the number of offspring of the initial individual, as follows:

o = P{population dies out}
o
= Z P{population dies out|X; = j}P;
j=0

Now, given that X1 = j, the population will eventually die out if and only if each
of the j families started by the members of the first generation eventually dies out.
Since each family is assumed to act independently, and since the probability that
any particular family dies out is just 7, this yields

P{population dies out|X; = j} = ),

and thus 7 satisfies
w .
mo =Yy _m)P; (4.20)
i=0

In fact when w > 1, it can be shown that 7y is the smallest positive number
satisfying Equation (4.20).

Example 4.32 If Py = %, P = %, Py = %, then determine 7.
Solution: Since u = % < 1, it follows that my = 1. [ ]
Example 4.33 If Py = %, P = %, Py = %, then determine 7.

Solution: 7 satisfies

1 1 1_2
To =7 + 770 + 37
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or
275 —3mp+1=0

The smallest positive solution of this quadratic equation is w9 = % [ |

Example 4.34 In Examples 4.32 and 4.33, what is the probability that the pop-
ulation will die out if it initially consists of # individuals?

Solution: Since the population will die out if and only if the families of each
of the members of the initial generation die out, the desired probability is 7.

For Example 4.32 this yields 7; = 1, and for Example 4.33, 7} = (%)n [ |

4.8 Time Reversible Markov Chains

Consider a stationary ergodic Markov chain (that is, an ergodic Markov chain
that has been in operation for a long time) having transition probabilities P;; and
stationary probabilities 7r;, and suppose that starting at some time we trace the
sequence of states going backward in time. That is, starting at time 7, consider
the sequence of states X, X,,_1, X;,_2, . . .. It turns out that this sequence of states
is itself a Markov chain with transition probabilities Q;; defined by

Qij = P{Xon = j1Xms1 =i}
PA{Xin = j, X1 =1}

P X1 = i)
— P{Xm zj}P{Xm+l = 1|Xm 27}
P{Xnt1 =1}
_ Tl
T

To prove that the reversed process is indeed a Markov chain, we must verify that
P{Xn = 11 Xm+1 = i Xt 25 Xm+35 - -} = P{Xin = ]| X1 = i}

To see that this is so, suppose that the present time is m+ 1. Now, since
Xo,X1,X2,...1s a Markov chain, it follows that the conditional distribution
of the future X,,12, X;t3,... given the present state X,,,+1 is independent of
the past state X,,,. However, independence is a symmetric relationship (that is,
if A is independent of B, then B is independent of A), and so this means that given
Xomi1, Xm is independent of X412, X543, . . .. But this is exactly what we had to
verify.
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Thus, the reversed process is also a Markov chain with transition probabilities
given by

If Q;; = Pj for all i,j, then the Markov chain is said to be time reversible. The
condition for time reversibility, namely, Q;; = Pj;, can also be expressed as

JT,'P,'/' = JT,'P]'Z‘ for all i,j (4.21)

The condition in Equation (4.21) can be stated that, for all states i and j, the rate
at which the process goes from 7 to j (namely, 7;P;;) is equal to the rate at which it
goes from j to i (namely, 7;Pj;). It is worth noting that this is an obvious necessary
condition for time reversibility since a transition from 7 to j going backward in
time is equivalent to a transition from j to i going forward in time; that is, if
Xm =iand X,,,_1 = J, then a transition from i to j is observed if we are looking
backward, and one from j to i if we are looking forward in time. Thus, the rate
at which the forward process makes a transition from j to 7 is always equal to the
rate at which the reverse process makes a transition from i to j; if time reversible,
this must equal the rate at which the forward process makes a transition
from i to .

If we can find nonnegative numbers, summing to one, that satisfy Equa-
tion (4.21), then it follows that the Markov chain is time reversible and the
numbers represent the limiting probabilities. This is so since if

xiPij = x;jPj; for alli,j,y x;i=1 (4.22)

1

then summing over 7 yields
Zx,-P,y =x,'ZP/,- = xj, Zx,' =1
i i i

and, because the limiting probabilities 7r; are the unique solution of the preceding,
it follows that x; = 7; for all 7.

Example 4.35 Consider a random walk with states 0,1,..., M and transition
probabilities
Pijvi=a;j=1-Pijq1, i=1,....M—1,
Po1
Pym

ag =1— Py,

ap =1—Pyyv—1
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Without the need for any computations, it is possible to argue that this Markov
chain, which can only make transitions from a state to one of its two nearest
neighbors, is time reversible. This follows by noting that the number of transitions
from 7 to i + 1 must at all times be within 1 of the number from i + 1 to i.
This is so because between any two transitions from i to 7 + 1 there must be one
from i + 1 to i (and conversely) since the only way to reenter i from a higher
state is via state ; + 1. Hence, it follows that the rate of transitions fromito: + 1
equals the rate from i + 1 to 7, and so the process is time reversible.

We can easily obtain the limiting probabilities by equating for each state i =
0,1,...,M — 1 the rate at which the process goes from i to i + 1 with the rate at
which it goes from i 4 1 to i. This yields

71 (1 —ay),

X0

mo = m (1 —ay),

ﬂiaizﬂj+1(l—aj+1), l=oslaaM_1

Solving in terms of g yields

[o40]
w1 = 70,
1—oq
o1 o100
Ty = T = 70
1—a (1 —a2)( —a1)
and, in general,
a171 e aO

i=1,2,...,M

T =

A—a)-(A—ap)

Since ZS/ITL’,' = 1, we obtain

or

_ al‘_l...(xo
7o = 1+Z(1—aj)~-~(l—a1) (4.23)
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and
i1 -0 .
T = mTo, i=1,...,.M (4.24)
T —a) (1 —ap)
For instance, if o; = «, then
M o \/ -1
mo=|1+ Z <1 — a)
=1
__1-5
T 1= /3M+l
and, in general,
Ba—p .
ﬂi:l—‘m, l=0,1,...,M
where
o
= ]
p 11—«

Another special case of Example 4.35 is the following urn model, proposed
by the physicists P. and T. Ehrenfest to describe the movements of molecules.
Suppose that M molecules are distributed among two urns; and at each time point
one of the molecules is chosen at random, removed from its urn, and placed in
the other one. The number of molecules in urn I is a special case of the Markov
chain of Example 4.35 having

M—i
M b

i=0,1,....M

o =

Hence, using Equations (4.23) and (4.24) the limiting probabilities in this case are

-1

i M .
M—j+1)--(M-1M
=1+ —
i ,Zl -1 1

- -1
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where we have used the identity
l
2
- f (M) (l)M
o /A2

Hence, from Equation (4.24)

M\ [ 1\ M
n,:(,)<_) i=01.....M
i 2

Because the preceding are just the binomial probabilities, it follows that in the
long run, the positions of each of the M balls are independent and each one is
equally likely to be in either urn. This, however, is quite intuitive, for if we focus
on any one ball, it becomes quite clear that its position will be independent of
the positions of the other balls (since no matter where the other M — 1 balls are,
the ball under consideration at each stage will be moved with probability 1/M)
and by symmetry, it is equally likely to be in either urn.

Example 4.36 Consider an arbitrary connected graph (see Section 3.6 for
definitions) having a number w;; associated with arc (i,/) for each arc. One
instance of such a graph is given by Figure 4.1. Now consider a particle moving
from node to node in this manner: If at any time the particle resides at node i,
then it will next move to node j with probability P;; where

wl‘/‘

P =
Ul Zi wij

and where w;; is 0 if (4,/) i
Pi=3/G+1+2) =1

is not an arc. For instance, for the graph of Figure 4.1,

Figure 4.1 A connected graph with arc weights.
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The time reversibility equations
JTl'Pi,' = JTI'P/’Z'
reduce to

7T =7

Yjwi Y w

or, equivalently, since w;; = wj;

mom
2 iWwii i Wi

which is equivalent to

or
Ti=c E wij
j

or,since 1 =) ;m;

> Wi

T, = &S —

D 2 Wi

Because the 7;s given by this equation satisfy the time reversibility equations, it
follows that the process is time reversible with these limiting probabilities.
For the graph of Figure 4.1 we have that

6 3 6 S 12
T1 =133, N2=335 7N3=335 T4=733, 5= 733 n

If we try to solve Equation (4.22) for an arbitrary Markov chain with states
0,1,...,M, it will usually turn out that no solution exists. For example, from
Equation (4.22),

xl-Pl-,- = x,-P,-l-,
kaki = x/P,»k

implying (if P;;Pj > 0) that

xi _ Djilyj

xp PPy
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which in general need not equal Py;/P;;,. Thus, we see that a necessary condition
for time reversibility is that

P,’kPk,‘P,‘i = Piij/ePki for all i,i, k (425)

which is equivalent to the statement that, starting in state i, the pathi — k& —
j — i has the same probability as the reversed pathi — j — k — i. To understand
the necessity of this, note that time reversibility implies that the rate at which a
sequence of transitions from 7 to k to j to i occurs must equal the rate of ones
from 7 to j to k to i (why?), and so we must have

7Py PpiPji = ;PP Pp;

implying Equation (4.25) when 7; > 0.
In fact, we can show the following.

Theorem 4.2 An ergodic Markov chain for which Pjj = 0 whenever P;; = 0 is
time reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if

Pij Piy iy -+ Piyi = Pij P iy -+ Piyji (4.26)

for all states i,1,. .., .

Proof. We have already proven necessity. To prove sufficiency, fix states i and j
and rewrite (4.26) as

PijiyPiysiy -+ PiyjPji = PijPpiy -+ Piy

Summing the preceding over all states i1, . .., yields

k+1p.. _ p. pk+l
Pij Pl’_PIIP;’i

Letting k — oo yields
JT,'P]'Z‘ = P,’,’T[i

which proves the theorem. [ |

Example 4.37 Suppose we are given a set of 7 elements, numbered 1 through #,
which are to be arranged in some ordered list. At each unit of time a request is
made to retrieve one of these elements, element 7 being requested (independently
of the past) with probability P;. After being requested, the element then is put
back but not necessarily in the same position. In fact, let us suppose that the
element requested is moved one closer to the front of the list; for instance, if the
present list ordering is 1, 3, 4, 2, 5 and element 2 is requested, then the new
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ordering becomes 1, 3, 2, 4, 5. We are interested in the long-run average position
of the element requested.

For any given probability vector P = (P4, ..., P,), the preceding can be mod-
eled as a Markov chain with 7! states, with the state at any time being the list
order at that time. We shall show that this Markov chain is time reversible and
then use this to show that the average position of the element requested when
this one-closer rule is in effect is less than when the rule of always moving the
requested element to the front of the line is used. The time reversibility of the
resulting Markov chain when the one-closer reordering rule is in effect easily fol-
lows from Theorem 4.2. For instance, suppose # = 3 and consider the following
path from state (1, 2, 3) to itself:

1,2,3) > (2,1,3) - 2,3,1) - 3,2,1)
- 3,1,2) > (1,3,2) » (1,2,3)

The product of the transition probabilities in the forward direction is
P,P3P3P P1P, = PIP5P3

whereas in the reverse direction, it is
P3P3P,P,P1 Py = P2P3P3

Because the general result follows in much the same manner, the Markov chain is
indeed time reversible. (For a formal argument note that if /; denotes the number
of times element i moves forward in the path, then as the path goes from a fixed
state back to itself, it follows that element i will also move backward f; times.
Therefore, since the backward moves of element i are precisely the times that it
moves forward in the reverse path, it follows that the product of the transition
probabilities for both the path and its reversal will equal

l—[ P{Hrri

1

where 7; is equal to the number of times that element i is in the first position and
the path (or the reverse path) does not change states.)

For any permutation i1,i,...,i, of 1,2,...,n, let 7(i1,iz,...,i,) denote the
limiting probability under the one-closer rule. By time reversibility we have

Pi/.+171(i], . ,i/,i,‘+], . ,in) = P,'/n'(h, . ,i,’+1,i7’, . ,in) (427)

for all permutations.
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Now the average position of the element requested can be expressed (as in
Section 3.6.1) as

Average position = Z P;E[Position of element 7]

1

- Z Pi|1+ Z P{element j precedes element 7}
i j#i
=1+ Z Z P;P{e; precedes e;}
i j#E
=1+ Z[P,P{e, precedes e;} + P;P{e; precedes e;}]
i<j
=1+ Z[P,P{ei precedes e;} + P;(1 — P{e;j precedes e;})]

i<j

14 Z Z(Pi — Pj)P{e; precedes e;} + Z ZPi

i<j i<j

Hence, to minimize the average position of the element requested, we would
want to make P{e; precedes e;} as large as possible when P; > P; and as
small as possible when P; > P;. Under the front-of-the-line rule we showed in
Section 3.6.1,

Pfe;j precedes e;} = P LD,
] 1

(since under the front-of-the-line rule element j will precede element i if and only
if the last request for either i or j was for j).

Therefore, to show that the one-closer rule is better than the front-of-the-line
rule, it suffices to show that under the one-closer rule

Py des e;} P hen P; > P
e; precedes e; >Pj+Pi when P; > P;

Now consider any state where element i precedes element j, say,

(cvsfyily -v.yipyfs...). By successive transpositions using Equation (4.27),
we have
P' k+1
n(...,i,il,...,z’k,/,...)=<#) 1 G S T T A | (4.28)
i
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For instance,

P,
7(1,2,3) = n(l 3,2) = P——n(3,1,2)
3

Pz Py Py

(3,2,1) = P12(321)
—_— T
P3P3P2n P3 7

Now when P; > P;, Equation (4.28) implies that
. o P; . o
Ty lyllyenslpyfy..n) < F”(---:I”la---,stl:---)
j
Letting a(7,7) = P{e; precedes e;}, we see by summing over all states for which i
precedes j and by using the preceding that
i) < Lag, i
L) < —a(j,i
a(i,j P,-a ]

which, since a(i,j) = 1 — a(j, 1), yields

alj, i) >
(1) P/'-i-Pl'

Hence, the average position of the element requested is indeed smaller under the
one-closer rule than under the front-of-the-line rule. [ |

The concept of the reversed chain is useful even when the process is not time
reversible. To illustrate this, we start with the following proposition whose proof
is left as an exercise.

Proposition 4.6 Consider an irreducible Markov chain with transition proba-
bilities P;;. If we can find positive numbers 7;,i > 0, summing to one, and a
transition probability matrix Q = [Qj;] such that

JT,'Pi,' = ﬂ/Qj,' (429)

then the Qj; are the transition probabilities of the reversed chain and the 7; are
the stationary probabilities both for the original and reversed chain.

The importance of the preceding proposition is that, by thinking backward,
we can sometimes guess at the nature of the reversed chain and then use the set
of Equations (4.29) to obtain both the stationary probabilities and the Qj;.

Example 4.38 A single bulb is necessary to light a given room. When the bulb
in use fails, it is replaced by a new one at the beginning of the next day. Let X,
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equal i if the bulb in use at the beginning of day # is in its ith day of use (that is, if
its present age is 7). For instance, if a bulb fails on day 7 — 1, then a new bulb will
be put in use at the beginning of day # and so X,, = 1. If we suppose that each
bulb, independently, fails on its ith day of use with probability p;,7 > 1, then it
is easy to see that {X,,,7 > 1} is a Markov chain whose transition probabilities
are as follows:

P; 1 = P{bulb, on its ith day of use, fails}
= P{life of bulb = {|life of bulb > i}
_ P(L=i)

P{L > i}

where L, a random variable representing the lifetime of a bulb, is such that
P{L =i} = p;. Also,

Piiy1=1-"Pi

Suppose now that this chain has been in operation for a long (in theory, an infi-
nite) time and consider the sequence of states going backward in time. Since, in
the forward direction, the state is always increasing by 1 until it reaches the age
at which the item fails, it is easy to see that the reverse chain will always decrease
by 1 until it reaches 1 and then it will jump to a random value representing the
lifetime of the (in real time) previous bulb. Thus, it seems that the reverse chain
should have transition probabilities given by

Qi,i—l = 1, i>1
Oni=pi, i>1
To check this, and at the same time determine the stationary probabilities, we

must see if we can find, with the Q;; as previously given, positive numbers {r;}
such that

niPij = m;Qj.i

To begin, let j = 1 and consider the resulting equations:
miPiy =m0,

This is equivalent to

P{L =1} .
ﬂim = 7T1P{L = l}
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or
m; = mP{L > i}
Summing over all 7 yields
00 00
1=>"m=m» P{L>i}=mE[L]
and so, for the preceding Q;; to represent the reverse transition probabilities, it

is necessary for the stationary probabilities to be

P{L > i)
= =
1 E[L] b

To finish the proof that the reverse transition probabilities and stationary prob-
abilities are as given, all that remains is to show that they satisfy

TPt = i1 Qiv1,
which is equivalent to

P(L > i} 1_P{L=z’} P{L>i+1)
CE[L] ( P{L>z‘}> E[L]

and which is true since P{L > i} — P{L =i} = P{L > i + 1}. [ |

4.9 Markov Chain Monte Carlo Methods

Let X be a discrete random vector whose set of possible values is x;,j > 1. Let
the probability mass function of X be given by P{X = x;},j > 1, and suppose
that we are interested in calculating

= E[h(X)] = Y h(x)P{X =x;)

j=1

for some specified function 4. In situations where it is computationally difficult to
evaluate the function A(x;),j > 1, we often turn to simulation to approximate 6.
The usual approach, called Monte Carlo simulation, is to use random numbers
to generate a partial sequence of independent and identically distributed random
vectors X1, X2, ..., X;, having the mass function P{X = x;},7 > 1 (see Chapter 11
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for a discussion as to how this can be accomplished). Since the strong law of large
numbers yields

Tim Y10 (4.30)

- n
i=1

it follows that we can estimate 6 by letting » be large and using the average of
the values of h(X;),i = 1,...,n as the estimator.

