
Danil Prokhorov (Ed.)

Computational Intelligence in Automotive Applications

Studies in Computational Intelligence, Volume 132

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 111. David Elmakias (Ed.)
New Computational Methods in Power System Reliability,
2008
ISBN 978-3-540-77810-3

Vol. 112. Edgar N. Sanchez, Alma Y. Alanı́s and Alexander
G. Loukianov
Discrete-Time High Order Neural Control: Trained with
Kalman Filtering, 2008
ISBN 978-3-540-78288-9

Vol. 113. Gemma Bel-Enguix, M. Dolores Jimenez-Lopez and
Carlos Mart́ın-Vide (Eds.)
New Developments in Formal Languages and Applications,
2008
ISBN 978-3-540-78290-2

Vol. 114. Christian Blum, Maria José Blesa Aguilera, Andrea
Roli and Michael Sampels (Eds.)
Hybrid Metaheuristics, 2008
ISBN 978-3-540-78294-0

Vol. 115. John Fulcher and Lakhmi C. Jain (Eds.)
Computational Intelligence: A Compendium, 2008
ISBN 978-3-540-78292-6

Vol. 116. Ying Liu, Aixin Sun, Han Tong Loh, Wen Feng Lu
and Ee-Peng Lim (Eds.)
Advances of Computational Intelligence in Industrial
Systems, 2008
ISBN 978-3-540-78296-4

Vol. 117. Da Ruan, Frank Hardeman and Klaas van der Meer
(Eds.)
Intelligent Decision and Policy Making Support Systems,
2008
ISBN 978-3-540-78306-0

Vol. 118. Tsau Young Lin, Ying Xie, Anita Wasilewska
and Churn-Jung Liau (Eds.)
Data Mining: Foundations and Practice, 2008
ISBN 978-3-540-78487-6

Vol. 119. Slawomir Wiak, Andrzej Krawczyk and Ivo Dolezel
(Eds.)
Intelligent Computer Techniques in Applied
Electromagnetics, 2008
ISBN 978-3-540-78489-0

Vol. 120. George A. Tsihrintzis and Lakhmi C. Jain (Eds.)
Multimedia Interactive Services in Intelligent Environments,
2008
ISBN 978-3-540-78491-3

Vol. 121. Nadia Nedjah, Leandro dos Santos Coelho
and Luiza de Macedo Mourelle (Eds.)
Quantum Inspired Intelligent Systems, 2008
ISBN 978-3-540-78531-6

Vol. 122. Tomasz G. Smolinski, Mariofanna G. Milanova
and Aboul-Ella Hassanien (Eds.)
Applications of Computational Intelligence in Biology, 2008
ISBN 978-3-540-78533-0

Vol. 123. Shuichi Iwata, Yukio Ohsawa, Shusaku Tsumoto,
Ning Zhong, Yong Shi and Lorenzo Magnani (Eds.)
Communications and Discoveries from Multidisciplinary
Data, 2008
ISBN 978-3-540-78732-7

Vol. 124. Ricardo Zavala Yoe (Ed.)
Modelling and Control of Dynamical Systems: Numerical
Implementation in a Behavioral Framework, 2008
ISBN 978-3-540-78734-1

Vol. 125. Larry Bull, Bernadó-Mansilla Ester
and John Holmes (Eds.)
Learning Classifier Systems in Data Mining, 2008
ISBN 978-3-540-78978-9

Vol. 126. Oleg Okun and Giorgio Valentini (Eds.)
Supervised and Unsupervised Ensemble Methods
and their Applications, 2008
ISBN 978-3-540-78980-2

Vol. 127. Régie Gras, Einoshin Suzuki, Fabrice Guillet
and Filippo Spagnolo (Eds.)
Statistical Implicative Analysis, 2008
ISBN 978-3-540-78982-6

Vol. 128. Fatos Xhafa and Ajith Abraham (Eds.)
Metaheuristics for Scheduling in Industrial
and Manufacturing Applications, 2008
ISBN 978-3-540-78984-0

Vol. 129. Natalio Krasnogor, Giuseppe Nicosia,
Mario Pavone and David Pelta (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2007), 2008
ISBN 978-3-540-78986-4

Vol. 130. Richi Nayak, N. Ichalkaranje and Lakhmi C. Jain
(Eds.)
Evolution of Web in Artificial Intelligence Environments, 2008
ISBN 978-3-540-79139-3

Vol. 131. Roger Lee and Haeng-Kon Kim (Eds.)
Computer and Information Science, 2008
ISBN 978-3-540-79186-7

Vol. 132. Danil Prokhorov (Ed.)
Computational Intelligence in Automotive Applications, 2008
ISBN 978-3-540-79256-7

Danil Prokhorov
(Ed.)

Computational Intelligence
in Automotive Applications

With 157 Figures and 48 Tables

123

Danil Prokhorov
Toyota Technical Center - A Division
of Toyota Motor Engineering
and Manufacturing (TEMA)
Ann Arbor, MI 48105
USA

dvprokhorov@gmail.com

ISBN 978-3-540-79256-7 e-ISBN 978-3-540-79257-4

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2008925554

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publica-
tion or parts thereof is permitted only under the provisions of the German Copyright Law of September
9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: Deblik, Berlin, Germany

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Computational Intelligence in Automotive Applications

Preface

What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the
fields of neural networks (NN), fuzzy logic and evolutionary computation. Various definitions and opinions
exist, but what belongs to CI is still being debated; see, e.g., [1–3]. More recently there has been a proposal
to define the CI not in terms of the tools but in terms of challenging problems to be solved [4].

With this edited volume I have made an attempt to give a representative sample of contemporary CI
activities in automotive applications to illustrate the state of the art. While CI research and achievements in
some specialized fields described (see, e.g., [5, 6]), this is the first volume of its kind dedicated to automotive
technology. As if reflecting the general lack of consensus on what constitutes the field of CI, this volume
illustrates automotive applications of not only neural and fuzzy computations1 which are considered to be
the “standard” CI topics, but also others, such as decision trees, graphical models, Support Vector Machines
(SVM), multi-agent systems, etc.

This book is neither an introductory text, nor a comprehensive overview of all CI research in this area.
Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth
reading for both professionals and students. When the details appear insufficient, the reader is encouraged
to consult other relevant sources provided by the chapter authors.

The chapter “Learning-based driver workload estimation” discusses research on estimation of driver
cognitive workload and proposes a new methodology to design driver workload estimation systems. The
methodology is based on decision-tree learning. It derives optimized models to assess the time-varying work-
load level from data which include not only measurements from various sensors but also subjective workload
level ratings.

The chapter “Visual monitoring of driver inattention” introduces a prototype computer vision system
for real-time detection of driver fatigue. The system includes an image acquisition module with an infrared
illuminator, pupil detection and tracking module, and algorithms for detecting appropriate visual behaviors
and monitoring six parameters which may characterize the fatigue level of a driver. To increase effectiveness
of monitoring, a fuzzy classifier is implemented to fuse all these parameters into a single gauge of driver
inattentiveness. The system tested on real data from different drivers operates with high accuracy and
robustly at night.

The chapter “Understanding driving activity using ensemble methods” complements the chapter “Visual
monitoring of driver inattention” by discussing whether driver inattention can be detected without eye and
head tracking systems. Instead of limiting themselves to working with just a few signals from preselected
sensors, the authors chose to operate on hundreds of signals reflecting the real-time environment both outside
and inside the vehicle. The discovery of relationships in the data useful for driver activity classification, as

1 Another “standard” CI topic called evolutionary computation (EC) is not represented in this volume in the form
of a separate chapter, although some EC elements are mentioned or referenced throughout the book. Relevant
publications on EC for automotive applications are available (e.g., [7]), but unfortunately were not available as
contributors of this volume.

VIII Preface

well as ranking signals in terms of their importance for classification, is entrusted to an approach called
random forest, which turned out to be more effective than either hidden Markov models or SVM.

The chapter “Computer vision and machine learning for enhancing pedestrian safety” overviews methods
for pedestrian detection, which use information from on-board and infrastructure based-sensors. Many of
the discussed methods are sufficiently generic to be useful for object detection, classification and motion
prediction in general.

The chapter “Application of graphical models in the automotive industry” describes briefly how graphical
models, such as Bayesian and Markov networks, are used at Volkswagen and Daimler. Production planning
at Volkswagen and demand prediction benefit significantly from the graphical model based system developed.
Another data mining system is developed for Daimler to help assessing the quality of vehicles and identifying
causes of troubles when the vehicles have already spent some time in service. It should be noted that other
automotive companies are also pursuing data mining research (see, e.g., [8]).

The chapter “Extraction of maximum support rules for the root cause analysis” discusses extraction of
rules from manufacturing data for root cause analysis and process optimization. An alternative approach to
traditional methods of root cause analysis is proposed. This new approach employs branch-and-bound princi-
ples, and it associates process parameters with results of measurements, which is helpful in the identification
of the main drivers for quality variations of an automotive manufacturing process.

The chapter “Neural networks in automotive applications” provides an overview of neural network tech-
nology, concentrating on three main roles of neural networks: models, virtual or soft sensors and controllers.
Training of NN is also discussed, followed by a simple example illustrating the importance of recurrent NN.

The chapter “On learning machines for engine control” deals with modeling for control of turbocharged
spark ignition engines with variable camshaft timing. Two examples are considered: (1) estimation of the
in-cylinder air mass in which open loop neural estimators are combined with a dynamic polytopic observer,
and (2) modeling an in-cylinder residual gas fraction by a linear programming support vector regression
method. The authors argue that models based on first principles (“white boxes”) and neural or other “black
box” models must be combined and utilized in the “grey box” approach to obtain results which are not just
superior to any alternatives but are also more acceptable to automotive engineers.

The chapter “Recurrent neural networks for AFR estimation and control in spark ignition automotive
engines” complements the chapter “On learning machines for engine control” by discussing specifics of the
air-fuel ratio (AFR) control. Recurrent NN are trained off-line and employed as both the AFR virtual sensor
and the inverse model controller. The authors also provide a comparison with a conventional control strategy
on a real engine.

The chapter “Intelligent vehicle power management: An overview” presents four case studies: a conven-
tional vehicle power controller and three different approaches for a parallel HEV power controller. They
include controllers based on dynamic programming and neural networks, and fuzzy logic controllers, one of
which incorporates predictions of driving environments and driving patterns.

The chapter “Integrated diagnostic process for automotive systems” provides an overview of model-based
and data-driven diagnostic methods applicable to complex systems. Selected methods are applied to three
automotive examples, one of them being a hardware-in-the-loop system, in which the methods are put to
work together to solve diagnostic and prognostic problems. It should be noted that integration of different
approaches is an important theme for automotive research spanning the entire product life cycle (see, e.g.,
[9]).

The chapter “Automotive manufacturing: intelligent resistance welding” introduces a real-time control
system for resistance spot welding. The control system is built on the basis of neural networks and fuzzy
logic. It includes a learning vector quantization NN for assessing the quality of weld nuggets and a fuzzy
logic process controller. Experimental results indicate substantial quality improvement over a conventional
controller.

The chapter “Intelligent control of mobility systems” (ICMS) overviews projects of the ICMS Program
at the National Institute of Standards and Technology (NIST). The program provides architecture, interface
and data standards, performance test methods and infrastructure technology available to the manufacturing
industry and government agencies in developing and applying intelligent control technology to mobility
systems. A common theme among these projects is autonomy and the four dimensional/real-time control

Preface IX

systems (4D/RCS) control architecture for intelligent systems proposed and developed in the NIST Intelligent
Systems Division.

Unlike the book’s index, each chapter has its own bibliography for the convenience of the reader, with
little overlap among references of different chapters.

This volume highlights important challenges facing CI in the automotive domain. Better vehicle diag-
nostics/vehicle system safety, improved control of vehicular systems and manufacturing processes to save
resources and minimize impact on the environment, better driver state monitoring, improved safety of pedes-
trians, making vehicles more intelligent on the road – these are important directions where the CI technology
can and should make the impact. All of these are consistent with the Toyota vision [10]:

Toyota’s vision is to balance “Zeronize” and “Maximize”. “Zeronize” symbolizes the vision and philosophy
of our persistent efforts in minimizing negative aspects vehicles have such as environmental impact, traffic
congestion and traffic accidents, while “Maximize” symbolizes the vision and philosophy of our persistent
efforts in maximizing the positive aspects vehicles have such as fun, delight, excitement and comfort, that
people seek in automobiles.

I am very thankful to all the contributors of this edited volume for their willingness to participate in this
project, their patience and valuable time. I am also grateful to Prof. Janusz Kacprzyk, the Springer Series
Editor, for his encouragement to organize and edit this volume, as well as Thomas Ditzinger, the Springer
production editor for his support of this project.

Ann Arbor-Canton, MI, USA, Danil V. Prokhorov
January 2008

References

1. http://en.wikipedia.org/wiki/Computational intelligence.
2. J.C. Bezdek, “What is computational intelligence?” In Zurada, Marks and Robinson (Eds.), Computational

Intelligence: Imitating Life, pp. 1–12, IEEE Press, New York, 1994.
3. R.J. Marks II, “Intelligence: Computational Versus Artificial,” IEEE Transactions on Neural Networks, 4(5),

737–739, September, 1993.
4. W. Duch, “What is computational intelligence and what could it become?” In W. Duch and J. Mandziuk

(Eds.), Challenges for Computational Intelligence, Vol. 63 of Studies in Computational Intelligence (J.
Kacprzyk Series Editor), Springer, Berlin Heidelberg New York, 2007. The chapter is available on-line at
http://cogprints.org/5358/.

5. Intelligent Control Systems Using Computational Intelligence Techniques (IEE Control Series). Edited by Antonio
Ruano, IEE, 2005.

6. R. Begg, Daniel T.H. Lai, M. Palaniswami. Computational Intelligence in Biomedical Engineering. CRC Press,
Taylor & Francis Books, Boca Raton, Florida, 2007.

7. Marco Laumanns and Nando Laumanns, “Evolutionary Multiobjective Design in Automotive Development,”
Applied Intelligence, 23, 55–70, 2005.

8. T.A. Montgomery, “Text Mining on a Budget: Reduce, Reuse, Recycle,” Michigan Leadership Summit on
Business Intelligence and Advanced Analytics, Troy, MI, March 8, 2007. Presentation is available on-line at
http://www.cmurc.com/bi-PreviousEvents.htm.

9. P. Struss and C. Price, “Model-Based Systems in the Automotive Industry,” AI Magazine, Vol. 24, No. 4,
pp. 17–34, AAAI, Menlo Park, Winter 2003.

10. Toyota ITS vision, http://www.toyota.co.jp/en/tech/its/vision/.

Contents

Learning-Based Driver Workload Estimation
Yilu Zhang, Yuri Owechko, and Jing Zhang . 1
1 Background . 1
2 Existing Practice and Its Challenges . 3
3 The Proposed Approach: Learning-Based DWE . 4

3.1 Learning-Based DWE Design Process . 4
3.2 Benefits of Learning-Based DWE . 5

4 Experimental Data . 6
5 Experimental Process . 8
6 Experimental Results . 10

6.1 Driver-Independent Training . 11
6.2 Driver-Dependent Training . 13
6.3 Feature Combination . 14

7 Conclusions and Future Work . 15
References . 16

Visual Monitoring of Driver Inattention
Luis M. Bergasa, Jesús Nuevo, Miguel A. Sotelo, Rafael Barea, and Elena Lopez 19
1 Introduction . 19
2 Previous Work . 20
3 System Architecture . 21

3.1 Image Acquisition System . 22
3.2 Pupil Detection and Tracking . 24
3.3 Visual Behaviors . 26
3.4 Driver Monitoring . 28

4 Experimental Results . 30
4.1 Test Sequences . 30
4.2 Parameter Measurement for One of the Test Sequences . 30
4.3 Parameter Performance . 31

5 Discussion . 33
6 Conclusions and Future Work . 35
References . 36

XII Contents

Understanding Driving Activity Using Ensemble Methods
Kari Torkkola, Mike Gardner, Chris Schreiner, Keshu Zhang, Bob Leivian, Harry Zhang,
and John Summers . 39
1 Introduction . 39
2 Modeling Naturalistic Driving . 40
3 Database Creation . 41

3.1 Experiment Design . 41
3.2 Annotation of the Database . 42

4 Driving Data Classification . 43
4.1 Decision Trees . 44
4.2 Random Forests . 45
4.3 Random Forests for Driving Maneuver Detection . 46

5 Sensor Selection Using Random Forests . 47
5.1 Sensor Selection Results . 48
5.2 Sensor Selection Discussion . 50

6 Driver Inattention Detection Through Intelligent Analysis of Readily Available Sensors 50
6.1 Driver Inattention . 50
6.2 Inattention Data Processing . 53

7 Conclusion . 56
References . 57

Computer Vision and Machine Learning for Enhancing Pedestrian Safety
Tarak Gandhi and Mohan Manubhai Trivedi . 59
1 Introduction . 59
2 Framework for Pedestrian Protection System . 60
3 Techniques in Pedestrian Detection . 61

3.1 Candidate Generation . 61
3.2 Candidate Validation . 66

4 Infrastructure Based Systems . 71
4.1 Background Subtraction and Shadow Suppression . 71
4.2 Robust Multi-Camera Detection and Tracking . 72
4.3 Analysis of Object Actions and Interactions . 72

5 Pedestrian Path Prediction . 72
6 Conclusion and Future Directions . 75
References . 76

Application of Graphical Models in the Automotive Industry
Matthias Steinbrecher, Frank Rügheimer, and Rudolf Kruse . 79
1 Introduction . 79
2 Graphical Models . 80

2.1 Bayesian Networks . 80
2.2 Markov Networks . 80

3 Production Planning at Volkswagen Group . 80
3.1 Data Description and Model Induction . 81
3.2 Operations on the Model . 82
3.3 Application . 83

4 Vehicle Data Mining at Daimler AG . 83
4.1 Data Description and Model Induction . 84
4.2 Model Visualization . 84
4.3 Application . 85

5 Conclusion . 88
References . 88

Contents XIII

Extraction of Maximum Support Rules for the Root
Cause Analysis
Tomas Hrycej and Christian Manuel Strobel . 89
1 Introduction . 89
2 Root Cause Analysis for Process Optimization . 90

2.1 Application Example . 92
2.2 Manufacturing Process Optimization: The Traditional Approach . 92

3 Rule Extraction Approach to Manufacturing Process Optimization . 92
4 Manufacturing Process Optimization . 94

4.1 Root Cause Analysis Algorithm . 94
4.2 Verification . 96

5 Experiments . 97
5.1 Optimum Solution . 98

6 Conclusion . 99
References . 99

Neural Networks in Automotive Applications
Danil Prokhorov . 101
1 Models . 101
2 Virtual Sensors . 103
3 Controllers . 106
4 Training NN . 111
5 RNN: A Motivating Example . 116
6 Verification and Validation (V & V) . 118
References . 119

On Learning Machines for Engine Control
Gérard Bloch, Fabien Lauer, and Guillaume Colin . 125
1 Introduction . 125

1.1 Common Features in Engine Control . 125
1.2 Neural Networks in Engine Control . 126
1.3 Grey Box Approach . 127

2 Neural Models . 128
2.1 Two Neural Networks . 128
2.2 Kernel Expansion Models and Support Vector Regression . 129
2.3 Link Between Support Vector Regression and RBFNs . 130

3 Engine Control Applications . 131
3.1 Introduction . 131
3.2 Airpath Observer Based Control . 132
3.3 Estimation of In-Cylinder Residual Gas Fraction . 138

4 Conclusion . 141
References . 142

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition
Automotive Engines
Ivan Arsie, Cesare Pianese, and Marco Sorrentino . 145
1 Introduction . 145
2 Manifold Fuel Film Dynamics . 146
3 AFR Control . 148

3.1 RNN Potential . 149
4 Recurrent Neural Networks . 149

4.1 Dynamic Network Features . 150
4.2 Recurrent Neural Network Architectures for AFR Control . 151

XIV Contents

5 Model Identification . 153
5.1 RNN Learning Approach . 154
5.2 Input Variables and RNNs Formulation . 155

6 Experimental Set-Up . 155
6.1 Training and Test Data . 156

7 Results . 162
7.1 FRNNM: AFR Prediction . 162
7.2 IRNNM: AFR Control . 164

8 Conclusion . 165
References . 166

Intelligent Vehicle Power Management: An Overview
Yi L. Murphey . 169
1 Introduction . 169
2 Intelligent Power Management in a Conventional Vehicle System . 170
3 Intelligent Power Management in Hybrid Vehicle Systems . 173

3.1 A Fuzzy Logic Controller Based on the Analysis of Vehicle Efficiency Maps 174
3.2 An Intelligent Controller Built Using DP Optimization and Neural Networks 176
3.3 Intelligent Vehicle Power Management Incorporating Knowledge About Driving Situations . . 180

4 Intelligent Systems for Predicting Driving Patterns . 184
4.1 Features Characterizing Driving Patterns . 184
4.2 A Multi-Class Intelligent System for Predicting Roadway Types . 185
4.3 Predicting Driving Trend, Operation Mode and Driver Style . 186

5 Conclusion . 188
References . 188

An Integrated Diagnostic Process for Automotive Systems
Krishna Pattipati, Anuradha Kodali, Jianhui Luo, Kihoon Choi, Satnam Singh,
Chaitanya Sankavaram, Suvasri Mandal, William Donat, Setu Madhavi Namburu,
Shunsuke Chigusa, and Liu Qiao . 191
1 Introduction . 191
2 Model-Based Diagnostic Approach . 194

2.1 Model-Based Diagnostic Techniques . 194
2.2 Application of Model-Based Diagnostics to an Air-Intake System . 196
2.3 Model-Based Prognostics . 201
2.4 Prognostics of Suspension System . 204

3 Data-Driven Diagnostic Approach . 206
3.1 Data-Driven Techniques . 206
3.2 Application of Data-Driven Techniques . 211

4 Hybrid Model-Based and Data-Driven Diagnosis . 213
4.1 Application of Hybrid Diagnosis Process . 213

5 Summary and Future Research . 215
References . 216

Automotive Manufacturing: Intelligent Resistance Welding
Mahmoud El-Banna, Dimitar Filev, and Ratna Babu Chinnam . 219
1 Introduction . 219
2 Resistance Spot Welding: Background . 220
3 Online Nugget Quality Evaluation Using Linear Vector Quantization Network 221
4 Intelligent Constant Current Control Algorithm . 226

4.1 Intelligent Constant Current Control and Stepper Based Control without Sealer 231
4.2 Intelligent Constant Current Control and Stepper Based Control with Sealer 232

Contents XV

5 Conclusions . 234
References . 234

Intelligent Control of Mobility Systems
James Albus, Roger Bostelman, Raj Madhavan, Harry Scott, Tony Barbera, Sandor Szabo,
Tsai Hong, Tommy Chang, Will Shackleford, Michael Shneier, Stephen Balakirsky,
Craig Schlenoff, Hui-Min Huang, and Fred Proctor . 237
1 Introduction . 237
2 Autonomous On-Road Driving . 239

2.1 NIST HMMWV Testbed . 239
2.2 4D/RCS Task Decomposition Controller for On-Road Driving . 241
2.3 Learning Applied to Ground Robots (DARPA LAGR) . 255

3 Standards and Performance Measurements . 262
3.1 Autonomy Levels for Unmanned Systems (ALFUS) . 262
3.2 Joint Architecture for Unmanned Systems (JAUS) . 263
3.3 The Intelligent Systems (IS) Ontology . 264
3.4 DOT Integrated Vehicle Based Safety System (IVBSS) . 265

4 Testbeds and Frameworks . 267
4.1 USARSim/MOAST Framework . 267
4.2 PRediction in Dynamic Environments (PRIDE) Framework . 269
4.3 Industrial Automated Guided Vehicles . 270

5 Conclusions and Continuing Work . 272
References . 273

Index . 275

Contributors

James Albus
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA

Ivan Arsie
Department of Mechanical Engineering
University of Salerno
84084 Fisciano (SA), Italy
iarsie@unisa.it

Stephen Balakirsky
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA

Tony Barbera
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA

Rafael Barea
Department of Electronics
University of Alcala
Campus 28805 Alcalá de Henares (Madrid)
Spain
barea@depeca.uah.es

Luis M. Bergasa
Department of Electronics
University of Alcala
Campus 28805 Alcalá de Henares (Madrid)
Spain
bergasa@depeca.uah.es

Gérard Bloch
Centre de Recherche en Automatique de
Nancy (CRAN)
Nancy-University
CNRS, CRAN-ESSTIN
2 rue Jean Lamour, 54519 Vandoeuvre lès Nancy
France
gerard.bloch@esstin.uhp-nancy.fr

Roger Bostelman
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA
roger.bostelman@nist.gov

Tommy Chang
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA

Shunsuke Chigusa
Toyota Technical Center – A Division of Toyota
Motor Engineering and Manufacturing (TEMA)
1555 Woodridge Rd., Ann Arbor, MI 48105, USA

XVIII Contributors

Ratna Babu Chinnam
Wayne State University
Detroit, MI 48202
USA
r chinnam@wayne.edu

Kihoon Choi
University of Connecticut
Storrs, CT, 06268, USA

Guillaume Colin
Laboratoire de Mécanique et d’Energétique (LME)
University of Orléans
8 rue Léonard de Vinci
45072 Orléans Cedex 2
France
guillaume.colin@univ-orleans.fr

William Donat
University of Connecticut
Storrs, CT, 06268, USA

Mahmoud El-Banna
University of Jordan
Amman 11942
Jordan
m.albanna@ju.edu.jo

Dimitar Filev
Ford Motor Company
Dearborn, MI 48121
USA
dfilev@ford.com

Tarak Gandhi
Laboratory for Safe and Intelligent
Vehicles (LISA)
University of California San Diego
La Jolla, CA 92093, USA
tgandhi@ucsd.edu

Mike Gardner
Motorola Labs, Tempe
AZ 85282, USA

Tsai Hong
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA

Tomas Hrycej
formerly with DaimlerChrysler Research
Ulm, Germany
tomas hrycej@yahoo.de

Hui-Min Huang
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA

Anuradha Kodali
University of Connecticut
Storrs, CT, 06268, USA

Rudolf Kruse
Department of Knowledge Processing
and Language Engineering
Otto-von-Guericke University of Magdeburg
Universittsplatz 2
39106 Magdeburg, Germany
kruse@iws.cs.uni-magdeburg.de

Fabien Lauer
Centre de Recherche en Automatique
de Nancy (CRAN)
Nancy-University
CNRS, CRAN-ESSTIN, 2 rue Jean Lamour 54519
Vandoeuvre lès Nancy, France
fabien.lauer@esstin.uhp-nancy.fr

Bob Leivian
Motorola Labs, Tempe
AZ 85282, USA

Elena Lopez
Department of Electronics
University of Alcala
Campus 28805 Alcalá de Henares (Madrid)
Spain
elena@depeca.uah.es

Jianhui Luo
Qualtech Systems, Inc.
Putnam Park
Suite 603, 100 Great Meadow Road
Wethersfield, CT 06109, USA

Contributors XIX

Raj Madhavan
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230
USA
raj.madhavan@nist.gov

Suvasri Mandal
University of Connecticut
Storrs, CT, 06268, USA

Yi L. Murphey
Department of Electrical
and Computer Engineering
University of Michigan-Dearborn
Dearborn, MI 48128, USA

Setu Madhavi Namburu
Toyota Technical Center – A Division of Toyota
Motor Engineering and Manufacturing (TEMA)
1555 Woodridge Rd.
Ann Arbor, MI 48105, USA

Jesús Nuevo
Department of Electronics
University of Alcala
Campus 28805 Alcalá de Henares (Madrid)
Spain
jnuevo@depeca.uah.es

Yuri Owechko
HRL Laboratories
LLC., 3011 Malibu Canyon Road
Malibu, CA, USA
yowechko@hrl.com

Krishna Pattipati
University of Connecticut
Storrs, CT, 06268, USA
krishna@engr.uconn.edu

Cesare Pianese
Department of Mechanical Engineering
University of Salerno
84084 Fisciano (SA), Italy
pianese@unisa.it

Fred Proctor
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230, USA

Danil V. Prokhorov
Toyota Technical Center – A Division
of Toyota Motor Engineering
and Manufacturing (TEMA)
Ann Arbor, MI 48105, USA
dvprokhorov@gmail.com

Liu Qiao
Toyota Technical Center – A Division of Toyota
Motor Engineering and Manufacturing (TEMA)
1555 Woodridge Rd., Ann Arbor
MI 48105, USA
liu.qiao@tema.toyota.com

Frank Rügheimer
Department of Knowledge Processing
and Language Engineering
Otto-von-Guericke University of Magdeburg
Universitätsplatz 2
39106 Magdeburg, Germany
ruegheim@iws.cs.uni-magdeburg.de

Chaitanya Sankavaram
University of Connecticut
Storrs, CT, 06268, USA

Craig Schlenoff
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230, USA

Chris Schreiner
Motorola Labs, Tempe
AZ 85282, USA

Harry Scott
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230, USA

Will Shackleford
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230, USA

XX Contributors

Michael Shneier
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230, USA

Satnam Singh
University of Connecticut
Storrs, CT, 06268, USA

Marco Sorrentino
Department of Mechanical Engineering
University of Salerno
84084 Fisciano (SA), Italy
msorrentino@unisa.it

Miguel A. Sotelo
Department of Electronics
University of Alcala
Campus 28805 Alcalá de Henares (Madrid)
Spain
sotelo@depeca.uah.es

Matthias Steinbrecher
Department of Knowledge Processing
and Language Engineering
Otto-von-Guericke University of Magdeburg
Universittsplatz 2
39106 Magdeburg, Germany
msteinbr@iws.cs.uni-magdeburg.de

Christian Manuel Strobel
University of Karlsruhe (TH)
Karlsruhe, Germany
mstrobel@statistik.uni-karlsruhe.de

John Summers
Motorola Labs, Tempe
AZ 85282, USA

Sandor Szabo
Intelligent Systems Division
National Institute of Standards
and Technology (NIST)
100 Bureau Drive, Mail Stop 8230
Gaithersburg
MD 20899-8230, USA

Kari Torkkola
Motorola Labs, Tempe
AZ 85282, USA
Kari.Torkkola@motorola.com

Mohan Manubhai Trivedi
Laboratory for Safe and Intelligent Vehicles (LISA)
University of California San Diego
La Jolla, CA 92093, USA
mtrivedi@ucsd.edu

Harry Zhang
Motorola Labs, Tempe
AZ 85282, USA

Keshu Zhang
Motorola Labs, Tempe
AZ 85282, USA

Jing Zhang
R&D Center, General Motors Cooperation
30500 Mound Road
Warren, MI, USA
jing.zhang@gm.com

Yilu Zhang
R&D Center, General Motors Cooperation
30500 Mound Road
Warren, MI, USA
yilu.zhang@gm.com

Learning-Based Driver Workload Estimation

Yilu Zhang1, Yuri Owechko2, and Jing Zhang1

1 R&D Center, General Motors Cooperation, 30500 Mound Road, Warren, MI, USA, yilu.zhang@gm.com,
jing.zhang@gm.com

2 HRL Laboratories, LLC., 3011 Malibu Canyon Road, Malibu, CA, USA, yowechko@hrl.com

A popular definition of workload is given by O’Donnell and Eggmeir, which states that “The term workload
refers to that portion of the operator’s limited capacity actually required to perform a particular task” [1].
In the vehicle environment, the “particular task” refers to both the vehicle control, which is the primary
task, and other secondary activities such as listening to the radio. Three major types of driver workload are
usually studied, namely, visual, manual, and cognitive. Auditory workload is not treated as a major type of
workload in the driving context because the auditory perception is not considered as a major requirement to
perform a driving task. Even when there is an activity that involves audition, the driver is mostly affected
cognitively.

Lately, the advanced computer and telecommunication technology is introducing many new in-vehicle
information systems (IVISs), which give drivers more convenient and pleasant driving experiences. Active
research is being conducted to provide IVISs with both high functionality and high usability. On the usability
side, driver’s workload is a heated topic advancing in at least two major directions. One is the offline
assessment of the workload imposed by IVISs, which can be used to improve the design of IVISs. The
other effort is the online workload estimation, based on which IVISs can provide appropriate service at
appropriate time, which is usually termed as Workload Management . For example, the incoming phone call
may be delayed if the driver is engaged in a demanding maneuver.

Among the three major types of driver workload, cognitive workload is the most difficult to measure.
For example, withdrawing hands from the steering wheel to reach for a coffee cup requires extra manual
workload. It also may require extra visual workload in that the position of the cup may need to be located.
Both types of workload are directly measurable through such observations as hands-off-wheel and eyes-off-
road time. On the other hand, engaging in thinking (the so-called minds-off-road phenomenon) is difficult
to detect. Since the cognitive workload level is internal to the driver, it can only be inferred based on the
information that is observable. In this chapter, we report some of our research results on driver’s cognitive
workload estimation.1 After the discussion of the existing practices, we propose a new methodology to design
driver workload estimation systems, that is, using machine-learning techniques to derive optimized models
to index workload. The advantage of this methodology will be discussed, followed by the presentation of
some experimental results. This chapter concludes with discussion of future work.

1 Background

Driver Workload Estimation (DWE) refers to the activities of monitoring the driver, the vehicle, and the
driving environment in real-time, and acquiring the knowledge of driver’s workload level continuously. A
typical DWE system takes sensory information of the driver, the vehicle and the driving environment as
inputs, and generates an index to the driver’s workload level as shown in Fig. 1. The central issue of DWE
is to design the driver workload estimation algorithm that generates the workload index with high accuracy.
1 To simplify the terminology, we use “workload” interchangeably with “cognitive workload” in this chapter.

Y. Zhang et al.: Learning-Based Driver Workload Estimation, Studies in Computational Intelligence (SCI) 132, 1–17 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

2 Y. Zhang et al.

Sensors for:
gaze position,
pupil diameter,
vehicle speed,
steering angle,
lateral
acceleration,
lane position,
…

DWE

Environment

Driver

Vehicle Workload
index

Signal pre-
processing

Fig. 1. The working process of a driver workload estimation system

A practical DWE system fulfills the following three requirements in order to identify driver’s cognitive
status while the driver is engaged in naturalistic driving practice.

• Continuously measurable: A DWE system has to be able to continuously measure workload while the
driver is driving the vehicle so that workload management can be conducted appropriately to avoid
overloading the driver.

• Residual capacity sensitive: The residual capacity of the driver refers to the amount of spare capacity
of the driver while he/she is performing the primary task of maneuvering the vehicle, and, if applicable,
engaging in secondary tasks such as drinking a cup of coffee or operating an IVIS. If the residual capacity
is high, the driver is typically doing well in vehicle control and may be able to be engaging in even more
secondary activities. Residual capacity is the primary interest for DWE.

• Highly non-intrusive: A DWE system should not interfere with the driver by any means.

Before the discussion of existing DWE methodologies in the next section, it is helpful to give a brief intro-
duction of cognitive workload assessment methods. There exist four major categories of cognitive workload
assessment methods in present-day practice [2], namely primary-task performance measures, secondary-task
performance measures, subjective measures, and physiological measures.

The primary-task performance measures evaluate cognitive workload based on driving performance, such
as lane-position deviation, lane exceedences, brake pressure, and vehicle headway. These measures are usually
direct and continuous.

In the secondary-task approach, the driver is required to perform one or multiple secondary tasks, e.g.,
pushing a button when flashing LED light is detected in the peripheral vision. The secondary-task perfor-
mance such as reaction time is measured as the index of driver’s cognitive workload level. Secondary-task
performance may introduce tasks unnecessary to regular driving and is intrusive to the driver.

With the subjective measure approach, driver’s personal opinion on his/her operative experience is
elicited. After a trip or an experiment, the subject is asked to describe or rate several dimensions of effort
required to perform the driving task. If the driver and the experimenter establish clear mutual under-
standing of the rating scale, the subjective measure can be very reliable. Examples of popular subjective
workload rating index are NASA Task Load Index (TLX) [3] and Subjective Workload Assessment Technique
(SWAT) [4].

Physiological measures include brain activities such as event-related potential (ERP) and Electroen-
cephalogram (EEG), cardiac activities such as heart rate variance, as well as ocular activities such as eye
closure duration and pupil diameter changes. Physiological measures are continuous and residual-capacity
sensitive. The challenge, however, lies in reliably acquiring and interpreting the physiological data sets, in
addition to user acceptance issues.

Among the four workload assessment methods, primary-task performance measures and physiological
measures (obtained by non-intrusive sensors) fulfill the above-discussed DWE requirements and are generally
appropriate for DWE applications. Although not directly suitable for real-time DWE, the secondary-task
performance measures and the subjective measures are still valuable in developing DWE since they provide
ways to calibrate the index generated by a DWE system.

Learning-Based Driver Workload Estimation 3

2 Existing Practice and Its Challenges

Most existing researches on DWE follow this pattern. First, analyze the correlation between various features,
such as lane position deviation, and driver’s workload. The ground truth of driver’s workload is usually
assessed by subjective measures, secondary-task performance, or the analysis of the task. The features
are usually selected according to the prior understanding of human behaviors and then tested using well-
designed experiments. While there are attempts reported to analyze the features simultaneously [5], usually
the analysis is done on individual features [6, 7]. Second, models are designed to generate workload index by
combining features that have high correlation with driver workload. We refer to the above methodology as
manual analysis and modeling. The manual DWE design process is illustrated in Fig. 2. Research along this
line has achieved encouraging success. The well-known existing models include the steering entropy [8] and
the SEEV model [9]. However, there are yet difficulties in developing a robust cognitive workload estimator
for practical applications, the reasons of which are discussed below.

First, the existing data analysis methods very much rely on the domain knowledge in the field of human
behavior. Although many studies have been conducted and many theories have been proposed to explain the
way that human beings manage resources and workload [2, 10–12], the relationship between overt human
behavior and cognitive activities is by and large unclear to the scientific community. It is extremely difficult
to design the workload estimation models based on this incomplete domain knowledge.

Second, manual data analysis and modeling are not efficient. Until now, a large number of features related
to driver’s cognitive workload have been studied. A short list of them includes: lane position deviation, the
number of lane departure, lane departure duration, speed deviation, lateral deviation, steering hold, zero-
crossing and steering reversal rate, brake pressure, the number of brake presses, and vehicle headway. With
the fast advancing sensing technology, the list is quickly expanding. It has been realized that while each
individual feature may not index workload well under various scenarios, the fusion of multiple features tends
to provide better overall performance. However, in the course of modeling the data to estimate workload,
the models tend to be either relatively simple, such as the linear regression models, or narrowly scoped by
covering a small number of features. It is usually expensive and time-consuming to iteratively design models
over a large number of features and validate models on a huge data set.

Third, most researchers choose workload inference features by analyzing the correlation between the
observations of driver’s behavior and driver’s workload level. This analysis requires the assumption of uni-
mode Gaussian distribution, which is very likely to be violated in reality. In addition, a feature showing low
correlation with the workload levels is not necessarily a bad workload indicator.

For example, driver’s eye fixation duration is one of the extensively studied features for workload esti-
mation. However, studies show contradictory findings in the relation between workload level and fixation
duration. Some of them show positive correlation [13, 14] while others show negative correlation [15, 16].
Does this mean fixation duration is not a good workload indicator? Not necessarily. The fact, that the
average fixation duration may become either longer or shorter when driver’s workload is high, implies that

Sensors for:
gaze position,
pupil diameter,
vehicle speed,
steering angle,
lateral
acceleration,
lane position,
…

Manual
analysis/
design

Subjective/
Secondary
Measures

DWEEnvironment

Signal pre-
processing

Driver

Vehicle

Workload
index

Fig. 2. The existing DWE system design process

4 Y. Zhang et al.

)|(wlfd ltp

pdf

Fixation
duration

)|(wlfd htp

Fig. 3. The probability distribution function of fixation duration under high and low workload

the probability distribution function (pdf) of fixation duration under high workload (p(tfd|hwl)) is multi-
modal, as shown in Fig. 3. With collected ocular data, one may estimate the conditional pdfs (p(tfd|hwl) and
p(tfd|lwl)) and the prior probabilities for high and low workload (P (hwl) and P (lwl)). With this knowledge,
standard Bayesian analysis will tell the probability of high workload given the fixation duration,

p(hwl|tfd) =
p(tfd|hwl)P (hwl)

p(tfd|hwl)P (hwl) + p(tfd|lwl)P (lwl)
.

3 The Proposed Approach: Learning-Based DWE

We proposed a learning-based DWE design process a few years ago [17, 18]. Under this framework, instead of
manually analyzing the significance of individual features or a small set of features, the whole set of features
are considered simultaneously. Machine-learning techniques are used to tune the DWE system, and derive
an optimized model to index workload.

Machine learning is concerned with the design of algorithms that encode inductive mechanisms so that
solutions to broad classes of problems may be derived from examples. It is essentially data-driven and is
fundamentally different from traditional AI such as expert systems where rules are extracted mainly by
human experts. Machine learning technology has been proved to be very effective in discovering the under-
lying structure of data and, subsequently, generate models that are not discovered from domain knowledge.
For example, in the automatic speech recognition (ASR) domain, models and algorithms based on machine
learning outperform all other approaches that have been attempted to date [19]. Machine learning has found
increasing applicability in fields as varied as banking, medicine, marketing, condition monitoring, computer
vision, and robotics [20].

Machine learning technology has been implemented in the context of driver behavior modeling. Kraiss [21]
showed that a neural network could be trained to emulate an algorithmic vehicle controller and that individual
human driving characteristics were identifiable from the input/output relations of a trained network. Forbes
et al. [22] used dynamic probabilistic networks to learn the behavior of vehicle controllers that simulate
good drivers. Pentland and Liu [23] demonstrated that human driving actions, such as turning, stopping,
and changing lane, could be accurately recognized very soon after the beginning of the action using Markov
dynamic model (MDM). Oliver and Pentland [24] reported a hidden Markov model-based framework to
predict the most likely maneuvers of human drivers in realistic driving scenarios. Mitrović [25] developed a
method to recognize driving events, such as driving on left/right curves and making left/right turns, using
hidden Markov models. Simmons et al. [26] presented a hidden Markov model approach to predict a driver’s
intended route and destination based on observation of his/her driving habits.

Thanks to the obvious relation between driver behavior and driver workload, our proposal of learning-
based DWE is a result of the above progress. Similar ideas were proposed by other researchers [27, 28] around
the time frame of our work and many followup works have been reported ever since [29–31].

3.1 Learning-Based DWE Design Process

The learning-based DWE design process is shown in Fig. 4. Compared to the one shown in Fig. 2, the new
process replaces the module of manual analysis/design with a module of a machine learning algorithm, which
is the key to learning-based DWE.

Learning-Based Driver Workload Estimation 5

Sensors for:
gaze position,
pupil diameter,
vehicle speed,
steering angle,
lateral
acceleration,
lane position,
…

Machine
learning

algorithm

Subjective/
Secondary
Measures

DWE Environment

Signal pre-
processing

Driver

Vehicle

Workload
index

Fig. 4. The learning-based DWE design process

A well-posed machine learning problem requires a task definition, a performance measure, and a set of
training data, which are defined as follows for the learning-based DWE:

Task: Identify driver’s cognitive workload level in a time interval of reasonable length, e.g., every few seconds.
Performance measure: The rate of correctly estimating driver’s cognitive workload level.
Training data: Recorded driver’s behavior including both driving performance and physiological mea-

sures together with the corresponding workload levels assessed by subjective measures, secondary task
performance, or task analysis.

In order to design the learning-based DWE algorithm, training data need to be collected while subjects
drive a vehicle in pre-designed experiments. The data includes the sensory information of the maneuvering
of the vehicle (e.g., lane position, which reflects driver’s driving performance) and the driver’s overt behavior
(e.g., eye movement and heart beat), depending on the availability of the sensor on the designated vehicle.
The data also includes the subjective workload ratings and/or the secondary-task performance ratings of the
subjects. These ratings serve as the training labels.

After some preprocessing on the sensory inputs, such as the computation of mean and standard devia-
tion, the data is fed to a machine-learning algorithm to extract the relationship between the noisy sensory
information and the driver’s workload level. The computational intelligence algorithm can be decision tree,
artificial neural network, support vector machine, or methods based on discriminant analysis. The learned
estimator, a mapping from the sensory inputs to the driver’s cognitive workload level, can be a set of rules,
a look-up table, or a numerical function, depending on the algorithm used.

3.2 Benefits of Learning-Based DWE

Changing from a manual analysis and modeling perspective to a learning-based modeling perspective will
gain us much in terms of augmenting domain knowledge, and efficiently and effectively using data.

A learning process is an automatic knowledge extraction process under certain learning criteria. It is very
suitable for a problem as complicated as workload estimation. Machine learning techniques are meant for ana-
lyzing huge amounts of data, discovering patterns, and extracting relationships. The use of machine-learning
techniques can save labor-intensive manual process to derive combined workload index and, therefore, can
take full advantage of the availability of various sensors. Finally, most machine learning techniques do not
require the assumption of the unimode Gaussian distribution. In addition to the advantages discussed above,
this change makes it possible for a DWE system to be adaptive to individual drivers. We will come back to
this issue in Sect. 7.

Having stated the projected advantages, we want to emphasize that the learning-based approach benefits
from the prior studies on workload estimation, which have identified a set of salient features, such as fixation
duration, pupil diameter, and lane position deviation. We utilize the known salient features as candidate
inputs.

6 Y. Zhang et al.

4 Experimental Data

Funded by GM R&D under a contract, researchers from the University of Illinois at Urbana-Champaign
conducted a driving simulator study to understand driver’s workload. The data collected in the simulator
study was used to conduct some preliminary studies on learning-based DWE as presented in this chapter.

The simulator system has two Ethernet-connected PCs running GlobalSim’s Vection Simulation Software
version 1.4.1, a product currently offered by DriveSafety Inc. (http://www.drivesafety.com). One of the
two computers (the subject computer) generates the graphical dynamic driving scenes on a standard 21-in
monitor with the resolution of 1,024 × 768 (Fig. 5). Subjects use a non-force feedback Microsoft Sidewinder
USB steering wheel together with the accelerator and brake pedals to drive the simulator. The second
computer (the experimental computer) is used by an experimenter to create driving scenarios, and collect
and store the simulated vehicle data, such as vehicle speed, acceleration, steering angle, lateral acceleration,
lane position, etc. To monitor the driver’s behavior closely, a gaze tracking system is installed on the subject
computer and running at the same time as the driving simulation software. The gaze tracking system is an
Applied Science Lab remote monocular eye tracker, Model 504 with pan/tilt optics and a head tracker. It
measures the pupil diameter and the point of gaze at 60Hz with an advertised tracking accuracy of about
±0.5 degree [32]. The gaze data is also streamed to and logged by the experimenter computer. A complete
data table is shown in Table 1.

Twelve students participated in the experiment. Each participant drove the simulator in three different
driving scenarios, namely, highway, urban, and rural (Fig. 5). There were two sessions of driving for each
scenario, each lasting about 8–10min In each session, the participants were asked to perform secondary
tasks (two verbal tasks and two spatial-imagery tasks) during four different 30-s periods called critical
periods. In the verbal task, the subjects were asked to name words starting with a designated letter. In the
spatial-imagery task, the subjects were asked to imagine the letters from A to Z with one of the following
characteristics: (a) remaining unchanged when flipped sideways, (b) remaining unchanged when flipped
upside down, (c) containing a close part such as “A”, (d) having no enclosed part, (e) containing a horizontal
line, (f) containing a vertical line. Another four 30-s critical periods were identified as control sessions in
each session, during which no secondary tasks were introduced. In the following analysis, we concentrate
on the data during the critical periods. In total, there were 12 subjects × 3 scenarios × 2 sessions ×
8 critical periods/session = 576 critical periods. Because of some technical difficulties during the experiment,
the data from some of the critical periods were missing, which ended up with a total of 535 critical periods
for use. The total number of data entries is 535 critical periods × 30 s× 60 Hz = 1,036,800.

In the simulator study, there was no direct evidence of driver’s workload level, such as the subjective
workload assessment. However, workload level for each data entry was needed in order to evaluate the idea
of learning-based DWE. We made an assumption that drivers bear more workload when engaging in the
secondary tasks. As we know, the primary driving task includes vehicle control (maintaining the vehicle in
a safe location with an appropriate speed), hazard awareness (detecting hazards and handling the elicited
problems), and navigation (recognizing landmarks and taking actions to reach destination) [33]. The visual
perception, spatial cognitive processing, and manual responses involved in these subtasks all require brain
resources. In various previous studies, many secondary mental tasks, such as verbal and spatial-imagery
tasks, have been shown to compete for the limited brain resources with the primary driving task. The
secondary mental tasks affect the drivers by reducing their hazard detection capability and delaying the
decision-making time [13, 14, 34]. Although a driver may respond to the multi-tasks by changing resource
allocation strategy to make the cooperation more efficient, in general, the more tasks a driver is conducting
at a time, the more resources he/she is consuming and, therefore, the higher workload he/she is bearing.
Based on this assumption, we labeled all the sensor inputs falling into the dual-task critical periods with
high workload. The sensor inputs falling into the control critical periods were labeled with low workload. We
understand that driver’s workload may fluctuate during a critical period depending on the driving condition
and her actual involvement in the secondary task.

Learning-Based Driver Workload Estimation 7

Left Mirror Right Mirror

Rear view Mirror

Speedometer

(a)

(b)

(c)

Fig. 5. The screen shots of the driving scene created by the GlobalSim Vection Simulation Software in three different
driving scenarios: (a) urban, (b) highway, and (c) rural

8 Y. Zhang et al.

Table 1. The vehicle and gaze data collected by the simulator system

Vehicle Velocity, lane position, speed limit, steer angle, acceleration, brake, gear, horn, vehicle heading, vehicle
pitch, vehicle roll, vehicle X, vehicle Y, vehicle Z, turn signal status, latitudinal acceleration, longitudinal
acceleration, collision, vehicle ahead or not, headway time, headway distance, time to collide, terrain
type, slip.

Gaze Gaze vertical position, gaze horizontal position, pupil diameter, eye to scene point of gaze distance, head
x position, head y position, head z position, head azimuth, head elevation, head roll.

time

Feature vectors

Fig. 6. The rolling time windows for computing the feature vectors

Table 2. The features used to estimate driver’s workload

Feature number Features

1 mspd: mean vehicle velocity
2 Vspd: standard deviation of vehicle velocity
3 mlp: mean lane position
4 Vlp: standard deviation of vehicle lane position
5 mstr: mean steering angle
6 Vstr: standard deviation of steering angle
7 macc: mean vehicle acceleration
8 Vacc: standard deviation of vehicle acceleration
9 mpd: mean pupil diameter
10 Vpd: standard deviation of pupil diameter
11–18 ni: number of entries for the gaze moving into region i, i = 1, 2, ..., 8
19–26 tsi: portion of time the gaze stayed in region i, i = 1, 2, ..., 8
27–34 tvi: mean visit time for region i, i = 1, 2, ..., 8

5 Experimental Process

We preprocessed the raw measurements from the sensors and generated vectors of features over the fixed-size
rolling time windows as shown in Fig. 6. Table 2 lists all the features we used. The “regions” in Table 2 refer
to the eight regions of driver’s front view as shown in Fig. 7. It is desirable to estimate the workload at a
frequency as high as possible. However, it is not necessary to assess it at a frequency of 60Hz because the
driver’s cognitive status does not change at that high rate. In practice, we tried different time window sizes,
of which the largest was 30 s, which equals the duration of a critical period.

While many learning methods can be implemented, such as Bayesian learning, artificial neural networks,
hidden Markov models, case based reasoning, and genetic algorithms, we used decision tree learning , one of
the most widely used methods for inductive inference, to show the concept.

A decision tree is a hierarchical structure, in which each node corresponds to one attribute of the input
attribute vector. If the attribute is categorical, each arc branching from the node represents a possible value
of that attribute. If the attribute is numerical, each arc represents an interval of that attribute. The leaves of
the tree specify the expected output values corresponding to the attribute vectors. The path from the root
to a leaf describes a sequence of decisions made to generate the output value corresponding to an attribute
vector. The goal of decision-tree learning is to find out the attribute and the splitting value for each node of
the decision tree. The learning criterion can be to reduce entropy [35] or to maximize t-statistics [36], among
many others.

For the proof-of-concept purpose, we used the decision-tree learning software, See5, developed by
Quinlan [35]. In a See5 tree, the attribute associated with each node is the most informative one among

Learning-Based Driver Workload Estimation 9

Left Mirror Right MirrorSpeedometer

Left View Center View Right View

Rest Region

Rear view Mirror

Fig. 7. The screen of the driving scene is divided into eight regions in order to count the gaze entries in each region.
The region boundaries were not shown on the screen during the experiment

the attributes not yet considered in the path from the root. The significance of finding the most informative
attribute is that making the decision on the most informative attribute can reduce the uncertainty about
the ultimate output value to the highest extent.

In information theory, the uncertainty metric of a data set S is defined by entropy H(S),

H(S) = −Σc
i=1Pilog2(Pi),

where, S is a set of data, c is the number of categories in S, and Pi is the proportion of category i in S.
The uncertainty about a data set S when the value of a particular attribute A is known is given by the
conditional entropy H(S|A),

H(S|A) = −Σv∈V alue(A)P (A = v)H(S|A = v),

where V alue(A) is the set of all possible values for attribute A, and P (A = v) is the proportion of data in
S, whose attribute A has the value v. If we use Sv to represent the subset of S for which attribute A has
the value v, the conditional entropy H(S|A) can be rewritten as,

H(S|A) = −Σv∈V alue(A)
|Sv|
|S| H(Sv),

where |•| is the number of data points in the respective data set. As a result, the information gain of knowing
the value of attribute A is defined as,

Gain(S, A) = H(S) − Σv∈V alue(A)
|Sv|
|S| H(Sv),

So, the most informative attribute Ami is determined by,

Ami = arg max
for all As

Gain(S, A).

To improve the performance, a popular training algorithm called adaptive boosting or AdaBoost was
used. The AdaBoost algorithm [37, 38] is an interactive learning process which combines the outputs of a set
of N “weak” classifiers trained with different weightings of the data in order to create a “strong” composite
classifier. A “weak” learning algorithm can generate a hypothesis that is slightly better than random for any

10 Y. Zhang et al.

data distribution. A “strong” learning algorithm can generate a hypothesis with an arbitrarily low error rate,
given sufficient training data. In each successive round of weak classifier training, greater weight is placed
on those data points that were mis-classified in the previous round. After completion of N rounds, the N
weak classifiers are combined in a weighted sum to form the final strong classifier.

Freund and Shapire have proven that if each weak classifier performs slightly better than a random
classifier, then the training error will decrease exponentially with N . In addition, they showed that the
test set or generalization error is bounded with high probability by the training set error plus a term that
is proportional to the square root of N/M , where M is the number of training data. These results show
that, initially, AdaBoost will improve generalization performance as N is increased, due to the fact that the
training set error decreases more than the increase of the N/M term. However, if N is increased too much,
the N/M term increases faster than the decrease of the training set error. That is when overfitting occurs
and the reduction in generalization performance will follow. The optimum value of N and the maximum
performance can be increased by using more training data. AdaBoost has been validated in a large number
of classification applications. See5 incorporates AdaBoost as a training option. We utilized boosting with
N = 10 to obtain our DWE prediction results. Larger values of N did not improve performance significantly.

6 Experimental Results

The researchers from the University of Illinois at Urbana-Champaign reported the effect of secondary tasks
on driver’s behavior in terms of the following features:

• Portion of gaze time in different regions of driver’s front view
• Mean pupil size
• Mean and standard deviation of lane position
• Mean and standard deviation of the vehicle speed

The significance of the effect was based on the analysis of variance (ANOVA) [39] with respect to each of
these features individually. The general conclusion was that the effect of secondary tasks on some features
was significant, such as speed deviation and lane position. However, there was an interaction effect of driving
environments and tasks on these features, which means the significance of the task effect was not consistent
over different driving environments [40].

It should be noted that ANOVA assumes Gaussian statistics and does not take into account the possible
multi-modal nature of the feature probability distributions. Even for those features showing significant
difference with respect to secondary tasks, a serious drawback of ANOVA is that this analysis only tells the
significance on average. We can not tell from this analysis how robust an estimator can be if we use the
features on a moment-by-moment basis.

In the study presented in this chapter, we followed two strategies when conducting the learning process,
namely driver-independent and driver-dependent. In the first strategy, we built models over all of the available
data. Depending on how the data were allocated to the training and testing sets, we performed training
experiments for two different objectives: subject-level and segment-level training, the details of which are
presented in the following subsection. In the second training strategy, we treated individual subjects’ data
separately. That is, we used part of one subject’s data for training and tested the learned estimator on
the rest data of the same subject. This is a driver-dependent case. The consideration here is that since the
workload level is driver-sensitive, individual difference makes a difference in the estimation performance.

The performance of the estimator was assessed with the cross-validation scheme, which is widely adopted
by the machine learning community. Specifically, we divided all the data into subsets, called folds, of equal
sizes. All the folds except one were used to train the estimator while the left-out fold was used for performance
evaluation. Given a data from the left-out fold, if the estimation of the learned decision tree was the same
as the label of the data, we counted it as a success. Otherwise, it was an error. The correct estimation rate,
rc, was given by,

rc =
nc

ntot
,

Learning-Based Driver Workload Estimation 11

where nc was the total number of successes and ntot was the total number of data entries. This process rotated
through each fold and the average performance on the left-out folds was recorded. A cross validation process
involves ten folds (ten subsets) is called a tenfold cross validation. Since the estimator is always evaluated
on the data disjoint from the training data, the performance evaluated through the cross validation scheme
correctly reflects the actual generalization capability of the derived estimator.

6.1 Driver-Independent Training

The structure of the dataset is illustrated schematically in the upper part of Fig. 8. The data can be organized
into a hierarchy where individual subjects are at the top. Each subject experienced eight critical periods
with single or dual tasks under urban, highway, and rural driving scenarios. Each critical period can be
divided into short time windows or segments to compute the vectors of features. For clarity we do not show
all subjects, scenarios, and critical periods in Fig. 8.

In the subject-level training, all of the segments for one subject were allocated to either the training or
testing set. The data for any individual subject did not appear in both the training and testing sets. The
subject-level training was used for estimating the workload of a subject never seen before by the system. It is
the most challenging workload estimation problem. In the segment-level training, segments from each critical
period were allocated disjointly to both the training and testing sets. This learning problem corresponds to
estimating workload for individuals who are available to train the system beforehand. It is an easier problem
than the subject-level training.

The test set confusion table for the subject-level training with 30-s time window is shown in Table 3. We
were able to achieve an overall correct estimation rate of 67% for new subjects that were not in the training
set using segments equal in length to the critical periods (30 s). The rules converted from the learned decision
tree are shown in Fig. 9. Reducing the segment length increased the number of feature vectors in the training

Tom Harry

Urban 1 Urban 2 Urban 1 Urban 2

Control 1 Verbal 1 Control 1 Verbal 1 Control 1 Verbal 1 Control 1 Verbal 1

Subjects

Scenarios

Tasks

Segments
(Time windows
used to calculate
feature vectors)

Segment-
level training

Subject-
level training

= Train = Test

Fig. 8. Allocation of time windows or segments to training and testing sets for two training objectives

Table 3. The test set confusion table for the subject-level driver-independent training with time window size of 30 s

Workload estimation Dual-task Single-task Total

High workload 186 93 –
Low workload 84 172 –
Correct estimation rate (%) 69 65 67

In the table, dual-task refers to the cases when the subjects were engaged in both primary and secondary tasks
and, therefore, bore high workload. Similarly, single-task refers to the cases when the subjects were engaged only in
primary driving task and bore low workload

12 Y. Zhang et al.

Rule 1/1: (41.4/4.6, lift 2.2)
 F10 > 3.526
 F21 <= 0.0635

-> class High [0.871]

Rule 1/2: (13.9/1.5, lift 2.1)
 F01 <= 0.3084
 F21 <= 0.0635
 F23 <= 0.0023

-> class High [0.841]

Rule 1/3: (3.8, lift 2.1)
 F01 <= 2.4056
 F21 <= 0.0635
 F30 > 50.5714

-> class High [0.828]

Rule 1/4: (3.8, lift 2.1)
 F08 <= 0.0243
 F15 <= 0.0056
 F26 > 0.3819

-> class High [0.828]

Rule 1/5: (11.5/1.5, lift 2.1)
 F01 > 2.4056
 F21 <= 0.0635

-> class High [0.812]

Rule 1/6: (21.4/3.8, lift 2.0)
 F09 <= 21.2443

-> class High [0.794]

Rule 1/7: (9.9/1.5, lift 2.0)
 F01 <= -1.563
 F15 <= 0.0174

-> class High [0.788]

Rule 1/8: (11.5/3.1, lift 1.8)
 F15 > 0.0174
 F21 > 0.0635
 F28 <= 1.25

-> class High [0.699]

Rule 1/9: (45.2, lift 1.2)
 F09 > 21.2443
 F15 > 0.0056
 F15 <= 0.0174
 F21 > 0.0635

-> class Low [0.979]

Rule 1/10: (92.1/1.5, lift 1.2)
 F01 > -1.563
 F08 > 0.0243
 F09 > 21.2443
 F15 <= 0.0174
 F21 > 0.0635

-> class Low [0.973]

Rule 1/11: (31.6, lift 1.2)
 F01 > 0.3084
 F01 <= 2.4056
 F10 <= 3.526
 F30 <= 50.5714

-> class Low [0.970]

Rule 1/12: (28.7, lift 1.2)
 F01 <= 2.4056
 F10 <= 3.526
 F23 > 0.0023
 F30 <= 50.5714

-> class Low [0.967]

Fig. 9. The rules converted from the driver-independent decision tree. Each rule is characterized by the statistics
(N/E, lift L), where N is the number of training cases covered by the rule, E (if shown) is the number of them that
do not belong to the rule’s class, and L is the estimated accuracy of the rule (the number in square brackets, e.g.,
[0.871]) divided by the prior probability of the rule’s class. The reason that N and E may be non-integral numbers
is that when the value of an attribute in the tree is not known, See5 splits the case and sends a fraction down each
branch. Please refer to Table 2 for the attribute indices. For example, F01 refers to feature 1 in Table 2

Table 4. The correct estimation rates in the subject-level driver-independent training with different time window
sizes

Time window size (s) 1.9 7.5 30
Correct estimation rate (%) 61 63 67

Table 5. The test set confusion table for the segment-level driver-independent training with time window size of 30 s

Workload estimation Dual-task Single-task Total

High workload 219 50 –
Low workload 51 215 –
Correct estimation rate (%) 81 81 81

In the table, dual-task refers to the cases when the subjects were engaged in both primary and secondary tasks
and, therefore, bore high workload. Similarly, single-task refers to the cases when the subjects were engaged only in
primary driving task and bore low workload

set but the variance was also increased due to the shorter averaging period. The overall effect of reducing
the segment length on subject-level training was a degradation in performance (see Table 4).

The test set confusion table for segment-level training is shown in Table 5 for segments that were equal
to the critical period (30 s). In this case, the data from all subjects was disjointly distributed in either the
training or testing sets. Compared to the results for subject-level training, the correct estimation rate was

Learning-Based Driver Workload Estimation 13

Table 6. The correct estimation rates in the segment-level driver-independent training with different time window
sizes

Time window size (s) 1.9 7.5 30
Correct estimation rate (%) 71 78 81

Table 7. The correct estimation rates of driver-dependent training with 0.5 s time window under tenfold cross
validation

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 Average

Correct estimation rate (%) 85.7 80.6 86.4 81.8 77.8 82.4 88.0 87.9 81.3 93.4 90.8 88.4 85.4
Standard deviation (%) 0.7 0.8 0.6 0.8 0.9 0.9 0.7 0.7 0.8 0.4 0.5 0.5 0.69

Table 8. The average correct estimation rates of driver-dependent training with different time window sizes under
tenfold cross-validation

Time window size (s) 0.5 2 5
Correct estimation rate (%) 85.4 80.1 78.2

improved from 67 to 81%. Similar to the case of subject-level training, the overall effect of reducing the
segment length on segment-level training was a degradation in performance (see Table 6).

Note that, considering the significant reduction of segment length, the degradation of estimation
performance shown in both Tables 4 and 6 seems to be quite acceptable.

6.2 Driver-Dependent Training

The cognitive capacity required to perform the same tasks varies from person to person [2]. So does the
workload level for different drivers. This may violate one of the assumptions for any learning-based estimators,
i.e., the distribution of the training data is the same as the distribution of the testing data. As a result, the
workload estimator obtained from the data of some drivers may not yield good estimation performance when
applied to other drivers’ data. The driver-dependent training strategy is adopted to evaluate and address
this issue.

In driver-dependent training strategy, the data from a single subject was divided into disjoint training
and test sets for tenfold cross validation. The ten correct estimation rates for each subject was averaged to
represent the estimation performance over that subject’s data. The standard deviation of the ten correct
estimation rates was also calculated to evaluate the robustness of the estimation performance. Since there
was only limited data from each subject, we used relatively short time-window size in order to make sure
there was enough data to train the decision tree. Table 7 shows the performance of the learned estimator
for each of the twelve subjects when the size of the time window was 0.5 s. The highest correct estimation
rate reached 93.4% and the average performance was 85.4%. Because of the limited amount of data, we
were only able to label the data with a temporal resolution of 30 s (the duration of a critical period). This
labeling strategy failed to reflect the possible workload fluctuation within each critical period. As a result, it
introduced errors to both training and evaluation. In addition, the level of fluctuation differed for different
subjects, which is probably the major reason for the performance variance among subjects. However, given
that the standard deviation of the performance for each subject is under one percentage point, the estimator
design is highly robust.

We tried different window sizes for the feature vector computation and the average correct estimation
rates are listed in Table 8. As the windows size got larger, the amount of training data was reduced, which
contributed to the degraded performance of the estimator.

14 Y. Zhang et al.

6.3 Feature Combination

To understand the contribution of different subsets of the features to the estimation performance, we trained
See5 decision trees using various combinations of the features with the segment-level training. The time
window size was set to be 30 s. The performance for various groupings of features is shown in Table 9. The
best performance we were able to obtain was 81% using all of features. The eyegaze-related features were more
predictive than the driving-performance features since removing all other features (the driving-performance
features) from the training set reduced performance by only 1 percentage point from 81 to 80%. Removing
the eyegaze-related features (feature 9–34), on the other hand, reduced performance from 81 to 60%. All of
the driving-performance and eyegaze-related features, however, contributed to workload detection accuracy,
albeit in varying degrees.

From past experience we have found that there is a high correlation between feature frequency in a
decision tree and the predictive power of the feature. We did an analysis on the learned See5 trees by
counting how many times each of the feature appeared. A histogram of feature usage in the learned rule
sets is shown in Fig. 10. The feature with the highest frequency is the standard deviation of pupil diameter,
which is consistent with the known correlation between pupil changes and workload [41], especially in the
controlled illumination conditions of the driving simulator.

Among the driving-performance features, vehicle speed (F1) and speed deviation (F2) have the highest
frequency of occurrence. The selection of F2 by the learning algorithm is consistent with the ANOVA results
done by the University of Illinois at Urbana-Champaign. The ANOVA analysis did not include vehicle speed
since the vehicle speed was largely determined by the driving scenarios such as the speed limit of the road
and was not considered a good predictor of workload. However, it is understandable that a driver under high
workload would tend to have higher speed deviation when the vehicle speed is high, compared to the case
when the vehicle speed is low. In other words, under high workload, speed deviation correlates with vehicle

Table 9. The correct estimation rates in the 30-s segment-level driver independent training with various feature
combinations

Feature combination Number of features Correct estimation rate (%)

All features (F01-F34) 34 81
Eyegaze-related features (F09-F34) 26 80
All but pupil-diameter features (All but F09-F10) 32 70
Pupil-diameter features only (F09-F10) 2 61
Driving-performance features (F01-F08) 8 60

Please refer to Table 2 for the feature indices

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Feature numbers

F
re

q
u

en
cy

(%
)

Driving
Features

Eyegaze
Features

Fig. 10. Histogram of feature frequency in the workload estimator trained by See5. Please refer to Table 2 for the
features

Learning-Based Driver Workload Estimation 15

speed. This correlation together with the correlation between speed deviation and workload may have made
the decision-tree algorithm to pick vehicle speed relatively frequently in order to determine the workload.

It is noteworthy, however, that all of the features are used at least to some extent by the workload esti-
mator, which indicates that all of the feature have some predictive power. The best estimation performance
should be obtained when all of the features are used together.

7 Conclusions and Future Work

Compared to the existing practice, the proposed learning-based DWE does not require sophisticated domain
knowledge or labor-intensive manual analysis and modeling efforts. With the help of mature machine learning
techniques, the proposed method provides an efficient way to derive models over a large number of sensory
inputs, which is critical for a problem as complicated as cognitive workload estimation.

The preliminary experimental results of learning-based DWE show that a driver’s cognitive status could
be estimated with an average correct rate of more than 85% for driver-dependent training. Although this
performance is still a long way from a practical DWE system, it is very encouraging especially considering
that the estimation was conducted at a rate of twice a second. As we anticipated, the estimation performance
was not as good in the driver-independent case as in the driver-dependent case, which restates the importance
that a DWE system should capture individual difference.

Recall that our labeling strategy was that all the sensor inputs in the dual-task critical periods had
high workload label and those in the control critical periods were labeled with low workload. Within each
critical period, the driver might switch their attention between the driving and secondary tasks and, thus,
change their actual workload level, which may have contributed to the error. In addition, in the conducted
experiments, we used a general machine learning package. Usually a customized algorithm has a better
performance than a general-purpose one. It will be interesting to see how much improvement we can achieve
with a fine tuned learning algorithm dedicated to our specific problem.

The significance of learning-based DWE is not limited to quickly getting good estimation results. With
the manual analysis and modeling methodology, a DWE system works in a static mode. That is, the rules
for workload estimation and the thresholds specified in the rules are usually determined through certain
human factors studies before the vehicles are sold to the customers. Whether the induced rules represent the
customer population very much depends on how the sample subjects are selected and the sample size of the
studies. It is also questionable whether one set of rules fit customers with different genders, different ages,
different driving experiences, different education background, and etc. Ideally, the rules for DWE should be
tailored to each individual driver in order to capture individual difference.

On the other hand, the learning-based method provides a possibility to automate the adaptation process.
Figure 11 illustrates one possible implementation of adaptive DWE. Instead of collecting the training data
in a pre-designed experiments, adaptive DWE collects data when the end customer is driving the vehicle.
Compared to Fig. 4, Fig. 11 replaces the Subjective/Secondary Measure module with a Driver Workload
Assessment module. The Driver Workload Assessment module allows the driver, while driving, to occasion-
ally submit the subjective assessment of workload level (e.g., 1, 2,...10, or high, medium, low) through an
driver–vehicle interaction mechanism, such as a push button or voice user interface. Such action triggers
the collection of a running cache of streaming sensor data. With both the sensory readings and the subjec-
tive assessment (the label of workload level) in place, the machine-learning algorithm module can update
the DWE module without manual interference, using pre-specified learning mechanisms, e.g., decision tree
learning with reducing entropy as the learning criterion.

Having stated the advantages that the learning-based method may deliver, it is important to understand
that not all problems are solved. For example, there is still a bottleneck in the learning-based DWE design
process, i.e., the subject/secondary task measures module that provides the training data with the labels.
We need to address the automatic label generation issue in order to reach a full automatic DWE design
process.

16 Y. Zhang et al.

Sensors for:
gaze position,
pupil diameter,
vehicle speed,
steering angle,
lateral
acceleration,
lane position,
…

Machine
learning

algorithm

DWEEnvironment

Signal pre-
processing

Driver

Vehicle

Driver
workload

assessment

Workload
index

Fig. 11. A possible implementation of adaptive DWE

Acknowledgments

The authors would like to thank X.S. Zheng, G. McConkie, and Y.-C. Tai for collecting the data under a
contract with GM, which made this research possible.

References

1. R.D. O’Donnel and F.T. Eggemeier, “Workload assessment methodology,” in Handbook of Perception and Human
Performance, Vol II, Cognitive Processes and Performance, K.R. Boff, L. Kaufman, and J.P. Thomas, Eds. Wiley,
New York, 1986.

2. C.D. Wickens and J.G. Hollands, Engineering Psychology and Human Performance, Prentice-Hall, Upper Saddle
River, NJ, 3rd edition, 2000.

3. S.G. Hart and L.E. Seaveland, “Development of NASA-TLS (task load index): results of empirical and theoretical
research,” in Human Mental Workload, P.A. Hancock and N. Meshkati, Eds., North Holland, Amsterdam, 1988.

4. G.B. Reid and T.E. Nygren, “The subjective workload assessment technique: a scaling procedure for measuring
mental workload,” in Human Mental Workload, P.A. Hancock and N. Meshkati, Eds., North Holland, Amsterdam,
1988.

5. L.S. Angell, R.A. Young, J.M. Hankey, and T.A. Dingus, “An evaluation of alternative methods for assess-
ing driver workload in the early development of in-vehicle information systems,” in Proceedings of SAE
Government/Industry Meeting, Washington, DC, May 2002.

6. J. Hurwitz and D.J. Wheatley, “Using driver performance measures to estimate workload,” in Proceedings of the
Human Factors and Ergonomics Society 46th Annual Meeting, Santa Monica, CA, pp. 1804–1808, 2002.

7. C. Mayser, W. Piechulla, K.-E. Weiss, and W. König, “Driver workload monitoring,” in Proceedings of the
Internationale Ergonomie-Konferenz der GfA, ISOES und FEES, Mnchen, Germany, May 7–9, 2003.

8. O. Nakayama, T. Futami, T. Nakamura, and E.R. Boer, “Development of a steering entropy method for evaluating
driver workload,” in Proceedings of SAE International Congress and Exposition Detroit, Detroit, MI, March 1999.

9. C.D. Wickens, J. Helleberg, J. Goh, X. Xu, and B. Horrey, “Pilot task management: testing an attentional
expected value model of visual scanning,” Tech. Rep. ARL-01-14/NASA-01-7, University of Illinois, Aviation
Research Lab, Savoy, IL, 2001.

10. S.K. Card, T.P. Moran, and A. Newell, “The model human processor: an engineering model of human
performance,” in Handbook of Perception and Human Performance, Wiley, New York, pp. 1–35, 1986.

11. D.E. Kieras and D.E. Meyer, “An overview of the epic architecture for cognition and performance with application
to human-computer interaction,” Human-Computer Interaction, 12, 391–438, 1997.

12. J.R. Anderson and C. Lebiere, The Atomic Components of Thought, Erlbaum, Mahwah, NJ, 1998.
13. M.A. Recarte and L.M. Nunes, “Effects of verbal and spatial-imagery task on eye fixations while driving,” Journal

of Experimental Psychology: Applied, 6(1), 31–43, 2000.
14. J.L. Harbluk and Y.I. Noy, “The impact of cognitive distraction on driver visual behaviour and vehicle control,”

Technical Report, Transport Canada, http://www.tc.gc.ca/roadsafety/tp/tp13889/en/menu.htm, February 2002.

Learning-Based Driver Workload Estimation 17

15. M. Rahimi, R.P. Briggs, and D.R. Thom, “A field evaluation of driver eye and head movement strategies toward
environmental targets and distracters,” Applied Ergonomics, 21(4), 267–274, 1990.

16. P.R. Chapman and G. Underwood, “Visual search of dynamic scenes: event types and the role of experience in
viewing driving situations,” in Eye Guidance in Reading and Science Perception, G. Underwood, Ed., Elsevier,
Amsterdam, pp. 369–393, 1998.

17. Y. Zhang, Y. Owechko, and J. Zhang, “Machine learning-based driver workload estimation,” in Proceedings of
the 7th International Symposium on Advanced Vehicle Control, Arnhem, Netherlands, August 23–27, 2004.

18. Y. Zhang, Y. Owechko, and J. Zhang, “Driver cognitive workload estimation: a data-driven perspective,” in Pro-
ceedings of 7th International IEEE Conference on Intelligent Transportation Systems, Washington D.C., October
3–6, 2004.

19. T.M. Mitchell, Machine Learning, WCB/McGraw-Hill, Boston, MA, 1997.
20. P. Bhagat, Pattern Recognition in Industry, Elsevier Science, Oxford, UK, 2005.
21. K.-F. Kraiss, “Implementation of user-adaptive assistants with neural operator models,” Control Engineering

Practice, 3(2), 249–256, 1995.
22. J. Forbes, T. Huang, K. Kanazawa, and S. Russell, “Batmobile: Towards a bayesian automated taxi,” in Pro-

ceedings of International Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 1878–1885, 1995.
23. A.P. Pentland and A. Liu, “Modeling and prediction of human,” Behavior Neural Computation, 11(2), 1999.
24. N. Oliver and A.P. Pentland, “A graphical models for driver behavior recognition in a smartcar,” in Proceedings

of Intelligent Vehicles, Detroit, Michigan, October 2000.
25. D. Mitrovic, “Reliable method for driving events recognition,” IEEE Transactions on Intelligent Transportation

Systems, 6(2), 198–205, 2005.
26. R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, “Learning to predict driver route and destination intent,”

in Proceedings of the 9th International IEEE Conference on Intelligent Transportation Systems, Toronto, Canada,
September 17–20, 2006.

27. A. Rakotonirainy and R. Tay, “Driver inattention detection through intelligent analysis of readily available
sensors,” in Proceedings of The 7th International IEEE Conference on Intelligent Transportation Systems,
Washingtong DC, October 3–6, 2004.

28. A. Rakotonirainy and R. Tay, “In-vehicle ambient intelligent transport systems (i-vaits): towards an integrated
research,” in Proceedings of The 7th International IEEE Conference on Intelligent Transportation Systems,
Washingtong DC, October 3–6, 2004.

29. C. Brooks, A. Rakotonirainy1, and F. Maire, “Reducing driver distraction through software,” in Proceedings
Australasian Road Safety Research Policing Education Conference, Wellington, New Zealand, November 2005.

30. L.M. Bergasa, J. Nuevo, M.A. Sotelo, R. Barea, and E. Lopez, “Visual monitoring of driver inattention”. Chapter
2 in this volume.

31. Y. Liang, M.L. Reyes, and J.D. Lee, “Real-time detection of driver cognitive distraction using support vector
machines,” IEEE Transactions on Intelligent Transportation Systems, 8(2), 340–350, 2007.

32. Applied Science Lab Inc., Eye Tracking System Instruction Manual – Model 504, Applied Science Group, Bedford,
MA, 2001.

33. C.D. Wickens, S.E. Gordon, and Y. Liu, An Introduction to Human Factors Engineering, Addison–Wesley, New
York, 1998.

34. M.A. Recarte and L.M. Nunes, “Mental workload while driving: effects on visual search, discrimination, and
decision making,” Journal of Experimental Psychology: Applied, 9(2), 119–137, 2003.

35. J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
36. D. Chapman and L.P. Kaelbling, “Input generalization in delayed reinforcement learning: An algorithm and

performance comparisons,” in Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
(IJCAI-91), Sydney, Australia, pp. 726–731, August 1991.

37. Y. Freund and R.E. Shapire, “A decision-theoretic generalization of on-line learning and an application to
boosting,” Journal of Computer and System Sciences, 55(1), 119–139, 1997.

38. Y. Freund and R.E. Shapire, “A short introduction to boosting,” Journal of Japanese Society for Artificial
Intelligence, 14(5), 771–780, 1999.

39. D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, Wiley, New York, 4th
edition, 2006.

40. X.S. Zheng, G.W. McConkie, and Y.-C. Tai, “The effect of secondary tasks on drivers’ scanning behavior,” in
Proceedings of the 47nd Annual Meeting of the Human Factors and Ergonomics Society, pp. 1900–1903, October
2003.

41. D. Kahneman, Attention and Effort, Prentice-Hall, Englewood Cliffs, NJ, 1973.

Visual Monitoring of Driver Inattention

Luis M. Bergasa, Jesús Nuevo, Miguel A. Sotelo, Rafael Barea, and Elena Lopez

Department of Electronics, University of Alcala, CAMPUS. 28805 Alcalá de Henares (Madrid), Spain,
bergasa@depeca.uah.es, jnuevo@depeca.uah.es, sotelo@depeca.uah.es, barea@depeca.uah.es,
elena@depeca.uah.es

1 Introduction

The increasing number of traffic accidents due to driver inattention has become a serious problem for society.
Every year, about 45,000 people die and 1.5 million people are injured in traffic accidents in Europe. These
figures imply that one person out of every 200 European citizens is injured in a traffic accident every
year and that around one out 80 European citizens dies 40 years short of the life expectancy. It is known
that the great majority of road accidents (about 90–95%) are caused by human error. More recent data
has identified inattention (including distraction and falling asleep at the wheel) as the primary cause of
accidents, accounting for at least 25% of the crashes [15]. Road safety is thus a major European health
problem. In the “White Paper on European Transport Policy for 2010,” the European Commission declares
the ambitious objective of reducing by 50% the number of fatal accidents on European roads by 2010
(European Commission, 2001).

According to the U.S. National Highway Traffic Safety Administration (NHTSA), falling asleep while
driving is responsible for at least 100,000 automobile crashes annually. An annual average of roughly 70,000
nonfatal injuries and 1,550 fatalities results from these crashes [32, 33]. These figures only cover crashes hap-
pening between midnight and 6 a.m., involving a single vehicle and a sober driver traveling alone, including
the car departing from the roadway without any attempt to avoid the crash. These figures underestimate
the true level of the involvement of drowsiness because they do not include crashes at daytime hours involv-
ing multiple vehicles, alcohol, passengers or evasive maneuvers. These statistics do not deal with crashes
caused by driver distraction either, which is believed to be a larger problem. Between 13 and 50% of crashes
are attributed to distraction, resulting in as many as 5,000 fatalities per year. Increasing use of in-vehicle
information systems (IVISs) such as cell phones, GPS navigation systems, satellite radios and DVDs has
exacerbated the problem by introducing additional sources of distraction. That is, the more IVISs the more
sources of distraction from the most basic task at hand, i.e., driving the vehicle. Enabling drivers to benefit
from IVISs without diminishing safety is an important challenge.

This chapter presents an original system for monitoring driver inattention and alerting the driver when
he is not paying adequate attention to the road in order to prevent accidents. According to [40] the driver
inattention status can be divided into two main categories: distraction detection and identifying sleepiness.
Likewise, distraction can be divided in two main types: visual and cognitive. Visual distraction is straight-
forward, occurring when drivers look away from the roadway (e.g., to adjust a radio). Cognitive distraction
occurs when drivers think about something not directly related to the current vehicle control task (e.g.,
conversing on a hands-free cell phone or route planning). Cognitive distraction impairs the ability of drivers
to detect targets across the entire visual scene and causes gaze to be concentrated in the center of the driving
scene. This work is focused in the sleepiness category. However, sleepiness and cognitive distraction partially
overlap since the context awareness of the driver is related to both, which represent mental occurrences in
humans [26].

The rest of the chapter is structured as follows. In Sect. 2 we present a review of the main previous work in
this direction. Section 3 describes the general system architecture, explaining its main parts. Experimental

L.M. Bergasa et al.: Visual Monitoring of Driver Inattention, Studies in Computational Intelligence (SCI) 132, 19–37 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

20 L.M. Bergasa et al.

results are shown in Sect. 4. Section 5 discusses weaknesses and improvements of the system. Finally, in
Sect. 6 we present the conclusions and future work.

2 Previous Work

In the last few years many researchers have been working on systems for driver inattention detection using
different techniques. The most accurate techniques are based on physiological measures like brain waves, heart
rate, pulse rate, respiration, etc. These techniques are intrusive, since they need to attach some electrodes on
the drivers, causing annoyance to them. Daimler-Chrysler has developed a driver alertness system, Distronic
[12], which evaluates the EEG (electroencephalographic) patterns of the driver under stress. In advanced
safety vehicle (ASV) project by Toyota (see in [24]), the driver must wear a wristband in order to measure
his heart rate. Others techniques monitor eyes and gaze movements using a helmet or special contact lens
[3]. These techniques, though less intrusive, are still not acceptable in practice.

A driver’s state of vigilance can also be characterized by indirect vehicle behaviors like lateral position,
steering wheel movements, and time to line crossing. Although these techniques are not intrusive they
are subject to several limitations such as vehicle type, driver experience, geometric characteristics, state
of the road, etc. On the other hand, these procedures require a considerable amount of time to analyze
user behaviors and thereby they do not work with the so-called micro-sleeps: when a drowsy driver falls
asleep for some seconds on a very straight road section without changing the lateral position of the vehicle
[21]. To this end we can find different experimental prototypes, but at this moment none of them has been
commercialized. Toyota uses steering wheel sensors (steering wheel variability) and pulse sensor to record the
heart rate, as mentioned above [24]. Mitsubishi has reported the use of steering wheel sensors and measures
of vehicle behavior (such as lateral position of the car) to detect driver drowsiness in their advanced safety
vehicle system [24]. Daimler Chrysler has developed a system based on vehicle speed, steering angle and
vehicle position relative to road delimitation (recorded by a camera) to detect if the vehicle is about to leave
the road [11]. Volvo Cars recently announced its Driver Alert Control system [39], that will be available on
its high-end models from 2008. This system uses a camera, a number of sensors and a central unit to monitor
the movements of the car within the road lane and to assess whether the driver is drowsy.

People in fatigue show some visual behaviors easily observable from changes in their facial features like
eyes, head, and face. Typical visual characteristics observable from the images of a person with reduced
alertness level include longer blink duration, slow eyelid movement, smaller degree of eye opening (or even
closed), frequent nodding, yawning, gaze (narrowness in the line of sight), sluggish facial expression, and
drooping posture. Computer vision can be a natural and non-intrusive technique for detecting visual char-
acteristics that typically characterize a driver’s vigilance from the images taken by a camera placed in front
of the user. Many researches have been reported in the literature on developing image-based driver alertness
using computer vision techniques. Some of them are primarily focused on head and eye tracking techniques
using two cameras [27, 38]. In [34] a system called FaceLAB developed by the company Seeing Machines
is presented. The 3D pose of the head and the eye-gaze direction are calculated accurately. FaceLAB also
monitors the eyelids, to determine eye opening and blink rates. With this information the system estimates
the driver’s fatigue level. According to FaceLab information, the system operates day and night but at night
the performance of the system decreases. All systems explained above rely on manual initialization of feature
points. The systems appear to be robust but the manual initialization is a limitation, although it simplifies
the whole problem of tracking and pose estimation.

There are other proposals that use only a camera. In [6] we can find a 2D pupil monocular tracking
system based on the differences in color and reflectivity between the pupil and iris. The system monitors
driving vigilance by studying the eyelid movement. Another successful system of head/eye monitoring and
tracking for drowsiness detection using one camera, which is based on color predicates, is presented in [37].
This system is based on passive vision techniques and its functioning can be problematical in poor or very
bright lighting conditions. Moreover, it does not work at night, when the monitoring is more important.

In order to work at nights some researches use active illumination based on infrared LED. In [36] a system
using 3D vision techniques to estimate and track the 3D line of sight of a person using multiple cameras

Visual Monitoring of Driver Inattention 21

is proposed. The method relies on a simplified eye model, and it uses the Purkinje images of an infrared
light source to determine eye location. With this information, the gaze direction is estimated. Nothing
about monitoring driver vigilance is presented. In [23] a system with active infrared LED illumination and a
camera is implemented. Because of the LED illumination, the method can easily find the eyes and based on
them, the system locates the rest of the facial features. They propose to analytically estimate the local gaze
direction based on pupil location. They calculate eyelid movement and face orientation to estimate driver
fatigue. Almost all the active systems reported in the literature have been tested in simulated environments
but not in real moving vehicles. A moving vehicle presents new challenges like variable lighting, changing
background and vibrations that must be taken into account in real systems. In [19] an industrial prototype
called Copilot is presented. This system uses infrared LED illumination to find the eyes and it has been
tested with truck’s drivers in real environments. It uses a simple subtraction process to find the eyes and it
only calculates a validated parameter called PERCLOS (percent eye closure), in order to measure driver’s
drowsiness. This system currently works under low light conditions. Recently, Seeing Machines has presented
a commercial system called driver state sensor (DSS) [35] for driver fatigue detection in transportation
operation. The system utilizes a camera and LEDs for night working. It calculates PERCLOS and obtains
a 93% correlation with drowsiness.

Systems relying on a single visual cue may encounter difficulties when the required visual features cannot
be acquired accurately or reliably, as happens in real conditions. Furthermore, a single visual cue may
not always be indicative of the overall mental condition [23]. The use of multiple visual cues reduces the
uncertainty and the ambiguity present in the information from a single source. The most recent research
in this direction use this hypothesis. The European project AWAKE (2001–2004) [22] proposes a multi-
sensor system adapted to the driver, the vehicle, and the environment in an integrated way. This system
merges, via an artificial intelligent algorithm, data from on-board driver monitoring sensors (such as an eyelid
camera and a steering grip sensor) as well as driver behavior data (i.e., from lane tracking sensor, gas/brake
and steering wheel positioning). The system must be personalized for each driver during a learning phase.
Another European project, SENSATION (2004–2007) [16] is been currently founded to continue research
of the AWAKE project in order to obtain a commercial system. The European project AIDE – Adaptive
Integrated Driver–Vehicle InterfacE (2004–2008) [15] works in this direction as well.

This chapter describes a real-time prototype system based on computer vision for monitoring driver
vigilance using active infrared illumination and a single camera placed on the car dashboard. We have
employed this technique because our goal is to monitor a driver in real conditions (vehicle moving) and in
a very robust and accurate way mainly at nights (when the probability to crash due to drowsiness is the
highest). The proposed system does not need manual initialization and monitors several visual behaviors that
typically characterize a person’s level of alertness while driving. In a different fashion than other previous
works, we have fused different visual cues from one camera using a fuzzy classifier instead of different cues
from different sensors. We have analyzed different visual behaviors that characterize a drowsy driver and
we have studied the best fusion for optimal detection. Moreover, we have tested our system during several
hours in a car moving on a motorway and with different users. The basics of this work were presented by
the authors in [5].

3 System Architecture

The general architecture of our system is shown in Fig. 1. It consists of four major modules: (1) Image acqui-
sition, (2) Pupil detection and tracking, (3) Visual behaviors and (4) Driver monitoring. Image acquisition
is based on a low-cost CCD micro-camera sensitive to near-IR. The pupil detection and tracking stage is
responsible for segmentation and image processing. Pupil detection is simplified by the “bright pupil” effect,
similar to the red eye effect in photography. Then, we use two Kalman filters in order to track the pupils
robustly in real-time. In the visual behaviors stage we calculate some parameters from the images in order
to detect some visual behaviors easily observable in people in fatigue: slow eyelid movement, smaller degree
of eye opening, frequent nodding, blink frequency, and face pose. Finally, in the driver monitoring stage we

22 L.M. Bergasa et al.

Fig. 1. General architecture

(a) Image obtained with
inner IR ring

(b) Image obtained with
outer IR ring

(c) Difference image

Fig. 2. Captured images and their subtraction

fuse all the individual parameters obtained in the previous stage using a fuzzy system, yielding the driver
inattentiveness level. An alarm is activated if this level is over a certain threshold.

3.1 Image Acquisition System

The purpose of this stage is to acquire the video images of the driver’s face. In this application the acquired
images should be relatively invariant to light conditions and should facilitate the eye detection and tracking
(good performance is necessary). The use of near-IR illuminator to brighten the driver’s face serves these
goals [25]. First, it minimizes the impact of changes in the ambient light. Second, the near-IR illumination
is not detected by the driver, and then, this does not suppose an interference with the user’s driving. Third,
it produces the bright pupil effect, which constitutes the foundation of our detection and tracking system. A
bright pupil is obtained if the eyes are illuminated with an IR illuminator beaming light along the camera
optical axis. At the IR wavelength, the retina reflects almost all the IR light received along the path back
to the camera, and a bright pupil effect will be produced in the image. If illuminated off the camera optical
axis, the pupils appear dark since the reflected light of the retina will not enter the camera lens. An example
of the bright/dark pupil effect can be seen in Fig. 2. This pupil effect is clear with and without glasses, with
contact lenses and it even works to some extent with sunglasses.

Figure 3 shows the image acquisition system configuration. It is composed by a miniature CCD camera
sensitive to near-IR and located on the dashboard of the vehicle. This camera focuses on the driver’s head for
detecting the multiple visual behaviors. The IR illuminator is composed by two sets of IR LEDs distributed
symmetrically along two concentric and circular rings. An embedded PC with a low cost frame-grabber is
used for video signal acquisition and signal processing. Image acquiring from the camera and LED excitation

Visual Monitoring of Driver Inattention 23

Fig. 3. Block diagram of the prototype

(a) Out-of-the-road lights
effect

(b) Vehicle lights effect (c) Sunlight effect (d) Sunlight effect with filter

Fig. 4. Effects of external lights in the acquisition system

is synchronized. The LED rings illuminate the driver’s face alternatively, one for each image, providing
different lighting conditions for almost the same scene.

Ring sizes has been empirically calculated in order to obtain a dark pupil image if the outer ring is
turned on and a bright pupil image if the inner ring is turned on. LEDs in the inner ring are as close as
possible to the camera, in order to maximize the “bright pupil” effect. The value of the outer ring radius is
a compromise between the resulting illumination, that improves as it is increased, and the available space
in the car’s dashboard. The symmetric position of the LEDs in the rings, around the camera optical axis,
cancels shadows generated by LEDs. The inner ring configuration obtains the bright pupil effect because the
center of the ring coincides with the camera optical axis, working as if there were an only LED located on
the optical axis of the lens. The outer ring provides ambient illumination that is used for contrast enhancing.
In spite of those LEDs producing the dark pupil effect, a glint can be observed on each pupil.

The explained acquisition system works very well under controlled light conditions, but real scenarios
present new challenges that must be taken into account. Lighting conditions were one of the most important
problems to solve in real tests. As our system is based on the reflection of the light emitted by the IR LEDs,
external light sources are the main source of noise. Three main sources can be considered, as are depicted in
Fig. 4: artificial light from elements just outside the road (such as light bulbs), vehicle lights, and sun light.
The effect of lights from elements outside the road mainly appears in the lower part of the image (Fig. 4a)
because they are situated above the height of the car and the beam enters the car with a considerable
angle. Then, this noise can be easily filtered. On the other hand, when driving on a double direction road,
vehicle lights directly illuminate the driver, increasing the pixels level quickly and causing the pupil effect to
disappear (Fig. 4b). Once the car has passed, the light level reduces very fast. Only after a few frames, the
automatic gain controller (AGC) integrated in the camera compensates the changes, so very light and dark
images are obtained, affecting the performance of the inner illumination system.

24 L.M. Bergasa et al.

Regarding the sun light, it only affects at day time but its effect changes as function of the weather
(sunny, cloudy, rainy, etc.) and the time of the day. With the exception of the sunset, dawn and cloudy days,
sun light hides the inner infrared illumination and then the pupil effect disappears (Fig. 4c). For minimizing
interference from light sources beyond the IR light emitted by our LEDs, a narrow band-pass filter, centered
at the LED wavelength, has been attached between the CCD and the lens. This filter solved the problem of
artificial lights and vehicle light almost completely, but it adds a new drawback for it reduces the intensity
of the image, and then the noise is considerably amplified by the AGC. The filter does not eliminate the sun
light interference, except for cases when the light intensity is very low. This is caused by the fact that the
power emitted by the sun in the band of the filter is able to hide the inner illumination. An image of this
case, taken by the sunset, is depicted in Fig. 4d. A possible solution for this problem could be the integration
of IR filters in the car glasses.

3.2 Pupil Detection and Tracking

This stage starts with pupil detection. As mentioned above, each pair of images contains an image with
bright pupil and another one with a dark pupil. The first image is then digitally subtracted from the second
to produce the difference image. In this image, pupils appear as the brightest parts in the image as can
be seen in Fig. 2. This method minimizes the ambient light influence by subtracting it in the generation of
the difference image. This procedure yields high contrast images where the pupils are easily found. It can be
observed that the glint produced by the outer ring of LEDs usually falls close to the pupil, with the same
grey level as the bright pupil. The shape of the pupil blob in the difference image is not a perfect ellipse
because the glint cuts the blob, affecting the modeling of the pupil blobs and, consequently, the calculation
depending on it, as will be explained later. This is the reason why the system only uses subtracted images
during initialization, and when light conditions are poor (this initialization time varies depending on the
driver and light conditions, but it was below 5 s for all test). In other cases, only the image obtained with
the inner ring is processed, increasing accuracy and reducing computation time.

Pupils are detected on the resulting image, by searching the entire image to locate two bright blobs that
satisfy certain constraints. The image is binarized, using an adaptive threshold, for detecting the brighter
blobs in the image.

A standard 8-connected components analysis [18] is then applied to the binarized difference image to
identify binary blobs that satisfy certain size and shape constraints. The blobs that are out of some size
constraints are removed, and for the others an ellipse model is fit to each one. Depending on their size,
intensity, position and distance, best candidates are selected, and all the possible pairs between them are
evaluated. The pair with the highest qualification is chosen as the detected pupils, and its centroids are
returned as the pupil positions.

One of the main characteristics of this stage is that it is applicable to any user without any supervised
initialization. Nevertheless, the reflection of the IR in the pupils under the same conditions varies from one
driver to another. Even for the same driver, the intensity depends on the gaze point, head position and
the opening of the eye. Apart from those factors, lighting conditions change with time, which modifies the
intensity of the pupils. On the other hand, the size of the pupils also depends on the user, and the distance to
the camera. To deal with those differences in order to be generic, our system uses an adaptive threshold in the
binarization stage. The parameters of the detected pupils are used to update the statistics that set thresholds
and margins in the detection process. Those statistics include size, grey level, position and apparent distance
and angle between pupils, calculated over a time window of 2 s. The thresholds also get their values modified
if the pupils are not found, widening the margins to make more candidates available to the system.

Another question related to illumination that is not usually addressed in the literature is the sensitivity
of the eye to IR emission. As the exposure time to the IR source increases, its power has to be reduced in
order to avoid damaging the internal tissues of the eye. This imposes a limit on the emission of the near-IR
LEDs. To calculate the power of our system, we have followed the recommendations of [1], based on IEC
825-1 and CENELEC 60825-1 infrared norms. With these limitations, no negative effects have been reported
in the drivers that collaborated in the tests.

Visual Monitoring of Driver Inattention 25

(a) Frame 187 (b) Frame 269 (c) Frame 354 (d) Frame 454 (e) Frame 517

(f) (g)

Fig. 5. Tracking results for a sequence

To continuously monitor the driver it is important to track his pupils from frame to frame after locating
the eyes in the initial frames. This can be done efficiently by using two Kalman filters, one for each pupil, in
order to predict pupil positions in the image. We have used a pupil tracker based on [23] but we have tested
it with images obtained from a car moving on a motorway. Kalman filters presented in [23] works reasonably
well under frontal face orientation with open eyes. However, it will fail if the pupils are not bright due to
oblique face orientations, eye closures, or external illumination interferences. Kalman filter also fails when
a sudden head movement occurs because the assumption of smooth head motion has not been fulfilled. To
overcome this limitation we propose a modification consisting on an adaptive search window, which size is
determined automatically, based on pupil position, pupil velocity, and location error. This way, if Kalman
filtering tracking fails in a frame, the search window progressively increases its size. With this modification,
the robustness of the eye tracker is significantly improved, for the eyes can be successfully found under eye
closure or oblique face orientation.

The state vector of the filter is represented as xt = (ct, rt,ut,vt), where (ct, rt) indicates the pupil
pixel position (its centroid) and (ut,vt) is its velocity at time t in c and r directions, respectively. Figure 5
shows an example of the pupil tracker working in a test sequence. Rectangles on the images indicate the
search window of the filter, while crosses indicate the locations of the detected pupils. Figure 5f, g draws the
estimation of the pupil positions for the sequence under test. The tracker is found to be rather robust for
different users without glasses, lighting conditions, face orientations and distances between the camera and
the driver. It automatically finds and tracks the pupils even with closed eyes and partially occluded eyes,
and can recover from tracking-failures. The system runs at 25 frames per second.

Performance of the tracker gets worse when users wear eyeglasses because different bright blobs appear
in the image due to IR reflections in the glasses, as can be seen in Fig. 6. Although the degree of reflection
on the glasses depends on its material and the relative position between the user’s head and the illuminator,
in the real tests carried out, the reflection of the inner ring of LEDs appears as a filled circle on the glasses,
of the same size and intensity as the pupil. The reflection of the outer ring appears as a circumference with
bright points around it and with similar intensity to the pupil. Some ideas for improving the tracking with
glasses are presented in Sect. 5. The system was also tested with people wearing contact lenses. In this case
no differences in the tracking were obtained compared to the drivers not wearing them.

26 L.M. Bergasa et al.

Fig. 6. System working with user wearing glasses

Fig. 7. Finite state machine for ocular measures

3.3 Visual Behaviors

Eyelid movements and face pose are some of the visual behaviors that reflect a person’s level of inattention.
There are several ocular measures to characterize sleepiness such as eye closure duration, blink frequency,
fixed gaze, eye closure/opening speed, and the recently developed parameter PERCLOS [14, 41]. This last
measure indicates the accumulative eye closure duration over time excluding the time spent on normal eye
blinks. It has been found to be the most valid ocular parameter for characterizing driver fatigue [24]. Face pose
determination is related to computation of face orientation and position, and detection of head movements.
Frequent head tilts indicate the onset of fatigue. Moreover, the nominal face orientation while driving is
frontal. If the driver faces in other directions for an extended period of time, it is due to visual distraction.
Gaze fixations occur when driver’s eyes are nearly stationary. Their fixation position and duration may relate
to attention orientation and the amount of information perceived from the fixated location, respectively.
This is a characteristic of some fatigue and cognitive distraction behaviors and it can be measured by
estimating the fixed gaze. In this work, we have measured all the explained parameters in order to evaluate
its performance for the prediction of the driver inattention state, focusing on the fatigue category.

To obtain the ocular measures we continuously track the subject’s pupils and fit two ellipses, to each of
them, using a modification of the LIN algorithm [17], as implemented in the OpenCV library [7]. The degree
of eye opening is characterized by the pupil shape. As eyes close, the pupils start getting occluded by the
eyelids and their shapes get more elliptical. So, we can use the ratio of pupil ellipse axes to characterize
the degree of eye opening. To obtain a more robust estimation of the ocular measures and, for example, to
distinguish between a blink and an error in the tracking of the pupils, we use a Finite State Machine (FSM)
as we depict in Fig. 7. Apart from the init state, five states have been defined: tracking ok, closing, closed,
opening and tracking lost. Transitions between states are achieved from frame to frame as a function of the
width-height ratio of the pupils.

Visual Monitoring of Driver Inattention 27

The system starts at the init state. When the pupils are detected, the FSM passes to the tracking ok state
indicating that the pupil’s tracking is working correctly. Being in this state, if the pupils are not detected in
a frame, a transition to the tracking lost state is produced. The FSM stays in this state until the pupils are
correctly detected again. In this moment, the FSM passes to the tracking ok state. If the width-height ratio
of the pupil increases above a threshold (20% of the nominal ratio), a closing eye action is detected and the
FSM changes to the closing state. Because the width-height ratio may increase due to other reasons, such as
segmentation noise, it is possible to return to the tracking ok state if the ratio does not constantly increase.

When the pupil ratio is above the 80% of its nominal size or the pupils are lost, being in closing state, a
transition of the FSM to closed state is provoked, which means that the eyes are closed. A new detection of the
pupils from the closed state produces a change to opening state or tracking ok state, depending on the degree
of opening of the eyelid. If the pupil ratio is between the 20 and the 80% a transition to the opening state is
produced, if it is below the 20% the system pass to the tracking ok state. Being in closed state, a transition
to the tracking lost state is produced if the closed time goes over a threshold. A transition from opening to
closing is possible if the width-height ratio increases again. Being in opening state, if the pupil ratio is below
the 20% of the nominal ratio a transition to tracking ok state is produced.

Ocular parameters that characterize eyelid movements have been calculated as a function of the FSM.
PERCLOS is calculated from all the states, except from the tracking lost state, analyzing the pupil width-
height ratio. We consider that an eye closure occurs when the pupil ratio is above the 80% of its nominal
size. Then, the eye closure duration measure is calculated as the time that the system is in the closed state.
To obtain a more robust measurement of the PERCLOS, we compute this running average. We compute
this parameter by measuring the percentage of eye closure in a 30-s window. Then, PERCLOS measure
represents the time percentage that the system is at the closed state evaluated in 30 s and excluding the
time spent in normal eye blinks. Eye closure/opening speed measures represent the amount of time needed
to fully close the eyes or to fully open the eyes. Then, eye closure/opening speed is calculated as the time
during which pupil ratio passes from 20 to 80% or from 80 to 20% of the nominal ratio, respectively. In
other words, the time that the system is in the closing state or opening state, respectively. Blink frequency
measure indicates the number of blinks detected in 30 s. A blink action will be detected as a consecutive
transition among the following states: closing, closed, and opening, given that this action was carried out in
less than a predefined time. Many physiology studies have been carried out on the blinking duration. We
have used the recommendation value derived in [31] but this could be easily modified to conform to other
recommended value. Respecting the eye nominal size used for the ocular parameters calculation, it varies
depending on the driver. To calculate its correct value a histogram of the eyes opening degree for the last
2,000 frames not exhibiting drowsiness is obtained. The most frequent value on the histogram is considered
to be the nominal size. PERCLOS is computed separately in both eyes and the final value is obtained as the
mean of both.

Besides, face pose can be used for detecting fatigue or visual distraction behaviors among the categories
defined for inattentive states. The nominal face orientation while driving is frontal. If the driver’s face
orientation is in other directions for an extended period of time it is due to visual distractions, and if it
occurs frequently (in the case of various head tilts), it is a clear symptom of fatigue. In our application, the
precise degree of face orientation for detecting this behaviors is not necessary because face poses in both
cases are very different from the frontal one. What we are interested in is to detect whether the driver’s head
deviates too much from its nominal position and orientation for an extended period of time or too frequently
(nodding detection).

This work provides a novel solution to the coarse 3D face pose estimation using a single un-calibrated
camera, based on the method proposed in [37]. We use a model-based approach for recovering the face pose
by establishing the relationship between 3D face model and its two-dimensional (2D) projections. A weak
perspective projection is assumed so that face can be approximated as a planar object with facial features,
such as eyes, nose and mouth, located symmetrically on the plane. We have performed a robust 2D face
tracking based on the pupils and the nostrils detections on the images. Nostrils detection has been carried
out in a way similar to that used for the pupils’ detection. From these positions the 3D face pose is estimated,
and as a function of it, face direction is classified in nine areas, from upper left to lower right.

28 L.M. Bergasa et al.

This simple technique works fairly well for all the faces we tested, with left and right rotations specifically.
A more detailed explanation about our method was presented by the authors in [5]. As the goal is to detect
whether the face pose of the driver is not frontal for an extended period of time, this has been computed
using only a parameter that gives the percentage of time that the driver has been looking at the front, over
a 30-s temporal window.

Nodding is used to quantitatively characterize one’s level of fatigue. Several systems have been reported
in the literature to calculate this parameter from a precise estimation of the driver’s gaze [23, 25]. However,
these systems have been tested in laboratories but not in real moving vehicles. The noise introduced in real
environments makes these systems, based on exhaustive gaze calculation, work improperly. In this work, a
new technique based on position and speed data from the Kalman filters used to track the pupils and the
FSM is proposed. This parameter measures the number of head tilts detected in the last 2min. We have
experimentally observed that when a nodding is taking place, the driver closes his or her eyes and the head
goes down to touch the chest or the shoulders. If the driver wakes up in that moment, raising his head, the
values of the vertical speed of the Kalman filters will change their sign, as the head rises. If the FSM is in
closed state or in tracking lost and the pupils are detected again, the system saves the speeds of the pupils
trackers for ten frames. After that, the data is analyzed to find if it conforms to that of a nodding. If so, the
first stored value is saved and used as an indicator of the “magnitude” of the nodding.

Finally, one of the remarkable behaviors that appear in drowsy drivers or cognitively distracted drivers
is fixed gaze. A fatigued driver looses the focus of the gaze, not paying attention to any of the elements of
the traffic. This loss of concentration is usually correlated with other sleepy behaviors such as a higher blink
frequency, a smaller degree of eye opening and nodding. In the case of cognitive distraction, however, fixed
gaze is decoupled from other clues. As for the parameters explained above, the existing systems calculate this
parameter from a precise estimation of the driver’s gaze and, consequently, experience the same problems. In
order to develop a method to measure this behavior in a simple and robust way, we present a new technique
based on the data from the Kalman filters used to track the pupils.

An attentive driver moves his eyes frequently, focusing to the changing traffic conditions, particularly
if the road is busy. This has a clear reflection on the difference between the estimated position from the
Kalman filters and the measured ones.

Besides, the movements of the pupils for an inattentive driver present different characteristics. Our system
monitors the position on the x coordinate. Coordinate y is not used, as the difference between drowsy and
awake driver is not so clear. The fixed gaze parameter is computed locally over a long period of time, allowing
for freedom of movement of the pupil over time. We refer here to [5] for further details of the computation
of this parameter.

This fixed gaze parameter may suffer from the influence of vehicle vibrations or bumpy roads. Modern
cars have reduced vibrations to a point that the effect is legible on the measure. The influence of bumpy roads
depends on their particular characteristics. If bumps are occasional, it will only affect few values, making
little difference in terms of the overall measure. On the other hand, if bumps are frequent and their magnitude
is high enough, the system will probably fail to detect this behavior. Fortunately, the probability for a driver
to get distracted or fall asleep is significantly lower in very bumpy roads. The results obtained for all the
test sequences with this parameter are encouraging. In spite of using the same a priori threshold for different
drivers and situations, the detection was always correct. Even more remarkable was the absence of false
positives.

3.4 Driver Monitoring

This section describes the method to determine the driver’s visual inattention level from the parameters
obtained in the previous section. This process is complicated because several uncertainties may be present.
First, fatigue and cognitive distractions are not observable and they can only be inferred from the available
information. In fact, this behavior can be regarded as the result of many contextual variables such as
environment, health, and sleep history. To effectively monitor it, a system that integrates evidences from
multiple sensors is needed. In the present work, several fatigue visual behaviors are subsequently combined
to form an inattentiveness parameter that can robustly and accurately characterize one’s vigilance level.

Visual Monitoring of Driver Inattention 29

The fusion of the parameters has been obtained using a fuzzy system. We have chosen this technique for its
well known linguistic concept modeling ability. Fuzzy rule expressions are close to expert natural language.
Then, a fuzzy system manages uncertain knowledge and infers high level behaviors from the observed data.
As an universal approximator, fuzzy inference system can be used for knowledge induction processes. The
objective of our fuzzy system is to provide a driver’s inattentiveness level (DIL) from the fusion of several
ocular and face pose measures, along with the use of expert and induced knowledge. This knowledge has
been extracted from the visual observation and the data analysis of the parameters in some simulated fatigue
behavior carried out in real conditions (driving a car) with different users. The simulated behaviors have
been done according to the physiology study of the US Department of Transportation, presented in [24].
We do not delve into the psychology of driver visual attention, rather we merely demonstrate that with the
proposed system, it is possible to collect driver information data and infer whether the driver is attentive
or not.

The first step in the expert knowledge extraction process is to define the number and nature of the vari-
ables involved in the diagnosis process according to the domain expert experience. The following variables are
proposed after appropriate study of our system: PERCLOS, eye closure duration, blink frequency, nodding
frequency, fixed gaze and frontal face pose. Eye closing and opening variables are not being used in our input
fuzzy set because they mainly depend on factors such as segmentation and correct detection of the eyes, and
they take place in the length of time comparable to that of the image acquisition. As a consequence, they
are very noisy variables. As our system is adaptive to the user, the ranges of the selected fuzzy inputs are
approximately the same for all users. The fuzzy inputs are normalized, and different linguistic terms and its
corresponding fuzzy sets are distributed in each of them using induced knowledge based on the hierarchical
fuzzy partitioning (HFP) method [20]. Its originality lies in not yielding a single partition, but a hierarchy
including partitions with various resolution levels based on automatic clustering data. Analyzing the fuzzy
partitions obtained by HFP, we determined that the best suited fuzzy sets and the corresponding linguistic
terms for each input variable are those shown in Table 1. For the output variable (DIL), the fuzzy set and
the linguistic terms were manually chosen. The inattentiveness level range is between 0 and 1, with a normal
value up to 0.5. When its value is between 0.5 and 0.75, driver’s fatigue is medium, but if the DIL is over
0.75 the driver is considered to be fatigued, and an alarm is activated. Fuzzy sets of triangular shape were
chosen, except at the domain edges, where they were semi-trapezoidal.

Based on the above selected variables, experts state different pieces of knowledge (rules) to describe certain
situations connecting some symptoms with a certain diagnosis. These rules are of the form “If condition,
Then conclusion”, where both premise and conclusion use the linguistic terms previously defined, as in the
following example:

• IF PERCLOS is large AND Eye Closure Duration is large, THEN DIL is large

In order to improve accuracy and system design, automatic rule generation and its integration in the
expert knowledge base were considered. The fuzzy system implementation used the licence-free tool Knowl-
edge Base Configuration Tool (KBCT) [2] developed by the Intelligent Systems Group of the Polytechnics
University of Madrid (UPM). A more detailed explanation of this fuzzy system can be found in [5].

Table 1. Fuzzy variables

Variable Type Range Labels Linguistic terms

PERCLOS In [0.0, 1.0] 5 Small, medium small, medium, medium large, large
Eye closure duration In [1.0–30.0] 3 Small, medium, large
Blink freq. In [1.0–30.0] 3 Small, medium, large
Nodding freq. In [0.0–8.0] 3 Small, medium, large
Face position In [0.0–1.0] 5 Small, medium small, medium, medium large, large
Fixed gaze In [0.0–0.5] 5 Small, medium small, medium, medium large, large
DIL Out [0.0–1.0] 5 Small, medium small, medium, medium large, large

30 L.M. Bergasa et al.

4 Experimental Results

The goal of this section is to experimentally demonstrate the validity of our system in order to detect fatigue
behaviors in drivers. Firstly, we show some details about the recorded video sequences used for testing, then,
we analyze the parameters measured for one of the sequences. Finally, we present the performance of the
detection of each one of the parameters, and the overall performance of the system.

4.1 Test Sequences

Ten sequences were recorded in real driving situations over a highway and a two-direction road. Each sequence
was obtained for a different user. The images were obtained using the system explained in Sect. 3.1. The
drivers simulated some drowsy behaviors according to the physiology study of the US Department of Trans-
portation presented in [24]. Each user drove normally except in one or two intervals where the driver simulated
fatigue. Simulating fatigue allows for the system to be tested in a real motorway, with all the sources of noise
a deployed system would face. The downside is that there may be differences between an actual drowsy
driver and a driver mimicking the standard drowsy behavior, as defined in [24]. We are currently working
on testing the system in a truck simulator.

The length of the sequences and the fatigue simulation intervals are shown in Table 2. All the sequences
were recorded at night except for sequence number 7 that was recorded at day, and sequence number 5
that was recorded at sunset. Sequences were obtained with different drivers not wearing glasses, with the
exception of sequence 6, that was recorded for testing the influence of the glasses in real driving conditions.

4.2 Parameter Measurement for One of the Test Sequences

The system is currently running on a PC Pentium4 (1.8Ghz) with Linux kernel 2.6.18 in real time (25 pairs
of frames/s) with a resolution of 640×480 pixels. Average processing time per pair of frames is 11.43ms.
Figure 8 depicts the parameters measured for sequence number 9. This is a representative test example with
a duration of 465 s where the user simulates two fatigue behaviors separated by an alertness period. As can
be seen, until second 90, and between the seconds 195 and 360, the DIL is below 0.5 indicating an alertness
state. In these intervals the PERCLOS is low (below 0.15), eye closure duration is low (below the 200ms),
blink frequency is low (below two blinks per 30-s window) and nodding frequency is zero. These ocular
parameters indicate a clear alert behavior. The frontal face position parameter is not 1.0, indicating that
the predominant position of the head is frontal, but that there are some deviations near the frontal position,
typical of a driver with a high vigilance level. The fixed gaze parameter is low because the eyes of the driver
are moving caused by a good alert condition. DIL increases over the alert threshold during two intervals
(from 90 to 190 and from 360 to 565 s) indicating two fatigue behaviors. In both intervals the PERCLOS
increases from 0.15 to 0.4, the eye closure duration goes up to 1,000ms, and the blink frequency parameter

Table 2. Length of simulated drowsiness sequences

Seq. Num. Drowsiness behavior time (s) Alertness behavior time (s) Total time (s)

1 394 (two intervals: 180 +214) 516 910
2 90 (one interval) 210 300
3 0 240 240
4 155 (one interval) 175 330
5 160 (one interval) 393 553
6 180 (one interval) 370 550
7 310 (two intervals: 150 +160) 631 941
8 842 (two intervals: 390 +452) 765 1,607
9 210 (two intervals: 75+ 135) 255 465

10 673 (two intervals: 310 +363) 612 1,285

Visual Monitoring of Driver Inattention 31

Fig. 8. Parameters measured for the test sequence number 9

Table 3. Parameter measurement performance

Parameters Total % correct

PERCLOS 93.1
Eye closure duration 84.4
Blink freq. 79.8
Nodding freq. 72.5
Face pose 87.5
Fixed gaze 95.6

increases from 2 to 5 blinks. The frontal face position is very close to 1.0 because the head position is fixed
and frontal. The fixed gaze parameter increases its value up to 0.4 due to the narrow gaze in the line of sight
of the driver. This last variation indicates a typical loss of concentration, and it takes place before other
sleepy parameters could indicate increased sleepiness, as can be observed. The nodding is the last fatigue
effect to appear. In the two fatigue intervals a nodding occurs after the increase of the other parameters,
indicating a low vigilance level. This last parameter is calculated over a temporal window of 2 min, so its
value remains stable most of the time.

This section described an example of parameter evolution for two simulated fatigue behaviors of one
driver. Then, we analyzed the behaviors of other drivers in different circumstances, according to the video
tests explained above. The results obtained are similar to those shown for sequence number 9. Overall results
of the system are explained in what follows.

4.3 Parameter Performance

The general performance of the measured parameters for a variety of environments with different drivers,
according to the test sequences, is presented in Table 3. Performance was measured by comparing the
algorithm results to results obtained by manually analyzing the recorded sequences on a frame-by-frame
basis. Each frame was individually marked with the visual behaviors the driver exhibited, if any. Inaccuracies
of this evaluation can be considered negligible for all parameters. Eye closure duration is not easy to evaluate
accurately, as the duration of some quick blinks is around 5–6 frames at the rate of 25 frames per second
(fps), and the starting of the blink can fall between two frames. However, the number of quick blinks is not
big enough to make further statistical analysis necessary.

For each parameter the total correct percentage for all sequences excluding sequence number 6 (driver
wearing glasses) and sequence number 7 (recorded during the day) is depicted. Then, this column shows
the parameter detection performance of the system for optimal situations (driver without glasses driving at

32 L.M. Bergasa et al.

night). The performance gets considerably worse by day and it dramatically decreases when drivers wear
glasses.

PERCLOS results are quite good, obtaining a total correct percentage of 93.1%. It has been found to
be a robust ocular parameter for characterizing driver fatigue. However, it may fail sometimes, for example,
when a driver falls asleep without closing her eyes. Eye closure duration performance (84.4%) is a little worse
than that of the PERCLOS, because the correct estimation of the duration is more critical. The variation
on the intensity when the eye is partially closed with regard to the intensity when it is open complicates the
segmentation and detection. This causes the frame count for this parameter to be usually less than the real
one. These frames are considered as closed time. Measured time is slightly over the real time, as a result
of delayed detection. Performance of blink frequency parameter is about 80% because some quick blinks
are not detected at 25 fps. Then, the three explained parameters are clearly correlated almost linearly, and
PERCLOS is the most robust and accurate one.

Nodding frequency results are the worst (72.5%), as the system is not sensible to noddings in which
the driver rises her head and then opens her eyes. To reduce false positives, the magnitude of the nodding
(i.e., the absolute value of the Kalman filter speed), must be over a threshold. In most of the non-detected
noddings, the mentioned situation took place, while the magnitude threshold did not have any influence on
any of them. The ground truth for this parameter was obtained manually by localizing the noddings on the
recorded video sequences. It is not correlated with the three previous parameters, and it is not robust enough
for fatigue detection. Consequently, it can be used as a complementary parameter to confirm the diagnosis
established based on other more robust methods.

The evaluation of the face direction provides a measure of alertness related to drowsiness and visual
distractions. This parameter is useful for both detecting the pose of the head not facing the front direction
and the duration of the displacement. The results can be considered fairly good (87.5%) for a simple model
that requires very little computation and no manual initialization. The ground truth in this case was obtained
by manually looking for periods in which the driver is not clearly looking in front in the video sequences,
and comparing their length to that of the periods detected by the system. There is no a clear correlation
between this parameter and the ocular ones for fatigue detection. This would be the most important cue in
case of visual distraction detection.

Performance of the fixed gaze monitoring is the best of the measured parameters (95.6%). The maxi-
mum values reached by this parameter depend on users’ movements and gestures while driving, but a level
above 0.05 is always considered to be an indicator of drowsiness. Values greater than 0.15 represent high
inattentiveness probability. These values were determined experimentally. This parameter did not have false
positives and is largely correlated with the frontal face direction parameter. On the contrary, it is not clearly
correlated with the rest of the ocular measurements. For cognitive distraction analysis, this parameter would
be the most important cue, as this type of distraction does not normally involve head or eye movements.
The ground truth for this parameter was manually obtained by analyzing eye movements frame by frame
for the intervals where a fixed gaze behavior was being simulated. We can conclude from these data that
fixed gaze and PERCLOS are the most reliable parameters for characterizing driver fatigue, at least for our
simulated fatigue study.

All parameters presented in Table 3 are fused in the fuzzy system to obtain the DIL for final evaluation
of sleepiness. We compared the performance of the system using only the PERCLOS parameter and the
DIL(using all of the parameters), in order to test the improvements of our proposal with respect to the
most widely used parameter for characterizing driver drowsiness. The system performance was evaluated by
comparing the intervals where the PERCLOS/DIL was above a certain threshold to the intervals, manually
analyzed over the video sequences, in which the driver simulates fatigue behaviors. This analysis consisted
of a subjective estimation of drowsiness by human observers, based on the Wierwille test [41].

As can be seen in Table 4, correct detection percentage for DIL is very high (97%). It is higher than the
obtained using only PERCLOS, for which the correct detection percentage is about the 90% for our tests.
This is due to the fact that fatigue behaviors are not the same for all drivers. Further, parameter evolution
and absolute values from the visual cues differ from user to user. Another important fact is the delay between
the moment when the driver starts his fatigue behavior simulation and when the fuzzy system detects it.
This is a consequence of the window spans used in parameter evaluation. Each parameter responds to a

Visual Monitoring of Driver Inattention 33

Table 4. Sleepiness detection performance

Parameter Total % correct

PERCLOS 90
DIL 97

different stage in the fatigue behavior. For example, fixed gaze behavior appears before PERCLOS starts
to increase, thus rising the DIL to a value where a noticeable increment of PERCLOS would rise an alarm
in few seconds. This is extensible to the other parameters. Using only the PERCLOS would require much
more time to activate an alarm (tens of seconds), especially if the PERCLOS increases more slowly for some
drivers. Our system provides an accurate characterization of a driver’s level of fatigue, using multiple visual
parameters to resolve the ambiguity present in the information from a single parameter. Additionally, the
system performance is very high in spite of the partial errors associated to each input parameter. This was
achieved using redundant information.

5 Discussion

It has been shown that the system’s weaknesses can be almost completely attributed to the pupil detection
strategy, because it is the most sensitive to external interference. As it has been mentioned above, there are
a series of situations where the pupils are not detected and tracked robustly enough. Pupil tracking is based
on the “bright pupil” effect, and when this effect does not appear clearly enough on the images, the system
can not track the eyes. Sunlight intensity occludes the near-IR reflected from the driver’s eyes. Fast changes
in illumination that the Automatic Gain Control in the camera can not follow produce a similar result. In
both cases the “bright pupil” effect is not noticeable in the images, and the eyes can not be located. Pupils
are also occluded when the driver’s eyes are closed. It is then not possible to track the eyes if the head
moves during a blink, and there is an uncertainty of whether the eyes may still be closed or they may have
opened and appeared in a position on the image far away from where they were a few frames before. In this
situation, the system would progressively extend the search windows and finally locate the pupils, but in
this case the measured duration of the blink would not be correct. Drivers wearing glasses pose a different
problem. “Bright pupil” effect appears on the images, but so do the reflections of the LEDs from the glasses.
These reflections are very similar to the pupil’s, making detection of the correct one very difficult.

We are exploring alternative approaches to the problem of pupil detection and tracking, using methods
that are able to work 24/7 and in real time, and that yield accurate enough results to be used in other
modules of the system. A possible solution is to use an eye or face tracker that does not rely on the “bright
pupil” effect. Also, tracking the whole face, or a few parts of it, would make it possible to follow its position
when eyes are closed, or occluded.

Face and eye location is an extensive field in computer vision, and multiple techniques have been devel-
oped. In recent years, probably the most successful have been texture-based methods and machine learning.
A recent survey that compares some of these methods for eye localization can be found in [8]. We have
explored the feasibility of using appearance (texture)-based methods, such as Active Appearance Models
(AAM) [9]. AAM are generative models, that try to parameterize the contents of an image by generating a
synthetic image as close as possible to the given one. The synthetic image is obtained from a model consisting
of both appearance and shape. These appearance and shape are learned in a training process, and thus can
only represent a constrained range of possible appearances and deformations. They are represented by a
series of orthogonal vectors, usually obtained using Principal Component Analysis (PCA), that form a base
in the appearance and deformation spaces.

AAMs are linear in both shape and appearance, but are nonlinear in terms of pixel intensities. The shape
of the AAM is defined as the coordinates of the v vertices of the shape

s = (x1, y1, x2, y2, · · · , xv, yv)t (1)

34 L.M. Bergasa et al.

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

400

Fig. 9. A triangulated shape

and can be instantiated from the vector base simply as:

s = s0 +
n∑

i=1

pi · si (2)

where s0 is the base shape and si are the shape vectors. Appearance is instantiated in the same way

A(x) = A0(x) +
m∑

i=1

λi · Ai(x) (3)

where A0(x) is the base appearance, Ai(x) are the appearance vectors and λi are the weights of these vectors.
The final model instantiation is obtained by warping the appearance A(x), whose shape is s0, so it

conforms to the shape s. This is usually done by triangulating the vertices of the shape, using Delaunay [13]
or another triangulation algorithm, as shown in Fig. 9. The appearance that falls in each triangle is affine
warped independently, accordingly to the position of the vertices of the triangle in s0 and s.

The purpose of fitting the model to a given image is to obtain the parameters that minimize the error
between the image I and the model instance:

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x) − I(W(x;p))
]2

(4)

where W(x;p) is a warp defined over the pixel positions x by the shape parameters p.
These parameters can be then analyzed to gather interesting data, in our case, the position of the eyes

and head pose. Minimization is done using the Gauss–Newton method, or some efficient variations, such as
the inverse compositional algorithm [4, 28].

We tested the performance and robustness of the Active Appearance Models on the same in-car sequences
described above. AAMs perform well in sequences where the IR-based system did not, such as sequence 6,
where the driver is wearing glasses (Figs. 10a, b), and is able to work with sunlight (10c), and track the face
under fast illumination changes (10d–f). Also, as the model covers most of the face, the difference between
a blink and a tracking loss is clearer, as the model can be fitted when eyes are either open or closed.

On our tests, however, AAM was only fitted correctly when the percentage of occlusion (or self-occlusion,
due to head turns) of the face was below 35% of the face. It was also able to fit with low error although the
position of the eyes was not determined with the required precision (i.e., the triangles corresponding to the
pupil were positioned closer to the corner of the eye than to the pupil). The IR-based system could locate
and track an eye when the other eye was occluded, which the AAM-based system is not able to do. More
detailed results can be found on [30].

Overall results of face tracking and eye localization with AAM are encouraging, but the mentioned
shortcomings indicate that improved robustness is necessary. Constrained Local Models (CLM) are models
closely related to AAM, that have shown improved robustness and accuracy [10]. Instead of covering the
whole face, CLM only use small rectangular patches placed in specific points that are interesting for its
characteristic appearance or high contrast. Constrained Local Models are trained in the same way as AAMs,
and both a shape and appearance vector bases are obtained.

Visual Monitoring of Driver Inattention 35

(a) (b) (c)

(d) (e) (f)

Fig. 10. Fitting results with glasses and sunlight

Fig. 11. A constrained local model fitted over a face

Fitting the CLM to an image is done in two steps. First, the same minimization that was used for AAMs
is performed, with the difference that now no warping is applied over the rectangles. Those are only displaced
over the image. In the second step, the correlation between the patches and the image is maximized, with
an iterative algorithm, typically the Nelder–Mead simplex algorithm [29].

The use of small patches and the two-step fitting algorithm make CLM more robust and efficient
than AAM. See Fig. 11 for an example. The CLM is a novel technique that performs well in controlled
environments, but that has to be thoroughly tested in challenging operation scenarios.

6 Conclusions and Future Work

We have developed a non-intrusive prototype computer vision system for real-time monitoring of driver’s
fatigue. It is based on a hardware system for real time acquisition of driver’s images using an active IR illu-
minator and the implementation of software algorithms for real-time monitoring of the six parameters that

36 L.M. Bergasa et al.

better characterize the fatigue level of a driver. These visual parameters are PERCLOS, eye closure duration,
blink frequency, nodding frequency, face pose and fixed gaze. In an attempt to effectively monitor fatigue,
a fuzzy classifier was implemented to merge all these parameters into a single Driver Inattentiveness Level.
Monitoring distractions (both visual and cognitive) would be possible using this system. The system devel-
opment has been discussed. The system is fully autonomous, with automatic (re)initializations if required.
It was tested with different sequences recorded in real driving condition with different users during several
hours. In each of them, several fatigue behaviors were simulated during the test. The system works robustly
at night for users not wearing glasses, yielding accuracy of 97%. Performance of the system decreases during
the daytime, especially in bright days, and at the moment it does not work with drivers wearing glasses. A
discussion about improvements of the system in order to overcome these weaknesses has been included.

The results and conclusions obtained support our approach to the drowsiness detection problem. In the
future the results will be completed with actual drowsiness data. We have the intention of testing the system
with more users for long periods of time, to obtain real fatigue behaviors. With this information we will
generalize our fuzzy knowledge base. Then, we would like to improve our vision system with some of the
techniques mentioned in the previous section, in order to solve the problems of daytime operation and to
improve the solution for drivers wearing glasses. We also plan to add two new sensors (a steering wheel sensor
and a lane tracking sensor) for fusion with the visual information to achieve correct detection, especially at
daytime.

Acknowledgements

This work has been supported by grants TRA2005-08529-C02-01 (MOVICON Project) and PSE-370100-
2007-2 (CABINTEC Project) from the Spanish Ministry of Education and Science (MEC). J. Nuevo is also
working under a researcher training grant from the Education Department of the Comunidad de Madrid and
the European Social Fund.

References

1. Inc. Agilent Technologies. Application Note 1118: Compliance of Infrared Communication Products to IEC 825-1
and CENELEC EN 60825-1, 1999.

2. J.M. Alonso, S. Guillaume, and L. Magdalena. KBCT, knowledge base control tool, 2003. URL
http://www.mat.upm.es/projects/advocate/en/index.htm

3. Anon. Perclos and eyetracking: Challenge and opportunity. Technical report, Applied Science Laboratories,
Bedford, MA, 1999. URL http://www.a-s-l.com

4. S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer
Vision, 56(3):221–255, March 2004.

5. L.M. Bergasa, J. Nuevo, M.A. Sotelo, R. Barea, and M.E. Lopez. Real-time system for monitoring driver vigilance.
Intelligent Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, 7(1):63–77, 2006.

6. S. Boverie, J.M. Leqellec, and A. Hirl. Intelligent systems for video monitoring of vehicle cockpit. In International
Congress and Exposition ITS. Advanced Controls and Vehicle Navigation Systems, pp. 1–5, 1998.

7. G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based computer vision with intel’s open source computer
vision library. Intel Technology Journal, 09(02), May 2005.

8. P. Campadelli, R. Lanzarotti, and G. Lipori. Eye localization: a survey. In NATO Science Series, 2006.
9. T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE Transaction on Pattern Analysis

an Machine Intelligence, 23:681–685, 2001.
10. D. Cristinacce and T. Cootes. Feature Detection and Tracking with Constrained Local Models. Proceedings of

the British Machine Vision Conf, 2006.
11. DaimerChryslerAG. The electronic drawbar, June 2001. URL http://www.daimlerchrysler.com
12. DaimlerChrysler. Driver assistant with an eye for the essentials. URL http://www.daimlerchrysler.com/dccom
13. B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:

793–800, 1934.
14. D. Dinges and F. Perclos: A valid psychophysiological measure of alertness as assesed by psychomotor vigilance.

Technical Report MCRT-98-006, Federal Highway Administration. Office of motor carriers, 1998.

Visual Monitoring of Driver Inattention 37

15. European Project FP6 (IST-1-507674-IP). AIDE – Adaptive Integrated Driver-Vehicle Interface, 2004–2008. URL
http://www.aide-eu.org/index.html

16. European Project FP6 (IST-2002-2.3.1.2). Advanced sensor development for attention, stress, vigilance and
sleep/wakefulness monitoring (SENSATION), 2004–2007. URL http://www.sensation-eu.org

17. A.W. Fitzgibbon and R.B. Fisher. A buyer’s guide to conic fitting. In Proceedings of the 6th British Conference
on Machine Vision, volume 2, pp. 513–522, Birmingham, United Kingdom, 1995.

18. D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.
19. R. Grace. Drowsy driver monitor and warning system. In International Driving Symposium on Human Factors

in Driver Assessment, Training and Vehicle Design, Aug 2001.
20. S. Guillaume and B. Charnomordic. A new method for inducing a set of interpretable fuzzy partitions and fuzzy

inference systems from data. Studies in Fuzziness and Soft Computing, 128:148–175, 2003.
21. H. Ueno, M. Kaneda, and M. Tsukino. Development of drowsiness detection system. In Proceedings of Vehicle

Navigation and Information Systems Conference, pp. 15–20, 1994.
22. AWAKE Consortium (IST 2000-28062). System for Effective Assessment of Driver Vigilance and Warning

According to Traffic Risk Estimation – AWAKE, Sep 2001–2004. URL http://www.awake-eu.org
23. Q. Ji and X. Yang. Real-time eye, gaze and face pose tracking for monitoring driver vigilance. Real-Time Imaging,

8:357–377, Oct 2002.
24. A. Kircher, M. Uddman, and J. Sandin. Vehicle control and drowsiness. Technical Report VTI-922A, Swedish

National Road and Transport Research Institute, 2002.
25. D. Koons and M. Flicker. IBM Blue Eyes project, 2003. URL http://almaden.ibm.com/cs/blueeyes
26. M. Kutila. Methods for Machine Vision Based Driver Monitoring Applications. Ph.D. thesis, VTT Technical

Research Centre of Finland, 2006.
27. Y. Matsumoto and A. Zelinsky. An algorithm for real-time stereo vision implementation of head pose and gaze

direction measurements. In Proceedings of IEEE 4th International Conference Face and Gesture Recognition,
pp. 499–505, Mar 2000.

28. I. Matthews and S. Baker. Active appearance models revisited. International Journal of Computer Vision,
60(2):135–164, November 2004.

29. J.A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7(4):308–313, 1965.
30. J. Nuevo, L.M. Bergasa, M.A. Sotelo, and M. Ocana. Real-time robust face tracking for driver monitoring.

Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE, pp. 1346–1351, 2006.
31. L. Nunes and M.A. Recarte. Cognitive demands of hands-free phone conversation while driving, Chap. F5, pp. 133–

144. Pergamon, Oxford, 2002.
32. P. Rau. Drowsy driver detection and warning system for commercial vehicle drivers: Field operational test design,

analysis and progress, NHTSA, 2005.
33. D. Royal. Volume I – Findings; National Survey on Distracted and Driving Attitudes and Behaviours, 2002.

Technical Report DOT HS 809 566, The Gallup Organization, March 2003.
34. Seeing Machines. Facelab transport, August 2006. URL http://www.seeingmachines.com/transport.html
35. Seeing Machines. Driver state sensor, August 2007. URL http://www.seeingmachines.com/DSS.html
36. W. Shih and Liu. A calibration-free gaze tracking technique. In Proceedings of 15th Conference Patterns

Recognition, volume 4, pp. 201–204, Barcelona, Spain, 2000.
37. P. Smith, M. Shah, and N.Da.V. Lobo. Determining driver visual attention with one camera. IEEE Transaction

on Intelligent Transportation Systems, 4(4):205–218, 2003.
38. T. Victor, O. Blomberg, and A. Zelinsky. Automating the measurement of driver visual behaviours using pas-

sive stereo vision. In Proceedings of Intelligent Conference Series Vision in Vehicles VIV9, Brisbane, Australia,
Aug 2001.

39. Volvo Car Corporation. Driver alert control. URL http://www.volvocars.com
40. W. Wierwille, L. Tijerina, S. Kiger, T. Rockwell, E. Lauber, and A. Bittne. Final report supplement – task 4:

Review of workload and related research. Technical Report DOT HS 808 467(4), USDOT, Oct 1996.
41. W. Wierwille, Wreggit, Kirn, Ellsworth, and Fairbanks. Research on vehicle-based driver status/performance

monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness, final report;
technical reports & papers. Technical Report DOT HS 808 247, USDOT, Dec 1994. URL www.its.dot.gov

Understanding Driving Activity Using Ensemble Methods

Kari Torkkola, Mike Gardner, Chris Schreiner, Keshu Zhang, Bob Leivian, Harry Zhang,
and John Summers

Motorola Labs, Tempe, AZ 85282, USA, kari.torkkola@motorola.com

1 Introduction

Motivation for the use of statistical machine learning techniques in the automotive domain arises from our
development of context aware intelligent driver assistance systems, specifically, Driver Workload Management
systems. Such systems integrate, prioritize, and manage information from the roadway, vehicle, cockpit,
driver, infotainment devices, and then deliver it through a multimodal user interface. This could include
incoming cell phone calls, email, navigation information, fuel level, and oil pressure to name a very few. In
essence, the workload manager attempts to get the right information to the driver at the right time and in
the right way in order that driver performance is optimized and distraction is minimized.

In order to do its job, the workload manager system needs to track the wider driving context including
the state of the roadway, traffic conditions, and the driver. Current automobiles have a large number of
embedded sensors, many of which produce data that are available through the car data bus. The state
of many on-board and carried-in devices in the cockpit is also available. New advanced sensors, such as
video-based lane departure warning systems and radar-based collision warning systems are currently being
deployed in high end car models. All of these could be used to define the driving context [17]. But a number
of questions arise:

• What are the range of typical driving maneuvers, as well as near misses and accidents, and how do drivers
navigate them?

• Under what conditions does driver performance degrade or driver distraction increase?
• What are the optimal set of sensors and algorithms that can recognize each of these driving conditions

near the theoretical limit for accuracy, and what is the sensor set that are accurate yet cost effective?

There are at least two approaches to address these questions. The first is more or less heuristic: experts
offer informed opinions on the various matters and sets of sensors are selected accordingly with algorithms
coded using rules of thumb. Individual aspects of the resulting system are tested by using narrow human
factors testing controlling all but a few variables. Hundreds of iterations must be completed in order to
test the impact on driver performance of the large combinations of driving states, sensor sets, and various
algorithms.

The second approach, which we advocate in this chapter and in [28], involves using statistical machine
learning techniques that enable the creation of new human factors approaches. Rather than running large
numbers of narrowly scoped human factors testing with only a few variables, we chose to invent a “Hypervari-
ate Human Factors Test Methodology” that uses broad naturalistic driving experiences that capture wide
conditions resulting in hundreds of variables, but decipherable with machine learning techniques. Rather
than pre-selecting our sensor sets we chose to collect data from every sensor we could think of and some not
yet invented that might remotely be useful by creating behavioral models overlaid with our vehicle system.
Furthermore, all sensor outputs were expanded by standard mathematical transforms that emphasized vari-
ous aspects of the sensor signals. Again, data relationships are discoverable with machine learning. The final

K. Torkkola et al.: Understanding Driving Activity Using Ensemble Methods, Studies in Computational Intelligence (SCI) 132, 39–58

(2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

40 K. Torkkola et al.

data set consisted of hundreds of driving hours with thousands of variable data outputs which would have
been nearly impossible to annotate without machine learning techniques.

In this chapter we describe three major efforts that have employed our machine learning approach. First,
we discuss how we have utilized our machine learning approach to detect and classify a wide range of driving
maneuvers, and describe a semi-automatic data annotation tool we have created to support our modeling
effort. Second, we perform a large scale automotive sensor selection study towards intelligent driver assistance
systems. Finally, we turn our attention to creating a system that detects driver inattention by using sensors
that are available in the current vehicle fleet (including forwarding looking radar and video-based lane
departure system) instead of head and eye tracking systems.

This approach resulted in the creation of two generations of our workload manager system called Driver
Advocate, Driver Advocate that was based on data rather than just expert opinions. The described techniques
helped reduce the research cycle times while resulting in broader insight. There was rigorous quantification of
theoretical sensor subsystem performance limits and optimal subsystem choices given economic price points.
The resulting system performance specs and architecture design created a workload manager that had a
positive impact on driver performance [23, 33].

2 Modeling Naturalistic Driving

Having the ability to detect driving maneuvers can be of great benefit in determining a driver’s current
workload state. For instance, a driving workload manager may decide to delay presenting the driver with
non-critical information if the driver was in the middle of a complex driving maneuver. In this section we
describe our data-driven approach to classifying driving maneuvers.

There are two approaches to collecting large databases of driving sensor data from various driving sit-
uations. One can outfit a fleet of cars with sensors and data collection equipment, as has been done in the
NHTSA 100-car study [18]. This has the advantage of being as naturalistic as possible. However, the disad-
vantage is that potentially interesting driving situations will be extremely rare in the collected data. Realistic
driving simulators provide much more controlled environments for experimentation and permit the creation
of many interesting driving situations within a reasonable time frame. Furthermore, in a driving simulator,
it is possible to simulate a large number of potential advanced sensors that would be yet too expensive or
impossible to install in a real car. This will also enable us to study what sensors really are necessary for
any particular task and what kind of signal processing of those sensors is needed in order to create adequate
driving situation models based on those sensors.

We collect data in a driving simulator lab, which is an instrumented car in a surround video virtual world
with full visual and audio simulation (although no motion or G-force simulation) of various roads, traffic and
pedestrian activity. The driving simulator consists of a fixed based car surrounded by five front and three
rear screens (Fig. 1). All driver controls such as the steering wheel, brake, and accelerator are monitored
and affect the motion through the virtual world in real-time. Various hydraulics and motors provide realistic
force feedback to driver controls to mimic actual driving.

The basic driving simulator software is a commercial product with a set of simulated sensors that,
at the behavioral level, simulate a rich set of current and near future on-board sensors (http://www.
drivesafety.com). This set consists of a radar for locating other traffic, a GPS system for position infor-
mation, a camera system for lane positioning and lane marking detection, and a mapping data base for
road names, directions, locations of points of interest, etc. There is also a complete car status system for
determining the state of engine parameters (coolant temperature, oil pressure, etc.) and driving controls
(transmission gear selection, steering angle, gas pedal, brake pedal, turn signal, window and seat belt status,
etc.). The simulator setup also has several video cameras, microphones, and infrared eye tracking sensors
to record all driver actions during the drive in synchrony with all the sensor output and simulator tracking
variables. The Seeing Machines eye tracking system is used to automatically acquire a driver’s head and eye
movements (http://www.seeingmachines.com). Because such eye tracking systems are not installed in cur-
rent vehicles, head and eye movement variables do not enter into the machine learning algorithms as input.
The 117 head and eye-tracker variables are recorded as two versions, real-time and filtered. Including both

Understanding Driving Activity 41

Fig. 1. The driving simulator

versions, there are altogether 476 variables describing an extensive scope of driving data – information about
the auto, the driver, the environment, and associated conditions. An additional screen of video is digitally
captured in MPEG4 format, consisting of a quad combiner providing four different views of the driver and
environment. Combined, these produce around 400MB of data for each 10min of drive time. Thus we are
faced with processing massive data sets of mixed type; there are both numerical and categorical variables,
and multimedia, if counting also the video and audio.

3 Database Creation

We describe now our approach to collecting and constructing a database of naturalistic driving data in the
driving simulator. We concentrate on the machine learning aspect; making the database usable as the basis
for learning driving/driver situation classifiers and detectors. Note that the same database can be (and will
be) used in driver behavioral studies, too.

3.1 Experiment Design

Thirty-six participants took part in this study, with each participant completing about ten 1-hour driving
sessions. In each session, after receiving practice drives to become accustomed to the simulated driving
environment, participants were given a task for which they have to drive to a specific location. These drives
were designed to be as natural and familiar for the participants as possible, and the simulated world replicated
the local metropolitan area as much as possible, so that participants did not need navigation aids to drive to
their destinations. The driving world was modeled on the local Phoenix, AZ topology. Signage corresponded
to local street and Interstate names and numbers. The topography corresponded as closely as possible to
local landmarks.

The tasks included driving to work, driving from work to pick up a friend at the airport, driving to lunch,
and driving home from work. Participants were only instructed to drive as they normally would. Each drive
varied in length from 10 to 25min. As time allowed, participants did multiple drives per session.

42 K. Torkkola et al.

This design highlights two crucial components promoting higher realism in driving and consequently in
collected data: (1) familiarity of the driving environment, and (2) immersing participants in the tasks. The
experiment produced a total of 132h of driving time with 315GB of collected data.

3.2 Annotation of the Database

We have created a semi-automatic data annotation tool to label the sensor data with 28 distinct driving
maneuvers. This data annotation tool is unique in that we have made parts of the annotation process
automatic, enabling the user just to verify automatically generated annotations, rather than annotating
everything from scratch.

The purpose of the data annotation is to label the sensor data with meaningful classes. Supervised learning
and modeling techniques then become available with labeled data. For example, one can train classifiers for
maneuver detection [29] or for inattention detection [30]. Annotated data also provides a basis for research
in characterizing driver behavior in different contexts.

The driver activity classes in this study were related to maneuvering the vehicle with varying degrees of
required attention. An alphabetical listing is presented in Table 1. Note that the classes are not mutually
exclusive. An instant in time can be labeled simultaneously as “TurningRight” and “Starting,” for example.

We developed a special purpose data annotation tool for the driving domain (Fig. 2). This was necessary
because available video annotation tools do not provide a simultaneous view of the sensor data, and tools
meant for signals, such as speech, do not allow simultaneous and synchronous playback of the video. The
major properties of our annotation tool are listed below:

1. Ability to navigate through any portion of the driving sequence
2. Ability to label (annotate) any portion of the driving sequence with proper time alignment
3. Synchronization between video and other sensor data
4. Ability to playback the video corresponding to the selected sensor signal segment
5. Ability to visualize any number of sensor variables
6. Provide persistent storage of the annotations
7. Ability to modify existing annotations

Since manual annotation is a tedious process, we automated parts of the process by taking advantage
of automatic classifiers that are trained from data to detect the driving maneuvers. With these classifiers,
annotation becomes an instance of active learning [7]. Only if a classifier is not very confident in its decision,
its results are presented to the human to verify. The iterative annotation process is thus as follows:

Table 1. Driving maneuvers used in the study

ChangingLaneLeft ChangingLaneRight
ComingToLeftTurnStop ComingToRightTurnStop
Crash CurvingLeft
CurvingRight EnterFreeway
ExitFreeway LaneChangePassLeft
LaneChangePassRight LaneDepartureLeft
LaneDepartureRight Merge
PanicStop PanicSwerve
Parking PassingLeft
PassingRight ReversingFromPark
RoadDeparture SlowMoving
Starting StopAndGo
Stopping TurningLeft
TurningRight WaitingForGapInTurn
Cruising (other)

“Cruising” captures anything not included in the actual 28 classes

Understanding Driving Activity 43

Fig. 2. The annotation tool. Top left: the video playback window. Top right: annotation label window. Bottom: sensor
signal and classifier result display window. Note that colors have been re-used. See Fig. 5 for a complete legend

1. Manually annotate a small portion of the driving data
2. Train classifiers based on all annotated data
3. Apply classifiers to a portion of database
4. Present unsure classifications to the user to verify
5. Add new verified and annotated data to the database
6. Go to 2

As the classifier improves due to increased size of training data, the decisions presented to the user improve,
too, and the verification process takes less time [25]. The classifier is described in detail in the next section.

4 Driving Data Classification

We describe now a classifier that has turned out to be very appropriate for driving sensor data. Characteristics
of this data are hundreds of variables (sensors), millions of observations, and mixed type data. Some variables
have continuous values and some are categorical. The latter fact causes problems with conventional statistical
classifiers that typically operate entirely with continuous valued variables. Categorical variables need to be

44 K. Torkkola et al.

converted first into binary indicator variables. If a categorical variable has a large number of levels (possible
discrete values), each of them generates a new indicator variable, thus potentially multiplying the dimension
of the variable vector. We attempted this approach using Support Vector Machines [24] as classifiers, but
the results were inferior compared to ensembles of decision trees.

4.1 Decision Trees

Decision trees, such as CART [6], are an example of non-linear, fast, and flexible base learners that can easily
handle massive data sets even with mixed variable types.

A decision tree partitions the input space into a set of disjoint regions, and assigns a response value to
each corresponding region (see Fig. 3). It uses a greedy, top-down recursive partitioning strategy. At every
step a decision tree uses exhaustive search by trying all combinations of variables and split points to achieve
the maximum reduction in node impurity. In a classification problem, a node is “pure” if all the training
data in the node has the same class label. Thus the tree growing algorithm tries to find a variable and a
split point of the variable that best separates the data in the node into different classes. Training data is
then divided among the resulting nodes according to the chosen decision test. The process is repeated for
each resulting node until a certain maximum node depth is reached, or until the nodes become pure. The
tree constructing process itself can be considered as a type of embedded variable selection, and the impurity
reduction due to a split on a specific variable could indicate the relative importance of that variable to the
tree model.

For a single decision tree, a measure of variable importance is proposed in [6]:

V I(xi, T) =
∑
t∈T

∆I(xi, t) (1)

where ∆I(xi, t) = I(t) − pLI(tL) − pRI(tR) is the decrease in impurity due to an actual (or potential) split
on variable xi at a node t of the optimally pruned tree T . The sum in (1) is taken over all internal tree nodes
where xi is a primary splitter. Node impurity I(t) for classification I(t) = Gini(t) where Gini(t) is the Gini
index of node t:

Gini(t) =
∑
i�=j

pt
ip

t
j (2)

and pt
i is the proportion of observations in t whose response label equals i (y = i) and i and j run through all

response class numbers. The Gini index is in the same family of functions as cross-entropy, −∑i pt
ilog(pt

i),
and measures node impurity. It is zero when t has observations only from one class, and reaches its maximum
when the classes are perfectly mixed.

However, a single tree is inherently instable. The ability of a learner (a classifier in this case) to generalize
to new unseen data is closely related to the stability of the learner. The stability of the solution could be

PetalL<2.45

PetalW<1.75

PetalL<4.95

yes

yes

yes

no

no

no

S C V V

Fig. 3. An example of a decision tree for a three-class classification problem. The right side depicts the data with
two variables. The final decision regions are also displayed

Understanding Driving Activity 45

loosely defined as a continuous dependence on the training data. A stable solution changes very little when
the training data set changes a little. With decision trees, the node structure can change drastically even
when one data point is added or removed from the training data set. A comprehensive treatment of the
connection between stability and generalization ability can be found in [3].

Instability can be remedied by employing ensemble methods. Ensemble methods train multiple simple
learners and then combine the outputs of the learners for the final decision. One well known ensemble method
is bagging (bootstrap aggregation) [4]. Bagging decision trees is explained in detail in Sect. 4.2.

Bagging can dramatically reduce the variance of instable learners by providing a regularization effect.
Each individual learner is trained using a different random sample set of the training data. Bagged ensembles
do not overfit the training data. The keys to good ensemble performance are base learners that have a low
bias, and a low correlation between their errors. Decision trees have a low bias, that is, they can approximate
any nonlinear decision boundary between classes to a desirable accuracy given enough training data. Low
correlation between base learners can be achieved by sampling the data, as described in the following section.

4.2 Random Forests

Random Forest (RF) is a representative of tree ensembles [5]. It grows a forest of decision trees on bagged
samples (Fig. 4). The “randomness” originates from creating the training data for each individual tree by sam-
pling both the data and the variables. This ensures that the errors made by individual trees are uncorrelated,
which is a requirement for bagging to work properly.

Fig. 4. A trivial example of Random Forest in action. The task is to separate class “v” from “c” and “s” (upper
right corner) based on two variables only. Six decision trees are constructed sampling both examples and variables.
Each tree becomes now a single node sampling one out of the two possible variables. Outputs (decision regions) are
averaged and thresholded. The final nonlinear decision border is outlined as a thick line

46 K. Torkkola et al.

Each tree in the Random Forest is grown according to the following parameters:

1. A number m is specified much smaller than the total number of total input variables M (typically m is
proportional to

√
M).

2. Each tree of maximum depth (until pure nodes are reached) is grown using a bootstrap sample of the
training set.

3. At each node, m out of the M variables are selected at random.
4. The split used is the best possible split on these m variables only.

Note that for each tree to be constructed, bootstrap sampling is applied. A different sample set of training
data is drawn with replacement. The size of the sample set is the same as the size of the original dataset.
This means that some individual samples will be duplicated, but typically 30% of the data is left out of
this sample (out-of-bag). This data has a role in providing an unbiased estimate of the performance of the
tree.

Also note that the sampled variable set does not remain constant while a tree is grown. Each new node
in a tree is constructed based on a different random sample of m variables. The best split among these m
variables is chosen for the current node, in contrast to typical decision tree construction, which selects the
best split among all possible variables. This ensures that the errors made by each tree of the forest are not
correlated. Once the forest is grown, a new sensor reading vector will be classified by every tree of the forest.
Majority voting among the trees produces then the final classification decision.

We will be using RF throughout our experimentation because of it simplicity and excellent performance.1

In general, RF is resistant to irrelevant variables, it can handle massive numbers of variables and observations,
and it can handle mixed type data and missing data. Our data definitely is of mixed type, i.e., some variables
are continuous, some variables are discrete, although we do not have missing data since the source is the
simulator.

4.3 Random Forests for Driving Maneuver Detection

A characteristic of the driving domain and the chosen 29 driving maneuver classes is that the classes are not
mutually exclusive. For example, an instance in time could be classified simultaneously as “SlowMoving” and
“TurningRight.” The problem cannot thus be solved by a typical multi-class classifier that assigns a single
class label to a given sensor reading vector and excludes the rest. This dictates that the problem should be
treated rather as a detection problem than a classification problem.

Furthermore, each maneuver is inherently a sequential operation. For example, “ComingToLeftTurnStop”
consists of possibly using the turn signal, changing the lane, slowing down, braking, and coming to a full
stop. Ideally, a model of a maneuver would thus describe this sequence of operations with variations that
naturally occur in the data (as evidenced by collected naturalistic data). Earlier, we have experimented with
Hidden Markov Models (HMM) for maneuver classification [31]. A HMM is able to construct a model of
a sequence as a chain of hidden states, each of which has a probabilistic distribution (typically Gaussian)
to match that particular portion of the sequence [22]. The sequence of sensor vectors corresponding to a
maneuver would thus be detected as a whole.

The alternative to sequential modeling is instantaneous classification. In this approach, the whole duration
of a maneuver is given just a single class label, and the classifier is trained to produce this same label for
every time instant of the maneuver. Order, in which the sensor vectors are observed, is thus not made use
of, and the classifier carries the burden of being able to capture all variations happening inside a maneuver
under a single label. Despite these two facts, in our initial experiments the results obtained using Random
Forests for instantaneous classification were superior to Hidden Markov Models.

Because the maneuver labels may be overlapping, we trained a separate Random Forest for each maneuver
treating it as a binary classification problem – the data of a particular class against all the other data. This
results in 29 trained “detection” forests.
1 We use Leo Breiman’s Fortran version 5.1, dated June 15, 2004. An interface to Matlab was written to facilitate

easy experimentation. The code is available at http://www.stat.berkeley.edu/users/breiman/.

Understanding Driving Activity 47

Fig. 5. A segment of driving with corresponding driving maneuver probabilities produced by one Random Forest
trained for each maneuver class to be detected. Horizontal axis is the time in tenths of a second. Vertical axis is
the probability of a particular class. These “probabilities” can be obtained by normalizing the random forest output
voting results to sum to one

New sensor data is then fed to all 29 forests for classification. Each forest produces something of a
“probability” of the class it was trained for. An example plot of those probability “signals” is depicted
in Fig. 5. The horizontal axis represents the time in tenths of a second. About 45 s of driving is shown.
None of the actual sensor signals are depicted here, instead, the “detector” signals from each of the forests
are graphed. These show a sequence of driving maneuvers from “Cruising” through “LaneDepartureLeft,”
“CurvingRight,” “TurningRight,” and “SlowMoving” to “Parking.”