It often, however, turns out that it is difficult to generate a random vector
having the specified probability mass function, particularly if X is a vector of
dependent random variables. In addition, its probability mass function is some-
times given in the form P{X = x;} = Cbj,j > 1, where the b; are specified, but
C must be computed, and in many applications it is not computationally feasi-
ble to sum the b; so as to determine C. Fortunately, however, there is another
way of using simulation to estimate 6 in these situations. It works by generat-
ing a sequence, not of independent random vectors, but of the successive states
of a vector-valued Markov chain Xy, X3, ... whose stationary probabilities are
P{X =x;},j > 1. If this can be accomplished, then it would follow from Propo-
sition 4.4 that Equation (4.30) remains valid, implying that we can then use
Y i1 h(Xj)/n as an estimator of 6.

We now show how to generate a Markov chain with arbitrary stationary prob-
abilities that may only be specified up to a multiplicative constant. Let b(j),
j = 1,2,... be positive numbers whose sum B = Z;’il b(j) is finite. The fol-
lowing, known as the Hastings—Metropolis algorithm, can be used to generate a
time reversible Markov chain whose stationary probabilities are

To begin, let Q be any specified irreducible Markov transition probability matrix
on the integers, with q(i,/) representing the row i column j element of Q. Now
define a Markov chain {X,,,7 > 0} as follows. When X,, = i, generate a random
variable Y such that P{Y =;} = q(i,)),7 = 1,2,....If Y =, then set X, 1 equal
to j with probability a(i, 7), and set it equal to i with probability 1 — «(%, 7). Under
these conditions, it is easy to see that the sequence of states constitutes a Markov
chain with transition probabilities P;; given by

Pij = qG,pal,)), ifj#i

Pii = qG,i) + ) qGi,k)(1 — al, k)
ki

This Markov chain will be time reversible and have stationary probabilities 7(;) if

n(i)P;; = n(j)P;; forj#i
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which is equivalent to

m()q (@, i, 7) = w(1)q(j, Hel), ) (4.31)

But if we take 7; = b(j)/B and set

(4.32)

— (n(i)q(i, ) 1)

m()qi,f)’
then Equation (4.31) is easily seen to be satisfied. For if

Gy
Y61 = e

then «a(j, i) = 1 and Equation (4.31) follows, and if a(i,f) = 1 then

a(j,i) = m(i)q(i,])
’ 7(71)q(j,1)
and again Equation (4.31) holds, thus showing that the Markov chain is time
reversible with stationary probabilities 7(j). Also, since 7(j) =b(j)/B, we see
from (4.32) that
. . (b(Dq(j,i) >
,]) = —1
a(i,j) = min (b(z)q(z,])

which shows that the value of B is not needed to define the Markov chain, because
the values b(j) suffice. Also, it is almost always the case that 7(j),j > 1 will not
only be stationary probabilities but will also be limiting probabilities. (Indeed, a
sufficient condition is that P;; > 0 for some 7.)

Example 4.39 Suppose that we want to generate a uniformly distributed element
in .7, the set of all permutations (x1,...,x,) of the numbers (1,...,#) for which
> j—1/x; > a for a given constant a. To utilize the Hastings—Metropolis algorithm
we need to define an irreducible Markov transition probability matrix on the state
space .. To accomplish this, we first define a concept of “neighboring” elements
of ., and then construct a graph whose vertex set is .. We start by putting an
arc between each pair of neighboring elements in ., where any two permutations
in . are said to be neighbors if one results from an interchange of two of the
positions of the other. That is, (1, 2, 3, 4) and (1, 2, 4, 3) are neighbors whereas
(1, 2, 3, 4) and (1, 3, 4, 2) are not. Now, define the g transition probability
function as follows. With N(s) defined as the set of neighbors of s, and [N(s)|
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equal to the number of elements in the set N(s), let

q(s,t) = if t € N(s)

IN(s)|

That is, the candidate next state from s is equally likely to be any of its neighbors.
Since the desired limiting probabilities of the Markov chain are 7(s) = C, it
follows that 7(s) = n(t), and so

a(s,t) = min(IN(s)[/IN(0)], 1)

That is, if the present state of the Markov chain is s then one of its neighbors
is randomly chosen, say, t. If t is a state with fewer neighbors than s (in graph
theory language, if the degree of vertex t is less than that of vertex s), then the
next state is t. If not, a uniform (0,1) random number U is generated and the
next state is t if U < |(N(s)|/|N(t)| and is s otherwise. The limiting probabilities
of this Markov chain are n(s) = 1/|.7|, where |.¥| is the (unknown) number of
permutations in .. u

The most widely used version of the Hastings—Metropolis algorithm is the
Gibbs sampler. Let X = (X1,...,X}) be a discrete random vector with proba-
bility mass function p(x) that is only specified up to a multiplicative constant,
and suppose that we want to generate a random vector whose distribution is that
of X. That is, we want to generate a random vector having mass function

p(x) = Cg(x)

where g(x) is known, but C is not. Utilization of the Gibbs sampler assumes that
for any i and values x;,j # i, we can generate a random variable X having the
probability mass function

PIX = x} = P(X; = x|X; = x;, # i}

It operates by using the Hasting—Metropolis algorithm on a Markov chain with
states x=(x1,...,Xx,), and with transition probabilities defined as follows.
Whenever the present state is x, a coordinate that is equally likely to be any
of 1,...,n is chosen. If coordinate i is chosen, then a random variable X with
probability mass function P{X = x} = P{X; = x|X; = xj,j # i} is generated. If
X =x, then the state y=(x1,...%j_1,%,Xj+1,...,%;) is considered as the candi-
date next state. In other words, with x and y as given, the Gibbs sampler uses the
Hastings—Metropolis algorithm with

p(y)
nP{X; = xj,j # i}

1 ..
q(x,y) = ;P{Xi =x|Xj=xj,] #i} =
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Because we want the limiting mass function to be p, we see from Equation (4.32)
that the vector y is then accepted as the new state with probability

(P(y)q(y, X) )
n =207
px)gq(x,y)

(P(y)p(X) )
n( =22
p)p(y)

a(x,y) =

=1

Hence, when utilizing the Gibbs sampler, the candidate state is always accepted
as the next state of the chain.

Example 4.40 Suppose that we want to generate # uniformly distributed points
in the circle of radius 1 centered at the origin, conditional on the event that
no two points are within a distance d of each other, when the probability of this
conditioning event is small. This can be accomplished by using the Gibbs sampler
as follows. Start with any # points x1, . .., Xy in the circle that have the property
that no two of them are within d of the other; then generate the value of I, equally
likely to be any of the values 1,..., 7. Then continually generate a random point
in the circle until you obtain one that is not within d of any of the other 7 — 1
points excluding x;. At this point, replace x; by the generated point and then
repeat the operation. After a large number of iterations of this algorithm, the set
of #n points will approximately have the desired distribution. [ ]

Example 4.41 LetX,,i =1,...,n, beindependent exponential random variables
with respective rates Aj,i = 1,...,7. Let S = >"' | X, and suppose that we want
to generate the random vector X = (X3, ..., X;), conditional on the event that
S > c¢ for some large positive constant c. That is, we want to generate the value
of a random vector whose density function is

1 - —AiX; S

f(x1,...,xn)—mnkle , x,)O,Zx,>c
i=1 =1
This is easily accomplished by starting with an initial vector x = (x1,...,x,)
satisfying x; > 0,i = 1,...,7,Y 1 x; > c. Then generate a random variable I
that is equally likely to be any of 1, ..., n. Next, generate an exponential random
variable X with rate A; conditional on the event that X + ., .;x; > c. This
latter step, which calls for generating the value of an exponential random variable
given that it exceeds ¢ — } ;. x), is easily accomplished by using the fact that an
exponential conditioned to be greater than a positive constant is distributed as
the constant plus the exponential. Consequently, to obtain X, first generate an
exponential random variable Y with rate A;, and then set
+

X=Y+|c— ij
o
where at = max(a, 0).
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The value of xj should then be reset as X and a new iteration of the algorithm
begun. [ |

Remark As can be seen by Examples 4.40 and 4.41, although the theory for the
Gibbs sampler was represented under the assumption that the distribution to be
generated was discrete, it also holds when this distribution is continuous.

4.10 Markov Decision Processes

Consider a process that is observed at discrete time points to be in any one of
M possible states, which we number by 1,2,..., M. After observing the state of
the process, an action must be chosen, and we let A, assumed finite, denote the
set of all possible actions.

If the process is in state i at time »# and action a is chosen, then the next state
of the system is determined according to the transition probabilities P;;(a). If we
let X,, denote the state of the process at time 7 and a,, the action chosen at time
n, then the preceding is equivalent to stating that

P{Xn+1 :j|XOaa0>Xlaala e 3Xn = i,an = ﬂ} = Pl/(a)

Thus, the transition probabilities are functions only of the present state and the
subsequent action.

By a policy, we mean a rule for choosing actions. We shall restrict our-
selves to policies that are of the form that the action they prescribe at any time
depends only on the state of the process at that time (and not on any informa-
tion concerning prior states and actions). However, we shall allow the policy
to be “randomized” in that its instructions may be to choose actions accord-
ing to a probability distribution. In other words, a policy B is a set of numbers
B = {Bi(a),a € A,i = 1,..., M} with the interpretation that if the process is
in state i, then action a is to be chosen with probability ;(a). Of course, we
need have

0< Bi(a) <1, forallija
Zﬂi(a) =1, forall:
a

Under any given policy B, the sequence of states {X,,, n =0, 1,...} constitutes
a Markov chain with transition probabilities P;;(B) given by

Pii(B) = Pp{Xns1 = jIXn = i}*
= Pj@pi(a)

* We use the notation Pg to signify that the probability is conditional on the fact that policy B is used.
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where the last equality follows by conditioning on the action chosen when in
state i. Let us suppose that for every choice of a policy B, the resultant Markov
chain {X,,, n =0,1,...} is ergodic.

For any policy B, let 7;, denote the limiting (or steady-state) probability that

the process will be in state i and action a will be chosen if policy B8 is employed.
That is,

Tig = nlggo Pﬂ{Xn =i,a, = a}

The vector © = (7;;) must satisfy

(i) mj, > 0foralli a,
(i) 22 ma=1,
(i) D>, mia = ; >, mialij(a) for all j (4.33)

Equations (i) and (ii) are obvious, and Equation (iii), which is an analogue of
Equation (4.7), follows as the left-hand side equals the steady-state probability
of being in state j and the right-hand side is the same probability computed by
conditioning on the state and action chosen one stage earlier.

Thus for any policy B, there is a vector & = (7j,) that satisfies (i)—(iii) and with
the interpretation that 7, is equal to the steady-state probability of being in state i
and choosing action a when policy B is employed. Moreover, it turns out that the
reverse is also true. Namely, for any vector = = (77;,) that satisfies (i)—(iii), there
exists a policy B such that if 8 is used, then the steady-state probability of being
in 7 and choosing action a equals 7;;. To verify this last statement, suppose that
7 = () is a vector that satisfies (i)—(iii). Then, let the policy B = (8;(a)) be

Bi(a) = P{B chooses a|state is i}
_ Tia
Za Tia

Now let P;, denote the limiting probability of being in 7 and choosing a when
policy B is employed. We need to show that P;; = mj,;. To do so, first note that
{Pigyi = 1,...,M, a € A} are the limiting probabilities of the two-dimensional
Markov cham {(Xn,an), n > 0}. Hence, by the fundamental Theorem 4.1, they
are the unique solution of

(') Pig >0,
(i) 32 Pia=1,
(ili")  Pjg = >4 PiaPii(@)Bi(a)

where (iii’) follows since

P{Xy41 =J,an1 = alXn =i, ay = a'} = Pjj(d') Bj(a)

Because

.37 (@) =

Za Tja
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we see that (P;,) is the unique solution of
Pia P Os
Z Z Pia = 13
i a
Piu=Y_ X:Pia/l’ij(ﬂ’)i
i a Z“ Tja
Hence, to show that P;, = m;,, we need show that

Tig 2 09

¥
i a
- - Pi(d Tja
Tja Z;nm ll(a)za”/a

i

The top two equations follow from (i) and (ii) of Equation (4.33), and the third,
which is equivalent to

o wia=)") maPia)
a i a

follows from condition (iii) of Equation (4.33).

Thus we have shown that a vector B = (7;;) will satisfy (i), (ii), and (iii) of
Equation (4.33) if and only if there exists a policy 8 such that 7, is equal to the
steady-state probability of being in state i and choosing action a when B is used.
In fact, the policy B is defined by B;(a) = mjs/ >, ia-

The preceding is quite important in the determination of “optimal” policies.
For instance, suppose that a reward R(i, a) is earned whenever action a is chosen
in state 7. Since R(Xj,a;) would then represent the reward earned at time i, the
expected average reward per unit time under policy B can be expressed as

n

Z:'l:lR(Xi,ai):|

expected average reward under g = lim Eg [
n— o0

Now, if 7;; denotes the steady-state probability of being in state 7 and choosing
action 4, it follows that the limiting expected reward at time # equals

lim E[RXu,an)] =) D 7iaR(i,a)

i
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which implies that

expected average reward under g = Z Z iR, a)

i a

Hence, the problem of determining the policy that maximizes the expected aver-
age reward is

maximize ZZTF aR (i, a)

T=(Tiq) i

subject to ;, > 0, foralli,a,

Z Z”ia = 13
Zn/a = Z Zﬂiapij(d), for all (4.34)

i

However, the preceding maximization problem is a special case of what is known
as a linear program and can be solved by a standard linear programming algo-
rithm known as the simplex algorithm.* 1f B* = () maximizes the preceding,
then the optimal policy will be given by g* where

*

Bi(a) = =+ Za

Remarks

(i) It can be shown that there is a 7* maximizing Equation (4.34) that has the property
that for each i, 7} is zero for all but one value of a, which implies that the opti-
mal policy is nonrandomized. That is, the action it prescribes when in state i is a
deterministic function of i.

(i) The linear programming formulation also often works when there are restrictions
placed on the class of allowable policies. For instance, suppose there is a restriction
on the fraction of time the process spends in some state, say, state 1. Specifically,
suppose that we are allowed to consider only policies having the property that their
use results in the process being in state 1 less than 100« percent of time. To determine
the optimal policy subject to this requirement, we add to the linear programming
problem the additional constraint

Z Mg S &
a
since Y, 1, represents the proportion of time that the process is in state 1.

* Tt is called a linear program since the objective function )_; ", R(i,a)7;, and the constraints are
all linear functions of the ;. For a heuristic analysis of the simplex algorithm, see 4.5.2.
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4.11 Hidden Markov Chains

Let {X,, n = 1,2,...} be a Markov chain with transition probabilities P;; and
initial state probabilities p; = P{X1 =i}, i > 0. Suppose that there is a finite set
7 of signals, and that a signal from . is emitted each time the Markov chain
enters a state. Further, suppose that when the Markov chain enters state j then,
independently of previous Markov chain states and signals, the signal emitted is
s with probability p(slf), Y .c & p(slj) = 1. That is, if S,, represents the #th signal
emitted, then

P{S1 = s|Xy1 = j} = p(sl),
P{Sn = S|X]’S]" . ~7Xn7]aSn7]aXn :/} = P(5|/)
A model of the preceding type in which the sequence of signals S1,S,... is
observed, while the sequence of underlying Markov chain states X1, X>,... is
unobserved, is called a hidden Markov chain model.

Example 4.42 Consider a production process that in each period is either in a
good state (state 1) or in a poor state (state 2). If the process is in state 1 during
a period then, independent of the past, with probability 0.9 it will be in state
1 during the next period and with probability 0.1 it will be in state 2. Once in
state 2, it remains in that state forever. Suppose that a single item is produced each
period and that each item produced when the process is in state 1 is of acceptable
quality with probability 0.99, while each item produced when the process is in
state 2 is of acceptable quality with probability 0.96.