The final task is to convert the detector signals into discrete and possibly overlapping labels, and to assign
a confidence value to each label. In order to do this, we apply both median filtering and low-pass filtering to
the signals. The signal at each time instant is replaced by the maximum of the two filtered signals. This has
the effect of patching small discontinuities and smoothing the signal while still retaining fast transitions. Any
signal exceeding a global threshold value for a minimum duration is then taken as a segment. Confidence of
the segment is determined as the average of the detection signal (the probability) over the segment duration.

An example can be seen at the bottom window depicted in Fig. 2. The top panel displays some of the
original sensor signals, the bottom panel graphs the raw maneuver detection signals, and the middle panel
shows the resulting labels.

We compared the results of the Random Forest maneuver detector to the annotations done by a human
expert. On the average, the annotations agreed 85% of the time. This means that only 15% needed to be
adjusted by the expert. Using this semi-automatic annotation tool, we can drastically reduce the time that
is required for data processing.

5 Sensor Selection Using Random Forests

In this section we study which sensors are necessary for driving state classification. Sensor data is collected
in our driving simulator; it is annotated with driving state classes, after which the problem reduces to that
of feature selection [11]: “Which sensors contribute most to the correct classification of the driving state
into various maneuvers?” Since we are working with a simulator, we have simulated sensors that would be

48 K. Torkkola et al.

expensive to arrange in a real vehicle. Furthermore, sensor behavioral models can be created in software.
Goodness or noisiness of a sensor can be modified at will. The simulator-based approach makes it possible
to study the problem without implementing the actual hardware in a real car.

Variable selection methods can be divided in three major categories [11, 12, 16]. These are:

1. Filter methods, that evaluate some measure of relevance for all the variables and rank them based on the
measure (but the measure may not necessarily be relevant to the task, and any interactions that variables
may have will be ignored)

2. Wrapper methods, that using some learner, actually learn the solution to the problem evaluating all
possible variable combinations (this is usually computationally too prohibitive for large variable sets)

3. Embedded methods that use a learner with all variables, but infer the set of important variables from the
structure of the trained learner

Random Forests (Sect. 4.2) can act as an embedded variable selection system. As a by-product of the
construction, a measure of variable importance can be derived from each tree, basically from how often
different variables were used in the splits of the tree and from the quality of those splits [5]. For an ensemble
of N trees the importance measure (1) is simply averaged over the ensemble.

M(xi) =
1
N

N∑
n=1

V I(xi, Tn) (3)

The regularization effect of averaging makes this measure much more reliable than a measure extracted from
just a single tree.

One must note that in contrast to simple filter methods of feature selection, this measure considers
multiple simultaneous variable interactions – not just two at a time. In addition, the tree is constructed for
the exact task of interest. We apply now this importance measure to driving data classification.

5.1 Sensor Selection Results

As the variable importance measure, we use the tree node impurity reduction (1) summed over the forest (3).
This measure does not require any extra computation in addition to the basic forest construction process.
Since a forest was trained for each class separately, we can now list the variables in the order of importance
for each class. These results are combined and visualized in Fig. 6.

This figure has the driving activity classes listed at the bottom, and variables on the left column. Head-
and eye-tracking variables were excluded from the figure. Each column of the figure thus displays the impor-
tances of all listed variables, for the class named at the bottom of the column. White, through yellow, orange,
red, and black, denote decreasing importance.

In an attempt to group together those driving activity classes that require a similar set of variables to be
accurately detected, and to group together those variables that are necessary or helpful for a similar set of
driving activity classes, we clustered first the variables in six clusters and then the driving activity classes in
four clusters. Any clustering method can be used here, we used spectral clustering [19]. Rows and columns
are then re-ordered according to the cluster identities, which are indicated in the names by alternating blocks
of red and black font in Fig. 6.

Looking at the variable column on the left, the variables within each of the six clusters exhibit a similar
behavior in that they are deemed important by approximately the same driving activity classes. The topmost
cluster of variables (except “Gear”) appears to be useless in distinguishing most of the classes. The next five
variable clusters appear to be important but for different class clusters. Ordering of the clusters as well as
variable ordering within the clusters is arbitrary. It can also be seen that there are variables (sensors) that
are important for a large number of classes.

In the same fashion, clustering of the driving activity classes groups those classes together that need
similar sets of variables in order to be successfully detected. The rightmost and the leftmost clusters are
rather distinct, whereas the two middle clusters do not seem to be that clear. There are only a few classes
that can be reliably detected using a handful of sensors. Most notable ones are “ReversingFromPark” that

Understanding Driving Activity 49

Fig. 6. Variable importances for each class. See text for explanation

50 K. Torkkola et al.

only needs “Gear,” and “CurvingRight” that needs “lateralAcceleration” with the aid of “steeringWheel.”
This clustering shows that some classes need quite a wide array of sensors in order to be reliably detected.
The rightmost cluster is an example of those classes.

5.2 Sensor Selection Discussion

We present first results of a large scale automotive sensor selection study aimed towards intelligent driver
assistance systems. In order to include both traditional and advanced sensors, the experiment was done on
a driving simulator. This study shows clusters of both sensors and driving state classes: what classes need
similar sensor sets, and what sensors provide information for which sets of classes. It also provides a basis
to study detecting an isolated driving state or a set of states of interest and the sensors required for it.

6 Driver Inattention Detection Through Intelligent Analysis of Readily
Available Sensors

Driver inattention is estimated to be a significant factor for 78% of all crashes [8]. A system that could
accurately detect driver inattention could aid in reducing this number. In contrast to using specialized sensors
or video cameras to monitor the driver we detect driver inattention by using only readily available sensors. A
classifier was trained using Collision Avoidance Systems (CAS) sensors which was able to accurately identify
80% of driver inattention and could be added to a vehicle without incurring the cost of additional sensors.

Detection of driver inattention could be utilized in intelligent systems to control electronic devices [21]
or redirect the driver’s attention to critical driving tasks [23].

Modern automobiles contain many infotainment devices designed for driver interaction. Navigation mod-
ules, entertainment devices, real-time information systems (such as stock prices or sports scores), and
communication equipment are increasingly available for use by drivers. In addition to interacting with on-
board systems, drivers are also choosing to carry in mobile devices such as cell phones to increase productivity
while driving. Because technology is increasingly available for allowing people to stay connected, informed,
and entertained while in a vehicle many drivers feel compelled to use these devices and services in order to
multitask while driving.

This increased use of electronic devices along with typical personal tasks such as eating, shaving, putting
on makeup, reaching for objects on the floor or in the back seat can cause the driver to become inattentive
to the driving task. The resulting driver inattention can increase risk of injury to the driver, passengers,
surrounding traffic and nearby objects.

The prevailing method for detecting driver inattention involves using a camera to track the driver’s
head or eyes [9, 26]. Research has also been conducted on modeling driver behaviors through such methods
as building control models [14, 15] measuring behavioral entropy [2] or discovering factors affecting driver
intention [10, 20].

Our approach to detecting inattention is to use only sensors currently available on modern vehicles
(possibly including Collision Avoidance Systems (CAS) sensors) without using head and eye tracking system.
This avoids the additional cost and complication of video systems or dedicated driver monitoring systems.
We derive several parameters from commonly available sensors and train an inattention classifier. This results
in a sophisticated yet inexpensive system for detecting driver inattention.

6.1 Driver Inattention

What is Driver Inattention?

Secondary activities of drivers during inattention are many, but mundane. The 2001 NETS survey in Table 2
found many activities that drivers perform in addition to driving. A study, by the American Automobile
Association placed miniature cameras in 70 cars for a week and evaluated three random driving hours from

Understanding Driving Activity 51

Table 2. 2001 NETS survey

96% Talking to passengers
89% Adjusting vehicle climate/radio controls
74% Eating a meal/snack
51% Using a cell phone
41% Tending to children
34% Reading a map/publication
19% Grooming
11% Prepared for work

Activities drivers engage in while driving

each. Overall, drivers were inattentive 16.1% of the time they drove. About 97% of the drivers reached or
leaned over for something and about 91% adjusted the radio. Thirty percent of the subjects used their cell
phones while driving.

Causes of Driver Inattention

There are at least three factors affecting attention:

1. Workload. Balancing the optimal cognitive and physical workload between too much and boring is an
everyday driving task. This dynamic varies from instant to instant and depends on many factors. If we
chose the wrong fulcrum, we can be overwhelmed or unprepared.

2. Distraction. Distractions might be physical (e.g., passengers, calls, signage) or cognitive (e.g., worry,
anxiety, aggression). These can interact and create multiple levels of inattention to the main task of
driving.

3. Perceived Experience. Given the overwhelming conceit that almost all drivers rate their driving ability
as superior than others, it follows that they believe they have sufficient driving control to take part of
their attention away from the driving task and give it to multi-tasking. This “skilled operator” over-
confidence tends to underestimate the risk involved and reaction time required. This is especially true in
the inexperienced younger driver and the physically challenged older driver.

Effects of Driver Inattention

Drivers involved in crashes often say that circumstances occurred suddenly and could not be avoided. How-
ever, due to laws of physics and visual perception, very few things occur suddenly on the road. Perhaps more
realistically an inattentive driver will suddenly notice that something is going wrong. This inattention or
lack of concentration can have catastrophic effects. For example, a car moving at a slow speed with a driver
inserting a CD will have the same effect as an attentive driver going much faster. Simply obeying the speed
limits may not be enough.

Measuring Driver Inattention

Many approaches to measuring driver inattention have been suggested or researched. Hankey et al. suggested
three parameters: average glance length, number of glances, and frequency of use [13]. The glance parameters
require visual monitoring of the drivers face and eyes. Another approach is using the time and/or accuracy
of a surrogate secondary task such as Peripheral Detection Task (PDT) [32]. These measures are yet not
practical real time measures to use during everyday driving.

Boer [1] used a driver performance measure, steering error entropy, to measure workload, which unlike eye
gaze and surrogate secondary-tasks, is unobtrusive, practical for everyday monitoring, and can be calculated
in near real time.

We calculate it by first training a linear predictor from “normal” driving [1]. The predictor uses four previ-
ous steering angle time samples (200ms apart) to predict the next time sample. The residual (prediction error)

52 K. Torkkola et al.

is computed for the data. A ten-bin discretizer is constructed from the residual, selecting the discretization
levels such that all bins become equiprobable. The predictor and discretizer are then fixed, and applied
to a new steering angle signal, producing a discretized steering error signal. We then compute the run-
ning entropy of the steering error signal over a window of 15 samples using the standard entropy definition
E = −∑10

i=1 pi log10 pi, where pi are the proportions of each discretization level observed in the window.
Our work indicates that steering error entropy is able to detect driver inattention while engaged in

secondary tasks. Our current study expands and extends this approach and looks at other driver performance
variables, as well as the steering error entropy, that may indicate driver inattention during a common driving
task, such as looking in the “blind spot.”

Experimental Setup

We designed the following procedure to elicit defined moments of normal driving inattention.
The simulator authoring tool, HyperDrive, was used to create the driving scenario for the experiment.

The drive simulated a square with curved corners, six kilometers on a side, 3-lanes each way (separated by
a grass median) beltway with on- and off-ramps, overpasses, and heavy traffic in each direction. All drives
used daytime dry pavement driving conditions with good visibility.

For a realistic driving environment, high-density random “ambient” traffic was programmed. All “ambi-
ent” vehicles simulated alert, “good” driver behavior, staying at or near the posted speed limit, and reacted
reasonably to any particular maneuver from the driver.

This arrangement allowed a variety of traffic conditions within a confined, but continuous driving space.
Opportunities for passing and being passed, traffic congestion, and different levels of driving difficulty were
thereby encountered during the drive.

After two orientation and practice drives, we collected data while drivers drove about 15min in the
simulated world. Drivers were instructed to follow all normal traffic laws, maintain the vehicle close to the
speed limit (55mph, 88.5 kph), and to drive in the middle lane without lane changes. At 21 “trigger” locations
scattered randomly along the road, the driver received a short burst from a vibrator located in the seatback
on either the left or right side of their backs. This was their alert to look in their corresponding “blind spot”
and observe a randomly selected image of a vehicle projected there. The image was projected for 5 s and the
driver could look for any length of time he felt comfortable. They were instructed that they would receive
“bonus” points for extra money for each correctly answered question about the images. Immediately after
the image disappeared, the experimenter asked the driver questions designed to elicit specific characteristics
of the image – i.e., What kind of vehicle was it?, Were there humans in the image?, What color was the
vehicle?, etc.

Selecting Data for Inattention Detection

Though the simulator has a variety of vehicle, environment, cockpit, and driver parameters available for
our use, our goal was to experiment with only readily extractable parameters that are available on modern
vehicles. We experimented with two subsets of these parameter streams: one which used only traditional
driver controls (steering wheel position and accelerator pedal position), and a second subset which included
the first subset but also added variables available from CAS systems (lane boundaries, and upcoming road
curvature). A list of variables used and a brief description of each is displayed in Table 3.

Eye/Head Tracker

In order to avoid having to manually label when the driver was looking away from the simulated road, an
eye/head tracker was used (Fig. 7).

When the driver looked over their shoulder at an image in their blind spot this action caused the eye
tracker to lose eye tracking ability (Fig. 8). This loss sent the eye tracking confidence to a low level. These
periods of low confidence were used as the periods of inattention. This method avoided the need for hand
labeling.

Understanding Driving Activity 53

Table 3. Variables used to detect inattention

Variable Description

steeringWheel Steering wheel angle
accelerator Position of accelerator pedal
distToLeftLaneEdge Perpendicular distance of left front wheel from left lane edge
crossLaneVelocity Rate of change of distToLeftLaneEdge
crossLaneAcceleration Rate of change of crossLaneVelocity
steeringError Difference between steering wheel position and ideal position

for vehicle to travel exactly parallel to lane edges
aheadLaneBearing Angle of road 60m in front of current vehicle position

Fig. 7. Eye/head tracking during attentive driving

Fig. 8. Loss of eye/head tracking during inattentive driving

6.2 Inattention Data Processing

Data was collected from six different drivers as described above. This data was later synchronized and re-
sampled at a constant sampling rate of 10Hz. resulting in 40,700 sample vectors. In order to provide more
relevant information to the task at hand, further parameters were derived from the original sensors. These
parameters are as follows:

1. ra9: Running average of the signal over nine previous samples (smoothed version of the signal).
2. rd5: Running difference five samples apart (trend).
3. rv9: Running variance of nine previous samples according to the standard definition of sample variance.
4. ent15: Entropy of the error that a linear predictor makes in trying to predict the signal as described in

[1]. This can be thought of as a measure of randomness or unpredictability of the signal.
5. stat3: Multivariate stationarity of a number of variables simultaneously three samples apart as described

in [27]. Stationarity gives an overall rate of change for a group of signals. Stationarity is one if there are
no changes over the time window and approaches zero for drastic transitions in all signals of the group.

The operations can be combined. For example, “ rd5 ra9” denotes first computing a running difference
five samples apart and then computing the running average over nine samples.

Two different experiments were conducted.

1. The first experiment used only two parameters: steeringWheel and accelerator, and derived seven other
parameters: steeringWheel rd5 ra9, accelerator rd5 ra9, stat3 of steeringWheel accel,
steeringWheel ent15 ra9, accelerator ent15 ra9, steeringWheel rv9, and accelerator rv9.

54 K. Torkkola et al.

2. The second experiment used all seven parameters in Table 1 and derived 13 others as follows:
steeringWheel rd5 ra9, steeringError rd5 ra9, distToLeftLaneEdge rd5 ra9, accelerator rd5 ra9,
aheadLaneBearing rd5 ra9, stat3 of steeringWheel accel,
stat3 of steeringError crossLaneVelocity distToLeftLaneEdge aheadLaneBearing,
steeringWheel ent15 ra9, accelerator ent15 ra9, steeringWheel rv9, accelerator rv9,
distToLeftLaneEdge rv9, and crossLaneVelocity rv9.

Variable Selection for Inattention

In variable selection experiments we are attempting to determine the relative importance of each variable to
the task of inattention detection. First a Random Forest classifier is trained for inattention detection (see
also Sect. 6.2). Variable importances can then be extracted from the trained forest using the approach that
was outlined in Sect. 5.

We present the results in Tables 4 and 5. These tables provide answers to the question “Which sensors
are most important in detecting driver’s inattention?” When just the two basic “driver control” sensors
were used, some new derived variables may provide as much new information as the original signals, namely
the running variance and entropy of steering. When CAS sensors are combined, the situation changes: lane

Table 4. Important sensor signals for inattention detection derived from steering wheel and accelerator pedal

Variable Importance

steeringWheel 100.00
accelerator 87.34
steeringWheel rv9 68.89
steeringWheel ent15 ra9 58.44
stat3 of steeringWheel accelerator 41.38
accelerator ent15 ra9 40.43
accelerator rv9 35.86
steeringWheel rd5 ra9 32.59
accelerator rd5 ra9 29.31

Table 5. Important sensor signals for inattention detection derived from steering wheel, accelerator pedal and CAS
sensors

Variable Importance

distToLeftLaneEdge 100.00
accelerator 87.99
steeringWheel rv9 73.76
distToLeftLaneEdge rv9 65.44
distToLeftLaneEdge rd5 ra9 65.23
steeringWheel 64.54
Stat3 of steeringWheel accel 60.00
steeringWheel ent15 ra9 57.39
steeringError 57.32
aheadLaneBearing rd5 ra9 55.33
aheadLeneBearing 51.85
crossLaneVelocity 50.55
Stat3 of steeringError crossLaneVelocity distToLeftLaneEdge aheadLaneBearing 38.07
crossLaneVelocity rv9 36.50
steeringError rd5 ra9 33.52
Accelerator ent15 ra9 29.83
Accelerator rv9 28.69
steeringWheel rd5 ra9 27.76
Accelerator rd5 ra9 20.69
crossLaneAcceleration 20.64

Understanding Driving Activity 55

position (distToLeftLaneEdge) becomes the most important variable together with the accelerator pedal.
Steering wheel variance becomes the most important variable related to steering.

Inattention Detectors

Detection tasks always have a tradeoff between desired recall and precision. Recall denotes the percentage
of total events of interest detected. Precision denotes the percentage of detected events that are true events
of interest and not false detections. A trivial classifier that classifies every instant as a true event would have
100% recall (since none were missed), but its precision would be poor. On the other hand, if the classifier
is so tuned that only events having high certainty are classified as true events, the recall would be low,
missing most of the events, but its precision would be high, since among those that were classified as true
events, only a few would be false detections. Usually any classifier has some means of tuning the threshold of
detection. Where that threshold will be set depends on the demands of the application. It is also noteworthy
to mention that in tasks involving detection of rare events, overall classification accuracy is not a meaningful
measure. In our case only 7.3% of the database was inattention so a trivial classifier classifying everything
as attention would thus have an accuracy of 92.7%. Therefore we will report our results using the recall and
precision statistics for each class.

First, we constructed a Random Forests (RF) classifier of 75 trees using either the driver controls or the
driver controls combined with the CAS sensors. Figure 9 depicts the resulting recall/precision graphs.

One simple figure of merit that allows comparison of two detectors is equal error rate, or equal accuracy,
which denotes the intersection of recall and precision curves. By that figure, basing the inattention detector
only on driver control sensors results in an equal accuracy of 67% for inattention and 97% for attention,
whereas adding CAS sensors raises the accuracies up to 80 and 98%, respectively. For comparison, we used
the same data to train a quadratic classifier [29]. Compared to the RF classifier, the quadratic classifier
performs poorly in this task. We present the results in Table 6 for two different operating points of the
quadratic classifier. The first one (middle rows) is tuned not to make false alarms, but its recall rate remains
low. The second one is compensated for the less frequent occurrences of inattention, but it makes false
alarms about 28% of the time. Random Forest clearly outperforms the quadratic classifier with almost no
false alarms and good recall.

Fig. 9. Precision/recall figures for detection of inattention using only driver controls (left) and driver controls
combined with CAS sensors (right). Random Forest is used as the classifier. Horizontal axis, prior for inattention,
denotes a classifier parameter which can be tuned to produce different precision/recall operating points. This can
be thought of as a weight or cost given to missing inattention events. Typically, if it is desirable not to miss events
(high recall – in this case a high parameter value), the precision may be low – many false detections will be made.
Conversely, if it is desirable not to make false detections (high precision), the recall will be low – not all events will
be detected. Thus, as a figure of merit we use equal accuracy, the operating point where precision equals recall

56 K. Torkkola et al.

Table 6. Comparison of Random Forest (RF) to Quadratic classifier using equal accuracy as the figure of merit

Detector Sensors Inattention (%) Attention (%)

RF Driver control sensors only 67 97
RF Additional CAS sensors 80 98
Quadratic Driver control sensors only 29 91
Quadratic Additional CAS sensors 33 93
Quadratic (prior compensated) Driver control sensors only 58 59
Quadratic (prior compensated) Additional CAS sensors 72 72

Operating point where recall of the desired events equals the precision of the detector

Future Driver Inattention Work

The experiments described in this section are only our first steps in investigating how driver attention can
be detected. We have several ideas of how to improve the accuracy of detectors based on modifications to
our described approach. The first technique will be to treat inattentive periods as longer time segments that
actually have a weighting mechanism that prohibits rapid toggling between states. Also, an edge detector
could be trained to detect the transitions between attention/inattention states instead of states for individual
time samples. Even with improvements we will end up with a less than perfect inattention detector and we
will have to study user experiences in order to define levels of accuracy required before inattention detectors
could be used as an acceptable driver assistant tool.

Future work should also include modeling how drivers “recover” from inattentive periods. Even with
perfect eye tracking it is unlikely that when a driver’s eyes return to the road that the driver is instantly
attentive and aware of his environment. This is a general attention modeling problem and is not specific to
our technique.

Once driver inattention is detected there still needs to be experimentation on how to best assist the
driver. Good driving habits will include periods that we have defined as inattentive, such as a “blind spot”
glance before changing lanes. The system must understand the appropriate frequency and duration of these
“blind spot” glances and not annoy the driver by offering counter-productive or unreasonable advice.

7 Conclusion

In this chapter, we have demonstrated three instances of using computational intelligence techniques such
as the random forest method in developing intelligent driver assistance systems. Random Forest appears to
be a very well suited tool for massive heterogeneous data sets that are generated from the driving domain.
A driver activity classifier based on Random Forests is also fast enough to run in real time in a vehicle.

First, the random forest method is used to create a semi-automatic data annotation tool for driving
database creation to support data-driven approaches in the driving domain such as driving state classi-
fication. The tool significantly reduces the manual annotation effort and thus enables the user to verify
automatically generated annotations, rather than annotating from scratch. In experiments going through
the whole database annotation cycle, we have observed sixfold reductions in the annotation time by a
human annotator [25].

Second, the random forest method is employed to identify the sensor variables that are important for
determining the driving maneuvers. Different combinations of sensor variables are identified for different
driving maneuvers. For example, steering wheel angle is important for determining the turning maneuver, and
brake status, acceleration, and headway distance are important for determining the panic brake maneuver.

Third, our random forest technique enabled us to detect driver inattention through the use of sensors
that are available in modern vehicles. We compared both traditional sensors (detecting only steering wheel
angle and accelerator pedal position) and CAS sensors against the performance of a state-of-the-art eye/head
tracker. As expected, the addition of CAS sensors greatly improve the ability for a system to detect inat-
tention. Though not as accurate as eye tracking, a significant percentage of inattentive time samples could

Understanding Driving Activity 57

be detected by monitoring readily available sensors (including CAS sensors) and it is believed that a driver
assistant system could be built to use this information to improve driver attention. The primary advantage
of our system is that it requires only a small amount of code to be added to existing vehicles and avoids the
cost and complexity of adding driver monitors such as eye/head trackers.

A driving simulator is an excellent tool to investigate driver inattention since this allows us to design
experiments and collect data on driver behaviors that may impose a safety risk if these experiments were
performed in a real vehicle. There is still much to be learned about the causes and effects of driver inattention,
but even small steps toward detecting inattention can be helpful in increasing driver performance.

References

1. E.R. Boer. Behavioral entropy as an index of workload. In Proceedings of the IEA/HFES 2000 Congress, pp.
125–128, 2000.

2. E.R. Boer. Behavioral entropy as a measure of driving performance. In Driver Assessment, pp. 225–229, 2001.
3. O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In Proceedings of NIPS, pp.

196–202, 2000.
4. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
5. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
6. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees, CRC Press, Boca

Raton, FL, 1984.
7. D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201–

221, 1994.
8. T.A. Dingus, S.G. Klauer, V.L. Neale, A. Petersen, S.E. Lee, J. Sudweeks, M.A. Perez, J. Hankey, D. Ramsey,

S. Gupta, C. Bucher, Z.R. Doerzaph, J. Jermeland, and R.R. Knipling. The 100 car naturalistic driving study:
Results of the 100-car field experiment performed by Virginia tech transportation institute. Report DOT HS 810
593, National Highway Traffic Safety Administration, Washington DC, April 2006.

9. L. Fletcher, N. Apostoloff, L. Petersson, and A. Zelinsky. Driver assistance systems based on vision in and out of
vehicles. In Proceedings of IEEE Intelligent Vehicles Symposium, pp. 322–327. IEEE, Piscataway, NJ, June 2003.

10. J. Forbes, T. Huang, K. Kanazawa, and S. Russell. The BATmobile: Towards a Bayesian automated taxi. In
Proceedings of Fourteenth International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995.

11. I. Guyon and A. Elisseeff. An introduction to feature selection. Journal of Machine Learning Research, 3:1157–
1182, 2003.

12. I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh. Feature Extraction, Foundations and Applications. Springer,
Berlin Heidelberg New York, 2006.

13. J. Hankey, T.A. Dingus, R.J. Hanowski, W.W. Wierwille, C.A. Monk, and M.J. Moyer. The development of
a design evaluation tool and model of attention demand. Report 5/18/00, National Highway Traffic Safety
Administration, Washington DC, May 18, 2000.

14. R.A. Hess and A. Modjtahedzadeh. A preview control model of driver steering behavior. In Proceedings of IEEE
International Conference on Systems, Man and Cybernetics, pp. 504–509, November 1989.

15. R.A. Hess and A. Modjtahedzadeh. A control theoretic model of driver steering behavior. IEEE Control Systems
Magazine, 10(5):3–8, 1990.

16. H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer, Boston, MA, 1998.
17. J.C. McCall and M.M. Trivedi. Driver behavior and situation aware brake assistance for intelligent vehicles.

Proceedings of the IEEE, 95(2):374–387, 2007.
18. V.L. Neale, S.G. Klauer, R.R. Knipling, T.A. Dingus, G.T. Holbrook, and A. Petersen. The 100 car naturalistic

driving study: Phase 1-experimental design. Interim Report DOT HS 809 536, Department of Transportation,
Washington DC, November 2002. Contract No: DTNH22-00-C-07007 by Virginia Tech Transportation Institute.

19. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural
Information Processing Systems 14: Proceedings of the NIPS 2001, 2001.

20. N. Oza. Probabilistic models of driver behavior. In Proceedings of Spatial Cognition Conference, Berkeley, CA,
1999.

21. F.J. Pompei, T. Sharon, S.J. Buckley, and J. Kemp. An automobile-integrated system for assessing and reacting
to driver cognitive load. In Proceedings of Convergence 2002, pp. 411–416. IEEE SAE, New York, 2002.

22. L.R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings
of the IEEE, 77(2):257–286, 1989.

58 K. Torkkola et al.

23. D. Remboski, J. Gardner, D. Wheatley, J. Hurwitz, T. MacTavish, and R.M. Gardner. Driver performance
improvement through the driver advocate: A research initiative toward automotive safety. In Proceedings of the
2000 International Congress on Transportation Electronics, SAE P-360, pp. 509–518, 2000.

24. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
25. C. Schreiner, K. Torkkola, M. Gardner, and K. Zhang. Using machine learning techniques to reduce data anno-

tation time. In Proceedings of the 50th Annual Meeting of the Human Factors and Ergonomics Society, San
Francisco, CA, October 16–20, 2006.

26. P. Smith, M. Shah, and N. da Vitoria Lobo. Adetermining driver visual attention with one camera. IEEE
Transactions on Intelligent Transportation Systems, 4(4):205, 2003.

27. K. Torkkola. Automatic alignment of speech with phonetic transcriptions in real time. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP88), pp. 611–614, New York City,
USA, April 11–14, 1988.

28. K. Torkkola, M. Gardner, C. Schreiner, K. Zhang, B. Leivian, and J. Summers. Sensor selection for driving
state recognition. In Proceedings of the World Congress on Computational Intelligence (WCCI), IJCNN, pp.
9484–9489, Vancouver, Canada, June 16–21, 2006.

29. K. Torkkola, N. Massey, B. Leivian, C. Wood, J. Summers, and S. Kundalkar. Classification of critical driving
events. In Proceedings of the International Conference on Machine Learning and Applications (ICMLA), pp.
81–85, Los Angeles, CA, USA, June 23–24, 2003.

30. K. Torkkola, N. Massey, and C. Wood. Driver inattention detection through intelligent analysis of readily available
sensors. In Proceedings of the 7th Annual IEEE Conference on Intelligent Transportation Systems (ITSC 2004),
pp. 326–331, Washington DC, USA, October 3–6, 2004.

31. K. Torkkola, S. Venkatesan, and H. Liu. Sensor sequence modeling for driving. In Proceedings of the 18th
International FLAIRS Conference, AAAI Press, Clearwater Beach, FL, USA, May 15–17, 2005.

32. W. Van Winsum, M. Martens, and L. Herland. The effects of speech versus tactile driver support messages on
workload, driver behaviour and user acceptance. TNO-report TM-00-C003, TNO, Soesterberg, The Netherlands,
1999.

33. C. Wood, B. Leivian, N. Massey, J. Bieker, and J. Summers. Driver advocate tool. In Driver Assessment, 2001.

Computer Vision and Machine Learning for Enhancing
Pedestrian Safety

Tarak Gandhi and Mohan Manubhai Trivedi

Laboratory for Safe and Intelligent Vehicles (LISA), University of California San Diego, La Jolla, CA 92093, USA,
tgandhi@ucsd.edu, mtrivedi@ucsd.edu

Summary. Accidents involving pedestrians is one of the leading causes of death and injury around the world.
Intelligent driver support systems hold a promise to minimize accidents and save many lives. Such a system would
detect the pedestrian, predict the possibility of collision, and then warn the driver or engage automatic braking or
other safety devices. This chapter describes the framework and issues involved in developing a pedestrian protection
system. It is emphasized that the knowledge of the state of the environment, vehicle, and driver are important for
enhancing safety. Classification, clustering, and machine learning techniques for effectively detecting pedestrians are
discussed, including the application of algorithms such as SVM, Neural Networks, and AdaBoost for the purpose of
distinguishing pedestrians from background. Pedestrians unlike vehicles are capable of sharp turns and speed changes,
therefore their future paths are difficult to predict. In order to estimate the possibility of collision, a probabilistic
framework for pedestrian path prediction is described along with related research. It is noted that sensors in vehicle are
not always sufficient to detect all the pedestrians and other obstacles. Interaction with infrastructure based systems
as well as systems from other vehicles can provide a wide area situational awareness of the scene. Furthermore,
in infrastructure based systems, clustering and learning techniques can be applied to identify typical vehicle and
pedestrian paths and to detect anomalies and potentially dangerous situations. In order to effectively integrate
information from infrastructure and vehicle sources, the importance of developing and standardizing vehicle-vehicle
and vehicle-infrastructure communication systems is also emphasized.

1 Introduction

Intelligent Transportation Systems (ITS) show promise of making road travel safer and comfortable. Auto-
mobile companies have recently taken considerable interest in developing Intelligent Driver Support Systems
(IDSS) for high-end vehicles. These include active cruise control, lane departure warning, blind spot moni-
toring, and pedestrian detection systems based on sensors such as visible light and thermal infrared cameras,
RADARs, or LASER scanners. However, for an effective driver support system, it is desirable to take a
holistic approach, using all available data from the environment, vehicle dynamics, and the driver that can
be obtained using various sensors incorporated in vehicle and infrastructure [35]. Infrastructure based sen-
sors can complement the vehicle sensors by filling gaps and providing more complete information about the
surroundings. Looking in the vehicle at driver’s state is as important as looking out in surroundings in order
to convey warnings to the driver in the most effective and least distracting manner. Furthermore, due to the
highly competitive nature of automobile manufacturing, it is necessary to make such systems cost effective.
This makes multi-functional sensors that are used by several of these systems highly desirable.

Accidents involving pedestrians and other vulnerable road users such as bicyclists are one of the leading
causes of death and injury around the world. In order to reduce these accidents, pedestrian protection
systems need to detect pedestrians, track them over time, and predict the possibility of collision based on
the paths that the pedestrian and the vehicle are likely to take. The system should relay the information
to the driver in efficient and non-distracting manner or to the control system of the vehicle in order to
take preventive actions. Considerable efforts have been made on enhancing pedestrian safety by programs
in United states [3, 4], Europe [2, 5] and Japan [1]. Conferences such as Intelligent Vehicles Symposium [6]

T. Gandhi and M.M. Trivedi: Computer Vision and Machine Learning for Enhancing Pedestrian Safety, Studies in Computational

Intelligence (SCI) 132, 59–77 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

60 T. Gandhi and M.M. Trivedi

and Intelligent Transportation Systems Conference [7] have a number of publications related to pedestrian
detection every year. The recent survey on pedestrian protection [19] has covered the current research on
pedestrian detection, tracking, and collision prediction. It is observed that detecting pedestrians in cluttered
scenes from a moving vehicle is a challenging problem that involves a number of computational intelligence
techniques spanning image processing, computer vision, pattern recognition, and machine learning. This
paper focuses on specific computational intelligence techniques used in stages of sensor based pedestrian
protection system for detecting and classifying pedestrians, and predicting their trajectories to assess the
possibility of collision.

2 Framework for Pedestrian Protection System

Figure 1 shows the components of a general pedestrian protection system. The data from one or more
types of sensors can be processed using computer vision algorithms to detect pedestrians and determine
their trajectories. The trajectories can then be sent to collision prediction module that would predict the
probability of collision between the host vehicle and pedestrians. In the case of high probability of collision,
the driver is given appropriate warning that enables corrective action. If the collision is imminent, the
automatic safety systems could also be triggered to decelerate the vehicle and reduce the impact of collision.
In the following sections we illustrate these components using examples focusing on approaches used for
these tasks.

Pedestrian Detection
Candidate generation

Classification/Verifica tion
Tracking

Environment Sensors in Vehicle and Infrastructure

Imaging sensors: Visible light, near IR, thermal IR
Time of flight sensors: RADARs, LASER scanners

Vehicle
Dynamic
Sensors

Pedestrian
appearance
and motion

models

Collision Prediction
Trajectory prediction

Monte Carlo Simulations
Particle filtering

Pedestrian
behavior
models

Action
Warning driver

Activation of automatic braking,
passive safety systems

Driver State
Sensing

Sensor data

Pedestrian trajectories

Collision probabilities

Fig. 1. Data flow diagram for pedestrian protection systems

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 61

3 Techniques in Pedestrian Detection

Pedestrian detection is usually divided into two stages. The candidate generation stage processes raw data
using simple cues and fast algorithms to identify potential pedestrian candidates. The classification and
verification stage then applies more complex algorithms to the candidates from the attention focusing stage
in order to separate genuine pedestrians from false alarms. However, the line between these stages is often
blurred and some approaches combine the stages into one. Table 1 shows the approaches used by researchers
for stages in pedestrian detection.

3.1 Candidate Generation

Cues such as shape, appearance, motion, and distance can be used to generate potential pedestrian
candidates. Here, we describe selected techniques used for generating pedestrian candidates using these cues.

Chamfer Matching

Chamfer matching is a generic technique to recognize objects based on their shape and appearance using
hierarchical matching with a set of object templates from training images. The original image is converted
to a binary image using an edge detector. A distance transform is then applied to the edge image. Every
pixel r = (x, y) in the distance transformed image has a value dI(t) equal to the distance to the nearest edge
pixel:

dI(r) = min
r′∈edges(I)

‖r′ − r‖ (1)

The distance transformed image is matched to the binary templates generated from examples. For this
purpose, the template is slided over the image and at every displacement, the chamfer distance between the
image and template is obtained by taking the mean of all the pixels in the distance transform image that
have an ‘on’ pixel in template image:

D(T, I) =
1
|T |

∑
r∈T

dI(r) (2)

Positions in the image where the chamfer distance is less than a threshold are considered as successful
matches.

Table 1. Approaches used in stages of pedestrian protection

Publication Candidate generation Feature extraction Classification

Gavrila ECCV00 [20],
IJCV07 [21], Munder
PAMI06 [27]

Chamfer matching Image ROI pixels LRF Neural Network

Gandhi MM04 [15],
MVA05 [16]

Omni camera based planar
motion estimation

Gandhi ICIP05 [17],
ITS06 [18]

Stereo based U disparity
analysis

Krotosky IV06 [25] Stereo based U and V
disparity analysis

Histogram of oriented
gradients

Support Vector Machine

Papageorgiou IJCV00 [28] Haar wavelets Support Vector Machine
Dalal CVPR05 [13] Histogram of oriented

gradients
Support Vector Machine

Viola IJCV05 [37] Haar-like features in spatial
and temporal domain

AdaBoost

Park ISI07 [29] Background subtraction,
homography projection

Shape and size of object

62 T. Gandhi and M.M. Trivedi

In order to account for the variations between individual objects, the image is matched with number
of templates. For efficient matching, a template hierarchy is generated using bottom up clustering. All the
training templates are grouped into K clusters, each represented by a prototype template pk and the set
of templates Sk in the cluster. Clustering is performed using using an iterative optimization algorithm that
minimizes an objective function:

E =
K∑

k=1

max
ti∈Sk

Dmin(ti, pk) (3)

where Dmin(ti, pk) denotes the minimum chamfer distance between the template ti and the prototype pk for
all relative displacements between them. The process is repeated recursively by treating the prototypes as
templates and re-clustering them to form a tree as shown in Fig. 2.

For recognition, the given image is recursively matched with the nodes of the template tree, starting
from the root. At any level, the branches where the minimum chamfer distance is greater than a threshold
are pruned to reduce the search time. For remaining nodes, matching is repeated for all children nodes.
Candidates are generated at image positions where the chamfer distance with any of the template nodes is
below threshold.

Motion-Based Detection

Motion is an important cue in detecting pedestrians. In the case of moving platforms, the background
undergoes ego-motion that depends on camera motion as well as the scene structure, which needs to be
accounted for. In [15, 16], a parametric planar motion model is used to describe the ego-motion of the ground
in an omnidirectional camera. The perspective coordinates of a point P on the ground in two consecutive
camera positions is governed by a homography matrix H as:

⎛
⎝Xb

Yb

Zb

⎞
⎠ = λ

⎛
⎝h11 h12 h13

h21 h32 h33

h31 h32 1

⎞
⎠
⎛
⎝Xa

Ya

Za

⎞
⎠ (4)

The perspective camera coordinates can be mapped to pixel coordinates (ua, va) and (ub, vb) using the
internal calibration of the camera:

(ua, va) = Fint([Xa, Ya, Za]T),
(ub, vb) = Fint([Xb, Yb, Zb]T) = Fint(HF−1

int (ua, va)) (5)

The image motion of the point satisfies the optical flow constraint:

gu(ub − ua) + gv(vb − va) = −gt + ν (6)

where gu, gv, and gt are the spatial and temporal image gradients and ν is the noise term.
Based on these relations, the parameters of the homography matrix can be estimated using the spatio-

temporal image gradients at every point (ua, va) in the first image using non-linear least squares. Based on
these parameters, every point (ua, va) on the ground plane in first frame corresponds to a point (ub, vb) in the
second frame. Using this transformation, the second image can be transformed to first frame, compensating
the image motion of the ground plane. The objects that have independent motion or height above ground do
not obey the motion model and their motion is not completely compensated. Taking the motion compensated
frame difference between adjacent video frames highlights these areas that are likely to contain pedestrians,
vehicles, or other obstacles. These regions of interest can then be classified using the classification stage.
Figure 3 shows detection of a pedestrian and vehicle from a moving platform. The details of the approach
are described in [15].

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 63

(a) (b) (c) (d)

(e)

Fig. 2. Chamfer matching illustration: (a) template of pedestrian (b) test image (c) edge image (d) distance transform
image (e) template hierarchy (partial) used for matching with distance transform (figure based on [27])

Depth Segmentation Using Binocular Stereo

Binocular stereo imaging can provide useful information about the depth of the objects from the cameras.
This information has been used for disambiguating pedestrians and other objects from features on ground
plane [18, 25, 26], segmenting images based on layers with different depths [14], handling occlusion between
pedestrians [25], and using the size-depth relation to eliminate extraneous objects [32]. For a pair of stereo
cameras with focal length f and baseline distance of B between the cameras situated at the height of H

64 T. Gandhi and M.M. Trivedi

(a) (b)

(d)(c)

Fig. 3. Detection of people and vehicles using an omnidirectional camera on a moving platform [15] (a) estimated
motion based on parametric motion of ground plane (b) image pixels used for estimation. Gray pixels are inliers, and
white pixels are outliers. (c) Motion-compensated image difference that captures independently moving objects (d)
detected vehicle and person

above the road as shown in Fig. 4a. An object at distance D will have disparity of d = Bf/D between the
two cameras, that is inversely proportional to object distance. The ground in the same line of sight is farther
away and has a smaller disparity of dbg = Bf/Dbg. Based on this difference, objects having height above
the ground can be separated.

Stereo disparity computation can be performed using software packages such as SRI Stereo Engine [24].
Such software produces a disparity map that gives disparities of individual pixels in the image. In [17],
the concept of U-disparity proposed by Labayrade et al. [26] is used to identify potential obstacles in the
scene using images from a stereo pair of omnidirectional cameras as shown in Fig. 4b. The disparity image
disp(u, v) generated by a stereo engine separates the pedestrian in a layer of nearly constant depth. U-
disparity udisp(u, d) image counts occurrences of every disparity d for each column u in the image. In order
to suppress the ground plane pixels, only the pixels with disparity significantly greater than ground plane
disparity are used.

udisp(u, d) = #{v|disp(u, v) = d, d > dbg(u, v) + dthresh} (7)

where # stands for number of elements in the set.
Pixels in an object at a particular distance would have nearly same disparity and therefore form a

horizontal ridge in the disparity histogram image. Even if disparities of individual object pixels are inaccurate,
the histogram image clusters the disparities and makes it easier to isolate the objects. Based on the position
of the line segments, the regions containing obstacles can be identified. The nearest (lowest) region with
largest disparity corresponds to the pedestrian. The parts of the virtual view image corresponding to the
U-disparity segments can then be sent to classifier for distinguishing between pedestrians and other objects.

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 65

H
h

0 D Dbg

Cameras

Object

Road

Disparity = d
Disparity = dbg

B

(a)

(b)

Fig. 4. (a) Stereo geometry (top and side views). The disparity between image positions in the two cameras decrease
with object distance. (b) Stereo based pedestrian candidate generation [17]: Row 1 : Color images from a stereo
pair of omni camera containing pedestrian. Row 2 : Virtual front view images generated from omni images. Row 3 :
Superimposed front view images and disparity image with lighter shades showing nearer objects with larger disparity.
Row 4 : U-disparity image taking histogram of disparities for each column. The lower middle segment in U-disparity
image corresponds to the pedestrian. Other segments corresponds to more distant structures above the ground (figure
based on [17])

66 T. Gandhi and M.M. Trivedi

Training images
(Positive)

Feature
extraction

Classifier
Training

Scene images

Feature extraction

Classification/Matching

Training Phase

Training images
(Negative)

Feature
extraction

Candidate ROI

Pedestrian locations

Testing Phase

Fig. 5. Validation stage for pedestrian detection. Training phase uses positive and negative images to extract features
and train a classifier. Testing phase applies feature extractor and classifier to candidate regions of interest in the images

3.2 Candidate Validation

The candidate generation stage generates regions of interest (ROI) that are likely to contain a pedestrian.
Characteristic features are extracted from these ROIs and a trained classifier is used to separate pedestrian
from the background and other objects. The input to the classifier is a vector of raw pixel values or character-
istic features extracted from them, and the output is the decision showing whether a pedestrian is detected
or not. In many cases, the probability or a confidence value of the match is also returned. Figure 5 shows
the flow diagram of validation stage.

Feature Extraction

The features used for classification should be insensitive to noise and individual variations in appearance and
at the same time able to discriminate pedestrians from other objects and background clutter. For pedestrian
detection features such as Haar wavelets [28], histogram of oriented gradients [13], and Gabor filter outputs
[12], are used.

Haar Wavelets

An object detection system needs to have a representation that has high inter-class variability and low intra-
class variability [28]. For this purpose, features must be identified at resolutions where there will be some
consistency throughout the object class, while at the same time ignoring noise. Haar wavelets extract local
intensity gradient features at multiple resolution scales in horizontal, vertical, and diagonal directions and
are particularly useful in efficiently representing the discriminative structure of the object. This is achieved
by sliding the wavelet functions in Fig. 6 over the image and taking inner products as:

wk(m, n) =
2k−1∑
m=0

2k−1∑
n=0

ψk(m′, n′)f(2k−jm + m′, 2k−jn + n′) (8)

where f is the original image, ψk is any of the wavelet functions at scale k with support of length 2k, and
2j is the over-sampling rate. In the case of standard wavelet transforms, k = 0 and the wavelet is translated
at each sample by the length of the support as shown in Fig. 6. However, in over-complete representations,
k > 0 and the wavelet function is translated only by a fraction of the length of support. In [28] the over-
complete representation with quarter length sampling is used in order to robustly capture image features.

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 67

+1 +1-1

-1

+1 -1

-1

+1

+1

scaling function vertical

horizontal diagonal

standard

overcomplete

(a)

(b)

Pedestrian 16 x 16 32 x 32

Fig. 6. Haar wavelet transform framework. Left: Scaling and wavelet functions at a particular scale. Right: Standard
and overcomplete wavelet transforms (figure based on [28])

The wavelet transform can be concatenated to form a feature vector that is sent to a classifier. However, it is
observed that some components of the transform have more discriminative information than others. Hence,
it is possible to select such components to form a truncated feature vector as in [28] to reduce complexity
and speed up computations.

Histograms of Oriented Gradients

Histograms of oriented gradients (HOG) have been proposed by Dalal and Triggs [13] to classify objects such
as people and vehicles. For computing HOG, the region of interest is subdivided into rectangular blocks and
histogram of gradient orientations is computed in each block. For this purpose, sub-images corresponding
to the regions suspected to contain pedestrian are extracted from the original image. The gradients of the
sub-image are computed using Sobel operator [22]. The gradient orientations are quantized into K bins each
spanning an interval of 2π/K radians, and the sub-image is divided into M ×N blocks. For each block (m, n)
in the subimage, the histogram of gradient orientations is computed by counting the number of pixels in
the block having the gradient direction of each bin k. This way, an M × N × K array consisting of M × N
local histograms is formed. The histogram is smoothed by convolving with averaging kernels in position and
orientation directions to reduce sensitivity to discretization. Normalization is performed in order to reduce
sensitivity to illumination changes and spurious edges. The resulting array is then stacked into a B = MNK
dimensional feature vector x. Figure 7 shows examples with pedestrian snapshots along with the HOG
representation shown by red lines. The value of a histogram bin for a particular position and orientation is
proportional to the length of the respective line.

Classification

The classifiers employed to distinguish pedestrians from non-pedestrian objects are usually trained using fea-
ture vectors extracted from a number of positive and negative examples to determine the decision boundary

68 T. Gandhi and M.M. Trivedi

Fig. 7. Pedestrian subimages with computed Histograms of Oriented Gradients (HOG). The image is divided into
blocks and the histogram of gradient orientations is individually computed for each block. The lengths of the red
lines correspond to the frequencies of image gradients in the respective directions

between them. After training, the classifier processes unknown samples and decides the presence or absence
of the object based on which side of the decision boundary the feature vector lies. The classifiers used for
pedestrian detection include Support Vector Machines (SVM), Neural Networks, and AdaBoost, which are
described here.

Support Vector Machines

The Support Vector Machine (SVM) forms a decision boundary between two classes by maximizing the
“margin,” i.e., the separation between nearest examples on either side of the boundary [11]. SVM in con-
junction with various image features are widely used for pedestrian recognition. For example, Papageorgiou
and Poggio [28] have designed a general object detection system that they have applied to detect pedes-
trians for a driver assistance. The system uses SVM classifier on Haar wavelet representation of images. A
support vector machine is trained using a large number of positive and negative examples from which the
image features are extracted. Let xi denote the feature vector of sample i and yi denote one of the two class
labels in {0, 1}. The feature vector xi is projected into a higher dimensional kernel space using a mapping
function Φ which allows complex non-linear decision boundaries. The classification can be formulated as an
optimization problem to find a hyperplane boundary in the kernel space:

wT Φ(xi) + b = 0 (9)

using

min
w,b,ξ,ρ

wT w − νρ +
1
L

L∑
i=1

ξi (10)

subject to
wT Φ(xi) + b ≥ ρ − ξi , ξi ≥ 0, i = 1 . . . L, ρ ≥ 0

where ν is the parameter to accommodate training errors and ξ is used to account for some samples that
are not separated by the boundary. Figure 8 illustrates the principle of SVM for classification of samples.
The problem is converted into the dual form which is solved using quadratic programming [11]:

min
α

L∑
i=1

L∑
j=1

αiyiK(xi,xj)yjαj (11)

subject to

0 ≤ αi ≤ 1/L,

L∑
i=1

αi ≥ ν,

L∑
i=1

αiyi = 0 (12)

where K(xi,xj) = Φ(xi)T Φ(xj) is the kernel function derived from the mapping function Φ, and represents
the distance in the high-dimensional space. It should be noted that the kernel function is usually much easier
to compute than the mapping function Φ. The classification is then given by the decision function:

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 69

0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

decision boundary

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) (b)

Fig. 8. Illustration of Support Vector Machine principle. (a) Two classes that cannot be separated by a single
straight line. (b) Mapping into Kernel space. SVM finds a line separating two classes to minimize the “margin,” i.e.,
the distance to the closest samples called ‘Support Vectors’

D(x) =
L∑

i=1

αiyiK(xi,x) + b (13)

Neural Networks

Neural networks have been used to address problems in vehicle diagnostics and control [31]. They are par-
ticularly useful when the phenomenon to be modeled is highly complex but one has large amount of training
data to enable learning of patterns from them. Neural networks can obtain highly non-linear boundaries
between classes based on the training samples, and therefore can account for large shape variations. Zhao
and Thorpe [41] have applied neural networks on gradient images of regions of interest to identify pedestrians.
However, unconstrained neural networks require training of a large number of parameters necessitating very
large training sets. In [21, 27], Gavrila and Munder use Local receptive fields (LRF) proposed by Wöhler and
Anlauf [39] (Fig. 9) to reduce the number of weights by connecting each hidden layer neuron only to a local
region of input image. Furthermore, the hidden layer is divided into a number of branches, each encoding
a local feature, with all neurons within a branch sharing the same set of weights. Each hidden layer can be
represented by the equation:

Gk(r) = f

[∑
i

WkiF (T (r) + ∆ri)

]
(14)

where F (p) denotes the input image as a function of pixel coordinates p = (x, y), Gk(r) denotes the output
of the neuron with coordinate r = (rx, ry) in the branch k of the hidden layer, Wki are the shared weights for
branch k, and f(·) is the activation function of the neuron. Each neuron with coordinates of r is associated
with a region in the image around the transformed pixel t = T (r), and ∆ri denote the displacements for
pixels in the region. The output layer is a standard fully connected layer given by:

Hm = f

[∑
i

wmk(x, y)Gk(x, y)

]
(15)

where Hm is the output of neuron m in output layer, wmk is the weight for connection between output
neuron m and hidden layer neuron in branch k with coordinate (x, y).

LeCun et al. [40] describe similar weight-shared and grouped networks for application in document
analysis.

70 T. Gandhi and M.M. Trivedi

Input layer
(input image)

Hidden layer
(Nb branches of
receptive fields)

Output layer
(full connectivity)

……

……

r

T(r)

Dr

Fig. 9. Neural network architecture with Local Receptive Fields (figure based on [27])

Adaboost Classifier

Adaboost is a scheme for forming a strong classifier using a linear combination of a number of weak classi-
fiers based on individual features [36, 37]. Every weak classifier is individually trained on a single feature.
For boosting the weak classifier, the training examples are iteratively re-weighted so that the samples which
are incorrectly classified by the weak classifier are assigned larger weights. The final strong classifier is a
weighted combination of weak classifiers followed by a thresholding step. The boosting algorithm is described
as follows [8, 36]:

• Let xi denote the feature vector and yi denote one of the two class labels in {0, 1} for negative and
positive examples, respectively

• Initialize weights wi to 1/2M for each of the M negative samples and 1/2L for each of the L positive
samples

• Iterate for t = 1 . . . T
– Normalize weights: wt,i ← wt,i/

∑
k wt,k

– For each feature j, train classifier hj that uses only that feature. Evaluate weighted error for all
samples as: εj =

∑
i wt,i|hj(xi) − yi|

– Choose classifier ht with lowest error εt

– Update weights: wt+1,i ← wt,i

(
εt

1−εt

)1−|hj(xi)−yi|

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 71

– The final strong classifier decision is given by the linear combination of weak classifiers and
thresholding the result:

∑
t αtht(x) ≥∑

t αt/2 where αt = log
(

1−εt

εt

)

4 Infrastructure Based Systems

Sensors mounted on vehicles are very useful for detecting pedestrians and other vehicles around the host
vehicle. However, these sensors often cannot see objects that are occluded by other vehicles or stationary
structures. For example, in the case of the intersection shown in Fig. 10, the host vehicle X cannot see the
pedestrian P occluded by a vehicle Y as well as the vehicle Z occluded by buildings. Sensor C mounted on
infrastructure would be able to see all these objects and help to fill the ‘holes’ in the fields of view of the
vehicles. Furthermore, if vehicles can communicate with each other and the infrastructure, they can exchange
information about objects that are seen by one but not seen by others. In the future, infrastructure based
scene analysis as well as infrastructure-vehicle and vehicle-vehicle communication will contribute towards
robust and effective working of Intelligent Transportation Systems.

Cameras mounted in infrastructure have been extensively applied to video surveillance as well as traffic
analysis [34]. Detection and tracking of objects from these cameras is easier and more reliable due to absence
of camera motion. Background subtraction which is one of the standard methods to extract moving objects
from stationary background is often employed, followed by classification of objects and activities.

4.1 Background Subtraction and Shadow Suppression

In order to separate moving objects from background, a model of the background is generated from multiple
frames. The pixels not satisfying the background model are identified and grouped to form regions of interest
that can contain moving objects. A simple approach for modeling the background is to obtain the statistics
of each pixel described by color vector x = (R, G, B) over time in terms of mean and variance. The mean
and variance are updated at every time frame using:

µ ← (1 − α)µ + αx

σ2 ← (1 − α)σ2 + α(x − µ)T (x − µ) (16)

If for a pixel at any given time, ‖x − µ‖/σ is greater than a threshold (typically 2.5), the pixel is classi-
fied as foreground. Schemes have been designed that adjust the background update according to the pixel

X

Z

Y

P

C

Fig. 10. Contribution of sensors mounted in infrastructure. Vehicle X cannot see pedestrian P or vehicle Z, but the
infrastructure mounted camera C can see all of them

72 T. Gandhi and M.M. Trivedi

currently being in foreground or background. More elaborate models such as Gaussian Mixture Models [33]
and codebook model [23] are used to provide robustness against fluctuating motion such as tree branches,
shadows, and highlights.

An important problem in object-background segmentation is the presence of shadows and highlights of
the moving objects, which need to be suppressed in order to get meaningful object boundaries. Prati et al.
[30] have conducted a survey of approaches used for shadow suppression. An important cue for distinguishing
shadows from background is that the shadow reduces the luminance value of a background pixel, with little
effect on the chrominance. Highlights similarly increase the value of luminance. On the other hand, objects
are more likely to have different color from the background and brighter than the shadows. Based on these
cues, bright objects can often be separated from shadows and highlights.

4.2 Robust Multi-Camera Detection and Tracking

Multiple cameras offer superior scene coverage from all sides, provide rich 3D information, and enable robust
handling of occlusions and background clutter. In particular, they can help to obtain the representation
of the object that is independent of viewing direction. In [29], multiple cameras with overlapping fields of
view are used to track persons and vehicles. Points on the ground plane can be projected from one view to
another using a planar homography mapping. If (u1, v1) and (u2, v2) are image coordinates of a point on
ground plane in two views, they are related by the following equations:

u2 =
h11u1 + h12v1 + h13

h31u1 + h32v1 + h33
, v2 =

h21u1 + h22v1 + h23

h31u1 + h32v1 + h33
(17)

The matrix H formed from elements hij is the Homography matrix. Multiple views of the same object are
transformed by planar homography which assumes that pixels lie on ground plane. Pixels that violate this
assumption result in mapping to a skewed location. Hence, the common footage region of the object on
ground can be obtained by intersecting multiple projections of the same object on the ground plane. The
footage area on the ground plane gives an estimate of the size and the trajectory of the object, independent
of the viewing directions of the cameras. Figure 11 depicts the process of estimating the footage area using
homography. The locations of the footage areas are then tracked using Kalman filter in order to obtain object
trajectories.

4.3 Analysis of Object Actions and Interactions

The objects are classified into persons and vehicles based on their footage area. The interaction among
persons and vehicles can then be analyzed at semantic level as described in [29]. Each object is associated
with spatio-temporal interaction potential that probabilistically describes the region in which the object can
be subsequent time. The shape of the potential region depends on the type of object (vehicle/pedestrian)
and speed (larger region for higher speed), and is modeled as a circular region around the current position.
The intersection of interaction potentials of two objects represents the possibility of interaction between
them as shown in Fig. 12a. They are categorized as safe or unsafe depending on the site context such as
walkway or driveway, as well as motion context in terms of trajectories. For example, as shown in Fig. 12b, a
person standing on walkway is normal scenario, whereas the person standing on driveway or road represents
a potentially dangerous situation. Also, when two objects are moving fast, the possibility of collision is higher
than when they are traveling slowly. This domain knowledge can be fed into the system in order to predict
the severity of the situation.

5 Pedestrian Path Prediction

In addition to detection of pedestrians and vehicles, it is important to predict what path they are likely to
take in order to estimate the possibility of collision. Pedestrians are capable of making sudden maneuvers
in terms of the speed and direction of motion. Hence, probabilistic methods are most suitable for predicting

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 73

(a)

(b)

Fig. 11. (a) Homography projection from two camera views to virtual top views. The footage region is obtained by
the intersection of the projections on ground plane. (b) Detection and mapping of vehicles and a person in virtual
top view showing correct sizes of objects [29]

the pedestrian’s future path and potential collisions with vehicles. In fact, even for vehicles whose paths are
easier to predict due to simpler dynamics, predictions beyond 1 or 2 seconds is still very challenging, making
probabilistic methods valuable even for vehicles.

For probabilistic prediction, Monte-Carlo simulations can be used to generate a number of possible
trajectories based on the dynamic model. The collision probability is then predicted based on the fraction
of trajectories that eventually collide with the vehicle. Particle filtering [10] gives a unified framework for
integrating the detection and tracking of objects with risk assessment as in [8]. Such a framework is shown
in Fig. 13a with following steps:

1. Every tracked object can be modeled using a state vector consisting of properties such as 3-D position,
velocity, dimensions, shape, orientation, and other appropriate attributes. The probability distribution of
the state can then be modeled using a number of weighted samples randomly chosen according to the
probability distribution.

2. The samples from the current state are projected to the sensor fields of view. The detection module would
then produce hypotheses about the presence of vehicles. The hypotheses can then be associated with the
samples to produce likelihood values used to update the sample weights.

74 T. Gandhi and M.M. Trivedi

Fig. 12. (a) Schematic diagrams for trajectory analysis in spatio-temporal space. Circles represent interaction poten-
tial boundaries at a given space/time. Red curves represent the envelopes of the interaction boundary along tracks.
(b) Spatial context dependency of human activity (c) Temporal context dependency of interactivity between two
objects. Track patterns are classified into normal (open circle), cautious (open triangle) and abnormal (times) [29]

3. The object state samples can be updated at every time instance using the dynamic models of pedestrians
and vehicles. These models put constraints on how the pedestrian and vehicle can move over short and
long term.

4. In order to predict collision probability, the object state samples are extrapolated over a longer period of
time. The number of samples that are on collision course divided by the total number of samples gives
the probability of collision.

Various dynamic models can be used for predicting the positions of the pedestrians at subsequent time.
For example, in [38], Wakim et al. model the pedestrian dynamics using Hidden Markov Model with four
states corresponding to standing still, walking, jogging, and running as shown in Fig. 13b. For each state,
the probability distributions of absolute speed as well as the change of direction is modeled by truncated
Gaussians. Monte Carlo simulations are then used to generate a number of feasible trajectories and the
ratio of the trajectories on collision course to total number of trajectories give the collision probability. The
European project CAMELLIA [5] has conducted research in pedestrian detection and impact prediction
based in part on [8, 38]. Similar to [38], they use a model for pedestrian dynamics using HMM. They use the
position of pedestrian (sidewalk or road) to determine the transition probabilities between different gaits and
orientations. Also, the change in orientation is modeled according to the side of the road that the pedestrian
is walking.

In [9], Antonini et al. another approach called “Discrete Choice Model” which a pedestrian makes a
choice at every step about the speed and direction of the next step. Discrete choice models associate a utility

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 75

Stand Walk Jog Run

Tracking using multiple
instances of particle filter

Pedestrian
and Vehicle
Dynamic
Models

Detection based on attention
focusing and classification/

verification stages

Collision prediction using
extrapolation of object state

Back-projection
to sensor
domain

Candidate
hypotheses

Feedback for temporal
integration to optimize
detection and classification

States of tracked
objects

(a)

(b)

Fig. 13. (a) Integration of detection, tracking, and risk assessment of pedestrians and other objects based on particle
filter [10] framework. (b) Transition diagram between states of pedestrians in [38]. The arrows between two states are
associated with non-zero probabilities of transition from one state to another. Arrows on the same state corresponds
to the pedestrian remaining in the same state in the next time step

value to every such choice and select the alternative with the highest utility. The utility of each alternative
is a latent variable depending on the attributes of the alternative and the characteristics of the decision-
maker. This model is integrated with person detection and tracking from static cameras in order to improve
performance. Instead of making hard decisions about target presence on every frame, it integrates evidence
from a number of frames before making a decision.

6 Conclusion and Future Directions

Pedestrian detection, tracking, and analysis of behavior and interactions between pedestrians and vehicles are
active research areas having important application in protection of pedestrians on road. Pattern classification
approaches are particularly useful in detecting pedestrians and separating them from background. It is

76 T. Gandhi and M.M. Trivedi

seen that pedestrian detection can be performed using sensors on vehicle itself or in the infrastructure.
Vehicle based sensing gives continuous awareness of the scene around the vehicle and systems are being
designed to detect pedestrians from vehicles. However, it is also seen that relying on vehicle sensors is not
always sufficient to give full situational awareness of the scene. Infrastructure based sensors can play a
complementary role of providing wide area scene coverage. For seamless integration of information from
vehicle and infrastructure, efficient and reliable communication is needed. Communication can be performed
at image level or object level. However, transmitting full images over the network is likely to be very expensive
in terms of bandwidth. Hence, it would be desirable to perform initial detection locally and transmit candidate
positions and trajectories along with sub-images of candidate bounding boxes as needed. Future research will
be directed towards developing and standardizing these communications between vehicle and infrastructure
to efficiently convey all the information needed to get complete situational awareness of the scene.

Acknowledgment

The authors thank the UC Discovery Grant with several automobile companies, Department of Defense
Technical Support Working Group, National Science Foundation for the sponsorship of the research. The
authors also thank the members in the Computer Vision and Robotics Research Laboratory including Dr.
Stephen Krotosky, Brendan Morris, Erik Murphy-Chutorian, and Dr. Sangho Park for their contributions.

References

1. Advanced Highway Systems Program, Japanese Ministry of Land, Infrastructure and Transport, Road Bureau.
http://www.mlit.go.jp/road/ITS/index.html.

2. http://prevent.ertico.webhouse.net/en/home.htm, http://prevent.ertico.webhouse.net/en/prevent subprojects/
vulnerable road users collision mitigation/apalaci/.

3. http://www.path.berkeley.edu/.
4. http://www.walkinginfo.org/pedsmart.
5. Deliverable 3.3b report on initial algorithms 2. Technical Report IST-2001-34410, CAMELLIA: Core for Ambient

and Mobile Intelligent Imaging Applications, December 2003.
6. IEEE Intelligent Vehicle Symposium, Istanbul, Turkey, June 2007.
7. IEEE International Transportation Systems Conference, Seattle, WA, September 2007.
8. Y. Abramson and B. Steux. Hardware-friendly pedestrian detection and impact prediction. In IEEE Intelligent

Vehicle Symposium, pp. 590–595, June 2004.
9. G. Antonini, S. Venegas, J.P. Thiran, and M. Bierlaire. A discrete choice pedestrian behavior model for pedes-

trian detection in visual tracking systems. In Proceedings of Advanced Concepts for Intelligent Vision Systems,
September 2004.

10. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/non-
gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, 2002.

11. C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines, Last updated June 2007.
12. H. Cheng, N. Zheng, and J. Qin. Pedestrian detection using sparse gabor filters and support vector machine. In

IEEE Intelligent Vehicle Symposium, pp. 583–587, June 2005.
13. N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, June 2005.
14. U. Franke. Real-time stereo vision for urban traffic scene understanding. In IEEE Intelligent Vehicle Symposium,

pp. 273–278, 2000.
15. T. Gandhi and M.M. Trivedi. Motion analysis for event detection and tracking with a mobile omni-directional

camera. Multimedia Systems Journal, Special Issue on Video Surveillance, 10(2):131–143, 2004.
16. T. Gandhi and M.M. Trivedi. Parametric ego-motion estimation for vehicle surround analysis using an

omnidirectional camera. Machine Vision and Applications, 16(2):85–95, 2005.
17. T. Gandhi and M.M. Trivedi. Vehicle mounted wide FOV stereo for traffic and pedestrian detection. In Proceedings

of International Conference on Image Processing, pp. 2:121–124, 2005.
18. T. Gandhi and M.M. Trivedi. Vehicle surround capture: Survey of techniques and a novel omni video based

approach for dynamic panoramic surround maps. IEEE Transactions on Intelligent Transportation Systems,
7(3):293–308, 2006.

Computer Vision and Machine Learning for Enhancing Pedestrian Safety 77

19. T. Gandhi and M.M. Trivedi. Pedestrian protection systems: Issues, survey, and challenges. IEEE Transactions
on Intelligent Transportation Systems, 8(3), 2007.

20. D.M. Gavrila. Pedestrian detection from a moving vehicle. In Proceedings of European Conference on Computer
Vision, pp. 37–49, 2000.

21. D.M. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking from a moving vehicle. International
Journal of Computer Vision, 73(1):41–59, 2007.

22. R.C. Gonzalez and R.E. Woods. Digital Image Processing. Prentice Hall, Upper Saddle River, NJ, 3rd edition,
2008.

23. K. Kim, T.H. Chalidabhongse, D. Harwood, and L.S. Davis. Real-time foreground-background segmentation
using codebook model. Real-Time Imaging, 11(3):172–185, 2005.

24. K. Konolige. Small vision system: Hardware and implementation. In Eighth International Symposium on Robotics
Research, pp. 111–116, 1997. http://www.ai.sri.com/∼konolige/papers.

25. S.J. Krotosky and M.M. Trivedi. A comparison of color and infrared stereo approaches to pedestrian detection.
In IEEE Intelligent Vehicles Symposium, June 2007.

26. R. Labayrade, D. Aubert, and J.-P. Tarel. Real time obstacle detection in stereovision on non flat road geometry
through V-disparity representation. In IEEE Intelligent Vehicles Symposium, volume II, pp. 646–651, 2002.

27. S. Munder and D.M. Gavrila. An experimental study on pedestrian classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(11):1863–1868, 2006.

28. C. Papageorgiou and T. Poggio. A trainable system for object detection. International Journal of Computer
Vision, 38(1):15–33, 2000.

29. S. Park and M.M. Trivedi. Video Analysis of Vehicles and Persons for Surveillance. Intelligent and Security
Informatics: Techniques and Applications, Springer, Berlin Heidelberg New York, 2007.

30. A. Prati, I. Mikic, M.M. Trivedi, and R. Cucchiara. Detecting moving shadows: Algorithms and evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 918–923, July 2003.

31. D.V. Prokhorov. Neural Networks in Automotive Applications. Computational Intelligence in Automotive
Applications, Studies in Computational Intelligence, Springer, Berlin Heidelberg New York, 2008.

32. M. Soga, T. Kato, M. Ohta, and Y. Ninomiya. Pedestrian detection with stereo vision. In International Conference
on Data Engineering, April 2005.

33. C. Stauffer and W.E.L. Grimson. Adaptive background mixture model for real-time tracking. In Proceedings of
IEEE International Conference on Computer Vision and Pattern Recognition, pp. 246–252, 1999.

34. M.M. Trivedi, T. Gandhi, and K.S. Huang. Distributed interactive video arrays for event capture and enhanced
situational awareness. IEEE Intelligent Systems, Special Issue on AI in Homeland Security, 20(5):58–66,
September–October 2005.

35. M.M. Trivedi, T. Gandhi, and J. McCall. Looking-in and looking-out of a vehicle: Computer vision based enhanced
vehicle safety. IEEE Transactions on Intelligent Transportation Systems, 8(1):108–120, March 2007.

36. P. Viola and M.J. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pp. I:511–518, June 2001.

37. P. Viola, M.J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. International
Journal of Computer Vision, 63(2):153–161, 2005.

38. C. Wakim, S. Capperon, and J. Oksman. A markovian model of pedestrian behavior. In Proceedings of IEEE
Intelligent Conference on Systems, Man, and Cybernetics, pp. 4028–4033, October 2004.

39. C. Wöhler and J. Anlauf. An adaptable time-delay neural-network algorithm for image sequence analysis. IEEE
Transactions on Neural Networks, 10(6):1531–1536, 1999.

40. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, November 1998.

41. L. Zhao and C. Thorpe. Stereo and neural network-based pedestrian detection. IEEE Transactions Intelligent
Transportation, 1(3):148–154, September 2000.

Application of Graphical Models in the Automotive Industry

Matthias Steinbrecher, Frank Rügheimer, and Rudolf Kruse

Department of Knowledge Processing and Language Engineering, Otto-von-Guericke University of Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany, msteinbr@iws.cs.uni-magdeburg.de,
ruegheim@iws.cs.uni-magdeburg.de, kruse@iws.cs.uni-magdeburg.de

1 Introduction

The production pipeline of present day’s automobile manufacturers consists of a highly heterogeneous and
intricate assembly workflow that is driven by a considerable degree of interdependencies between the par-
ticipating instances as there are suppliers, manufacturing engineers, marketing analysts and development
researchers. Therefore, it is of paramount importance to enable all production experts to quickly respond
to potential on-time delivery failures, ordering peaks or other disturbances that may interfere with the
ideal assembly process. Moreover, the fast moving evolvement of new vehicle models require well-designed
investigations regarding the collection and analysis of vehicle maintenance data. It is crucial to track down
complicated interactions between car components or external failure causes in the shortest time possible to
meet customer-requested quality claims.

To summarize these requirements, let us turn to an example which reveals some of the dependencies men-
tioned in this chapter. As we will see later, a normal car model can be described by hundreds of variables each
of which representing a feature or technical property. Since only a small number of combinations (compared
to all possible ones) will represent a valid car configuration, we will present a means of reducing the model
space by imposing restrictions. These restrictions enter the mathematical treatment in the form of depen-
dencies since a restriction may cancel out some options, thus rendering two attributes (more) dependent.
This early step produces qualitative dependencies like “engine type and transmission type are dependent.”
To quantify these dependencies some uncertainty calculus is necessary to establish the dependence strengths.
In our cases probability theory is used to augment the model, e.g., “whenever engine type 1 is ordered, the
probability is 56% of having transmission type 2 ordered as well.” There is a multitude of sources to estimate
or extract this information from. When ordering peaks occur like an increased demand of convertibles during
the Spring, or some supply shortages arise due to a strike in the transport industry, the model is used to
predict vehicle configurations that may run into delivery delays in order to forestall such a scenario by, e.g.,
acquiring alternative supply chains or temporarily shifting production load. Another part of the model may
contain similar information for the aftercare, e.g., “whenever a warranty claim contained battery type 3,
there is a 30% chance of having radio type 1 in the car.” In this case dependencies are contained in the
quality assessment data and are not known beforehand but are extracted to reveal possible hidden design
flaws.

These examples – both in the realm of planning and subsequent maintenance measures – call for treatment
methods that exploit the dependence structures embedded inside the application domains. Furthermore, these
methods need to be equipped with dedicated updating, revision and refinement techniques in order to cope
with the above-mentioned possible supply and demand irregularities. Since every production and planning
stage involves highly specialized domain experts, it is necessary to offer intuitive system interfaces that are
less prone to inter-domain misunderstandings.

The next section will sketch the underlying theoretical frameworks, after which we will present and discuss
successfully applied planning and analysis methods that have been rolled out to production sites of two large
automobile manufacturers. Section 3 deals with the handling of production planning at Volkswagen. The

M. Steinbrecher et al.: Application of Graphical Models in the Automotive Industry, Studies in Computational Intelligence (SCI) 132,

79–88 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

80 M. Steinbrecher et al.

underlying data is sketched in Sect. 3.1 which also covers the description of the model structure. Section 3.2
introduces three operations that serve the purpose of modifying the model and answering user queries.
Finally, Sect. 3.3 concludes the application report at Volkswagen. The Daimler AG application is introduced
in Sect. 4 which itself is divided to explain the data and model structure: Sect. 4.1 to propose the visualization
technique for data exploration (Sect. 4.2) and finally Sect. 4.3 to present empirical evidence of the usability.

2 Graphical Models

As motivated in the introduction, there are a lot of dependencies and independencies that have to be
taken into account when to approach the task of planning and reasoning in complex domains. Graphical
models are appealing since they provide a framework of modeling independencies between attributes and
influence variables. The term “graphical model” is derived from an analogy between stochastic independence
and node separation in graphs. Let V = {A1, . . . , An} be a set of random variables. If the underlying
probability distribution P (V) satisfies some criteria (see, e.g., [5, 13]), then it is possible to capture some of
the independence relations between the variables in V using a graph G = (V, E), where E denotes the set
of edges. The underlying idea is to decompose the joint distribution P (V) into lower-dimensional marginal
or conditional distributions from which the original distribution can be reconstructed with no or at least
as few errors as possible [12, 14]. The named independence relations allow for a simplification of these
factor distributions. We claim, that every independence that can be read from a graph also holds in the
corresponding joint distribution. The graph is then called an independence map (see, e.g., [4]).

2.1 Bayesian Networks

If we are dealing with an acyclic and directed graph structure G, the network is referred to as a Bayesian
network. The decomposition described by the graph consists of a set of conditional distributions assigned to
each node given its direct predecessors (parents). For each value of the attribute domains (dom), the original
distribution can be reconstructed as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ai∈V

P
(
Ai = ai |

∧
(Aj ,Ai)∈E

Aj = aj

)

2.2 Markov Networks

Markov networks rely on undirected graphs where the lower-dimensional factor distributions are defined as
marginal distributions on the cliques C = {C1, . . . , Cm} of the graph G. The original joint distribution P (V)
can then be recombined as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ci∈C

φCi

(∧
Aj∈Ci

Aj = aj

)

For a detailed discussion on how to choose the functions φCi , see, e.g., [4].

3 Production Planning at Volkswagen Group

One goal of the project described here was to develop a system which plans parts demand for the production
sites of the Volkswagen Group [8]. The market strategy is strongly customer-focused – based on adaptable
designs and special emphasis on variety. Consequently, when ordering an automobile, the customer is offered

Application of Graphical Models in the Automotive Industry 81

several options of how each feature should be realized. The result is a very large number of possible car
variants. Since the particular parts required for an automobile depend on the variant of the car, the overall
parts demand can not be successfully estimated from total production numbers alone. The modeling of
domains with such a large number of possible states is very complex. Therefore, decomposition techniques
were applied and augmented by a set of operations on these subspaces that allow for a flexible parts demand
planning and also provide a useful tool to simulate capacity usage in projected market development scenarios.

3.1 Data Description and Model Induction

The first step towards a feasible planning system consists of the identification of valid vehicle variants. If
cars contain components that only work when combined with specific versions of other parts, changes in
the predicted rates for one component may have an influence on the demand for other components. Such
relations should be reflected in the design of the planning system.

A typical model of car is described by approximately 200 attributes, each consisting of at least 2, but
up to 50 values. This scaffolds a space of possible car variants with a cardinality of over 1060. Of course,
not every combination corresponds to a valid specification. To ensure only valid combinations, restrictions
are introduced in form of a rule system. Let us assume we are dealing with three variables E, T and B
representing engine type, transmission type and brake type with the following respective domains:

dom(E) = {e1, e2, e3}, dom(T) = {t1, t2, t3, t4}, dom(B) = {b1, b2, b3}

A set of rules could for example contain statements like

If T = t3 then B = b2

or
If E = e2 then T ∈ {t2, t3}

A comprehensive set of rules cancels out invalid combinations and may result in our example in a relation
as depicted in Fig. 1.

It was decided to employ a probabilistic Markov network to represent the distribution of the value
combinations. Probabilities are thus interpreted in terms of estimated relative frequencies. Therefore, an
appropriate decomposition has to be found. Starting from a given rule base R and a production history to
estimate relative frequencies from, the graphical component is generated as follows: We start out with an
undirected graph G = (V, E) where two variables Fi and Fj are connected by an edge (Fi, Fj) ∈ E if there
is a rule in R that contains both variables. To make reasoning efficient, it is desirable that the graph has
hypertree structure. This includes the triangulation of G, as well as the identification of its cliques. This
process is depicted in Fig. 2. To complete the model, for every clique a joint distribution for the variables of
that clique has to be estimated from the production history.

Fig. 1. The 3-dimensional space dom(E)× dom(T)× dom(B) is thinned out by a rule set, sparing only the depicted
value combinations. Further, one can reconstruct the 3-dimensional relation δ from the two projections δET and δBT

82 M. Steinbrecher et al.

Fig. 2. Transformation of the model into hypertree structure. The initial graph is derived from the rule base. For
reasoning, the hypertree cliques have to have the running intersection property which basically allows for a composition
of the original distribution from the clique distributions. See [5] for details. This property can be asserted by requiring
the initial graph to be triangulated

3.2 Operations on the Model

A planning model that was generated using the above method, usually does not reflect the whole potential
of available knowledge. For instance, experts are often aware of differences between the production history
and the particular planning interval the model is meant to be used with. Thus, a mechanism to modify the
represented distribution is required. Planning operators have been developed [10] to efficiently handle this
kind of problem, so modification of the distribution and restoration of a consistent state can be supported.