If the status, either acceptable or unacceptable, of each successive item is
observed, while the process states are unobservable, then the preceding is a hid-
den Markov chain model. The signal is the status of the item produced, and has
value either a or u#, depending on whether the item is acceptable or unacceptable.
The signal probabilities are

pul1) =0.01, p(all) = 0.99,
pu|2) = 0.04, p(al2) = 0.96

while the transition probabilities of the underlying Markov chain are
P1’1 =09=1- Pl’z, Pz,z =1 |

Although {S;,,# > 1} is not a Markov chain, it should be noted that, conditional
on the current state X,,, the sequence Sy, X1, Sy+1, - - - of future signals and states
is independent of the sequence X1, S1,...,X,_1,S,_1 of past states and signals.

Let $"=(S1,...,S,) be the random vector of the first # signals. For a
fixed sequence of signals s1,...,s,, let s =(s1,...,s;), k<n. To begin, let us



270 Markov Chains

determine the conditional probability of the Markov chain state at time # given
that §” =s,,. To obtain this probability, let

and note that

P{S" =5, X, =}
P{S" =s,}

R

© Y Ea)

P{X, =/|Sn =s,} =

Now,
Fu(j) = P{S" ™ = 8,1, 8, = 4y Xon = j}
=Y P =5, 1, X1 =0, X =], Sn =54}
i

=) Fu1OP(Xy =, S5 = sul8" ™! = 51, X1 = 1)

1

=Y Fu 1 OP{Xy =/, 8 = sul X1 =i}

1

=Y Fu1()P;jp(snl))
= p(sali) D Fu1()Py (4.35)

where the preceding used that

P{Xy = j, 80 = sulXu—1 =i}
= P{Xy, = jIXu—1 =i} X P{Sy, = sul Xy = ], Xpp—1 = i}
= P;iP{Sy = sul Xy = j}
= Pjjp(snlf)

Starting with
F1() = P{X1 = 1,81 = s1} = pip(s1li)

we can use Equation (4.35) to recursively determine the functions F,(i),
F3(), ..., up to F,(i).
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Example 4.43 Suppose in Example 4.42 that P{X; = 1} = 0.8. It is given that
the successive conditions of the first three items produced are a, u, a.

(a) What is the probability that the process was in its good state when the third item was
produced?

(b) What is the probability that X4 is 1?

(c) What is the probability that the next item produced is acceptable?

Solution: With s3 = (a, u#,a), we have
F1(1) = (0.8)(0.99) = 0.792,
F1(2) = (0.2)(0.96) = 0.192

F>(1) = 0.01[0.792(0.9) 4+ 0.192(0)] = 0.007128,
F>(2) = 0.04[0.792(0.1) 4+ 0.192(1)] = 0.010848

F53(1) = 0.99[(0.007128)(0.9)] &~ 0.006351,
F5(2) =0.96[(0.007128)(0.1) 4+ 0.010848] ~ 0.011098

Therefore, the answer to part (a) is

0.006351
P(X; = 1]s3} ~ ~ 0.364
X5 = 11830 ~ 5506351 1 0.011098

To compute P{X4 = 1|s3}, condition on X3 to obtain

P{X4 = 1]s3} = P{X4 = 1|X3 = 1,s3}P{X3 = 1]s3}
+ P{X4 = 1]1X3 = 2,s3}P{X3 = 2|s3}
= P{X4 =1|X3 = 1,83}(0.364) + P{X4 = 1| X3 = 2,53}(0.636)
= 0.3641)1,1 + 0.6361)2,1
=0.3276

To compute P{S4 = a|s3}, condition on X4 to obtain

P{S4 = als3} = P{S4 = a|X4 = 1,s3}P{X4 = 1]s3}
+ P{S4 = alX4 = 2,s3}P{X4 = 2Is3}
= P{S4 = a|X4 = 1}(0.3276) + P{S4 = a|X4 = 2}(1 — 0.3276)
— (0.99)(0.3276) + (0.96)(0.6724) = 0.9698 m

To compute P{S” = s,}, use the identity P{S" = s,} = ), F,(i) along with
Equation (4.35). If there are N states of the Markov chain, this requires com-
puting #N quantities F, (i), with each computation requiring a summation over
N terms. This can be compared with a computation of P{S” = s,} based on
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conditioning on the first # states of the Markov chain to obtain

PS" =sul = 3 PIS" = sulXi =ity X = i) PX1 = ity X = i)
i15eensln
= Z pGs1lin) - - pGulin)Piy Piyin Pi iy -+ - Piy_ i

1seensln

The use of the preceding identity to compute P{S” = s,} would thus require a
summation over N” terms, with each term being a product of 27 values, indicating
that it is not competitive with the previous approach.

The computation of P{S” = s,} by recursively determining the functions Fj ()
is known as the forward approach. There also is a backward approach, which is
based on the quantities By (7), defined by

Bp()) = P{Sp11 = Skq1s---»Sn = sulXp = 1}

A recursive formula for By (¥) can be obtained by conditioning on X 1.

Br(i) =Y P{Ski1 = Skits--->Sn = sulXp = i, Xy = j}P(Xpyr = jIXp = i}
j

= P{Skp1 = Skits- -5 Sn = sul Xpy1 = }Piy
j

=Y P{Sks1 = k41| Xps1 =)
j

X P{Spi2 = Spq2s -+ > Sn = SnlSky1 = Skt Xe1 = /3P

= Pkt DP{Ski2 = Skr25- - S = 5a| Xpy1 = j}Pij
j

=Y " p(sks11)Bri1 (HPiy (4.36)
j

Starting with
Bu—1(i) = P{Sy = sn|Xp—1 = i}
= Pijp(sal)
j

we would then use Equation (4.36) to determine the function B,_; (i), then
B,,_3(i), and so on, down to B1(i). This would then yield P{S" = s,,} via

P{S" =s,) =Y P{Si =s1,...,5 = s,/ X1 = i}pi
i

=Y P{Si=s11X1 = i}P(S2 = s2,...,Su = sulS1 = 51, X1 = i}p;

1
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=Y pE1UNPISy =52, ., Su = sul X1 = i}pi

=Y " pG1li)B1(i)pi

Another approach to obtaining P{S” = s,,} is to combine both the forward and
backward approaches. Suppose that for some k we have computed both functions
F(j) and Bg(j). Because

P(S" =s,, X = j} = P{Sk =53, X; =)
X P{Spi1 = Skyts---»Sn = sulS* = s, Xp =/}
= P{S* = sp, Xp = /)P{Ski1 = Shits---»Sn = sulXp =}
= Fe(j)Bx(j)

we see that

P{S" =s,} = > Fe()Bx(j)

]

The beauty of using the preceding identity to determine P{S” = s,} is that we
may simultaneously compute the sequence of forward functions, starting with
F1, as well as the sequence of backward functions, starting at B,,_1. The parallel
computations can then be stopped once we have computed both F; and By, for
some k.

4.11.1 Predicting the States

Suppose the first 7 observed signals are s,, = (s1,...,s,), and that given this data
we want to predict the first # states of the Markov chain. The best predictor
depends on what we are trying to accomplish. If our objective is to maximize the
expected number of states that are correctly predicted, then foreachk =1,...,n
we need to compute P{X} = j|S” = s,,} and then let the value of j that maximizes
this quantity be the predictor of Xj. (That is, we take the mode of the conditional
probability mass function of X, given the sequence of signals, as the predictor of
X4.) To do so, we must first compute this conditional probability mass function,
which is accomplished as follows. For k < n,

P{§" =s,, X, =7}
P{§" =s,,}

_ BB
S Fe(DBL())

P{Xp =jIS" = su} =
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Thus, given that S” =s,,, the optimal predictor of X}, is the value of j that maxi-
mizes Fy () Bx())-

A different variant of the prediction problem arises when we regard the
sequence of states as a single entity. In this situation, our objective is to choose
that sequence of states whose conditional probability, given the sequence of sig-
nals, is maximal. For instance, in signal processing, while X1, ..., X,, might be
the actual message sent, S1, . .., S, would be what is received, and so the objective
would be to predict the actual message in its entirety.

Letting X, = (X1,...,X}) be the vector of the first k states, the problem
of interest is to find the sequence of states iy, ...,i, that maximizes P{X, =
(i1, ...,12)|S" = s, }. Because

P{Xn = (ila""in)asn = sn}

P{Xy = (i1, ..,in)|S" = s,} = P{S" = s}

this is equivalent to finding the sequence of states 71, . . . , i, that maximizes P{X,, =
(115 .. 50n)y S = sn}.
To solve the preceding problem let, for k < 7,

Vi() = max P{Xg_q = (i1, . »ig_1), Xp = j» S* = s}

Hyeolp—1
To recursively solve for Vi (j), use that
V() = max max P{Xpy = (i1, ik-2), Xkt =6 X =585 = 5t
1seesle—2

. . . ob—1
=max max P{Xp_ o =(i1,...,0-2),Xp_1 =56,8" =sp_1,
L el

X =7,8p = sp}
=max max P(Xgy = (i1, ik-2), Xpo1 = 58 = 51}
Toeoslh—2

X P(Xp = 7,8k = k| Xp—g = (i1 - -5 ip_2)s Xpeq = 1K1 = 51}

- - - k-1
=max max P{Xp_p = (i1, 2), Xp_1 =, 8" =84}
i iyl

X P{Xp = 7,8 = sp|Xp—1 =i}
=max P{X, =7,S, = sp|Xp_1 =1}
1

, , - k-1
x max P{Xp_,=(@1,...,00-2), Xp1=156,5"" =81}
yeensif2

= max Piip(splj) Vi—1 (D)
= p(self) max PijVi_1(1) (4.37)
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Starting with

Vi() = P{X1 =/,81 =s1} = p;p(s1l))

we now use the recursive identity (4.37) to determine V;(j) for each j; then V3(j)
for each j; and so on, up to V,(j) for each .

To obtain the maximizing sequence of states, we work in the reverse direction.
Let j,, be the value (or any of the values if there are more than one) of j that
maximizes V,(j). Thus j, is the final state of a maximizing state sequence. Also,
for k < n, let i (j) be a value of i that maximizes P;;jVj(i). Then

max P{Xn = (il, - ,in),sn = Sn}
U 5eeesln

= max Vy(j)
j

== . maX P{XVI - (117 -51.717],].71),8” - si’l}
seeesln—1

= P(5n|/n) m;{lX Pi,j,, V1)
= pGulin)Pi, 1 (ip)ju Vii—1Gn=1(n))

Thus, i,_1(j,) is the next to last state of the maximizing sequence. Continuing
in this manner, the second from the last state of the maximizing sequence is
in—2(in—1(jn)), and so on.

The preceding approach to finding the most likely sequence of states given a
prescribed sequence of signals is known as the Viterbi Algorithm.

Exercises

*1.

Three white and three black balls are distributed in two urns in such a way that
each contains three balls. We say that the system is in state i, = 0, 1,2, 3, if the first
urn contains 7 white balls. At each step, we draw one ball from each urn and place
the ball drawn from the first urn into the second, and conversely with the ball from
the second urn. Let X, denote the state of the system after the nth step. Explain
why {X;;,n =0,1,2,...} is a Markov chain and calculate its transition probability
matrix.

Suppose that whether or not it rains today depends on previous weather conditions
through the last three days. Show how this system may be analyzed by using a
Markov chain. How many states are needed?

In Exercise 2, suppose that if it has rained for the past three days, then it will rain
today with probability 0.8; if it did not rain for any of the past three days, then it
will rain today with probability 0.2; and in any other case the weather today will,
with probability 0.6, be the same as the weather yesterday. Determine P for this
Markov chain.
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10.

11.

Consider a process {X,,n = 0, 1,...}, which takes on the values 0, 1, or 2. Suppose

PiXpt1 = j1Xn = 6, X1 = in-1, ..., Xo = io}
1

Pl

Pl

i

when 7 is even

when 7 is odd

where Z,'Z:O P}/- = Z;‘Z:OP},I =1,i=0,1,2.1s {X,,,n > 0} a Markov chain? If not,
then show how, by enlarging the state space, we may transform it into a Markov
chain.

A Markov chain {X,,,# > 0} with states 0, 1, 2, has the transition probability matrix

Nm O M=
O W= W=
BOl—= WIS O\

If P{Xo = 0} = P{Xo = 1} = }, find E[X3].

Let the transition probability matrix of a two-state Markov chain be given, as in
Example 4.2, by

=
H

Show by mathematical induction that

P™ —

s+3@p-1" F-3@p-1)"
5@ -D" S+ 5Qp-D”

In Example 4.4 suppose that it has rained neither yesterday nor the day before
yesterday. What is the probability that it will rain tomorrow?

Suppose that coin 1 has probability 0.7 of coming up heads, and coin 2 has prob-
ability 0.6 of coming up heads. If the coin flipped today comes up heads, then we
select coin 1 to flip tomorrow, and if it comes up tails, then we select coin 2 to flip
tomorrow. If the coin initially flipped is equally likely to be coin 1 or coin 2, then
what is the probability that the coin flipped on the third day after the initial flip
is coin 1? Suppose that the coin flipped on Monday comes up heads. What is the
probability that the coin flipped on Friday of the same week also comes up heads?

If in Example 4.10 we had defined X, to equal 1 if the nth selection were red and
to equal 0 if it were blue, would X,,,7# > 1 be a Markov chain?

In Example 4.3, Gary is currently in a cheerful mood. What is the probability that
he is not in a glum mood on any of the following three days?

In Example 4.3, Gary was in a glum mood four days ago. Given that he hasn’t felt
cheerful in a week, what is the probability he is feeling glum today?
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12.

13.

14.

15.

*16.

17.

For a Markov chain {X,,,# > 0} with transition probabilities P;;, consider the
conditional probability that X;,, = m given that the chain started at time 0 in state
i and has not yet entered state r by time 7, where 7 is a specified state not equal
to either 7 or m. We are interested in whether this conditional probability is equal
to the 7 stage transition probability of a Markov chain whose state space does not
include state r and whose transition probabilities are

Qij= 7, iy
1,] l_Pi’r’ bl

Either prove the equality

P(Xy=mlXo=0i,Xp #r,k=1,...,n} = Ql,,
or construct a counterexample.

Let P be the transition probability matrix of a Markov chain. Argue that if for some
positive integer 7, P” has all positive entries, then so does P”, for all integers 7 > .

Specify the classes of the following Markov chains, and determine whether they are
transient or recurrent:

Lo 0 0 0 1
o L1 1
LS 0 0 0 1
Pr=lz 0 3 =11 1 o of
1 1 22
22 0 0 1 0
;7 0 3 0 o0 i 3 0 0 0
2 2 T 7
1 1 1
i 2 3z 00 i 3 0 0 0
P3=7 0 3 o0 of, P4=0 0 1 0 0
o o o 1 1} o 0o 1+ %2 o
o o o 1 1} 1 0 0 0 0

Prove that if the number of states in a Markov chain is M, and if state j can be
reached from state 7, then it can be reached in M steps or less.

Show that if state i is recurrent and state i does not communicate with state j,
then P;; = 0. This implies that once a process enters a recurrent class of states it
can never leave that class. For this reason, a recurrent class is often referred to as a
closed class.

For the random walk of Example 4.18 use the strong law of large numbers to give
another proof that the Markov chain is transient when p # %

Hint: Note that the state at time # can be written as ) i ; Y; where the Y;s are
independent and P{Y; = 1} = p = 1 — P{Y; = —1}. Argue thatif p > %, then, by
the strong law of large numbers, Y ] Y; — 0o as # — oo and hence the initial state
0 can be visited only finitely often, and hence must be transient. A similar argument
holds when p < %
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18.

19.
20.

*21.

22.

23.

24.

Coin 1 comes up heads with probability 0.6 and coin 2 with probability 0.5. A coin

is continually flipped until it comes up tails, at which time that coin is put aside and

we start flipping the other one.

(a) What proportion of flips use coin 1?

(b) If we start the process with coin 1 what is the probability that coin 2 is used
on the fifth flip?

For Example 4.4, calculate the proportion of days that it rains.

A transition probability matrix P is said to be doubly stochastic if the sum over
each column equals one; that is,

ZPZ-,- =1, forallj
i

If such a chain is irreducible and aperiodic and consists of M + 1 states 0,1, ..., M,
show that the limiting probabilities are given by

A DNA nucleotide has any of four values. A standard model for a mutational
change of the nucleotide at a specific location is a Markov chain model that
supposes that in going from period to period the nucleotide does not change with
probability 1 — 3«, and if it does change then it is equally likely to change to any

of the other three values, for some 0 < o < %

(a) Show that P} = % + %(1 — 4oy,
(b) What is the long-run proportion of time the chain is in each state?

Let Y, be the sum of # independent rolls of a fair die. Find

lim P{Y, is a multiple of 13}
n— o0

Hint: Define an appropriate Markov chain and apply the results of Exercise 20.

In a good weather year the number of storms is Poisson distributed with mean 1; in

a bad year it is Poisson distributed with mean 3. Suppose that any year’s weather

conditions depends on past years only through the previous year’s condition. Sup-

pose that a good year is equally likely to be followed by either a good or a bad year,

and that a bad year is twice as likely to be followed by a bad year as by a good

year. Suppose that last year—call it year 0—was a good year.

(a) Find the expected total number of storms in the next two years (that is, in
years 1 and 2).

(b) Find the probability there are no storms in year 3.

(c) Find the long-run average number of storms per year.

Consider three urns, one colored red, one white, and one blue. The red urn contains
1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls, and 2 blue
balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls. At the initial
stage, a ball is randomly selected from the red urn and then returned to that urn.
At every subsequent stage, a ball is randomly selected from the urn whose color is
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25.

26.

28.

29.

30.

31.

the same as that of the ball previously selected and is then returned to that urn. In
the long run, what proportion of the selected balls are red? What proportion are
white? What proportion are blue?

Each morning an individual leaves his house and goes for a run. He is equally likely
to leave either from his front or back door. Upon leaving the house, he chooses a
pair of running shoes (or goes running barefoot if there are no shoes at the door
from which he departed). On his return he is equally likely to enter, and leave his
running shoes, either by the front or back door. If he owns a total of k pairs of
running shoes, what proportion of the time does he run barefooted?

Consider the following approach to shuffling a deck of 7 cards. Starting with any
initial ordering of the cards, one of the numbers 1,2,...,#7 is randomly chosen in
such a manner that each one is equally likely to be selected. If number 7 is chosen,
then we take the card that is in position 7 and put it on top of the deck—that is,
we put that card in position 1. We then repeatedly perform the same operation.
Show that, in the limit, the deck is perfectly shuffled in the sense that the resultant
ordering is equally likely to be any of the 7! possible orderings.

Each individual in a population of size N is, in each period, either active or inactive.
If an individual is active in a period then, independent of all else, that individual
will be active in the next period with probability «. Similarly, if an individual is
inactive in a period then, independent of all else, that individual will be inactive in
the next period with probability 8. Let X, denote the number of individuals that
are active in period 7.

(a) Argue that X,,,n > 0 is a Markov chain.

(b) Find E[X,|Xo = i.

(c) Derive an expression for its transition probabilities.

(d) Find the long-run proportion of time that exactly j people are active.

Hint for (d): Consider first the case where N = 1.

Every time that the team wins a game, it wins its next game with probability 0.8;
every time it loses a game, it wins its next game with probability 0.3. If the team
wins a game, then it has dinner together with probability 0.7, whereas if the team
loses then it has dinner together with probability 0.2. What proportion of games
result in a team dinner?

An organization has N employees where N is a large number. Each employee has
one of three possible job classifications and changes classifications (independently)
according to a Markov chain with transition probabilities

0.7 02 01
02 06 02
0.1 04 0S5

What percentage of employees are in each classification?

Three out of every four trucks on the road are followed by a car, while only one
out of every five cars is followed by a truck. What fraction of vehicles on the road
are trucks?

A certain town never has two sunny days in a row. Each day is classified as being
either sunny, cloudy (but dry), or rainy. If it is sunny one day, then it is equally
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*32.

33.

34.

35.

36.

likely to be either cloudy or rainy the next day. If it is rainy or cloudy one day, then
there is one chance in two that it will be the same the next day, and if it changes
then it is equally likely to be either of the other two possibilities. In the long run,
what proportion of days are sunny? What proportion are cloudy?

Each of two switches is either on or off during a day. On day #, each switch will
independently be on with probability

[1 + number of on switches during day # — 1]/4

For instance, if both switches are on during day 7 — 1, then each will independently
be on during day »# with probability 3/4. What fraction of days are both switches
on? What fraction are both off?

A professor continually gives exams to her students. She can give three possi-
ble types of exams, and her class is graded as either having done well or badly.
Let p; denote the probability that the class does well on a type i exam, and sup-
pose that p; = 0.3, p» = 0.6, and p3 = 0.9. If the class does well on an exam,
then the next exam is equally likely to be any of the three types. If the class does
badly, then the next exam is always type 1. What proportion of exams are type
i,i=1,2,3?

A flea moves around the vertices of a triangle in the following manner: Whenever
it is at vertex 7 it moves to its clockwise neighbor vertex with probability p; and to
the counterclockwise neighbor with probability ¢; =1 —p;,i =1,2,3.

(a) Find the proportion of time that the flea is at each of the vertices.

(b) How often does the flea make a counterclockwise move that is then followed

by five consecutive clockwise moves?

Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose Pg 4 = 1; and suppose
that when the chain is in state 7,7 > 0, the next state is equally likely to be any of
the states 0, 1,...,7 — 1. Find the limiting probabilities of this Markov chain.

The state of a process changes daily according to a two-state Markov chain. If the
process is in state 7 during one day, then it is in state j the following day with prob-
ability P; ;, where

Poo =04, Poy=0.6, Pip=02, Pi3=08

Every day a message is sent. If the state of the Markov chain that day is i then

the message sent is “good” with probability p; and is “bad” with probability

qj:l_Pi,iZOal

(a) If the process is in state 0 on Monday, what is the probability that a good
message is sent on Tuesday?

(b) If the process is in state 0 on Monday, what is the probability that a good
message is sent on Friday?

(c) In the long run, what proportion of messages are good?

(d) Let Y, equal 1 if a good message is sent on day # and let it equal 2 otherwise.
Is {Y,,n > 1} a Markov chain? If so, give its transition probability matrix. If
not, briefly explain why not.
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37.

38.

39.

40.

42.

Show that the stationary probabilities for the Markov chain having transition prob-
abilities P;; are also the stationary probabilities for the Markov chain whose tran-
sition probabilities Q; ; are given by

__ pk
Qij = Pi,/’

for any specified positive integer k.

Recall that state i is said to be positive recurrent if 7;; < oo, where m;; is the
expected number of transitions until the Markov chain, starting in state i, makes
a transition back into that state. Because 7, the long-run proportion of time the
Markov chain, starting in state 7, spends in state 7, satisfies

1

it follows that state 7 is positive recurrent if and only if 7; > 0. Suppose that state i
is positive recurrent and that state i communicates with state j. Show that state j is
also positive recurrent by arguing that there is an integer 7 such that

. pn
2> n,Pl-,/ >0

Recall that a recurrent state that is not positive recurrent is called null recurrent.
Use the result of Exercise 38 to prove that null recurrence is a class property. That
is, if state i is null recurrent and state i communicates with state j, show that state
j is also null recurrent.

It follows from the argument made in Exercise 38 that state 7 is null recurrent if it

is recurrent and 7; = 0. Consider the one-dimensional symmetric random walk of

Example 4.18.

(a) Argue that 7; = g for all i.

(b) Argue that all states are null recurrent.

Let 7; denote the long-run proportion of time a given irreducible Markov chain is

in state i.

(a) Explain why 7; is also the proportion of transitions that are into state i as well
as being the proportion of transitions that are from state i.

(b) m;Pj; represents the proportion of transitions that satisfy what property?

(c) >_;m;Pjj represent the proportion of transitions that satisfy what property?

(d) Using the preceding explain why

T = Z ;P
i

Let A be a set of states, and let A€ be the remaining states.
(a) What is the interpretation of

0> mPy?

i€A jeAc
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(b) What is the interpretation of

pIDIRTE
i€Ac jeA
(c) Explain the identity
YIDIRTIED 22017
i€A jeAc icAc jeA
43. Each day, one of n possible elements is requested, the ith one with probability

P;,i 2 1,5 {P; = 1. These elements are at all times arranged in an ordered list that

is revised as follows: The element selected is moved to the front of the list with the

relative positions of all the other elements remaining unchanged. Define the state
at any time to be the list ordering at that time and note that there are n! possible
states.

(a) Argue that the preceding is a Markov chain.

(b) For any state i1, ...,#, (which is a permutation of 1,2,...,n), let n(i1,. .., i)
denote the limiting probability. In order for the state to be iy,...,7,, it is
necessary for the last request to be for 71, the last non-iy request for iy, the last
non-ij or 7 request for i3, and so on. Hence, it appears intuitive that

: , P; P; Pi,
o = P: 2 3 . n—1
7(i1y ... in) = Py 1-P,1-P,—P, 1—P, ——P,,
Verify when # = 3 that the preceding are indeed the limiting probabilities.
44. Suppose that a population consists of a fixed number, say, m, of genes in any
generation. Each gene is one of two possible genetic types. If exactly i (of the )

genes of any generation are of type 1, then the next generation will have j type 1

(and m — j type 2) genes with probability

m\ (i\ (m—i\"T
DIBICe -
] m m

Let X,, denote the number of type 1 genes in the nth generation, and assume

that Xy = 7.

(a) Find E[X,,].

(b) What is the probability that eventually all the genes will be type 12

45. Consider an irreducible finite Markov chain with states 0,1, ..., N.

(a) Starting in state 7, what is the probability the process will ever visit state j?
Explain!

(b) Letx; = P{visit state N before state O|start in i}. Compute a set of linear equa-
tions that the x; satisfy, i = 0,1,...,N.

(c) If 2P =i fori = 1,...,N — 1, show that x; = i/N is a solution to the
equations in part (b).
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46.

*47.

48.

49.

50.

An individual possesses r umbrellas that he employs in going from his home to office,
and vice versa. If he is at home (the office) at the beginning (end) of a day and it is
raining, then he will take an umbrella with him to the office (home), provided there
is one to be taken. If it is not raining, then he never takes an umbrella. Assume that,
independent of the past, it rains at the beginning (end) of a day with probability p.
(a) Define a Markov chain with 7 + 1 states, which will help us to determine the
proportion of time that our man gets wet. (Note: He gets wet if it is raining,
and all umbrellas are at his other location.)
(b) Show that the limiting probabilities are given by

zq, ifi=0
r
T = whereg=1-p
. ifi=1,...,r
r+qg

(c) What fraction of time does our man get wet?
(d) When r = 3, what value of p maximizes the fraction of time he gets wet

Let {X,;,n > 0} denote an ergodic Markov chain with limiting probabilities 7;.
Define the process {Y,,n > 1} by Y,, = (X,,_1, X;,). That is, Y, keeps track of the
last two states of the original chain. Is {Y,, 7 > 1} a Markov chain? If so, determine
its transition probabilities and find

Jim PY, = i,))

Consider a Markov chain in steady state. Say that a k length run of zeroes ends at
time m if

Xin—b-1#0, Xpp= Xnbr1 = =Xm—1= 0, Xm #0

Show that the probability of this event is g (Po’o)k_l(l — Po,0)%, where 7 is the
limiting probability of state 0.

Let P and P@ denote transition probability matrices for ergodic Markov chains
having the same state space. Let 7! and 72 denote the stationary (limiting) proba-
bility vectors for the two chains. Consider a process defined as follows:

(a) Xo = 1. A coin is then flipped and if it comes up heads, then the remain-
ing states X1,... are obtained from the transition probability matrix PM
and if tails from the matrix P®. Is {X,,,#n > 0} a Markov chain? If p =
P{coin comes up heads}, what is lim;,—, oo P(X;, = i)?

(b) Xo = 1. At each stage the coin is flipped and if it comes up heads, then the
next state is chosen according to P and if tails comes up, then it is chosen
according to P@. In this case do the successive states constitute a Markov
chain? If so, determine the transition probabilities. Show by a counterexample
that the limiting probabilities are not the same as in part (a).

In Exercise 8, if today’s flip lands heads, what is the expected number of additional
flips needed until the pattern ¢,¢, h, t, h,t,t occurs?



284

Markov Chains

51.

52.

53.

54.

55.

S6.

57.

In Example 4.3, Gary is in a cheerful mood today. Find the expected number of
days until he has been glum for three consecutive days.

A taxi driver provides service in two zones of a city. Fares picked up in zone A will
have destinations in zone A with probability 0.6 or in zone B with probability 0.4.
Fares picked up in zone B will have destinations in zone A with probability 0.3 or
in zone B with probability 0.7. The driver’s expected profit for a trip entirely in
zone A is 6; for a trip entirely in zone B is 8; and for a trip that involves both zones
is 12. Find the taxi driver’s average profit per trip.

Find the average premium received per policyholder of the insurance company of
Example 4.27 if . = 1/4 for one-third of its clients, and A = 1/2 for two-thirds of
its clients.

Consider the Ehrenfest urn model in which M molecules are distributed between
two urns, and at each time point one of the molecules is chosen at random
and is then removed from its urn and placed in the other one. Let X,, denote
the number of molecules in urn 1 after the nth switch and let u, = E[X,].
Show that

(@) put1 =1+ 1 —=2/M)py.

(b) Use (a) to prove that

M M —2\" M
MUn = ?"‘ (T) <E[XO]_7)

Consider a population of individuals each of whom possesses two genes that can be
either type A or type a. Suppose that in outward appearance type A is dominant and
type a is recessive. (That is, an individual will have only the outward characteristics
of the recessive gene if its pair is aa.) Suppose that the population has stabilized,
and the percentages of individuals having respective gene pairs AA, aa, and Aa are
P, q, and r. Call an individual dominant or recessive depending on the outward
characteristics it exhibits. Let S11 denote the probability that an offspring of two
dominant parents will be recessive; and let S1¢ denote the probability that the
offspring of one dominant and one recessive parent will be recessive. Compute S11
and S1o to show that S1; = S%O. (The quantities S19 and S11 are known in the
genetics literature as Snyder’s ratios.)

Suppose that on each play of the game a gambler either wins 1 with probability p
or loses 1 with probability 1 — p. The gambler continues betting until she or he is
either up 7 or down m. What is the probability that the gambler quits a winner?

A particle moves among # + 1 vertices that are situated on a circle in the following
manner. At each step it moves one step either in the clockwise direction with prob-
ability p or the counterclockwise direction with probability ¢ = 1 — p. Starting at
a specified state, call it state 0, let T be the time of the first return to state 0. Find
the probability that all states have been visited by time T.

Hint: Condition on the initial transition and then use results from the gambler’s
ruin problem.
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58. In the gambler’s ruin problem of Section 4.5.1, suppose the gambler’s fortune is
presently 7, and suppose that we know that the gambler’s fortune will eventually
reach N (before it goes to 0). Given this information, show that the probability he
wins the next gamble is

pll —(q/p)*1 .
im0 TP*3

i1 ,
2 ifp=3

Hint: The probability we want is

P{Xyi1 =i+ 11X, =i, lim X,, = N}
m— 00

_ P{Xpq1 =i+ 1,limy, X, = N|X, = i}
B P{lim,, X, = N|X,, = i}

59. For the gambler’s ruin model of Section 4.5.1, let M; denote the mean number of
games that must be played until the gambler either goes broke or reaches a fortune
of N, given that he starts with 7,i = 0,1, ..., N. Show that M; satisfies

My=Mn=0; M;=14+pMjy1 +gM;—1, i=1,...,N—-1

60. Solve the equations given in Exercise 59 to obtain

M; = i(N — i), if p=

i N 1-(q/p) "

= _ ) 1
g-p q-pl—(q/p)N

[N

#

=
[N

61. Suppose in the gambler’s ruin problem that the probability of winning a bet depends
on the gambler’s present fortune. Specifically, suppose that «; is the probability that
the gambler wins a bet when his or her fortune is i. Given that the gambler’s initial
fortune is 7, let P(i) denote the probability that the gambler’s fortune reaches N
before 0.

(a) Derive a formula that relates P(i) to P(: — 1) and P(i + 1).

(b) Using the same approach as in the gambler’s ruin problem, solve the equation
of part (a) for P(i).

(c) Suppose that i balls are initially in urn 1 and N — i are in urn 2, and suppose
that at each stage one of the N balls is randomly chosen, taken from whichever
urn it is in, and placed in the other urn. Find the probability that the first urn
becomes empty before the second.

*62. Consider the particle from Exercise 57. What is the expected number of steps the
particle takes to return to the starting position? What is the probability that all
other positions are visited before the particle returns to its starting state?
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63. For the Markov chain with states 1, 2, 3, 4 whose transition probability matrix P
is as specified below find f;3 and s;3 fori = 1,2, 3.

04 0.2 0.1 0.3
P 0.1 0.5 0.2 0.2
~ 103 04 02 0.1

0 0 0 1

64. Consider a branching process having i < 1. Show that if Xy = 1, then the expected
number of individuals that ever exist in this population is given by 1/(1 — ). What
if Xog =n?

65. In a branching process having Xo = 1 and u > 1, prove that 7 is the smallest
positive number satisfying Equation (4.20).