Updating

Consider a situation where previously forbidden item combinations become valid. This can result for example
from changes in the rule base. The relation in Fig. 1 does not allow engine type 2 to be combined with
transmission type 1 because (e2, t1) /∈ E × T . If this option becomes valid probability mass, it has to be
transferred to the respective distribution. Another scenario would be the advent of a new engine type, i.e.,
a change in the domain itself. Then, a multitude of new probabilities have to be assessed. Another related
problem arises when subsets of cliques are altered while the information of the remaining network is retained.
Both scenarios are addressed with the updating operation.

Application of Graphical Models in the Automotive Industry 83

This operation marks these combinations as valid by assigning a positive near-zero probability to their
respective marginals. Due to this small value, the quality of the estimation is not affected by this alteration.
Now instead of using the same initialization for all new combinations, the proportion of the values is chosen
in accordance to an existing combination, i.e., the probabilistic interaction structure is copied from reference
item combinations.

Since updating only provides the qualitative aspect of the dependence structure, it is usually followed by
the subsequent application of the revision operation, which is used to reassign probability mass to the new
item combinations.

Revision

The revision operation, while preserving the network structure, serves to modify quantitative knowledge in
such a way that the revised distribution becomes consistent with the new specialized information. There is
usually no unique solution to this task. However, it is desirable to retain as much of the original distribution
as possible so that the principle of minimal change [7] should be applied. Given that, a successful revision
holds a unique result [9]. As an example for a specification, experts might predict a rise of the popularity of a
recently introduced navigation system and set the relative frequency of this respective item from 20 to 30%.

Focusing

While revision and updating are essential operations for building and maintaining a distribution model, it
is much more common activity to apply the model for the exploration of the represented knowledge and its
implications with respect to user decisions. Typically users would want to concentrate on those aspects of the
represented knowledge that fall into their domain of expertise. Moreover, when predicting parts demand from
the model, one is only interested in estimated rates for particular item combinations. Such activities require
a focusing operation. It is implemented by performing evidence-driven conditioning on a subset of variables
and distributing the information through the network. Apart from predicting parts demand, focusing is
often employed for market analyses and simulation. By analyzing which items are frequently combined by
customers, experts can tailor special offers for different customer groups. To support planning of buffer
capacities, it is necessary to deal with the eventuality of temporal logistic restrictions. Such events would
entail changes in short-term production planning so that consumption of the concerned parts is reduced.

3.3 Application

The development of the planning system explained was initiated in 2001 by the Volkswagen Group. System
design and most of the implementation is currently done by Corporate IT. The mathematical modeling,
theoretical problem solving, and the development of efficient algorithms have been entirely provided by
Intelligent Systems Consulting (ISC) Gebhardt. Since 2004 the system is being rolled out to all trademarks
of the Volkswagen Group. With this software, the increasing planning quality, based on the many innovative
features and the appropriateness of the chosen model of knowledge representation, as well as a consider-
able reduction of calculation time turned out to be essential prerequisites for advanced item planning and
calculation of parts demand in the presence of structured products with an extreme number of possible
variants.

4 Vehicle Data Mining at Daimler AG

While the previous section presented techniques that were applied ahead-of-time, i.e., prior and during the
manufacturing process, we will now turn to the area of assessing the quality of cars after they left the assembly
plant. For every car that is sold, a variety of data is collected and stored in corporate-wide databases. After
every repair or checkup the respective records are updated to reflect the technical treatment. The analysis
scenario discussed here is the interest of the automobile manufacturer to investigate car failures by identifying
common properties that are exposed by specific subsets of cars that have a higher failure rate.

84 M. Steinbrecher et al.

4.1 Data Description and Model Induction

As stated above, the source of information consists of a database that contains for every car a set of up to
300 attributes that describe the configuration of every car that has been sold.

The decision was made to use Bayesian networks to model the dependence structure between these
attributes to be able to reveal possible interactions of vehicle components that cause higher failure rates.
The induction of a Bayesian network consists of identifying a good candidate graph that encodes the inde-
pendencies in the database. The goodness of fit is estimated by an evaluation measure. Therefore, usual
learning algorithms consist of two parts: a search method and the mentioned evaluation measure which may
guide the search. Examples for both parts are studied in [2, 6, 11].

Given a network structure, an expert user will gain first insights into the corresponding application
domain. In Fig. 3 one could identify the road surface conditions to have a major (stochastic) impact on the
failure rate and type. Of course, arriving at such a model is not always a straightforward task since the
available database may lack some entries requiring the treatment of missing values. In this case possibilistic
networks [3] may be used. However, with full information it might still be problematic to extract significant
statistics since there may be value combinations that occur too scarcely. Even if we are in the favorable
position to have sufficient amounts of complete data, the bare network structure does not reveal information
about which which road conditions have what kind of impact on which type of failure. Fortunately, this
information can be retrieved easily in form of conditional probabilities from the underlying dataset, given
the network structure. This becomes clear if the sentence above is re-stated: Given a specific road surface
condition, what is the failure probability of a randomly picked vehicle?

4.2 Model Visualization

Every attribute with its direct parent attributes encodes a set of conditional probability distributions. For
example, given a database D, the sub-network consisting of Failure, RoadSurface and Temperature in Fig. 3
defines the following set of distributions:

PD(Failure | Temperature, RoadSurface)

For every distinct combination of values of the attributes RoadSurface and Temperature, the conditional
probability of the attribute Failure is estimated (counted) from the database D. We will argue in the
next section, that it is this information that enables the user to gain better insight into the data under
consideration [15].

Fig. 3. An example of a Bayesian network illustrating qualitative linkage of components

Application of Graphical Models in the Automotive Industry 85

Given an attribute of interest (in most cases the class variable like Failure in the example setting) and its
conditioning parents, every probability statement like

P (Failure = Suspension | RoadSurface = rough, Temperature = low) = p∗

can be considered an association rule1:

If RoadSurface = rough ∧ Temperature = low, then there will be a suspension failure in 100 · p∗% of
all cases.

The value p∗ is then the confidence of the corresponding association rule. Of course, all known evaluation
measures can be applied to assess the rules. With the help of such measures one can create an intuitive visual
representation according to the following steps:

• For every probabilistic entry (i.e., for every rule) of the considered conditional distribution P (C |
A1, . . . , Am) a circle is generated to be placed inside a two-dimensional chart.

• The gray level (or color in the real application) of the circle corresponds the the value of attribute C.
• The circle’s area corresponds to the value of some rule evaluation measure selected before displaying.

For the remainder of this chapter, we choose this measure to be the support, i.e., the relative number of
vehicles (or whatever instances) specified by the values of C and A1, . . . , Am. Therefore, the area of the
circle corresponds to the number of vehicles.

• In the last step these circles are positioned. Again, the value of the x- and y-coordinate are determined
by two evaluation measures selected in advance. We suggest these measures to be recall2 and lift.3 Circles
above the darker horizontal line in every chart mark subsets with a lift greater than 1 and thus indicate
that the failure probability is larger given the instantiation of A1, . . . , An in contrast to the marginal
failure probability P (C = c).

With these prerequisites we can recommend to the user the following heuristic in order to identify
suspicious subsets:

Sets of instances in the upper right hand side of the chart may be good candidates for a closer
inspection.

The greater the y-coordinate (i.e., the lift value) of a rule, the stronger is the impact of the conditioning
attributes’ values on the class variable. Larger x-coordinates correspond to higher recall values.

4.3 Application

This section illustrates the proposed visualization method by means of three real-world datasets that were
analyzed during a cooperate research project with a automobile manufacturer. We used the K2 algorithm4 [6]
to induce the network structure and visualized the class variable according to the given procedure.

Example 1

Figure 4 shows the analysis result of 60,000 vehicles. The chart only depicts failed cars. Attributes
Transmission and Country had most (stochastic) impact on the Class variable. The subset labeled 1 was
re-identified by experts as a problem already known. Set 2 could not be given a causal explanation.
1 See [1] for details.
2 The recall is definded as P (A1 = a1, . . . , Ak = ak | C = c).
3 The lift of a rule indicates the ratio between confidence and the marginal failure rate: P (C=c|A1=a1,...,Ak=ak)

P (C=c)
.

4 It is a greedy approach that starts with a single attribute (here: the class attribute) and tries to add parent
attributes greedily. If no addition of an attribute yields a better result, the process continues at the just inserted
parent attributes. The quality of a given network is measured with the K2 metric (a Bayesian model averaging
metric).

86 M. Steinbrecher et al.

Fig. 4. The subset marked 1 corresponds to approx. 1,000 vehicles whose attributes values of Country and Transmission
yielded a causal relationship with the class variable. Unfortunately, there was not found a causal description of
subset 2. The cluster of circles below the lift-1 line corresponds to sets of cars that fail less often, if their instantiations
of attributes become known

Example 2

The second dataset consisted of 300,000 cars that exposed a many-valued class variable, hence the different
gray levels of the circles in Fig. 5. Although there was no explanation for the sets 3, the subset 4 represented
900 cars the increased failure rate of which could be tracked down to the respective values of the attributes
Mileage and RoadSurface.

Example 3

As the last example, the same dataset as in example 2 yielded the result as shown in Fig. 6. Here, an expert
user changed the conditioning attributes manually and identified the set 5 which represented a subset of cars
whose failure type and rate were affected by the respective attribute values.

User Acceptance

The proposed visualization technique has proven to be a valuable tool that facilitates the identification of
subsets of cars that may expose a critical dependence between configuration and failure type. Generally, it
represents an intuitive way of displaying high-dimensional, nominal data. A pure association rule analysis
needs heavy postprocessing of the rules since a lot of rules are generated due to the commonly small failure
rate. The presented approach can be considered a visual exploration aid for association rules. However, one
has to admit that the rules represented by the circles share the same attributes in the antecedence, hence
the sets of cars covered by these rules are mutually disjoint, which is a considerable difference to general
rule sets.

Application of Graphical Models in the Automotive Industry 87

Fig. 5. Although it was not possible to find a reasonable description of the vehicles contained in subsets 3, the
attribute values specifying subset 4 were identified to have a causal impact on the class variable

Fig. 6. In this setting the user selected the parent attributes manually and was able to identify the subset 5, which
could be given a causal interpretation in terms of the conditioning attributes Temperature and Mileage

88 M. Steinbrecher et al.

5 Conclusion

This paper presented an empirical evidence that graphical models can provide a powerful framework for
data- and knowledge-driven applications with massive amounts of information. Even though the underlying
data structures can grow highly complex, both presented projects implemented at two automotive companies
result in effective complexity reduction of the methods suitable for intuitive user interaction.

References

1. R. Agrawal, T. Imielinski, and A.N. Swami. Mining Association Rules between Sets of Items in Large Databases.
In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, DC, May 26–28, 1993, pp. 207–216. ACM Press, New York, 1993.

2. C. Borgelt and R. Kruse. Some Experimental Results on Learning Probabilistic and Possibilistic Networks with
Different Evaluation Measures. In First International Joint Conference on Qualitative and Quantitative Practical
Reasoning (ECSQARU/FAPR’97), pp. 71–85, Bad Honnef, Germany, 1997.

3. C. Borgelt and R. Kruse. Probabilistic and possibilistic networks and how to learn them from data. In
O. Kaynak, L. Zadeh, B. Turksen, and I. Rudas, editors, Computational Intelligence: Soft Computing and Fuzzy-
Neuro Integration with Applications, NATO ASI Series F, pp. 403–426. Springer, Berlin Heidelberg New York,
1998.

4. C. Borgelt and R. Kruse. Graphical Models – Methods for Data Analysis and Mining. Wiley, Chichester, 2002.
5. E. Castillo, J.M. Gutiérrez, and A.S. Hadi. Expert Systems and Probabilistic Network Models. Springer, Berlin

Heidelberg New York, 1997.
6. G.F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data.

Machine Learning, 9:309–347, 1992.
7. P. Gärdenfors. Knowledge in the Flux – Modeling the Dynamics of Epistemic States. MIT Press, Cambridge,

1988.
8. J. Gebhardt, H. Detmer, and A.L. Madsen. Predicting Parts Demand in the Automotive Industry – An Appli-

cation of Probabilistic Graphical Models. In Proceedings of International Joint Conference on Uncertainty in
Artificial Intelligence (UAI 2003), Bayesian Modelling Applications Workshop, Acapulco, Mexico, 4–7 August
2003, 2003.

9. J. Gebhardt, C. Borgelt, R. Kruse, and H. Detmer. Knowledge Revision in Markov Networks. Journal on
Mathware and Soft Computing, Special Issue “From Modelling to Knowledge Extraction”, XI(2–3):93–107, 2004.

10. J. Gebhardt and R. Kruse. Knowledge-Based Operations for Graphical Models in Planning. In L. Godo, editor,
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNAI 3571, pp. 3–14. Springer, Berlin
Heidelberg New York, 2005.

11. D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian Networks: The Combination of Knowledge and
Statistical Data. Technical Report MSR-TR-94-09, Microsoft Research, Advanced Technology Division, Redmond,
WA, 1994. Revised February 1995.

12. S.L. Lauritzen and D.J. Spiegelhalter. Local Computations with Probabilities on Graphical Structures and Their
Application to Expert Systems. Journal of the Royal Statistical Society, Series B, 2(50):157–224, 1988.

13. J. Pearl. Aspects of Graphical Models Connected with Causality. In 49th Session of the International Statistics
Institute, 1993.

14. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San
Mateo, CA, 1988.

15. M. Steinbrecher and R. Kruse. Visualization of Possibilistic Potentials. In Foundations of Fuzzy Logic and Soft
Computing, volume 4529 of Lecture Notes in Computer Science, pp. 295–303. Springer Berlin Heidelberg New
York, 2007.

Extraction of Maximum Support Rules for the Root
Cause Analysis

Tomas Hrycej1 and Christian Manuel Strobel2

1 Formerly with DaimlerChrysler Research, Ulm, Germany, tomas hrycej@yahoo.de
2 University of Karlsruhe (TH), Karlsruhe, Germany, mstrobel@statistik.uni-karlsruhe.de

Summary. Rule extraction for root cause analysis in manufacturing process optimization is an alternative to tradi-
tional approaches to root cause analysis based on process capability indices and variance analysis. Process capability
indices alone do not allow to identify those process parameters which have the major impact on quality since these
indices are only based on measurement results and do not consider the explaining process parameters. Variance
analysis is subject to serious constraints concerning the data sample used in the analysis. In this work a rule search
approach using Branch and Bound principles is presented, considering both the numerical measurement results and
the nominal process factors. This combined analysis allows to associate the process parameters with the measurement
results and therefore to identify the main drivers for quality deterioration of a manufacturing process.

1 Introduction

An important group of intelligent methods is concerned with discovering interesting information in large
data sets. This discipline is generally referred to as Knowledge Discovery or Data Mining.

In the automotive domain, large data sets may arise through on-board measurements in cars. However,
more typical sources of huge data amounts are in vehicle, aggregate or component manufacturing process.
One of the most prominent applications is the manufacturing quality control, which is the topic of this
chapter.

Knowledge discovery subsumes a broad variety of methods. A rough classification may be into:

• Machine learning methods
• Neural net methods
• Statistics

This partitioning is neither complete nor exclusive. The methodical frameworks of machine learning methods
and neural nets have been extended by aspects covered by classical statistics, resulting in a successful
symbiosis of these methods.

An important stream within the machine learning methods is committed to a quite general representation
of discovered knowledge: the rule based representation. A rule has the form x → y, x and y being, respectively
the antecedent and the consequent. The meaning of the rule is: if the antecedent (which has the form of a
logical expression) is satisfied, the consequent is sure or probable to be true.

The discovery of rules in data can be simply defined as a search for highly informative (i.e., interesting
from the application point of view) rules. So the most important subtasks are:

1. Formulating the criterion to decide to which extent a rule is interesting
2. Using an appropriate search algorithm to find those rules that are the most interesting according to this

criterion

The research of the last decades has resulted in the formulation of various systems of interestingness criteria
(e.g., support, confidence or lift), and the corresponding search algorithms.

T. Hrycej and C.M. Strobel: Extraction of Maximum Support Rules for the Root Cause Analysis, Studies in Computational Intelligence

(SCI) 132, 89–99 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

90 T. Hrycej and C.M. Strobel

However, general algorithms may miss the goal of a particular application. In such cases, dedicated
algorithms are useful. This is the case in the application domain reported here: the root cause analysis for
process optimization.

The indices for quality measurement and our application example are briefly presented in Sect. 2. The
goal of the application is to find manufacturing parameters to which the quality level can be attributed. In
order to accomplish this, rules expressing relationships between parameters and quality need to be searched
for. This is what our rule extraction search algorithm based on Branch and Bound principles of Sect. 3
performs. Section 5 shows results of our comparative simulations documenting the efficiency of the proposed
algorithm.

2 Root Cause Analysis for Process Optimization

The quality of a manufacturing process can be seen as the ability to manufacture a certain product within its
specification limits U , L and as close as possible to its target value T , describing the point where its quality is
optimal. A deviation from T generally results in quality reduction, and minimizing this deviation is crucial for
a company to be competitive in the marketplace. In literature, numerous process capability indices (PCIs)
have been proposed in order to provide a unitless quality measures to determine the performance of a
manufacturing process, relating the preset specification limits to the actual behavior [6].

The behavior of a manufacturing process can be described by the process variation and process location.
Therefore, to assign a quality measure to a process, the produced goods are continuously tested and the
performance of the process is determined by calculating its PCI using the measurement results. In some
cases it is not feasible to test/measure all goods of a manufacturing process, as the inspection process might
be too time consuming, or destructive. Only a sample is drawn, and the quality is determined upon this
sample set. In order to predict the future quality of a manufacturing process based on the past performance,
the process is supposed to be stable or in control. This means that both process mean and process variation
have to be, in the long run, in between pre-defined limits. A common technique to monitor this is control
charts, which are an essential part of the Statistical Process Control.

The basic idea for the most common indices is to assume the considered manufacturing process follows
a normal distribution and the distance between the upper and lower specification limit U and L equals 12σ.
This requirement implies a lot fraction defective of the manufacturing process of no more than 0.00197ppm
∼= 0% and reflects the widespread Six-Sigma principle (see [7]). The commonly recognized basic PCIs Cp,
Cpm, Cpk and Cpmk can be summarized by a superstructure first introduced by Vännman [9] and referred
to in literature as Cp(u, v)

Cp(u, v) =
d − u|µ − M |

3
√

σ2 + v(µ − T)2
, (1)

where σ is the process standard deviation, µ the process mean, d = (U−L)/2 tolerance width, m = (U +L)/2
the mid-point between the two specification limits and T the target value. The basic PCIs can be obtained
by choosing u and v according to

Cp ≡ Cp(0, 0); Cpk ≡ Cp(1, 0)
Cpm ≡ Cp(0, 1); Cpmk ≡ Cp(1, 1). (2)

The estimators for these indices are obtained by substituting µ by the sample mean X̄ =
∑n

i=1 Xi/n and
σ by the sample variance S2 =

∑n
i=1(Xi − X̄)2/(n − 1). They provide stable and reliable point estimators

for processes following a normal distribution. However, in practice, normality is hardly encountered. Con-
sequently the basic PCIs as defined in (1) are not appropriate for processes with non-normal distributions.
What is really needed are indices which do not make assumptions about the distribution, in order to be
useful for measuring quality of a manufacturing process

C′
p(u, v) =

d − u|m − M |
3
√

[F99.865−F0.135
6]2 + v(m − T)2

. (3)

Extraction of Maximum Support Rules for the Root Cause Analysis 91

In 1997, Pearn and Chen introduced in their paper [8] a non-parametric generalization of the PCIs superstruc-
ture (1) in order to cover those cases in which the underlying data does not follow a Gaussian distribution.
The authors replaced the process standard deviation σ by the 99.865 and 0.135 quantiles of the empiric
distribution function and µ by the median of the process. The rationale for it is that the difference between
the F99.865 and F0.135 quantiles equals again 6σ or C′

p(u, v) = 1, under the standard normal distribution
with m = M = T . As an analogy to the parametric superstructure (1), the special non-parametric PCIs C′

p,
C′

pm, C′
pk and C′

pk can be obtained by applying u and v as in (2).
Assuming that the following assumptions hold, a class of non-parametric process indices and a particular

specimen thereof can be introduced: Let Y : Ω → R be a random variable with Y(ω) = (Y 1, . . . , Y m) ∈
S = {S1 × · · · × Sm}, Si ∈ {si

1, . . . , s
i
mi

} where si
j ∈ N describe the possible influence variables or process

parameters. Furthermore, let X : Ω → R be the corresponding measurement results with X(ω) ∈ R. Then
the pair X = (X,Y) denotes a manufacturing process and a class of process indices can be defined as

Definition 1. Let X = (X,Y) describe a manufacturing process as defined above. Furthermore, let f(x, y)
be the density function of the underlying process and w : R → R an arbitrary measurable function. Then

Qw,X = E(w(x)|Y ∈ S) =
E(w(x)11{Y∈S})

P (Y ∈ S)
(4)

defines a class of process indices.

Obviously, if w(x) = x or w(x) = x2 we obtain the first and the second moment of the process, respectively, as
P (Y ∈ S) = 1. However, to determine the quality of a process, we are interested in the relationship between
the designed specification limits U, L and the process behavior described by its variation and location. A
possibility is to choose the function w(x) in such way that it becomes a function of the designed limits U
and L. Given a particular manufacturing process X with (xi,yi), i = 1, . . . , n we can define

Definition 2. Let X = (X, Y) be a particular manufacturing process with realizations (xi,yi), i = 1, . . . , n
and U, L be specification limits. Then, the Empirical Capability Index (Eci) is defined as

Êci =
∑n

i=1 11{L≤xi≤U}11{yi∈S}∑n
i=1 11{yi∈S}

. (5)

By choosing the function w(x) as the identity function 11(L≤x≤U), the Eci measures the percentage of data
points which are within the specification limits U and L. A disadvantage is that for processes with a relatively
good quality, it may happen that all sampled data points are within the Six-Sigma specification limits (i.e.,
C′

p > 1), and so the sample Eci becomes one. To avoid this, the specification limits U and L have to be
relaxed to values realistic for the given sample size, in order to get “further into the sample”, by linking
them to the behavior of the process. One possibility is to choose empirical quantiles

[L̄, Ū] = [Fα, F1−α].

The drawback of using empirical quantiles as specification limits is that L̄ and Ū do not depend anymore
on the actual specification limits U and L. But it is precisely the relation of the process behavior and
the designed limits which is essential for determining the quality of a manufacturing process. A combined
solution, which on one hand depends on the actual behavior and on the other hand incorporates the designed
specification limit U and L can be obtained by

[L̄, Ū] =
[
µ̂0,5 − µ̂0,5 − LSL

t
, µ̂0,5 +

USL − µ̂0,5

t

]

with t ∈ R being a adjustment factor. When setting t = 4 the new specification limits incorporate the
Six-Sigma principle, assuming the special case of a centralized normally distributed process.

As stated above, the described PCIs only provide a quality measure but do not identify the major influence
variables responsible for poor or superior quality. But knowing these factors is necessary to continuously

92 T. Hrycej and C.M. Strobel

Table 1. Measurement results and process parameters for the optimization at a foundry of an automotive
manufacturer

Result Tool Shaft Location

6.0092 1 1 Right
6.008 4 2 Right
6.0061 4 2 Right
6.0067 1 2 Left
.
6.0076 4 1 Right
6.0082 2 2 Left
6.0075 3 1 Right
6.0077 3 2 Right
6.0061 2 1 Left
6.0063 1 1 Right
6.0063 1 2 Right

improve a manufacturing process in order to produce high quality products in the long run. In practice it
is desirable to know, whether there are subsets of influence variables and their values, such that the quality
of a process becomes better, if constraining the process by only these parameters. In the following section
a non-parametric, numerical approach for identifying those parameters is derived and an algorithm, which
efficiently solves this problem is presented.

2.1 Application Example

To illustrate the basic ideas of the employed methods and algorithms, an example is used throughout this
paper, including an evaluation in the last section. This example is a simplified and anonymized version of a
manufacturing process optimization at a foundry of a premium automotive manufacturer.

In Table 1 an excerpt from the data sheet for such a manufacturing process is shown which is used for
further explanations. There are some typical influence variables (i.e., process parameters, relevant for the
quality of the considered product) as the used tools, locations and used shafts, each with their specific values
for each manufacture specimen. Additionally, the corresponding quality measurement (column “Result”) –
a geometric property or the size of a drilled hole – is a part of a data record.

2.2 Manufacturing Process Optimization: The Traditional Approach

A common technique to identify significant discrete parameters having an impact on numeric variables like
measurement results, is the Analysis of Variance (ANOVA). Unfortunately, the ANOVA technique is only
useful if the problem is relatively low dimensional. Additionally, the considered variables ought to have
a simple structure and should be well balanced. Another constraint is the assumption that the analyzed
data follows a multivariate Gaussian distribution. In most real world applications these requirements are
hardly complied with. The distribution of the parameters describing the measured variable is in general
non-parametric and often high dimensional. Furthermore, the combinations of the cross product of the
parameters are non-uniformly and sparely populated, or have a simple dependence structure. Therefore, the
method of Variance Analysis is only applicable in some special cases. What is really needed is a more general,
non-parametric approach to determine a set of influence variables responsible for lower or higher quality of
a manufacturing process.

3 Rule Extraction Approach to Manufacturing Process Optimization

A manufacturing process X is defined as a pair (X,Y) where Y(ω) describes the influence variables (i.e.,
process parameters) and X(ω) the corresponding goal variables (measurement results). As we will see later,
it is sometimes useful to constrain the manufacturing process to a particular subset of influence variables.

Extraction of Maximum Support Rules for the Root Cause Analysis 93

Table 2. Possible sub-processes with support and conditional Eci for the foundry’s example

NX0 QX0 Sub-process X0

123 0.85 Tool in (2,4) and location in (left)
126 0.86 Shaft in (2) and location in (right)
127 0.83 Tool in (2,3) and shaft in (2)
130 0.83 Tool in (1,4) and location in (right)
133 0.83 Tool in (4)
182 0.81 Tool not in (4) and shaft in (2)
183 0.81 Tool not in (1) and location in (right)
210 0.84 Tool in (1,2)
236 0.85 Tool in (2,4)
240 0.81 Tool in (1,4)
244 0.81 Location in (right)
249 0.83 Shaft in (2)
343 0.83 Tool not in (3)

Definition 3. Let X describe a manufacturing process as stated in Definition 1 and Y0 : Ω → R be a
random variable with Y0(ω) ∈ S0 ⊂ S. Then a sub-process of X is defined by the pair X0 = (X,Y0).

This subprocess constitutes the antecedent (i.e., precondition) of a rule to be discovered. The consequent of
the rule is defined by the quality level (as measured by a process capability index) implied by this antecedent.
To remain consistent with the terminology of our application domain, we will talk about subprocesses and
process capability indices, rather than about rule antecedents and consequents.

Given a manufacturing process X with a particular realization (xi,yi), i = 1, . . . , n the support of a
sub-process X0 can be written as

NX0 =
n∑

i=1

11{yi∈S0}, (6)

and consequently, a conditional PCI is defined as QX0. Any of the indices defined in the previous section
can be used, whereby the value of the respective index is calculated on the conditional subset X0 = {xi :
yi ∈ S0, i = 1, . . . , n}. We henceforth use the notation X̃ ⊆ X to denote possible sub-processes of a given
manufacturing process X . An extraction of possible sub-process of the introduced example with their support
and conditional Eci is given in Table 2.

To determine those parameters which have the greatest impact on quality, an optimal sub-process con-
sisting of optimal influence combinations has to be identified. The first approach could be to maximize QX̃
over all sub-processes X̃ of X . In general, this approach would yield an “optimal” sub-process X̃ ∗, which
has only a limited support (NX̃ ∗ � n) (the fraction of the cases that meet the constraints defining this
subprocess). Such a formal optimum is usually of limited practical value since it is not possible to constrain
any parameters to arbitrary values. For example, constraining the parameter “working shift” to the value
“morning shift” would not be economically acceptable even if a quality increase were attained.

A better approach is to think in economic terms and to weigh the factors responsible for minor quality,
which we want to eliminate, by the costs of removing them. In practise this is not feasible, as tracking the
actual costs is too expensive. But it is likely that infrequent influence factors, which are responsible for lower
quality are cheaper to remove than frequent influences. In other words, sub-processes with high support are
preferable over those sub-processes yielding a high quality measure but having a low support.

In most applications, the available sample set for process optimization is small, often having numerous
influence variables but only a few measurement results. By limiting ourselves only to combinations of vari-
ables, we might get too small a sub-process (having low support). Therefore, we extend the possible solutions
to combinations of variables and their values – the search space for optimal sub-processes is spanned by the
powerset of the influence parameters P(Y). The two sided problem, to find the parameter set combining

94 T. Hrycej and C.M. Strobel

on one hand an optimal quality measure and on the other hand a maximal support, can be summarized,
according to the above notation, by the following optimization problem:

Definition 4.

(PX) =

⎧⎨
⎩

NX̃ → max
QX̃ ≥ qmin

X̃ ⊆ X .

The solution X̃ ∗ of the optimization problem is the subset of process parameters with maximal support among
those processes, having a quality better than the given threshold qmin. Often, qmin is set to the common
values for process capability of 1.33 or 1.67. In those cases, where the quality is poor, it is preferable to set
qmin to the unconditional PCIs, to identify whether there is any process optimization potential.

Due to the nature of the application domain, the investigated parameters are discrete which inhibits an
analytical solution but allows the use of Branch and Bound techniques. In the following section a root cause
algorithm (RCA) which efficiently solves the optimization problem according to Definition 4 is presented.
To avoid the exponential amount of possible combinations spanned by the cross product of the influence
parameters, several efficient cutting rules for the presented algorithm are derived and proven in the next
subsection.

4 Manufacturing Process Optimization

4.1 Root Cause Analysis Algorithm

In order to access and efficiently store the necessary information and to apply Branch and Bound techniques, a
multi-tree was chosen as representing data structure. Each node of the tree represents a possible combination
of the influence parameters (sub-process) and is built on the combination of the parent influence set and a
new influence variable and its value(s). Figure 1 depicts the data structure, whereby each node represents
the set of sub-processes generated by the powerset of the considered variable(s). Let I, J be to index sets
with I = {1, . . . , m} and J ⊆ I. Then X̃J denotes the set of sub-processes constrained by the powerset of
Y j , j ∈ J and arbitrary other variables (Y i, i ∈ I \ J).

To find the optimal solution to the optimization problem according to Definition 4, a combination of
depth-first and breadth-first search is applied to traverse the multitree (see Algorithm 1) using two Branch
and Bound principles. The first, an generally applicable principle is based on the following relationship: by

{ }

root

X 1

{ } { } { }

{ }

{ }

{ } { }

X 1,2 X 1,3 X 1,m

X 2 X m−1

X m−1,m

X m

Fig. 1. Data structure for the root cause analysis algorithm

Algorithm 1 Branch & Bound algorithm for process optimization
1: procedure TraverseTree(X̃)
2: X = GenerateSubProcesses(X̃)
3: for all x̃ ∈ X do
4: TraverseTree(x̃)
5: end for
6: end procedure

Extraction of Maximum Support Rules for the Root Cause Analysis 95

descending a branch of the tree, the number of constraints is increasing, as new influence variables are added
and therefore the sub-process support decreases (see Fig. 1). As in Table 2, two variables (sub-processes), i.e.,
X1 = Shaft in (2) and X2 = Location in (right) have supports of NX1 = 249 and NX2 = 244, respectively.
The joint condition of both has a lower (or equal) support than any of them (NX1,X2 = 126).

Thus, if a node has a support lower than an actual minimum support, there is no possibility to find a node
(sub-process) with a higher support in the branch below. This reduces the time to find the optimal solution
significantly, as a good portion of the tree to traverse can be omitted. This first principle is realized in the
function GenerateSubProcesses as listed in Algorithm 2 and can be seen as the breadth-first-search of
the RCA. This function takes as its argument a sub-process and generates all sub-processes with a support
higher than the actual nmax.

Algorithm 2 Branch & Bound algorithm for process optimization
1: procedure GenerateSubProcesses(X)
2: for all X̃ ⊆ X do
3: if NX̃ > nmax and QX̃ ≥ qmin then
4: nmax = NX̃
5: end if
6: if NX̃ > nmax and QX̃ < qmin then
7: X = {X ∪ X̃}
8: end if
9: end for

10: return X
11: end procedure

The second principle is to consider disjoint value sets. For the support of a sub-process the following
holds: Let X1,X2 be two sub-sets with Y1(ω) ∈ S1 ⊆ S, Y2(ω) ∈ S2 ⊆ S with S1 ∩ S2 = ∅ and X1 ∪ X2

denote the unification of two sub-processes. It is obvious that NX1∪X2 = NX1 + NX2 , which implies that by
extending the codomain of the influence variables, the support NX1∪X2 can only increase. For the a class of
convex process indices, as defined in Definition 1, the second Branch and Bound principle can be derived,
based on the next theorem:

Theorem 1. Given two sub-processes X1 = (X,Y1), X2 = (X,Y2) of a manufacturing process X = (X,Y)
with Y1(ω) ∈ S1 ⊆ S, Y2(ω) ∈ S2 ⊆ S and S1 ∩ S2 = ∅. Then for the class of process indices as defined in
(4), the following inequality holds:

min
Z∈{X1,X2}

Qw,Z ≤ Qw,X1∪X2 ≤ max
Z∈{X1,X2}

Qw,Z .

Proof. With p = P (Y∈S1)
P (Y∈S1∪S2)

the following convex property holds:

Qw,X1∪X2 = E (w(x)|Y(ω) ∈ S1 ∪ S2)

=
E
(
w(x)11{Y(ω)∈S1∪S2}

)
P (Y(ω) ∈ S1 ∪ S2)

=
E
(
w(x)11{Y(ω)∈S1}

)
+ E

(
w(x)11{Y(ω)∈S2}

)
P (Y(ω) ∈ S1 ∪ S2)

= p
E
(
w(x)11{Y(ω)∈S1}

)
P (Y(ω) ∈ S1)

+ (1 − p)
E
(
w(x)11{Y(ω)∈S2}

)
P (Y(ω) ∈ S2)

.

Therefore, by combining two disjoint combination sets, the Eci of the union of these two sets lies in between
the maximum and minimum Eci of these sets. This can be illustrated by considering Table 2 again. The two
disjoint sub-processes X1 = Tool in (1,2) and X2 = Tool in (4) yield a conditional Eci of QX1 = 0.84 and
QX2 = 0.82. The union of both sub-processes yields Eci value of QX1∪X2 = QTool not in (3) = 0.82. This value

96 T. Hrycej and C.M. Strobel

is within the interval < 0.82, 0.84 >, as stated by the theorem. This convex property reduces the number of
times the Eci actually has to be calculated, as in some special cases we can estimate the value of Eci by its
upper and lower limits and compare it with qmin.

In the root cause analysis for process optimization, we are in general not interested in one global optimal
solution but in a list of processes, having a quality better than the defined threshold qmin and maximal
support. An expert might choose out of the n-best processes the one which he wishes to use as a benchmark.
To get the n-best sub-processes, we need to traverse also those branches which already exhibit a (local)
optimal solution. The rationale is that a (local) optimum X̃ ∗ with NX̃ ∗ > nmax might have a child node in
its branch, which might yield the second best solution. Therefore, line 4 in Algorithm 2 has to be adapted by
postponing the found solution X̃ to the set of sub-nodes X. Hence, the actual maximal support is no longer
defined by the (actual) best solution, but by the (actual) n-th best solution.

In many real-world applications, the influence domain is mixed, consisting of discrete data and numerical
variables. To enable a joint evaluation of both influence types, the numerical data is transformed into nominal
data by mapping the continuous data onto pre-set quantiles. In most of our applications, the 10, 20, 80 and
90% quantiles have performed best. Additionally, only those influence sets have to be accounted for which
are successional.

4.2 Verification

As in practice the samples to analyze are small and the used PCIs are point estimators, the optimum of the
problem according to Definition 4 can only be defined in statistical terms. To get a more valid statement
of the true value of the considered PCI, confidence intervals have to be used. In the special case, where the
underlying data follows a known distribution, it is straightforward to construct a confidence interval. For
example, if a normal distribution can be assumed, the distribution of Cp

Ĉp
(Ĉp denotes the estimator of Cp)

is known, and a (1 − α)% confidence interval for Cp is given by

C(X) =

⎡
⎣Ĉp

√
χ2

n−1; α
2

n − 1
, Ĉp

√
χ2

n−1;1−α
2

n − 1

⎤
⎦ . (7)

For the other parametric basic indices, in general there exits no analytical solution as they all have a non-
centralized χ2 distribution. In [2, 10] or [4], for example, the authors derive different numerical approximations
for the basic PCIS, assuming a normal distribution.

If there is no possibility to make an assumption about the distribution of the data, computer based, sta-
tistical methods such as the well known Bootstrap method [5] are used to determine confidence intervals for
process capability indices. In [1], three different methods for calculating confidence intervals are derived and
a simulation study is performed for these intervals. As result of this study, the bias-corrected-method (BC)
outperformed the other two methods (standard-bootstrap and percentile-bootstrap-method). In our appli-
cations, an extension to the BC-Method called the Bias-corrected-accelerated-method (BCa) as described in
[3] was used for determining confidence intervals for the non-parametric basic PCIs, as described in (3). For
the Empirical Capability Index Eci a simulation study showed that the standard-bootstrap-method, as used
in [1], performed the best. A (1 − α)% confidence interval for the Eci can be obtained using

C(X) =
[
Êci − Φ−1(1 − α)σB , Êci + Φ−1(1 − α)σB

]
, (8)

where Êci denotes an estimator for Eci, σB is the Bootstrap standard deviation, and Φ−1 is the inverse
standard normal.

As all statements that are made using the RCA algorithm are based on sample sets, it is important
to verify the soundness of the results. Therefore, the sample set to analyze is to be randomly divided into
two disjoint sets: training and test set. A list of the n best sub-processes is generated, by first applying the
described RCA algorithm and second the referenced Bootstrap-methods to calculate confidence intervals.
In the next step, the root cause analysis algorithm is applied to the test set. The final output is a list of
sub-processes, having the same influence sets and a comparable level for the used PCI.

Extraction of Maximum Support Rules for the Root Cause Analysis 97

5 Experiments

An evaluation of the concept was performed on data from a foundry plant for engine manufacturing in the
premium automotive industry (see Sect. 2). Three different groups of data sets where used with a total of 33
different data sets of samples to evaluate the computational performance of the used algorithms. Each of the
analyzed data sets comprises measurement results describing geometric characteristics like positions of drill
holes or surface texture of the produced products and the corresponding influence sets like a particular
machine number or a worker’s name. The first group of analyzed data, consists of 12 different measurement
variables with four different influence variables, each with two to nine different values. The second group
of data sets comprises 20 different sample sets made up of 14 variables with up to seven values each. An
additional data set, recording the results of a cylinder twist measurement having 76 influence variables, was
used to evaluated the algorithm for numerical parameter sets. The output for each sample set was a list of the
20 best sub-processes in order to cross check with the quality expert of the foundry plant. qmin was chosen
to the unconditional PCI value. The analyzed data sets had at least 500 and at most 1,000 measurement
results.

The first computing series was performed using the empirical capability index Eci and the non-parametric
C

′
pk. To demonstrate the efficiency of the first Branch and Bound principle, an additional combinatorial search

was conducted. The reduction of computational time, using the first Branch and Bound principle, amounted
to two orders of magnitude in comparison with the combinatorial search as can be seen in Fig. 2. Obviously,
the computational time for finding the n best sub-processes increases with the number of influence variables.
This fact explains the jump of the combinatorial computing time in Fig. 2 (the first 12 data sets correspond
to the first group introduced in the section above). On average, the algorithm using the first Branch and
Bound principle outperformed the combinatorial search by a factor of 160. Using the combinatorial search,
it took on average 18min to evaluate the available data sets. However, using the first Branch and Bound
principle decreased the computing time to only 4.4 s for C

′
pk and to 5.7 s using the Eci. The evaluation was

performed to a search up to a depth of 4, which means, that all sub-process have no more than four different
influence variables. A higher depth level did not yield different results, as the support of the sub-processes
diminishes with increasing the number of influence variables used as constraints.

Applying the second Branch and Bound principle reduced the computational time even further. As Fig. 3
depicts, the identification of the 20 optimal sub-processes using the Eci was on average reduced by a factor
of 5 in comparison to the first Branch and Bound principle and resulted in an average computational time of
only 0.92 s vs. 5.71 s. Over all analyzed sample sets, the second principle reduced the computing time by 80%.
Even using the Eci and the second Branch and Bound principle, it still took 20 s to compute, and for the
non parametric calculation using the first Branch and Bound principle approximately 2min. In this special

Fig. 2. Computational time for combinatorial search vs. Branch and Bound using the C
′
pk and Eci

98 T. Hrycej and C.M. Strobel

Fig. 3. Computational time first Branch and Bound vs. second Branch and Bound principle using Eci

0.00 0.05 0.10 0.15 0.20

0
5

10
15

BAZ in (’1’,’2’)

D
en

si
ty

Fig. 4. Density plot for optimal sub-process (narrower plot) and its original process (broader plot) using Eci

case, the combinatorial search was omitted, as the evaluation of 76 influence variables with four values each
would have taken too long.

5.1 Optimum Solution

Applying the identified sub-processes to the original data set, the original, unconditional PCI is improved.
More precisely, considering for example the sub-process X = Tool in (1,2) and using the Eci the index
improves from 0.49 to 0.70. As Fig. 4 shows, the quality of the sub-process (narrower distribution plot)
clearly outperforms the original process (broader distribution plot), having less variance and a better process
location.

On the test set, the performance of the optimum solution, characterized by QTest is over its lower bound
determined by the bootstrap procedure on the training set, as shown in Table 3.

Extraction of Maximum Support Rules for the Root Cause Analysis 99

Table 3. Results for the process optimization for one data set

Index NTest QTest NTrain Cl
B

Eci 244 0.85 210 0.84

6 Conclusion

We have introduced an algorithm for efficient rule extraction in the domain of root cause analysis. The appli-
cation goal is the manufacturing process optimization, with the intention to detect those process parameters
which have a major impact on the quality of a manufacturing process. The basic idea is to transform the
search for those quality drivers into an optimization problem and to identify a set of optimal parameter sub-
sets using two different Branch and Bound principles. These two methods allow for a considerable reduction
of the computational time for identifying optimal solutions, as the computational results show.

A new class of convex process capability indices, Eci, was introduced and its superiority over common
PCIs is shown with regard to computing time. As the identification of major quality drivers is crucial to
industrial practice and quality management, the presented solution may be useful and applicable to a broad
set of quality and reliability problems.

References

1. M. Kalyanasundaram, S. Balamurali. Bootstrap lower confidence limits for the process capability indices cp, cpk

and cpm. International Journal of Quality and Reliability Management, 19:1088–1097, 2002.
2. A.F. Bissel. How reliable is your capability index. Applied Statistics, 39(3):331–340, 1990.
3. B. Efron, R.J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, New York, 1993.
4. G.S. Wasserman, L.A Franklin. Bootstrap lower confidence limits for capability indices. Journal of Quality

Technology, 24(4):196–210, 1992.
5. J.S. Urban Hjorth. Computer Intensive Statistical Methods, 1st edition. Chapman and Hall, New York, 1994.
6. S. Kotz, N.L. Johanson. Process capability indices – a review, 1992–2000. Journal of Quality Technology, 34(1):

2–19, 2002.
7. Douglas C. Montgomery. Introduction to Statistical Quality Control, 2nd edition. Wiley, New York, 1991.
8. W. Pearn, K. Chen. Capability indices for non-normal distributions with an application in electrolytic capacitor

manufacturing. Microelectronics Reliability, 37:1853–1858, 1997.
9. K. Vännman. A unified approach to capability indices. Statistica Sina, 5:805–820, 1995.

10. G.A. Stenback, D.M. Wardrop, N.F. Zhang. Interval estimation of process capability index cpk. Communications
in Statistics. Theory and Methods, 19(12):4455–4470, 1990.

Neural Networks in Automotive Applications

Danil Prokhorov

Toyota Technical Center – a division of Toyota Motor Engineering and Manufacturing (TEMA), Ann Arbor,
MI 48105, USA

Neural networks are making their ways into various commercial products across many industries. As in
aerospace, in automotive industry they are not the main technology. Automotive engineers and researchers are
certainly familiar with the buzzword, and some have even tried neural networks for their specific applications
as models, virtual sensors, or controllers (see, e.g., [1] for a collection of relevant papers). In fact, a quick search
reveals scores of recent papers on automotive applications of NN, fuzzy, evolutionary and other technologies
of computational intelligence (CI); see, e.g., [2–4]. However, such technologies are mostly at the stage of
research and not in the mainstream of product development yet. One of the reasons is “black-box” nature
of neural networks. Other, perhaps more compelling reasons are business conservatism and existing/legacy
applications (trying something new costs money and might be too risky) [5, 6].

NN technology which complements, rather than replace, the existing non-CI technology in applications
will have better chances of wide acceptance (see, e.g., [8]). For example, NN is usually better at learning from
data, while systems based on first principles may be better at modeling underlying physics. NN technology
can also have greater chances of acceptance if it either has no alternative solution, or any other alternative
is much worse in terms of the cost-benefit analysis. A successful experience with CI technologies at the Dow
Chemical Company described in [7] is noteworthy.

Ford Motor Company is one of the pioneers in automotive NN research and development [9, 10]. Relevant
Ford papers are referenced below and throughout this volume.

Growing emphasis on model based development is expected to help pushing mature elements of the
NN technology into the mainstream. For example, a very accurate hardware-in-the-loop (HIL) system is
developed by Toyota to facilitate development of advanced control algorithms for its HEV platforms [11].
As discussed in this chapter, some NN architectures and their training methods make possible an effective
development process on high fidelity simulators for subsequent on-board (in-vehicle) deployment. While
NN can be used both on-board and outside the vehicle, e.g., in a vehicle manufacturing process, only
on-board applications usually impose stringent constraints on the NN system, especially in terms of available
computational resources.

Here we provide a brief overview of NN technology suitable for automotive applications and discuss a
selection of NN training methods. Other surveys are also available, targeting broader application base and
other non-NN methods in general; see, e.g., [12].

Three main roles of neural network in automotive applications are distinguished and discussed: models
(Sect. 1), virtual sensors (Sect. 2) and controllers (Sect. 3). Training of NN is discussed in Sect. 4, followed by
a simple example illustrating importance of recurrent NN (Sect. 5). The issue of verification and validation
is then briefly discussed in Sect. 6, concluding this chapter.

1 Models

Arguably the most popular way of using neural networks is shown in Fig. 1. NN receives inputs and produces
outputs which are compared with target values of the outputs from the system/process to be modeled or
identified. This arrangement is known as supervised training because the targets for NN training are always

D. Prokhorov: Neural Networks in Automotive Applications, Studies in Computational Intelligence (SCI) 132, 101–123 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

102 D. Prokhorov

NN

System or
Process

-
+

Inputs

NN Outputs

Error

Fig. 1. A very popular arrangement for training NN to model another system or process including decision making
is termed supervised training. The inputs to the NN and the system are not necessarily identical. The error between
the NN outputs and the corresponding outputs of the system may be used to train the NN

Feedforward connections

...1 2 NN-1

External
input(s)

Feedforward connections

...1 2 NN-1

External
input(s)

Z-1Z-1

Time delay
inputs

Z-1Z-1 Z-1Z-1 Z-1Z-1

Time delay
inputs

Feedback
connections

Z-1Z-1

Feedback
connections

Z-1Z-1

Fig. 2. Selected nodes in this network may be declared outputs. Any connectivity pattern, e.g., a popular layered
architecture such as in multilayer perceptron (MLP), can be created by specifying the NN connectivity table. The
order in which the nodes “fire,” or get activated, also needs to be specified to preserve causality. Furthermore, explicit
delays longer than one time step can also be included

provided by the system (“supervisor”) to be modeled by NN. Figure 1 pertains to not only supervised
modeling but also decision making, e.g., when it is required to train a NN classifier.

A general architecture of discrete-time NN is shown in Fig. 2. The neurons or nodes of the NN are labeled
as 1 through N. The links or connections may have adjustable or fixed parameters, or NN weights. Some
nodes in the NN serve as inputs of signals external to the NN, others serve as outputs from the NN to
the external world. Each node can sum or multiply all the links feeding it. Then the node transforms the
result through any of a variety of functions such as soft (sigmoidal) and hard thresholds, linear, quadratic,
or trigonometric functions, Gaussians, etc.

The blocks Z−1 indicates one time step delay for the NN signals. A NN without delays is called feedforward
NN. If the NN has delays but no feedback connections, it is called time delay NN. A NN with feedback is
called recurrent NN (RNN).

A large variety of NN exists. The reader is referred to [13] for a comprehensive discussion about many of
the NN architectures and their training algorithms.

Neural Networks in Automotive Applications 103

Clearly, many problem specific issues must be addressed to achieve successful NN training. They include
pre- and (sometimes) post-processing of the data, the use of training data sufficiently representative of
the system to be modeled, architectural choices, the optimal accuracy achievable with the given NN
architecture, etc.

For a NN model predicting next values of its inputs it is useful to verify whether iterative predictions
of the model are meaningful. A model trained to predict its input for the next time step might have a very
large error predicting the input two steps into the future. This is usually the sign of overfitting. A single-
step prediction might be too simple a task, especially for a slowly changing time series. The model might
quickly learn that predicting the next value to be the same as its current value is good enough; the iterative
prediction test should quickly reveal this problem with the model.

The trick above is just one of many useful tricks in the area of NN technology. The reader is referred to
[14] and others for more information [13, 15].

Automotive engine calibration is a good example for relatively simple application of NN models. Tra-
ditionally, look-up tables have been used within the engine control system. For instance, a table linking
engine torque production (output) with engine controls (inputs), such as spark angle (advance or retard),
intake/exhaust valve timing, etc. Usually the table is created by running many experiments with the engine
on a test stand. In experiments the space of engine controls is explored (in some fashion), and steady state
engine torque values are recorded. Clearly, the higher the dimensionality of the look-up table, and the finer
the required resolution, the more time it takes to complete the look-up table.

The least efficient way is full factorial experimental design (see, e.g., [16]), where the number of necessary
measurement increases exponentially with the number of the table inputs. A modern alternative is to use
model-based optimization with design of experiment [17–20]. This methodology uses optimal experimental
design plans (e.g., D- or V-optimal) to measure only a few predetermined points. A model is then fitted to
the points, which enables the mapping interpolation in between the measurements. Such a model can then
be used to optimize control strategy, often with significant computational savings (see, e.g., [21]).

In terms of models, a radial basis function (RBF) network [22, 23], a probabilistic NN which is implemen-
tationally simpler form of the RBF network [24], or MLP [25, 26] can all be used. So-called cluster weighted
models (CWM) may be advantageous over RBF even in low-dimensional spaces [27–29]. CWM is capable of
essentially perfect approximation of linear mappings because each cluster in CWM is paired with a linear
output model. In contrast, RBF needs many more clusters to approximate even linear mappings to high
accuracy (see Fig. 3).

More complex illustrations of NN models are available (see, e.g., [30, 31]). For example, [32] discusses
how to use a NN model for an HEV battery diagnostics. The NN is trained to predict an HEV battery
state-of-charge (SOC) for a healthy battery. The NN monitors the SOC evolution and signals about abnor-
mally rapid discharges of the battery if the NN predictions deviate significantly from the observed SOC
dynamics.

2 Virtual Sensors

A modern automobile has a large number of electronic and mechanical devices. Some of them are actuators
(e.g., brakes), while others are sensors (e.g., speed gauge). For example, transmission oil temperature is
measured using a dedicated sensor. A virtual or soft sensor for oil temperature would use existing signals
from other available sensors (e.g., air temperature, transmission gear, engine speed) and an appropriate
model to create a virtual signal, an estimate of oil temperature in the transmission. Accuracy of this virtual
signal will naturally depend on both accuracy of the model parameters and accuracies of existing signals
feeding the model. In addition, existing signals will need to be chosen with care, as the presence of irrelevant
signals may complicate the virtual sensor design. The modern term “virtual sensor” appears to be used
sometimes interchangeably with its older counterpart “observer.” Virtual sensor assumes less knowledge of
the physical process, whereas observer assumes more of such knowledge. In other words, the observer model is
often based on physical principles, and it is more transparent than that of virtual sensor. Virtual sensors are

104 D. Prokhorov

Fig. 3. A simple linear mapping Y = 2X+0.5 subjected to a uniform noise (red) is to be approximated by CWM and
RBF network. CMW needs only one cluster in the input space X and the associated mean-value linear model (the
cluster and its model are shown in blue). In contrast, even with five clusters (green) the RBF network approximation
(thick green line) is still not as good as the CWM approximation

often “black boxes” such as neural networks, and they are especially valuable when the underlying physics
is too complex or uncertain while there is plenty of data to develop/train a virtual sensor.

In the automotive industry, significant resources are devoted to the development of continuous monitor-
ing of on-board systems and components affecting tailpipe emissions of vehicles. Ideally, on-board sensors
specialized to measuring the regulated constituents of the exhaust gases in the tailpipe (mainly hydrocar-
bons, nitrogen oxides (NOx) and carbon monoxide) would check whether the vehicle is in compliance with
government laws on pollution control. Given that such sensors are either unavailable or impractical, the
on-board diagnostic system must rely on limited observations of system behavior and inferences based on
those observations to determine whether the vehicle emissions are in compliance with the law. Our example
is the diagnostics of engine combustion failures, known as misfire detection. This task must be performed
with very high accuracy and under virtually all operating conditions (often the error rate of far less than
1% is necessary). Furthermore, the task requires the identification of the misfiring cylinder(s) of the engine
quickly (on the order of seconds) to prevent any significant deterioration of the emission control system
(catalytic converter). False alarm immunity becomes an important concern since on the order of one billion
events must be monitored in the vehicle’s lifetime.

The signals available to analyze combustion behavior are derived primarily from crankshaft position
sensors. The typical position sensor is an encoder (toothed) wheel placed on the crankshaft of the engine
prior to torque converter, transmission or any other engine load component. This wheel, together with its
electronic equipment, provides a stream of accurately measured time intervals, with each interval being the
time it takes for the wheel to rotate by one tooth. One can infer speed or acceleration of the crankshaft
rotation by performing simple numerical manipulations with the time intervals. Each normal combustion
event produces a slight acceleration of the crankshaft, whereas misfires exhibit acceleration deficits following
a power stroke with little or no useful work (Fig. 4).

Neural Networks in Automotive Applications 105

1.5 1.6 1.7 1.8 1.9 2

x 10
4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

el

k

Circles are for normals
Crosses are for misfires
Blue diamonds are for no clas. required

Fig. 4. A representative segment of the engine misfire data. Each cylinder firing is either normal (circle) or abnormal
(misfire; cross). The region where misfire detection is not required is shown in the middle by diamonds. In terms of the
crankshaft acceleration (y axis), sometimes misfires are easily separable from normal (the region between k = 18,000
and k ∼ 20,000), and other times they are not (the region around k = 16,000)

The accurate detection of misfires is complicated by two main factors:

1. The engine exhibits normal accelerations and decelerations, in response to the driver input and from
changing road conditions.

2. The crankshaft is a torsional oscillator with finite stiffness. Thus, the crankshaft is subject to torsional
oscillations which may turn the signature of normal events into that of misfires, and vice versa.

Analyzing complex time series of acceleration patterns requires a powerful signal processing algorithm
to infer the quality of the combustion events. It turns out that the best virtual sensor of misfires can be
developed on the basis of a recurrent neural network (RNN) [33]; see Sect. 4 as well as [34] and [35] for training
method details and examples. The RNN is trained on a very large data set (on the order of million of events)
consisting of many recordings of driving sessions. It uses engine context variables (such as crankshaft speed
and engine load) and crankshaft acceleration as its inputs, and it produces estimates of the binary signal
(normal or misfire) for each combustion event. During each engine cycle, the network is run as many times
as the number of cylinders in the engine. The reader is referred to [36] for illustrative misfire data sets used
in a competition organized at the International Joint Conference on Neural Networks (IJCNN) in 2001. The
misfire detection NN is currently in production.

The underlying principle of misfire detection (dependence of crankshaft torsional vibrations on engine
operation modes) is also useful for other virtual sensing opportunities, e.g., engine torque estimation.

Concluding this section, we list a few representative applications of NN in the virtual sensor category:

• NN can be trained to estimate emissions from engines based on a number of easily measured engine
variables, such as load, RPM, etc., [37–39], or in-cylinder pressure [40] (note that using a structure
identification by genetic algorithms for NOx estimation can result in performance better than that of a
NN estimator; see [41] for details).

106 D. Prokhorov

• Air flow rate estimating NN is described in [19], and air–fuel ratio (AFR) estimation with NN is developed
in [42], as well as in [43] and [44].

• A special processor Vindax is developed by Axeon, Ltd. (http://www.axeon.com/), to support a variety
of virtual sensing applications [45], e.g., a mass airflow virtual sensor [46].

3 Controllers

NN as controllers have been known for years; see, e.g., [47–51]. We discuss only a few popular schemes in this
section, referring the reader to a useful overview in [52], as well as [42] and [8], for additional information.

Regardless of the specific schemes employed to adapt or train NN controllers, there is a common issue
of linkage between the cause and its effect. Aside of the causes which we mostly do not control such as
disturbances applied to plant (an object or system to be controlled), the NN controller outputs or actions in
reinforcement learning literature [53] also affect the plant and influence a quality or performance functional.
This is illustrated in Fig. 5.

To enable NN training/adaptation, the linkage between NN actions and the quality functional can be
achieved through a model of the plant (and a model of the quality functional if necessary), or without a
model. Model-free adaptive control is implemented sometimes with the help of a reinforcement learning
module called critic [54, 55]. Applications of reinforcement learning and approximate dynamic programming
to automotive control have been attempted and not without success (see, e.g., [56] and [57]).

Figure 6 shows a popular scheme known as model reference adaptive control. The goal of adaptive
controller which can be implemented as a NN is to make the plant behave as if it were the reference model
which specifies the desired behavior for the plant. Often the plant is subject to various disturbances such as
plant parameter drift, measurement and actuator noise, etc. (not shown in the figure).

Shown by dashed lines in Fig. 6 is the plant model which may also be implemented as a NN (see Sect. 1).
The control system is called indirect if the plant model is included, otherwise it is called direct adaptive
control system.

We consider a process of indirect training NN controllers by an iterative method. Our goal is to improve
the (ideal) performance measure I through training weights W of the controller

I(W(i)) = Ex0∈X

{ ∞∑
t=0

U(W(i),x(t), e(t))

}
, (1)

RNN
Controller

Action(t)

Quality
Functional

NN
Controller

Action(t)

Quality
Functional

RNN
Controller

Action(t-1)

RNN
Controller

Action(t-h)

…

Input NN
Controller

Action(t-1)

NN
Controller

Action(t-h)

…

Input

MediatorMediator

Fig. 5. The NN controller affects the quality functional through a mediator such as a plant. Older values of controls
or actions (prior to t) may still have an effect on the plant as dynamic system with feedback, which necessitates the
use of dynamic or temporal derivatives discussed in Sect. 4. For NN adaptation or training, the mediator may need
to be complemented by its model and/or an adaptive critic

Neural Networks in Automotive Applications 107

Model of
plant

PlantAdaptive
controller

Reference
model

Σ
+

-Z-1

Z-1

Z-1

a(t)

yr(t+1)

yp(t+1)

ym(t+1)

r(t)

Fig. 6. The closed-loop system in model reference adaptive control. If the plant model is used (dashed lines), then
the system is called indirect adaptive system; otherwise the system is called direct. The state vector x (not shown)
includes state vectors of not only the plant but also the controller, the model of the plant and the reference model.
The output vector y includes a, yp, ym and yr. The error between yp and yr may be used as an input to the
controller and for controller adaptation (dotted lines)

where W(i) is the controller weight vector at the ith training iteration (or epoch), EX is a suitable expectation
operator (e.g., average) in the domain of permissible initial state vectors x0 ≡ x(0), and U(·) is a non-
negative definite function with second-order bounded derivatives often called the instantaneous utility (or
cost) function. We assume that the goal is to increase I(W(i)) with i. The state vector x evolves according
to the closed-loop system

x(t + 1) = f(x(t), e(t),W(i)) + ε(t) (2)
y(t) = h(x(t)) + µ(t), (3)

where e(t) is a vector of external variables, e.g., reference signals r, ε and µ are noise vectors adding
stochasticity to otherwise deterministic dynamic system, and y(t) is a vector of relevant outputs. Our closed-
loop system includes not just the plant and its controller, which are usual components of the closed-loop
system, but also the plant model and the reference model.

In reality, both E and ∞ in (1) must be approximated. Assuming that all initial states x0(k) are
equiprobable, the average operator can be approximated as

R(W(i)) =
1
N

∑
x0(k)∈X,k=1,2,...,N

T∑
t=0

U(i, t), (4)

where N is the total number of trajectories of length T along which the closed-loop system performance is
evaluated at the iteration i. The first evaluation trajectory begins at time t = 0 in x0(1), i.e., x(0) = x0(1),

108 D. Prokhorov

the second trajectory starts at t = 0 in x(0) = x0(2), etc. The coverage of the domain X should be as broad
as practically possible for a reasonably accurate approximation of I.

Training the NN controller may impose computational constraints on our ability to compute (4) many
times during our iterative training process. It may be necessary to contend with this approximation of R

A(W(i)) =
1
S

∑
x0(s)∈X,s=1,2,...,S

H∑
t=0

U(i, t). (5)

The advantage of A over R is in faster computations of derivatives of A with respect to W(i) because the
number of training trajectories per iteration is S � N , and the trajectory length is H � T . However, A must
still be an adequate replacement of R and, possibly, I in order to improve the NN controller performance
during its weight training. And of course A must also remain bounded over the iterations, otherwise the
training process is not going to proceed successfully.

We assume that the NN weights are updated as follows:

W(i + 1) = W(i) + d(i), (6)

where d(i) is an update vector. Employing the Taylor expansion of I around W(i) and neglecting terms
higher than the first order yields

I(W(i + 1)) = I(W(i)) +
∂I(i)
∂W(i)

T

(W(i + 1) − W(i)). (7)

Substituting for (W(i + 1) − W(i)) from (6) yields

I(W(i + 1)) = I(W(i)) +
∂I(i)

∂W(i)

T

d(i). (8)

The growth of I with iterations i is guaranteed if

∂I(i)
∂W(i)

T

d(i) > 0. (9)

Alternatively, the decrease of I is assured if the inequality above is strictly negative; this is suitable for cost
minimization problems, e.g., when U(t) = (yr(t) − yp(t))2, which is popular in tracking problems.

It is popular to use gradients as the weight update

d(i) = η(i)
∂A(i)
∂W(i)

, (10)

where η(i) > 0 is a learning rate. However, it is often much more effective to rely on updates computed with
the help of second-order information; see Sect. 4 for details.

The condition (9) actually clarifies what it means for A to be an adequate substitute for R. The plant
model is often required to train the NN controller. The model needs to provide accurate enough d such that
(9) is satisfied. Interestingly, from the standpoint of NN controller training it is not critical to have a good
match between plant outputs yp and their approximations by the model ym. Coarse plant models which
approximate well input-output sensitivities in the plant are sufficient. This has been noticed and successfully
exploited by several researchers [58–61].

In practice, of course it is not possible to guarantee that (9) always holds. This is especially questionable
when even simpler approximations of R are employed, as is sometimes the case in practice, e.g., S = 1 and/or
H = 1 in (5). However, if the behavior of R(i) over the iterations i evolves towards its improvement, i.e., the
trend is that R grows with i but not necessarily R(i) < R(i + 1), ∀i, this would suggest that (9) does hold.

Our analysis above explains how the NN controller performance can be improved through training with
imperfect models. It is in contrast with other studies, e.g., [62, 63], where the key emphasis is on proving the

Neural Networks in Automotive Applications 109

uniform ultimate boundedness (UUB) [64], which is not nearly as important in practice as the performance
improvement because performance implies boundedness.

In terms of NN controller adaptation and in addition to the division of control to indirect and direct
schemes, two adaptation extremes exist. The first is represented by the classic approach of fully adaptive
NN controller which learns “on-the-fly,” often without any prior knowledge; see, e.g., [65, 66]. This approach
requires a detailed mathematical analysis of the plant and many assumptions, relegating NN to mere uncer-
tainty compensators or look-up table replacement. Furthermore, the NN controller usually does not retain
its long-term memory as reflected in the NN weights.

The second extreme is the approach employing NN controllers with weights fixed after training which
relies on recurrent NN. It is known that RNN with fixed weights can imitate algorithms [67–72] or adaptive
systems [73] after proper training. Such RNN controllers are not supposed to require adaptation after deploy-
ment/in operation, thereby substantially reducing implementation cost especially in on-board applications.
Figure 7 illustrates how a fixed-weight RNN can replace a set of controllers, each of which is designed for
a specific operation mode of the time-varying plant. In this scheme the fixed-weight, trained RNN demon-
strates its ability to generalize in the space of tasks, rather than just in the space of input-output vector
pairs as non-recurrent networks do (see, e.g., [74]). As in the case of a properly trained non-recurrent NN
which is very good at dealing with data similar to its training data, it is reasonable to expect that RNN
can be trained to be good interpolators only in the space of tasks it has seen during training, meaning that
significant extrapolation beyond training data is to be neither expected nor justified.

The fixed-weight approach is very suitable to such practically useful direction as training RNN off-line,
i.e., on high-fidelity simulators of real systems, and preparing RNN through training to various sources of
uncertainties and disturbances that can be encountered during system operation. And the performance of the
trained RNN can also be verified on simulators to increase confidence in successful deployment of the RNN.

RNN
Controller

Input(t)

Noise

Time-varying
Plant

Previous observations

Action(t)

Controller 1

Controller 2

Controller M

…

Selector (choose one from M)

Noise/disturbances

Input(t)

Noise

Time-varying
Plant

Selector
Logic

Previous observations

Action
+ Noise (t)

Fig. 7. A fixed-weight, trained RNN can replace a popular control scheme which includes a set of controllers
specialized to handle different operating modes of the time-varying plant and a controller selector algorithm which
chooses an appropriate controller based on the context of plant operation (input, feedback, etc.)

110 D. Prokhorov

The fully adaptive approach is preferred if the plant may undergo very significant changes during its
operation, e.g., when faults in the system force its performance to change permanently. Alternatively, the
fixed-weight approach is more appropriate if the system may be repaired back to its normal state after the
fault is corrected [32]. Various combinations of the two approaches above (hybrids of fully adaptive and
fixed-weight approaches) are also possible [75].

Before concluding this section we would like to discuss on-line training implementation. On-line or con-
tinuous training occurs when the plant can not be returned to its initial state to begin another iteration of
training, and it must be run continuously. This is in contrast with off-line training which assumes that the
plant (its model in this case) can be reset to any specified state at any time.

On-line training can be done in a straightforward way by maintaining two distinct processes (see also [58]):
foreground (network execution) and background (training). Figures 8 and 9 illustrate these processes.

The processes assume at least two groups of copies of the controller C labeled C1 and C2, respectively.
The controller C1 is used in the foreground process which directly affects the plant P through the sequence
of controller outputs a1.

The controller C1 weights are periodically replaced by those of the NN controller C2. The controller C2 is
trained in the background process of Fig. 9. The main difference from the previous figure is the replacement
of the plant P with its model M . The model serves as a sensitivity pathway between utility U and controller
C2 (cf. Fig. 5), thereby enabling training C2 weights.

The model M could be trained as well, if necessary. For example, it can be done through adding another
background process for training model of the plant. Of course, such process would have its own goal, e.g.,
minimization of the mean squared error between the model outputs ym(t+i) and the plant outputs yp(t+i).
In general, simultaneous training of the model and the controller may result in training instability, and it is
better to alternate cycles of model-controller training.

When referring to training NN in this and previous sections, we did not discuss possible training
algorithms. This is done in the next section.

Controller execution (foreground process)

C1 C1

P

yp(t)

a1(t)

...

...

C1

P P

yp(t+h)

k=t k=t+1 k=t+h-1 k=t+h

a1(t+1)

yp(t+1)

Fig. 8. The fixed-weight NN controller C1 influences the plant P through the controller outputs a1 (actions) to
optimize utility function U (not shown) in a temporal unfolding. The plant outputs yp are also shown. Note that this
process in general continues for much longer than h time steps. The dashed lines symbolize temporal dependencies
in the dynamic plant

Neural Networks in Automotive Applications 111

Preparation for controller training (background process)

C2 C2

M

ym(t)=yp(t)

a2(t)

...

...

C2

M M

ym(t+h)

k=t k=t+1 k=t+h-1 k=t+h

ym(t+h-1)=yp(t+h-1)

a2(t+1)

Fig. 9. Unlike the previous figure, another NN controller C2 and the plant model M are used here. It may be helpful
to think of the current time step as step t+h, rather than step t. The controller C2 is a clone of C1 but their weights
are different in general. The weights of C2 can be trained by an algorithm which requires that the temporal history of
h + 1 time steps be maintained. It is usually advantageous to align the model with the plant by forcing their outputs
to match perfectly, especially if the model is sufficiently accurate for one-step-ahead predictions only. This is often
called teacher forcing and shown here by setting ym(t + i) = yp(t + i). Both C2 and M can be implemented as
recurrent NN

4 Training NN

Quite a variety of NN training methods exist (see, e.g., [13]). Here we provide an overview of selected
methods illustrating diversity of NN training approaches, while referring the reader to detailed descriptions
in appropriate references.

First, we discuss approaches that utilize derivatives. The two main methods for obtaining dynamic deriva-
tives are real-time recurrent learning (RTRL) and backpropagation through time (BPTT) [76] or its truncated
version BPTT(h) [77]. Often these are interpreted loosely as NN training methods, whereas they are merely
the methods of obtaining derivatives to be combined subsequently with the NN weight update methods.
(BPTT reduces to just BP when no dynamics needs to be accounted for in training.)

The RTRL algorithm was proposed in [78] for a fully connected recurrent layer of nodes. The name
RTRL is derived from the fact that the weight updates of a recurrent network are performed concurrently
with network execution. The term “forward method” is more appropriate to describe RTRL, since it better
reflects the mechanics of the algorithm. Indeed, in RTRL, calculations of the derivatives of node outputs
with respect to weights of the network must be carried out during the forward propagation of signals in a
network.

The computational complexity of the original RTRL scales as the fourth power of the number of nodes
in a network (worst case of a fully connected RNN), with the space requirements (storage of all variables)
scaling as the cube of the number of nodes [79]. Furthermore, RTRL for a RNN requires that the dynamic
derivatives be computed at every time step for which that RNN is executed. Such coupling of forward
propagation and derivative calculation is due to the fact that in RTRL both derivatives and RNN node
outputs evolve recursively. This difficulty is independent of the weight update method employed, which

112 D. Prokhorov

might hinder practical implementation on a serial processor with limited speed and resources. Recently an
effective RTRL method with quadratic scaling has been proposed [80] which approximates the full RTRL by
ignoring derivatives not belonging to the same node.

Truncated backpropagation through time (BPTT(h), where h stands for the truncation depth) offers
potential advantages relative to forward methods for obtaining sensitivity signals in NN training problems.
The computational complexity scales as the product of h with the square of the number of nodes (for a fully
connected NN). BPTT(h) often leads to a more stable computation of dynamic derivatives than do forward
methods because its history is strictly finite. The use of BPTT(h) also permits training to be carried out
asynchronously with the RNN execution, as illustrated in Figs. 8 and 9. This feature enabled testing a BPTT
based approach on a real automotive hardware as described in [58].

As has been observed some time ago [81], BPTT may suffer from the problem of vanishing gradients.
This occurs because, in a typical RNN, the derivatives of sigmoidal nodes are less than the unity, while the
RNN weights are often also less than the unity. Products of many of such quantities can become naturally
very small, especially for large depths h. The RNN training would then become ineffective; the RNN would
be “blind” and unable to associate target outputs with distant inputs.

Special RNN approaches such as those in [82] and [83] have been proposed to cope with the vanishing
gradient problem. While we acknowledge that the problem may be indeed serious, it is not insurmountable.
This is not just this author’s opinion but also reflection on successful experience of Ford and Siemens NN
Research (see, e.g., [84]).

In addition to calculation of derivatives of the performance measure with respect to the NN weights W,
we need to choose a weight update method. We can broadly classify weight update methods according to
the amount of information used to perform an update. Still, the simple equation (6) holds, while the update
d(i) may be determined in a much more complex process than the gradient method (10).

It is useful to summarize a typical BPTT(H) based training procedure for NN controllers because it
highlights steps relevant to training NN with feedback in general:

1. Initiate states of each component of the system (e.g., RNN state): x(0) = x0(s), s = 1, 2, . . . , S.
2. Run the system forward from time step t = t0 to step t = t0 + H , and compute U (see (5)) for all S

trajectories.
3. For all S trajectories, compute dynamic derivatives of the relevant outputs with respect to NN controller

weights, i.e., backpropagate to t0. Usually backpropagating just U(t0 + H) is sufficient.
4. Adjust the NN controller weights according to the weight update d(i) using the derivatives obtained in

step 3; increment i.
5. Move forward by one time step (run the closed-loop system forward from step t = t0+H to step t0+H +1

for all S trajectories), then increment t0 and repeat the procedure beginning from step 3, etc., until the
end of all trajectories (t = T) is reached.

6. Optionally, generate a new set of initial states and resume training from step 1.

The described procedure is similar to both model predictive control (MPC) with receding horizon (see,
e.g., [85]) and optimal control based on the adjoint (Euler–Lagrange/Hamiltonian) formulation [86]. The
most significant differences are that this scheme uses a parametric nonlinear representation for controller
(NN) and that updates of NN weights are incremental, not “greedy” as in the receding-horizon MPC.

We henceforth assume that we deal with root-mean-squared (RMS) error minimization (corresponds to
− ∂A(i)

∂W(i) in (10)). Naturally, gradient descent is the simplest among all first-order methods of minimization for
differentiable functions, and is the easiest to implement. However, it uses the smallest amount of information
for performing weight updates. An imaginary plot of total error versus weight values, known as the error
surface, is highly nonlinear in a typical neural network training problem, and the total error function may have
many local minima. Relying only on the gradient in this case is clearly not the most effective way to update
weights. Although various modifications and heuristics have been proposed to improve the effectiveness of
the first-order methods, their convergence still remains quite slow due to the intrinsically ill-conditioned
nature of training problems [13]. Thus, we need to utilize more information about the error surface to make
the convergence of weights faster.

Neural Networks in Automotive Applications 113

In differentiable minimization, the Hessian matrix, or the matrix of second-order partial derivatives of a
function with respect to adjustable parameters, contains information that may be valuable for accelerated
convergence. For instance, the minimum of a function quadratic in the parameters can be reached in one
iteration, provided the inverse of the nonsingular positive definite Hessian matrix can be calculated. While
such superfast convergence is only possible for quadratic functions, a great deal of experimental work has
confirmed that much faster convergence is to be expected from weight update methods that use second-order
information about error surfaces. Unfortunately, obtaining the inverse Hessian directly is practical only for
small neural networks [15]. Furthermore, even if we can compute the inverse Hessian, it is frequently ill-
conditioned and not positive definite, making it inappropriate for efficient minimization. For RNN, we have to
rely on methods which build a positive definite estimate of the inverse Hessian without requiring its explicit
knowledge. Such methods for weight updates belong to a family of second-order methods. For a detailed
overview of the second-order methods, the reader is referred to [13]. If d(i) in (6) is a product of a specially
created and maintained positive definite matrix, sometimes called the approximate inverse Hessian, and the
vector −η(i) ∂A(i)

∂W(i) , we obtain the quasi-Newton method. Unlike first-order methods which can operate in
either pattern-by-pattern or batch mode, most second-order methods employ batch mode updates (e.g., the
popular Levenberg–Marquardt method [15]). In pattern-by-pattern mode, we update weights based on a
gradient obtained for every instance in the training set, hence the term instantaneous gradient. In batch
mode, the index i is no longer applicable to individual instances, and it becomes associated with a training
iteration or epoch. Thus, the gradient is usually a sum of instantaneous gradients obtained for all training
instances during the epoch i, hence the name batch gradient. The approximate inverse Hessian is recursively
updated at the end of every epoch, and it is a function of the batch gradient and its history. Next, the
best learning rate η(i) is determined via a one-dimensional minimization procedure, called line search, which
scales the vector d(i) depending on its influence on the total error. The overall scheme is then repeated until
the convergence of weights is achieved.

Relative to first-order methods, effective second-order methods utilize more information about the error
surface at the expense of many additional calculations for each training epoch. This often renders the overall
training time to be comparable to that of a first-order method. Moreover, the batch mode of operation results
in a strong tendency to move strictly downhill on the error surface. As a result, weight update methods that
use batch mode have limited error surface exploration capabilities and frequently tend to become trapped
in poor local minima. This problem may be particularly acute when training RNN on large and redundant
training sets containing a variety of temporal patterns. In such a case, a weight update method that operates
in pattern-by-pattern mode would be better, since it makes the search in the weight space stochastic. In other
words, the training error can jump up and down, escaping from poor local minima. Of course, we are aware
that no batch or sequential method, whether simple or sophisticated, provides a complete answer to the
problem of multiple local minima. A reasonably small value of RMS error achieved on an independent
testing set, not significantly larger than the RMS error obtained at the end of training, is a strong indication
of success. Well known techniques, such as repeating a training exercise many times starting with different
initial weights, are often useful to increase our confidence about solution quality and reproducibility.

Unlike weight update methods that originate from the field of differentiable function optimization, the
extended Kalman filter (EKF) method treats supervised learning of a NN as a nonlinear sequential state
estimation problem. The NN weights W are interpreted as states of the trivially evolving dynamic system,
with the measurement equation described by the NN function h

W(t + 1) = W(t) + ν(t), (11)
yd(t) = h(W(t), i(t),v(t − 1)) + ω(t), (12)

where yd(t) is the desired output vector, i(t) is the external input vector, v is the RNN state vector (internal
feedback), ν(t) is the process noise vector, and ω(t) is the measurement noise vector. The weights W may
be organized into g mutually exclusive weight groups. This trades off performance of the training method
with its efficiency; a sufficiently effective and computationally efficient choice, termed node decoupling, has
been to group together those weights that feed each node. Whatever the chosen grouping, the weights of
group j are denoted by Wj . The corresponding derivatives of network outputs with respect to weights Wj

are placed in Nout columns of Hj .