Hint: Let 7 be any solution of 7 = 37, 7/ P;. Show by mathematical induction
that # > P{X,, = 0} for all n, and let # — oc. In using the induction argue that
S .
P{X, =0} =Y (P{X,—1 = O}P;
j=0

66. For a branching process, calculate g when
(a) Po=g,P2=73.

(b) Po=g3,P1=75Pr=3.
() Po=g,P1=3P3=73.

67. At all times, an urn contains N balls—some white balls and some black balls. At
each stage, a coin having probability p,0 < p < 1, of landing heads is flipped. If
heads appears, then a ball is chosen at random from the urn and is replaced by
a white ball; if tails appears, then a ball is chosen from the urn and is replaced
by a black ball. Let X,, denote the number of white balls in the urn after the
nth stage.

(a) Is {X,,n > 0} a Markov chain? If so, explain why.

(b) What are its classes? What are their periods? Are they transient or recurrent?

(c) Compute the transition probabilities P;;.

(d) Let N = 2. Find the proportion of time in each state.

(e) Based on your answer in part (d) and your intuition, guess the answer for the
limiting probability in the general case.

(f) Prove your guess in part (e) either by showing that Equation (4.7) is satisfied
or by using the results of Example 4.35.

(g) If p =1, what is the expected time until there are only white balls in the urn
if initially there are i white and N — i black?

*68. (a) Show that the limiting probabilities of the reversed Markov chain are the same

as for the forward chain by showing that they satisfy the equations
mi= Y mQy
i

(b) Give an intuitive explanation for the result of part (a).
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69.

70.

71.

72.

73.
74.

M balls are initially distributed among 2 urns. At each stage one of the balls is
selected at random, taken from whichever urn it is in, and then placed, at random,
in one of the other M — 1 urns. Consider the Markov chain whose state at any time
is the vector (1, . . ., 1,,,) where 7; denotes the number of balls in urn i. Guess at the
limiting probabilities for this Markov chain and then verify your guess and show
at the same time that the Markov chain is time reversible.

A total of m white and m black balls are distributed among two urns, with each urn

containing m balls. At each stage, a ball is randomly selected from each urn and

the two selected balls are interchanged. Let X, denote the number of black balls in

urn 1 after the nth interchange.

(a) Give the transition probabilities of the Markov chain X,,,n > 0.

(b) Without any computations, what do you think are the limiting probabilities
of this chain?

(c) Find the limiting probabilities and show that the stationary chain is time
reversible.

It follows from Theorem 4.2 that for a time reversible Markov chain
Pi/P//qui = P,'kP/Q/P,‘,‘, for all 4,7,k

It turns out that if the state space is finite and P;; > 0 for all i, , then the preceding
is also a sufficient condition for time reversibility. (That is, in this case, we need
only check Equation (4.26) for paths from 7 to i that have only two intermediate
states.) Prove this.

Hint: Fix 7 and show that the equations
T[/'ij = ”kpkj

are satisfied by ; = cP;;/Pj;, where c is chosen so that >im=1

For a time reversible Markov chain, argue that the rate at which transitions from i
to j to k occur must equal the rate at which transitions from k to j to 7 occur.

Show that the Markov chain of Exercise 31 is time reversible.

A group of n processors is arranged in an ordered list. When a job arrives, the first
processor in line attempts it; if it is unsuccessful, then the next in line tries it; if it too
is unsuccessful, then the next in line tries it, and so on. When the job is successfully
processed or after all processors have been unsuccessful, the job leaves the system.
At this point we are allowed to reorder the processors, and a new job appears.
Suppose that we use the one-closer reordering rule, which moves the processor that
was successful one closer to the front of the line by interchanging its position with
the one in front of it. If all processors were unsuccessful (or if the processor in the
first position was successful), then the ordering remains the same. Suppose that each
time processor i attempts a job then, independently of anything else, it is successful
with probability p;.

(a) Define an appropriate Markov chain to analyze this model.

(b) Show that this Markov chain is time reversible.

(c) Find the long-run probabilities.
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75.

76.

77.

A Markov chain is said to be a tree process if

(i) Pj > 0 whenever Pj; > 0,

(i) for every pair of states 7 and j, i # j, there is a unique sequence of distinct
states i = ig, 1, ...,iy_1,1in = j such that

P >0, k=0,1,...,n—1

ittt
In other words, a Markov chain is a tree process if for every pair of distinct states

i and ;j there is a unique way for the process to go from i to j without reentering

a state (and this path is the reverse of the unique path from j to 7). Argue that an

ergodic tree process is time reversible.

On a chessboard compute the expected number of plays it takes a knight, starting

in one of the four corners of the chessboard, to return to its initial position if we

assume that at each play it is equally likely to choose any of its legal moves. (No

other pieces are on the board.)

Hint: Make use of Example 4.36.

In a Markov decision problem, another criterion often used, different than the
expected average return per unit time, is that of the expected discounted return. In
this criterion we choose a number o, 0 < o < 1, and try to choose a policy so as to
maximize E[Y 50’ R(X;,a,)] (that is, rewards at time # are discounted at rate o”).
Suppose that the initial state is chosen according to the probabilities b;. That is,

P{Xg=i}=b;, i=1,...,n

For a given policy B let y;, denote the expected discounted time that the process
is in state j and action a is chosen. That is,

o0
Yia =Eg | Y " IiX,=ja,=a)
n=0

where for any event A the indicator variable I is defined by

1, if A occurs
Iy = .
0, otherwise

(a) Show that

o0
D va=E|Y 'Iix,—
a n=0

or, in other words, )", vj, is the expected discounted time in state j under 8.
(b) Show that

;;ym - 1—a’
nyﬂ =bj + “Zzympi,'(ﬂ)
a i a
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Hint: For the second equation, use the identity
K= = D 2 A Xstral (X1 =)
i a
Take expectations of the preceding to obtain

IXn+1 I ZZE Xy—isAn=a} Pt/(a)

(c) Let {yjs} be a set of numbers satisfying
S =
- 1—«
Ji a
D Va=bj+a) > yiaPi@ (4.38)
a i a

Argue that y;; can be interpreted as the expected discounted time that the
process is in state j and action a is chosen when the initial state is chosen
according to the probabilities b; and the policy B, given by

Yia
Za Yia

Bi(a) =

is employed.

Hint: Derive a set of equations for the expected discounted times when policy
is used and show that they are equivalent to Equation (4.38).

(d) Argue that an optimal policy with respect to the expected discounted return
criterion can be obtained by first solving the linear program

maximize Z Z viaR(j,a),
i a
such that Z ;yia = ﬁ’
]
Zy,'a =bj + “Z Zyiapij(a),
a i a

yia > 07 all jsa;

and then defining the policy g* by

Yia
Vi

where the y;, are the solutions of the linear program.

B (a) =

78. For the Markov chain of Exercise 5, suppose that p(s|j) is the probability that signal
s is emitted when the underlying Markov chain state is j, j = 0,1, 2.
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(a) What proportion of emissions are signal s?
(b) What proportion of those times in which signal s is emitted is 0 the underlying

state?
79. In Example 4.43, what is the probability that the first 4 items produced are all
acceptable?
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The Exponential
Distribution and the
Poisson Process

P e

5.1 Introduction

In making a mathematical model for a real-world phenomenon it is always
necessary to make certain simplifying assumptions so as to render the mathemat-
ics tractable. On the other hand, however, we cannot make too many simplifying
assumptions, for then our conclusions, obtained from the mathematical model,
would not be applicable to the real-world situation. Thus, in short, we must
make enough simplifying assumptions to enable us to handle the mathematics
but not so many that the mathematical model no longer resembles the real-world
phenomenon. One simplifying assumption that is often made is to assume that
certain random variables are exponentially distributed. The reason for this is that
the exponential distribution is both relatively easy to work with and is often a
good approximation to the actual distribution.

The property of the exponential distribution that makes it easy to analyze is
that it does not deteriorate with time. By this we mean that if the lifetime of an
item is exponentially distributed, then an item that has been in use for ten (or any
number of) hours is as good as a new item in regards to the amount of time
remaining until the item fails. This will be formally defined in Section 5.2 where
it will be shown that the exponential is the only distribution that possesses this
property.

In Section 5.3 we shall study counting processes with an emphasis on a kind
of counting process known as the Poisson process. Among other things we

Introduction to Probability Models, ISBN: 9780123756862
Copyright © 2010 by Elsevier, Inc. All rights reserved.
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shall discover about this process is its intimate connection with the exponential
distribution.

5.2 The Exponential Distribution

5.2.1 Definition

A continuous random variable X is said to have an exponential distribution with
parameter A, A > 0, if its probability density function is given by

re ™, x>0

f(x)Z{O, x<0

or, equivalently, if its cdf is given by

—Ax x>0

H@=/f@@=ﬁ‘e’ 20

The mean of the exponential distribution, E[X], is given by

o0
=/ Axe M dx
0

Integrating by parts (# = x, dv = Le **dx) yields

E[X] = /00 xf (x) dx

00 o0 1
E[X] = —xe_)‘x|0 + / e M dx = :
0

The moment generating function ¢ () of the exponential distribution is given by

¢(t) = E[¢"X]

0
=/ e re ™ dx
0

A
= fort < A (5.1)
A—t
All the moments of X can now be obtained by differentiating Equation (5.1). For
example,

d2
EIX?] = —56()

t=0

2

(=13
2

el

t=0
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Consequently,

Var(X) = E[X2] — (E[X])?

2 1
TR
1

Example 5.1 (Exponential Random Variables and Expected Discounted Returns)
Suppose that you are receiving rewards at randomly changing rates continuously
throughout time. Let R(x) denote the random rate at which you are receiving
rewards at time x. For a value & > 0, called the discount rate, the quantity

R:/ e " R(x) dx
0

represents the total discounted reward. (In certain applications, « is a continu-
ously compounded interest rate, and R is the present value of the infinite flow of
rewards.) Whereas

E[R]:E[ / e_“xR(x)dx]z / e E[R(x)] dx
0 0

is the expected total discounted reward, we will show that it is also equal to the
expected total reward earned up to an exponentially distributed random time
with rate «.

Let T be an exponential random variable with rate « that is independent of all
the random variables R(x). We want to argue that

00 T
/ e “E[R(x)]dx = E[/ R(x) dx}
0 0

To show this define for each x > 0 a random variable I(x) by

1, ifx<T
“”:{Q ifx>T

and note that

T 00
/ R(x)dx = / R(x)I(x) dx
0 0
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Thus,

T 0
E|:/ R(x) dx:| = E|:/ R(x)I(x) dxi|
0 0

_ /O " ER(0)I(x)] dx

_ /0 Y EIRGoJEI ()] dx by independence
_ /o " ERGIP(T > x) dx

_ /O B[R (x)) dx

Therefore, the expected total discounted reward is equal to the expected total
(undiscounted) reward earned by a random time that is exponentially distributed
with a rate equal to the discount factor. [ |

5.2.2 Properties of the Exponential Distribution

A random variable X is said to be without memory, or memoryless, if
PIX>s+1t]|X >t} =P{X>s} foralls,z >0 (5.2)

If we think of X as being the lifetime of some instrument, then Equation (5.2)
states that the probability that the instrument lives for at least s + ¢ hours given
that it has survived ¢ hours is the same as the initial probability that it lives for
at least s hours. In other words, if the instrument is alive at time ¢, then the
distribution of the remaining amount of time that it survives is the same as the
original lifetime distribution; that is, the instrument does not remember that it
has already been in use for a time ¢.
The condition in Equation (5.2) is equivalent to

P{X>s+1t X >t}
P{X >t}

=P{X > s}
or

P{X >s+1) = P{X > s}P{X > #) (5.3)
Since Equation (5.3) is satisfied when X is exponentially distributed (for

e MsHD = g=hsp=A) it follows that exponentially distributed random variables
are memoryless.
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Example 5.2 Suppose that the amount of time one spends in a bank is
exponentially distributed with mean ten minutes, that is, > = %. What is the
probability that a customer will spend more than fifteen minutes in the bank?
What is the probability that a customer will spend more than fifteen minutes in
the bank given that she is still in the bank after ten minutes?

Solution: If X represents the amount of time that the customer spends in the
bank, then the first probability is just

P{X > 15} = e 3% = ¢73/2 2 0.220

The second question asks for the probability that a customer who has spent ten
minutes in the bank will have to spend at least five more minutes. However,
since the exponential distribution does not “remember” that the customer has
already spent ten minutes in the bank, this must equal the probability that an
entering customer spends at least five minutes in the bank. That is, the desired
probability is just

PIX>5}=e*=¢ 12~ 0.604 ]

Example 5.3 Consider a post office that is run by two clerks. Suppose that when
Mr. Smith enters the system he discovers that Mr. Jones is being served by one of
the clerks and Mr. Brown by the other. Suppose also that Mr. Smith is told that
his service will begin as soon as either Jones or Brown leaves. If the amount of
time that a clerk spends with a customer is exponentially distributed with mean
1/, what is the probability that, of the three customers, Mr. Smith is the last to
leave the post office?

Solution: The answer is obtained by this reasoning: Consider the time at which
Mr. Smith first finds a free clerk. At this point either Mr. Jones or Mr. Brown
would have just left and the other one would still be in service. However, by
the lack of memory of the exponential, it follows that the amount of time that
this other man (either Jones or Brown) would still have to spend in the post
office is exponentially distributed with mean 1/A. That is, it is the same as if he
were just starting his service at this point. Hence, by symmetry, the probability
that he finishes before Smith must equal % [ ]

Example 5.4 The dollar amount of damage involved in an automobile accident
is an exponential random variable with mean 1000. Of this, the insurance com-
pany only pays that amount exceeding (the deductible amount of) 400. Find the
expected value and the standard deviation of the amount the insurance company
pays per accident.

Solution: If X is the dollar amount of damage resulting from an accident,
then the amount paid by the insurance company is (X — 400)™, (where a™ is
defined to equal a if > 0 and to equal 0 if @ < 0). Whereas we could certainly
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determine the expected value and variance of (X —400)* from first principles,
it is easier to condition on whether X exceeds 400. So, let

;[ ifX>400
=10, if X <400

Let Y = (X —400)" be the amount paid. By the lack of memory property of the
exponential, it follows that if a damage amount exceeds 400, then the amount
by which it exceeds it is exponential with mean 1000. Therefore,

E[Y|I = 1] = 1000
E[YII=0]=0

Var(Y|I = 1) = (1000)?

Var(Y|I=0)=0

which can be conveniently written as
E[Y|I1=10%I,  Var(Y|]) = 10°]

Because I is a Bernoulli random variable that is equal to 1 with probability
e~ 94 we obtain

E[Y]= E[E[Y|[1] = 10°E[l] = 10°¢™%* ~ 670.32
and, by the conditional variance formula

Var(Y) = E[Var(Y|I)] + Var(E[Y/I])
— 1066_0'4 + 1068_0‘4(1 _ 6—0.4)

where the final equality used that the variance of a Bernoulli random variable
with parameter p is p(1 — p). Consequently,

v Var(Y) ~ 944.09 |

It turns out that not only is the exponential distribution “memoryless,” but it
is the unique distribution possessing this property. To see this, suppose that X is
memoryless and let F(x) = P{X > x}. Then by Equation (5.3) it follows that

F(s 4+ t) = F(s)E(t)
That is, F(x) satisfies the functional equation

gls+1) =g(s)g®)
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However, it turns out that the only right continuous solution of this functional
equation is

Axx

gx)=e"
and since a distribution function is always right continuous we must have
F(x) = e **
or
Fx)=P(X<x}=1—e

which shows that X is exponentially distributed.

Example 5.5 A store must decide how much of a certain commodity to order
so as to meet next month’s demand, where that demand is assumed to have an
exponential distribution with rate A. If the commodity costs the store ¢ per pound,
and can be sold at a price of s > ¢ per pound, how much should be ordered so as
to maximize the store’s expected profit? Assume that any inventory left over at
the end of the month is worthless and that there is no penalty if the store cannot
meet all the demand.