114 D. Prokhorov

To minimize at time step t a cost function cost =
∑

t
1
2ξ(t)T S(t)ξ(t), where S(t) > 0 is a weighting

matrix and ξ(t) is the vector of errors, ξ(t) = yd(t)− y(t), where y(t) = h(·) from (12), the decoupled EKF
equations are as follows [58]:

A∗(t) =

⎡
⎣ 1

η(t)
I +

g∑
j=1

H∗
j (t)

T Pj(t)H∗
j (t)

⎤
⎦
−1

, (13)

K∗
j (t) = Pj(t)H∗

j (t)A
∗(t), (14)

Wj(t + 1) = Wj(t) + K∗
j (t)ξ

∗(t), (15)

Pj(t + 1) = Pj(t) − K∗
j (t)H

∗
j (t)

T Pj(t) + Qj(t). (16)

In these equations, the weighting matrix S(t) is distributed into both the derivative matrices and the error
vector: H∗

j (t) = Hj(t)S(t)
1
2 and ξ∗(t) = S(t)

1
2 ξ(t). The matrices H∗

j (t) thus contain scaled derivatives of
network (or the closed-loop system) outputs with respect to the jth group of weights; the concatenation
of these matrices forms a global scaled derivative matrix H∗(t). A common global scaling matrix A∗(t) is
computed with contributions from all g weight groups through the scaled derivative matrices H∗

j(t), and
from all of the decoupled approximate error covariance matrices Pj(t). A user-specified learning rate η(t)
appears in this common matrix. (Components of the measurement noise matrix are inversely proportional
to η(t).) For each weight group j, a Kalman gain matrix K∗

j (t) is computed and used in updating the values
of Wj(t) and in updating the group’s approximate error covariance matrix Pj(t). Each approximate error
covariance update is augmented by the addition of a scaled identity matrix Qj(t) that represents additive
data deweighting.

We often employ a multi-stream version of the algorithm above. A concept of multi-stream was proposed
in [87] for improved training of RNN via EKF. It amounts to training Ns copies (Ns streams) of the same
RNN with Nout outputs. Each copy has the same weights but different, separately maintained states. With
each stream contributing its own set of outputs, every EKF weight update is based on information from all
streams, with the total effective number of outputs increasing to M = NsNout. The multi-stream training
may be especially effective for heterogeneous data sequences because it resists the tendency to improve local
performance at the expense of performance in other regions.

The Stochastic Meta-Descent (SMD) is proposed in [88] for training nonlinear parameterizations including
NN. The iterative SMD algorithm consists of two steps. First, we update the vector p of local learning rates

p(t) = diag(p(t − 1))
× max(0.5, 1 + µdiag(v(t))∇(t)), (17)

v(t + 1) = γv(t) + diag(p(t))(∇(t) − γCv(t)), (18)

where γ is a forgetting factor, µ is a scalar meta-learning factor, v is an auxiliary vector, Cv(t) is the product
of a curvature matrix C with v, ∇ is a derivative of the instantaneous cost function with respect to W (e.g.,
the cost is 1

2ξ(t)T S(t)ξ(t); oftentimes ∇ is averaged over a short window of time steps).
The second step is the NN weight update

W(t + 1) = W(t) − diag(p(t))∇(t). (19)

In contrast to EKF which uses explicit approximation of the inverse curvature C−1 as the P matrix (16),
the SMD calculates and stores the matrix-vector product Cv, thereby achieving dramatic computational
savings. Several efficient ways to obtain Cv are discussed in [88]. We utilize the product Cv = ∇∇T v where
we first compute the scalar product ∇T v, then scale the gradient ∇ by the result. The well adapted p allows
the algorithm to behave as if it were a second-order method, with the dominant scaling linear in W. This is
clearly advantageous for problems requiring large NN.

Now we briefly discuss training methods which do not use derivatives.
ALOPEX, or ALgorithm Of Pattern EXtraction, is a correlation based algorithm proposed in [89]

∆Wij(n) = η∆Wij(n − 1)∆R(n) + ri(n). (20)

Neural Networks in Automotive Applications 115

In terms of NN variables, ∆Wij(n) is the difference between the current and previous value of weight Wij at
iteration n, ∆R(n) is the difference between the current and previous value of the NN performance function
R (not necessarily in the form of (4)), η is the learning rate, and the stochastic term ri(n) ∼ N(0, σ2) (a
non-Gaussian term is also possible) is added to help escaping poor local minima. Related correlation based
algorithms are described in [90].

Another method of non-differential optimization is called particle swarm optimization (PSO) [91]. PSO is
in principle a parallel search technique for finding solutions with the highest fitness. In terms of NN, it uses
multiple weight vectors, or particles. Each particle has its own position Wi and velocity Vi. The particle
update equations are

V next
i,j = ωVi,j + c1φ

1
i,j(Wibest,j − Wi,j) + c2φ

2
i,j(Wgbest,j − Wi,j), (21)

Wnext
i,j = Wi,j + V next

i,j , (22)

where the index i is the ith particle, j is its jth dimension (i.e., jth component of the weight vector),
φ1

i,j , φ
2
i,j are uniform random numbers from zero to one, Wibest is the best ith weight vector so far (in terms

of evolution of the ith vector fitness), Wgbest is the overall best weight vector (in terms of fitness values
of all weight vectors). The control parameters are termed the accelerations c1, c2 and the inertia ω. It is
noteworthy that the first equation is to be done first for all pairs (i, j), followed by the second equation
execution for all the pairs. It is also important to generate separate random numbers φ1

i,j , φ
2
i,j for each pair

(i, j) (more common notation elsewhere omits the (i, j)-indexing, which may result in less effective PSO
implementations if done literally).

The PSO algorithm is inherently a batch method. The fitness is to be evaluated over many data vectors
to provide reliable estimates of NN performance.

Performance of the PSO algorithm above may be improved by combining it with particle ranking and
selection according to their fitness [92–94], resulting in hybrids between PSO and evolutionary methods. In
each generation, the PSO-EA hybrid ranks particles according to their fitness values and chooses the half of
the particle population with the highest fitness for the PSO update, while discarding the second half of the
population. The discarded half is replenished from the first half which is PSO-updated and then randomly
mutated.

Simultaneous Perturbation Stochastic Approximation (SPSA) is also appealing due to its extreme sim-
plicity and model-free nature. The SPSA algorithm has been tested on a variety of nonlinearly parameterized
adaptive systems including neural networks [95].

A popular form of the gradient descent-like SPSA uses two cost evaluations independent of parameter
vector dimensionality to carry out one update of each adaptive parameter. Each SPSA update can be
described by two equations

Wnext
i = Wi − aGi(W), (23)

Gi(W) =
cost(W + c∆) − cost(W − c∆)

2c∆i
, (24)

where Wnext is the updated value of the NN weight vector, ∆ is a vector of symmetrically distributed
Bernoulli random variables generated anew for every update step (e.g., the ith component of ∆ denoted as
∆i is either +1 or −1), c is size of a small perturbation step, and a is a learning rate.

Each SPSA update requires that two consecutive values of the cost function cost be computed, i.e.,
one value for the “positive” perturbation of weights cost(W + c∆) and another value for the “negative”
perturbation cost(W−c∆) (in general, the cost function depends not only on W but also on other variables
which are omitted for simplicity). This means that one SPSA update occurs no more than once every other
time step. As in the case of the SMD algorithm (17)–(19), it may also be helpful to let the cost function
represent changes of the cost over a short window of time steps, in which case each SPSA update would be
even less frequent. Variations of the base SPSA algorithm are described in detail in [95].

Non-differential forms of KF have also been developed [96–98]. These replace backpropagation with many
forward propagations of specially created test or sigma vectors. Such vectors are still only a small fraction
of probing points required for high-accuracy approximations because it is easier to approximate a nonlinear

116 D. Prokhorov

transformation of a Gaussian density than an arbitrary nonlinearity itself. These truly nonlinear KF methods
have been shown to result in more effective NN training than the EKF method [99–101], but at the price of
significantly increased computational complexity.

Tremendous reductions in cost of the general-purpose computer memory and relentless increase in speed
of processors have greatly relaxed implementation constraints for NN models. In addition, NN architectural
innovations called liquid state machines (LSM) and echo state networks (ESN) have appeared recently (see,
e.g., [102]), which reduce the recurrent NN training problem to that of training just the weights of the output
nodes because other weights in the RNN are fixed. Recent advances in LSM/ESN are reported in [103].

5 RNN: A Motivating Example

Recurrent neural networks are capable to solve more complex problems than networks without feedback
connections. We consider a simple example illustrating the need for RNN and propose an experimentally
verifiable explanation for RNN behavior, referring the reader to other sources for additional examples and
useful discussions [71, 104–110].

Figure 10 illustrates two different signals, all continued after 100 time steps at the same level of zero. An
RNN is tasked with identifying two different signals by ascribing labels to them, e.g., +1 to one and −1 to
another. It should be clear that only a recurrent NN is capable of solving this task. Only an RNN can retain
potentially arbitrarily long memory of each input signal in the region where the two inputs are no longer
distinguishable (the region beyond the first 100 time steps in Fig. 10).

We chose an RNN with one input, one fully connected hidden layer of 10 recurrent nodes, and one bipolar
sigmoid node as output. We employed the training based on BPTT(10) and EKF (see Sect. 4) with 150 time
steps as the length of training trajectory, which turned out to be very quick due to simplicity of the task.
Figure 11 illustrates results after training. The zero-signal segment is extended for additional 200 steps for
testing, and the RNN still distinguishes the two signals clearly.

We examine the internal state (hidden layer) of the RNN. We can see clearly that all time series are
different, depending on the RNN input; some node signals are very different, resembling the decision (output)
node signal. For example, Fig. 12 shows the output of the hidden node 4 for both input signals. This hidden
node could itself be used as the output node if the decision threshold is set at zero.

Our output node is non-recurrent. It is only capable of creating a separating hyperplane based on its
inputs, or outputs of recurrent hidden nodes, and the bias node. The hidden layer behavior after training
suggests that the RNN spreads the input signal into several dimensions such that in those dimensions the
signal classification becomes easy.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10. Two inputs for the RNN motivating example. The blue curve is sin(5t/π), where t = [0 : 1 : 100], and the
green curve is sawtooth(t, 0.5) (Matlab notation)

Neural Networks in Automotive Applications 117

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

Testing

Training

Fig. 11. The RNN results after training. The segment from 0 to 200 is for training, the rest is for testing

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 12. The output of the hidden node 4 of the RNN responding to the first (black) and the second (green) input
signals. The response of the output node is also shown in red and blue for the first and the second signal, respectively

The hidden node signals in the region where the input signal is zero do not have to converge to a fixed
point. This is illustrated in Fig. 13 for the segment where the input is zero (the top panel). It is sufficient
that the hidden node behavior for each signal of a particular class belong to a distinct region of the hidden
node state space, non-overlapping with regions for other classes. Thus, oscillatory or even chaotic behavior
for hidden nodes is possible (and sometimes advantageous – see [110] and [109] for useful discussions), as
long as a separating hyperplane exists for the output to make the classification decision. We illustrate in
Fig. 11 the long retention by testing the RNN on added 200-point segments of zero inputs to each of the
training signals.

Though our example is for two classes of signals, it is straightforward to generalize it to multi-class prob-
lems. Clearly, not just classification problems but also regression problems can be solved, as demonstrated
previously in [73], often with the addition of hidden (not necessarily recurrent) layers.

Though we employed the EKF algorithm for training of all RNN weights, other training methods can
certainly be utilized. Furthermore, other researchers, e.g., [102], recently demonstrated that one might replace
training RNN weights in the hidden layer with their random initializations, provided that the hidden layer
nodes exhibit sufficiently diverse behavior. Only weights between the hidden nodes and the outputs would
have to be trained, thereby greatly simplifying the training process. Indeed, it is plausible that even random
weights in the RNN could sometimes result in sufficiently well separated responses to input signals of different

118 D. Prokhorov

0 50 100 150
−1

−0.5

0

0.5

1

0 50 100 150
−1

−0.5

0

0.5

1

Fig. 13. The hidden node outputs of the RNN and the input signal (thick blue line) of the first (top) and the second
(bottom) classes

classes, and this would also be consistent with our explanation for the trained RNN behavior observed in
the example of this section.

6 Verification and Validation (V & V)

Verification and validation of performance of systems containing NN is a critical challenge of today and
tomorrow [111, 112]. Proving mathematically that a NN will have the desired performance is possible, but
such proofs are only as good as their assumptions. Sometimes too restrictive, hard to verify or not very
useful assumptions are put forward just to create an appearance of mathematical rigor. For example, in
many control papers a lot of efforts is spent on proving the uniform ultimate boundedness (UUB) property
without due diligence demanded in practice by the need to control the value of that ultimate bound. Thus,
stability becomes a proxy for performance, which is not often the case. In fact, physical systems in the
automotive world (and in many other worlds too) are always bounded because of both physical limits and
various safeguards.

As mentioned in Sect. 3, it is reasonable to expect that a trained NN can do an adequate job interpolating
to other sets of data it has not seen in training. Extrapolation significantly beyond the training set is not
reasonable to expect. However, some automotive engineers and managers who are perhaps under pressure
to deploy a NN system as quickly as possible may forget this and insist that the NN be tested on data
which differs as much as possible from the training data, which clearly runs counter to the main principle of
designing experiments with NN.

The inability to prove rigorously superior performance of systems with NN should not discourage auto-
motive engineers from deploying such systems. Various high-fidelity simulators, HILS, etc., are simplifying
the work of performance verifiers. As such, these systems are already contributing to growing popularity of
statistical methods for performance verification because other alternatives are simply not feasible [113–116].

Neural Networks in Automotive Applications 119

To illustrate statistical approach of performance verification of NN, we consider the following performance
verification experiment. Assume that a NN is tested on N independent data sets. If the NN performance in
terms of a performance measure m is better than md, then the experiment is considered successful, otherwise
failed. The probability that a set of N experiments is successful is given by the classic formula of Bernoulli
trials (see also [117])

Prob = (1 − p)N , (25)

where p is unknown true probability of failure. To keep the probability of observing no failures in N trials
below κ even if p ≥ ε requires

(1 − ε)N ≤ κ, (26)

which means

N ≥ lnκ

ln(1 − ε)
=

ln 1
κ

ln 1
1−ε

≈ 1
ε
ln

1
κ

. (27)

If ε = κ = 10−6, then N ≥ 1.38 × 107. It would take less than 4 h of testing (3.84 h), assuming that a single
verification experiment takes 1 ms.

Statistical performance verification illustrated above is applicable to other “black-box” approaches. It
should be kept in mind that a NN is seldom the only component in the entire system. It may be useful and
safer in practice to implement a hybrid system, i.e., a combination of a NN module (“black box”) and a
module whose functioning is more transparent than that of NN. The two modules together (and possibly the
plant) form a system with desired properties. This approach is discussed in [8], which is the next chapter of
the book.

References

1. Ronald K. Jurgen (ed). Electronic Engine Control Technologies, 2nd edition. Society of Automotive Engineers,
Warrendale, PA, 2004.

2. Bruce D. Bryant and Kenneth A. Marko, “Case example 2: data analysis for diagnostics and process monitoring
of automotive engines”, in Ben Wang and Jay Lee (eds), Computer-Aided Maintenance: Methodologies and
Practices. Berlin Heidelberg New York: Springer, 1999, pp. 281–301.

3. A. Tascillo and R. Miller, “An in-vehicle virtual driving assistant using neural networks,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN), vol. 3, July 2003, pp. 2418–2423.

4. Dragan Djurdjanovic, Jianbo Liu, Kenneth A. Marko, and Jun Ni, “Immune systems inspired approach to
anomaly detection and fault diagnosis for engines,” in Proceedings of the International Joint Conference on
Neural Networks (IJCNN) 2007, Orlando, FL, 12–17 August 2007, pp. 1375–1382.

5. S. Chiu, “Developing commercial applications of intelligent control,” IEEE Control Systems Magazine, vol. 17,
no. 2, pp. 94–100, 1997.

6. A.K. Kordon, “Application issues of industrial soft computing systems,” in Fuzzy Information Processing Society,
2005. NAFIPS 2005. Annual Meeting of the North American Fuzzy Information Processing Society, 26–28 June
2005, pp. 110–115.

7. A.K. Kordon, Applied Soft Computing, Berlin Heidelberg New York: Springer, 2008.
8. G. Bloch, F. Lauer, and G. Colin, “On learning machines for engine control.” Chapter 8 in this volume.
9. K.A. Marko, J. James, J. Dosdall, and J. Murphy, “Automotive control system diagnostics using neural nets for

rapid pattern classification of large data sets,” in Proceedings of the International Joint Conference on Neural
Networks (IJCNN) 1989, vol. 2, Washington, DC, July 1989, pp. 13–16.

10. G.V. Puskorius and L.A. Feldkamp, “Neurocontrol of nonlinear dynamical systems with Kalman filter trained
recurrent networks,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 279–297, 1994.

11. Naozumi Okuda, Naoki Ishikawa, Zibo Kang, Tomohiko Katayama, and Toshio Nakai, “HILS application for
hybrid system development,” SAE Technical Paper No. 2007-01-3469, Warrendale, PA, 2007.

12. Oleg Yu. Gusikhin, Nestor Rychtyckyj, and Dimitar Filev, “Intelligent systems in the automotive industry:
applications and trends,” Knowledge and Information Systems, vol. 12, no. 2, pp. 147–168, 2007.

120 D. Prokhorov

13. S. Haykin. Neural Networks: A Comprehensive Foundation, 2nd edition. Upper Saddle River, NJ: Prentice Hall,
1999.

14. Genevieve B. Orr and Klaus-Robert Müller (eds). Neural Networks: Tricks of the Trade, Springer Lecture Notes
in Computer Science, vol. 1524. Berlin Heidelberg New York: Springer, 1998.

15. C.M. Bishop. Neural Networks for Pattern Recognition. Oxford: Oxford University Press, 1995.
16. Normand L. Frigon and David Matthews. Practical Guide to Experimental Design. New York: Wiley, 1997.
17. Sven Meyer and Andreas Greff, “New calibration methods and control systems with artificial neural networks,”

SAE Technical Paper no. 2002-01-1147, Warrendale, PA, 2002.
18. P. Schoggl, H.M. Koegeler, K. Gschweitl, H. Kokal, P. Williams, and K. Hulak, “Automated EMS calibration

using objective driveability assessment and computer aided optimization methods,” SAE Technical Paper no.
2002-01-0849, Warrendale, PA, 2002.

19. Bin Wu, Zoran Filipi, Dennis Assanis, Denise M. Kramer, Gregory L. Ohl, Michael J. Prucka, and Eugene
DiValentin, “Using artificial neural networks for representing the air flow rate through a 2.4-Liter VVT Engine,”
SAE Technical Paper no. 2004-01-3054, Warrendale, PA, 2004.

20. U. Schoop, J. Reeves, S. Watanabe, and K. Butts, “Steady-state engine modeling for calibration: a productivity
and quality study,” in Proc. MathWorks Automotive Conference ’07, Dearborn, MI, 19–20 June 2007.

21. B. Wu, Z.S. Filipi, R.G. Prucka, D.M. Kramer, and G.L. Ohl, “Cam-phasing optimization using artificial neural
networks as surrogate models – fuel consumption and NOx emissions,” SAE Technical Paper no. 2006-01-1512,
Warrendale, PA, 2006.

22. Paul B. Deignan Jr., Peter H. Meckl, and Matthew A. Franchek, “The MI – RBFN: mapping for generalization,”
in Proceedings of the American Control Conference, Anchorage, AK, 8–10 May 2002, pp. 3840–3845.

23. Iakovos Papadimitriou, Matthew D. Warner, John J. Silvestri, Johan Lennblad, and Said Tabar, “Neural network
based fast-running engine models for control-oriented applications,” SAE Technical Paper no. 2005-01-0072,
Warrendale, PA, 2005.

24. D. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, pp. 109–118, 1990.
25. B. Wu, Z.S. Filipi, R.G. Prucka, D.M. Kramer, and G.L. Ohl, “Cam-phasing optimization using artificial neural

networks as surrogate models – maximizing torque output,” SAE Technical Paper no. 2005-01-3757, Warrendale,
PA, 2005.

26. Silvia Ferrari and Robert F. Stengel, “Smooth function approximation using neural networks,” IEEE Trans-
actions on Neural Networks, vol. 16, no. 1, pp. 24–38, 2005.

27. N.A. Gershenfeld. Nature of Mathematical Modeling. Cambridge, MA: MIT, 1998.
28. N. Gershenfeld, B. Schoner, and E. Metois, “Cluster-weighted modelling for time-series analysis,” Nature,

vol. 397, pp. 329–332, 1999.
29. D. Prokhorov, L. Feldkamp, and T. Feldkamp, “A new approach to cluster weighted modeling,” in Proc. of

International Joint Conference on Neural Networks (IJCNN), Washington DC, July 2001.
30. M. Hafner, M. Weber, and R. Isermann, “Model-based control design for IC-engines on dynamometers: the

toolbox ‘Optimot’,” in Proc. 15th IFAC World Congress, Barcelona, Spain, 21–26 July 2002.
31. Dara Torkzadeh, Julian Baumann, and Uwe Kiencke, “A Neuro Fuzzy Approach for Anti-Jerk Control,” SAE

Technical Paper 2003-01-0361, Warrendale, PA, 2003.
32. Danil Prokhorov, “Toyota Prius HEV neurocontrol and diagnostics,” Neural Networks, vol. 21, pp. 458–465,

2008.
33. K.A. Marko, J.V. James, T.M. Feldkamp, G.V. Puskorius, L.A. Feldkamp, and D. Prokhorov, “Training recurrent

networks for classification,” in Proceedings of the World Congress on Neural Networks, San Diego, 1996, pp.
845–850.

34. L.A. Feldkamp, D.V. Prokhorov, C.F. Eagen, and F. Yuan, “Enhanced multi-stream Kalman filter training
for recurrent networks,” in J. Suykens and J. Vandewalle (eds), Nonlinear Modeling: Advanced Black-Box
Techniques. Boston: Kluwer, 1998, pp. 29–53.

35. L.A. Feldkamp and G.V. Puskorius, “A signal processing framework based on dynamic neural networks with
application to problems in adaptation, filtering and classification,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2259–2277, 1998.

36. Neural Network Competition at IJCNN 2001, Washington DC, http://www.geocities.com/ijcnn/challenge.html
(GAC).

37. G. Jesion, C.A. Gierczak, G.V. Puskorius, L.A. Feldkamp, and J.W. Butler, “The application of dynamic neural
networks to the estimation of feedgas vehicle emissions,” in Proc. World Congress on Computational Intelligence.
International Joint Conference on Neural Networks, vol. 1, 1998, pp. 69–73.

Neural Networks in Automotive Applications 121

38. R. Jarrett and N.N. Clark, “Weighting of parameters in artificial neural network prediction of heavy-duty diesel
engine emissions,” SAE Technical Paper no. 2002-01-2878, Warrendale, PA, 2002.

39. I. Brahma and J.C. Rutland, “Optimization of diesel engine operating parameters using neural networks,” SAE
Technical Paper no. 2003-01-3228, Warrendale, PA, 2003.

40. M.L. Traver, R.J. Atkinson, and C.M. Atkinson, “Neural network-based diesel engine emissions prediction using
in-cylinder combustion pressure,” SAE Technical Paper no. 1999-01-1532, Warrendale, PA, 1999.

41. L. del Re, P. Langthaler, C. Furtmüller, S. Winkler, and M. Affenzeller, “NOx virtual sensor based on structure
identification and global optimization,” SAE Technical Paper no. 2005-01-0050, Warrendale, PA, 2005.

42. I. Arsie, C. Pianese, and M. Sorrentino,“Recurrent neural networks for AFR estimation and control in spark
ignition automotive engines.” Chapter 9 in this volume.

43. Nicholas Wickström, Magnus Larsson, Mikael Taveniku, Arne Linde, and Bertil Svensson, “Neural virtual
sensors – estimation of combustion quality in SI engines using the spark plug,” in Proc. ICANN 1998.

44. R.J. Howlett, S.D. Walters, P.A. Howson, and I. Park, “Air–fuel ratio measurement in an internal combustion
engine using a neural network,” Advances in Vehicle Control and Safety (International Conference), AVCS’98,
Amiens, France, 1998.

45. H. Nareid, M.R. Grimes, and J.R. Verdejo, “A neural network based methodology for virtual sensor
development,” SAE Technical Paper no. 2005-01-0045, Warrendale, PA, 2005.

46. M.R. Grimes, J.R. Verdejo, and D.M. Bogden, “Development and usage of a virtual mass air flow sensor,” SAE
Technical Paper no. 2005-01-0074, Warrendale, PA, 2005.

47. W. Thomas Miller III, Richard S. Sutton, and Paul. J. Werbos (eds). Neural Networks for Control. Cambridge,
MA: MIT, 1990.

48. K.S. Narendra, “Neural networks for control: theory and practice,” Proceedings of the IEEE, vol. 84, no. 10,
pp. 1385–1406, 1996.

49. J. Suykens, J. Vandewalle, and B. De Moor. Artificial Neural Networks for Modeling and Control of Non-Linear
Systems. Boston: Kluwer, 1996.

50. T. Hrycej. Neurocontrol: Towards an Industrial Control Methodology. New York: Wiley, 1997.
51. M. Nørgaard, O. Ravn, N.L. Poulsen, and L.K. Hansen. Neural Networks for Modelling and Control of Dynamic

Systems. London: Springer, 2000.
52. M. Agarwal, “A systematic classification of neural-network-based control,” IEEE Control Systems Magazine,

vol. 17, no. 2, pp. 75–93, 1997.
53. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Cambridge, MA: MIT, 1998.
54. P.J. Werbos, “Approximate dynamic programming for real-time control and neural modeling,” in D.A. White

and D.A. Sofge (eds), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. New York: Van
Nostrand, 1992.

55. R.S. Sutton, A.G. Barto, and R. Williams, “Reinforcement learning is direct adaptive optimal control,” IEEE
Control Systems Magazine, vol. 12, no. 2, pp. 19–22, 1991.

56. Danil Prokhorov, “Training recurrent neurocontrollers for real-time applications,” IEEE Transactions on Neural
Networks, vol. 18, no. 4, pp. 1003–1015, 2007.

57. D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic learning techniques for engine torque and
air–fuel ratio control,” IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics, accepted for
publication.

58. G.V. Puskorius, L.A. Feldkamp, and L.I. Davis Jr., “Dynamic neural network methods applied to on-vehicle
idle speed control,” Proceedings of the IEEE, vol. 84, no. 10, pp. 1407–1420, 1996.

59. D. Prokhorov, R.A. Santiago, and D.Wunsch, “Adaptive critic designs: a case study for neurocontrol,” Neural
Networks, vol. 8, no. 9, pp. 1367–1372, 1995.

60. Thaddeus T. Shannon, “Partial, noisy and qualitative models for adaptive critic based neuro-control,” in Proc.
of International Joint Conference on Neural Networks (IJCNN) 1999, Washington, DC, 1999.

61. Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng, “Using inaccurate models in reinforcement learning,” in
Proceedings of the Twenty-third International Conference on Machine Learning (ICML), 2006.

62. P. He and S. Jagannathan, “Reinforcement learning-based output feedback control of nonlinear systems with
input constraints,” IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics, vol. 35, no. 1,
pp. 150–154, 2005.

63. Jagannathan Sarangapani. Neural Network Control of Nonlinear Discrete-Time Systems. Boca Raton, FL: CRC,
2006.

64. Jay A. Farrell and Marios M. Polycarpou. Adaptive Approximation Based Control. New York: Wiley, 2006.
65. A.J. Calise and R.T. Rysdyk, “Nonlinear adaptive flight control using neural networks,” IEEE Control Systems

Magazine, vol. 18, no. 6, pp. 14–25, 1998.

122 D. Prokhorov

66. J.B. Vance, A. Singh, B.C. Kaul, S. Jagannathan, and J.A. Drallmeier, “Neural network controller development
and implementation for spark ignition engines with high EGR levels,” IEEE Transactions on Neural Networks,
vol. 18, No. 4, pp. 1083–1100, 2007.

67. J. Schmidhuber, “A neural network that embeds its own meta-levels,” in Proc. of the IEEE International
Conference on Neural Networks, San Francisco, 1993.

68. H.T. Siegelmann, B.G. Horne, and C.L. Giles, “Computational capabilities of recurrent NARX neural networks,”
IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics, vol. 27, no. 2, p. 208, 1997.

69. S. Younger, P. Conwell, and N. Cotter, “Fixed-weight on-line learning,” IEEE Transaction on Neural Networks,
vol. 10, pp. 272–283, 1999.

70. Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell, “Learning to learn using gradient descent,”
in Proceedings of the International Conference on Artificial Neural Networks (ICANN), 21–25 August 2001,
pp. 87–94.

71. Lee A. Feldkamp, Danil V. Prokhorov, and Timothy M. Feldkamp, “Simple and conditioned adaptive behavior
from Kalman filter trained recurrent networks,” Neural Networks, vol. 16, No. 5–6, pp. 683–689, 2003.

72. Ryu Nishimoto and Jun Tani, “Learning to generate combinatorial action sequences utilizing the initial
sensitivity of deterministic dynamical systems,” Neural Networks, vol. 17, no. 7, pp. 925–933, 2004.

73. L.A. Feldkamp, G.V. Puskorius, and P.C. Moore, “Adaptation from fixed weight dynamic networks,” in
Proceedings of IEEE International Conference on Neural Networks, 1996, pp. 155–160.

74. L.A. Feldkamp, and G.V. Puskorius, “Fixed weight controller for multiple systems,” in Proceedings of the
International Joint Conference on Neural Networks, vol. 2, 1997, pp. 773–778.

75. D. Prokhorov, “Toward effective combination of off-line and on-line training in ADP framework,” in Proceedings
of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL),
Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, 1–5 April 2007, pp. 268–271.

76. P.J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings of the IEEE, vol. 78,
no. 10, pp. 1550–1560, 1990.

77. R.J. Williams and J. Peng, “An efficient gradient-based algorithm for on-line training of recurrent network
trajectories,” Neural Computation, vol. 2, pp. 490–501, 1990.

78. R.J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,”
Neural Computation, vol. 1, pp. 270–280, 1989.

79. R.J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and their computational
complexity,” in Chauvin and Rumelhart (eds), Backpropagation: Theory, Architectures and Applications. New
York: L. Erlbaum, 1995, pp. 433–486.

80. I. Elhanany and Z. Liu, “A fast and scalable recurrent neural network based on stochastic meta-descent,” IEEE
Transactions on Neural Networks, to appear in 2008.

81. Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,”
IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

82. T. Lin, B.G. Horne, P. Tino, and C.L. Giles, “Learning long-term dependencies in NARX recurrent neural
networks,” IEEE Transactions on Neural Networks, vol. 7, no. 6, p. 1329, 1996.

83. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
1997.

84. H.G. Zimmermann, R. Grothmann, A.M. Schfer, and Tietz, “Identification and forecasting of large dynamical
systems by dynamical consistent neural networks,” in S. Haykin, J. Principe, T. Sejnowski, and J. Mc Whirter
(eds), New Directions in Statistical Signal Processing: From Systems to Brain. Cambridge, MA: MIT, 2006.

85. F. Allgöwer and A. Zheng (eds). Nonlinear Model Predictive Control, Progress in systems and Control Theory
Series, vol. 26. Basel: Birkhauser, 2000.

86. R. Stengel. Optimal Control and Estimation. New York: Dover, 1994.
87. L.A. Feldkamp and G.V. Puskorius, “Training controllers for robustness: Multi-stream DEKF,” in Proceedings

of the IEEE International Conference on Neural Networks, Orlando, 1994, pp. 2377–2382.
88. N.N. Schraudolph, “Fast curvature matrix-vector products for second-order gradient descent,” Neural Compu-

tation, vol. 14, pp. 1723–1738, 2002.
89. E. Harth, and E. Tzanakou, “Alopex: a stochastic method for determining visual receptive fields,” Vision

Research, vol. 14, pp. 1475–1482, 1974.
90. S. Haykin, Zhe Chen, and S. Becker, “Stochastic correlative learning algorithms,” IEEE Transactions on Signal

Processing, vol. 52, no. 8, pp. 2200–2209, 2004.
91. James Kennedy and Yuhui Shi. Swarm Intelligence. San Francisco: Morgan Kaufmann, 2001.
92. Chia-Feng Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,”

IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, vol. 34, no. 2, pp. 997–1006, 2004.

Neural Networks in Automotive Applications 123

93. Swagatam Das and Ajith Abraham, “Synergy of particle swarm optimization with differential evolution algo-
rithms for intelligent search and optimization,” in Javier Bajo et al. (eds), Proceedings of the Hybrid Artificial
Intelligence Systems Workshop (HAIS06), Salamanca, Spain, 2006, pp. 89–99.

94. Xindi Cai, Nian Zhang, Ganesh K. Venayagamoorthy, and Donald C. Wunsch, “Time series prediction with
recurrent neural networks trained by a hybrid PSO-EA algorithm,” Neurocomputing, vol. 70, no. 13–15, pp. 2342–
2353, 2007.

95. J.C. Spall and J.A. Cristion, “A neural network controller for systems with unmodeled dynamics with appli-
cations to wastewater treatment,” IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics,
vol. 27, no. 3, pp. 369–375, 1997.

96. S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte, “A new approach for filtering nonlinear systems,” in
Proceedings of the American Control Conference, Seattle WA, USA, 1995, pp. 1628–1632.

97. M. Norgaard, N.K. Poulsen, and O. Ravn, “New developments in state estimation for nonlinear systems,”
Automatica, vol. 36, pp. 1627–1638, 2000.

98. I. Arasaratnam, S. Haykin, and R.J. Elliott, “Discrete-time nonlinear filtering algorithms using Gauss–Hermite
quadrature,” Proceedings of the IEEE, vol. 95, pp. 953–977, 2007.

99. Eric A. Wan and Rudolph van der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Proceedings
of the IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control (AS-
SPCC), Lake Louise, Alberta, Canada, 2000.

100. L.A. Feldkamp, T.M. Feldkamp, and D.V. Prokhorov, “Neural network training with the nprKF,” in Proceedings
of International Joint Conference on Neural Networks ’01, Washington, DC, 2001, pp. 109–114.

101. D. Prokhorov, “Training recurrent neurocontrollers for robustness with derivative-free Kalman filter,” IEEE
Transactions on Neural Networks, vol. 17, no. 6, pp. 1606–1616, 2006.

102. H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless
telecommunications,” Science, vol. 308, no. 5667, pp. 78–80, 2004.

103. Herbert Jaeger, Wolfgang Maass, and Jose Principe (eds), “Special issue on echo state networks and liquid state
machines,” Neural Networks, vol. 20, no. 3, 2007.

104. D. Mandic and J. Chambers. Recurrent Neural Networks for Prediction. New York: Wiley, 2001.
105. J. Kolen and S. Kremer (eds). A Field Guide to Dynamical Recurrent Networks. New York: IEEE, 2001.
106. J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez, “Training recurrent networks by Evolino,” Neural

Computation, vol. 19, no. 3, pp. 757–779, 2007.
107. Andrew D. Back and Tianping Chen, “Universal approximation of multiple nonlinear operators by neural

networks,” Neural Computation, vol. 14, no. 11, pp. 2561–2566, 2002.
108. R.A. Santiago and G.G. Lendaris, “Context discerning multifunction networks: reformulating fixed weight neu-

ral networks,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest,
Hungary, 2004.

109. Colin Molter, Utku Salihoglu, and Hugues Bersini, “The road to chaos by hebbian learning in recurrent neural
networks,” Neural Computation, vol. 19, no. 1, 2007.

110. Ivan Tyukin, Danil Prokhorov, and Cees van Leeuwen, “Adaptive classification of temporal signals in fixed-
weights recurrent neural networks: an existence proof,” Neural Computation, to appear in 2008.

111. Brian J. Taylor (ed). Methods and Procedures for the Verification and Validation of Artificial Neural Networks.
Berlin Heidelberg New York: Springer, 2005.

112. Laura L. Pullum, Brian J. Taylor, and Marjorie A. Darrah. Guidance for the Verification and Validation of
Neural Networks. New York: Wiley-IEEE Computer Society, 2007.

113. M. Vidyasagar, “Statistical learning theory and randomized algorithms for control,” IEEE Control Systems
Magazine, vol. 18, no. 6, pp. 69–85, 1998.

114. R.R. Zakrzewski, “Verification of a trained neural network accuracy,” in Proceedings of International Joint
Conference on Neural Networks (IJCNN), vol. 3, 2001, pp. 1657–1662.

115. Tariq Samad, Darren D. Cofer, Vu Ha, and Pam Binns, “High-confidence control: ensuring reliability in high-
performance real-time systems,” International Journal of Intelligent Systems, vol. 19, no. 4, pp. 315–326, 2004.

116. J. Schumann and P. Gupta, “Monitoring the performance of a neuro-adaptive controller,” in Proc. MAXENT,
American Institute of Physics Conference Proceedings 735, 2004, pp. 289–296.

117. R.R. Zakrzewski, “Randomized approach to verification of neural networks,” in Proceedings of International
Joint Conference on Neural Networks (IJCNN), vol. 4, 2004, pp. 2819–2824.

On Learning Machines for Engine Control

Gérard Bloch1, Fabien Lauer1, and Guillaume Colin2

1 Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2 rue Jean Lamour, 54519
Vandoeuvre lès Nancy, France, gerard.bloch@esstin.uhp-nancy.fr, fabien.lauer@esstin.uhp-nancy.fr

2 Laboratoire de Mécanique et d’Energétique (LME), University of Orléans, 8 rue Léonard de Vinci, 45072 Orléans
Cedex 2, France, guillaume.colin@univ-orleans.fr

Summary. The chapter deals with neural networks and learning machines for engine control applications, partic-
ularly in modeling for control. In the first section, basic features of engine control in a layered engine management
architecture are reviewed. The use of neural networks for engine modeling, control and diagnosis is then briefly
described. The need for descriptive models for model-based control and the link between physical models and black
box models are emphasized by the grey box approach discussed in this chapter. The second section introduces the
neural models frequently used in engine control, namely, MultiLayer Perceptrons (MLP) and Radial Basis Function
(RBF) networks. A more recent approach, known as Support Vector Regression (SVR), to build models in kernel
expansion form is also presented. The third section is devoted to examples of application of these models in the
context of turbocharged Spark Ignition (SI) engines with Variable Camshaft Timing (VCT). This specific context is
representative of modern engine control problems. In the first example, the airpath control is studied, where open loop
neural estimators are combined with a dynamical polytopic observer. The second example considers modeling the
in-cylinder residual gas fraction by Linear Programming SVR (LP-SVR) based on a limited amount of experimental
data and a simulator built from prior knowledge. Each example demonstrates that models based on first principles
and neural models must be joined together in a grey box approach to obtain effective and acceptable results.

1 Introduction

The following gives a short introduction on learning machines in engine control. For a more detailed intro-
duction on engine control in general, the reader is referred to [20]. After a description of the common features
in engine control (Sect. 1.1), including the different levels of a general control strategy, an overview of the
use of neural networks in this context is given in Sect. 1.2. Section 1 ends with the presentation of the grey
box approach considered in this chapter. Then, in Sect. 2, the neural models that will be used in the illustra-
tive applications of Sect. 3, namely, the MultiLayer Perceptron (MLP), the Radial Basis Function Network
(RBFN) and a kernel model trained by Support Vector Regression (SVR) are exposed. The examples of
Sect. 3 are taken from a context representative of modern engine control problems, such as airpath control of
a turbocharged Spark Ignition (SI) engine with Variable Camshaft Timing (VCT) (Sect. 3.2) and modeling
of the in-cylinder residual gas fraction based on very few samples in order to limit the experimental costs
(Sect. 3.3).

1.1 Common Features in Engine Control

The main function of the engine is to ensure the vehicle mobility by providing the power to the vehicle
transmission. Nevertheless, the engine torque is also used for peripheral devices such as the air conditioning
or the power steering. In order to provide the required torque, the engine control manages the engine
actuators, such as ignition coils, injectors and air path actuators for a gasoline engine, pump and valve for
diesel engine. Meanwhile, over a wide range of operating conditions, the engine control must satisfy some
constraints: driver pleasure, fuel consumption and environmental standards.

G. Bloch et al.: On Learning Machines for Engine Control, Studies in Computational Intelligence (SCI) 132, 125–144 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

126 G. Bloch et al.

Fig. 1. Hierarchical torque control adapted from [13]

In [13], a hierarchical (or stratified) structure, shown in Fig. 1, is proposed for engine control. In this
framework, the engine is considered as a torque source [18] with constraints on fuel consumption and pollutant
emission. From the global characteristics of the vehicle, the Vehicle layer controls driver strategies and
manages the links with other devices (gear box. . .). The Engine layer receives from the Vehicle layer the
effective torque set point (with friction) and translates it into an indicated torque set point (without friction)
for the combustion by using an internal model (often a map). The Combustion layer fixes the set points for
the in-cylinder masses while taking into account the constraints on pollutant emissions. The Energy layer
ensures the engine load with, e.g. the Air to Fuel Ratio (AFR) control and the turbo control. The lower
level, specific for a given engine, is the Actuator layer, which controls, for instance, the throttle position, the
injection and the ignition.

With the multiplication of complex actuators, advanced engine control is necessary to obtain an effi-
cient torque control. This notably includes the control of the ignition coils, fuel injectors and air actuators
(throttle, Exhaust Gas Recirculation (EGR), Variable Valve Timing (VVT), turbocharger. . .). The air actu-
ator controllers generally used are PID controllers which are difficult to tune. Moreover, they often produce
overshooting and bad set point tracking because of the system nonlinearities. Only model-based control can
enhance engine torque control.

Several common characteristics can be found in engine control problems. First of all, the descriptive
models are dynamic and nonlinear. They require a lot of work to be determined, particularly to fix the
parameters specific to each engine type (“mapping”). For control, a sampling period depending on the engine
speed (very short in the worst case) must be considered. The actuators present strong saturations. Moreover,
many internal state variables are not measured, partly because of the physical impossibility of measuring and
the difficulties in justifying the cost of setting up additional sensors. At a higher level, the control must be
multi-objective in order to satisfy contradictory constraints (performance, comfort, consumption, pollution).
Lastly, the control must be implemented in on-board computers (Electronic Control Units, ECU), whose
computing power is increasing, but remains limited.

1.2 Neural Networks in Engine Control

Artificial neural networks have been the focus of a great deal of attention during the last two decades, due to
their capabilities to solve nonlinear problems by learning from data. Although a broad range of neural network
architectures can be found, MultiLayer Perceptrons (MLP) and Radial Basis Function Networks (RBFN)
are the most popular neural models, particularly for system modeling and identification [47]. The universal
approximation and flexibility properties of such models enable the development of modeling approaches,

On Learning Machines for Engine Control 127

and then control and diagnosis schemes, which are independent of the specifics of the considered systems.
As an example, the linearized neural model predictive control of a turbocharger is described in [12]. They
allow the construction of nonlinear global models, static or dynamic. Moreover, neural models can be easily
and generically differentiated so that a linearized model can be extracted at each sample time and used
for the control design. Neural systems can then replace a combination of control algorithms and look-up
tables used in traditional control systems and reduce the development effort and expertise required for the
control system calibration of new engines. Neural networks can be used as observers or software sensors, in
the context of a low number of measured variables. They enable the diagnosis of complex malfunctions by
classifiers determined from a base of signatures.

First use of neural networks for automotive application can be traced back to early 90s. In 1991, Marko
tested various neural classifiers for online diagnosis of engine control defects (misfires) and proposed a
direct control by inverse neural model of an active suspension system [32]. In [40], Puskorius and Feldkamp,
summarizing one decade of research, proposed neural nets for various subfunctions in engine control: AFR
and idle speed control, misfire detection, catalyst monitoring, prediction of pollutant emissions. Indeed, since
the beginning of the 90s, neural approaches have been proposed by numerous authors, for example, for:

• Vehicle control. Anti-lock braking system (ABS), active suspension, steering, speed control
• Engine modeling. Manifold pressure, air mass flow, volumetric efficiency, indicated pressure into cylinders,

AFR, start-of-combustion for Homogeneous Charge Compression Ignition (HCCI), torque or power
• Engine control. Idle speed control, AFR control, transient fuel compensation (TFC), cylinder air charge

control with VVT, ignition timing control, throttle, turbocharger, EGR control, pollutants reduction
• Engine diagnosis. Misfire and knock detection, spark voltage vector recognition systems

The works are too numerous to be referenced here. Nevertheless, the reader can consult the publications
[1, 4, 5, 39, 45] and the references therein, for an overview.

More recently, Support Vector Machines (SVMs) have been proposed as another approach for nonlinear
black box modeling [24, 41, 53] or monitoring [43] of automotive engines.

1.3 Grey Box Approach

Let us now focus on the development cycle of engine control, presented in Fig. 2, and the different models
that are used in this framework. The design process is the following:

1. Building of an engine simulator mostly based on prior knowledge
2. First identification of control models from data provided by the simulator
3. Control scheme design
4. Simulation and pre-calibration of the control scheme with the simulator
5. Control validation with the simulator
6. Second identification of control models from data gathered on the engine
7. Calibration and final test of the control with the engine

This shows that, in current practice, more or less complex simulation environments based on physical relations
are built for internal combustion engines. The great amount of knowledge that is included is consequently
available. These simulators are built to be accurate, but this accuracy depends on many physical parameters
which must be fixed. In any case, these simulation models cannot be used online, contrary to real time
control models. Such control models, e.g. neural models, must be identified first from the simulator and
then re-identified or adapted from experimental data. If the modeling process is improved, much gain can
be expected for the overall control design process.

Relying in the control design on meaningful physical equations has a clear justification. This partially
explains that the fully black box modeling approach has a difficult penetration in the engine control engi-
neering community. Moreover the fully black box (e.g. neural) model based control solutions have still to
practically prove their efficiency in terms of robustness, stability and real time applicability. This issue moti-
vates the material presented in this chapter, which concentrates on developing modeling and control solutions,
through several examples, mixing physical models and nonlinear black box models in a grey box approach. In

128 G. Bloch et al.

6 S d id tifi ti

3 ControlControl

6. Second identification

E
ng

3. Control
scheme

Control
model

Engine control

7. Calibration
8. Control tests

ine

2. First
identification

4. Pre-calibration
5. Control validation

1. Simulator buildingEngine Simulator
based on a complex

physical model

Fig. 2. Engine control development cycle

short, use neural models whenever needed, i.e. whenever first-principles models are not sufficient. In practice,
this can be expressed in two forms:

• Neural models should be used to enhance – not replace – physical models, particularly by extending two-
dimensional static maps or by correcting physical models when applied to real engines. This is developed
in Sect. 3.2.

• Physical insights should be incorporated as prior knowledge into the learning of the neural models. This
is developed in Sect. 3.3.

2 Neural Models

This section provides the necessary background on standard MultiLayer Perceptron (MLP) and Radial Basis
Function (RBF) neural models, before presenting kernel models and support vector regression.

2.1 Two Neural Networks

As depicted in [47], a general neural model with a single output may be written as a function expansion of
the form

f(ϕ, θ) =
n∑

k=1

αkgk(ϕ) + α0, (1)

where ϕ = [ϕ1 . . . ϕi . . . ϕp]T is the regression vector and θ is the parameter vector.
The restriction of the multilayer perceptron to only one hidden layer and to a linear activation function

at the output corresponds to a particular choice, the sigmoid function, for the basis function gk, and to a
“ridge” construction for the inputs in model (1). Although particular, this model will be called MLP in this
chapter. Its form is given, for a single output fnn, by

fnn(ϕ, θ) =
n∑

k=1

w2
k g

⎛
⎝ p∑

j=1

w1
kjϕj + b1

k

⎞
⎠+ b2, (2)

On Learning Machines for Engine Control 129

where θ contains all the weights w1
kj and biases b1

k of the n hidden neurons together with the weights and bias
w2

k, b2 of the output neuron, and where the activation function g is a sigmoid function (often the hyperbolic
tangent g(x) = 2/(1 + e−2x) − 1).

On the other hand, choosing a Gaussian function g(x) = exp
(−x2/σ2

)
as basis function and a radial

construction for the inputs leads to the radial basis function network (RBFN) [38], of which the output is
given by

f(ϕ, θ) =
n∑

k=1

αkg (‖ϕ − γk‖σk
) + α0 (3)

=
n∑

k=1

αk exp

⎛
⎝−1

2

p∑
j=1

(ϕj − γkj)2

σ2
kj

⎞
⎠+ α0,

where γk = [γk1 . . . γkp]T is the “center” or “position” of the kth Gaussian and σk = [σk1 . . . σkp]T its “scale”
or “width”, most of the time with σkj = σk, ∀j, or even σkj = σ, ∀j, k.

The process of approximating nonlinear relationships from data with these models can be decomposed
in several steps:

• Determining the structure of the regression vector ϕ or selecting the inputs of the network, see, e.g. [46]
for dynamic system identification

• Choosing the nonlinear mapping f or, in the neural network terminology, selecting an internal network
architecture, see, e.g. [42] for MLP’s pruning or [37] for RBFN’s center selection

• Estimating the parameter vector θ, i.e. (weight) “learning” or “training”
• Validating the model

This approach is similar to the classical one for linear system identification [29], the selection of the model
structure being, nevertheless, more involved. For a more detailed description of the training and validation
procedures, see [7] or [36].

Among the numerous nonlinear models, neural or not, which can be used to estimate a nonlinear rela-
tionship, the advantages of the one hidden layer perceptron, as well as those of the radial basis function
network, can be summarized as follows: they are flexible and parsimonious nonlinear black box models, with
universal approximation capabilities [6].

2.2 Kernel Expansion Models and Support Vector Regression

In the past decade, kernel methods [44] have attracted much attention in a large variety of fields and
applications: classification and pattern recognition, regression, density estimation, etc. Indeed, using kernel
functions, many linear methods can be extended to the nonlinear case in an almost straightforward manner,
while avoiding the curse of dimensionality by transposing the focus from the data dimension to the number
of data. In particular, Support Vector Regression (SVR), stemming from statistical learning theory [52] and
based on the same concepts as the Support Vector Machine (SVM) for classification, offers an interesting
alternative both for nonlinear modeling and system identification [16, 33, 54].

SVR originally consists in finding the kernel model that has at most a deviation ε from the training
samples with the smallest complexity [48]. Thus, SVR amounts to solving a constrained optimization problem
known as a quadratic program (QP), where both the �1-norm of the errors larger than ε and the �2-norm
of the parameters are minimized. Other formulations of the SVR problem minimizing the �1-norm of the
parameters can be derived to yield linear programs (LP) [31, 49]. Some advantages of this latter approach
can be noticed compared to the QP formulation such as an increased sparsity of support vectors or the
ability to use more general kernels [30]. The remaining of this chapter will thus focus on the LP formulation
of SVR (LP-SVR).

130 G. Bloch et al.

Nonlinear Mapping and Kernel Functions

A kernel model is an expansion of the inner products by the N training samples xi ∈ IRp mapped in a higher
dimensional feature space. Defining the kernel function k(x,xi) = Φ(x)T Φ(xi), where Φ(x) is the image of
the point x in that feature space, allows to write the model as a kernel expansion

f(x) =
N∑

i=1

αik(x,xi) + b = K(x,XT)α + b, (4)

where α = [α1 . . . αi . . . αN]T and b are the parameters of the model, the data (xi, yi), i = 1, . . . , N , are
stacked as rows in the matrix X ∈ IRN×p and the vector y, and K(x,XT) is a vector defined as follows. For
A ∈ Rp×m and B ∈ Rp×n containing p-dimensional sample vectors, the “kernel” K(A,B) maps Rp×m×Rp×n

in Rm×n with K(A,B)i,j = k(Ai,Bj), where Ai and Bj are the ith and jth columns of A and B. Typical
kernel functions are the linear (k(x,xi) = xT xi), Gaussian RBF (k(x,xi) = exp(−‖x − xi‖2

2/2σ2)) and
polynomial (k(x,xi) = (xT xi + 1)d) kernels. The kernel function defines the feature space F in which
the data are implicitly mapped. The higher the dimension of F , the higher the approximation capacity of
the function f , up to the universal approximation capacity obtained for an infinite feature space, as with
Gaussian RBF kernels.

Support Vector Regression by Linear Programming

In Linear Programming Support Vector Regression (LP-SVR), the model complexity, measured by the �1-
norm of the parameters α, is minimized together with the error on the data, measured by the ε-insensitive
loss function l, defined by [52] as

l(yi − f(xi)) =

{
0 if |yi − f(xi)| ≤ ε,

|yi − f(xi)| − ε otherwise.
(5)

Minimizing the complexity of the model allows to control its generalization capacity. In practice, this amounts
to penalizing non-smooth functions and implements the general smoothness assumption that two samples
close in input space tend to give the same output.

Following the approach of [31], two sets of optimization variables, in two positive slack vectors a and ξ,
are introduced to yield a linear program solvable by standard optimization routines such as the MATLAB
linprog function. In this scheme, the LP-SVR problem may be written as

min
(α,b,ξ≥0,a≥0)

1T a + C1T ξ

s.t. −ξ ≤ K(X,XT)α + b1− y ≤ ξ
0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a,

(6)

where a hyperparameter C is introduced to tune the trade-off between the minimization of the model com-
plexity and the minimization of the error. The last set of constraints ensures that 1T a, which is minimized,
bounds ‖α‖1. In practice, sparsity is obtained as a certain number of parameters αi will tend to zero. The
input vectors xi for which the corresponding αi are non-zero are called support vectors (SVs).

2.3 Link Between Support Vector Regression and RBFNs

For a Gaussian kernel, the kernel expansion (4) can be interpreted as a RBFN with N neurons in the hidden
layer centered at the training samples xi and with a unique width σk = [σ . . . σ]T , k = 1, . . . , N . Compared to
neural networks, SVR has the following advantages: automatic selection and sparsity of the model, intrinsic

On Learning Machines for Engine Control 131

regularization, no local minima (convex problem with a unique solution), and good generalization ability
from a limited amount of samples.

It seems though that least squares estimates of the parameters or standard RBFN training algorithms
are most of the time satisfactory, particularly when a sufficiently large number of samples corrupted by
Gaussian noise is available. Moreover, in this case, standard center selection algorithms may be faster and
yield a sparser model than SVR. However, in difficult cases, the good generalization capacity and the better
behavior with respect to outliers of SVR may help. Even if non-quadratic criteria have been proposed to
train [9] or prune neural networks [25, 51], the SVR loss function is intrinsically robust and thus allows
accommodation to non-Gaussian noise probability density functions. In practice, it is advised to employ
SVR in the following cases:

• Few data points are available.
• The noise is non-Gaussian.
• The training set is corrupted by outliers.

Finally, the computational framework of SVR allows for easier extensions such as the one described in this
chapter, namely, the inclusion of prior knowledge.

3 Engine Control Applications

3.1 Introduction

The application treated here, the control of the turbocharged Spark Ignition engine with Variable Camshaft
Timing, is representative of modern engine control problems. Indeed, such an engine presents for control
the common characteristics mentioned in Sect. 1.1 and comprises several air actuators and therefore several
degrees of freedom for airpath control.

More stringent standards are being imposed to reduce fuel consumption and pollutant emissions for
Spark Ignited (SI) engines. In this context, downsizing appears as a major way for reducing fuel consumption
while maintaining the advantage of low emission capability of three-way catalytic systems and combining
several well known technologies [28]. (Engine) downsizing is the use of a smaller capacity engine operating
at higher specific engine loads, i.e. at better efficiency points. In order to feed the engine, a well-adapted
turbocharger seems to be the best solution. Unfortunately, the turbocharger inertia involves long torque
transient responses [28]. This problem can be partially solved by combining turbocharging and Variable
Camshaft Timing (VCT) which allows air scavenging from the intake to the exhaust.

The air intake of a turbocharged SI Engine with VCT, represented in Fig. 3, can be described as follows.
The compressor (pressure pint) produces a flow from the ambient air (pressure pamb and temperature Tamb).
This air flow Qth is adjusted by the intake throttle (section Sth) and enters the intake manifold (pressure
pman and temperature Tman). The flow that goes into the cylinders Qcyl passes through the intake valves,
whose timing is controlled by the intake Variable Camshaft Timing V CTin actuator. After the combustion,
the gases are expelled into the exhaust manifold through the exhaust valve, controlled by the exhaust
Variable Camshaft Timing V CTexh actuator. The exhaust flow is split into turbine flow and wastegate flow.
The turbine flow powers up the turbine and drives the compressor through a shaft. Thus, the supercharged
pressure pint is adjusted by the turbine flow which is controlled by the wastegate WG.

The effects of Variable Camshaft Timing (VCT) can be summarized as follows. On the one hand, cam
timing can inhibit the production of nitrogen oxides (NOx). Indeed, by acting on the cam timing, combustion
products which would otherwise be expelled during the exhaust stroke are retained in the cylinder during the
subsequent intake stroke. This dilution of the mixture in the cylinder reduces the combustion temperature
and limits the NOx formation. Therefore, it is important to estimate and control the back-flow of burned
gases in the cylinder. On the other hand, with camshaft timing, air scavenging can appear, that is air passing
directly from the intake to the exhaust through the cylinder. For that, the intake manifold pressure must
be greater than the exhaust pressure when the exhaust and intake valves are opened together. In that case,
the engine torque dynamic behavior is improved, i.e. the settling times decreased. Indeed, the flow which

132 G. Bloch et al.

Fig. 3. Airpath of a turbocharged SI engine with VCT

passes through the turbine is increased and the corresponding energy is transmitted to the compressor. In
transient, it is also very important to estimate and control this scavenging for torque control.

For such an engine, the following presents the inclusion of neural models in various modeling and control
schemes in two parts: an air path control based on an in-cylinder air mass observer, and an in-cylinder
residual gas estimation. In the first example, the air mass observer will be necessary to correct the manifold
pressure set point. The second example deals with the estimation of residual has gases for a single cylinder
naturally-aspirated engine. In this type of engine, no scavenging appears, so that the estimation of burned
gases and air scavenging of the first example are simplified into a residual gas estimation.

3.2 Airpath Observer Based Control

Control Scheme

The objective of engine control is to supply the torque requested by the driver while minimizing the pollutant
emissions. For a SI engine, the torque is directly linked to the air mass trapped in the cylinder for a given
engine speed Ne and an efficient control of this air mass is then required. The air path control, i.e. throttle,
turbocharger and variable camshaft timing (VCT) control, can be divided in two main parts: the air mass
control by the throttle and the turbocharger and the control of the gas mix by the variable camshaft timing
(see [12] for further details on VCT control). The structure of the air mass control scheme, described in
Fig. 4, is now detailed block by block. The supervisor, that corresponds to a part of the Combustion layer

On Learning Machines for Engine Control 133

(Set point) Turbocharger
(Sensors)

WG(Set point)
(p)

Manifold
pressure

model

Control (Sensors)
-+

_air spm _man spp

thS

, ,man e intp N p

A
ir P

a

S
upervTor que

Set

Throttle
Control

(Sensors)

th

manp

ath

visor

Set
Point

im

(Sensors)
, , ,e in exh manN VCT VCT T

Air mass
observerˆ airm

_air spm
(Sensors)

, ,man ep N
VCT VCT, ,in exh

man

VCT VCT
T

Energy
Layer

Actuator
Layer

Combustion
Layer

Fig. 4. General control scheme

of Fig. 1, builds the in-cylinder air mass set point from the indicated torque set point, computed by the
Engine layer. The determination of manifold pressure set points is presented at the end of the section. The
general control structure uses an in-cylinder air mass observer discussed below that corrects the errors of
the manifold pressure model. The remaining blocks are not described in this chapter but an Internal Model
Control (IMC) of the throttle is proposed in [12] and a linearized neural Model Predictive Control (MPC)
of the turbocharger can be found in [11, 12]. The IMC scheme relies on a grey box model, which includes a
neural static estimator. The MPC scheme is based on a dynamical neural model of the turbocharger.

Observation Scheme

Here two nonlinear estimators of the air variables, the recirculated gas mass RGM and the in-cylinder air
mass mair, are presented. Because these variables are not measured, data provided by a complex but accurate
high frequency engine simulator [27] are used to build the corresponding models.

Because scavenging and burned gas back-flow correspond to associated flow phenomena, only one variable,
the Recirculated Gas Mass (RGM), is defined

RGM =
{

mbg, if mbg > msc

−msc, otherwise, (7)

where mbg is the in-cylinder burned gas mass and msc is the scavenged air mass. Note that, when scavenging
from the intake to the exhaust occurs, the burned gases are insignificant. The recirculated gas mass RGM
estimator is a neural model entirely obtained from the simulated data.

Considering in-cylinder air mass observation, a lot of references are available especially for air-fuel ratio
(AFR) control in a classical engine [21]. More recently, [50] uses an “input observer” to determine the engine
cylinder flow and [3] uses a Kalman filter to reconstruct the air mass for a turbocharged SI engine.

134 G. Bloch et al.

manpmanp

thQ +-
ˆmanp

manp
eN

ˆRGM

cylQ airmˆ
cylQ

ˆ
scQ

inVCT
cyl

exhVCT

aircyl

vol

manT
_air OLm

++man

_ˆ air cylm

Fig. 5. Air mass observer scheme

A novel observer for the in-cylinder air mass mair is presented below. Contrary to the references above, it
takes into account a non measured phenomenon (scavenging), and can thus be applied with advanced engine
technology (turbocharged VCT engine). Moreover, its on-line computational load is low. As presented in
Fig. 5, this observer combines open loop nonlinear neural based statical estimators of RGM and mair, and a
“closed loop” polytopic observer. The observer is built from the Linear Parameter Varying model of the intake
manifold and dynamically compensates for the residual error ∆Qcyl committed by one of the estimators,
based on a principle similar to the one presented in [2].

Open Loop Estimators

Recirculated Gas Mass Model

Studying the RGM variable (7) is complex because it cannot be measured on-line. Consequently, a static
model is built from data provided by the engine simulator. The perceptron with one hidden layer and a
linear output unit (2) is chosen with a hyperbolic tangent activation function g.

The choice of the regressors ϕj is based on physical considerations and the estimated Recirculated Gas
Mass R̂GM is given by

R̂GM = fnn(pman, Ne, V CTin, V CTexh), (8)

where pman is the intake manifold pressure, Ne the engine speed, V CTin the intake camshaft timing, and
V CTexh the exhaust camshaft timing.

Open Loop Air Mass Estimator

The open loop model mair OL of the in-cylinder air mass is based on the volumetric efficiency equation

mair OL = ηvol
pambVcyl

rTman
, (9)

where Tman is the manifold temperature, pamb the ambient pressure, Vcyl the displacement volume, r the
perfect gas constant, and where the volumetric efficiency ηvol is described by the static nonlinear function f
of four variables: pman, Ne, V CTin and V CTexh.

On Learning Machines for Engine Control 135

In [15], various black box models, such as polynomial, spline, MLP and RBFN models, are compared
for the static prediction of the volumetric efficiency. In [10], three models of the function f , obtained
from engine simulator data, are compared: a polynomial model linear in manifold pressure proposed by
Jankovic [23] f1(Ne, V CTin, V CTexh)pman + f2(Ne, V CTin, V CTexh), where f1 et f2 are fourth order poly-
nomials, complete with 69 parameters, then reduced by stepwise regression to 43 parameters; a standard
fourth order polynomial model f3(pman, Ne, V CTin, V CTexh), complete with 70 parameters then reduced to
58 parameters; and a MLP model with six hidden neurons (37 parameters)

ηvol = fnn(pman, Ne, V CTin, V CTexh). (10)

Training of the neural model has been performed by minimizing the mean squared error, using the Levenberg–
Marquardt algorithm. The behavior of these models is similar, and the most important errors are committed
at the same operating points. Nevertheless, the neural model, that involves the smallest number of parameters
and yields slightly better approximation results, is chosen as the static model of the volumetric efficiency.
These results illustrate the parsimony property of the neural models.

Air Mass Observer

Principle

The air mass observer is based on the flow balance in the intake manifold. As shown in Fig. 6, a flow Qth

enters the manifold and two flows leave it: the flow that is captured in the cylinder Qcyl and the flow
scavenged from the intake to the exhaust Qsc. The flow balance in the manifold can thus be written as

ṗman(t) =
rTman(t)

Vman
(Qth(t) − Qcyl(t) − ∆Qcyl(t) − Qsc(t)), (11)

where, for the intake manifold, pman is the pressure to be estimated (in Pa), Tman is the temperature (K),
Vman is the volume (m3), supposed to be constant and r is the ideal gas constant. In (11), Qth can be
measured by an air flow meter (kg s−1). On the other hand, Qsc (kg s−1) and Qcyl (kg s−1) are respectively
estimated by differentiating the Recirculated Gas Mass R̂GM (8)

Q̂sc = min(−R̂GM, 0)/ttdc, (12)

where ttdc = 2× 60
Ne ncyl

is the variable sampling period between two intake top dead center (TDC), and by

Q̂cyl(t) = ηvol(t)
pamb(t) Vcyl Ne(t) ncyl

rTman(t)2 × 60
, (13)

Fig. 6. Intake manifold and cylinder. From the intake manifold, the throttle air flow Qth is divided into in-cylinder
air flow Qcyl and air scavenged flow Qsc

136 G. Bloch et al.

where ηvol is given by the neural model (10), pamb (Pa) is the ambient pressure, Vcyl (m3) is the displacement
volume, Ne (rpm) is the engine speed and ncyl is the number of cylinders. The remaining term in (11), ∆Qcyl,
is the error made by the model (13).

Considering slow variations of ∆Qcyl, i.e. ∆̇Qcyl(t)= 0, and after discretization at each top dead center
(TDC), thus with a variable sampling period ttdc(k)= 2× 60

Ne(k) ncyl
, the corresponding state space representation

can be written as {
xk+1 = A xk + B uk

yk = C xk,
(14)

where

xk =
[

pman(k)
∆Qcyl(k)

]
, uk =

⎡
⎣Qth(k)

Qcyl(k)
Qsc(k)

⎤
⎦ , yk = pman(k), (15)

and, defining ρ(k) = − r Tman(k)
Vman

ttdc(k), where

A =
[
1 ρ(k)
0 1

]
, B =

[−ρ(k) ρ(k) ρ(k)
0 0 0

]
. (16)

Note that this system is Linear Parameter Varying (LPV), because the matrices A and B depend linearly on
the (measured) parameter ρ(k), which depends on the manifold temperature Tman(k) and the engine speed
Ne(k).

The state reconstruction for system (14) can be achieved by resorting to the so-called polytopic observer
of the form {

x̂k+1 = A(ρk)x̂k + B(ρk)uk + K(yk − ŷk)
ŷk = Cx̂k,

(17)

with a constant gain K.
This gain is obtained by solving a Linear Matrix Inequality (LMI). This LMI ensures the convergence

towards zero of the reconstruction error for the whole operating domain of the system based on its polytopic
decomposition. This ensures the global convergence of the observer. See [34, 35] and [14] for further details.

Then, the state ∆Qcyl is integrated (i.e. multiplied by ttdc) to give the air mass bias

∆mair = ∆Qcyl × ttdc. (18)

Finally, the in-cylinder air mass can be estimated by correcting the open loop estimator (9) with this bias as

m̂air cyl = mair OL + ∆mair . (19)

Results

Some experimental results, normalized between 0 and 1, obtained on a 1.8-Liter turbocharged four cylinder
engine with Variable Camshaft Timing are given in Fig. 7. A measurement of the in-cylinder air mass, only
valid in steady state, can be obtained from the measurement of Qth by an air flow meter. Indeed, in steady
state with no scavenging, the air flow that gets into the cylinder Qcyl is equal to the flow that passes through
the throttle Qth (see Fig. 6). In consequence, this air mass measurement is obtained by integrating Qth

(i.e. multiplying by ttdc). Figure 7 compares this measurement, the open loop neural estimator ((9) with a
neural model (10)), an estimation not based on this neural model (observer (17) based on model (11) but
with Qcyl = Qsc = 0), the proposed estimation ((19) combining the open loop neural estimator (9) and the
polytopic observer (17) based on model (11) with Qcyl given by (13) using the neural model (10) and Qsc

given by (12) using (8)).
For steps of air flow, the open loop neural estimator tracks very quickly the measurement changes, but a

small steady state error can be observed (see for example between 32 s and 34 s). Conversely, the closed loop

On Learning Machines for Engine Control 137

28 30 32 34 36 38 40 42
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

Normalised air mass

Measurement
Observer without neural model
Open Loop neural model
Neural based observer

Fig. 7. Air mass observer results (mg) vs. time (s) on an engine test bench

observer which does not take into account this feedforward estimator involves a long transient error while
guarantying the convergence in steady state. Finally, the proposed estimator, including feedforward statical
estimators and a polytopic observer, combines both the advantages: very fast tracking and no steady state
error. This observer can be used to design and improve the engine supervisor of Fig. 5 by determining the
air mass set points.

Computing the Manifold Pressure Set Points

To obtain the desired torque of a SI engine, the air mass trapped in the cylinder must be precisely controlled.
The corresponding measurable variable is the manifold pressure. Without Variable Camshaft Timing (VCT),
this variable is linearly related to the trapped air mass, whereas with VCT, there is no more one-to-one
correspondence. Figure 8 shows the relationship between the trapped air mass and the intake manifold
pressure at three particular VCT positions for a fixed engine speed.

Thus, it is necessary to model the intake manifold pressure pman. The chosen static model is a perceptron
with one hidden layer (2). The regressors have been chosen from physical considerations: air mass mair

(corrected by the intake manifold temperature Tman), engine speed Ne, intake V CTin and exhaust V CTexh

camshaft timing. The intake manifold pressure model is thus given by

pman = fnn (mair, Ne, V CTin, V CTexh) . (20)

Training of the neural model from engine simulator data has been performed by minimizing the mean squared
error, using the Levenberg–Marquardt algorithm.

The supervisor gives an air mass set point mair sp from the torque set point (Fig. 4). The intake manifold
pressure set point, computed by model (20), is corrected by the error ∆mair (18) to yield the final set point
pman sp as

pman sp = fnn (mair sp − ∆mair sp, Ne, V CTin, V CTexh) . (21)

138 G. Bloch et al.

Fig. 8. Relationship between the manifold pressure (in bar) and the air mass trapped (in mg) for a SI engine with
VCT at 2,000 rpm

Fig. 9. Effect of the variation of VCTs on air mass with the proposed control scheme (left) and without taking into
account the variation of VCTs in the control scheme (right)

Engine Test Bench Results

The right part of Fig. 9 shows an example of results for air mass control, in which the VCT variations are
not taken into account. Considerable air mass variations (nearly ±25% of the set point) can be observed.
On the contrary, the left part shows the corresponding results for the proposed air mass control. The air
mass is almost constant (nearly ±2% of variation), illustrating that the manifold pressure set point is well
computed with (21). This allows to reduce the pollutant emissions without degrading the torque set point
tracking.

3.3 Estimation of In-Cylinder Residual Gas Fraction

The application deals with the estimation of residual gases in the cylinders of Spark Ignition (SI) engines
with Variable Camshaft Timing (VCT) by Support Vector Regression (SVR) [8]. More precisely, we are

On Learning Machines for Engine Control 139

interested in estimating the residual gas mass fraction by incorporating prior knowledge in the SVR learning
with the general method proposed in [26]. Knowing this fraction allows to control torque as well as pollutant
emissions. The residual gas mass fraction χres can be expressed as a function of the engine speed Ne, the ratio
pman/pexh, where pman and pexh are respectively the (intake) manifold pressure and the exhaust pressure,
and an overlapping factor OF (in ◦/m) [17], related to the time during which the valves are open together.

The available data are provided, on one hand, from the modeling and simulation environment
Amesim [22], which uses a high frequency zero-dimensional thermodynamic model and, on the other hand,
from off line measurements, which are accurate, but complex and costly to obtain, by direct in-cylinder sam-
pling [19]. The problem is this. How to obtain a simple, embeddable, black box model with a good accuracy
and a large validity range for the real engine, from precise real measurements as less numerous as possible
and a representative, but possibly biased, prior simulation model? The problem thus posed, although partic-
ular, is very representative of numerous situations met in engine control, and more generally in engineering,
where complex models, more or less accurate, exist and where the experimental data which can be used for
calibration are difficult or expensive to obtain.

The simulator being biased but approximating rather well the overall shape of the function, the prior
knowledge will be incorporated in the derivatives. Prior knowledge of the derivatives of a SVR model can
be enforced in the training by noticing that the kernel expansion (4) is linear in the parameters α, which
allows to write the derivative of the model output with respect to the scalar input xj as

∂f(x)
∂xj

=
N∑

i=1

αi
∂k(x,xi)

∂xj
= rj(x)T α, (22)

where rj(x) = [∂k(x,x1)/∂xj . . . ∂k(x,xi)/∂xj . . . ∂k(x,xN)/∂xj]T is of dimension N . The derivative (22)
is linear in α. In fact, the form of the kernel expansion implies that the derivatives of any order with respect
to any component are linear in α. Prior knowledge of the derivatives can thus be formulated as linear
constraints.

The proposed model is trained by a variant of algorithm (6) with additional constraints on the derivatives
at the points x̃p of the simulation set. In the case where the training data do not cover the whole input
space, extrapolation occurs, which can become a problem when using local kernels such as the RBF kernel.
To avoid this problem, the simulation data x̃p, p = 1, . . . , Npr, are introduced as potential support vectors
(SVs). The resulting global model is now

f(x) = K(x, [XT X̃
T
])α + b, (23)

where α ∈ IRN+Npr

and [XT X̃
T
] is the concatenation of the matrices XT = [x1 . . .xi . . .xN], containing

the real data, and X̃
T

= [x̃1 . . . x̃p . . . x̃Npr], containing the simulation data. Defining the Npr × (N + Npr)-

dimensional matrix R(X̃
T
, [XT X̃

T
]) = [r1(x̃1) . . . r1(x̃p) . . . r1(x̃Npr)]T , where r1(x) corresponds to the

derivative of (23) with respect to the input x1 = pman/pexh, the proposed model is obtained by solving

min
(α,b,ξ,a,z)

1
N + Npr

1T a +
C

N
1T ξ +

λ

Npr
1T z

s.t. −ξ ≤ K(XT , [XT X̃
T
])α + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ
−a ≤ α ≤ a

−z ≤ R(X̃
T
, [XT X̃

T
])α − y′ ≤ z,

(24)

where y′ contains the Npr known values of the derivative with respect to the input pman/pexh, at the points x̃p

of the simulation set. In order to be able to evaluate these values, a prior model, f̃(x) =
∑Npr

p=1 α̃pk(x, x̃p)+ b̃,
is first trained on the Npr simulation data (x̃p, ỹp), p = 1, . . . , Npr, only. This prior model is then used to
provide the prior derivatives y′ = [∂f̃(x̃1)/∂x̃1 . . . ∂f̃(x̃p)/∂x̃1 . . . ∂f̃(x̃Npr)/∂x̃1]T .

140 G. Bloch et al.

Note that the knowledge of the derivatives is included by soft constraints, thus allowing to tune the trade-
off between the data and the prior knowledge. The weighting hyperparameters are set to C/N and λ/Npr

in order to maintain the same order of magnitude between the regularization, error and prior knowledge
terms in the objective function. This allows to ease the choice of C and λ based on the application goals and
confidence in the prior knowledge. Hence, the hyperparameters become problem independent.

The method is now evaluated on the in-cylinder residual gas fraction application. In this experiment,
three data sets are built from the available data composed of 26 experimental samples plus 26 simulation
samples:

• The training set (X,y) composed of a limited amount of real data (N samples)
• The test set composed of independent real data (26 − N samples)
• The simulation set (X̃, ỹ) composed of data provided by the simulator (Npr = 26 samples)

The test samples are assumed to be unknown during the training and are retained for testing only. It must
be noted that the inputs of the simulation data do not exactly coincide with the inputs of the experimental
data as shown in Fig. 10 for N = 3.

0.4 0.6 0.8 1
0

10

20

30

0.4 0.6 0.8 1
0

10

20

30

0.4 0.6 0.8 1
0

10

20

30

0.4 0.6 0.8 1
0

10

20

30

0.4 0.6 0.8 1
0

10

20

30

0.4 0.6 0.8 1
0

10

20

30

Ne = 1000 rpm
OF = 0◦CA/m

OF = 0.41◦CA/m

OF = 1.16◦CA/m

Ne = 2000 rpm
OF = 0.58◦CA/m

OF = 1.16◦CA/m

OF = 2.83◦CA/m

Fig. 10. Residual gas mass fraction χres in percentages as a function of the ratio pman/pexh for two engine speeds Ne

and different overlapping factors OF . The 26 experimental data are represented by plus signs (+) with a superposed
circle (⊕) for the three points retained as training samples. The 26 simulation data appear as asterisks (∗)

On Learning Machines for Engine Control 141

Table 1. Errors on the residual gas mass fraction with the number of real and simulation data used for training

Model # of real
data N

of simulation
data Npr

RMSE
test

RMSE MAE

Experimental model 6 6.84 6.00 15.83
Prior model 26 4.86 4.93 9.74
Mixed model 6 26 4.85 4.88 9.75
Proposed model 6 26 2.44 2.15 5.94

Experimental model 3 – – –
Prior model 26 4.93 4.93 9.74
Mixed model 3 26 4.89 4.86 9.75
Proposed model 3 26 2.97 2.79 5.78

‘–’ appears when the result is irrelevant (model mostly constant)

The comparison is performed between four models:

• The experimental model trained by (6) on the real data set (X,y) only
• The prior model trained by (6) on the simulation data (X̃, ỹ) only
• The mixed model trained by (6) on the real data set simply extended with the simulation data

([XT X̃
T
]T , [yT ỹT]T) (the training of this model is close in spirit to the virtual sample approach,

where extra data are added to the training set)
• The proposed model trained by (24) and using both the real data (X,y) and the simulation data (X̃, ỹ)

These models are evaluated on the basis of three indicators: the root mean square error (RMSE) on the
test set (RMSE test), the RMSE on all experimental data (RMSE) and the maximum absolute error on all
experimental data (MAE).

Before training, the variables are normalized with respect to their mean and standard deviation. The
different hyperparameters are set according to the following heuristics. One goal of the application is to
obtain a model that is accurate on both the training and test samples (the training points are part of the
performance index RMSE). Thus C is set to a large value (C = 100) in order to ensure a good approximation
of the training points. Accordingly, ε is set to 0.001 in order to approximate the real data well. The trade-off
parameter λ of the proposed method is set to 100, which gives as much weight to both the training data and
the prior knowledge. Since all standard deviations of the inputs are equal to 1 after normalization, the RBF
kernel width σ is set to 1.

Two sets of experiments are performed for very low numbers of training samples N = 6 and N = 3. The
results in Table 1 show that both the experimental and the mixed models cannot yield a better approximation
than the prior model with so few training data. Moreover, for N = 3, the experimental model yields a quasi-
constant function due to the fact that the model has not enough free parameters (only three plus a bias term)
and thus cannot model the data. In this case, the RMSE is irrelevant. On the contrary, the proposed model
does not suffer from a lack of basis functions, thanks to the inclusion of the simulation data as potential
support vectors. This model yields good results from very few training samples. Moreover, the performance
decreases only slightly when reducing the training set size from 6 to 3. Thus, the proposed method seems to
be a promising alternative to obtain a simple black box model with a good accuracy from a limited number
of experimental data and a prior simulation model.