Solution: Let X equal the demand. If the store orders the amount #, then the
profit, call it P, is given by

P =smin(X,t) — ct
Writing

min(X,1) =X - (X —t)*
* This is proven as follows: If g(s + #) = g(s)g(?), then
(2)=<+3) =)
gl )=¢l-+-)=¢(-
n no n n
and repeating this yields g(m/n) = g (1/n). Also,

1 1 1 1 1
g(1) =g(; tott ;) =g"(;) or g(;) = (g

Hence g(m/n) = (g(1))"/", which implies, since g is right continuous, that g(x) = (g(1))*. Since
g(l) = (g(%))2 > 0 we obtain g(x) = e™**, where A = —log(g(1)).
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we obtain, upon conditioning whether X > ¢ and then using the lack of memory
property of the exponential, that

El(X -1 =E(X-H"X>tIP(X > 1) + EX - X <tIP(X < 1)
=E[(X-0tX > tle™
1

= —e_
A

where the final equality used the lack of memory property of exponential ran-
dom variables to conclude that, conditional on X exceeding ¢, the amount by
which it exceeds it is an exponential random variable with rate A. Hence,

At

1 1
E[min(X,t)] = - — —e™ ™
[min(X, )] T 3e
giving that

E[P] = S Sy
A A

Differentiation now yields that the maximal profit is attained when se™! — ¢ =

0; that is, when

t= ! 1
=3 og(s/c)

Now, suppose that all unsold inventory can be returned for the amount r <
min(s, ¢) per pound; and also that there is a penalty cost p per pound of unmet
demand. In this case, using our previously derived expression for E[P], we have

Hmzi—if“—a+£w—xﬁy¢ﬂa_gﬂ
Using that
min(X,t) =t — (¢ —X)T
we see that
4 . 1 1 _,,
E[t—X)"]=t—EminX,t)] =t — T + e
Hence,

S s _ r ro_ p _
E[P1=2-2 At_t ;— — DAt V-t
[P] T )Le ct+r A+Ae )Le

s—r r—s-—
= pef)‘t— (c—nt
A A
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Calculus now yields that the optimal amount to order is

A c—r

It is worth noting that the optimal amount to order increases in s, p, and  and
decreases in A and c. (Are these monotonicity properties intuitive?) [ |

The memoryless property is further illustrated by the failure rate function (also
called the hazard rate function) of the exponential distribution.

Consider a continuous positive random variable X having distribution function
F and density f. The failure (or hazard) rate function r(z) is defined by

4Q)
)= ———
"= T"F0
To interpret 7(¢), suppose that an item, having lifetime X, has survived for ¢ hours,

and we desire the probability that it does not survive for an additional time dt.
That is, consider P{X € (¢t,¢ + dt)|X > t}. Now,

(5.4)

P{X e (t,t +dt),X >t}
P(X > 1}

_ P{X e @t +dt)

- P{X >t}

_ fade

T1-F@)
That is, 7(¢) represents the conditional probability density that a #-year-old item
will fail.

Suppose now that the lifetime distribution is exponential. Then, by the memo-
ryless property, it follows that the distribution of remaining life for a ¢-year-old
item is the same as for a new item. Hence, r(¢) should be constant. This checks
out since

PXe@t,t+dHX >t} =

=r(t)dt

f()
1—-F@®)
)\’e—}»t

e—M

(1) =

Thus, the failure rate function for the exponential distribution is constant. The
parameter A is often referred to as the rate of the distribution. (Note that the rate
is the reciprocal of the mean, and vice versa.)

It turns out that the failure rate function 7(#) uniquely determines the distribu-
tion F. To prove this, we note by Equation (5.4) that

(1)

=1 " Fw
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Integrating both sides yields
t
log(1 — F(t)) = — f r(t) dt + k
0

or
t
1—F@) =¢* exp{—/ (1) dt}
0
Letting ¢ = 0 shows that £ = 0 and thus

t
F®)=1- exp{—/ r(t) dt}
0

The preceding identity can also be used to show that exponential random
variables are the only ones that are memoryless. Because if X is memoryless, then
its failure rate function must be constant. But if 7(#) = ¢, then by the preceding
equation

1—-F@t)=e“

showing that the random variable is exponential.

Example 5.6 Let X1,..., X, be independent exponential random variables with
respective rates A1, ..., Ay, Where ; # A; when i # j. Let T be independent of
these random variables and suppose that

> Pi=1  where P = P(T = j}
j=1

The random variable X7 is said to be a hyperexponential random variable. To
see how such a random variable might originate, imagine that a bin contains 7
different types of batteries, with a type j battery lasting for an exponential dis-
tributed time with rate A;,7 = 1, ..., 7. Suppose further that P; is the proportion
of batteries in the bin that are type j for each j = 1,...,n. If a battery is ran-
domly chosen, in the sense that it is equally likely to be any of the batteries in
the bin, then the lifetime of the battery selected will have the hyperexponential
distribution specified in the preceding.

To obtain the distribution function F of X = X, condition on T. This yields

1—F@) = P{X > t}

= ZP{X > t|T = i}P{T = i}
i=1

n
i=1
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Differentiation of the preceding yields f, the density function of X.

f@) =) 2Pie !

i=1
Consequently, the failure rate function of a hyperexponential random variable is

nopy it
ijlP,)L,e j

H="="—""
7(t) S Pre it

By noting that
P{X > t|T =j}P{T =}
P(X > 1}
P/'ei)”/t
Yy Peht
we see that the failure rate function r(¢) can also be written as

P(T=jIX >t} =

r(t) =Y NPT =X > 1)
j=1

If .1 < A;, foralli > 1, then

Ple—)\lt
Pie=Mt 4+ 30 5 Piehit
= Pl T Z?:z Pief()\t-f)q)t

— 1 ast —> oo

PT=1X >t} =

Similarly, P{T = i|X > t} — 0 when i # 1, thus showing that

lim 7(¢) = min A;
=00 ;

That is, as a randomly chosen battery ages its failure rate converges to the failure
rate of the exponential type having the smallest failure rate, which is intuitive
since the longer the battery lasts, the more likely it is a battery type with the
smallest failure rate. u

5.2.3 Further Properties of the Exponential Distribution

Let X1,...,X, be independent and identically distributed exponential random
variables having mean 1/i. It follows from the results of Example 2.39 that
X1 + -+ 4+ X, hasa gamma distribution with parameters 7z and A. Let us now give
a second verification of this result by using mathematical induction. Because there
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is nothing to prove when n = 1, let us start by assuming that X1 + --- + X1
has density given by

L )2

fX1+"'+Xn,1 (t) = Xe (n— 2)'

Hence,
o
X1t X4+ X, () = /0 1, (& = )fx 44X, (5) ds
-2
= /t re HIZS) e O ds
0 (n—2)!
= re M —(M)nil
n—1)!
which proves the result.
Another useful calculation is to determine the probability that one exponential
random variable is smaller than another. That is, suppose that X; and X, are

independent exponential random variables with respective means 1/11 and 1/A3;
what is P{X1 < X»}? This probability is easily calculated by conditioning on X7:

o0
P{X1 < X3} = / P{X1 < Xo|X1 = x}r1e ¥ dx

0
o0

= / P{x < Xz})»le_)‘lx dx
0
o0

= / e M%) 167 M dx
0

oo
= / )»18_()‘1-“‘2)96 dx
0

ki
Suppose that X1, X, ..., X, are independent exponential random variables, with

X; having rate w;,i = 1,...,n. It turns out that the smallest of the X is exponen-
tial with a rate equal to the sum of the ;. This is shown as follows:

(5.5)

P{minimum(X1,...,X,) > x} = P{X; > x foreachi=1,...,n}

= 1_[ P{X; > x} (by independence)
=1

— H o ix
=1

- {_ (Zu) } (5.6
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Example 5.7 (Analyzing Greedy Algorithms for the Assignment Problem)
A group of n people is to be assigned to a set of 7 jobs, with one person assigned to
each job. For a given set of 7% values Cijyi,j =1,...,n,acost Cj is incurred when
person i is assigned to job j. The classical assignment problem is to determine the
set of assignments that minimizes the sum of the # costs incurred.

Rather than trying to determine the optimal assignment, let us consider two
heuristic algorithms for solving this problem. The first heuristic is as follows.
Assign person 1 to the job that results in the least cost. That is, person 1 is
assigned to job j; where C(1,71) = minimum; C(1,). Now eliminate that job
from consideration and assign person 2 to the job that results in the least cost.
That is, person 2 is assigned to job j, where C(2,/2) = minimum;;, C(2,/). This
procedure is then continued until all 7 persons are assigned. Since this procedure
always selects the best job for the person under consideration, we will call it
Greedy Algorithm A.

The second algorithm, which we call Greedy Algorithm B, is a more “global”
version of the first greedy algorithm. It considers all #% cost values and chooses
the pair i1,j; for which C(i, ) is minimal. It then assigns person #; to job ji. It
then eliminates all cost values involving either person i1 or job ji (so that (z — 1)?
values remain) and continues in the same fashion. That is, at each stage it chooses
the person and job that have the smallest cost among all the unassigned people
and jobs.

Under the assumption that the C;; constitute a set of #? independent exponential
random variables each having mean 1, which of the two algorithms results in a
smaller expected total cost?

Solution: Suppose first that Greedy Algorithm A is employed. Let C; denote
the cost associated with person i, = 1,...,7. Now Cj is the minimum of #
independent exponentials each having rate 1; so by Equation (5.6) it will be
exponential with rate #. Similarly, C; is the minimum of # — 1 independent
exponentials with rate 1, and so is exponential with rate #» — 1. Indeed, by the
same reasoning C; will be exponential with rate n —i + 1, i = 1,...,n. Thus,
the expected total cost under Greedy Algorithm A is

Eaftotal cost] = E[Cy + --- 4+ C,]
n
= 1/i
i=1

Let us now analyze Greedy Algorithm B. Let C; be the cost of the ith person-
job pair assigned by this algorithm. Since C; is the minimum of all the 72
values Cj, it follows from Equation (5.6) that C; is exponential with rate 7?.
Now, it follows from the lack of memory property of the exponential that the
amounts by which the other C;; exceed Cq will be independent exponentials
with rates 1. As a result, C; is equal to Cy plus the minimum of (z — 1)? inde-

pendent exponentials with rate 1. Similarly, Cj is equal to C; plus the minimum
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of (n —2)? independent exponentials with rate 1, and so on. Therefore, we see
that

E[Ci] = 1/#2,
E[Cy] = E[Cq] + 1/(n — 1)%,
E[C3] = E[Cy] + 1/(n —2)?,

EIC/] = E[Ci_1]+ 1/(n —j + 1),

E[C,] = E[Cy1] + 1
Therefore,
E[Cy] = 1/n?,
E[C] = 1/n* +1/(n— 1)?,
E[C3] = 1/n? + 1/(n — 1)* + 1/(n — 2)?,

E[Cyl = 1/* + 1/(n—D* +1/(n—2)* + -~ + 1
Adding up all the E[C;] yields
Egltotal cost] = n/n* + (n—1)/(n—1)*+ (n—2)/(n—2)" + - + 1

=31
i-1 !
The expected cost is thus the same for both greedy algorithms. [ |

Let X1,..., X, be independent exponential random variables, with respective
rates Ai,...,An. A useful result, generalizing Equation (5.5), is that X; is the
smallest of these with probability A;/ }_; A;. This is shown as follows:

P{Xi = minxj] = P[X,» < minX;
j i

Z?:l Aj

where the final equality uses Equation (5.5) along with the fact that min;.; X; is
exponential with rate ) ; A;.

Another important fact is that min; X; and the rank ordering of the X; are
independent. To see why this is true, consider the conditional probability that
Xi, < Xj, < -+ < Xj, given that the minimal value is greater than ¢. Because
min; X; > ¢ means that all the X; are greater than ¢, it follows from the lack



5.2 The Exponential Distribution 305

of memory property of exponential random variables that their remaining lives
beyond ¢ remain independent exponential random variables with their original
rates. Consequently,

P{Xi1 < .- <X,»n|m_inXi > t} ZP{XH — <. <Xin —t|m1nX, >t}
1 1
=P{X; < <X}
which proves the result.

Example 5.8 Suppose you arrive at a post office having two clerks at a moment
when both are busy but there is no one else waiting in line. You will enter service
when either clerk becomes free. If service times for clerk 7 are exponential with
rate Aj,i = 1,2, find E[T], where T is the amount of time that you spend in the
post office.

Solution: Let R; denote the remaining service time of the customer with clerk i,
i = 1,2, and note, by the lack of memory property of exponentials, that R4
and R; are independent exponential random variables with respective rates A1
and A;. Conditioning on which of Ry or R; is the smallest yields

E[T] = E[T|R1 <R2]P{R1 < Rz} + E[T|R; < R1]P{R; < Ry}

A A
L 4 E[TIR; < Ry]—>
M+ A M+ A

= E[T|R1 <R3]

Now, with S denoting your service time
E[T|R1 <Rz] = E[R1 + S|R1 <R3]
= E[R1|R1 < Rz] + E[S|R1 < R:]
1
= E[R1|R1 <R2] + —
M

1 +1
M A A

The final equation used that conditional on R; < Rj the random variable Ry
is the minimum of R1 and R; and is thus exponential with rate A1 + A2; and
also that conditional on R; < R you are served by server 1.

As we can show in a similar fashion that

1 . 1
A+ A %)

E[TIR; < Rq] =

we obtain the result

3

E[T] =
1] M+ A
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Another way to obtain E[T] is to write T as a sum, take expectations, and
then condition where needed. This approach yields

E[T] = E[min(R1,R)) + S]
= E[min(R1, R2)] + E[S]

= + E[S

A+ A2 5]
To compute E[S], we condition on which of Ry and R; is smallest.
M A2
E[S]1=E[S|IR1 <R + E[S|IR; < R
(5] [SIRq Z]Al—i-kz [SIR2 1]A1+A2
2

= |

A+ A

Example 5.9 There are n cells in the body, of which cells 1, .. ., k are target cells.
Associated with each cell is a weight, with w; being the weight associated with
celli,i =1,...,n. The cells are destroyed one at a time in a random order, which
is such that if S is the current set of surviving cells then, independent of the order
in which the cells not in § have been destroyed, the next cell killed is 7, i € S, with
probability w;/ ;s wj. In other words, the probability that a given surviving
cell is the next one to be killed is the weight of that cell divided by the sum of the
weights of all still surviving cells. Let A denote the total number of cells that are
still alive at the moment when all the cells 1,2, ...,k have been killed, and find
E[A].

Solution: Although it would be quite difficult to solve this problem by a direct
combinatorial argument, a nice solution can be obtained by relating the order
in which cells are killed to a ranking of independent exponential random vari-
ables. To do so, let X1, ..., X, be independent exponential random variables,
with X; having rate w;, i = 1,...,n. Note that X; will be the smallest of these
exponentials with probability w;/ }_; wj; further, given that X; is the small-
est, X; will be the next smallest with probability w;/}; .;wj; further, given
that X; and X, are, respectively, the first and second smallest, X;, s # i,7,
will be the third smallest with probability ws/};.; ,wj; and so on. Conse-
quently, if we let I; be the index of the jth smallest of X1,...,X,—so that
X1, < X1, < --+ < X1, —then the order in which the cells are destroyed has
the same distribution as I4,. .., I,. So, let us suppose that the order in which
the cells are killed is determined by the ordering of X1, ..., X,. (Equivalently,
we can suppose that all cells will eventually be killed, with cell 7 being killed at
time X;,i=1,...,n.)

If we let A; equal 1 if cell j is still alive at the moment when all the cells
1,...,k have been killed, and let it equal O otherwise, then

A= Xn:A,-

j=k+1
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Because cell j will be alive at the moment when all the cells 1, ..., k have been
killed if X; is larger than all the values X1, ..., X}, we see that for j > k

E[Aj] =P{A; =1)
= P{X; > Amaxk X}
=1,

o
:/ P[X,- > max X;|X; = x}wie*“’/" dx
0 i k

i=1,...,

oo
= / P{Xj<xforalli=1,...,kwje " dx
0

0o k
= / H(l —e Y wie " dx
0 i

1 k
= [ Tla-y"ay
0 =1

where the final equality follows from the substitution y = ¢7**. Thus, we
obtain the result

n 1 k 1 n k
ElAl= Y /O [Ta—y“"ndy= /O Yo [[a-»ndy m

j=k+1 i=1 j=k+1 i=1

Example 5.10 Suppose that customers are in line to receive service that is pro-
vided sequentially by a server; whenever a service is completed, the next person
in line enters the service facility. However, each waiting customer will only wait
an exponentially distributed time with rate 0; if its service has not yet begun by
this time then it will immediately depart the system. These exponential times,
one for each waiting customer, are independent. In addition, the service times are
independent exponential random variables with rate u. Suppose that someone is
presently being served and consider the person who is nth in line.

(a) Find P,, the probability that this customer is eventually served.
(b) Find W,,, the conditional expected amount of time this person spends waiting in line
given that she is eventually served.

Solution: Consider the # + 1 random variables consisting of the remaining
service time of the person in service along with the 7 additional exponential
departure times with rate 0 of the first # in line.