4 Conclusion

The chapter exposed learning machines for engine control applications. The two neural models most used in
modeling for control, the MultiLayer Perceptron and the Radial Basis Function network, have been described,
along with a more recent approach, known as Support Vector Regression. The use of such black box models
has been placed in the design cycle of engine control, where the modeling steps constitute the bottleneck of the

142 G. Bloch et al.

whole process. Application examples have been presented for a modern engine, a turbocharged Spark Ignition
engine with Variable Camshaft Timing. In the first example, the airpath control was studied, where open
loop neural estimators are combined with a dynamical polytopic observer. The second example considered
modeling a variable which is not measurable on-line, from a limited amount of experimental data and a
simulator built from prior knowledge.

The neural black box approach for modeling and control allows to develop generic, application indepen-
dent, solutions. The price to pay is the loss of the physical interpretability of the resulting models. Moreover,
the fully black box (e.g. neural) model based control solutions have still to practically prove their efficiency
in terms of robustness or stability. On the other hand, models based on first principles (white box models)
are completely meaningful and many control approaches with good properties have been proposed, which are
well understood and accepted in the engine control community. However, these models are often inadequate,
too complex or too difficult to parametrize, as real time control models. Therefore, intermediate solutions,
involving grey box models, seem to be preferable for engine modeling, control and, at a higher level, optimiza-
tion. In this framework, two approaches can be considered. First, besides first principles models, black box
neural sub-models are chosen for variables difficult to model (e.g. volumetric efficiency, pollutant emissions).
Secondly, black box models can be enhanced thanks to physical knowledge. The examples presented in this
chapter showed how to implement these grey box approaches in order to obtain efficient and acceptable
results.

References

1. C. Alippi, C. De Russis, and V. Piuri. A neural-network based control solution to air fuel ratio for automotive
fuel injection system. IEEE Transactions on Systems, Man, and Cybernetics – Part C, 33(2):259–268, 2003.

2. P. Andersson. Intake Air Dynamics on a Turbocharged SI Engine with Wastegate. PhD thesis, Linköping
University, Sweden, 2002.

3. P. Andersson and L. Eriksson. Mean-value observer for a turbocharged SI engine. In Proc. of the IFAC Symp.
on Advances in Automotive Control, Salerno, Italy, pages 146–151, April 2004.

4. I. Arsie, C. Pianese, and M. Sorrentino. A procedure to enhance identification of recurrent neural networks for
simulating air-fuel ratio dynamics in SI engines. Engineering Applications of Artificial Intelligence, 19(1):65–77,
2006.

5. I. Arsie, C. Pianese, and M. Sorrentino. Recurrent neural networks for AFR estimation and control in spark
ignition automotive engines. Chapter 9 in this volume.

6. A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on
Information Theory, 39(3):930–945, 1993.

7. G. Bloch and T. Denoeux. Neural networks for process control and optimization: two industrial applications. ISA
Transactions, 42(1):39–51, 2003.

8. G. Bloch, F. Lauer, G. Colin, and Y. Chamaillard. Combining experimental data and physical simulation models
in support vector learning. In L. Iliadis and K. Margaritis, editors, Proc. of the 10th Int. Conf. on Engineering
Applications of Neural Networks (EANN), Thessaloniki, Greece, volume 284 of CEUR Workshop Proceedings,
pages 284–295, 2007.

9. G. Bloch, F. Sirou, V. Eustache, and P. Fatrez. Neural intelligent control of a steel plant. IEEE Transactions on
Neural Networks, 8(4):910–918, 1997.

10. G. Colin. Contrôle des systèmes rapides non linéaires – Application au moteur à allumage commandé turbo-
compressé à distribution variable. PhD thesis, University of Orléans, France, 2006.

11. G. Colin, Y. Chamaillard, G. Bloch, and A. Charlet. Exact and linearised neural predictive control - a tur-
bocharged SI engine example. Journal of Dynamic Systems, Measurement and Control - Transactions of the
ASME, 129(4):527–533, 2007.

12. G. Colin, Y. Chamaillard, G. Bloch, and G. Corde. Neural control of fast nonlinear systems - Application to a
turbocharged SI engine with VCT. IEEE Transactions on Neural Networks, 18(4):1101–1114, 2007.

13. G. Corde. Le contrôle moteur. In G. Gissinger and N. Le Fort Piat, editors, Contrôle commande de la voiture.
Hermès, Paris, 2002.

14. J. Daafouz and J. Bernussou. Parameter dependent Lyapunov functions for discrete time systems with time
varying parametric uncertainties. Systems & Control Letters, 43(5):355–359, August 2001.

On Learning Machines for Engine Control 143

15. G. De Nicolao, R. Scattolini, and C. Siviero. Modelling the volumetric efficiency of IC engines: parametric,
non-parametric and neural techniques. Control Engineering Practice, 4(10):1405–1415, 1996.

16. P. M. L. Drezet and R. F. Harrison. Support vector machines for system identification. In Proc. of the UKACC
Int. Conf. on Control, Swansea, UK, volume 1, pages 688–692, 1998.

17. J. W. Fox, W. K. Cheng, and J. B. Heywood. A model for predicting residual gas fraction in spark-ignition
engines. SAE Technical Papers, (931025), 1993.

18. J. Gerhardt, H. Hönniger, and H. Bischof. A new approach to functionnal and software structure for engine
management systems - BOSCH ME7. SAE Technical Papers, (980801), 1998.

19. P. Giansetti, G. Colin, P. Higelin, and Y. Chamaillard. Residual gas fraction measurement and computation.
International Journal of Engine Research, 8(4):347–364, 2007.

20. L. Guzzella and C. H. Onder. Introduction to Modeling and Control of Internal Combustion Engine Systems.
Springer, Berlin Heidelberg New York, 2004.

21. E. Hendricks and J. Luther. Model and observer based control of internal combustion engines. In Proc. of the 1st
Int. Workshop on Modeling Emissions and Control in Automotive Engines (MECA), Salerno, Italy, pages 9–20,
2001.

22. Imagine. Amesim web site. www.amesim.com, 2006.
23. M. Jankovic and S. W. Magner. Variable Cam Timing : Consequences to automotive engine control design. In

Proc. of the 15th Triennial IFAC World Congress, Barcelona, Spain, pages 271–276, 2002.
24. I. Kolmanovsky. Support vector machine-based determination of gasoline direct-injected engine admissible

operating envelope. SAE Technical Papers, (2002-01-1301), 2002.
25. M. Lairi and G. Bloch. A neural network with minimal structure for maglev system modeling and control. In

Proc. of the IEEE Int. Symp. on Intelligent Control/Intelligent Systems & Semiotics, Cambridge, MA, USA,
pages 40–45, 1999.

26. F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regression. Machine Learning, 70(1):89–
118, January 2008.

27. F. Le Berr, M. Miche, G. Colin, G. Le Solliec, and F. Lafossas. Modelling of a turbocharged SI engine with
variable camshaft timing for engine control purposes. SAE Technical Paper, (2006-01-3264), 2006.

28. B. Lecointe and G. Monnier. Downsizing a gasoline engine using turbocharging with direct injection. SAE
Technical Paper, (2003-01-0542), 2003.

29. L. Ljung. System Identification: Theory for the User, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, 1999.
30. O. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,

editors, Advances in Large Margin Classifiers, pages 135–146. MIT, Cambridge, MA, 2000.
31. O. L. Mangasarian and D. R. Musicant. Large scale kernel regression via linear programming. Machine Learning,

46(1–3):255–269, 2002.
32. K. A. Marko. Neural network application to diagnostics and control of vehicle control systems. In R. Lippmann,

J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages
537–543. Morgan Kaufmann, San Mateo, CA, 1991.

33. D. Mattera and S. Haykin. Support vector machines for dynamic reconstruction of a chaotic system. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning,
pages 211–241. MIT, Cambridge, MA, 1999.

34. G. Millérioux, F. Anstett, and G. Bloch. Considering the attractor structure of chaotic maps for observer-based
synchronization problems. Mathematics and Computers in Simulation, 68(1):67–85, February 2005.

35. G. Millérioux, L. Rosier, G. Bloch, and J. Daafouz. Bounded state reconstruction error for LPV systems with
estimated parameters. IEEE Transactions on Automatic Control, 49(8):1385–1389, August 2004.

36. O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models.
Springer, Berlin Heidelberg New York, 2001.

37. M. J. L. Orr. Recent advances in radial basis function networks. Technical report, Edinburgh University, UK,
1999.

38. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of IEEE, 78(10):1481–1497, 1990.
39. D. V. Prokhorov. Neural networks in automotive applications. Chapter 7 in this volume.
40. G. V. Puskorius and L. A. Feldkamp. Parameter-based Kalman filter training: theory and implementation. In

S. Haykin, editor, Kalman Filtering and Neural Networks, chapter 2, pages 23–67. Wiley, New York, 2001.
41. A. Rakotomamonjy, R. Le Riche, D. Gualandris, and Z. Harchaoui. A comparison of statistical learning approaches

for engine torque estimation. Control Engineering Practice, 16(1):43–55, 2008.
42. R. Reed. Pruning algorithms – a survey. IEEE Transactions on Neural Networks, 4:740–747, 1993.

144 G. Bloch et al.

43. M. Rychetsky, S. Ortmann, and M. Glesner. Support vector approaches for engine knock detection. In Proc. of
the Int. Joint Conf. on Neural Networks (IJCNN), Washington, DC, USA, volume 2, pages 969–974, 1999.

44. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond. MIT, Cambridge, MA, 2001.

45. P. J. Shayler, M. S. Goodman, and T. Ma. The exploitation of neural networks in automotive engine management
systems. Engineering Applications of Artificial Intelligence, 13(2):147–157, 2000.

46. J. Sjöberg and L. S. H. Ngia. Neural nets and related model structures for nonlinear system identification. In
J. A. K. Suykens and J. Vandewalle, editors, Nonlinear Modeling, Advanced Black-Box Techniques, chapter 1,
pages 1–28. Kluwer Academic Publishers, Boston, 1998.

47. J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Y. Glorennec, H. Hjalmarsson, and A. Juditsky.
Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31(12):1691–1724, 1995.

48. A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):199–222,
2004.

49. A. J. Smola, B. Schölkopf, and G. Rätsch. Linear programs for automatic accuracy control in regression. In Proc.
of the 9th Int. Conf. on Artificial Neural Networks, Edinburgh, UK, volume 2, pages 575–580, 1999.

50. A. Stotsky and I. Kolmanovsky. Application of input estimation techniques to charge estimation and control in
automotive engines. Control Engineering Practice, 10:1371–1383, 2002.

51. P. Thomas and G. Bloch. Robust pruning for multilayer perceptrons. In P. Borne, M. Ksouri, and A. El Kamel,
editors, Proc. of the IMACS/IEEE Multiconf. on Computational Engineering in Systems Applications, Nabeul-
Hammamet, Tunisia, volume 4, pages 17–22, 1998.

52. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, Berlin Heidelberg New York, 1995.
53. C.-M. Vong, P.-K. Wong, and Y.-P. Li. Prediction of automotive engine power and torque using least squares

support vector machines and Bayesian inference. Engineering Applications of Artificial Intelligence, 19(3):277–
287, 2006.

54. L. Zhang and Y. Xi. Nonlinear system identification based on an improved support vector regression estimator.
In Proc. of the Int. Symp. on Neural Networks, Dalian, China, volume 3173 of LNCS, pages 586–591. Springer,
Berlin Heidelberg New York, 2004.

Recurrent Neural Networks for AFR Estimation
and Control in Spark Ignition Automotive Engines

Ivan Arsie, Cesare Pianese, and Marco Sorrentino

Department of Mechanical Engineering, University of Salerno, Fisciano 84084, Italy, {iarsie,pianese,
msorrentino}@unisa.it

1 Introduction

Since 80s continuous government constraints have pushed car manufacturers towards the study of innovative
technologies aimed at reducing automotive exhaust emissions and increasing engine fuel economy. As a result
of this stringent legislation, the automotive engine technology has experienced continuous improvements in
many areas. In the field of Engine Control Systems (ECS) innovative procedures have been proposed and
major efforts have been devoted to the study of transient phenomena related to operation and design of
engine control strategies. Particular attention has been given to the control of mixture strength excursions,
which is a critical task to assure satisfactory efficiency of three-way catalytic converters and thus to meet
exhaust emissions regulations. This goal has to be reached in both steady state and transient conditions by
estimating the air flow rate at the injector location and delivering the fuel in the right amount and with the
appropriate time dependence. Furthermore, the ECS designers have to face with the On Board Diagnostics
(OBD) requirements that were introduced in 1996 in California and later in Europe and represent one of
the most challenging targets in the field of Automotive Control. OBD requires a continuous monitoring of
all powertrain components in order to prevent those faults that could result in a strong increase of exhaust
emissions.

Advanced research on both engine control and fault diagnosis mainly relies on model-based techniques
that are founded on a mathematical description of the processes to be controlled or monitored. Thus, appro-
priate identification methodologies have also to be designed to adapt control and diagnostics schemes to
different engines and make them robust with respect to aging effects and vehicle-to-vehicle variability.

In the framework of engine control, the fuel metering is performed through the direct measurement by
air flow meters or via model-based control techniques. The former approach is intrinsically more expensive
and exhibits some limitations due to difficult sensor placement with respect to engine lay-out and transient
accuracy. In case of model-based control a key role is played by the Mean Value Engine Models (MVEMs)
since they allow describing the main dynamic processes (i.e. air filling and emptying in the intake manifold
and fuel film evaporation) as function of the mean values of the most significant engine variables. This
approach, originally proposed by Aquino [2] and Hendricks and Sorenson [20], is suitable for the on-line air–
fuel ratio (AFR) control operation since it is based on a mean value scale and allows observing the dynamic
processes with a good level of accuracy and a limited computational demand.

Despite their intrinsic accuracy, these models have some limitations due to the approximation made
during the design and the parameters identification. Some physical effects are not directly described (e.g.
EGR, manifold heat transfer) and “hand-tuned” correction factor maps are usually needed. Furthermore, the
non-linear dependence of model parameters (i.e. time constant of fuel evaporation, fuel fraction impinging on
the walls) with the engine operation is often accounted for by means of static maps as function of engine speed
and load. Moreover, this approach could be time consuming due to the need of an extended experimental
data set and it does not guarantee the estimation of the appropriate parameters throughout engine lifetime.
In order to overcome these problems, adaptive methodologies have been proposed to estimate the states and

I. Arsie et al.: Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines, Studies in

Computational Intelligence (SCI) 132, 145–168 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

146 I. Arsie et al.

tune the parameters making use of real-time measurements (e.g. Kalman filters) [4, 42, 49] or robust control
methodologies (e.g. H-infinity control) [50].

Concerning engine fault detection and diagnosis, the model-based approach is still the most widely
adopted. It relies on the analytical redundancy analysis performed by processing on-board measurements
and model estimates of states and parameters [11, 25].

A promising solution for approaching these problems is given by Neural Networks (NN) based black-box
models, which have good mapping capabilities and generalization even with a reduced set of identification
data [17, 38, 41]. Some examples of Neural Network models for automotive application have been proposed
in the literature for engine control [32, 44], diagnostics [9, 40], pattern recognition [19, 45] and in papers on
sensor data fusion [30, 33], with satisfactory robustness even in presence of noisy data.

Moreover, NN have been proven to be useful for modeling nonlinear dynamic systems introducing feedback
connections in a recursive computational structure (Recurrent Neural Networks – RNN). Among the others,
of particular interests are the contributions of Dovifaaz et al. [12], Tan and Saif [47], Alippi et al. [1]. It is
worth to remark that the parameters (i.e. network weights) of both static and dynamic Neural Networks
can be found by means of batch or adaptive identification (i.e. training). In the former case the weights are
kept constant throughout system lifetime, while in the latter they are continuously tuned and adapted to
the variations of the controlled or simulated system.

The chapter is structured as follows: a general description of the physical process is first presented
along with current AFR control state of the art; then the potential of RNN to improve both feedback
and feedforward control tasks is discussed. Finally, after reviewing the main RNN features together with
their related control algorithms, practical development and implementation of RNN for AFR simulation and
control in SI engines are presented and commented.

2 Manifold Fuel Film Dynamics

This section is devoted to a general overview of the fuel film dynamics in a Spark Ignition (SI) automotive
engine. For both single and multi-point spark ignition engines, a two phases fuel flow occurs in the intake
manifold, with a thin film of fuel on the manifold walls and droplets transported by the main stream of air
and fuel [2, 21]; a representation of the air–fuel mixture preparation is shown in Fig. 1.

In order to clarify the physical process, the intake manifold fuel dynamics is described by means of a Mean
Value Model (MVM) (i.e. “gray box” modeling approach), which considers the fuel path from the injection
location to the engine port, accounting for the fuel puddle on the manifold walls and its later evaporation
[2, 20]. It is assumed that (1) at any instant uniform conditions exist throughout the intake manifold; (2) a

air

intake
fuel injector

fuel jet

fuel vapor

liquid fuel

Couette flow

air-fuel mixture

Fig. 1. Schematic representation of the air–fuel mixture preparation in the intake manifold

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 147

fraction X of the injected fuel is deposited on the wall as liquid film; (3) the evaporation rate, proportional
to the mass of fuel film, is modeled considering a first order process with time constant τ . The fuel flow
entering the combustion chamber ṁf,e is obtained by considering both the vapor flow rate ṁv,e and the
liquid flow rate ṁl,e (Couette flow). Thus, the mass balance for liquid (ml) and vapor (mv) can be expressed
by the following system of ODEs [4]:

ṁl = Xṁf,i − ml

τ
− ṁl,e (1)

ṁv = (1 − X)ṁf,i +
ml

τ
− ṁa,e

(
mv

ma

)
(2)

and the fuel flow entering the combustion chamber is

ṁf,e = ṁv,e + ṁl,e =
(

mv

ma

)
ṁa,e + ṁl,e. (3)

The first term on the right side of (3) represents the vapor flow rate that is function of the fuel mass in
the vapor phase and of a characteristic manifold time constant τm, given as the ratio between the mass of
air in the intake manifold and the air flow rate at the intake port

τm =
ma

ṁa,e
=

1
ṁa,e

pm

R

Vm

Tm
, (4)

where R is the gas constant, Vm is the intake manifold volume, pm and Tm are the mean pressure and
temperature in the intake manifold, respectively.

The mass flow rate of liquid fuel through the intake port is considered proportional to the amount of fuel
film on the manifold walls by means of the constant Lf , while the process is assumed to be governed by the
air mass flow, considering that the liquid fuel is dragged by the air flow [35]

ṁl,e = Lfṁa,eml =
ml

τL,f
. (5)

From this relationship the term Lfṁa,e corresponds to the inverse of a time delay constant τL,f . Apart
from physical flow parameters (i.e. viscosity and density of air and fuel), Matthews et al. [35] account for
a quadratic dependence of the liquid fuel flow with respect to the mass of fuel film, an inverse quadratic
dependence on manifold pressure and a direct dependence with air flow rate to the power 1.75.

By following the relationship (3), the mixture strength of the flow entering the cylinders is given by

AFR =
ṁa,e

ṁf,e
. (6)

The described phenomenology has been derived from general physical analysis and can be followed to
model any arrangement: continuous or pulsed, throttle-body or port fuel injection systems. However, these
systems are characterized by different manifold geometry and model parameters (i.e. τ and X), whose
identification is one of the most critical tasks in the framework of fuel film modeling.

In the most popular approach, the model parameters identification is accomplished by fitting the simu-
lated AFR with the measured signal detected by the exhaust oxygen sensor when the injected fuel signal is
excited. In previous studies, the authors themselves proposed a classical least square minimization algorithm
to estimate the parameters τ and X for different engine operations. The results have been used to build-up
steady state maps of τ and X versus engine state variables (i.e. manifold pressure and speed) in order to
perform continuous engine transient simulations.

Further studies have been devoted to design an adaptive wall wetting observer based on an extended
Kalman filter (EKF) in order to offset the effects of engine age, wear, environmental condition and, referring to
practical engine application, also the problems related to engine components differences due to manufacturing

148 I. Arsie et al.

tolerances [4]. In these applications, the EKF estimates the fuel flowing to the combustion chamber making
use of both the feed-forward model estimation plus an innovation term given by the feedback from the direct
measurement on the system.

In both off-line (i.e. Least Square technique) and on-line (i.e. Kalman filtering) applications, the procedure
must be compensated for the pure time delay due to engine cycle and gas transport from the engine port to
the UEGO sensor location. Moreover, it must account for the dynamic effects due to the gas mixing processes
and the UEGO sensor response [39]. It is worth noting that in case of off-line identification these effects can
be compensated by preprocessing input (injected fuel) and output (AFR) signals; while they cannot be taken
into account in case of on-line identification, thus affecting the accuracy of the parameters estimation.

3 AFR Control

Figure 2 gives a simplified schematic of the actual fuel control strategies implemented in commercial Engine
Control Unit (ECU) to limit mixture strength excursions. The base injection pulse is computed as function
of desired AFR, engine speed, manifold pressure, throttle opening and a number of factors to account for
changes in ambient conditions, battery voltage and engine thermal state. During transient operation, in order
to compensate for the different dynamic response of air and fuel path due to the wall wetting phenomenon,
the base injected fuel is compensated by a feedforward controller. This latter is usually based on the MVM
approach described above.

The output of (3) is then further corrected by the closed loop control task and the long term fuel trim. The
former is based on a PI controller aimed at keeping the AFR measured by the front oxygen sensor as close as
possible to the desired value indicated by the catalyst control strategies [51]. As for the MVM parameters,
the PI gains are stored in look-up tables to account for their dependence on engine operating conditions.
Long term fuel trim is intended to compensate for imbalance and/or offset in the AFR measurement due to
exogenous effects, such as canister purge events, engine wearing, air leaks in the intake manifolds, etc., [52].

The control architecture described above has been well established in the automotive industry for long
time, thanks to its good performance during both steady and transient conditions. Nevertheless, the more
stringent regulations imposed in the last years by OBD, Low Emission Vehicle, Ultra Low Emission Vehicle,
Super Ultra Low Emission Vehicle, etc., standards, have pushed car manufacturers towards further developing
the actual control strategies implemented on commercial ECU. It is especially important to reduce the
calibration efforts required to develop the parameters map and, above all, to improve the performance of the
feedback control path in Fig. 2.

ENGINE

front O2

sensor

Closed Loop
Control (PI)

AFRdes

+
-

Base
Injection

AFRdes
RPM
Pman
Tman

Tcoolant
Vbatt

Throttle

Fuel Film
Compensation

Feedforward Control

Feedback Control
Long Term
Fuel Trim

Fig. 2. Simplified schematic of the feedforward and feedback control tasks implemented in commercial ECU

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 149

Since the nineties, many studies addressed the benefits achievable by replacing the PI controller by
advanced control architectures, such as linear observers [42], Kalman Filter [4, 13, 26] (and sliding mode
[10, 27, 51]). Nevertheless, a significant obstacle to the implementation of such strategies is represented by
measuring delay due to the path from injection to O2 sensor location and the response time of the sensor
itself. To overcome these barriers, new sensors have been developed [36] but their practical applicability
in the short term is far from certain due to high cost and impossibility to remove transport delay. Thus,
developing predictive models from experimental data might significantly contribute to promoting the use of
advanced closed loop controllers.

3.1 RNN Potential

Recurrent Neural Network, whose modeling features are presented in the following section, have significant
potential to face the issues associated with AFR control. The authors themselves [5] and other contributions
(e.g. Alippi et al. [1]) showed how an inverse controller made of two RNNs, simulating both forward and
inverse intake manifold dynamics, is suitable to perform the feedforward control task. Such architectures
could be developed making use of only one highly-informative data-set [6], thus reducing the calibration
effort with respect to conventional approaches. Moreover, the opportunity of adaptively modifying network
parameters allows accounting for other exogenous effects, such as change in fuel characteristics, construction
tolerances and engine wear.

Besides their high potential, when embedded in the framework of pure neural-network controller, RNN
AFR estimators are also suitable in virtual sensing applications, such as the prediction of AFR in cold-
start phases. RNN training during cold-start can be performed on the test-bench off-line, by pre-heating the
lambda sensor before turning on the engine. Moreover, proper post-processing of training data enables to
predict AFR excursions without the delay between injection (at intake port) and measuring (in the exhaust)
events, thus being suitable in the framework of sliding-mode closed-loop control tasks [10, 51]. In such an
application the feedback provided by a UEGO lambda sensor may be used to adaptively modify the RNN
estimator to take into account exogenous effects. Finally, RNN-based estimators are well suited for diagnosis
of injection/air intake system and lambda sensor failures [31]. In contrast with control applications, in this
case the AFR prediction includes the measuring delay.

4 Recurrent Neural Networks

The RNN are derived from the static multilayer perceptron feedforward (MLPFF) networks by considering
feedback connections among the neurons. Thus, a dynamic effect is introduced into the computational system
by a local memory process. Moreover, by retaining the non-linear mapping features of the MLPFF, the RNN
are suitable for black-box nonlinear dynamic modeling [17, 41]. Depending upon the feedback typology,
which can involve either all the neurons or just the output and input ones, the RNN are classified into Local
Recurrent Neural Networks and Global or External Recurrent Neural Networks, respectively [17, 38]. This
latter kind of network is implemented here and its basic scheme is shown in Fig. 3, where, for clarity of
representation, only two time delay operators D are introduced. It is worth noting that in the figure a time
sequence of external input data is fed to the network (i.e. the input time sequence {x(t − 1), x(t − 2)}).

The RNN depicted in Fig. 3 is known in the literature as Nonlinear Output Error (NOE) [37, 38], and
its general form is

ŷ(t|θ) = F [ϕ(t|θ), θ], (7)

where F is the non-linear mapping operation performed by the neural network and ϕ(t) represents the
network input vector (i.e. the regression vector)

ϕ(t, θ) = [ŷ(t − 1|θ), . . . , ŷ(t − n|θ), x(t − 1), . . . , x(t − m)], (8)

where θ is the parameters vector, to be identified during the training process; the indices n and m define the
lag space dimensions of external inputs and feedback variables.

150 I. Arsie et al.

D

D

)(ˆ ty

)1(−tx

)1(ˆ −ty

)2(ˆ −ty

)2(−tx

D

D

)(ˆ ty)(ˆ ty

)1(−tx)1(−tx

)1(ˆ −ty)1(ˆ −ty

)2(ˆ −ty)2(ˆ −ty

)2(−tx)2(−tx

Fig. 3. NOE Recurrent Neural Network Structure with one external input, one output, one hidden layer and two
output delays

Starting from the above relationships and accounting for the calculations performed inside the network,
the general form of the NOE RNN can also be written as function of network weights

ŷ(t|θ) = f

⎛
⎝ nh∑

i=1

vig

⎛
⎝ ni∑

j=1

wijϕj(t)

⎞
⎠
⎞
⎠, (9)

where nh is the number of nodes in the hidden layer and ni the number of input nodes, vi represents the
weight between the i-th node in the hidden layer and the output node, while wij is the weight connecting the
j-th input node and the i-th node in the hidden layer. These weights are the components of the parameters
vector and ϕj(t) is the j-th element of the input vector (8). The activation function g(.) in the hidden layer
nodes is the following non-linear sigmoid function:

g(x) =
2

1 + exp(−2x + b)
− 1 [−1; 1], (10)

where b is an adjustable bias term; at the output node the linear activation function f(.) is assumed.
Then, accounting for all the weights and biases the parameters vector is θ = [v1, . . . vnh, w11, . . . wnh,ni,
b1, . . . bnh, bno].

4.1 Dynamic Network Features

Like the static MLPFF networks, RNN learning and generalization capabilities are the main features to be
considered during network development. The former deals with the ability of the learning algorithm to find the
set of weights which gives the desired accuracy, according to a criterion function. The generalization expresses
the neural network accuracy on a data set different from the training set. A satisfactory generalization can
be achieved when the training set contains enough information, and the network structure (i.e. number of
layers and nodes, feedback connections) has been properly designed. In this context, large networks should
be avoided because a high number of parameters can cause the overfitting of the training pattern through
an overparametrization; whilst under-sized networks are unable to learn from the training pattern; in both
cases a loss of generalization occurs. Furthermore, for a redundant network, the initial weights may affect the
learning process leading to different final performance, not to mention computational penalty. This problem
has not been completely overcome yet and some approaches are available in the literature: notably the works
of Atiya and Ji [8] and Sum et al. [46] give suggestions on the initial values of the network parameters. The
authors themselves have faced the problem of network weights uniqueness, making use of clustering methods
in the frame of a MonteCarlo parameters identification algorithm [34], in case of steady state networks.

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 151

Following recommendations provided by Thimm and Fiesler [48] and Nørgaard et al. [38], the weights are
initialized randomly in the range [−0.5 to 0.5] to operate the activation function described by (10) in its linear
region. Several studies have also focused on the definition of the proper network size and structure through
the implementation of pruning and regularization algorithms. These techniques rearrange the connection
levels or remove the redundant nodes and weights as function of their marginal contribution to the network
precision gained during consecutive training phases [17, 43]. For Fully Recurrent Neural Networks the issue of
finding the network topology becomes more complex because of the interconnections among parallel nodes.
Thus, specific pruning methodologies, such as constructive learning approach, have been proposed in the
literature [15, 28].

Some approaches have been followed to improve the network generalization through the implementation
of Active Learning (AL) Techniques [3]. These methods, that are derived from the Experimental Design
Techniques (EDT), allow reducing the experimental effort and increase the information content of the training
data set, thus improving the generalization. For static MLPFF networks the application of information-based
techniques for active data selection [14, 29] addresses the appropriate choice of the experimental data set
to be used for model identification by an iterative selection of the most informative data. In the field of
Internal Combustion Engine (ICE), these techniques search in the independent variables domain (i.e. the
engine operating conditions) for those experimental input–output data that maximize system knowledge [3].

Heuristic rules may be followed to populate the learning data set if AL techniques are awkward to
implement. In such a case, the training data set must be composed of experimental data that span the whole
operating domain, to guarantee steady-state mapping. Furthermore, in order to account for the dynamic
features of the system, the input data must be arranged in a time sequence which contains all the frequencies
and amplitudes associated with the system and in such a way that the key features of the dynamics to be
modeled will be excited [38]. As it will be shown in the following section, a pseudo-random sequence of input
data has been considered here to meet the proposed requirements.

The RNN described through the relationships (7) and (8) is a discrete time network, and a fixed sampling
frequency has to be considered. To build the time dependent input–output data set, the sampling frequency
should be high enough to guarantee that the dynamic behaviour of the system is well represented in the
input–output sequence. Nevertheless, as reported in Nørgaard et al. [38], the use of a large sampling frequency
may generate numerical problems (i.e. ill-conditioning); moreover, when the dimension of the data sequence
becomes too large an increase of the computational burden occurs.

A fundamental feature to be considered for dynamic modeling concerns with the stability of the solution.
RNNs behave like dynamic systems and their dynamics can be described through a set of equivalent nonlinear
Ordinary Differential Equations (ODEs). Hence, the time evolution of a RNN can exhibit a convergence to
a fixed point, periodic oscillations with constant or variable frequencies or a chaotic behavior [41]. In the
literature studies on stability of neural networks belong to the field of neurodynamics which provides the
mathematical framework to analyze their dynamic behavior [17].

4.2 Recurrent Neural Network Architectures for AFR Control

Neural Network based control systems are classified into two main types: (a) Direct Control Systems and
(b) Indirect Control Systems [38] as described in the following sections.

Direct Control System

In the Direct Control Systems (DCS) the neural network acts as a controller which processes the signals
coming from the real system. The control signals are evaluated as function of the target value of the controlled
variable. In this section two different DCS are presented: the Direct Inverse Model (DIM) and the Internal
Model Control (IMC). A description of these two approaches is given below.

Direct Inverse Model

The basic principle of this methodology is to train the Neural Network (i.e. identification of the Network
parameters) to simulate the “inverse” dynamics of the real process and then to use the inverse model as a

152 I. Arsie et al.

u(t)
IRNNM Plantr(t+1) y(t+1)

D

D

D

D

Fig. 4. Direct Inverse Model (DIM) based on a NOE network (Inverse RNNM). The control signal is estimated at
the time t as a function of the desired value r(t + 1) and the feedbacks. Note that the parameters m and n (see (12))
have been assumed equal to 2

controller. Assuming that the dynamics of the system can be described through an RNN model analogous
to the one proposed in (7) and (8)

ŷ(t + 1) = F [ŷ(t), . . . , ŷ(t − n + 1), x(t), . . . , x(t − m + 1)]. (11)

For a generic MIMO the Inverse RNN Model (IRNNM) is obtained by isolating the most recent control
input as follows:

û(t) = F−1[y(t + 1), y(t), . . . , y(t − n + 1), . . . , û(t − 1), . . . , û(t − m + 1)]. (12)

It is worth remarking that the u notation in (12) replaces “x” to highlight that in control applications all or
some external variables (depending on plant typology, e.g. SISO, MISO or MIMO) are control variables too.

Once the network has been trained, it can be used as a controller by substituting the output ŷ(t+1) with
the desired target value r(t + 1). Assuming that the model (12) describes accurately the inverse dynamics
of the system, the computed control signal û will be able to drive the system output y(t + 1) to the desired
value r(t + 1). Figure 4 shows the block-diagram of a DIM. It is worth noting that the desired value r is at
the time t + 1 while the control input û refers to the time t; hence the controller performs the control action
one time step earlier than the desired target.

The advantages of the DIM approach are the simple implementation and the Dead-Beat built-in control
properties (i.e. fast response for wide and sudden variations of the state variables) [38]. Nevertheless, since
the controller parameters are identified in off-line, the DIM does not perform as an adaptive control system.
In order to develop an adaptive system, on-line training methodologies are required. The suitability of the
inverse neural controllers to control complex dynamic processes is confirmed by several studies, particularly
in the field of aerospace control systems (e.g. Gili and Battipede [16]).

Internal Model Control

The IMC control structure is derived from the DIM, described in the previous section, where a Forward RNN
Model (FRNNM) of the system is added to work in parallel with an IRNNM. Figure 5 shows a block diagram
of this control architecture. The output values predicted by the FRNNM are fed back to the IRNNM, that
evaluates the control actions as function of the desired output at the next time step r(t + 1). The more the
FRNNM prediction is accurate, the less the difference between FRNNM and Plant outputs will be. However,
the differences between Plant and FRNNM may be used to update the networks on-line (i.e. both IRNNM
and FRNNM), thus providing the neural controller with adaptive features.

The stability of the IMC scheme (i.e. the closed-loop system and the compensation for constant noises)
is guaranteed if both the real system and the controller are stable [22]. Despite their stringent requirements,
the IMC approach seems to be really appealing, as shown by several applications in the field of chemical
processes control (e.g. Hussain [23]).

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 153

System
y(t+1)

NN ControllerFilter

NN Forward
Model

û(t)r(t+1)

-

+-
D

D

D

+
System

y(t+1)
NN ControllerFilter

NN Forward
Model

û(t)r(t+1)

-

+-
D

D

D

+

Fig. 5. Neural Networks based Internal Model Control Structure (dashed lines – closed loop connections)

Indirect Control Systems

Following the classification proposed by Nørgaard et al. [38], a NN based control structure is indirect if the
control signal is determined by processing the information provided from both the real system and the NN
model. The Model Predictive Control (MPC) structure is an example of such control scheme.

Model Predictive Control

The MPC computes the optimal control signals through the minimization of an assigned Cost Function (CF).
Thus, in order to optimize the future control actions, the system performance is predicted by a model of the
real system. This technique is suitable for those applications where the relationships between performances,
operating constraints and states of the system are strongly nonlinear [23]. In the MPCs the use of the
Recurrent Neural Networks is particularly appropriate because of their nonlinear mapping capabilities and
dynamic features.

In the MPC scheme, a minimization of the error between the model output and the target values is
performed [38]. The time interval on which the performance are optimized starts from the current time t to
the time t + k. The minimization algorithm accounts also for the control signals sequence through a penalty
factor ρ. Thus, the Cost Function is

J(t, u(t)) =
N2∑

i=N1

[r(t + i) − ŷ(t + i)] + ρ

N3∑
i=1

[∆u(t + i − 1)]2, (14)

where the interval [N1, N2] denotes the prediction horizon, N3 is the control horizon, r is the target value of
the controlled variable, ŷ is the model output (i.e. the NN) and ∆u(t + i− 1) are the changes in the control
sequences.

In the literature, several examples dealing with the implementation of the MPCs have been proposed.
Manzie et al. [32] have developed a MPC based on Radial Basis Neural Networks for the AFR control.
Furthermore, Hussain [23] reports the benefits achievable through the implementation of NN predictive
models for control of chemical processes.

5 Model Identification

This section deals with practical issues associated with Recurrent Networks design and identification, such
as choice of the most suitable learning approach, selection of independent variables (i.e. network external
input x) and output feedbacks, search of optimal network size and definition of methods to assess RNN
generalization.

154 I. Arsie et al.

5.1 RNN Learning Approach

The parameters identification of a Neural Network is performed through a learning process during which a
set of training examples (experimental data) is presented to the network to settle the levels of the connections
between the nodes. The most common approach is the error Backpropagation algorithm due to its easy-to-
handle implementation. At each iteration the error between the experimental data and the corresponding
estimated value is propagated backward from the output to the input layer through the hidden layers. The
learning process is stopped when the following cost function (MSE) reaches its minimum:

E(θ) =
1

2N

N∑
t=1

(ŷ(t|θ) − y(t))2. (15)

N is the time horizon on which the training pattern has been gathered from experiments. The Mean
Squared Error (MSE) (15) evaluates how close is the simulated pattern ŷ(t|θ)[t = 1, N] to the training
y(t)[t = 1, N]. The Backpropagation method is a first-order technique and its use for complex networks might
cause long training and in some cases a loss of effectiveness of the procedure. In the current work, a second-
order method based on the Levenberg–Marquardt optimization algorithm is employed [17, 18, 38, 41, 43].
To mitigate overfitting, a regularization term [38] has been added to (15), yielding the following new cost
function:

E∗(θ) =
1

2N

N∑
t=1

(ŷ(t|θ) − y(t))2 +
1

2N
· θT · α · θ, (16)

where α is the weight decay.
The above function minimization can be carried out in either a batch or pattern-by-pattern way. The

former is usually preferred at the initial development stage, whereas the latter is usually employed in on-line
RNN implementation, as it allows to adapt network weights in response to the exogenous variations of the
controlled/simulated system.

The training process aims at determining RNN models with a satisfactory compromise between precision
(i.e. small error on the training-set) and generalization (i.e. small error on the test-set). High generalization
cannot be guaranteed if the training data-set is not sufficiently rich. This is an issue of particular relevance
for dynamic networks such as RNN, since they require the training-set not only to cover most of the system
operating domain, but also to provide accurate knowledge of its dynamic behavior. Thus, the input data
should include all system frequencies and amplitudes and must be arranged in such a way that the key
features of the dynamics to be modeled are excited [38]. As far as network structure and learning approach
are concerned, the precision and generalization goals are often in conflict. The loss of generalization due
to parameters redundancy in model structure is known in the literature as overfitting [37]. This latter may
occur in the case of a large number of weights, which in principle improves RNN precision but may cause
generalization to decrease. A similar effect can occur if network training is stopped after too many epochs.
Although this can be beneficial to precision it may negatively impacts generalization capabilities and is known
as overtraining. Based on the above observations and to ensure a proper design of RNNs, the following steps
should be taken:

1. Generate a training data set extensive enough to guarantee acceptable generalization of the knowledge
retained in the training examples

2. Select the proper stopping criteria to prevent overtraining
3. Define the network structure with the minimum number of weights

As far as the impact of point (1) on the current application, AFR dynamics can be learned well by
the RNN estimator once the trajectories of engine state variables (i.e. manifold pressure and engine speed)
described in the training set are informative enough. This means that the training experiments on the test-
bench should be performed in such a way to cover most of the engine working domain. Furthermore a proper
description of both low- and high-frequency dynamics is necessary, thus the experimental profile should be
obtained by alternating steady operations of the engine with both smooth and sharp acceleration/deceleration
maneuvers.

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 155

Point (2) is usually addressed by employing the early stopping method. This technique consists of inter-
rupting the training process, once the MSE computed on a data set different from the training one stops
decreasing. Therefore, when the early stopping is used, network training and test require at least three data
sets [17]: training-set (set A), early stopping test-set (set B) and generalization test-set (set C).

Finally, point (3) is addressed by referring to a previous paper [6], in which a trial-and-error analysis
was performed to select the optimal network architecture in terms of hidden nodes and lag space. Although
various approaches on choosing MLPFF network sizing are proposed in the specific literature, finding the best
architecture for recurrent neural network is a challenging task due to the presence of feedback connections and
(sometimes) past input values [38]. In the current work the trial-and-error approach is used to address (3).

5.2 Input Variables and RNNs Formulation

Based on experimental tests, the instantaneous port air mass flow is known to be mainly dependent on
both manifold pressure and engine speed (i.e. engine state variables) [21]. On the other hand, the actual
fuel flow rate results from the dynamic processes occurring into the inlet manifold (see Fig. 1 and (1), (2)),
therefore the manifold can be studied as a Multi Input Single Output (MISO) system. In case of FRNNM
for AFR prediction, the output, control and external input variables are ŷ = AFR, u = tinj , x = [rpm, pm],
respectively and the formulation resulting from (7) and (8) will be

AF̂R(t, θ) = F [AF̂R(t − 1|θ1), . . . , AF̂R(t − n|θ1), tinj(t − 1), . . . , tinj(t − m),
rpm(t − 1), . . . , rpm(t − m), pm(t − 1), . . . , pm(t − m)].

(17)

It is worth noting that the output feedback in the regressors vector (i.e. AF̂R in (17)) is simulated by
the network itself, thus the FRNNM does not require any AFR measurement as feedback to perform the
on-line estimation. Though such a choice could reduce network accuracy [38], it allows to properly address
the AFR measurement delay issue due to mass transport, exhaust gas mixing and lambda sensor response
[39]. This NOE feature is also very appealing because it enables AFR virtual sensing even when the oxygen
sensor does not supply a sufficiently accurate measurement, as it happens during cold start phases.

Regarding AFR control, a DIM structure (see Fig. 4) is considered for the current application. Hence the
IRNNM can be obtained by inverting (7), yielding the following RNN expression:

t̂inj(t − 1|θ2) = G[AF̂R(t|θ1), . . . , AF̂R(t − n|θ1), t̂inj(t − 2|θ2), . . . , t̂inj(t − m|θ2)
rpm(t − 1), . . . , rpm(t − m), pm(t − 1), . . . , pm(t − m)],

(18)

where AF̂R is the estimate provided by FRNNM and θ2 is the IRNNM parameters vector.
Afterwards, substituting AF̂R(t + 1|θ1) by the future target value AFRdes, the control action can be

computed as

t̂inj(t − 1|θ2) = G[AFRdes(t), . . . , AF̂R(t − n|θ1), t̂inj(t − 2|θ2), . . . , t̂inj(t − m|θ2)
rpm(t − 1), . . . , rpm(t − m), pm(t − 1), . . . , pm(t − m)].

(19)

6 Experimental Set-Up

The RNN AFR estimator and controller were trained and tested vs. transient data sets measured on the
engine test bench at the University of Salerno. The experiments were carried out on a commercial engine,
four cylinders, 1.2 liters, with Multi-Point injection. It is worth noting that due to the absence of a camshaft
sensor, the injection is not synchronized with the intake stroke, therefore it takes place twice a cycle for
each cylinder. The test bench is equipped with a Borghi & Saveri FE-200S eddy current dynamometer. A
data acquisition system, based on National Instruments cards PCI MIO 16E-1 and Sample & Hold Amplifier
SC-2040, is used to measure engine variables with a sampling frequency up to 10 kHz. An AVL gravimetric
balance is used to measure fuel consumption in steady-state conditions to calibrate the injector flow rate.

156 I. Arsie et al.

Engine

AVL-Puma

rpm Micro
Autobox

Pm, rpm

tinj, θs
Dyno

β

Fig. 6. Lay-out of the experimental plant. β = throttle opening, θs = spark advance, tinj = injection time

Fig. 7. Location of the UEGO sensor (dotted oval)

The engine control system is replaced with a dSPACE c© MicroAutobox equipment and a power conditioning
unit. Such a system allows to control all the engine tasks and to customize the control laws. To guarantee
the controllability and reproducibility of the transient maneuvers, both throttle valve and engine speed are
controlled through an AVL PUMA engine automation tool (see Fig. 6).

The exhaust AFR is sensed by an ETAS Lambda Meter LA4, equipped with a Bosch LSU 4.2 UEGO
sensor. This is placed right after the exhaust valve of the first cylinder (see Fig. 7) to investigate the air–
fuel mixing process in one cylinder only. This choice allows to remove the dynamic effects induced by gas
transport and mixing phenomena occurring in the exhaust pipes. Also non predictable effects generated by
cylinder-to-cylinder unbalance due to uneven processes such as air breathing, thermal state and fuel injection
can be neglected. Therefore, the time shift between injection timing and oxygen sensor measurement mostly
accounts for pure engine cycle and lack of synchronization between injection and intake valve timing. This
latter term can be neglected in case of synchronized injection. As mentioned before, the time delay could
represent a significant problem for control applications [10, 24, 32, 42] and the accomplishment of this task
is described in Sect. 6.1.

6.1 Training and Test Data

The training and test sets were generated by running the engine on the test bench in transient conditions. In
order to span most of the engine operating region, perturbations on throttle and load torque were imposed
during the transients. Fast throttle actions, with large opening-closing profiles and variable engine speed
set points, were generated off-line and assigned through the bench controller to the engine and the dyno,
respectively (see Fig. 6). Regarding fuel injection, only the base injection task (see Fig. 2) was executed,
thus allowing to investigate the dynamic behavior of the uncontrolled plant, without being affected by
neither feedforward nor feedback compensation. Furthermore, in order to excite the wall wetting process

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 157

Fig. 8. Training data set (SET A)

independently from the air breathing dynamics, a uniform random perturbation was added to the injection
base time, limiting the gain in the range ±15% of the nominal fuel injection time (i.e. duration of time when
the injector is open). Such an approach protects the RNN from unacceptable accuracy of predictions in the
case of injection time deviation at constant engine load and speed as it is the case when a different AFR
target is imposed. This matter is extensively described in our previous work [6].

In Fig. 8 the measured signals of throttle opening (a), engine speed (b), manifold pressure (c), injection
time (d) and AFR (e) used as training-data (Set A) are shown. The throttle opening transient shown in
Fig. 8a allows exciting the filling-emptying dynamics of the intake manifold and the engine speed dynamics,
as a consequence of both engine breathing and energy balance between engine and load torque. Fig. 8b, c
indicate that the transient spans most of the engine operating domain with engine speed and manifold
pressure ranging from 1,000 to 4,000 rpm and from low to high load, respectively. The variation of manifold
pressure and engine speed affects the intake air flow rate and consequently the amount of fuel to be injected
to meet the target AFR. It is worth noting that the manifold pressure signal was filtered in order to cancel
the process noise that has negligible effects on the AFR dynamic response. This enhances the FRNNM
in learning the main manifold dynamics without being perturbed by second order phenomena (e.g. intake
manifold pressure fluctuation).

158 I. Arsie et al.

Fig. 9. Test data set (SET B)

The injection time trajectory (Fig. 8d), commanded by the ECS, excites the wall wetting dynamics,
which in turn influences the in-cylinder AFR in a broad frequency range. It is also worth to mention that
engine speed and throttle opening are decoupled to generate more realistic engine speed–pressure transients.
Furthermore, the speed dynamics is more critical as compared to what occur on a real vehicle, due to the
lower inertia of the engine test-bench.

Figure 9 shows the time histories of throttle opening, engine speed, manifold pressure and injected fuel
measured for the test-set (SET B). SET B was obtained imposing square wave throttle maneuvers (Fig. 9a)
to excite the highest frequencies of the air dynamics, while keeping the engine speed constant (Fig. 9b)
and removing the fuel pulse random perturbation. Figure 9d, e evidence that the resulting step variations of
injected fuel generate wide lean/rich spikes of AFR, due to uncompensated effects of wall wetting dynamics
during abrupt throttle opening/closing transients. Such features make SET B suitable as test data-set since
RNN accuracy in predicting high frequency dynamic response is demanded. Moreover, the step variations
of injected fuel are also appropriate to estimate the AFR delay. Thus, SET B is also very suitable to assess
the ability of RNN to cope with the pure time delay.

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 159

It is worth noting that the early stopping was not applied directly, in that the maximum number of
training epochs was set to 50 following recommendations from the previous study where an early stopping
data set was used [7].

FRNNM: AFR Prediction

The identification task of the FRNMM was performed on a NOE structure consisting of 12 hidden nodes,
with lag spaces n = 2 and m = 5 (see (17)) [6]. SET A was used to train the RNN with a number of training
epochs set to 50. This value was selected according to the results shown in the previous work [7] where the
early stopping criterion was utilized to maximize RNN generalization. The training procedure was applied
four times to investigate the influence of the time delay ∆tAFR between AFR measurement and triggering
signal (i.e. injection timing) on RNN accuracy. Table 1 lists the four cases analyzed, with the time delay
expressed as function of the engine speed (ω).

In Cases 2, 3 and 4, the AFR signal was back-shifted by the corresponding delay. Case 2 accounts for
the pure delay due to the engine cycle, that can be approximated as one and a half engine revolution, from
middle intake stroke to middle exhaust stroke (i.e. 3π/ω) as suggested by [39]. In Cases 3 and 4, instead,
the delay was assumed longer than 3π/ω, thus allowing to account for other delays that could occur. They
include injection actuation, lack of synchronization between injection and intake valve timing, unsteadiness
of gas flowing through the measuring section and mixing in the pipe with residual gas from the previous
cycle. The value assumed for the extreme Case 4 is in accordance with the delay proposed by Powell et al.
[42] for an oxygen sensor located in the main exhaust pipe after the junction. In this study, the delay in the
set-up of Fig. 6 can be determined by comparing the performance achieved by the RNN estimator on SET
A and SET B for the four delay scenarios. Figures 10 and 11 summarize the results of this comparison.

The general improvement in accuracy was expected due to the simpler dynamics resulting from delay
removal. In this way the RNN is not forced to learn the delay as part of the process dynamics, thus enhancing

Table 1. Delay scenarios analyzed for RNN training

Case 1 Case 2 Case 3 Case 4

∆tAFR(s) 0 3π/ω 5π/ω 6π/ω

Fig. 10. Comparison between measured and predicted AFR in presence of rich excursions (SET B)

160 I. Arsie et al.

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

AFR [/]

measured
predicted

AFR [/] (Case 1)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

AFR [/] - (Case 2)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

AFR [/] (Case 3)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

21

Time [s]

AFR [/] (Case 4)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

AFR [/]

measured
predicted

AFR [/] (Case 1)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

measured
predicted

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

AFR [/] - (Case 2)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

Time [s]

AFR [/] (Case 3)

5 5.5 6 6.5 7 7.5 8
12

13

14

15

16

17

18

19

20

21

Time [s]

AFR [/] (Case 4)

AFR [/] (Case 1)

Fig. 11. Comparison between measured and predicted AFR in presence of lean excursions (SET B)

the training task. More specifically, the analysis of the errors indicates that the best result with respect to
SET B occurs for Case 3. Figures 10 and 11 show the comparison of AFR traces in both rich and lean
transients. In Fig. 10 it is evident how the Case 3 RNN performs the best estimation of the rich spike and,
moreover, simulates it with the correct dynamics. Figure 11 confirms this behavior for lean spike reproduction
as well.

The above observations led to select Case 3 as the best case and, as a consequence, the AFR trace was
back-shifted by a time delay corresponding to 5π/ω crank-shaft interval. The assumed time interval accounts
for the engine cycle delay (3π/ω) plus the effect due to the lack of synchronization between injection and
intake stroke; this latter can be approximated, in the average, with a delay of 2π/ω. Furthermore, the delay
of 5π/ω is also in accordance with the value proposed by Inagaki et al. [24] for similar engine configuration
and lambda sensor location.

IRNNM: Real-Time AFR Control

A DIM-based neural controller (see Fig. 4) was set-up to implement the AFR control law detailed above
(i.e. (19)). In this configuration, sketched in Fig. 12, the IRNNM is coupled to the FRNNM, which replaces
the plant in providing the AFR feedback to the IRNNM without measuring delay, as discussed in the previous
section. This FRNNM feature is particularly beneficial because it allows to simplify the IRNNM structure
[38], in that no delay has to be included in the corresponding regression vector. It is also worth remarking
that RNN structures can only include constant delay in the time domain, whereas the accounted AFR
measurement delay is mainly constant in the frequency domain, thus variable in the time domain [39].

Figure 12 also shows that the AFR values predicted by the FRNNM are fed as feedbacks to the IRNNM,
which evaluates the control actions as function of FRNNM feedbacks, desired AFR at next time step (t + 1)
and current and past external variables provided by engine measurements (i.e. rpm (t− 1, t−m), pm (t−1,
t − m)). The more accurate the FRNNM prediction is, the less the difference between FRNNM and Plant
outputs will be. However, the differences between Plant and FRNNM may be used to update the networks
on-line (i.e. both IRNNM and FRNNM), thus providing the neural controller with adaptive features.

According to the selected neural controller architecture, the IRNNM was trained by means of the iden-
tification procedure sketched in Fig. 13, on the same SET A assumed for the FRNNM training. Following
the formulation described in (18), the AFR fed to the network is nothing but the prediction performed by

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 161

IRNNM FRNNM

D

)(ˆ tRFA

)(tAFR

()1+tAFRdes)1(ˆ −ttinj

[])(ˆ...,),2(ˆ mtttt injinj −−

[])(...,),1(mtrpmtrpm −−

[])(...,),1(mtptp mm −−

)(trpm

)(tpm

[])(ˆ...,),1(ˆ ntRFAtRFA −−

D

Plant

(SI Engine)

D

D

-

-

Fig. 12. DIM neural controller based on the integration of DIM and FRNNM. The control signal tinj is estimated
as function of the desired AFR value at time t + 1, the feedbacks from both IRNNM and FRNNM and the external
variable values provided by plant measurements. Note that the dashed lines in the IRNNM box mean that the
corresponding inputs are passed to the FRNNM too

Fig. 13. Training structure adopted for the IRNNM. Note that feedback connections are omitted for simplicity

the FRNNM, while engine speed and manifold pressure values correspond to the measured signals shown
in Fig. 8 [set A]. The training algorithm was then aimed at minimizing the residual between simulated and
experimental injected fuel time histories.

A preliminary test on the inverse model was accomplished off-line by comparing simulated and
experimental injected fuel signals in case of data sets A and B.

162 I. Arsie et al.

Afterwards, a real-time application was carried out by implementing the neural controller architec-
ture (see Fig. 12) in the engine control system on the test bench. The neural controller was employed in
Matlab c©/Simulink environment and then uploaded to the dSPACE c© MicroAutobox equipment. Accord-
ing to the formulation presented in (19), the controller is intended to provide the actual injection time by
processing actual and earlier measurements of engine speed and manifold pressure, and earlier prediction of
AFR performed by the FRNMM. Furthermore, unlike the preliminary test, the target AFR has also to be
imposed and it was set to the stoichiometric value for the current application.

As mentioned above, due to the UEGO sensor location, the controller was tested on the first cylinder only,
while the nominal map based injection strategy was used for the three remaining cylinders. The results of
the controller performance in tracking the target AFR along the engine test transient (SET B) are discussed
in the next section.

7 Results

As described in the previous section, the training SET A has been used to design the RNNs that simulate
both forward and inverse dynamics of the fuel film in the intake manifold. The test transient SET B has
been simulated to verify the network generalization features. Furthermore, on-line implementation of the
two networks was carried out to test, again on SET B, the performance of the neural controller (see Fig. 12)
proposed in this work to limit AFR excursions from stoichiometry.

7.1 FRNNM: AFR Prediction

The accuracy of the developed FRNNM is demonstrated by the small discrepancies between measured and
predicted AFR, as shown in detail in Figs. 14, 15, 16 and 17 for both SET A and SET B. Particularly,
Figs. 16 and 17, which refer to abrupt throttle opening/closing maneuvers (see Fig. 9a), show that the delay
removal from the AFR signal enables the FRNNM to capture AFR dynamics in both rich and lean transients
very well [7]. Figures 16 and 17 also indicate how the simulated AFR trajectory is smoother as compared to
the more wavy experimental profile.

This behavior is due to the pressure signal filtering, mentioned in Sect. 6.1, and confirms that this pro-
cedure allows retaining suitable accuracy in predicting AFR dynamic response during engine transients.
Particularly, Fig. 14 shows that the FRNNM correctly follows small-amplitude AFR oscillations when sim-
ulating the training transient (SET A), thus indicating that the signal filtering does not affect FRNNM
accuracy in predicting AFR dynamics.

Fig. 14. Trajectories of measured and predicted AFR (SET A, time window [50–60])

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 163

Fig. 15. Trajectories of measured and predicted AFR (SET B)

Fig. 16. Trajectories of measured and predicted AFR (SET B, time window [5, 8])

Fig. 17. Trajectories of measured and predicted AFR (SET B, time window [37, 41])

It is worth noting that the inaccurate overshoot predicted by the FRNMM (see Fig. 15 at 20 s and
45 s) is due to the occurrence of a dramatic engine speed drop induced by a tip-out maneuver, resulting in
the pressure increase shown on Fig. 9c. This experimental behavior is explained considering that the test
dynamometer is unable to guarantee a constant engine speed when an abrupt throttle closing is imposed

164 I. Arsie et al.

at medium engine speed and low loads (i.e. 2,500 rpm, from 25◦ to 15◦). Actually, in such conditions, the
dynamometer response is not as fast as it should be in counterbalancing the engine torque drop and an over-
resistant torque is applied to the engine shaft. It is worth mentioning that such transient is quite unusual
with respect to the in-vehicle engine operation.

7.2 IRNNM: AFR Control

As explained in Sect. 6.1, the IRNNM was trained by feeding as input the AFR predicted by the virtual
sensor (i.e. FRNNM). The RNN structure adopted to simulate inverse AFR dynamics was obtained through
the inversion of the FRNNM structure (i.e. 12 hidden nodes, n = 2, m = 5), according to the modeling
scheme discussed above (see (18)).

Figure 18 shows the comparison between IRNNM and experimental injection time for the entire SET
B. The trained IRNNM approximates the inverse AFR dynamics as accurately as the FRNNM does for the
forward dynamics. Regarding the more wavy profile simulated by the IRNNM, it can be explained considering
that this network was trained on tinj profile from Fig. 9 heavily perturbed by the noise as mentioned in
Sect. 6.1. Therefore, it tends to amplify the AFR oscillations in SET B (see Fig. 9e), although they are of
smaller amplitude as compared to the ones measured in the training transient (see Fig. 8). Nevertheless, this
effect is well balanced by the benefits provided by the random tinj perturbation, both in terms of IRNNM
generalization [6] and direct controller performance, as discussed below.

Online tests of the developed RNNs were performed by integrating the FRNNM and IRNNM in the
framework of a dSPACE c© MicroAutobox control unit for the adopted neural controller (see Fig. 12). The
experiments were conducted reproducing, by means of the automated test bench controller, the same transient
used as test-set (i.e. SET B), this time evaluating the injection time with the neural controller. The target
value of AFR to be fed to the IRNNM (i.e. (19)), was set to stoichiometry, i.e. 14.67. In order to assess
the performance of the proposed controller thoroughly, the resulting AFR trajectory was compared to the
trajectory measured from the actions of the reference ECU (see Fig. 2), as shown in Figs. 19 and 20. The
lines corresponding to AFRdes = 14.67, AFRdes + 5% and AFRdes − 5% are also plotted in the figures.

Figure 19 shows how the performance level achieved by the two controllers is very close. It is interesting
to note how the neural controller performs better (maneuvers 3rd, 5th, 7th) or worse (maneuvers 1st, 4th,
8th) than the ECU in limiting AFR spikes when abrupt throttle opening/closing are performed (see Fig. 9a).
Particularly, in Fig. 20 it can be seen how the feedback action performed by the neural controller on the
AFR predicted by the virtual sensor induces a higher-order AFR response as compared to that obtained
with ECU. This results in a faster AFR compensation (0.5 s against 1 s) and, particularly, in removing the

Fig. 18. Trajectories of measured and predicted injection time (SET B)

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 165

Fig. 19. Comparison between reference ECU and our NN performance in terms of AFR control (SET B)

Fig. 20. Comparison between reference ECU and our NN performance in terms of AFR control (SET B, time window
[40, 44] of Fig. 19)

AFR overshoot observed with the ECU. Of course, neither the neural controller nor the ECU can overcome
the rich excursion due to the fuel puddle on manifold walls, unless a suitable strategy aimed at increasing the
air flow rate is actuated. Our result demonstrate a potential of Neural Networks in improving current AFR
control strategies with a significant reduction of experimental burden and calibration effort with respect to
conventional approaches.

8 Conclusion

Recurrent Neural Network models have been developed to simulate both forward and inverse air–fuel ratio
(AFR) dynamics in an SI engine. The main features of RNNs have been reviewed with emphasis on obtaining
reliable models with high degree of generalization for practical engine applications.

Training and test data sets have been derived from experimental measurements on the engine test bench
by imposing load and speed perturbations. To enhance RNN generalization, the input variables have been
uncorrelated by perturbing the fuel injection time around the base stoichiometric amount. Moreover, the
removal of a 5π/ω delay from the measured AFR signal was proven to be necessary to ensure accurate
prediction of AFR dynamics for both rich and lean transients.

166 I. Arsie et al.

The virtual sensor (i.e. FRNNM) has shown satisfactory prediction of the AFR dynamics with an esti-
mation error over the measured trajectory lower than 2% for most of the test transients, even in the presence
of wide AFR spikes, thus proving that the RNN dynamic behavior is satisfactorily close to the real system
dynamics.

A real-time application of the direct AFR neural controller based on the inverse model (i.e. IRNNM) has
been accomplished. The controller that also makes use of the virtual sensor prediction has been implemented
on the engine control unit and tested over experimental transients. The comparison with the AFR trajectory
resulting from the action of the reference ECU provides evidence of a good performance of the controller.
Specifically, the integration with the virtual sensor prediction induces a higher-order response that results
in faster AFR compensation and, especially, in reducing overshoots observed with the reference ECU con-
trol strategy. The results demonstrate the potential offered by neural controllers to improve engine control
strategies, particularly considering the significant reduction of experimental burden/calibration efforts vs.
standard methodologies. The proposed neural controller is based on an open-loop scheme, therefore adap-
tive features can be introduced further by an on-line training aimed at adjusting IRNNM and FRNNM
parameters according to engine aging and/or faults.

References

1. Alippi C, de Russis C, Piuri V (2003) Observer-based air–fuel ratio control. IEEE Transactions on Systems, Man,
and Cybernetics – Part C: Applications and Reviews 33: 259–268.

2. Aquino CF (1981) Transient A/F control characteristics of the 5 liter central fuel injection engine. SAE paper
810494. SAE International, Warrendale.

3. Arsie I, Marotta F, Pianese C, Rizzo G (2001) Information based selection of neural networks training data for
S.I. engine mapping. SAE 2001 Transactions – Journal of Engines 110–3: 549–560.

4. Arsie I, Pianese C, Rizzo G, Cioffi V (2003) An adaptive estimator of fuel film dynamics in the intake port of a
spark ignition engine. Control Engineering Practice 11: 303–309.

5. Arsie I, Pianese C, Sorrentino M (2004) Nonlinear recurrent neural networks for air fuel ratio control in SI engines.
SAE paper 2004-01-1364. SAE International, Warrendale.

6. Arsie I, Pianese C, Sorrentino M (2006) A procedure to enhance identification of recurrent neural networks for
simulating air–fuel ratio dynamics in SI engines. Engineering Applications of Artificial Intelligence 19: 65–77.

7. Arsie I, Pianese C, Sorrentino M (2007) A neural network air–fuel ratio estimator for control and diagnostics
in spark-ignited engines. In: Fifth IFAC Symposium on Advances in Automotive Control, Monterey, CA, USA,
August 20–22, 2007.

8. Atiya A, Ji C (1997) How initial conditions affect generalization performance in large networks. IEEE Transactions
on Neural Networks 8: 448–454.

9. Capriglione D, Liguori C, Pianese C, Pietrosanto A (2003) On-line sensor fault detection isolation, and
accommodation in automotive engines. IEEE Transactions on Instrumentation and Measurement 52: 1182–1189.

10. Choi SB, Hedrick JK (1998) An observer-based controller design method for improving air/fuel characteristics
of spark ignition engines. IEEE Transactions on Control Systems Technology 6: 325–334.

11. Dinca L, Aldemir T, Rizzoni G (1999) A model-based probabilistic approach for fault detection and identification
with application to the diagnosis of automotive engines. IEEE Transactions on Automatic Control 44: 2200–2205.

12. Dovifaaz X, Ouladsine M, Rachid A (1999) Optimal control of a turbocharged diesel engine using neural network.
In: 14th IFAC World Congress, IFAC-8b-009, Beijing, China, July 5–9, 1999.

13. Fiengo G, Cook JA, Grizzle JW (2002) Fore-aft oxygen storage control. In: American Control Conference,
Anchorage, AK, May 8–10.

14. Fukumizu K (2000) Statistical active learning in multilayer perceptrons. IEEE Transactions on Neural Network
11: 17–26.

15. Giles CL, Chen D, Sun GZ, Chen HH, Lee YC, Goudreau MW (1995) Constructive learning of recurrent neu-
ral networks limitations of recurrent cascade correlation and a simple solution. IEEE Transactions on Neural
Networks 6: 829–835.

16. Gili PA, Battipede M (2001) Adaptive neurocontroller for a nonlinear combat aircraft model. Journal of Guidance,
Control and Dynamics 24(5): 910–917.

17. Haykin S (1999) Neural Networks. A Comprehensive Foundation, 2nd edn, Prentice-Hall, Englewood Cliffs, NJ.
18. Hecht-Nielsen R (1987) Neurocomputing. Addison-Wesley, Reading, MA.

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines 167

19. Heimann B, Bouzid N, Trabelsi A (2006) Road–wheel interaction in vehicles a mechatronic view of friction. In:
Proceedings of the 2006 IEEE International Conference on Mechatronics, pp. 137–143, July 3–5, 2006.

20. Hendricks E, Sorenson SC (1991) SI engine controls and mean value engine modeling. SAE Paper 910258. SAE
International, Warrendale.

21. Heywood JB (1988) Internal Combustion Engine Fundamental. McGraw-Hill, New York.
22. Hunt KJ, Sbarbaro D (1991) Neural networks for nonlinear internal model control. IEEE proceedings D 138(5):

431–438.
23. Hussain MA (1999) Review of the applications of neural networks in chemical process control simulation and

online implementation. Artificial Intelligence in Engineering 13: 55–68.
24. Inagaki H, Ohata A, Inoue T (1990) An adaptive fuel injection control with internal model in automotive engines.

In: IECON ’90, 16th Annual Conference of IEEE, pp. 78–83.
25. Isermann R (1997) Supervision, fault-detection and fault-diagnosis methods – an introduction. Control

Engineering Practice 5: 638–652.
26. Kainz JL, Smith JC (1999) Individual cylinder fuel control with a switching oxygen sensor. SAE Paper 1999-01-

0546. SAE International, Warrendale.
27. Kim YW, Rizzoni G, Utkin V (1998) Automotive engine diagnosis and control via nonlinear estimation. IEEE

Control Systems Magazine 18: 84–99.
28. Lehtokangas M (1999) Constructive backpropagation for recurrent networks. Neural Processing Letters 9: 271–

278.
29. MacKay DJC (1992) Information-based objective functions for active data selection. Neural Computation

4: 590–604.
30. Malaczynski GW, Baker ME (2003) Real-time digital signal processing of ionization current for engine diagnostic

and control. SAE Paper 2003-01-1119, SAE 2003 World Congress & Exhibition, Detroit, MI, USA, March 2003.
31. Maloney PJ (2001) A production wide-range AFR – response diagnostic algorithm for direct-injection gasoline

application. SAE Paper 2001-01-0558, 2001. SAE International, Warrendale.
32. Manzie C, Palaniswami M, Ralph D, Watson H, Yi X (2002) Observer model predictive control of a fuel injection

system with a radial basis function network observer. ASME Journal of Dynamic Systems, Measurement, and
Control 124: 648–658.

33. Marko KA, James J, Dosdall J, Murphy J (1989) Automotive control system diagnostics using neural nets
for rapid pattern classification of large data sets. In: Proceedings of International Joint Conference on Neural
Networks, 1989 IJCNN, pp. 13–16, vol. 2, Washington, DC, July 18, 1989.

34. Mastroberti M, Pianese C (2001) Identificazione e Validazione diModelli a Rete Neurale per Motori ad Accensione
Comandata Mediante Tecniche Monte Carlo. In: 56th National Congress of ATI, Napoli, September 10–14 (in
italian).

35. Matthews RD, Dongre SK, Beaman JJ (1991) Intake and ECM sub-model improvements for dynamic SI engine
models: examination of tip-in tip-out. SAE Paper No. 910074. SAE International, Warrendale.

36. Nakae M, Tsuruta T, Mori R, Shinsuke I (2002) “Development of Planar Air Fuel Ratio Sensor”, SAE Paper
2002-01-0474.

37. Nelles O (2000) Nonlinear System Identification. Springer, Berlin.
38. Nørgaard M, Ravn O, Poulsen NL, Hansen LK (2000) Neural Networks for Modelling and Control of Dynamic

Systems. Springer, London.
39. Onder CH, Geering HP (1997) Model identification for the A/F path of an SI Engine. SAE Paper No. 970612.

SAE International, Warrendale.
40. Ortmann S, Glesner M, Rychetsky M, Tubetti P, Morra G (1998) Engine knock estimation using neural networks

based on a real-world database. SAE Paper 980513. SAE International, Warrendale.
41. Patterson DW (1995) Artificial Neural Networks – Theory and Applications. Prentice Hall, Englewood Cliffs, NJ.
42. Powell JD, Fekete NP Chang CF (1998) Observer-based air–fuel ratio control. IEEE Transactions on Control

Systems 18: 72–83.
43. Ripley BD (2000) Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
44. Shayler PJ, Goodman MS, Ma T (1996) Transient air/fuel ratio control of an S.I. engine using neural networks.

SAE Paper 960326. SAE International, Warrendale.
45. St-Pierre M, Gingras D (2004) Neural network-based data fusion for vehicle positioning in land navigation system.

SAE Paper 2004-01-0752, SAE 2004 World Congress & Exhibition, Detroit, MI, USA, March 2004.
46. Sum J, Leung C, Young GH, Kann W (1999) On the Kalman filtering method in neural-network training and

pruning. IEEE Transactions on Neural Networks 10(1).

168 I. Arsie et al.

47. Tan Y, Saif M (2000) Neural-networks-based nonlinear dynamic modeling for automotive engines. Neurocomput-
ing 30: 129–142.

48. Thimm G, Fiesler E (1997) Higher order and multilayer perceptron initialization. IEEE Transaction Neural
Network 8: 349–359.

49. Turin RC, Geering HP (1994) Model-based adaptive fuel control in an SI engine. SAE Paper 940374. SAE
International, Warrendale.

50. Vigild CW, Andersen KPH, Hendricks E (1999) Towards robust H-infinity control of an SI engine’s air/fuel ratio.
SAE Paper 1999-01-0854. SAE International, Warrendale.

51. Yasuri Y, Shusuke A, Ueno M, Yoshihisa I (2000) Secondary O2 feedback using prediction and identification type
sliding mode control. SAE Paper no. 2000-01-0936. SAE International, Warrendale.

52. Yoo IK, Upadhyay D, Rizzoni G (1999) A control-oriented carbon canister model. SAE Paper 1999-01-1103. SAE
International, Warrendale.

Intelligent Vehicle Power Management: An Overview

Yi L. Murphey

Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

Summary. This chapter overviews the progress of vehicle power management technologies that shape the modern
automobile. Some of these technologies are still in the research stage. Four in-depth case studies provide readers
with different perspectives on the vehicle power management problem and the possibilities that intelligent systems
research community can contribute towards this important and challenging problem.

1 Introduction

Automotive industry is facing increased challenges of producing affordable vehicles with increased electri-
cal/electronic components in vehicles to satisfy consumers’ needs and, at the same time, with improved fuel
economy and reduced emission without sacrificing vehicle performance, safety, and reliability. In order to
meet these challenges, it is very important to optimize the architecture and various devices and components
of the vehicle system, as well as the energy management strategy that is used to efficiently control the energy
flow through a vehicle system [15].

Vehicle power management has been an active research area in the past two decades, and more intensified
by the emerging hybrid electric vehicle technologies. Most of these approaches were developed based on
mathematical models or human expertise, or knowledge derived from simulation data. The application of
optimal control theory to power distribution and management has been the most popular approach, which
includes linear programming [47], optimal control [5, 6, 10], and especially dynamic programming (DP) have
been widely studied and applied to a broad range of vehicle models [2, 16, 22, 29, 41]. In general, these
techniques do not offer an on-line solution, because they assume that the future driving cycle is entirely
known. However these results have been widely used as a benchmark for the performance of power control
strategies. In more recently years, various intelligent systems approaches such as neural networks, fuzzy logic,
genetic algorithms, etc., have been applied to vehicle power management [3, 9, 20, 22, 32, 33, 38, 40, 42, 43,
45, 51, 52]. Research has shown that driving style and environment has strong influence over fuel consumption
and emissions [12, 13]. In this chapter we give an overview on the intelligent systems approaches applied to
optimizing power management at the vehicle level in both conventional and hybrid vehicles. We present four
in-depth case studies, a conventional vehicle power controller, three different approaches for a parallel HEV
power controller, one is a system of fuzzy rules generated from static efficiency maps of vehicle components,
a system of rules generated from optimal operation points from a fixed driving cycles with using Dynamic
Programming and neural networks, and a fuzzy power controller that incorporates intelligent predictions of
driving environment as well as driving patterns. We will also introduce the intelligent system research that
can be applied to predicting driving environment and driving patterns, which have strong influence in vehicle
emission and fuel consumption.

Y.L. Murphey: Intelligent Vehicle Power Management: An Overview, Studies in Computational Intelligence (SCI) 132, 169–190 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

170 Y.L. Murphey

2 Intelligent Power Management in a Conventional Vehicle System

Most road side vehicles today are standard conventional vehicles. Conventional vehicle systems have been
going through a steady increase of power consumption over the past twenty years (about 4% per year) [23,
24, 35]. As we look ahead, automobiles are steadily going through electrification changes: the core mechanical
components such as engine valves, chassis suspension systems, steering columns, brake controls, and shifter
controls are replaced by electromechanical, mechatronics, and associated safety critical communications and
software technologies. These changes place increased (electrical) power demands on the automobile [15].

To keep up with future power demands, automotive industry has increased its research in building more
powerful power net such as a new 42-V power net topologies which should extend (or replace) the traditional
14-V power net from present vehicles [11, 21], and energy efficiency components, and vehicle level power
management strategies that minimize power loss [40]. In this section, we introduce an intelligent power
management approach that is built upon an energy management strategy proposed by Koot, et al. [22].
Inspired by the research in HEVs, Koot et al. proposed to use an advanced alternator controlled by power and
directly coupled to the engine’s crankshaft. So by controlling the output power of alternator, the operating
point of the combustion engine can be controlled, thus the control of the fuel use of the vehicle.

Figure 1 is a schematic drawing of power flow in a conventional vehicle system. The drive train block
contains the components such as clutch, gears, wheels, and inertia. The alternator is connected to the engine
with a fixed gear ratio. The power flow in the vehicle starts with fuel that goes into the internal combustion
engine. The mapping from fuel consumed to Peng is a nonlinear function of Peng and engine crank speed ω,
denoted as fuel rate = F(Peng, ω), which is often represented through an engine efficiency map (Fig. 2a)
that describes the relation between fuel consumption, engine speed, and engine power.

The mechanical power that comes out of the engine, Peng, splits up into two components: i.e. Peng =
Pp+Pg, where Pp goes to the mechanical drive train for vehicle propulsion, whereas Pg goes to the alternator.
The alternator converts mechanical power Pg to electric power Pe and tries to maintain a fixed voltage level
on the power net. The alternator can be modeled as a nonlinear function of the electric power and engine
crank speed, i.e. Pg = G(Pe, ω), which is a static nonlinear map (see Fig. 2b). The alternator provides
electric power for the electric loads, Pl, and Pb, power for charging the battery, i.e. Pe = Pl + Pb. In the
end, the power becomes available for vehicle propulsion and for electric loads connected to the power net.
The power flow through the battery, Pb, can be positive (in charge state) or negative (in discharge state),
and the power input to the battery, Pb, is more than the actual power stored into the battery, Ps, i.e. there
is a power loss during charge and discharge process.

A traditional lead-acid battery is often used in a conventional vehicle system for supplying key-off loads
and for making the power net more robust against peak-power demands. Although the battery offers freedom
to the alternator in deciding when to generate power, this freedom is generally not yet used in the current
practice, which is currently explored by the research community to minimize power loss. Let P Lossbat

represents the power losses function of the battery. P Lossbat is a function of Ps, Es and T, where Ps is the

Fuel Engine Drive train

Alternator

BatteryLoad

Pp

Pg

Pb
Pe

Pl

Peng – engine power
Pd - driver power demand
Pg – power input to alternator
Pb – power input to battery
Pl – electrical load demand

Peng

Fig. 1. Power flow in a conventional vehicle system

Intelligent Vehicle Power Management: An Overview 171

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Engine Power [Kw]

Fu
el

 R
at

e[
g/

s]

Fuel map

523 rad/s

575 rad/s

471 rad/s

418 rad/s

366 rad/s

314 rad/s

261 rad/s

104 rad/s

157 rad/s
209 rad/s

(a) engine efficiency map

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Mechanical Power[kW]

E
le

ct
ric

al
 P

ow
er

[k
W

]

Alternator Map (14V- 2kW)

52 rad/s 104 rad/s

157 rad/s

209 rad/s

261 rad/s

314 rad/s

366 rad/s

418 rad/s

471rad/s

575 rad/s

(b) alternator efficiency map

Fig. 2. Static efficiency maps of engine and alternator

power to be stored to or discharged from the battery, Es is the Energy level of the battery and T is the
temperature. To simply the problem, the influence of Es and T are often ignored in modeling the battery
power loss, then Pb can be modeled as a quadratic function of Ps, i.e. Pb ≈ Ps + βP 2

s [22]. The optimization
of power control is driven by the attempt to minimize power loss during the power generation by the internal
combustion engine, power conversion by the alternator, and battery charge/discharge.

Based on the above discussion, we are able to model fuel consumption as a function of ω, Pp, Pl, Ps. In
order to keep driver requests fulfilled, the engine speed ω, propulsion power Pp, and electric load Pl are set
based on driver’s command. Therefore the fuel consumption function can be written as a nonlinear function
of only one variable Ps : γ (Ps).

One approach to intelligent power control is to derive control strategies from the analysis of global
optimization solution. To find the global optimal solution, quadratic and dynamic programming (DP) have
been extensively studied in vehicle power management. In general, these techniques do not offer an on-line
solution, because they assume that the future driving cycle is entirely known. Nevertheless, their results can
be used as a benchmark for the performance of other strategies, or to derive rules for a rule-based strategy. In
particular if the short-term future state is predictable based on present and past vehicle states of the same
driving cycle, the knowledge can be used in combination with the optimization solution to find effective
operating points of the individual components.

The cost function for the optimization is the fuel used during an entire driving cycle:
∫ te

0
γ(Ps)dt where

[0, te] is the time interval for the driving cycle. When the complete driving cycle is known a priori, the

172 Y.L. Murphey

global optimization of the cost function can be solved using either DP or QP with constraints imposed on
Ps. But, for an online controller, it has no knowledge about the future of the present driving cycle. Koot
et al. proposed an online solution by using Model Predict Control strategy based on QP optimization [22].

The cost function γ(Ps) can be approximated by a convex quadratic function:

γ(Ps) ≈ ϕ2 · P 2
s + ϕ1 · Ps + ϕ0, ϕ2 > 0. (1)

The optimization problem thus can be model as a multistep decision problem with N steps:

Min
P̄s

J =
N∑

k=1

min
Ps

γ(Ps(k), k) ≈
N∑

k=1

min
Ps

1
2
ϕ2P

2
s (k) + ϕ1(k)Ps(k) + ϕ0, (2)

where P̄s contains the optimal setting of Ps(k), for k = 0, . . . ,n, n is the number of time intervals in a given
driving cycle has. The quadratic function of the fuel rate is solved by minimizing the following Lagrange
function of with respect to Ps and λ:

L(Ps(1), . . . , P s(N), λ) =
N∑

k=1

{ϕ2(k)Ps(k)2 + ϕ1(k)Ps(k)} + ϕ0 − λ
N∑

k=1

Ps(k). (3)

The optimization problem is solved by taking the partial derivatives of Lagrange function L with respect
to Ps(k), k = 1, . . . to N and λ respectively and setting both equations to 0. This gives us the optimal setting
points

P o
s (k) =

λ − ϕ1(k)
2ϕ2(k)

, (4)

λ =
N∑

k=1

ϕ1(k)
2ϕ2(k)

/
N∑

k=1

1
2ϕ2(k)

, (5)

for k = 1, . . . ,N (driving time span).
The above equations show that P o

s (k) depends on the Quadratic coefficients at the current time k, which
can be obtained online; however, λ requires the knowledge of ϕ1 and ϕ2 over the entire driving cycle, which
is not available to an online controller. To solve this problem, Koot et al. proposed to estimate λ dynamically
using the PI-type controller as follows [22]:

λ(k + 1) = λ0 + Kp(Es(0) − Es(k)) + KI

k∑
i=1

(Es(0) − Es(i))∆t, (6)

where λ0 is an initial estimate. If we write the equation in an adaptive form, we have

λ(k + 1) = λ0 + Kp(Es(0) − Es(k − 1) + Es(k − 1) − Es(k)) + KI

k∑
i=1

(Es(0) − Es(i))∆t

= λ(k) + Kp(Es(k − 1) − Es(k)) + KI(Es(0) − Es(k))∆t. (7)

By incorporating Es(k), the current energy storage in the battery, into λ dynamically, we are able to avoid
draining or overcharging the battery during the driving cycle. The dynamically changed λ reflects the change
of the stored energy during the last step of the driving cycle, and the change of stored energy between current
and the beginning of the driving cycle. If the stored energy increased (or decreased) in comparison to its
value the last step and the initial state, the λ(k + 1) will be much smaller (greater) than λ(k).

Koot [25] suggested the following method to tune the PI controller in (6). λ0 should be obtained from
the global QP optimization and is electric load dependant. λ0 = 2.5 was suggested. KP and KI were tuned
such that for average values of ϕ1(t) and ϕ2(t) (6) becomes a critically damped second-order system. For
ϕ̃2 = 1.67 × 10−4, Kp = 6.7 × 10−7, KI = 3.3 × 10−10.

Intelligent Vehicle Power Management: An Overview 173

Based on the above discussion, the online control strategy proposed by Koot can be summarized as follows.
During an online driving cycle at step k, the controller performs the following three major computations:

(1) Adapt the Lagrange multiplier,

λ(k + 1) = λ0 + Kp(Es(0) − Es(k − 1) + Es(k − 1) − Es(k)) + K1

k∑
i=1

(Es(0) − Es(i))∆t,

where λ0, Kp, KI are tuned to constants as we discussed above, Es (i) is the energy level contained in
the battery at step i, i = 0, 1, . . . , k, and for i = 0, it is the battery energy level at the beginning of the
driving cycle. All Es (i) are available from the battery sensor.

(2) Calculate the optimal Ps(k) using the following either one of the two formulas:

P o
s (k) = arg min

Ps(k)
{ϕ2(k)P 2

s (k) + ϕ1(k)Ps(k) + ϕ0(k) − λ(k + 1)Ps(k), (8)

or
P o

s (k) = arg min
Ps(k)

{γ(Ps(k)) − λ(k + 1)Ps(k)}. (9)

Both methods search for the optimal Ps(k) within its valid range at step k [22], which can be solved
using DP with a horizon length of 1 on a dense grid. This step can be interpreted as follows. At each
time instant the actual incremental cost for storing energy is compared with the average incremental
cost. Energy is stored when generating now is more beneficial than average, whereas it is retrieved when
it is less beneficial.

(3) Calculate the optimal set point of engine power
The optimal set point of engine power can be obtained through the following steps:

P o
eng = P o

g + Pp, where P o
g = G(P o

e ,ω), P o
e = P Lossbat(P o

s) + P1.

Koot et al. implemented their online controllers in a simulation environment in which a conventional vehicle
model with the following components was used: a 100-kW 2.0-L SI engine, a manual transmission with five
gears, A 42-V 5-kW alternator and a 36-V 30-Ah lead-acid battery make up the alternator and storage
components of the 42-V power net. Their simulations show that a fuel reduction of 2% can be obtained
by their controllers, while at the same time reducing the emissions. The more promising aspect is that the
controller presented above can be extended to a more intelligent power control scheme derived from the
knowledge about road type and traffic congestions and driving patterns, which are to be discussed in Sect. 4.

3 Intelligent Power Management in Hybrid Vehicle Systems

Growing environmental concerns coupled with the complex issue of global crude oil supplies drive automobile
industry towards the development of fuel-efficient vehicles. Advanced diesel engines, fuel cells, and hybrid
powertrains have been actively studied as potential technologies for future ground vehicles because of their
potential to significantly improve fuel economy and reduce emissions of ground vehicles. Due to the multiple-
power-source nature and the complex configuration and operation modes, the control strategy of a hybrid
vehicle is more complicated than that of a conventional vehicle. The power management involves the design
of the high-level control algorithm that determines the proper power split between the motor and the engine
to minimize fuel consumption and emissions, while satisfying constraints such as drivability, sustaining and
component reliability [28]. It is well recognized that the energy management strategy of a hybrid vehicle has
high influences over vehicle performances.

In this section we focus on the hybrid vehicle systems that use a combination of an internal combustion
engine (ICE) and electric motor (EM). There are three different types of such hybrid systems:

• Series Hybrid: In this configuration, an ICE-generator combination is used for providing electrical power
to the EM and the battery.

174 Y.L. Murphey

• Parallel Hybrid: The ICE in this scheme is mechanically connected to the wheels, and can therefore
directly supply mechanical power to the wheels. The EM is added to the drivetrain in parallel to the
ICE, so that it can supplement the ICE torque.

• Series–Parallel Combined System and others such as Toyota Hybrid System (THS).

Most of power management research in HEV has been in the category of parallel HEVs. Therefore this is
also the focus of this paper. The design of a HEV power controller involves two major principles:

• Meet the driver’s power demand while achieving satisfactory fuel consumption and emissions.
• Maintain the battery state of charge (SOC) at a satisfactory level to enable effective delivery of power

to the vehicle over a wide range of driving situations.

Intelligent systems technologies have been actively explored in power management in HEVs. The most
popular methods are to generate rules of conventional or fuzzy logic, based on:

• Heuristic knowledge on the efficient operation region of an engine to use the battery as a load-leveling
component [46].

• Knowledge generated by optimization methods about the proper split between the two energy sources
determined by minimizing the total equivalent consumption cost [26, 29, 30]. The optimization methods
are typically Dynamic Programming (deterministic or stochastic).

• Driving situation dependent vehicle power optimization based on prediction of driving environment using
neural networks and fuzzy logic [27, 42, 52].

Three case studies will be presented in the following subsections, one from each of the above three
categories.

3.1 A Fuzzy Logic Controller Based on the Analysis of Vehicle Efficiency Maps

Schouten, Salman and Kheir presented a fuzzy controller in [46] that is built based on the driver command,
the state of charge of the energy storage, and the motor/generator speed. Fuzzy rules were developed for the
fuzzy controller to effectively determine the split between the two powerplants: electric motor and internal
combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of three
major components, ICE (Internal Combustion Engine), EM (Electric Motor) and Battery.

The fuzzy control strategy was derived based on five different ways of power flow in a parallel HEV: (1)
provide power to the wheels with only the engine; (2) only the EM; or (3) both the engine and the EM
simultaneously; (4) charge the battery, using part of the engine power to drive the EM as a generator (the
other part of ENGINE power is used to drive the wheels); (5) slow down the vehicle by letting the wheels
drive the EM as a generator that provides power to the battery (regenerative braking).

A set of nine fuzzy rules was derived from the analysis of static engine efficiency map and motor efficiency
map with input of vehicle current state such as SOC and driver’s command. There are three control variables,
SOC (battery state of charge), Pdriver (driver power command), and ωEM (EM speed) and two solution
variables, Pgen (generator power), scale factor, SF.

The driver inputs from the brake and accelerator pedals were converted to a driver power command.
The signals from the pedals are normalized to a value between zero and one (zero: pedal is not pressed,
one: pedal fully pressed). The braking pedal signal is then subtracted from the accelerating pedal signal, so
that the driver input takes a value between −1 and +1. The negative part of the driver input is sent to a
separate brake controller that will compute the regenerative braking and the friction braking power required
to decelerate the vehicle. The controller will always maximize the regenerative braking power, but it can
never exceed 65% of the total braking power required, because regenerative braking can only be used for the
front wheels.

The positive part of the driver input is multiplied by the maximum available power at the current vehicle
speed. This way all power is available to the driver at all times [46]. The maximum available power is
computed by adding the maximum available engine and EM power. The maximum available EM and engine
power depends on EM/engine speed and EM/engine temperature, and is computed using a two-dimensional

Intelligent Vehicle Power Management: An Overview 175

look-up table with speed and temperature as inputs. However, for a given vehicle speed, the engine speed has
one out of five possible values (one for each gear number of the transmission). To obtain the maximum engine
power, first the maximum engine power levels for those five speeds are computed, and then the maximum
of these values is selected.

Once the driver power command is calculated, the fuzzy logic controller computes the optimal generator
power for the EM, Pgen, in case it is used for charging the battery and a scaling factor, SF, for the EM in
case it is used as a motor. This scaling factor SF is (close to) zero when the SOC of the battery is too low.
In that case the EM should not be used to drive the wheels, in order to prevent battery damage. When the
SOC is high enough, the scaling factor equals one.

The fuzzy control variable Pdrive has two fuzzy terms, normal and high. The power range between 0
and 50kw is for “normal”, the one between 30 kw to the maximum is for “high”, the power range for the
transition between normal and high, i.e. 30 kw ∼ 50 kW, is the optimal range for the engine. The fuzzy
control variable SOC has four fuzzy terms, too low, low, normal and too high. The fuzzy set for “too low”
ranges from 0 to 0.6, “low” from 0.5 to 0.75, “normal” from 0.7 to 0.9, “too high” from 0.85 to 1.

The fuzzy control variable ωEM (EM speed) has three fuzzy sets, “low”, “optimal”, and “high”. The fuzzy
set “low” ranges from 0 to 320 rad s−1, “optimal” ranges from 300 to 470 rad s−1, “high” from 430 through
1,000 rad s−1. Fuzzy set “optimal” represents the optimal speed range which gives membership function to
1 at the range of 320 rad s−1 through 430 rad s−1. The nine fuzzy rules are shown in Table 1.

Rule 1 states that if the SOC is too high the desired generator power will be zero, to prevent overcharging
the battery. If the SOC is normal (rules 2 and 3), the battery will only be charged when both the EM speed
is optimal and the driver power is normal. If the SOC drops to low, the battery will be charged at a higher
power level. This will result in a relatively fast return of the SOC to normal. If the SOC drops to too low
(rules 6 and 7), the SOC has to be increased as fast as possible to prevent battery damage. To achieve this,
the desired generator power is the maximum available generator power and the scaling factor is decreased
from one to zero. Rule 8 prevents battery charging when the driver power demand is high and the SOC is not
too low. Charging in this situation will shift the engine power level outside the optimum range (30–50kW).
Finally, when the SOC is not too low (rule 9), the scaling factor is one.

The engine power, Peng, and EM power, PEM, are calculated as follows:

Peng = Pdriver + Pgen, PEM = −Pgen

except for the following cases:

(1) If Pdriver + PEM,gen is smaller than the threshold value SF∗6 kw) then Peng = 0 and PEM = Pdriver.
(2) If Pdriver + PEM,gen is larger than the maximum engine power at current speed (Peng,max@speed) then

Peng = Peng,max@speedand PEM = Pdriver − Peng,max@speed.

(3) If PEM is positive (EM used as motor), PEM = PEM
∗SF.

The desired engine power level is used by the gear shifting controller to compute the optimum gear
number of the automated manual transmission. First, the optimal speed-torque curve is used to compute

Table 1. Rule base of the fuzzy logic controller

1 If SOC is too high then Pgen is 0 kw
2 If SOC is normal and Pdrive is normal and ωEM is optimal then Pgen is 10 kw
3 If SOC is normal and ωEM is NOT optimal then Pgen is 0 kw
4 If SOC is low and Pdrive is normal and ωEM is low then Pgen is 5 kw
5 If SOC is low and Pdrive is normal and ωEM is NOT low then Pgen is 15 kw
6 If SOC is too low then Pgen is Pgen, max

7 If SOC is too low then SF is 0
8 If SOC is NOT too low and Pdrive is high then Pgen is 0 kw
9 If SOC is NOT too low then SF is 1

176 Y.L. Murphey

the optimal engine speed and torque for the desired engine power level. The optimal engine speed is then
divided by the vehicle speed to obtain the desired gear ratio. Finally, the gear number closest to the desired
gear ratio is chosen.

The power controller has been implemented and simulated with PSAT using the driving cycles described
in the SAE J1711 standard. The operating points of the engine, EM, and battery were either close to the
optimal curve or in the optimal range [46].

3.2 An Intelligent Controller Built Using DP Optimization and Neural Networks

Traditional rule-based algorithms such as the one discussed in Sect. 3.1 are popular because they are easy
to understand. However, when the control system is multi-variable and/or multi-objective, as often the case
in HEV control, it is usually difficult to come up with rules that capture all the important trade-offs among
multiple performance variables. Optimization algorithms such as Dynamic Programming (DP) can help us
understand the deficiency of the rules, and subsequently serve as a “role-model” to construct improved and
more complicated rules [28, 41]. As Lin et al. pointed out that using a rule-base algorithm which mimics
the optimal actions from the DP approach gives us three distinctive benefits: (1) optimal performance is
known from the DP solutions; (2) the rule-based algorithm is tuned to obtain near-optimal solution, under
the pre-determined rule structure and number of free parameters; and (3) the design procedure is re-useable,
for other hybrid vehicles, or other performance objectives [28].

Lin et al. designed a power controller for a parallel HEV that uses deterministic dynamic programming
(DP) to find the optimal solution and then extracts implementable rules to form the control strategy [28, 29].
Figure 3 gives the overview of the control strategy. The rules are extracted from the optimization results
generated by two runs of DP, one is running with regeneration on, and the other with regeneration off. Both
require the input of a HEV model and a driving cycle. The DP running with regeneration on generates
results from which rules for gear shift logic and power split strategy are extracted, the DP running with
regeneration off generates results for rules for charge-sustaining strategy.

When used online, the rule-based controller starts by interpreting the driver pedal motion as a power
demand, Pd. When Pd is negative (brake pedal pressed), the motor is used as a generator to recover vehicle

Driving cycle

HEV model

Dynamic Programming
(with regeneration ON)

Dynamic Programming
(with regeneration OFF)

Gear shift Logic
Power Split
Strategy

Charge-Sustaining
strategy

Power management

Rule Extraction Rule Extraction

RULE BASE

Fig. 3. A rule based system developed based on DP optimization

Intelligent Vehicle Power Management: An Overview 177

kinetic energy. If the vehicle needs to decelerate harder than possible with the “electric brake”, the fric-
tion brake will be used. When positive power (Pd > 0) is requested (gas pedal pressed), either a Power
Split Strategy or a Charge-Sustaining Strategy will be applied, depending on the battery state of charge
(SOC). Under normal driving conditions, the Power Split Strategy determines the power flow in the hybrid
powertrain. When the SOC drops below the lower limit, the controller will switch to the Charge-Sustaining
Strategy until the SOC reaches a pre-determined upper limit, and then the Power Split Strategy will resume.

The DP optimization problem is formulated as follows. Let x(k) represents three state variables, vehicle
speed, SOC and gear number, at time step k, and u(k) are the input signals such as engine fuel rate,
transmission shift to the vehicle at time step k. The cost function for fuel consumption is defined as

J = fuel =
N∑

k=1

L(x(k), u(k)), (kg),

where L is the instantaneous fuel consumption rate, and N is the time length of the driving cycle. Since the
problem formulated above does not impose any penalty on battery energy, the optimization algorithm tends
to first deplete the battery in order to achieve minimal fuel consumption. This charge depletion behavior will
continue until a lower battery SOC is reached. Hence, a final state constraint on SOC needs to be imposed
to maintain the energy of the battery and to achieve a fair comparison of fuel economy. A soft terminal
constraint on SOC (quadratic penalty function) is added to the cost function as follows:

J =
N∑

k=1

L(x(k), u(k)) + G(x(N)),

where G(x(N)) = α(SOC(N) − SOCf)2 represents the penalty associated with the error in the terminal
SOC; SOCf is the desired SOC at the final time, α is a weighting factor. For a given driving cycle, D C,
DP produces an optimal, time-varying, state-feedback control policy that is stored in a table for each of the
quantized states and time stages, i.e. u∗(x(k), k); this function is then used as a state feedback controller in
the simulations. In addition, DP creates a family of optimal paths for all possible initial conditions. In our
case, once the initial SOC is given, the DP algorithm will find an optimal way to bring the final SOC back
to the terminal value (SOCf) while achieving the minimal fuel consumption.

Note that the DP algorithm uses future information throughout the whole driving cycle, D C, to deter-
mine the optimal strategy, it is only optimal for that particular driving cycle, and cannot be implemented as
a control law for general, unknown driving conditions. However, it provides good benchmark to learn from, as
long as relevant and simple features can be extracted. Lin et al. proposed the following implementable rule-
based control strategy incorporating the knowledge extracted from DP results [28]. The driving cycle used
by both DP programs is EPA Urban Dynamometer Driving Schedule for Heavy-Duty Vehicles (UDDSHDV)
from the ADVISOR drive-cycle library. The HEV model is a medium-duty hybrid electric truck, a 4 × 2
Class VI truck constructed using the hybrid electric vehicle simulation tool (HE-VESIM) developed at the
Automotive Research Center of the University of Michigan [28]. It is a parallel HEV with a permanent mag-
net DC brushless motor positioned after the transmission. The engine is connected to the torque converter
(TC), the output shaft of which is then coupled to the transmission (Trns). The electric motor is linked
to the propeller shaft (PS), differential (D) and two driveshafts (DS). The motor can be run reversely as a
generator, by drawing power from regenerative braking or from the engine. The detail of this HEV model
can be found in [28, 29].

The DP program that ran with regeneration turned on produced power split graph shown in Fig. 4.
The graph shows the four possible operating modes in the Power Split Strategy: motor only mode (blue
circles), engine only mode (red disks), hybrid mode (both the engine and motor provide power, shown in
blue squares), and recharge mode (the engine provides additional power to charge the battery, shown in green
diamonds). Note during this driving cycle, recharging rarely happened. The rare occurrence of recharging
events implies that, under the current vehicle configuration and driving cycle, it is not efficient to use engine
power to charge the battery, even when increasing the engine’s power would move its operation to a more
efficient region. As a result, we assume there is no recharging during the power split control, other than

178 Y.L. Murphey

Fig. 4. Optimal operating points generated by DP over UDDSHDV cycle when Pd > 0

regeneration, and thus recharge by the engine will only occur when SOC is too low. The following power
split rules were generated based on the analysis of the DP results.

Nnet1 is a neural network trained to predict the optimal motor power in a split mode. Since optimal
motor power may depend on many variables such as wheel speed, engine speed, power demand, SOC, gear
ratio, etc., [28], Lin et al. first used a regression-based program to select the most dominant variables in
determining the motor power. Three variables were selected, power demand, engine speed, and transmission
input speed as input to the neural network. The neural network has two hidden layers with three and one
neurons respectively. After the training, the prediction results generated by the neural network are stored
in a “look-up table” for real-time online control.

The efficiency operation of the internal combustion engine also depends on transmission shift logic. Lin
et al. used the DP solution chooses the gear position to improve fuel economy. From the optimization results,
the gear operation points are expressed on the engine power demand vs. wheel speed plot shown in Fig. 5.
The optimal gear positions are separated into four regions, and the boundary between two adjacent regions
seems to represent better gear shifting thresholds. Lin et al. use a hysteresis function to generate the shifting
thresholds. They also pointed out that the optimal gear shift map for minimum fuel consumption can also
be constructed through static optimization. Given an engine power and wheel speed, the best gear position
for minimum fuel consumption can be chosen based on the steady-state engine fuel consumption map. They
found that the steady-state gear map nearly coincides with Fig. 5. However for a pre-transmission hybrid
configuration, it will be harder to obtain optimal shift map using traditional methods.

Since the Power Split Strategy described above does not check whether the battery SOC is within the
desired operating range, an additional rule for charging the battery with the engine was developed by Lin
et al. to prevent battery from depletion. A traditional practice is to use a thermostat-like charge sustaining
strategy, which turns on the recharging mode only if the battery SOC falls below a threshold and the charge
continues until the SOC reaches a predetermined level. Although this is an easy to implement strategy, it
is not the most efficient way to recharge the battery. In order to improve the overall fuel efficiency further,
the questions “when to recharge” and “at what rate” need to be answered. Lin et al. ran the DP routine
with the regenerative braking function was turned off to make sure that all the braking power was supplied
by the friction braking and hence there was no “free” energy available from the regenerative braking. They
set the initial SOC at 0.52 for the purpose of simulating the situation that SOC is too low and the battery
needs to be recharged. Their simulation result is shown in Fig. 6.

Intelligent Vehicle Power Management: An Overview 179

Fig. 5. Transmission gear selection generated by DP algorithm when Pd > 0 over UDDSHDV cycle

Fig. 6. Optimal operating points from DP (engine recharging scenario) over UDDSHDV cycle

Note that the results obtained represent the optimal policy under the condition that the battery SOC has
to be recharged from 0.52 to 0.57 using engine power. Note also that negative motor power now represents
the recharging power supplied by the engine since there is no regenerative braking. A threshold line is drawn
to divide the plot into two regions C and D. A neural network Nnet2 was trained to find the optimal amount
of charging power. The basic logic of this recharging control is summarized in Table 3. The rules in Tables 2
and 3 together provide complete power management of the hybrid propulsion system under any conditions.
Figure 7 shows the flow charts of the power controller. T line1 is the function representing the threshold
shown in Fig. 7a, and T line2 is the function representing the threshold shown in Fig. 7b.

Lin et al. used the Urban Dynamometer Driving Schedule for Heavy-Duty Vehicles (UDDSHDV) to
evaluate the fuel economy of their power management strategy. Their results were obtained for the charge

180 Y.L. Murphey

Table 2. Power split rules

If Pd ≤ 15 kw, use Motor only, i.e. Pm = Pd, Pe = 0.

Else

If region A, operate in power split mode: Pm = Nnet1(Pd, ωtrans, ωeng), Pe = Pd − Pm.

If region B, use engine only, i.e. Pm = 0, Pe = Pd.

If Pe > Pe max, Pe = Pe max, Pm = Pd − Pe.

Note: Pm is the motor power, Pe is the engine power, and Pd is driver’s power demand.

Table 3. Charge-sustaining rules

If Pd ≤ 8 kw, use Motor only, i.e. Pm = Pd, Pe = 0.

Else

If region C, or ωwheel < 10, Pe = Pd, Pm = 0.

If region D, Pm = −Pch, Pe = Pd + Pch, Pch = −Nnet2(Pd, ωtrans, ωeng),

If Pe > Pe max, Pe = Pe max, Pm = Pd − Pe.

sustaining strategy, with the SOC at the end of the cycle being the same as it was at the beginning. They
showed 28% of the fuel economy improvement (over the conventional truck) by the DP algorithm and 24%
by their DP-trained rule-based algorithm, which is quite close to the optimal results generated by the DP
algorithm.

3.3 Intelligent Vehicle Power Management Incorporating Knowledge
About Driving Situations

The power management strategies introduced in the previous sections do not incorporate the driving situ-
ation and/or the driving style of the driver into their power management strategies. One step further is to
incorporate the optimization into a control strategy that has the capability of predicting upcoming events.
In this section we take introduce an intelligent controller, IEMA (intelligent energy management agent) pro-
posed by Langari and Won [27, 52]. IEMA incorporates true drive cycle analysis within an overall framework
for energy management in HEVs. Figure 8 shows the two major components in the architecture of IEMA,
where Te is the current engine torque, Tec, FTD is the increment of engine torque for propulsion produced
by FTD, and Tec, TD is the increment engine torque compensating for the effect of variations of driver style.
The primary function of IEMA is to distribute the required torque between the electric motor and the IC
(internal combustion) engine. In order to accomplish this, IEMA utilizes information on roadway type and
traffic congestion level, driver style, etc., which are produced by intelligent systems discussed in Sect. 4. The
FTD is a fuzzy controller that has fuzzy rule sets for each roadway type and traffic congestion level. The
SCC, constructed based on expert knowledge about charge sustaining properties in different operating modes,
guarantees that the level of electric energy available through the electric energy storage is maintained within
a prescribed range throughout the entire driving. Its output, Tec, SOC, is the increment of engine torque for
charging. Tec is engine torque command. The relationship among these variables is characterized as follows:

Tec + Tmc = Te + Tec,FTD + Tec,SOC + Tmc = Tc, (10)

where Tmc is motor torque command and Tc is the driver’s torque command.

Intelligent Vehicle Power Management: An Overview 181

(a) Power split strategy

Nnet1

Pd < 15kw

Yes
Pm = Pd, Pe=0

Pd > T_line1(ωtrans)

Yes:
Region A

Pd, ωtrans, ωeng

Pm

Pe = Pd-Pm

No:
Region B

Pe = Pd-Pm

Pm, Pd, Pe

Pm, Pd, Pe

Pe > Pe_maxYes
Pm, Pd, Pe

Pe = Pe_max

Pm=Pd-Pe

Pm, Pd, Pe

Pm, Pd, Pe

No

No

(b) Charge - sustaining strategy

Nnet2

Pd < 8kw

Yes
Pm = Pd, Pe = 0

Pd > T_line2(ωtrans)
or ωwheel<10

Yes:
Region C

Pd, ωtrans, ωeng

Pch

Pe = Pd-Pch
Pm=Pch

No:
Region D

Pe = Pd,
Pm= 0

Pm, Pd, Pe Pm, Pd, Pe

Pe > Pe_max
Yes
Pm, Pd, Pe

Pe = Pmax
Pm=Pd-Pe

Pm, Pd, Pe
Pm, Pd, Pe

No

No

Fig. 7. Power management of the hybrid propulsion system

182 Y.L. Murphey

FTD
(Fuzzy Torque Distributor)

Tec, FTD

Tec, TD

Tec, TD

Te

Tec

SCC
(State of Charge Compensator)

Tec, SOC

Driver style

Roadway type and
Level of Congestion

Fig. 8. Architecture view of IEMA proposed by Langari and Won

The function of FTD is to determine the effective distribution of torque between the motor and the
engine. FTD is a fuzzy rule based system that incorporates the knowledge about the driving situation into
energy optimization strategies. Fuzzy rules are generated for each of the nine facility driving cycles defined
by Sierra Research [44]. These knowledge bases are indexed as RT1 through RT9.

Six fuzzy membership functions are generated for assessing driving trends, driving modes and the SOC,
and for the output variable of FTD, Tec, FTD. These fuzzy membership functions are generated by the expert
knowledge about the systems’ characteristics and the responses of the powertrain components. Fuzzy rules
are generated based on the postulate that fuel economy can be achieved by operating the ICE at the efficient
region of the engine and by avoiding transient operations that would occur in typical driving situations
such as abrupt acceleration or deceleration, frequent stop-and-go. The rational for each fuzzy rule set is
given below:

(1) Low-speed cruise trend. This speed range is defined as below 36.66 ft s−1 (25mph) with small accelera-
tion/deceleration rates (within ±0.5 ft s−2). When the level of the SOC is high, the electric mother (EM)
is used to provide the propulsive power to meet the driver’s torque demand (Tdc). When the SOC is
low, ICE is used to generate propulsive power even if it means (temporary) high fuel consumption, since
priority is given to maintaining the SOC at certain levels. For low speed region of ICE under low SOC,
no additional engine operation for propulsion is made to avoid the ICE operation at inefficient regions of
the region. For high engine speed under low SOC, ICE together with EM are used to generate propulsive
power. This strategy is applied to all facility-specific drive cycles whenever this driving trend is present.

(2) High-speed cruise trend. This speed range is defined as over 58.65 ft s−1 (40 mph) with small accelera-
tion/deceleration rates (within ±0.5 ft s−2). In this speed range, ICE is sued to provide propulsive power.
For speeds over about 55mph, fuel consumption rate increases with the increase of vehicle speed. There-
fore, EM is used in this region to easy the overall fuel usage. Note, the continued use of EM will result
in making SCC to act to recover the SOC of the battery. This rule is applied to all facility-specific drive
cycles whenever this driving trend is present. Depending on the gear ratio during driving, the engine
speed is determined according to the speed of the vehicle. Given the speed of the vehicle, the engine
speed will be high or low depending on the gear ratio. For the high-speed region of the engine, ICE is
to be operated for generating power according to the level of the SOC. The EM is used for low speed
region of the engine.

(3) Acceleration/deceleration trend. In this acceleration/deceleration, fuzzy rules are devised based on the
characteristic features of each drive cycle (i.e. each of the nine facility-specific drive cycles), and is
derived by comparing with the characteristics of the neighboring drive cycles. The fuzzy rules were
derived based on the speed-fuel consumption analysis, and observations of speed profiles for all nine
Sierra driving cycles.

Intelligent Vehicle Power Management: An Overview 183

The IEMA also incorporates the prediction of driver style into the torque compensation. Langari and Won
characterizes the driving style of the driver by using a driving style factor αDSI , which is used to compensate
the output of the FTD through the following formula:

Tec,TD = Tec,FTD
∗ (1 + sgn(Tec,FTD)∗αDSI) , (11)

where Tec, TD is the increment of engine torque compensating for the effect of driver variability, which is
represented by αDSI . Combining with (10) with (11) we have

Tec + Tmc = Te + Tec,FTD
∗ (1 + sgn(Tec,FTD)∗αDSI) + Tec,SOC + Tmc = Tc. (12)

This compensation was devised based on the following assumption. The transient operation of the engine
yields higher fuel consumption than steady operation does. Therefore the driver’s behavior is predicted and
its effect on the engine operation is adjusted. For example, for the aggressive driver, the less use of ICE is
implemented to avoid fuel consumption that is due to the transient operation of the engine by the driver.
In [52], a maximum 10% of the increment of engine torque was considered for calm drivers, normal 0% and
aggressive −10%.

In order to keep the level of electric energy within a prescribed range throughout driving, SCC, the State-
of-Charge Compensator was used in IEMA. The SCC detects the current SOC and compares it with the
target SOC, and commands additional engine torque command, Tec, SOC. As shown in (12), the increment
of engine torque from SCC is added to (or subtracted from) the current engine torque for the charge (or
discharge) operation.

The charge (or discharge) operations are determined by the instantaneous operating mode, which is
characterized into start-up, acceleration, cruise, deceleration (braking), and stationary.

Under the charge sustenance concept, the function of the electric motor can be switched to that of a
generator to charge the battery for the next use if surplus power from the engine is available. In certain
driving modes, however, particularly in acceleration and cruise modes, battery charge by operating ICE
is generally not recommended because this may cause the overall performance to deteriorate and/or the
battery to be overcharged. Selective battery charge operation may be required, however, for the operation
of HEVs in these modes. In the stop (idle) mode, the charge sustaining operation can be accomplished in an
efficient region of the engine while maximizing fuel efficiency if applicable or required. While not considered
in this study, external charge operation can be accomplished in the stationary (parking) mode of the vehicle.
Langari and Won derived functions for Tec,SOC for both hybrid (acceleration, cruise, and deceleration) and
stop modes.

In the hybrid mode Tec, SOC is determined based on the analysis of the engine-motor torque plane, driver’s
torque demand, the (engine) torque margin for the charge operation (TMC) and the discharge operation
(TMD). The increments of engine torque were obtained by introducing an appropriate function that relates
to the current SOC, TMC, and TMD.

The Tec, SOC is further adjusted based on the vehicle’s mode of operation. The adjustment was imple-
mented by a fuzzy variable βhybrid and then the incremental of engine torque for the charge operation
becomes

Tec,SOC,hybrid = βhybrid × Tec,SOC,

where βhybrid is the output of a mode-based fuzzy inference system that generates a weighted value of [0, 1]
to represent the degree of charge according to the vehicle modes. For instance, if the vehicle experiences high
acceleration, additional battery charge is prohibited to avoid deteriorating the vehicle performance even in
low level of the SOC in the battery. The value of βhybrid is set to zero whenever the level of the SOC is high
in all modes. In the cruise or the deceleration mode, battery charge operation is performed according to the
engine speed under low SOC level. In the acceleration mode, battery charge operation is dependent on the
magnitude of power demand under low SOC level.

The charge sustaining operation in the stop mode is accomplished based on the analysis of efficient region
of the engine while maximizing fuel economy and the best point (or region) of operation of the engine and
the gear ratio of the transmission device.

184 Y.L. Murphey

Langari and Won evaluated their IEMA system through simulation on the facility-specific drive cycles [7]
and the EPA UDDS [1]. For the simulation study, a typical parallel drivetrain with a continuous variable
transmission was used. The vehicle has a total mass of 1,655kg which is the sum of the curb weight of
1,467kg and the battery weight. An internal combustion engine with a displacement of 0.77L and peak
power of 25 kW was chosen. The electric motor is chosen to meet the acceleration performance (0 to 60mph
in less than 15 s.) To satisfy the requirement for acceleration, a motor with a power of 45 kW is selected. The
battery capacity is 6 kW h (21.6MJ) with a weight of 188 kg and is chosen on the basis of estimated values of
the lead acid battery type used in a conventional car. Langari and Won gave a detailed performance analysis
based on whether any of the intelligent predictions are used: roadway type, driving trend, driving style and
operating mode. Their experiments showed their IEMA gave significant improvements when any and all of
these four types knowledge were used in the power management system.

4 Intelligent Systems for Predicting Driving Patterns

Driving pattern exhibited in real driving is the product of the instantaneous decisions of the driver to
cope with the (physical) driving environment. It plays an important roll in power distribution and needs
to be predicted during real time operation. Driving patterns are generally defined in terms of the speed
profile of the vehicle between time interval [t − ∆w, t], where t is the current time instance during a
driving experience, and ∆w > 0 is the window size that characterizes the length of the speed profile that
should be used to explore driving patterns. Various research work have suggested that road type and traffic
condition, trend and style, and vehicle operation modes have various degrees of impacts on vehicle fuel
consumptions [4, 7, 8, 12, 13, 31, 49]. However most of the existing vehicle power control approaches do
not incorporate the knowledge about driving patterns into their vehicle power management strategies. Only
recently research community in intelligent vehicle power control has begun to explore the ways to incorporate
the knowledge about online driving pattern into control strategies [19, 26, 27, 52].

This section discusses the research issues related to the prediction of roadway type and traffic congestions,
the driving style of the driver, current driving mode and driving trend.

4.1 Features Characterizing Driving Patterns

Driving patterns can be observed generally in the speed profile of the vehicle in a particular environment. The
statistics used to characterize driving patterns include 16 groups of 62 parameters [13], and parameters in
nine out of these 16 groups critically affect fuel usage and emissions [4, 12]. However it may not necessary to
use all these features for predicting a specific driving pattern, and on the other hand, additional new features
may be explored as well. For example in [27], Langari and Won used only 40 of the 62 parameters and then
added seven new parameters, trip time; trip distance; maximum speed; maximum acceleration; maximum
deceleration; number of stops; idle time, i.e. percent of time at speed 0 kph. To develop the intelligent
systems for each of the four prediction problems addressed in this section, namely roadway type and traffic
congestion level, driver style, operation mode, driving trend, the selection of a good set of features is one
of the most important steps. It has been shown in pattern recognition that too many features may degrade
system performances. Furthermore, more features imply higher hardware cost in onboard implementation
and more computational time. Our own research shows that a small subset of the features used by Langari
and Won [27] can give just as good or better roadway predictions [32].

The problem of selecting a subset of optimal features from a given set of features is a classic research
topic in pattern recognition and a NP problem. Because the feature selection problem is computationally
expensive, research has focused on finding a quasi optimal subset of features, where quasi optimal implies
good classification performance, but not necessarily the best classification performance. Interesting feature
selection techniques can be found in [14, 18, 34].

Intelligent Vehicle Power Management: An Overview 185

4.2 A Multi-Class Intelligent System for Predicting Roadway Types

In general a driving cycle can be described as a composition of different types of roadways such as local,
freeway, arterial/collector, etc., and different levels of traffic congestions. Under a contract with the Envi-
ronmental Protection Agency (EPA), Sierra Research Inc. [7] has developed a set of 11 standard driving
cycles, called facility-specific (FS) cycles, to represent passenger car and light truck operations over a range
of facilities and congestion levels in urban areas. The 11 drive cycles can be divided into four categories,
freeway, freeway ramp, arterial, and local. More recently they have updated the data to reflect the speed
limit changes in certain freeways [44]. The two categories, freeway and arterial are further divided into sub-
categories based on a qualitative measure called level of service (LOS) that describe operational conditions
within a traffic stream based on speed and travel time, freedom to maneuver, traffic interruptions, comfort,
and convenience. Six types of LOS are defined with labels, A through F, with LOS A representing the best
operating conditions and LOS F the worst. Each level of service represents a range of operating conditions
and the driver’s perception of those conditions; however safety is not included in the measures that establish
service levels [44, 48]. According to the most recent results [44], the freeway category has been divided into
six LOS: freeway-LOS A, through freeway-LOS F; the arterial category into three LOS: Arterial LOS A–B,
Arterial LOS C–D, and Arterial LOS E–F. The speed profiles of the 11 Sierra new driving cycles are shown
in Fig. 9. The statistical features of these 11 drive cycles are listed in Table 4.

One potential use of facility specific driving cycles in vehicle power management is to learn knowledge
about optimal fuel consumption and emissions in each of 11 facility specific driving cycles and apply the
knowledge to online control. From the discussion presented in Sect. 3 we can see that most vehicle power
management strategies are generally based on a fixed drive cycle, and as such do not deal with the variabil-
ity in the driving situation. A promising approach is to formulate a driving cycle dependent optimization
approach that selects the optimal operation points according to the characteristic features of the drive cycle.
The driving cycle specific knowledge can be extracted from all 11 Sierra FS driving cycles through machine
learning of the optimal operation points. During the online power control, the power controller needs to
predict the current road type and LOS at the current time. Based on the prediction result, the knowledge
extracted from the Sierra FS cycle that match the predicted result can be used for the online power con-
troller. The key issue is to develop an intelligent system that can predict the current and a short-term future
road type and LOS based on the history of the current driving cycle.

An intelligent system can be developed to classify the current driving environment in terms of roadway
type combined with traffic congestion level based on the 11 standard Sierra FS cycles. The intelligent system
can be a neural network or decision tree or any other classification techniques. Langari and Won used a
learning vector quantization (LVQ) network to classify the current roadway type and congestion level [27].
An LVQ network has a two-stage process. At the first stage, a competitive layer is used to identify the
subclasses of input vectors. In the second stage, a linear layer is used to combine these subclasses into the
appropriate target classes.

The prediction or classification of road type and LOS is on a segment-by-segment basis. Each driving cycle
in a training data set is divided into segments of ∆w seconds. In [27], Langari and Won used a ∆w = 150 s, and
adjacent segments are overlapped. Features are extracted from each segment for prediction and classification.
The features used in [27] consisting of 40 parameters from the 62 parameters defined by Sierra are considered
since the information on the engine speed and gear changing behavior are not provided in the drive cycles
under their consideration. In addition, seven other characteristic parameters, which they believe can enhance
the system performance are: trip time; trip distance; maximum speed; maximum acceleration; maximum
deceleration; number of stops; idle time, i.e. percent of time at speed 0 kph.

An intelligent system that is developed for road type prediction will have multiple target classes, e.g. 11
Sierra road type and LOSs. For an intelligent system that has a relative large number of output classes, it
is important to select an appropriate method to model the output classes. In general a multi-class pattern
classification problem can be modeled in two system architectures, a single system with multiple output
classes or a system of multiple classifiers. The pattern classes can be modeled by using either One-Against-
One (OAO), One-Against-ALL (OAA) or P-Against-Q, with P > 1 and Q > 1. A comprehensive discussion
on this topic can be found in [36, 37].

186 Y.L. Murphey

4.3 Predicting Driving Trend, Operation Mode and Driver Style

Driving trends are referring to the short term or transient effects of the drive cycle such as low speed cruise,
high speed cruise, acceleration/deceleration, and so on. These driving trends can be predicted using features
such as the magnitudes of average speed, acceleration value, starting and ending speed in the past time
segment.

The instantaneous operating mode of the vehicle at every second is the representation of the driver’s
intention (desire) for the operation of the vehicle, such as start-up, acceleration, cruise, deceleration (braking),
and stationary. For each mode, different energy management strategies are required to control the flow of
power in the drivetrain and maintain adequate reserves of energy in the electric energy storage device. The
operation mode can be determined by examining the torque relations on the drive shaft. According to [27],
the operation modes can be characterized by the two torque features, the torque required for maintaining

Fig. 9. New facility specific driving cycles defined by Sierra Research. The speed is in meters per second

Intelligent Vehicle Power Management: An Overview 187

Fig. 9. (Continued)

the vehicle speed constant in spite of road load such as rolling resistance, wind drag, and road grade, and the
torque required for acceleration or deceleration of the vehicle (driver’s command). Langari and Won used
the engine speed SPE is used to infer the road load, which is a function of the road grade and the speed of
the vehicle. Under the assumption that mechanical connection between the engine and the wheels through
transmission converts the input argument for the speed of the vehicle to the engine speed, and driving occurs
on a level road, the road load can be represented by the engine speed.

Driver style or behavior has a strong influence on emissions and fuel consumption [17, 39, 49, 50]. It has
been observed that emissions obtained from aggressive driving in urban and rural traffic are much higher
than those obtained from normal driving. Similar result is observed in relation to fuel consumption. Drivers
style can be categorized in the following three classes [27]:

• Calm driving implies anticipating other road user’s movement, traffic lights, speed limits, and avoiding
hard acceleration.

188 Y.L. Murphey

Table 4. Statistics of 11 facility specific driving cycles

Facility cycles by Sierra Research

Cycle Vavg (mph) Vmax (mph) Amax (mph s−2) Length (s)

Freeway LOS A 67.79 79.52 2.3 399
Freeway LOS B 66.91 78.34 2.9 366
Freeway LOS C 66.54 78.74 3.4 448
Freeway LOS D 65.25 77.56 2.9 433
Freeway LOS E 57.2 74.43 4.0 471
Freeway LOS F 32.63 63.85 4.0 536
Freeway ramps 34.6 60.2 5.7 266
Arterials LOS A–B 24.8 58.9 5.0 737
Arterials LOS C–D 19.2 49.5 5.7 629
Arterials LOS E–F 11.6 39.9 5.8 504
Local roadways 12.9 38.3 3.7 525

• Normal driving implies moderate acceleration and braking.
• Aggressive driving implies sudden acceleration and heavy braking.

Acceleration criteria for the classification of the driver’s style are based on the acceleration ranges can be
found in [49]. In [27], a fuzzy classifier was presented. Two fuzzy variables were used, average acceleration
and the ratio of the standard deviation (SD) of acceleration and the average acceleration over a specific
driving range were used together to identify the driving style.

5 Conclusion

In this chapter we presented an overview of intelligent systems with application to vehicle power manage-
ment. The technologies used in vehicle power management have evolved from rule based systems generated
from static efficiency maps of vehicle components, driving cycle specific optimization of fuel consumption
using Quadratic or Dynamic Programming, Predictive control combined with optimization, to the intelligent
vehicle power management based on road type prediction and driving patterns such as driving style, oper-
ation mode and driving trend. We have seen more and more research in the use of neural networks, fuzzy
logic and other intelligent system approaches for vehicle power management.

During the recent years many new telematic systems have been introduced into road vehicles. For instance,
global positioning systems (GPS) and mobile phones have become a de facto standard in premium cars. With
the introduction of these systems, the amount of information about the traffic environment available in the
vehicle has increased. With the availability of traffic information, predictions of the vehicle propulsion load
can be made more accurately and efficiently. Intelligent vehicle power systems will have more active roles in
building predictive control of the hybrid powertrain to improve the overall efficiency.

References

1. http://www.epa.gov/otaq/emisslab/methods/uddscol.txt
2. I. Arsie, M. Graziosi, C. Pianese, G. Rizzo, and M. Sorrentino, “Optimization of supervisory control strategy for

parallel hybrid vehicle with provisional load estimate,” in Proc. 7th Int. Symp. Adv. Vehicle Control (AVEC),
Arnhem, The Netherlands, Aug. 2004.

3. B. Badreddine and M.L. Kuang, “Fuzzy energy management for powersplit hybrid vehicles,” in Proc. of Global
Powertrain Conference, Sept. 2004.

4. R. Bata, Y. Yacoub, W. Wang, D. Lyons, M. Gambino, and G. Rideout, “Heavy duty testing cycles: survey and
comparison,” SAE Paper 942 263, 1994.

Intelligent Vehicle Power Management: An Overview 189

5. M. Back, M. Simons, F. Kirschaum, and V. Krebs, “Predictive control of drivetrains,” in Proc. IFAC 15th
Triennial World Congress, Barcelona, Spain, 2002.

6. J. Bumby and I. Forster, “Optimization and control of a hybrid electric car,” Inst. Elect. Eng. Proc. D, vol. 134,
no. 6, pp. 373–387, Nov. 1987.

7. T.R. Carlson and R.C. Austin, “Development of speed correction cycles,” Report SR97-04-01, Sierra Research,
Sacramento, CA, 1997.

8. J. Cloke, G. Harris, S. Latham, A. Quimby, E. Smith, and C. Baughan, “Reducing the environmental impact of
driving: a review of training and in-vehicle technologies,” Report 384, Transport Res. Lab., Crowthorne, UK, 1999.

9. ZhiHang Chen, M. Abul Masrur, and Yi L. Murphey, “Intelligent vehicle power management using machine
learning and fuzzy logic,” FUZZ 2008.

10. S. Delprat, J. Lauber, T.M. Guerra, and J. Rimaux, “Control of a parallel hybrid powertrain: optimal control,”
IEEE Trans. Veh. Technol., vol. 53, no. 3, pp. 872–881, May 2004.

11. A. Emadi, M. Ehsani, and J.M. Miller, Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles.
New York: Marcel Dekker, 2003.

12. E. Ericsson, “Variability in urban driving patterns,” Transport. Res. D, vol. 5, pp. 337–354, 2000.
13. E. Ericsson, “Independent driving pattern factors and their influence on fuel-use and exhaust emission factors,”

Transport. Res. D, vol. 6, pp. 325–341, 2001.
14. F. Ferri, P. Pudil, M. hatef, and J. Kittler, “Comparative study of techniques for large scale feature selection,”

in Pattern Recognition in Practice IV, E. Gelsema and L. Kanal, eds., pp. 403–413. Amsterdam: Elsevier, 1994.
15. Hamid Gharavi, K. Venkatesh Prasad, and Petros Ioannou, “Scanning advanced automobile technology,” Proc.

IEEE, vol. 95, no. 2, Feb. 2007.
16. T. Hofman and R. van Druten, “Energy analysis of hybrid vehicle powertrains,” in Proc. IEEE Int. Symp. Veh.

Power Propulsion, Paris, France, Oct. 2004.
17. B.A. Holmén and D.A. Niemeier, “Characterizing the effects of driver variability on real-world vehicle emissions,”

Transport. Res. D, vol. 3, pp. 117–128, 1997.
18. Jacob A. Crossman, Hong Guo, Yi Lu Murphey, and John Cardillo, “Automotive Signal Fault Diagnostics: Part

I: signal fault analysis, feature extraction, and quasi optimal signal selection,” IEEE Transactions on Vehicular
Technology, July 2003.

19. S.-I. Jeon, S.-T. Jo, Y.-I. Park, and J.-M. Lee, “Multi-mode driving control of a parallel hybrid electric vehicle
using driving pattern recognition,” J. Dyn. Syst. Meas. Control., vol. 124, pp. 141–149, Mar. 2002.

20. V.H. Johnson, K.B. Wipke, and D.J. Rausen, “HEV control strategy for real-time optimization of fuel economy
and emissions,” SAE Paper-01-1543, 2000.

21. K. Ehlers, H.D. Hartmann, and E. Meissner, “42 V – An indication for changing requirements on the vehicle
electrical system,” J. Power Sources, vol. 95, pp. 43–57, 2001.

22. M. Koot, J.T.B.A. Kessels, B. de Jager, W.P.M.H. Heemels, P.P.J. van den Bosch, and M. Steinbuch, “Energy
management strategies for vehicular electric power systems,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 771–
782, May 2005.

23. J.G. Kassakian, J.M. Miller, and N. Traub, “Automotive electronics power up,” IEEE Spectr., vol. 37, no. 5,
pp. 34–39, May 2000.

24. C. Kim, E. NamGoong, S. Lee, T. Kim, and H. Kim, “Fuel economy optimization for parallel hybrid vehicles
with CVT,” SAE Paper-01-1148, 1999.

25. M.W.Th. Koot, “Energy management for vehicular electric power systems,” Ph.D. thesis, Library Technische
Universiteit Eindhoven, 2006, ISBN-10: 90-386-2868-4.

26. I. Kolmanovsky, I. Siverguina, and B. Lygoe, “Optimization of powertrain operating policy for feasibility
assessment and calibration: stochastic dynamic programming approach,” in Proc. Amer. Contr. Conf., vol. 2,
Anchorage, AK, May 2002, pp. 1425–1430.

27. R. Langari and Jong-Seob Won, “Intelligent energy management agent for a parallel hybrid vehicle-part I: system
architecture and design of the driving situation identification process,” IEEE Trans. Veh. Technol., vol. 54, no. 3,
pp. 925–934, 2005.

28. C.-C. Lin, Z. Filipi, L. Louca, H. Peng, D. Assanis and J. Stein, “Modelling and control of a medium-duty hybrid
electric truck,” Int. J. Heavy Veh. Syst., vol. 11, nos. 3/4, pp. 349–370, 2004.

29. C.-C. Lin, H. Peng, J.W. Grizzle, and J.-M. Kang, “Power management strategy for a parallel hybrid electric
truck,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 6, pp. 839–849, Nov. 2003.

30. C.-C. Lin, H. Peng, and J.W. Grizzle, “A stochastic control strategy for hybrid electric vehicles,” in Proc. Amer.
Contr. Conf., Boston, MI, Jun. 2004, pp. 4710–4715.

190 Y.L. Murphey

31. D.C. LeBlanc, F.M. Saunders, M.D. Meyer, and R. Guensler, “Driving pattern variability and impacts on vehicle
carbon monoxide emissions,” in Transport. Res. Rec., Transportation Research Board, National Research Council,
1995, pp. 45–52.

32. Yi L. Murphey, ZhiHang Chen, Leo Kiliaris, Jungme Park, Ming Kuang, Abul Masrur, and Anthony Phillips,
“Neural learning of predicting driving environment,” IJCNN 2008.

33. Jorge Moreno, Micah E. Ortúzar, and Juan W. Dixon, “Energy-management system for a hybrid electric vehicle,
using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, Apr. 2006.

34. Yi Lu Murphey and Hong Guo, “Automatic feature selection – a hybrid statistical approach,” in International
Conference on Pattern Recognition, Barcelona, Spain, Sept. 3–8, 2000.

35. P. Nicastri and H. Huang, “42 V PowerNet: providing the vehicle electric power for the 21st century,” in Proc.
SAE Future Transportation Technol. Conf., Costa Mesa, CA, Aug. 2000, SAE Paper 2000-01-3050.

36. Guobing Ou, Yi L. Murphey, and Lee Feldkamp, “Multiclass pattern classification using neural networks,” in
International Conference on Pattern Recognition, Cambridge, UK, 2004.

37. Guobin Ou and Yi Lu Murphey, “Multi-class pattern classification using neural networks,” J. Pattern Recognit.,
vol. 40, no 1, pp. 4–18, Jan. 2007.

38. G. Paganelli, G. Ercole, A. Brahma, Y. Guezennec, and G. Rizzoni, “General supervisory control policy for
the energy optimization of charge-sustaining hybrid electric vehicles,” JSAE Rev., vol. 22, no. 4, pp. 511–518,
Apr. 2001.

39. T. Preben, “Positive side effects of an economical driving style: safety, emissions, noise, costs,” in Proc.
ECODRIVE 7th Conf., Sept. 16–17, 1999.

40. Danil V. Prokhorov, “Toyota Prius HEV neurocontrol,” in Proceedings of International Joint Conference on
Neural Networks, Orlando, FL, USA, Aug. 12–17, 2007.

41. Danil V. Prokhorov, “Approximating optimal controls with recurrent neural networks for automotive systems,” in
Proceedings of the 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, Oct. 4–6, 2006.

42. Fazal U. Syed, Dimitar Filev, and Hao Ying, “Fuzzy rule-based driver advisory system for fuel economy
improvement in a hybrid electric vehicle,” in Annual Meeting of the NAFIPS, June 24–27, 2007, pp. 178–183.

43. A. Sciarretta, L. Guzzella, and M. Back, “A real-time optimal control strategy for parallel hybrid vehicles with
on-board estimation of the control parameters,” in Proc. IFAC Symp. Adv. Automotive Contr., Salerno, Italy,
Apr. 19–23, 2004.

44. Sierra Research,“ SCF Improvement – Cycle Development,” Sierra Report No. SR2003-06-02, 2003.
45. F. Syed, M.L. Kuang, J. Czubay, M. Smith, and H. Ying, “Fuzzy control to improve high-voltage battery power

and engine speed control in a hybrid electric vehicle,” in Soft Computing for Real World Applications, NAFIPS,
Ann Arbor, MI, June 22–25, 2005.

46. N.J. Schouten, M.A. Salman, and N.A. Kheir, “Fuzzy logic control for parallel hybrid vehicles,” IEEE Trans.
Contr. Syst. Technol., vol. 10, no. 3, pp. 460–468, May 2002.

47. E.D. Tate and S.P. Boyd, “Finding ultimate limits of performance for hybrid electric vehicles,” SAE Paper-01-
3099, 2000.

48. Highway Capacity Manual 2000, Transportation Res. Board, Washington, DC, 2000.
49. I. De Vlieger, D. De Keukeleere, and J. Kretzschmar, “Environmental effects of driving behaviors and congestion

related to passenger cars,” Atmos. Environ., vol. 34, pp. 4649–4655, 2000.
50. I. De Vlieger, “Influence of driving behavior on fuel consumption,” in ECODRIVE 7th Conf., Sept. 16–17, 1999.
51. J.-S. Won, R. Langari, and M. Ehsani, “Energy management strategy for a parallel hybrid vehicle,” in Proc. Int.

Mechan. Eng. Congress and Exposition (IMECE ’02), New Orleans, LA, Nov. 2002, pp. IMECE2002–33 460.
52. Jong-Seob Won and R. Langari, “Intelligent energy management agent for a parallel hybrid vehicle-part II: torque

distribution, charge sustenance strategies, and performance results,” IEEE Trans. Veh. Technol., vol. 54, no. 3,
pp. 935–953, 2005.

An Integrated Diagnostic Process for Automotive Systems

Krishna Pattipati1, Anuradha Kodali1, Jianhui Luo3, Kihoon Choi1, Satnam Singh1,
Chaitanya Sankavaram1, Suvasri Mandal1, William Donat1, Setu Madhavi Namburu2,
Shunsuke Chigusa2, and Liu Qiao2

1 University of Connecticut, Storrs, CT 06268, USA, krishna@engr.uconn.edu
2 Toyota Technical Center USA, 1555 Woodridge Rd., Ann Arbor, MI 48105, USA
3 Qualtech Systems, Inc., Putnam Park, Suite 603, 100 Great Meadow Road, Wethersfield, CT 06109, USA

1 Introduction

The increased complexity and integration of vehicle systems has resulted in greater difficulty in the identifi-
cation of malfunction phenomena, especially those related to cross-subsystem failure propagation and thus
made system monitoring an inevitable component of future vehicles. Consequently, a continuous monitoring
and early warning capability that detects, isolates and estimates size or severity of faults (viz., fault detection
and diagnosis), and that relates detected degradations in vehicles to accurate remaining life-time predic-
tions (viz., prognosis) is required to minimize downtime, improve resource management via condition-based
maintenance, and minimize operational costs.

The recent advances in sensor technology, remote communication and computational capabilities, and
standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicle
systems is monitored and managed. The availability of data (sensor, command, activity and error code logs)
collected during nominal and faulty conditions, coupled with intelligent health management techniques,
ensure continuous vehicle operation by recognizing anomalies in vehicle behavior, isolating their root causes,
and assisting vehicle operators and maintenance personnel in executing appropriate remedial actions to
remove the effects of abnormal behavior. There is also an increased trend towards online real-time diagnostic
algorithms embedded in the Electronic Control Units (ECUs), with the diagnostic troubleshooting codes
(DTCs) that are more elaborate in reducing cross-subsystem fault ambiguities. With the advancements in
remote support, the maintenance technician can use an intelligent scanner with optimized and adaptive state-
dependent test procedures (e.g., test procedures generated by test sequencing software, e.g., [47]) instead
of pre-computed static paper-based decision trees, and detailed maintenance logs (“cases”) with diagnostic
tests performed, their outcomes, test setups, test times and repair actions can be recorded automatically for
adaptive diagnostic knowledge management. If the technician can not isolate the root cause, the history of
sensor data and symptoms are transmitted to a technical support center for further refined diagnosis.

The automotive industry has adopted quantitative simulation as a vital tool for a variety of functions,
including algorithm design for ECUs, rapid prototyping, programming for hardware-in-the-loop simulations
(HILS), production code generation, and process management documentation. Accordingly, fault detection
and diagnosis (FDD) and prognosis have mainly evolved upon three major paradigms, viz., model-based,
data-driven and knowledge-based approaches.

The model-based approach uses a mathematical representation of the system. This approach is applicable
to systems, where satisfactory physics-based models of the system and an adequate number of sensors to
observe the state of the system are available. Most applications of model-based diagnostic approach have
been on systems with a relatively small number of inputs, outputs, and states. The main advantage of a
model-based approach is its ability to incorporate a physical understanding of the process into the process
monitoring scheme. However, it is difficult to apply the model-based approach to large-scale systems because
it requires detailed analytical models in order to be effective.

K. Pattipati et al.: An Integrated Diagnostic Process for Automotive Systems, Studies in Computational Intelligence (SCI) 132,

191–218 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

192 K. Pattipati et al.

A data-driven approach to FDD is preferred when system models are not available, but instead system
monitoring data is available. This situation arises frequently when subsystem vendors seek to protect their
intellectual property by not providing internal system details to the system or vehicle integrators. In these
cases, experimental data from an operating system or simulated data from a black-box simulator will be
the major source of system knowledge for FDD. Neural network and statistical classification methods are
illustrative of data-driven techniques. Significant amount of data is needed from monitored variables under
nominal and faulty scenarios for data-driven analysis.

The knowledge-based approach uses qualitative models for process monitoring and troubleshooting. The
approach is especially well-suited for systems for which detailed mathematical models are not available. Most
knowledge-based techniques are based on casual analysis, expert systems, and/or ad hoc rules. Because of the
qualitative nature of these models, knowledge-based approaches have been applied to many complex systems.
Graphical models such as Petri nets, multi-signal flow graphs and Bayesian networks are applied for diag-
nostic knowledge representation and inference in automotive systems [34]. Bayesian Networks subsume the
deterministic fault diagnosis models embodied in the Petri net and multi-signal models. However, multi-signal
models are preferred because they can be applied to large-scale systems with thousands of failure sources and
tests, and can include failure probabilities and unreliable tests as part of the inference process in a way which
is computationally more efficient than Bayesian networks. Model based, data-driven and knowledge-based
approaches provide the “sand box” that test designers can use to experiment with, and systematically select
relevant models or combinations thereof to satisfy the requirements on diagnostic accuracy, computational
speed, memory, on-line versus off-line diagnosis, and so on. Ironically, no single technique alone can serve
as the diagnostic approach for complex automotive applications. Thus, an integrated diagnostic process [41]
that naturally employs data-driven techniques, graph-based dependency models and mathematical/physical
models is necessary for fault diagnosis, thereby enabling efficient maintenance of these systems.

Integrated diagnostics represents a structured, systems engineering approach and the concomitant
information-based architecture for maximizing the economic and functional performance of a system by inte-
grating the individual diagnostic elements of design for testability, on-board diagnostics, automatic testing,
manual troubleshooting, training, maintenance aiding, technical information, and adaptation/learning [4, 29].
This process, illustrated in Fig. 1, is employed during all stages of a system life cycle, viz., concept, design,
development, production, operations, and training. From a design perspective, it has been well-established
that a system must be engineered simultaneously with three design goals in mind: performance, ease of
maintenance, and reliability [12]. To maximize its impact, these design goals must be considered at all stages
of the design: concept to design of subsystems to system integration. Ease of maintenance and reliability are
improved by performing testability and reliability analyses at the design stage.

The integrated diagnostic process we advocate contains six major steps: model, sense, develop and update
test procedures, infer, adaptive learning, and predict.

(A) Step 1: Model
In this step, models to understand fault-to-error characteristics of system components are developed.
This is achieved by a hybrid modeling technique, which combines mathematical models (simulation
models), monitored data and graphical cause-effect model (e.g., diagnostic matrix (D-matrix) [34]) in
the failure space, through an understanding of the failure modes and their effects, physical/behavioral
models, and statistical and machine learning techniques based on actual failure progression data (e.g.,
field failure data). The testability analysis tool (e.g., TEAMS [47]) computes percent fault detection
and isolation measures, identifies redundant tests and ambiguity groups, and generates updated Failure
Modes Effects and Criticality Analysis (FMECA) report [13], and the diagnostic tree [11]. The onboard
diagnostic data can also be downloaded to a remote diagnostic server (such as TEAMS-RDS [47])
for interactive diagnosis (by driving interactive electronic technical manuals), diagnostic/maintenance
data management, logging and trending. The process can also be integrated with the supply-chain
management systems and logistics databases for enterprise-wide vehicle health and asset management.

(B) Step 2: Sense
The sensor suite is typically designed for vehicle control and performance. In this step, the efficacies of
these sensors are systematically evaluated and quantified to ensure that adequate diagnosis and prognosis

An Integrated Diagnostic Process for Automotive Systems 193

Model
(analytical and graphical

cause - effect model)

Sense
(ensure adequate

Diagnosis/Prognosis)

Develop
Test Procedures

(minimize fault alarms,
improve detection capabilities)

Infer
(fuse multiple

sensors/ reasoners)

Predict
(predict service life of
systems components)

Update Tests
(eliminate redundant

tests, add tests) 2

3

6

3

1

4

Model
(analytical and graphical

cause - effect model)

Sense
(ensure adequate

Diagnosis/Prognosis)

Develop
Test Procedures

improve detection capabilities)

Infer
(fuse multiple

sensors/ reasoners)

Predict
(predict service life of

Update Tests
(eliminate redundant

tests, add tests) 2

3

6

3

1

4

Adaptive Learning
(update model for novel

faults) 5

Fig. 1. Integrated diagnostic process

are achievable. If the existing sensors are not adequate for diagnosis/prognosis, use of additional sensors
and/or analytical redundancy must be considered without impacting vehicle control and performance.
Diagnostic analysis by analysis tools (such as TEAMS [47]) can be used to compare and evaluate
alternative sensor placement schemes.

(C) Step 3: Develop and Update Test Procedures
Smart test procedures that detect failures, or onsets thereof, have to be developed. These procedures have
to be carefully tuned to minimize false alarms, while improving their detection capability (power of the
test and detection delays). The procedures should have the capability to detect trends and degradation,
and assess the severity of a failure for early warning.

(D) Step 4: Adaptive Learning
If the observed fault signature does not correspond to faults reflected in the graphical dependency model
derived from fault simulation, system identification techniques are invoked to identify new cause-effect
relationships to update the model.

(E) Step 5: Infer
An integrated on-board and off-board reasoning system capable of fusing results from multiple sen-
sors/reasoners and driver (or “driver model”) to evaluate the health of the vehicle needs to be applied.
This reasoning engine and the test procedures have to be compact enough so that they can be embedded
in the ECU and/or a diagnostic maintenance computer for real-time maintenance. If on-board diagnos-
tic data is downloaded to a repair station, remote diagnostics is used to provide assistance to repair
personnel in rapidly identifying replaceable component(s).

(F) Step 6: Predict (Prognostics)
Algorithms for computing the remaining useful life (RUL) of vehicle components that interface with
onboard usage monitoring systems, parts management and supply chain management databases are
needed. Model-based prognostic techniques based on singular perturbation methods of control theory,
coupled with an interacting multiple model (IMM) estimator [1], provide a systematic method to predict
the RUL of system components.

194 K. Pattipati et al.

This development process provides a general framework for diagnostic design and implementation for
automotive applications. The applications of this process are system specific, and one need not go through
all the steps for every system. In this chapter, we focus on fault diagnosis of automotive systems using model-
based and data-driven approaches. The above integrated diagnostic process has been successfully applied to
automotive diagnosis, including an engine’s air intake subsystem (AIS) [35] using model-based techniques
and an anti-lock braking system (ABS) [36] using both model-based and data-driven techniques. Data-driven
techniques are employed for fault diagnosis on automobile engine data [9, 10, 38]. The prognostic process is
employed to predict the remaining life of an automotive suspension system [37].

2 Model-Based Diagnostic Approach

2.1 Model-Based Diagnostic Techniques

A key assumption of quantitative model-based techniques is that a mathematical model is available to
describe the system. Although this approach is complex and needs more computing power, several advantages
make it very attractive. The mathematical models are used to estimate the needed variables for analytical
(software) redundancy. With the mathematical model, a properly designed detection and diagnostic scheme
can be not only robust to unknown system disturbances and noise, but also can estimate the fault size
at an early stage. The major techniques for quantitative model-based diagnostic design include parameter
estimation, observer-based design and/or parity relations [43, 54].

Parity (Residual) Equations

Parity relations are rearranged forms of the input-output or state-space models of the system [26]. The
essential characteristic of this approach is to check for consistency of the inputs and outputs. Under normal
operating conditions, the magnitudes of residuals or the values of parity relations are small. To enhance
residual-based fault isolation, directional, diagonal and structured residual design schemes are proposed [22].
In the directional residual scheme, the response to each fault is confined to a straight line in the residual
space. Directional residuals support fault isolation, if the response directions are independent. In the diagonal
scheme, each element of the residual vector responds to only one fault. Diagonal residuals are ideal for the
isolation of multiple faults, but they can only handle m faults, where m equals the number of outputs [21].
Structured residuals are designed to respond to different subsets of faults and are insensitive to others not
in each subset. Parity equations require less computational effort, but do not provide as much insight into
the process as parameter estimation schemes.

Parameter Identification Approach

The parameter estimation-based method [24, 25] not only detects and isolates a fault, but also may estimate
its size. A key requirement of this method is that the mathematical model should be identified and validated
so that it expresses the physical laws of the system as accurately as possible. If the nominal parameters are
not known precisely, they need to be estimated from observed data. Two different parameter identification
approaches exist for this purpose.

Equation Error Method. The parameter estimation approach not only detects and isolates a fault, but
also estimate its size, thereby providing FDD as a one-shot process. Equation error methods use the fact
that faults in dynamic systems are reflected in the physical parameters, such as the friction, mass, inertia,
resistance and so on. Isermann [25] has presented a five-step parameter estimation method for general
systems.

(1) Obtain a nominal model of the system relating the measured input and output variables:

y(t) = f{u(t), θ0} (1)

An Integrated Diagnostic Process for Automotive Systems 195

(2) Determine the relationship function g between the model parameters θ, where underscore notation of
the parameters represents a vector, and the physical system coefficients p:

θ = g(p) (2)

(3) Identify the model parameter vector θ from the measured input and output variables

UN = {u (k) : 0 ≤ k ≤ N} and Y N =
{
y (k) : 0 ≤ k ≤ N

}
(3)

(4) Calculate the system coefficients (parameters): p = g−1 (θ) and deviations from nominal coefficients,
p
0

= g−1 (θ0), viz., ∆p = p − p
0

(5) Diagnose faults by using the relationship between system faults (e.g., short-circuit, open-circuit,
performance degradations) and deviations in the coefficients ∆p.

Output Error (Prediction-Error) Method. For a multiple input-multiple output (MIMO) system, suppose we
have collected a batch of data from the system:

ZN = [u(1), y(1), u(2), y(2), . . . , u(N), y(N)] (4)

Let the output error provided by a certain model parameterized by θ be given by

e(k, θ) = y(k) − ∧
y(k|θ) (5)

Let the output-error sequence in (5) be filtered through a stable filter L and let the filtered output be
denoted by eF (k, θ). The estimate θ̂N is then computed by solving the following optimization problem:

∧
θN = argmin

θ
VN (θ, ZN) (6)

where

VN (θ, ZN) =
1
N

∑
k=1

eT
F (k, θ)Σ−1eF (k, θ) (7)

Here Σ is the covariance of error vector. The effect of filter L is akin to frequency weighting [32]. For example,
a low-pass filter can suppress high-frequency disturbances. The minimization of (7) is carried out iteratively.
The estimated covariance matrix and the updated parameter estimates at iteration i are

Σ̂(i)
N = 1

N−1

N∑
k=1

eF (k,θ
(i)
N)eT

F (k, θ
(i)
N)

∧
θ
(i+1)

N = arg min
θ

1
N

N∑
k=1

eT
F (k,θ)[Σ̂(i)

N]−1eF (k, θ)
(8)

We can also derive a recursive version for the output-error method. In general, the function VN (θ, ZN)
cannot be minimized by analytical methods; the solution is obtained numerically. The computational effort
of this method is substantially higher than the equation error method, and, consequently, on-line real-time
implementation may not be achievable.

Observers

The basic idea here is to estimate the states of the system from measured variables. The output estimation
error is therefore used as a residual to detect and, possibly, isolate faults. Some examples of the observers
are Luenberger observer [52], Kalman filters and Interacting Multiple Models [1], output observers [43, 54],
nonlinear observers [20, 53], to name a few.

196 K. Pattipati et al.

In order to introduce the structure of a (generalized) observer, consider a discrete-time, time-invariant,
linear dynamic model for the process under consideration in state-space form as follows.

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)
where u(t) ∈ �r, x(t) ∈ �n and y(t) ∈ �m

(9)

Assuming that the system matrices A, B and C are known, an observer is used to reconstruct the system
variables based on the measured inputs and outputs u(t) and y(t):

x̂(t + 1) = Ax̂(t) + Bu(t) + Hr(t)
r(t) = y(t) − Cx̂(t) (10)

For the state estimation error ex(t), it follows from (10) that

ex(t) = x(t) − x̂(t)
ex(t + 1) = (A − HC)ex(t) (11)

The state estimation error ex(t), and the residual r(t) = Cex(t) vanish asymptotically

lim
t→∞ ex(t) = 0 (12)

if the observer is stable; this can be achieved by proper design of the observer feedback gain matrix H
(provided that the system is detectable). If the process is subjected to parametric faults, such as changes in
parameters in {A, B}, the process behavior becomes

x(t + 1) = (A + ∆A)x(t) + (B + ∆B)u(t)
y(t) = Cx(t) (13)

Then, the state error ex(t), and the residual r(t) are given by

ex(t + 1) = (A − HC)ex(t) + ∆Ax(t) + ∆Bu(t)
r(t) = Cex(t) (14)

In this case, the changes in residuals depend on the parameter changes, as well as input and state variable
changes. The faults are detected and isolated by designing statistical tests on the residuals.

2.2 Application of Model-Based Diagnostics to an Air-Intake System

Experimental Set-Up: HILS Development Platform

The hardware for the development platform consists of a custom-built ComputeR Aided Multi-Analysis
System (CRAMAS) and two Rapid Prototype ECUs (Rtypes) [19]. The CRAMAS (Fig. 2) is a real-time
simulator that enables designers to evaluate the functionality and reliability of their control algorithms
installed in ECUs for vehicle sub-systems under simulated conditions, as if they were actually mounted
on an automobile. The Rtype is an ECU emulator for experimental research on power train control that
achieves extremely high-speed processing and high compatibility with the production ECU [23]. Besides
emulating the commercial ECU software, experimental control designs can be carried out in the Rtype host
PC using the MATLAB/Simulink environment and compiled through the Real-Time Workshop. Typical
model-based techniques include digital filter design to suppress the noise, abrupt change detection techniques
(such as the generalized likelihood ratio test (GLRT), cumulative sum (CUSUM), sequential probability
ratio test (SPRT)), recursive least squares (RLS) estimation, and output error (nonlinear) estimation for
parametric faults, extended Kalman filter (EKF) for parameter and state estimation, Luenberger observer,
and the diagnostic inference algorithms (e.g., TEAMS-RT) [2, 45, 47]. This toolset facilitates validation of
model-based diagnostic algorithms.

An Integrated Diagnostic Process for Automotive Systems 197

Fault
Injection

Fault
Injection

Fig. 2. CRAMAS� engine simulation platform and operation GUI

Combining the Rtype with the CRAMAS, and a HIL Simulator, designers can experiment with different
diagnostic techniques, and/or verify their own test designs/diagnostic inference algorithms, execute simula-
tions, and verify HILS operations. After rough calibration is confirmed, the two Rtypes can also be installed
in an actual vehicle, and test drives can be carried out [23]. As a result, it is possible to create high-quality
diagnostic algorithms at the initial design stage, thereby significantly shortening the development period
(“time-to-market”).

The diagnostic experiment employs a prototype air intake subsystem (AIS) as the hardware system in
our HILS. The function of AIS is to filter the air, measure the intake air flow, and control the amount of air
entering the engine. The reasons for selecting the AIS are its portability and its reasonably accurate physical
model. Figure 3 shows the photograph of our prototype AIS. It consists of a polyvinyl chloride pipe, an air
flow sensor, an electronic throttle, and a vacuum pump. It functionally resembles the real AIS for the engine.

The model consists of five primary subsystems: air dynamics, fuel dynamics, torque generation, rotational
dynamics, and the exhaust system. We used a mean value model, which captures dynamics on a time-scale
spanning over several combustion cycles (without considering in-cycle effects). In the following, we elaborate
on the sub-system models. The details of the subsystems and SIMULINK model of air-intake system are
available in [35]. Nine faults are considered for this experiment. The air flow sensor fault (F1) is injected by
adding 6% of the original sensor measurement. Two physical faults, a leak in the manifold (F2) and a dirty
air filter (F3), can be manually injected in the prototype AIS. The leakage fault is injected by adjusting
the hole size in the pipe, while the dirty air filter fault is injected by blocking the opening of the pipe
located at the right hand side of Fig. 3. The throttle angle sensor fault (F4) is injected by adding 10% of

198 K. Pattipati et al.

Source of F2
fault

Fig. 3. Photograph of air-intake system

Fig. 4. Test sequence generation for the engine system

the original sensor measurement. Throttle actuator fault (F5) is injected by adding a pulse to the output
of the throttle controller [40]. The pulse lasts for a duration of 3 s and the pulse amplitude is 20% of the
nominal control signal amplitude. The other faults are modeled using a realistic engine model in CRAMAS,
and are injected via the GUI in CRAMAS host PC. Faults F6–F9 injected through the CRAMAS include:

An Integrated Diagnostic Process for Automotive Systems 199

Table 1. Fault list of engine system

F1a Air flow sensor fault (+6%)

F2a Leakage in AIS (2 cm × 1 cm)
F3a Blockage of air filter
F4a Throttle angle sensor fault (+10%)
F5a Throttle actuator fault (+20%)

F6b Less fuel injection (−10%)

F7b Added engine friction (+10%)

F8b AF sensor fault (−10%)
F9b Engine speed sensor fault (−10%)

a Real faults in the AIS
b Simulated faults in the CRAMAS engine
model

Table 2. Diagnostic matrix of the engine system

Fault\test R1 R2 h R2 l R3 R4 R5 R6 h R6 l

F0 0 0 0 0 0 0 0 0
F1 0 1 0 0 0 0 0 0
F2 0 0 1 1 0 0 1 0
F3 0 0 1 1 0 0 0 1
F4 0 0 0 1 0 0 0 1
F5 1 0 0 0 0 0 0 0
F6 0 0 0 1 1 1 1 0
F7 0 0 0 1 0 0 0 0
F8 0 0 0 0 0 0 0 1
F9 0 1 0 1 0 0 0 1

less fuel injection (−10%), added engine friction (+10%), air/fuel sensor fault (−10%), and the engine speed
sensor fault (−10%). Here all the % changes are deviations from the nominal values. All the injected faults
are listed in Table 1.