(a) Given that the smallest of these # + 1 independent exponentials is the
departure time of the nth person in line, the conditional probability that this
person will be served is 0; on the other hand, given that this person’s depar-
ture time is not the smallest, the conditional probability that this person will
be served is the same as if it were initially in position # — 1. Since the proba-
bility that a given departure time is the smallest of the #» + 1 exponentials is
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0/(n® + 1), we obtain

_(n—1)0+uP
a nb +

n n—1

Using the preceding with 7 — 1 replacing # gives

(n—10+u(n—-2)0+u (n—2)0+ pn
P, = P, ,=—2"""p
nm+u @m—10+pu nd +

n—2

Continuing in this fashion yields the result

_ 9+MP M
Tt ' T et

n

(b) To determine an expression for W,,, we use the fact that the minimum of
independent exponentials is, independent of their rank ordering, exponential
with a rate equal to the sum of the rates. Since the time until the nth person
in line enters service is the minimum of these # + 1 random variables plus the
additional time thereafter, we see, upon using the lack of memory property of
exponential random variables, that

W, = + Wn—l
n

Repeating the preceding argument with successively smaller values of 7 yields
the solution

n
1
W, = |
! ;ie—l—,u

5.2.4 Convolutions of Exponential Random Variables

Let X;,i = 1,...,n, be independent exponential random variables with respec-
tive rates A;,i = 1,...,7, and suppose that A; # A; for i # j. The random variable
Y i1 Xi is said to be a hypoexponential random variable. To compute its prob-
ability density function, let us start with the case » = 2. Now,

t
fX1+X2(t) = /0 fX1 (S)sz(t —9) ds
t
:/ Ale_’\lskze_h(t_s) ds
0

t
= Xl)nze_kzt‘/ e~ g
0

= M hae 21 — e_()‘l_)‘”t)
M — A2

A A
= et 22
M — A2 A2 — M

A‘le—)\,lt
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Using the preceding, a similar computation yields, when # = 3,

3
iy Aj
fiexaixs () = ) hie M(H by - x)
j i

i=1 i

which suggests the general result

n
Xyt 4%, =Y Ciphie "
i=1

where

C"”‘Zl_[)v)j)L

We will now prove the preceding formula by induction on n. Since we have
already established it for # = 2, assume it for # and consider #n + 1 arbitrary
independent exponentials X; with distinct rates A;,7 = 1,...,7 + 1. If necessary,
renumber X7 and X1 so that 1,41 < A1. Now,

t
X1 X0 () :/0 Xyt o X () hpre 179 ds

n t

= E Ci,n/ )Ll‘e_)"'s)»m_le_)“”“(t_s) ds
. 0
=1

" A Aot1
= C ( ! A +1ef)hn+lt + n+ )\‘.e)\it>
; = A Mgl — hi

n
= Kyp1hnpre 1t + Z Cinp1hie (5.7)
i—1

where K41 = Y11 Cinhi/(hi — Apt1) is a constant that does not depend on ¢.
But, we also have that

t
fx1+4..+xn+1(t)=‘/0 sz_,_..._,_XnH(S))»le_)‘l(t_s) ds

which implies, by the same argument that resulted in Equation (5.7), that for a
constant K1

n+1

X 4ot X ) = Kire ™! + Z Cipprhie
i=2
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Equating these two expressions for fx, 1...4x,., (t) yields
A1t —ait —hit —Apsit
Kpp1irppre ™ + Crpparie ™ = Kide™ ™ + Gt pp1Angre” "t

Multiplying both sides of the preceding equation by e*#+1? and then letting t — oo
yields [since e=*174#+1) 5 0 as t — 00|

Kn+l = Cn+1,n+l

and this, using Equation (5.7), completes the induction proof. Thus, we have
shown that if $ = " ; X;, then

n
fs(t) = Z Cinhie Mt (5.8)
i=1
where
A
Cip = ]‘[ Ry
j#i

Integrating both sides of the expression for fs from ¢ to oo yields that the tail
distribution function of S is given by

PS>t} =) Ciue ™! (5.9)
i=1

Hence, we obtain from Equations (5.8) and (5.9) that r5(¢), the failure rate func-
tion of S, is as follows:

n —A;
Zizl Ci,n)hie it

rs(t) = :
Z?:l Ci,ne_k’t

If we let A; = min(Aq,...,%,), then it follows, upon multiplying the numerator
and denominator of r5(¢) by e*?, that

lim rg(t) = Aj
t—00

From the preceding, we can conclude that the remaining lifetime of a hypoex-
ponentially distributed item that has survived to age ¢ is, for ¢ large, approxi-
mately that of an exponentially distributed random variable with a rate equal
to the minimum of the rates of the random variables whose sums make up the
hypoexponential.
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Remark Although

00 n n A
=/ fnde =3 =TT

i=1 j£i

it should not be thought that the C; ,,,i = 1,...,n are probabilities, because some
of them will be negative. Thus, while the form of the hypoexponential density
is similar to that of the hyperexponential density (see Example 5.6) these two
random variables are very different.

Example 5.11 Let X4q,...,X,, be independent exponential random variables
with respective rates A1, ..., A, where &; # Aj when i # j. Let N be independent
of these random variables and suppose that > " P, = 1, where P, = P{N = n}.
The random variable

N
Y=Y X;
j=1

is said to be a Coxian random variable. Conditioning on N gives its density
function:

fr® =) fytIN =mP,

n=1

m
=D X4+, (tIN = m)Py

n=1

= X4 4%, (OPy
n=1

Let
r(n) = P{N = n|N > n}

If we interpret N as a lifetime measured in discrete time periods, then 7(72) denotes
the probability that an item will die in its nth period of use given that it has
survived up to that time. Thus, 7(n) is the discrete time analog of the failure rate
function r(¢), and is correspondingly referred to as the discrete time failure (or
hazard) rate function.

Coxian random variables often arise in the following manner. Suppose that
an item must go through m stages of treatment to be cured. However, suppose
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that after each stage there is a probability that the item will quit the program.
If we suppose that the amounts of time that it takes the item to pass through
the successive stages are independent exponential random variables, and that
the probability that an item that has just completed stage # quits the program
is (independent of how long it took to go through the 7 stages) equal to 7(n),
then the total time that an item spends in the program is a Coxian random
variable. [ |

5.3 The Poisson Process

5.3.1 Counting Processes

A stochastic process {N(#),¢ > 0} is said to be a counting process if N(t) rep-
resents the total number of “events” that occur by time #. Some examples of
counting processes are the following:

(a) If we let N(¢) equal the number of persons who enter a particular store at or prior to
time ¢, then {N(#),¢ > 0} is a counting process in which an event corresponds to a
person entering the store. Note that if we had let N(¢) equal the number of persons
in the store at time ¢, then {N(¢#),# > 0} would not be a counting process (why not?).

(b) If we say that an event occurs whenever a child is born, then {N(),# > 0} is a
counting process when N(#) equals the total number of people who were born by
time ¢. (Does N () include persons who have died by time #? Explain why it must.)

(c) If N(2) equals the number of goals that a given soccer player scores by time z, then
{N(),t > 0} is a counting process. An event of this process will occur whenever the
soccer player scores a goal.

From its definition we see that for a counting process N(¢) must satisfy:

(i) N@) = 0.

(i) N(2) is integer valued.

(i) Ifs < ¢, then N(s) < N().
(iv) Fors <t, N(¢) — N(s) equals the number of events that occur in the interval (s, ¢].

A counting process is said to possess independent increments if the numbers
of events that occur in disjoint time intervals are independent. For example, this
means that the number of events that occur by time 10 (that is, N(10)) must be
independent of the number of events that occur between times 10 and 15 (that
is, N(15) — N(10)).

The assumption of independent increments might be reasonable for exam-
ple (a), but it probably would be unreasonable for example (b). The reason for
this is that if in example (b) N(z) is very large, then it is probable that there are
many people alive at time ¢; this would lead us to believe that the number of
new births between time ¢ and time ¢ + s would also tend to be large (that is,
it does not seem reasonable that N(¢) is independent of N(¢ + s) — N(#), and
so {N(z),t > 0} would not have independent increments in example (b)). The
assumption of independent increments in example (c) would be justified if we
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believed that the soccer player’s chances of scoring a goal today do not depend
on “how he’s been going.” It would not be justified if we believed in “hot streaks”
or “slumps.”

A counting process is said to possess stationary increments if the distribution
of the number of events that occur in any interval of time depends only on the
length of the time interval. In other words, the process has stationary incre-
ments if the number of events in the interval (s,s + #) has the same distribution
for all s.

The assumption of stationary increments would only be reasonable in exam-
ple (a) if there were no times of day at which people were more likely to enter
the store. Thus, for instance, if there was a rush hour (say, between 12 p.M. and
1 p.M.) each day, then the stationarity assumption would not be justified. If we
believed that the earth’s population is basically constant (a belief not held at
present by most scientists), then the assumption of stationary increments might
be reasonable in example (b). Stationary increments do not seem to be a reason-
able assumption in example (c) since, for one thing, most people would agree that
the soccer player would probably score more goals while in the age bracket 25-30
than he would while in the age bracket 35-40. It may, however, be reasonable
over a smaller time horizon, such as one year.

5.3.2 Definition of the Poisson Process

One of the most important counting processes is the Poisson process, which is
defined as follows:

Definition 5.1 The counting process {N(¢),¢ > 0} is said to be a Poisson process
having rate A, A > 0, if

(i) N(©) = 0.

(i) The process has independent increments.

(iii) The number of events in any interval of length # is Poisson distributed with mean
At. Thatis, foralls, £ >0

i D)

P{N(t +s)—N(s)=n}=c¢e o

n=0,1,...

Note that it follows from condition (iii) that a Poisson process has stationary
increments and also that

E[N(®)] = At

which explains why A is called the rate of the process.

To determine if an arbitrary counting process is actually a Poisson process,
we must show that conditions (i), (ii), and (iii) are satisfied. Condition (i), which
simply states that the counting of events begins at time # = 0, and condition (ii)
can usually be directly verified from our knowledge of the process. However, it
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is not at all clear how we would determine that condition (iii) is satisfied, and for
this reason an equivalent definition of a Poisson process would be useful.

As a prelude to giving a second definition of a Poisson process we shall define
the concept of a function f(-) being o(h).

Definition 5.2 The function f(-) is said to be o(h) if

i f(h)
m ——-

h—0 h

=0

Example 5.12

(a) The function f(x) = x% is o(h) since

) hr
lim = lim —:1 =
h1—>0 h h—0 h hf})h 0

(b) The function f(x) = x is not o(h) since

) o
}}1—>0 h ;Loh_}%l—%l_l#o

(c) Iff(-)is o(h) and g(-) is o(h), then so is f(-) + g(-). This follows since

i [ W) f) e
h—0 h h—0 h h—0 h

(d) If £(-) is o(h), then so is g(-) = ¢f (-). This follows since

lim@:clim@=6A0=0
h—0 h h

(e) From (c) and (d) it follows that any finite linear combination of functions, each of
which is o(h), is o(h). |

In order for the function f(-) to be o(h) it is necessary that f(h)/h go to zero
as h goes to zero. But if i goes to zero, the only way for f(h)/h to go to zero is
for f(h) to go to zero faster than i does. That is, for & small, f (k) must be small
compared with &.

We are now in a position to give an alternate definition of a Poisson process.

Definition 5.3 The counting process {N(z),¢ > 0} is said to be a Poisson process
having rate A, A > 0, if

) N()=0.

) The process has stationary and independent increments.
) P(N(h) = 1) = Ak + o(h).

) P{N(h) = 2} = o(h).

(1
(i1
(iii
(iv
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Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.

Proof. We show that Definition 5.3 implies Definition 5.1, and leave it to you to
prove the reverse. To start, fix # > 0 and let

g(t) = Elexp{—uN(?)}]
We derive a differential equation for g(¢) as follows:

gt + h) = E[exp{—uN(t + h)}]
= Elexp{—uN(#)} exp{—u(N(t + h) — N(@))}]
= E[exp{—uN(®)}|E[exp{—u(N (¢ + h) — N(2))}]
by independent increments
= g(t) E[exp{—uN(h)}] by stationary increments (5.10)

Now, assumptions (iii) and (iv) imply that
P(N(h) = 0} = 1 — Ak + o(h)
Hence, conditioning on whether N(#) = 0 or N(h) = 1 or N(h) > 2 yields

Elexp{—uN)}] =1 — Ah + o(h) + e *(Ah + o(h)) + o(h)
—1—h 4+ e "Mk + o(h) (5.11)

Therefore, from Equations (5.10) and (5.11) we obtain

gt +h) =g®)(1 — Ah + e “Ah) + o(h)

implying that
SUAEM L0 _ g — 1) + 2P

Letting 7 — 0 gives
g =gtre™ —1)
or, equivalently,

g —u
=1 -1
g@) (e )

Integrating, and using g(0) = 1, shows that

log(g(#)) = rt(e™ — 1)
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t=

<IN T+
x~Ix+

x|~

Figure 5.1

or
g(®) = exp{rt(e™ — 1)}

That is, the Laplace transform of N(¢) evaluated at u is ¢**¢ "~ Since that is
also the Laplace transform of a Poisson random variable with mean Az, the result
follows from the fact that the distribution of a nonnegative random variable is
uniquely determined by its Laplace transform. [ |

Remarks

(i) The result that N(#) has a Poisson distribution is a consequence of the Poisson
approximation to the binomial distribution (see Section 2.2.4). To see this, subdivide
the interval [0,#] into k equal parts where k is very large (Figure 5.1). Now it can
be shown using axiom (iv) of Definition 5.3 that as k increases to co the probability
of having two or more events in any of the k subintervals goes to 0. Hence, N(z)
will (with a probability going to 1) just equal the number of subintervals in which
an event occurs. However, by stationary and independent increments this number
will have a binomial distribution with parameters k and p = At/k + o(¢/k). Hence,
by the Poisson approximation to the binomial we see by letting k approach oo that
N(#) will have a Poisson distribution with mean equal to

, t t\1 _ . to(t/k)
klggok[kﬁ +o (E)] =t kli>n;o t/k

= At

by using the definition of o(h) and the fact that #/k — 0 as k — oo.

(ii) The explicit assumption that the process has stationary increments can be eliminated
from Definition 5.3 provided that we change assumptions (iii) and (iv) to require that
for any ¢ the probability of one event in the interval (¢,# + h) is Ah + o(h) and the
probability of two or more events in that interval is o(h). That is, assumptions (ii),
(iii), and (iv) of Definition 5.3 can be replaced by

The process has independent increments.
P{N(t + h) — N(@) = 1} = Ah + o(h).
P{N(t + h) — N(t) > 2} = o(h).

5.3.3 Interarrival and Waiting Time Distributions

Consider a Poisson process, and let us denote the time of the first event by Tj.
Further, for n > 1, let T,, denote the elapsed time between the (7 — 1)st and the
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nth event. The sequence {T,,,n = 1,2,...} is called the sequence of interarrival
times. For instance, if T = 5 and T, = 10, then the first event of the Poisson
process would have occurred at time 5 and the second at time 135.

We shall now determine the distribution of the T},. To do so, we first note that
the event {T1 > t} takes place if and only if no events of the Poisson process occur
in the interval [0, ¢] and thus,

P{Ty >t} =P(N(@t) =0} =e ™
Hence, T1 has an exponential distribution with mean 1/A. Now,
P{T, > t} = E[P{T, > t|T1}]

However,

P{T, >t | Ty =s} =P{0eventsin (s,s + ¢] | T1 = s}
= P{0 events in (s,s + t]}
=e M (5.12)

where the last two equations followed from independent and stationary incre-
ments. Therefore, from Equation (5.12) we conclude that T is also an exponen-
tial random variable with mean 1/A and, furthermore, that T is independent of
T1. Repeating the same argument yields the following.

Proposition 5.1 T,,n =1,2,..., are independent identically distributed expo-
nential random variables having mean 1/A.

Remark The proposition should not surprise us. The assumption of stationary
and independent increments is basically equivalent to asserting that, at any point
in time, the process probabilistically restarts itself. That is, the process from any
point on is independent of all that has previously occurred (by independent incre-
ments), and also has the same distribution as the original process (by stationary
increments). In other words, the process has no memory, and hence exponential
interarrival times are to be expected.

Another quantity of interest is S,, the arrival time of the nth event, also called
the waiting time until the nth event. It is easily seen that

Sp=Y T, n>1
i=1

and hence from Proposition 5.1 and the results of Section 2.2 it follows that
S, has a gamma distribution with parameters 7 and A. That is, the probability
density of S, is given by

Ly
(n—"1"

fo. () = he (5.13)
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Equation (5.13) may also be derived by noting that the #nth event will occur prior
to or at time ¢ if and only if the number of events occurring by time ¢ is at least 7.
That is,

NH>n & S,<t

Hence,
ad i
Fs, (1) = P(S, < 1) = PIN() > m) = Y e O
; 7!
j=n

which, upon differentiation, yields

_ (m L Y1
fs. (1) = — ZA " +Z i

:)Le_)‘t—(“)n_l + i )Le_)‘t—(“) - — ike_”—(“)/

n—1)! -1 & i
B o ()Lt)n—l
=M o)

Example 5.13 Suppose that people immigrate into a territory at a Poisson rate
A =1 per day.

(a) What is the expected time until the tenth immigrant arrives?
(b) What is the probability that the elapsed time between the tenth and the eleventh
arrival exceeds two days?

Solution:
(a) E[S19] = 10/x = 10 days.
(b) P{T11 > 2} = e = ¢~ 2 ~ 0.133. [ |

Proposition 5.1 also gives us another way of defining a Poisson process. Sup-
pose we start with a sequence {T},,,n > 1} of independent identically distributed
exponential random variables each having mean 1/A. Now let us define a count-
ing process by saying that the nth event of this process occurs at time

Su=Ti+Ta+ - + T,

The resultant counting process {N(z),¢ > 0}* will be Poisson with rate A.

* A formal definition of N(¢) is given by N (¢) = max{n: S,, < #} where Sp = 0.
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Remark Another way of obtaining the density function of S, is to note that
because S, is the time of the nth event,

Pt <S,, <t+h}=P{N@E#) =n—1, oneeventin (¢, + h)} + o(h)
= P{N(t) = n — 1}P{one event in (¢,¢ + h)} + o(h)

n—1
— oM ((21‘1 5 [Ah + o(h)] + o(h)
n—1
= re M ((:ti 1)‘h + o(h)

where the first equality uses the fact that the probability of 2 or more events in
(t,t + h) is o(h). If we now divide both sides of the preceding equation by & and
then let & — 0, we obtain

7)Lt ()\t)nfl

fs, (0 =20

5.3.4 Further Properties of Poisson Processes

Consider a Poisson process {N(¢#),¢ > 0} having rate A, and suppose that each
time an event occurs it is classified as either a type I or a type II event. Suppose
further that each event is classified as a type I event with probability p or a type I
event with probability 1 — p, independently of all other events. For example,
suppose that customers arrive at a store in accordance with a Poisson process
having rate A; and suppose that each arrival is male with probability % and female

with probability % Then a type I event would correspond to a male arrival and
a type Il event to a female arrival.

Let N1(#) and N3 (#) denote respectively the number of type I and type I events
occurring in [0, #]. Note that N(¢) = N1 (#) + Ny (2).

Proposition 5.2 {N;(#),¢# > 0} and {N2(¢),¢ > 0} are both Poisson processes
having respective rates Ap and A(1 — p). Furthermore, the two processes are
independent.

Proof. It is easy to verify that {Ny(¢), # > 0} is a Poisson process with rate Ap by
verifying that it satisfies Definition 5.3.

*  Nj;(0) = 0 follows from the fact that N(0) = 0.

+ Itis easy to see that {N1(¢),¢ > 0} inherits the stationary and independent increment
properties of the process {N(z),¢# > 0}. This is true because the distribution of the
number of type I events in an interval can be obtained by conditioning on the number
of events in that interval, and the distribution of this latter quantity depends only on the
length of the interval and is independent of what has occurred in any nonoverlapping
interval.
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P{Ni(h) = 1} = P{N1(h) = 1| N(h) = 1}P{N(h) = 1}

+ P{Ny(h) = 1| N(h) > 2}P{N(h) > 2}
p(Ah 4+ o(h)) + o(h)

Aph + o(h)

* P{Ni(h) 22} < P{N(h) 2 2} = o(h)

Thus we see that {N1(z), # > 0} is a Poisson process with rate Ap and, by a similar
argument, that {N2(¢),¢ > 0} is a Poisson process with rate A(1 — p). Because
the probability of a type I event in the interval from ¢ to ¢ + & is independent
of all that occurs in intervals that do not overlap (¢,¢ + h), it is independent of
knowledge of when type II events occur, showing that the two Poisson processes
are independent. (For another way of proving independence, see Example 3.23.)

|

Example 5.14 If immigrants to area A arrive at a Poisson rate of ten per week,
and if each immigrant is of English descent with probability %, then what is the
probability that no people of English descent will emigrate to area A during the
month of February?

Solution: By the previous proposition it follows that the number of English-
men emigrating to area A during the month of February is Poisson distributed
with mean 4-10- % = %. Hence, the desired probability is e~ 10/3, ]

Example 5.15 Suppose nonnegative offers to buy an item that you want to sell
arrive according to a Poisson process with rate A. Assume that each offer is the
value of a continuous random variable having density function f(x). Once the
offer is presented to you, you must either accept it or reject it and wait for the next
offer. We suppose that you incur costs at a rate ¢ per unit time until the item is
sold, and that your objective is to maximize your expected total return, where
the total return is equal to the amount received minus the total cost incurred.
Suppose you employ the policy of accepting the first offer that is greater than
some specified value y. (Such a type of policy, which we call a y-policy, can be
shown to be optimal.) What is the best value of y?

Solution: Let us compute the expected total return when you use the y-policy,
and then choose the value of y that maximizes this quantity. Let X denote
the value of a random offer, and let F(x) = P{X > x} = fxoo f (1) du be its tail
distribution function. Because each offer will be greater than y with probability
F(y), it follows that such offers occur according to a Poisson process with rate
AE(y). Hence, the time until an offer is accepted is an exponential random
variable with rate AF(y). Letting R(y) denote the total return from the policy
that accepts the first offer that is greater than y, we have

E[R(y)] = E[accepted offer] — cE[time to accept]
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=/0 xfX|X>y(x) dx — ——

F( )
_/OO f(X) <
y F(y) AE@)
fy xf(x)dx — c/x
a F(y)

Differentiation yields
d = * ¢
S EIRDI =0 & —Fmyf ) + / xf(x)dx — — |f(y) =0
y ) y
Therefore, the optimal value of y satisfies

yP<y>=/ xf(x)d —§
y

or
y/mf(X)dx=/ooxf(x)dx—E
y y A

or

/ (x —Yf(x)dx = % (5.14)
y

We now argue that the left-hand side of the preceding is a nonincreasing func-
tion of y. To do so, note that, with a™ defined to equal a if a > 0 or to equal
0 otherwise, we have

/ (x — V() dx = E[(X — )]
y

Because (X — y)™T is a nonincreasing function of y, so is its expectation, thus
showing that the left hand side of Equation (5.14) is a nonincreasing func-
tion of y. Consequently, if E[X] < ¢/A—in which case there is no solution of
Equation (5.14)—then it is optimal to accept any offer; otherwise, the optimal
value y is the unique solution of Equation (5.14). [ ]

It follows from Proposition 5.2 that if each of a Poisson number of individuals

is independently classified into one of two possible groups with respective proba-
bilities p and 1 — p, then the number of individuals in each of the two groups will
be independent Poisson random variables. Because this result easily generalizes to
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the case where the classification is into any one of 7 possible groups, we have the
following application to a model of employees moving about in an organization.

Example 5.16 Consider a system in which individuals at any time are classified
as being in one of r possible states, and assume that an individual changes states in
accordance with a Markov chain having transition probabilities P, 7,7 = 1,...,7.
That is, if an individual is in state 7 during a time period then, independently of
its previous states, it will be in state j during the next time period with probabil-
ity P;;. The individuals are assumed to move through the system independently
of each other. Suppose that the numbers of people initially in states 1,2, ..., 7 are
independent Poisson random variables with respective means A1, A2,...,A,. We
are interested in determining the joint distribution of the numbers of individuals
in states 1,2,...,7 at some time 7.

Solution: For fixed,let N;(i),j = 1,...,7 denote the number of those individ-
uals, initially in state 7, that are in state j at time #. Now each of the (Poisson dis-
tributed) number of people initially in state i will, independently of each other,
be in state j at time 7 with probability P, where P} is the 7-stage transition
probability for the Markov chain having transition probabilities P;;. Hence, the
N;(),j = 1,...,7 will be independent Poisson random variables with respec-
tive means )\,-PZ,]' =1,...,r. Because the sum of independent Poisson random
variables is itself a Poisson random variable, it follows that the number of indi-
viduals in state j at time #—namely }";_; N;(i)—will be independent Poisson
random variables with respective means ) ; )\,-PZ, forj=1,...,r. [ ]
Example 5.17 (The Coupon Collecting Problem) There are m different types of
coupons. Each time a person collects a coupon it is, independently of ones previ-
ously obtained, a type j coupon with probability p;, >-72; p; = 1. Let N denote
the number of coupons one needs to collect in order to have a complete collection
of at least one of each type. Find E[N].

Solution: If we let N; denote the number one must collect to obtain a type j
coupon, then we can express N as

N = max Nj
1<j<m

However, even though each N; is geometric with parameter p;, the foregoing
representation of N is not that useful, because the random variables N; are not
independent.

We can, however, transform the problem into one of determining the
expected value of the maximum of independent random variables. To do so,
suppose that coupons are collected at times chosen according to a Poisson pro-
cess with rate A = 1. Say that an event of this Poisson process is of type j,
1 < j < m, if the coupon obtained at that time is a type j coupon. If we now let
N;(t) denote the number of type j coupons collected by time ¢, then it follows
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from Proposition 5.2 that {N;(¢),¢ > 0},j = 1,...,m are independent Poisson
processes with respective rates Ap; = p;. Let X; denote the time of the first
event of the jth process, and let

X = max X;
1<j<m

denote the time at which a complete collection is amassed. Since the X; are
independent exponential random variables with respective rates p;, it follows

that

P{X <t} = P{maxlgigm X/‘ <t}
=P{X; <t forj=1,...,m}

=[Ja—-e?"
j=1
Therefore,

E[X] = /OOP{X >t} dt
0

= /00{1 — ]_[(1 — epff)} dt (5.15)
0 .
=1

It remains to relate E[X], the expected time until one has a complete set,
to E[N], the expected number of coupons it takes. This can be done by let-
ting T; denote the ith interarrival time of the Poisson process that counts the
number of coupons obtained. Then it is easy to see that

Since the T; are independent exponentials with rate 1, and N is independent
of the T;, we see that

E[X|N] = NE[T;]] = N

Therefore,

E[X] = E[N]

and so E[N] is as given in Equation (5.15).
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Let us now compute the expected number of types that appear only once in
the complete collection. Letting I; equal 1 if there is only a single type i coupon
in the final set, and letting it equal O otherwise, we thus want

E[Z Ii] = ElI}]
i=1 i=1
=> P =1}
i=1

Now there will be a single type i coupon in the final set if a coupon of each
type has appeared before the second coupon of type 7 is obtained. Thus, letting
S; denote the time at which the second type i coupon is obtained, we have

P{l; = 1} = P{X; < S;, for all j # i}

Using that S; has a gamma distribution with parameters (2, p;), this yields
o
P{l; =1} = / P{X; < §; forallj #i|S; = x)pie P pix dx
0
o
= / P{X; < x, forallj # i}pl-zxe_pix dx
0

o
:/ l—[(l - e_p/x)pl-zxe_pix dx
O i

Therefore, we have the result

E[Z Ii] = / ” DOT]A = e ?*)pixe ™ dx
i=1 0

i=1 j#i

00 m p m ) e_pix
— —pjx
_/(; xl_!(l—e f);p,»l_e_pixdx [ |
= 1=

The next probability calculation related to Poisson processes that we shall
determine is the probability that 7 events occur in one Poisson process before m
events have occurred in a second and independent Poisson process. More formally
let {N1(#),¢ > 0} and {N»(¢),¢ > 0} be two independent Poisson processes having
respective rates A1 and A,. Also, let S}l denote the time of the nth event of the first
process, and S2, the time of the mth event of the second process. We seek

Pis,

n<SiI}
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Before attempting to calculate this for general # and 1, let us consider the
special case n = m = 1. Since S}, the time of the first event of the Ny (¢) process,
and S%, the time of the first event of the N;(#) process, are both exponentially
distributed random variables (by Proposition 5.1) with respective means 1/A4
and 1/A,, it follows from Section 5.2.3 that

A
P{S] < S} = T (5.16)

Let us now consider the probability that two events occur in the Ny (#) process
before a single event has occurred in the N (#) process. That is, P{S% < S%}. To
calculate this we reason as follows: In order for the N1 (¢) process to have two
events before a single event occurs in the N (#) process, it is first necessary for the
initial event that occurs to be an event of the Ny (¢) process (and this occurs, by
Equation (5.16), with probability A1 /(A1 + A2)). Now, given that the initial event
is from the Ny (¢) process, the next thing that must occur for S% to be less than S% is
for the second event also to be an event of the N1 (#) process. However, when the
first event occurs both processes start all over again (by the memoryless property
of Poisson processes) and hence this conditional probability is also A1 /(A1 + 12);
thus, the desired probability is given by

1_ @ Mo
Pis2 < si) = (M +?»2>

In fact, this reasoning shows that each event that occurs is going to be an event
of the N1(t) process with probability A1/(A1 + A3) or an event of the Na(t)
process with probability Ly /(M + A1), independent of all that has previously
occurred. In other words, the probability that the N1 (¢) process reaches # before
the N (¢) process reaches 71 is just the probability that # heads will appear before
m tails if one flips a coin having probability p = A1/(A1 + A2) of a head appearing.
But by noting that this event will occur if and only if the first # 4+ m — 1 tosses
result in 7 or more heads, we see that our desired probability is given by

n+m—1 k n+m—1-—Fk
pist<sz)= 3 (PN (A *2
" " k A+ A M+ A2

k=n

5.3.5 Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken place
by time ¢, and we are asked to determine the distribution of the time at which
the event occurred. Now, since a Poisson process possesses stationary and inde-
pendent increments it seems reasonable that each interval in [0, #] of equal length
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should have the same probability of containing the event. In other words, the
time of the event should be uniformly distributed over [0, #]. This is easily checked
since, for s < ¢,

P{Ty <s,N(t) = 1}
PING®) = 1)

P{T; <s|N(@) =1} =

_ P{1 eventin [0,s),0 events in [s, 7]}

P{N() = 1}
_ P{1 eventin [0, s)}P{0 events in [s, £]}
P{N(#) = 1}
Ase Mg E—s)
- e
s
Tt

This result may be generalized, but before doing so we need to introduce the
concept of order statistics.

Let Y1, Y2,...,Y, be n random variables. We say that Y(1), Y2),..., Y(») are
the order statistics corresponding to Y1, Y2, ..., Y, if Y, is the kth smallest value
among Yq,...,Y,, k = 1,2,...,n. For instance, if n = 3 and Y| = 4, Y, = 5,
Y3 =1then Y4y =1, Yo =4, Y3 =5.If the Y;,i =1,...,n, are independent
identically distributed continuous random variables with probability density f,
then the joint density of the order statistics Y(1, Y(2), ..., Y(u) is given by

n
f()’laJ’2>~~-,yn)=n!l—[f(y,-), VI <Yy <0 <Yy

=1

The preceding follows since

(1) (Yay, Y2),---» Yon) will equal (y1,y2,...,y4) if (Y1, Y2,...,Y,) is equal to any of
the 7! permutations of (y1,y2,...,Vx);

and

(ii) the probability density that (Y1, Y2,...,Y,) is equal to y,,...,y;, is I—[;’Zl fOi) =
]_[;-;1 f(yj) when i1, ..., iy, is a permutation of 1,2,...,7.
If the Y;,i = 1,...,n, are uniformly distributed over (0,#), then we obtain

from the preceding that the joint density function of the order statistics
Y(l), Y(Z), ceey Y(n) is

n!
f(yl,yz,'-~,yn)=t—n, O<yr<yr<---<yn<t

We are now ready for the following useful theorem.
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Theorem 5.2 Given that N(¢) = n, the n arrival times Sq,...,S,, have the same
distribution as the order statistics corresponding to 7 independent random vari-
ables uniformly distributed on the interval (0, z).

Proof. To obtain the conditional density of S1,...,S, given that N(¢) = n note
thatfor0 <s; < --- <s, < ttheeventthatS; =s1,5 =s2,...,8, =s,, N(t) =
n is equivalent to the event that the first # + 1 interarrival times satisfy Ty = s1,
T =52 —s1,...s Ty = Sy — Sy—1, Tyt1 > t — s,. Hence, using Proposition 5.1,
we have that the conditional joint density of S1,..., S, given that N(¢) = n is as
follows:

f(sla- . '9Snsn)
P{N(t) = n}
re M1 e r2=s1) L. ) e M sn—sn—1) p—A(E—sn)

e~ M (At)" /n!

f(s1,0 580 | 1) =

n!

= O<si<--<sy<t

which proves the result. [ |

Remark The preceding result is usually paraphrased as stating that, under the
condition that # events have occurred in (0, t), the times Sy, . . ., S,, at which events
occur, considered as unordered random variables, are distributed independently
and uniformly in the interval (0, ¢).

Application of Theorem 5.2 (Sampling a Poisson Process) In Proposition 5.2
we showed that if each event of a Poisson process is independently classified as
a type I event with probability p and as a type II event with probability 1 — p
then the counting processes of type I and type II events are independent Poisson
processes with respective rates Ap and L(1 —p). Suppose now, how