Residuals for the Engine Model

The identified subsystem reference models are used to set up six residuals based on the dynamics of the
diagnostic model as follows. The first residual R1 is based on the difference between the throttle angle sensor
reading from the AIS and the predicted throttle angle. The second residual R2 is based on the difference
between air mass flow sensor reading from the AIS and the predicted air flow past the throttle. The third
residual R3 is based on the difference between the engine speed from CRAMAS, and the predicted engine
speed. The fourth residual R4 is based on the difference between the turbine speed from CRAMAS and
predicted turbine speed. The fifth residual R5 is based on the difference between the vehicle speed from
CRAMAS, and the predicted vehicle speed. The sixth residual R6 is obtained as the difference between the
air/fuel ratio from CRAMAS, and the predicted air/fuel ratio.

Experimental Results

Table 2 shows the diagnostic matrix (D-matrix), which summarizes the test designs for all faults considered
in the engine. Each row represents a fault state and columns represent tests. The D-matrix D = {dij}
provides detection information, where dij is 1 if test j detects a fault state i. Here, F0 represents “System
OK” status, with all the tests passing. Since there are no identical rows in this table, all the faults can be
uniquely isolated. For R2, there are two tests: R2 l and R2 h, which correspond to the threshold tests for

200 K. Pattipati et al.

Fig. 5. Behaviors of the residuals with different faults injected at different times

low (negative) and high (positive) levels. There are also two tests R6 l and R6 h for R6 corresponding to
low and high levels of the threshold. The other tests have the same name as the residual name (e.g., R1 is
the test for residual R1). The goal of using minimum expected cost tests to isolate the faults is achieved by
constructing an AND/OR diagnostic tree via an optimal test sequencing algorithm [42, 48, 49]; the tree is
shown in Fig. 4, where an AND node represents a test and an OR node denotes the ambiguity group. In this
tree, the branch which goes to the left/right below the test means the test passed (G)/failed (NG). It can be
seen that tests R5 and R6 h are not shown in the tree, which means that these tests are redundant. This is
consistent with the D-matrix, since R4 and R5 have identical columns. One feature of the diagnostic tree is
that it shows the set of Go-path tests (R6 l, R3, R2 h and R1) that can respond to any fault. The Go-path
tests can be obtained by putting all the tests on the left branches of the tree, which lead to the “system
OK” status. Any residual exceeding the threshold(s) will result in a test outcome of 1 (failed). The residuals
for throttle position, air mass flow, engine speed, turbine speed, vehicle speed, and air/fuel ratio show the
expected behavior. In the fault-free case, the residuals are almost zero. The results of real-time fault diagnosis
are exemplified in Fig. 5 with different faults injected at different times for a particular operating condition
of the engine. The noise level of residuals is very low and changes are abrupt under all faulty scenarios.
Therefore, simple threshold tests would achieve 100% fault detection and 0% false alarms. Although more
advanced tests (such as generalized likelihood ratio test) can be adopted using the fault diagnosis toolset,
they provided the same results in this experiment. The diagnostic scheme under other operating conditions
(different throttle angles, etc.) was also tested. We found that under nominal conditions, the residuals have
the same behavior (near zero).

However, under faulty conditions, the deviation of residuals will change as the operating condition
changes. Therefore, to obtain the best performance (minimal false alarm and maximum fault detection)
of this diagnosis scheme under different operating conditions, a reasonable practice is to use a lookup table
for the thresholds on residual tests according to different operating conditions. During the experiment, we
found that, for two faults, the engine operating conditions are unstable for large-size faults. The first fault
is the air flow sensor fault (F1); the maximum size of the fault is +6%. The second fault is the leakage in
air intake manifold; the maximum size of this fault is 4 cm × 1 cm. These findings are beneficial feedback

An Integrated Diagnostic Process for Automotive Systems 201

to control engineers in understanding the limits of their design. If the diagnostic matrix does change under
different operating conditions, we can use multi-mode diagnosis techniques to handle this situation [51].

2.3 Model-Based Prognostics

Conventional maintenance strategies, such as corrective and preventive maintenance, are not adequate to
fulfill the needs of expensive and high availability transportation and industrial systems. A new strategy
based on forecasting of system degradation through a prognostic process is required. The recent advances in
model-based design technology facilitate the integration of model-based diagnosis and prognosis of systems,
leading to condition-based maintenance to potentially increase the availability of systems. The advantage
of model-based prognostics is that, in many situations, the changes in feature vector are closely related to
model parameters [7]. Therefore, it can also establish a functional mapping between the drifting parameters
and the selected prognostic features. Moreover, as understanding of the system degradation improves, the
model can be adapted to increase its accuracy and to address subtle performance problems.

Prognostic methods use residuals as features. The premise is that the residuals are large in the presence
of malfunctions, and small in the presence of normal disturbances, noise and modeling errors.

Statistical techniques are used to define the thresholds on residuals to detect the presence of faults.
The model-based prognostic process is illustrated in Fig. 6. This process consists of six steps for predicting

the remaining life of a system. These are briefly described below.

(A) Step 1: Identify System Model
The degradation model of a system is considered to be of the following singular perturbation form:

.
x = f(x, λ(θ), u)
.

θ = ε g(x, θ)
y = Cx + Du + v

(15)

Here x ∈ Rn is the set of state variables associated with the fast dynamic behavior of the system; θ is a
scalar, slow dynamic variable related to system damage (degradation); u ∈ Rr is the input vector; the
drifting parameter λ is a function of θ; the rate constant 0 < ε << 1 defines the time-scale separation
between the fast system state dynamics and the slow drift due to damage [6]; y ∈ Rm is the output
vector and v ∈ Rm is the measurement noise. Since ε is very small, (15) can be considered as a two-time
scale system with a slowly drifting parameter.

Fig. 6. Model-based prognostic process

202 K. Pattipati et al.

The modified prognostic model, after scaling the damage variable θ(θ0 ≤ θ ≤ θM) to a normalized
degradation measure ξ(ξ0 ≤ ξ ≤ 1) [58] and relating the degradation measure from load cycle (i− 1) to
load cycle i is:

.
x = f(x, λ(ξ), u)
ξi = ηφ1(ξi−1)φ2(ρi) + ξi−1

y = Cx + Du + v
(16)

Here ρi is the random load parameter during cycle i (e.g., stress/strain amplitude). The function λ(ξ),
which maps the degradation measure to a system parameter, is often assumed to be a polynomial [58]:

λ(ξ) =
K∑

k=0

αkξk (17)

where K is the total number of stress levels.
(B) Step 2: Simulation Under Random Loads

The prognostic model is generally nonlinear. Consequently, the evolution of system dynamics (including
fast and slow-time) is typically obtained through Monte-Carlo simulations. Since the parameter p is a
stochastic process in many applications [57], simulation of (16) for ξ requires the update of degradation
parameter ξ for every cycle based on the random load parameter p in that cycle, where p can be
represented as a function of x. The cycle number ni and randomly realized load parameter

{
pj

i

}ni

j=1

can be obtained through cycle counting method, viz., the rainflow cycle. This method catches both slow
and rapid variations of load by forming cycles that pair high maxima with low minima, even if they are
separated by intermediate extremes [28].

Consequently, the updated degradation measure is obtained as

ξi = ηφ1(ξi−1)
ni∑

j=1

φ2(p
j
i) + ξi−1 (18)

The initial degradation measure ξ0 is assumed to be a Gaussian random variable N(µ, σ2), where µ and
σ represent the mean and the standard deviation, respectively.

(C) Step 3: Prognostic Modeling
Prognostic modeling is concerned with the dynamics of the degradation measure. Consider a system
excited under L different random load conditions as being in modes 1, 2, . . . , L. Assume that M Monte-
Carlo simulations are performed for each random load condition. Then the L models can be constructed,
one for each mode. The dynamic evolution of degradation measure under mode m is given by:

ξm(k + 1) = βm(ξm(k)) + vm(k) k = 0, 1, . . . (19)

where m is the mode number, βm is a function of previous state ξm(k) and vm(k) is a zero mean white
Gaussian noise with variance Q̂m(k). The functional form of βm is obtained from historical/simulated
data. The state prediction (function βm) is obtained in IMM [37] for mode m via:

ξ̂m(k + 1/k) = βm(ξ̂m(k/k)) k = 0, 1, (20)

Here ξ̂m(k/k) is the updated (corrected) estimate of ξm at time k and ξ̂m(k + 1/k) denotes propagated
(predicted) estimate of ξm at time k + 1 based on the measurements up to and including time k.

(D) Step 4: Feature Parameter Estimation
Since the hidden variable ξ is unobserved, it needs to be estimated from the input/output data
{u(t), y(t)}T

t=0. One way to estimate ξ is to use the update equation for ξ in (16), where φ2(ρi) is
a function of measurement y. Since the initial value of ξ0 is not known, it will produce biased estimates.

Another method is based on estimation of the drifting parameters λ of the fast time process in
(16). Two parameter estimation techniques, equation error method and output error method, can be

An Integrated Diagnostic Process for Automotive Systems 203

employed to estimate λ from a time history of measurements
{
u(t), y(t)

}T

t=0
[33]. Here, the equation

error method is employed to estimate λ.
In the equation-error method, the governing equation for estimating λ is the residual equation. The

residual equation r(u, y, λ) is the rearranged form of the input-output or state-space model of the system.
Suppose N data points of the fast-time process are acquired in an intermediate time interval [t, t+αT],
then the optimal parameter estimate is given by:

λ∗ = argmin
λ∗

N∑
i=1

‖r(ui, yi, λ)‖2 (21)

Based on the internal structure of the residual equation, two optimization algorithms – linear least
squares and nonlinear least squares – can be implemented. If prior knowledge on the range of λ is
available, the problem can be solved via constrained optimization. In any case, the measurement equation
is constructed as:

z(k) = λ(ξ(k)) + ϑ(k) k = 0, 1, 2, . . . (22)

where z(k) = λ∗, λ(ξ) is typically a polynomial function as in (17) and ϑ(k) is a zero mean Gaussian

noise with variance
∧
S(k). The variance is obtained as a by-product of the parameter estimation method.

(E) Step 5: Track the Degradation Measure
To track the degradation measure, an interacting multiple model (IMM) estimator [1, 46] is implemented
for online estimation of the damage variable. For a system with L operational modes, there will be
L models in the IMM, one for each mode. Each mode will have its own dynamic equation and the
measurement equation is of the form in (22).

(F) Step 6: Predict the Remaining Life
The remaining life depends on the current damage state ξ(k), as well as the future usage of the system.
If the future operation of a system is known a priori, the remaining life can be estimated using the
knowledge of future usage. Typically, one can consider three types of prior knowledge on future usage.

(1) Deterministic Operational Sequence: In this case, the system is assumed to be operated according to a
known sequence of mode changes and mode durations. Define a sequence S = {mi, Tsi, Tei}Q

i=1, where
Tsi and Tei represent the start time and the end time under mode mi, such that Ts1 = 0, Tei = Tsi+1 and
TsQ is the time at which ξ = 1. Suppose M Monte-Carlo simulations are performed for this operational
sequence. Then, the M remaining life estimates can be obtained based on ξ̂(k/k), the updated damage
estimate at time instant k. The mean remaining life estimate and its variance are obtained from these
M estimates.

(2) Probabilistic Operational Sequences: In this case, the system is assumed to operate under J operational
sequences Sj = {mj

i , T j
si, T j

ei}J
j=1, where Sj is assumed to occur with a known probability pj . If r̂j(k) is

the estimate of residual life based on sequence Sj , then the remaining life estimate r̂(k), and its variance
P (k), are given by:

r̂(k) =
L∑

j=1

pj(k)r̂j(k)

P (k) =
L∑

j=1

pj(k)
{
Pj(k) + [r̂j(k) − r̂(k)]2

} (23)

(3) On-Line Sequence Estimation: This method estimates the operational sequence based on measured data
via IMM mode probabilities. Here, the future operation of the system is assumed to follow the observed
history and the dynamics of mode changes. For the ith Monte-Carlo run in mode m, the time to failure
until ξ = 1 can be calculated as [61]:

tim(end) = (ψi
m)−1 (24)

The remaining life estimate from ith Monte-Carlo run for mode m is:

r̂i
m(k) = tim(end) − tim(k) (25)

204 K. Pattipati et al.

Then, the remaining life estimate and its variance for mode m are:

r̂m(k) = 1
M

M∑
i=1

r̂i
m(k)

Pm(k) = 1
M−1

M∑
i=1

[r̂m(k) − r̂i
m(k)]2

(26)

The above calculation can be performed off-line based on simulated (or historical) data. To reflect the
operational history, the mode probabilities from IMM can be used to estimate the remaining life.

2.4 Prognostics of Suspension System

To demonstrate the prognostic algorithms, a simulation study is conducted on an automotive suspension
system [35]. The demonstration to estimate the degradation measure will follow the prognostic process dis-
cussed above for a half-car two degree of freedom model [64]. Singular perturbation methods of control theory,
coupled with dynamic state estimation techniques, are employed. An IMM filter is implemented to estimate
the degradation measure. The time-averaged mode probabilities are used to predict the remaining life.

The details of the system model are given in [35]. The results of 100 Monte-Carlo simulations for the
system under three different road conditions viz., very good, fair, and severe road conditions are presented in
Fig. 7. Compared to the severe road condition, the increases in the life times for the fair and very good roads
are about 35 and 80%, respectively. If we assume a 10% calendar time usage of the automobile (2.4 h a day),
the expected life of suspension system will be 4.5, 6 and 8 years, respectively, for the three road conditions.
Since the suspension system has three random road conditions, the number of modes in the degradation
model is 3. IMM may be viewed as a software sensor. It tracks the road condition very well based on noisy
data. For IMM implementation, the following transition matrix is used in this scenario:

Φ =

⎡
⎣ 0.9 0.05 0.05

0.05 0.9 0.05
0.05 0.05 0.9

⎤
⎦

where φij = P (mode j in effect at time k + 1| mode i in effect at time k). The system mode changes are
expected to be as follows. Mode 1 is from 0 to 70 × 105 s, Mode 2 is from 70 × 105 s to 140 × 1105 s, Mode
3 is from 140 × 1105 s to tend, where tend is the time at which degradation measure ξ = 1. Figure 8 shows
the plot of mode probabilities of the IMM. Figure 9 presents the estimate of remaining life (solid bold line)

Fig. 7. 100 Monte-Carlo simulations for three random loads

An Integrated Diagnostic Process for Automotive Systems 205

Fig. 8. Mode probabilities of IMM (Mode 1: good, Mode 2: fair, Mode 3: severe road condition)

Fig. 9. Estimation of remaining life for a typical simulation run

206 K. Pattipati et al.

and its variance for a single run of the scenario considered using the IMM mode probabilities. We can see
that the remaining life estimate moves at first to the estimate in between Modes 1 and 2, then gradually
approaches the estimate for Mode 2, which is what one would expect. The dashed bold line represents the
remaining life estimate assuming that the road surface condition can be measured accurately via a sensor
(e.g., an infrared sensor).

In this case, the mode is known, and we can evaluate the accuracy of the remaining life estimate. The
dashed bold line represents the remaining life estimate with the mode sensor. In Fig. 9, we can see the IMM
produces remaining life estimate close to the estimate of the mode sensor. The difference between these two
estimates is relatively high (about 6%) at the beginning (ξ < 0.1), and they become virtually identical as
degradation measure ξ increases.

3 Data-Driven Diagnostic Approach

Data-driven FDD techniques seek to categorize the input–output data into normal or faulty classes based on
training information. Efficient data reduction techniques are employed to handle high-dimensional and/or
large volumes of data. Typically, one experiments with a number of classification algorithms and fusion
architectures, along with the data reduction techniques, to achieve high diagnostic accuracy. The fusion
architectures minimize variability in diagnostic accuracy, and ensure better collective reliability and efficiency
when compared with a single classifier.

3.1 Data-Driven Techniques

Data Preprocessing and Reduction

The sensor data obtained from a system is typically noisy and often incomplete. The data may be continuous
or discrete (categorical). A linear trend, a signal mean, or noise in the raw data, outliers and drift can cause
errors in the FDD analysis. Hence, it is important to preprocess the data. Data preprocessing involves
filtering the data to isolate the signal components, de-trending, removing drift and outliers, smart fill in of
missing values, pre-filtering and auto-scaling to adjust scale differences among variables to obtain normalized
data (typically zero mean and unit variance), to name a few. In addition, traditional methods of data
collection and storage capabilities become untenable mainly because of the increase in the number of variables
associated with each observation (“dimension of the data”) [16]. Data reduction, an intelligent preprocessing
technique, synthesizes a smaller number of features to overcome the “curse of dimensionality.” One of the
issues with high-dimensional datasets (caused by multiple modes of system operation and sensor data over
time) is that all the measurements are not salient for understanding the essential phenomena of interest.
The salient features extracted using the data reduction techniques enable real-time implementation of data-
driven diagnostic algorithms via compact memory footprint, improved computational efficiency and generally
enhanced diagnostic accuracy.

In the data reduction process, the entire data is projected onto a low-dimensional space, and the reduced
space often gives information about the important structure of the high-dimensional data space. Feature
extraction for data reduction involves signal processing methods, such as wavelets, fast Fourier transforms
(FFT) and statistical techniques to extract relevant information for diagnosing faults. Statistical data reduc-
tion techniques, such as multi-way partial least squares (MPLS) and multi-way principal component analysis
(MPCA), are among the widely investigated techniques. The MPCA is used to reduce the dimensionality of
data, and produces a representation that preserves the correlation structures among the monitored variables.
The PCA is optimal in terms of capturing the variation in data [8]. The MPLS is another dimensionality
reduction technique that considers both pattern (independent data) and class (response) information. MPLS
technique is widely used for its ability to enhance classification accuracy on high-dimensional datasets, and
its computational efficiency [5]. The reduced data can be processed with classifiers for categorizing the various
fault classes.

An Integrated Diagnostic Process for Automotive Systems 207

Multi-Way Partial Least Squares (MPLS). In an MPLS technique, the dimensionality of the input and
output spaces are transformed to find latent variables, which are most highly correlated with the output, i.e.,
those that not only explain the variation in the input tensor X ∈ RI×J×K , but which are most predictive
of output matrix Y ∈ RI×M . The input tensor X (data samples × sensors× time steps) is decomposed into
one set of score vectors (latent variables) {tf ∈ RI}L

f=1, and two sets of weight vectors {wf ∈ RJ}L
f=1 and

{vf ∈ RK}L
f=1 in the second and third dimensions, respectively [50]. The Y matrix is decomposed into score

vectors t and loading vectors q. Formally,

xijk =
L∑

f=1

tifwjfvkf + eijk; 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K

yim =
L∑

f=1

tifqmf + uim; 1 ≤ i ≤ I, 1 ≤ m ≤ M

(27)

where L is the number of factors, J is number of sensor readings, K is time variations, and eijk and uijk are
residuals. The problem of finding t, w, v, and q is accomplished by nonlinear iterative partial least squares
(NIPALS) algorithm [63]. This reduced space (score matrix) will be applied to the classifiers, discussed in
the following section, for fault isolation.

Classifiers

Data-driven techniques for fault diagnosis have a close relationship with pattern recognition, wherein one
seeks to categorize the input–output data into normal or one of several fault classes. Many classification
algorithms use supervised learning to develop a discriminant function. This function is used to determine
the support for a given category or class, and assigns it to one of a set of discrete classes. Once a classifier is
constructed from the training data, it is used to classify test patterns. The pattern classifiers used extensively
for automobile fault diagnosis are discussed below.

Support Vector Machine (SVM). Support vector machine transforms the data to a higher dimensional
feature space, and finds an optimal hyperplane that maximizes the margin between two classes via quadratic
programming [3, 15]. There are two distinct advantages of using the SVM for classification. One is that the
features are often associated with the physical meaning of data, so that it is easy to interpret. The second
advantage is that it requires only a small amount of training data. A kernel function, typically a radial basis
function, is used for feature extraction. An optimal hyperplane is found in the feature space to separate the
two classes. In the multi-class case, a hyperplane separating each pair of faults (classes) is found, and the
final classification decision is made based on a majority vote among the binary classifiers.

Probabilistic Neural Network (PNN). The probabilistic neural network is a supervised method to estimate
the probability distribution function of each class. In the recall mode, these functions are used to estimate
the likelihood of an input vector being part of a learned category, or class. The learned patterns can also be
weighted, with the a priori probability, called the relative frequency, of each category and misclassification
costs to determine the most likely class for a given input vector. If the relative frequency of the categories
is unknown, then all the categories can be assumed to be equally likely and the determination of category
is solely based on the closeness of the input vector to the distribution function of a class. The memory
requirements of PNN are substantial. Consequently, data reduction methods are essential in real-world
applications.

K-Nearest Neighbor (KNN). The k-nearest neighbor classifier is a simple non-parametric method for
classification. Despite the simplicity of the algorithm, it performs very well, and is an important benchmark
method [15]. The KNN classifier requires a metric d and a positive integer k. A new input vector xnew is
classified using a subset of k–feature vectors that are closest to xnew with respect to the given metric d.
The new input vector xnew is then assigned to the class that appears most frequently within the k–subset.
Ties can be broken by choosing an odd number for k (e.g., 1, 3, 5). Mathematically, this can be viewed as
computing a posteriori class probabilities P (ci|xnew) as,

P (ci|xnew) =
ki

k
p (ci) (28)

208 K. Pattipati et al.

where ki is the number of vectors belonging to class ci within the subset of k nearest vectors. A new
input vector xnew is assigned to the class ci with the highest posterior probability P (ci|xnew). The KNN
classifier needs to store all previously observed cases, and thus data reduction methods should be employed
for computational efficiency.

Principal Component Analysis (PCA). Principal component analysis transforms correlated variables into
a smaller number of uncorrelated variables, called principal components. PCA calculates the covariance
matrix of the training data and the corresponding eigenvalues and eigenvectors. The eigenvalues are then
sorted, and the vectors (called scores) with the highest values are selected to represent the data in a reduced
space. The number of principal components is determined by cross-validation [27]. The score vectors from
different principal components are the coordinates of the original data sample in the reduced space. A
classification of a new test pattern (data sample) is made by obtaining its predicted scores and residuals. If
the test pattern is similar to a specific class in the trained classifier, the scores will be located near the origin
of the reduced space, and the residual should be small. The distance of test pattern from the origin of the
reduced space can be measured by Hotelling statistic [39].

Linear Discriminant Analysis (LD) and Quadratic Discriminant Analysis (QD). Discriminant functions
can be related to the class-conditional density functions through Bayes’ theorem [44]. The decision rule
for minimizing the probability of misclassification may be cast in terms of discriminant functions. Linear
discriminant function can be written as

gi (x) = wT
i x + wi0 (29)

where wi and wi0 are the weight vector and bias for the ith class, respectively. Decision boundaries corre-
sponding to linear discriminant functions are hyper planes. Quadratic discriminant function can be obtained
by adding terms corresponding to the covariance matrix with c(c+1)/2 coefficients to produce more compli-
cated separating surfaces [15]. The separating surfaces can be hyperquadratic, hyperspheric, hyperellipsoid,
hyperhyperboloid, etc.

Classifier Fusion Techniques

Fusion techniques combine classifier outputs, viz., single class labels or decisions, confidence (or probability)
estimates, or class rankings, for higher performance and more reliable diagnostic decisions than a single
classifier alone. The accuracy of each classifier in a fusion ensemble is not the same. Thus, the classifier’s
priority or weight needs to be optimized as part of the fusion architecture for improved performance.

Many fusion techniques are explored in the area of fault diagnosis [10, 14]. Some of these are
discussed below:

Fusion of Classifier Output Labels. If a classifier’s final decision on a test pattern is a single class label,
an ensemble of R classifiers provides R discrete output labels. The following algorithms use output labels
from each classifier and combine them into a final fused decision.

(1) Majority Voting: The simplest type of fusion, majority (plurality) voting counts votes for each class from
the classifiers. The class with the most votes is declared the winner. If a tie exists for the most votes,
either it can be broken arbitrarily or a “tie class label” can be assigned. This type of fusion does not
require any training or optimized architecture.

(2) Weighted Voting: In weighted voting, a weight calculated during training of the fusion architecture is
used to calculate the overall score of each class. The higher the classifier accuracy, the more weight that
classifier is given. A score is constructed for each class by using a sum of weighted votes for each class
ci [14]. The class with the highest score is declared the winner.

(3) Näıve Bayes: Classifiers often have very different performance across classes. The confusion matrix of a
classifier (derived from training data) contains this information. The entries in a confusion matrix cmi

k,s

represent the number of times true class ck is labeled class cs by the classifier Di. Support for each class
k on pattern x is developed as [31]:

µk (x) ∝ 1
NL−1

k

{
L∏

i=1

cmi
k,si

}
(30)

An Integrated Diagnostic Process for Automotive Systems 209

Here, Nk is the number of training samples from class ck, L is the number of classifiers. The class with
the highest support is declared as the winner.

Fusion of Classifier Output Ranks. The output of classifiers can be a ranking of the preferences over the
C possible output classes. Several techniques operating on this type of output are discussed below.

(1) Borda Count: The ranked votes from each classifier are assigned weights according to their rank. The
class ranked first is given a weight of C, the second a weight of (C − 1) and so on until a weight of 1 is
assigned for the class ranked last. The score for each class is computed as the sum of the class weights
from each classifier and the winner is the class with the highest total weight [31].

(2) Ranked Pairs: Ranked Pairs is a voting technique where each voter participates by listing his/her pref-
erence of the candidates from the most to the least preferred. In a ranked pair election, the majority
preference is sought as opposed to the majority vote or the highest weighted score. That is, we combine
the outputs of classifiers to maximize the mutual preference among the classifiers. This approach assumes
that voters have a tendency to pick the correct winner [31]. This type of fusion, as in majority voting,
does not require any training. If a crisp label is required as a final output, the first position in the ranked
vector RV is provided as the final decision.

Fusion of Classifier Posterior Probabilities. The output of a classifier can be an array of confidence
estimates or posterior probability estimates. These estimates represent the belief that the pattern belongs
to each of the classes. The techniques in this section operate on the values in this array to produce a final
fusion label.

(1) Bayesian Fusion: Class-specific Bayesian approach to classifier fusion exploits the fact that different
classifiers can be good at classifying different fault classes. The most-likely class is chosen given the test
pattern and the training data using the total probability theorem. The posterior probabilities of the test
pattern along with the associated posterior probabilities of class ci from each of the R classifiers obtained
during training are used to select the class with the highest posterior probability [10].

(2) Joint Optimization of Fusion Center and of Individual Classifiers: In this technique, the fusion center
must decide on the correct class based on its own data and the evidence from the R classifiers. A major
result of distributed detection theory (e.g., [44, 59, 60]) is that the decision rules of the individual classi-
fiers and the fusion center are coupled. The decisions of individual classifiers are denoted by {uk}L

k=1 while
the decision of fusion center by u0: The classification rule of kth classifier is uk = γk(x) ∈ {1, 2, . . . , C}
and that of the fusion center is u0 = γ0(u1, u2, . . . , uL) ∈ {1, 2, . . . , C}. Let J(u0, cj) be the cost of
decision u0 by the committee of classifiers when the true class is cj . The joint committee strategy of the
fusion center along with the classifiers is formulated to minimize the expected cost E{J(u0, cj)}. For
computational efficiency, an assumption is made to correlate each classifier only with the best classifier
during training to avoid the computation of exponentially increasing entries with the number of classifiers
in the joint probability [10]. The decision rule can be written as

γk : uk = arg min
dk∈{1,2,··· ,C}

C∑
j=1

C∑
u0=1

Pk (cj |x) Ĵ (u0, cj) (31)

where

Ĵ (u0, cj) =
C∑

u0=1

P (u0|x, uk = dk, cj)J (u0, cj) (32)

≈
C∑

u0=1

P (u0|uk = dk, cj)J (u0, cj).

Dependence Tree Architectures. We can combine classifiers using a variety of fusion architectures to
enhance the diagnostic accuracy [44, 59, 60]. The class-dependent fusion architectures are developed based
on the diagnostic accuracies of individual classifiers on the training data for each class. The classifiers are
arranged as a dependence tree to maximize the sum of mutual information between all pairs of classifiers [31].

210 K. Pattipati et al.

L1

L2
L3

L4

L5

L1

L2
L3

L4

L5

Fig. 10. Generic decision tree architecture

For illustrative purposes, consider Fig. 10, where five classifiers are arranged in the form of a tree. Suppose
that the classifiers provide class labels {Lj}5

j=1. Then, the support for class ci is given by:

P ({Lj}5
j=1|ci) = P (L5|ci)P (L5|L4, ci)P (L5|L3, ci)P (L4|L1, ci)P (L4|L2, ci) (33)

Here, the term P (L5|ci) denotes the probability of label L5 given the true class ci from the confusion
matrix of classifier 5. The double entries of the form P (Lk|Lj , ci) represent the output labels of classifiers
k and j in the coincidence matrix developed from classifiers k and j on class ci during training. The final
decision corresponds to the class with the highest probability in (33).

Adaptive Boosting (AdaBoost). AdaBoost [18], short for adaptive boosting, uses the same training set
randomly and repeatedly to create an ensemble of classifiers for fusion. This algorithm allows adding weak
learners, whose goal is to find a weak hypothesis with small pseudo-loss1, until a desired low level of training
error is achieved. To avoid more complex requirement on the performance of the weak hypothesis, pseudo loss
is chosen in place of the prediction error. The pseudo-loss is minimized when correct labels yi are assigned the
value 1, and incorrect labels are assigned the value 0, and it is also calculated with respect to a distribution
over all pairs of patterns and incorrect labels. By controlling the distribution, the weak learners can focus
on the incorrect labels, thereby hopefully improving the overall performance.

Error-Correcting Output Codes (ECOC). Error-correcting output codes (ECOC) can be used to solve
multi-class problems by separating the classes into dichotomies and solving the concomitant binary classifi-
cation problems, one for each column of the ECOC matrix. The dichotomies are chosen using the principles of
orthogonality to ensure maximum separation of rows and columns to enhance the error-correcting properties
of the code matrix and to minimize correlated errors of the ensemble, respectively. The maximum number
of dichotomies for C classes is 2C−1 − 1; however, it is common to use much less than this maximum as in
robust design [44]. Each dichotomy is assigned to a binary classifier, which will decide if a pattern belongs
to the 0 or 1 group. Three approaches to fuse the dichotomous decisions are discussed below:

(1) Hamming Distance: Using Hamming distance, we compute the number of positions which are different
between the row representing a class in the ECOC matrix and the output of the classifier bank. The
class which has the minimum distance is declared as the output.

(2) Weighted Voting: Each classifier j detects class i with a different probability. As the multi-class problem
is converted into dichotomous classes using ECOC, the weights of each classifier can be expressed in
terms of the probability of detection (Pdj) and the probability of false alarm (Pfj). These parameters
are learned as part of fusion architecture during training. The weighted voting follows the optimum
voting rules for binary classifiers [44].

(3) Dynamic fusion: Dynamic fusion architecture, combining ECOC and dynamic inference algorithm for
factorial hidden Markov models, accounts for temporal correlations of binary time series data [30, 55]. The
fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using
error correcting output codes (ECOC) and thus solving the concomitant binary classification problems;
the second step fuses the outcomes of multiple binary classifiers over time using a sliding-window dynamic
fusion method. The dynamic fusion problem is formulated as a maximum a posteriori decision problem
of inferring the fault sequence based on uncertain binary outcomes of multiple classifiers over time. The
resulting problem is solved via a primal-dual optimization framework [56]. The third step optimizes
the fusion parameters using a genetic algorithm. The dynamic fusion process is shown in Fig. 11. The
probability of detection Pdj and false alarm probability Pfj of each classifier are employed as fusion
parameters or the classifier weights; these probabilities are jointly optimized with the dynamic fusion in
the fusion architecture, instead of optimizing the parameters of each classifier separately.

1 True loss is non-differentiable and difficult to optimize [3].

An Integrated Diagnostic Process for Automotive Systems 211

Classification
using

error correcting
output codes (ECOC)

Support vector
machines (SVM)

Offline

Training data

Testing data

Multi-way partial
least squares

(MPLS)
(Data reduction)

Data Preprocessing

(,)p fO O

Optimized
parameters

(,)jPd Pf

On-line

Dynamic
Fusion

(Testing)

Fused decisions

Fault
scenarios

Fault appearance
and disappearance

probabilities
(,)i ia Pv

Classifier outcomes
at each epoch

Training

Testing

Dynamic
Fusion

(Training)

Parameter
optimization

Performance
metrics

parameters

Classification
using

error correcting
output codes (ECOC)

Support vector
machines (SVM)

Classification
using

error correcting
output codes (ECOC)

Support vector
machines (SVM)

OfflineOffline

Training data

Testing data

Multi-way partial
least squares

(MPLS)
(Data reduction)

Data Preprocessing

(,)p fO O

Optimized
parameters

(,)jPd Pf

On-line

Dynamic
Fusion

(Testing)

Fused decisions

Fault
scenarios

Fault appearance
and disappearance

probabilities
(,)i ia Pv

Classifier outcomes
at each epoch

Training

Testing

Training

Testing

Dynamic
Fusion

(Training)

Parameter
optimization

Performance
metrics

parameters Parameter
optimization

Performance
metrics

parameters

P

Fig. 11. Overview of the dynamic fusion architecture

This technique allows tradeoff between the size of the sliding window (diagnostic decision delay) and
improved accuracy by exploiting the temporal correlations in the data; it is suitable for an on-board appli-
cation [30]. A special feature of the proposed dynamic fusion architecture is the ability to handle multiple
and intermittent faults occurring over time. In addition, the ECOC-based dynamic fusion architecture is an
ideal framework to investigate heterogeneous classifier combinations that employ data-driven (e.g., support
vector machines, probabilistic neural networks), knowledge-based (e.g., TEAMS-RT [47]), and model-based
classifiers (e.g., parity relation-based or observer-based) for the columns of the ECOC matrix.

Fault Severity Estimation

Fault severity estimation is performed by regression techniques, such as the partial least squares (PLS), SVM
regression (SVMR), and principal component regression (PCR) in a manner similar to their classification
counterparts. After a fault is isolated, we train with the training patterns from the isolated class using the
associated severity levels as the targets (Y), i.e., we train the fault severity estimator for each class. Pre-
classified test patterns are presented to the corresponding estimator, and the estimated severity levels are
obtained [9].

3.2 Application of Data-Driven Techniques

We consider the CRAMAS� engine data considered earlier, but now from a data-driven viewpoint2. A 5× 2
cross-validation3 is used to assess the classification performance of various data-driven techniques.

The diagnostic results, measured in terms of classification errors, with ± representing standard deviations
over 5 × 2 cross validation experiments, are shown in Table 3. We achieved not only smaller fault isolation
2 The throttle actuator fault F5 is not considered in the data driven approach. HILS data was available only for the

remaining eight faults.
3 A special case of cross validation where the data is divided into two halves, one for training and other for testing.

Next time the sets are reversed. This process is repeated for 5 times for a total of 10 training and test sets.

212 K. Pattipati et al.

Table 3. Data driven classification and fusion results on CRAMAS� engine data

CRAMAS� Method Classification error ± Std. Dev. in %

SVM KNN(k = 1) PNN PCA LD QD

Raw data Individual 8.8± 2.5 12.9 ± 2.2 14.8 ± 2.1 22.5 ± 2.3 N/A N/A
(25.6 MB) classification

Reduced Individual 8.2± 2.5 12.8 ± 2.1 14.1 ± 2.1 21.1 ± 3.7 33.1 ± 3.2 16.3 ± 2.3
data via classification
MPLS Tandem (serial) 15.87± 2.49
(12.8 KB) fusion

Fusion center (parallel) 14.81± 3.46
Majority voting 12.06± 1.89
Näıve Bayes 11.81± 1.96
ECOC fusion with 9.0± 2.85
hamming distance
Adaboost 7.625± 2.14
Bayesian 6.25± 2.29
fusion Joint optimization 5.87± 2.04
with majority voting
Dynamic fusion 4.5± 1.6

error, but also significant data reduction (25.6 MB → 12.8 KB for the size of training and testing data).
The proposed approaches are mainly evaluated on the reduced data. The Bayesian and dynamic fusion
outperformed majority voting, näıve Bayes techniques and serial and parallel fusion approaches. We are able
to further improve classification performance of joint optimization by applying majority voting after getting
decisions from the joint optimization algorithm. Posterior probabilities from PNN, KNN (k = 3), and PCA
are fed into the joint optimization algorithm, and then SVM and KNN (k = 1) are used for majority voting
with decisions from the joint optimization algorithm. Majority voting alone provided poor isolation results,
which means that the joint optimization approach is definitely a contributor to the increased accuracy. We
believe that this is because the joint optimization of fusion center and individual classifiers increases the
diversity of the classifier outputs, which is a vital requirement for reducing the diagnostic errors.

For the dynamic fusion approach, we employ SVM as the base classifier for all the columns of the ECOC
matrix. This approach achieves low isolation errors as compared to single classifier results. We experimented
with two different approaches for Pd and Pf in dynamic fusion process. The first approach used Pd and Pf
learned from the training data, while coarse optimization is applied to learn Pd and Pf, and the optimal
parameters are Pd = 0.5 ∼ 0.6 and Pf = 0 ∼ 0.02. We found that the dynamic fusion approach involv-
ing the parameter optimization reduces diagnostic errors to about 4.5%. Dynamic fusion with parameter
optimization is superior to all other approaches considered in this analysis.

The severity estimation results for raw data and reduced data are shown in Table 4. For training and
testing, we randomly selected 60% for training (24 levels for each class) and 40% for testing (16 levels for
each class). Relative errors in % are averaged for 16 severity levels in Table 4. We have applied three different
estimators, PLS, SVMR, and PCR. Large errors with the raw data can be attributed to ill-conditioning of the
parameter estimation problem due to collinearity of data when compared to the reduced data. It is evident
that faults 1, 3, and 6 provided poor estimation performance on raw data due to difficulties in estimating
low severity levels. However, significant performance improvement can be observed when the estimators are
applied to the reduced data. PLS is slightly better than SVMR and PCR in terms of severity estimation
performance and provides good estimation results for high severity levels, although estimating low severity
levels remains a problem. In all cases, SVMR and PCR are comparable to the PLS in terms of fault severity
estimation performance. It is also observed that our techniques perform better on the reduced dataset in
terms of severity estimation accuracy.

In addition to individual classifiers, such as the SVM, PNN, KNN, and PCA for fault isolation, posterior
probabilities from these classifiers can be fused by the novel Bayesian fusion, joint optimization of fusion and

An Integrated Diagnostic Process for Automotive Systems 213

Table 4. Comparison of severity estimation performance on raw and reduced data

Fault Average error, 100%× (true severity level – its estimate)/true level

PLS SVMR PCR

Raw (%) Reduced (%) Raw (%) Reduced (%) Raw (%) Reduced (%)

Air flow sensor fault (F1) −66.88 +4.02 −9.21 −6.14 +23.13 +1.06
Leakage in air intake system (F2) −10.11 +0.76 −0.20 −0.72 −11.22 +0.75
Blockage of air filter (F3) −75.55 +6.42 +1.37 +0.75 −44.20 +6.38
Throttle angle sensor fault (F4) +0.63 −1.28 −1.19 +1.31 +5.51 −0.35
Less fuel injection (F6) −73.42 −30.92 +8.04 +6.77 −51.36 −28.60
Added engine friction (F7) +23.38 +1.43 +4.84 +6.97 +27.20 +1.73
Air/fuel sensor fault (F8) +36.32 +0.40 −2.01 −2.90 −26.28 −0.16
Engine speed sensor fault (F9) −7.14 +10.46 −25.19 −26.23 −1.55 −3.08
Overall % of error −21.60 −1.09 −2.94 −2.52 −9.85 −2.78

individual classifiers, and dynamic fusion approaches. Our results confirm that fusing individual classifiers can
increase the diagnostic performance substantially and that fusion reduces variability in diagnostic classifier
performance. In addition, regression techniques such as the PLS, SVMR and PCR estimate the severity
of the isolated faults very well when the data is transformed into a low-dimensional space to reduce noise
effects.

4 Hybrid Model-Based and Data-Driven Diagnosis

Due to the very diverse nature of faults and modeling uncertainty, no single approach is perfect on all prob-
lems (no-free-lunch theorem). Consequently, a hybrid approach that combines model-based and data-driven
techniques may be necessary to obtain the required diagnostic performance in complex automotive applica-
tions. Here, we present an application involving fault diagnosis in an anti-lock braking system (ABS) [36],
where we integrated model and data-driven diagnostic schemes. Specifically, we combined parity equations,
nonlinear observer, and SVM to diagnose faults in an ABS. This integrated approach is necessary since
neither model-based nor data-driven strategy could adequately solve the entire ABS diagnosis problem, i.e.,
isolate faults with sufficient accuracy.

4.1 Application of Hybrid Diagnosis Process

We consider longitudinal braking with no steering, and neglect the effects of pitch and roll. The model
considers the wheel speed and vehicle speed as measured variables, and the force applied to the brake pedal
as the input. The wheel speed is directly measured and vehicle speed can be calculated by integrating the
measured acceleration signals, as in [62]. Further details of the model are found in [36]. One commonly
occurring sensor fault and four parametric faults are considered for diagnosis in the ABS system. In the case
of a wheel speed sensor fault, the sensor systematically misses the detection of teeth in the wheel due to
incorrect wheel speed sensor gap caused by loose wheel bearings or worn parts. In order to model the wheel
speed sensor fault (F1), we consider two fault severity cases: greater than 0 but less than 5% reduction in
the nominal wheel speed (F1.1), and greater than 5% reduction in the nominal wheel speed (F1.2). The four
parametric faults (F2–F5) are changes in radius of the wheel (Rw), torque gain (Kf), rotating inertia of the
wheel (Iw) and the time constant of the Master Cylinder (τm). Fault F2 is the tire pressure fault, F3 and
F5 correspond to cylinder faults, while F4 is related to vehicle body. Faults corresponding to more than 2%
decrease in Rw are considered. We distinguish among two Rw faults: greater than 2% but less than 20%
(F2.1) decrease in Rw, and greater than 20% decrease in Rw (F2.2). The severities or sizes for Kf and Iw

faults considered are as follows: ±2,±3, . . . , ±10%. The size for τm fault corresponds to a more than 15%
increase in the time constant. Table 5 shows the list of considered faults. The minimum fault magnitude is

214 K. Pattipati et al.

selected such that changes in the residual signals can not be detected if we choose fault magnitude less than
this minimum. The measurement variables for vehicle and wheel speed are corrupted by the zero mean white
noise with variances of 0.004 each. The process noise variables are also white with variance of 0.5% of the
mean square values of the corresponding states (which corresponds to a signal-to-noise ratio of +23 dB).

A small amount of process noise is added based on the fact that these states are driven by disturbances
from combustion processes in the engine (un-modeled dynamics of wheel and vehicle speeds), and non-linear
effects in the ABS actuator (for brake torque and oil pressure).

Figure 12 shows the block diagram of our proposed FDD scheme for the ABS. The parity equations
and GLRT test (G P1) are used to detect severe Rw(≥20%) and wheel speed sensor (≥5%) faults. Then,
a nonlinear observer [17, 36] is used to generate two additional residuals. The GLRTs based on these two
residuals (G O1 and G O2) and their time dependent GLRT test (G O T1 and G O T2) are used to isolate
the τm fault, less severe (small) Rw and sensor faults. They are also used to detect Kf and Iw faults. Finally,
we use the SVM to isolate the Kf and Iw faults. After training, a total of 35 patterns are misclassified in
the test data, which results in an error rate of 4.7%. We designed two tests S Kf and S Iw using the SVM,
which assigns S Kf = 1 when the data is classified as the Kf fault or assigns S Iw = 1 when the data is
classified as the Iw fault. The diagnostic matrix of the ABS system is shown in Table 6. With the subset of
tests, all the faults considered here can be detected. Subsequently, a parameter estimation technique is used

Table 5. Simulated fault list of ABS system

F1.1 Sensor fault (<5% decrease)

F1.2 Sensor fault (≥5% decrease)
F2.1 Rw fault (<20% decrease)
F2.2 Rw fault (≥20% decrease)
F3 Kf fault (±2% ∼ ±10%)
F4 Iw fault (±2% ∼ ±10%)
F5 τm fault (≥15% increase)

Fig. 12. FDD Scheme for ABS

An Integrated Diagnostic Process for Automotive Systems 215

Table 6. Diagnostic matrix for ABS test design

Fault\Test G P1 G O1 G O2 G O T1 G O T2 S Kf S Iw

F0 0 0 0 0 0 0 0
F1.1 0 1 0 0 0 0 0
F1.2 0 0 1 1 0 0 1
F2.1 0 0 1 1 0 0 0
F2.2 0 0 0 1 0 0 0
F3 1 0 0 0 0 0 0
F4 0 0 0 1 1 1 1
F5 0 0 0 1 0 0 0

Table 7. Mean relative errors and normalized standard deviations in parameter estimation

Block Estimation Subset Parameter

EstimationRw Kf Iw τm

Kf err 3.2 5.0 6.0 25.0 1.05
std 1.2 3.5 6.8 22.2 0.12

Iw err 2.0 4.5 4.0 19.0 0.52
std 1.6 4.8 7.2 39.3 0.35

τm err 3.5 7.8 10.3 27.5 2.0
std 2.4 5.2 5.6 46.5 0.80

Rw err 0.39 0.33 2.98 279.33 0.004
std 0.25 0.12 1.48 33.4 0.014

err = mean relative error
“true” value

× 100%

std = standard deviation of estimated parameters
“true” value

× 100%

after fault isolation to estimate the severity of the fault. After parametric faults are isolated, an output error
method is used to estimate the severity of isolated faults. In the ABS, the nonlinear output error parameter
estimation method produces biased estimates when all the parameters are estimated as a block. Therefore,
the subset parameter estimation techniques are well suited for our application. The subset of parameters to
be estimated is chosen by the detection and isolation of the parametric fault using the GLRT and SVM. When
a parametric fault is isolated, this parameter is estimated via the nonlinear output error method. Table 7
compares the accuracies of parameter estimation averaged over 20 runs via the two methods: estimating all
the parameters versus reduced (one-at-a-time) parameter estimation after fault detection and isolation. The
parameters err and std shows the mean relative errors and standard deviations of the estimated parameters,
respectively, normalized by their “true” values (in %).

From Table 7, it is evident that subset parameter estimation provides much more precise estimates than
the method which estimates all four parameters as a block. This is especially significant with single parameter
faults.

5 Summary and Future Research

This chapter addressed an integrated diagnostic development process for automotive systems. This process
can be employed during all stages of a system life cycle, viz., concept, design, development, production,
operations, and training of technicians to ensure ease of maintenance and high reliability of vehicle sys-
tems by performing testability and reliability analyses at the design stage. The diagnostic design process
employs both model-based and data-driven diagnostic techniques. The test designers can experiment with a
combination of these techniques that are appropriate for a given system, and trade-off several performance

216 K. Pattipati et al.

evaluation criteria: detection speed, detection and isolation accuracy, computational efficiency, on-line/off-
line implementation, repair strategies, time-based versus preventive versus condition-based maintenance of
vehicle components, and so on. The use of condition-based maintenance, on-line system health monitor-
ing and smart diagnostics and reconfiguration/self-healing/repair strategies will help minimize downtime,
improve resource management, and minimize operational costs. The integrated diagnostics process promises
a major economic impact, especially when implemented effectively across an enterprise.

In addition to extensive applications of the integrated diagnostics process to real-world systems, there are
a number of research areas that deserve further attention. These include: dynamic tracking of the evolution
of degraded system states (the so-called “gray-scale diagnosis”), developing rigorous analytical framework
for combining model-based and data-driven approaches for adaptive knowledge bases, adaptive inference,
agent-based architectures for distributed diagnostics and prognostics, use of diagnostic information for recon-
figurable control, and linking the integrated diagnostic process to supply chain management processes for
effective parts management.

References

1. Bar-Shalom Y, Li XR, and Kirubarajan T (2001) Estimation with Applications to Tracking and Navigation.
Wiley, New York, 2001

2. Basseville M and Nikiforov IV (1993) Detection of Abrupt Changes. Prentice-Hall, New Jersey
3. Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, Berlin Heidelberg New York
4. Bohr J (1998) Open systems approach – integrated diagnostics demonstration program. NDIA Systems

Engineering and Supportability Conference and Workshop, http://www.dtic.mil/ndia/support/bohr.pdf
5. Bro R (1996) Multiway Calibration. Multilinear PLS. Journal of Chemometrics 10:47–61
6. Chelidze D (2002) Multimode damage tracking and failure prognosis in electro mechanical system. SPIE

Conference Proceedings, pp 1–12
7. Chelidze D, Cusumano JP, and Chatterjee A (2002) Dynamical systems approach to damage evolution tracking,

part I: The experimental method. Journal of Vibration and Acoustics 124:250–257
8. Chen J, Liu K (2002) On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical

Engineering Science 57:63–75
9. Choi K, Luo J, Pattipati K, Namburu M, Qiao L, and Chigusa S (2006) Data reduction techniques for intelligent

fault diagnosis in automotive systems. Proceedings of IEEE AUTOTESTCON, Anaheim, CA, pp 66–72
10. Choi K, Singh S, Kodali A, Pattipati K, Namburu M, Chigusa S, and Qiao L (2007) A novel Bayesian approach

to classifier fusion for fault diagnosis in automotive systems. Proceedings of IEEE AUTOTESTCON, Baltimore,
MD, pp 260–269

11. Deb S, Pattipati K, Raghavan V, Shakeri M, and Shrestha R (1995) Multi-signal flow graphs: A novel approach
for system testability analysis and fault diagnosis. IEEE Aerospace and Electronics Magazine, pp 14–25

12. Deb S, Pattipati K, and Shrestha R (1997) QSI’s Integrate diagnostics toolset. Proceedings of the IEEE
AUTOTESTCON, Anaheim, CA, pp 408–421

13. Deb S, Ghoshal S, Mathur A, and Pattipati K (1998) Multi-signal modeling for diagnosis, FMECA and reliability.
IEEE Systems, Man, and Cybernetics Conference, San Diego, CA

14. Donat W (2007) Data Visualization, Data Reduction, and Classifier Output Fusion for Intelligent Fault Detection
and Diagnosis. M.S. Thesis, University of Connecticut

15. Duda RO, Hart PE, and Stork DG (2001) Pattern Classification (2nd edn.). Wiley, New York
16. Fodor K, A survey of dimension reduction techniques. Available: http://www.llnl.gov/CASC/sapphire/pubs/

148494.pdf
17. Frank PM (1994) On-line fault detection in uncertain nonlinear systems using diagnostic observers: a survey.

International Journal of System Science 25:2129–2154
18. Freund Y and Schapire RE (1996) Experiments with a new boosting algorithm. Machine Learning: Proceedings

of the Thirteenth International Conference
19. Fukazawa M (2001) Development of PC-based HIL simulator CRAMAS 2001, FUJITSU TEN Technical Journal

19:12–21
20. Garcia EA and Frank P (1997) Deterministic nonlinear observer based approaches to fault diagnosis: a survey.

Control Engineering Practice 5:663–670
21. Gertler J (1995) Fault detection and isolation using parity relations. Control Engineering Practice 5:1385–1392

An Integrated Diagnostic Process for Automotive Systems 217

22. Gertler J and Monajmey R (1995) Generating directional residuals with dynamic parity relations. Automatica
33:627–635

23. Higuchi T, Kanou K, Imada S, Kimura S, and Tarumoto T (2003) Development of rapid prototype ECU for
power train control. FUJITSU TEN Technical Journal 20:41–46

24. Isermann R (1984) Process fault detection based on modeling and estimation methods: a survey. Automatica
20:387–404

25. Isermann R (1993) Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper.
Automatica 29:815–835

26. Isermann R (1997) Supervision, fault-detection and fault-diagnosis methods – an introduction. Control
Engineering Practice 5:639–652

27. Jackson JE (1991) A User’s Guide to Principal Components. Wiley, New York
28. Johannesson (1998) Rainflow cycles for switching processes with Markov structure. Probability in the Engineering

and Informational Sciences 12:143–175
29. Keiner W (1990) A navy approach to integrated diagnostics. Proceedings of the IEEE AUTOTESTCON, pp 443–

450
30. Kodali A, Donat W, Singh S, Choi K, and Pattipati K (2008) Dynamic fusion and parameter optimization of

multiple classifier systems. Proceedings of GT 2008, Turbo Expo 2008, Berlin, Germany
31. Kuncheva LI (2004) Combining Pattern Classifiers, Wiley, New York
32. Ljung L (1987) System Identification: Theory for the User, Prentice-Hall, New Jersey
33. Luo J, Tu F, Azam M, Pattipati K, Qiao L, and Kawamoto M (2003) Intelligent model-based diagnostics for

vehicle health management. Proceedings of SPIE Conference, Orlando, pp 13–26
34. Luo J, Tu H, Pattipati K, Qiao L, and Chigusa S (2006) Graphical models for diagnostic knowledge representation

and inference. IEEE Instrument and Measurement Magazine 9:45–52
35. Luo J, Pattipati K, Qiao L, and Chigusa S (2007) An integrated diagnostic development process for automotive

engine control systems. IEEE Transactions on Systems, Man, and Cybernetics: Part C – Applications and Reviews
37:1163–1173

36. Luo J, Namburu M, Pattipati K, Qiao L, and Chigusa S (2008) Integrated model-based and data-driven diagnosis
of automotive anti-lock braking systems. IEEE System, Man, and Cybernetics – Part A: Systems and Humans

37. Luo J, Pattipati K, Qiao L and Chigusa S (2008) Model-based prognostic techniques applied to a suspension
system. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews

38. Namburu M (2006) Model-Based and Data-Driven Techniques and Their Application to Fault Detection and
Diagnosis in Engineering Systems and Information Retrieval. M.S. Thesis, University of Connecticut

39. Nomikos P (1996) Detection and diagnosis of abnormal batch operations based on multi-way principal component
analysis. ISA Transactions 35:259–266

40. Nyberg M and Nielsen L (1997) Model based diagnosis for the air intake system of the SI-engine. SAE
Transactions. Journal of Commercial Vehicles 106:9–20

41. Pattipati K (2003) Combinatorial optimization algorithms for fault diagnosis in complex systems. International
Workshop on IT-Enabled Manufacturing, Logistics and Supply Chain Management, Bangalore, India

42. Pattipati K and Alexandridis M (1990) Application of heuristic search and information theory to sequential fault
diagnosis. IEEE Transactions on Systems, Man, and Cybernetics – Part A 20:872–887

43. Patton RJ, Frank PM, and Clark RN (2000) Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin
Heidelberg New York London

44. Pete A, Pattipati K, and Kleinman DL (1994) Optimization of detection networks with generalized event
structures. IEEE Transactions on Automatic Control 1702–1707

45. Phadke MS (1989) Quality Engineering Using Robust Design. Prentice Hall New Jersey
46. Phelps E and Willett P (2002) Useful lifetime tracking via the IMM. SPIE Conference Proceedings, pp 145–

156, 2002
47. QSI website, http://www.teamsqsi.com
48. Raghavan V, Shakeri M, and Pattipati K (1999) Test sequencing algorithms with unreliable tests. IEEE

Transactions on Systems, Man, and Cybernetics – Part A 29:347–357
49. Raghavan V, Shakeri M, and Pattipati K (1999) Optimal and near-optimal test sequencing algorithms with

realistic test models. IEEE Transactions on Systems, Man, and Cybernetics – Part A 29:11–26
50. Rasmus B (1996) Multiway calibration. Multilinear PLS. Journal of Chemometrics 10:259–266
51. Ruan S, Tu F, Pattipati K, and Patterson-Hine A (2004) On a multimode test sequencing problem. IEEE

Transactions on Systems, Man and Cybernetics – Part B 34:1490–1499

218 K. Pattipati et al.

52. Schroder D (2000) Intelligent Observer and Control Design for Nonlinear Systems, Springer, Berlin Heidelberg
New York

53. Shakeri M (1998) Advances in System Fault Modeling and Diagnosis. Ph.D. Thesis, University of Connecticut
54. Simani S, Fantuzzi C, and Patton RJ (2003) Model-Based Fault Diagnosis in Dynamic Systems Using

Identification Techniques. Springer, Berlin Heidelberg New York London
55. Singh S, Choi K, Kodali A, Pattipati K, Namburu M, Chigusa S, and Qiao L (2007) Dynamic classifier fusion in

automotive systems. IEEE SMC Conference, Montreal, Canada
56. Singh S, Kodali A, Choi K, Pattipati K, Namburu M, Chigusa S, Prokhorov DV, and Qiao L (2008) Dynamic

multiple fault diagnosis: mathematical formulations and solution techniques. accepted for IEEE Trans. on SMC –
Part A. To appear

57. Sobczyk K and Spencer B (1993) Random Fatigue: From Data to Theory. Academic, San Diego
58. Sobczyk K and Trebicki J (2000) Stochastic dynamics with fatigue induced stiffness degradation. Probabilistic

Engineering Mechanics 15:91–99
59. Tang ZB, Pattipati K, and Kleinman DL (1991) Optimization of detection networks: Part I – tandem structures.

IEEE Transactions on Systems, Man, and Cybernetics: Special Issue on Distributed Sensor Networks 21:1045–
1059

60. Tang ZB, Pattipati K, and Kleinman DL (1992) A Distributed M-ary hypothesis testing problem with correlated
observations. IEEE Transactions on Automatic Control, 196:32 pp 1042–1046

61. Terry B and Lee S (1995) What is the prognosis on your maintenance program. Engineering and Mining Journal,
196:32

62. Unsal C and Kachroo P (1999) Sliding mode measurement feedback control for antilock braking system. IEEE
Transactions on Control Systems Technology 7:271–281

63. Wold S, Geladi P, Esbensen K, and Ohman J (1987) Principal Component Analysis Chemometrics and Intelligent
Laboratory System 2:37–52

64. Yoshimura T, Nakaminami K, Kurimoto M, and Hino J (1999) Active suspension of passenger cars using linear
and fuzzy logic controls. Control Engineering Practice 41:41–47

Automotive Manufacturing: Intelligent Resistance Welding�

Mahmoud El-Banna1, ‡, Dimitar Filev2, and Ratna Babu Chinnam3

1 University of Jordan, Amman 11942, Jordan, m.albanna@ju.edu.jo
2 Ford Motor Company, Dearborn, MI 48121, USA, dfilev@ford.com
3 Wayne State University, Detroit, MI 48202, USA, r chinnam@wayne.edu

1 Introduction

Resistance spot welding (RSW) is an important process in the automotive industry. The advantages of spot
welding are many: an economical process, adaptable to a wide variety of materials (including low carbon
steel, coated steels, stainless steel, aluminum, nickel, titanium, and copper alloys) and thicknesses, a process
with short cycle times, and overall, a relatively robust process with some tolerance to fit-up variations.
Although used in mass production for several decades, RSW poses several major problems, most notably,
large variation in weld quality. Given the variation and uncertainty in weld quality (attributed to factors
such as tip wear, sheet metal surface debris, and fluctuations in power supply), it is a common practice in
industry to add a significant number of redundant welds to gain confidence in the structural integrity of
the welded assembly [1]. In recent years, global competition for improved productivity and reduced non-
value added activity, is forcing automotive OEMs and others to eliminate these redundant spot welds. The
emphasis on reduction of the redundant welds significantly increases the need for monitoring of weld quality
and minimizing weld process variability. Traditionally, destructive and nondestructive tests for weld quality
evaluation are predominantly off-line or end-of-line processes. While this test information is useful and
valuable for quality and process monitoring, it cannot be utilized in process control because of the significant
delays that are associated with the off-line test analysis. In order to minimize the number of spot welds and
still satisfy essential factors such as strength and surface integrity, weld quality has to be monitored and
controlled in real-time. Advances over the last decade in the area of non-intrusive electronic sensors, signal
processing algorithms, and computational intelligence, coupled with drastic reductions in computing and
networking hardware costs, have now made it possible to develop non-intrusive intelligent resistance welding
systems that overcome the above shortcomings.

The importance of weld quality monitoring and process variability reduction is further amplified by the
recent changes in the materials used by automotive manufacturers. The demand for improved corrosion
resistance has led the automotive industry to increasingly use zinc coated steel in auto body construction.
One of the major concerns associated with welding coated steel is the mushrooming effect (the increase
in the electrode diameter due to deposition of copper into the spot surface) resulting in reduced current
density and undersized welds (cold welds). The most common approach to this problem is based on the
use of simple unconditional incremental algorithms (steppers) for preprogrammed current scheduling. The
main objective of the weld current steppers is to maintain weld nugget size within acceptable limits while
at the same time minimizing electrode growth. Large current steps could lead to an increase in electrode tip
growth due to the use of high current levels. This in turn requires even larger increases in current, thereby
� A short version of this paper was presented at the 2006 IEEE World Congress on Computational Intelligence, IEEE

International Conference on Fuzzy Systems, Vancouver, Canada, July 2006. Portions reprinted, with permission,
from Proc. of 2006 IEEE World Congress of Computational Intelligence, 2006 IEEE International Conference on
Fuzzy Systems, Vancouver, 1570–1577, c© 2006 IEEE.

‡ Dr. Mahmoud El-Banna was with Wayne State University, Detroit, MI 48202, USA.

M. El-Banna et al.: Automotive Manufacturing: Intelligent Resistance Welding, Studies in Computational Intelligence (SCI) 132,

219–235 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

220 M. El-Banna et al.

causing a runaway process of electrode growth. Under these conditions, weld size would deteriorate at a rapid
rate. On the other hand, small increases in welding current result in a slow rate of electrode tip growth,
which is advantageous in terms of electrode life, provided the small increases in current are sufficient to
maintain adequate current density to produce the required weld nugget size. Since the direct measurement
of the main process characteristics – weld quality and expulsion rate – is not feasible in an automotive plant
environment one reasonable approach is to estimate these variables by virtual or soft (indirect) sensors. A
soft sensor for indirect estimation of the weld quality can provide a real time approximate assessment of
the weld nugget diameter. Another opportunity for soft sensing in weld process control is determined by the
need to predict the impact of the current changes on the expulsion rate of the weld process. The combination
of soft sensing with adequate control algorithms can have dramatic impact on reducing variability of the
weld process and effectiveness of weld equipment. The final goal is to develop a control algorithm that can
be applied in an automotive assembly plant environment with the final objective of improving the weld
quality and consistency, in turn, improving overall manufacturing quality and productivity while reducing
redundant welds.

In this chapter we discuss two specific topics: (1) Development of accurate in-process non-destructive
evaluation (NDE) of nugget quality by using the dynamic resistance (or secondary voltage) profile during the
welding process and (2) Design of closed-loop supervisory control algorithm for adapting the weld controller
set points for weld quality enhancement and reduction of process variability.

We propose and demonstrate the performance of a Linear Vector Quantization (LVQ) network for on-line
nugget quality classification in conjunction with an intelligent algorithm for adjusting the amount of current
to compensate for the electrodes degradation. The algorithm works as a fuzzy logic controller using a set
of engineering rules with fuzzy predicates that dynamically adapt the secondary current to the state of the
weld process. The state is identified by indirectly estimating two of the main process characteristics – weld
quality and expulsion rate. A soft sensor for indirect estimation of the weld quality employing an LVQ type
classifier is designed to provide a real time approximate assessment of the weld nugget diameter. Another
soft sensing algorithm is applied to predict the impact of changes in current on the expulsion rate of the
weld process in real time. By maintaining the expulsion rate just below a minimal acceptable level, robust
process control performance and satisfactory weld quality are achieved. The Intelligent Constant Current
Control for Resistance Spot Welding is implemented and validated on a Medium Frequency Direct Current
(MFDC) Constant Current Weld Controller. Results demonstrate a substantial improvement of weld quality
and reduction of process variability due to the proposed new control algorithm.

2 Resistance Spot Welding: Background

A schematic diagram for resistance spot welding is illustrated in Fig. 1. It consists of primary (high voltage,
low current) and secondary circuits (low voltage, high current). The process employs a combination of
pressure and heat to produce a weld between the sheet metal work pieces in the secondary circuit. Resistance

Fig. 1. Schematic diagram for resistance spot welding

Automotive Manufacturing: Intelligent Resistance Welding 221

Fig. 2. Dynamic resistances in the secondary circuit

heating occurs as electrical welding current flows through the work pieces in the secondary circuit of a
transformer. The transformer converts high-voltage, low current commercial power into suitable high current,
low voltage welding power.

The energy required to produce a given resistance weld is determined by several factors. Key among
them is the weld area (heated volume), the peak temperature, the specific heat of the work pieces, and the
heat loss through the surrounding metal and electrodes. An increase in magnitude of one or more of these
factors requires a corresponding increase in energy to produce the weld. A typical spot welding operation is
controlled by a weld schedule, whose time steps are controlled by a spot welding controller. The dynamic
resistance technique involves monitoring the resistance in the secondary circuit during the welding process.
It is least intrusive, very economical, and seems to provide reasonable and adequate information about the
state of the weld process. The word dynamic comes from fact that the resistance changes during the welding
cycle. While the electrical resistances of the transformer and the mechanical assembly, Rt and Rm, can be
assumed to be reasonably constant during the welding process (see Fig. 2), the sheet metal stack resistance
(Rl) varies with nugget formation.

Two of the commonly used types of resistance welding systems (welding machines) in automotive industry
are alternating current (AC) type and Medium Frequency Direct Current (MFDC) type. The AC resistance
welding machine is inexpensive and its electrodes wear out slowly. However, a disadvantage is that the
current supplied to the weld can be controlled only within fairly loose time interval [2]. The major advantage
of the MFDC type of welding system is that the current supplied to the weld can be controlled within
relatively stringent limits. This is one of the reasons for the increasing share of the MFDC type systems in
the automotive assembly plants. In this chapter we pay special attention to the MFDC weld controller, and
more specifically to the MFDC controller that is combined with a Constant Current strategy (MFDC-CC).
This type of RSW controller is employed to achieve a constant current in each millisecond within the weld
but the current can be changed from weld to weld based on a supervisory control algorithm.

3 Online Nugget Quality Evaluation Using Linear Vector
Quantization Network

The problem of real-time estimation of the weld quality from process data is one of the key objectives
in current weld control systems. The most common techniques can be grouped into four major groups:
Ultrasonic technique, Thermal Force technique, Displacement technique, and Dynamic Resistance technique.
It should be noted here that some of these techniques tend to be too intrusive and/or expensive for wide-
scale deployment (for example, the ultrasonic technique), and in that sense, not compatible for main-stream
application in automotive resistance welding. Most of the methods offered in the literature to predict nugget
diameter from the process data employ measurements such as voltage and force and are not suitable in an
industrial environment for two major reasons: the input signals for prediction model are taken from intrusive
sensors (which affect the performance or capability of the welding machine), and the methods often required
very large training and testing datasets.

222 M. El-Banna et al.

Fig. 3. Examples of normal, cold and expulsion welds [3]

This task can be alleviated if the weld controller is equipped with a voltage sensor in the secondary circuit,
facilitating evaluation of dynamic resistance. Further simplification that significantly increases the feasibility
of the mission of indirect estimation of weld quality follows from replacing the goal of quantifying the weld
quality in terms of button size and integrity by the more modest objective of indirect estimation the class
of the weld, e.g., satisfactory (acceptable, “normal” button size), unsatisfactory (under sized, “cold” welds),
and defective (“expulsion”) – Fig. 3. We consider normal the welds within the specifications, i.e., those that
have nugget diameter more than the minimum acceptable limit and exhibit no expulsion. Those welds that
do not meet the specification are characterized as cold welds. Additionally, we count as expulsion welds
the welds that indicate ejection of molten metal – an undesirable event that has detrimental effect on weld
nugget integrity (the loss of metal from the fusion zone can reduce the weld size and result in weld porosity),
which may significantly reduce the strength and durability of the welded joints.

Given its non-intrusive nature, relatively low cost of implementation, and reasonable performance in
many laboratory and industrial settings, we have adopted the dynamic resistance approach to monitor and
control the process on-line. The measurements of voltage and current (at primary or secondary side) are
used to calculate dynamic resistance.

Given its well-defined physical meaning and the ease of measurement, a number of studies on the problem
of estimation of weld quality from the secondary dynamic resistance have been performed. Cho and Rhee
[4] showed that the process variables, which were monitored in the primary circuit of the welding machine,
can be used to obtain the variation of the dynamic resistance across electrodes. They introduced an artificial
intelligence algorithm for estimation of the weld quality using the primary dynamic resistance. Cho and Rhee
used uncoated steel welding (low carbon cold rolled steel) to verify their model but fall short from discussing
the impact of coated steel (the material mainly used in the auto industry). Lee et al [5] proposed a quality
assurance technique for resistance spot welding using a neuro-fuzzy inference system. They however used the
displacement signal (something impractical in an automotive plant environment) as input to their model.
Podrzaj et al [6] proposed an LVQ neural network system to detect expulsion. The results showed that the
LVQ neural network was able to detect the expulsion in different materials. However, they identified the
welding force signal as the most important signal for classification of the expulsion occurrence. Availability
of force signal is limited to certain types of guns, and they are more expensive than other types of sensors.
Park and Cho [7] used LVQ as well as a multi-layer perceptron neural network to classify the weld quality
(strength and indentation) by using the force signal. All those studies targeted AC weld controller while the
MFDC controller was not examined.

In order to overcome these shortcomings, in this section, we propose an algorithm for estimation of weld
nugget quality through classification of button size based on a small number of patterns for cold, normal, and
expulsion welds. Our approach uses an LVQ neural network for nugget quality classification that employs the
easily accessible dynamic resistance profile as input. Our focus is on the Medium Frequency Direct Current
Constant Current (MFDC-CC) controller. A more general LVQ based soft sensing algorithm considering also
alternating current (AC) weld controllers is presented in [8]. The goal is to develop a method and algorithm
for on-line classification between normal welds, cold welds, and expulsion welds that can be applicable for
weld process control. It should be mentioned that LVQ classification of the weld status is performed after
each weld, not during the welding time.

Automotive Manufacturing: Intelligent Resistance Welding 223

0 50 100 150 200 250
60

80

100

120

140

160

180

D
yn

am
ic

 R
es

is
ta

n
ce

 (
m

ic
ro

 o
h

m
)

Welding Time (milli seconds)

Normal Weld

Cold Weld

Expulsion Weld

67 ms

Fig. 4. Dynamic resistance profiles for cold, expulsion and normal welds for MFDC with constant current control

Fig. 5. Learning vector quantization (LVQ) neural network architecture

Figure 4 shows prototypical dynamic resistance profiles for three types of welds; cold, normal, and expul-
sion, for MFDC–CC controller. It can be seen that these profiles are not easily distinguishable. The cold
weld dynamic resistance profile tends to be lower than the other profiles, while the expulsion weld dynamic
resistance profile tends to have a sharp drop especially towards the end. In order to classify them we apply
an LVQ neural net classifier.

Learning vector quantization (LVQ) [9] is a method for training competitive layers of a neural network
in a “supervised” manner. It consists of three layers: an input layer, a competitive layer, and an output layer
(Fig. 5). The “classes” that the competitive layer finds are dependent only on the distance between input
vectors. If two input vectors are very similar, the competitive layer assigns them to the same class. LVQ
shows good performance for complex classification problems because of its fast learning nature, reliability,
and convenience of use. It particularly performs well with small training sets. This property is significantly
important for industrial application, where training data is very limited; take considerable time, cost, or
even impractical to get more data.

The network parameters are as follows: P is the N dimensional input vector, Wi is the weight matrix
for the ith layer, Si number of neurons in the ith layer, ni the net input vector of the ith layer, and ai the
output of the ith layer. The first (competitive) layer is used to find the prototype vector W1

s (i.e., a row of
the weight matrix W1) that points in the direction closest to the input vector, i.e.,

Mini

∥∥P − W1
i

∥∥2 ∀i, where i ∈ (1, 2. . .S1)

The neurons that possess the least distance between vector weight matrix and input vector are assigned
a value of one and the other neurons are assigned a value of zero. Finally, the output layer (linear layer)
joins the subclasses (S1) from the competitive layer and W2 weight matrix into target classes (S2) through
a linear transfer function. Matrix W2 defines a linear combiner and remains constant while the elements
of W1 change during the training process. The weights of the winning neuron (a row of the input weight

224 M. El-Banna et al.

matrix) are adjusted using the Kohonen learning rule [20]. For example, supposing that the ith neuron wins
the competition, the elements of the ith row of the input weight matrix are adjusted as shown below:

w1(i) = w1(i − 1) + ρ(P(i) − w1(i − 1)),

where P(i) is the input vector of the ith iteration and ρ is the learning rate.
If just the Kohonen learning rule is employed, the neural network is called LVQ1. LVQ2 is an improved

version of LVQ1, with the main difference being that in the latter case, the prototype vectors of two neurons
are updated if the input vector P(i) is classified incorrectly. The weights of the neuron that wrongly won
the competition are also updated as follows:

w1(i) = w1(i − 1) − ρ(P(i) − w1(i − 1))

The LVQ2 was applied to estimate weld quality by classifying the dynamic resistance vectors correspond-
ing to cold, normal an expulsion welds. The inputs to the network were the vectors of dynamic resistance
sampled at 1ms sampling rate.

An experiment was conducted with an MFDC welding machine with capacity of 180 kVA, 680 lb welding
force provided by a servo gun, HWPAL25 electrode type with 6.4mm face diameter, 233ms welding time,
11.5 kA initial input secondary current, and an incremental stepper of 1 A per weld. The nugget diameter was
measured for a total of 550 welds: 411 were found to be good welds, 22 were cold welds, and 117 welds with
expulsion. In this experiment, LVQ2 network was trained on three, six, and five patterns for cold, normal,
and expulsion welds, respectively. Twelve hidden neurons were used with a learning rate ρ = 0.01.

The performance of the LVQ-based on-line nugget quality classification algorithm was evaluated in terms
of type 1 (α) and type 2 errors (β) for cold, normal, and expulsion welds. Type 1 error (α) (known as false
alarm rate) defines the probability of “rejecting” the null hypothesis, while it is true. For example, if the
null hypothesis defined the weld as expulsion weld, Type 1 error (α) defines the probability that the weld
is misclassified as normal or cold weld, while it really is an expulsion weld. Type 2 error (β) defines the
probability of not rejecting the null hypothesis, while it is false. It is important to note that that there is a
trade off between Type 1 error and Type 2 error. If the model is too sensitive (i.e., type 2 error is very low),
it is normal to have a larger number of false alarms (i.e., type 1 error will be high). Tables 1–3 report type
1 errors (α) and type 2 errors (β) for cold, normal, and expulsion welds when using the entire discretized
dynamic resistance profile as an input vector to the LVQ neural network. It can be seen that the percent
of false alarms are lowest for the cold weld case at 0, 11% for normal welds, and 40% for expulsion welds.
As for type 2 errors, they are once again lowest for cold welds at 4, 6% for expulsion welds, and 34% for
normal welds.

Table 1. Type 1 and 2 errors for classification of cold welds when using the entire dynamic resistance profile as input
to the LVQ neural network

H0: Weld is cold True state of H0

statistical decision H0 is true H0 is false

Reject H0 α = 0.00 1 − α = 1.00
Don’t reject H0 1 − β = 0.96 β = 0.04

Table 2. Type 1 and 2 errors for normal welds classification when using the entire dynamic resistance profile as
input to the LVQ neural network

H0: Weld is normal True state of H0

statistical decision H0 is true H0 is false

Reject H0 α = 0.11 1 − α = 0.89
Don’t reject H0 1 − β = 0.66 β = 0.34

Automotive Manufacturing: Intelligent Resistance Welding 225

Table 3. Type 1 and 2 errors for expulsion welds classification when using the entire dynamic resistance profile as
input to the LVQ neural network

Ho: Weld is expulsion
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.40 1 − α = 0.60
Don’t reject H0 1 − β = 0.94 β = 0.06

Table 4. Power of the test (1 − β) for different features inputs to the LVQ neural network

Feature Cold welds Normal welds Expulsion welds
(%) (%) (%)

Maximum 99.8 78.6 83.0
Minimum 94.6 13.0 100.0
Mean 98.3 13.7 100.0
Standard deviation 74.9 60.3 72.2
Range 100.0 38.2 75.0
Root mean square (RMS) 92.1 14.5 100.0
Slope 1 53.6 80.2 79.2
Slope 2 67.7 100.0 30.7
Slope 3 73.9 90.1 45.8
Slope 4 100.0 37.4 99.8
Bin 1 83.6 31.3 76.2
Bin 2 90.7 16.0 88.7
Bin 3 89.6 14.5 100.0
Bin 4 92.1 100.0 14.4
Bin 5 98.1 20.6 98.6

In order to reduce the dimensionality of the LVQ neural network input vector (dynamic resistance profile),
different features were tested as possible candidates to replace the dynamic resistance profile vector as input,
i.e., reducing the input of the LVQ network to a feature vector (the first ten models have a single feature
input while the last one has a 5-feature input vector):

• Maximum value of the dynamic resistance profile
• Minimum value of the dynamic resistance profile
• Mean value of the dynamic resistance profile
• Standard deviation value of the dynamic resistance profile
• Range value of the dynamic resistance profile
• Root mean square (RMS) value of the dynamic resistance profile
• First region slope (S1) value of the dynamic resistance profile
• Second region slope (S2) value of the dynamic resistance profile
• Third region slope (S3) value of the dynamic resistance profile
• Fourth region slope (S4) value of the dynamic resistance profile
• Binned RMS of dynamic resistance profile: dynamic resistance vector is divided into five bins and RMS

values are calculated for each bin

The criteria for features selection was based on power of the test (i.e., 1 − β) for the cold, normal, and
expulsion welds as shown in Table 4. The feature that demonstrates the highest classification performance
for the three types of welds was chosen as input for the LVQ network (the first row in Table 4). In order to
simplify features selection, we assume that interactions among features are negligible.

In our work, we just employed the most promising feature identified by power of the test criteria, the
maximum value of the dynamic resistance vector, as input for LVQ neural network. Tables 5–7 show the
type 1 and 2 error results from the network when employing just this feature. It can be seen that both types

226 M. El-Banna et al.

Table 5. Type 1 and 2 errors for cold welds classification when using the maximum of dynamic resistance profile as
a single input to the LVQ neural network

H0: Weld is cold
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.00 1 − α = 1.00
Don’t reject H0 1 − β = 0.88 β = 0.12

Table 6. Type 1 and 2 errors for normal welds classification when using maximum of dynamic resistance profile as
a single input to the LVQ neural network

H0: Weld is normal
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.29 1 − α = 0.71
Don’t reject H0 1 − β = 0.81 β = 0.19

Table 7. Type 1 and 2 errors for expulsion welds classification when using maximum of dynamic resistance profile
as a single input to the LVQ neural network

H0: Weld is expulsion
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.23 1 − α = 0.77
Don’t reject H0 1 − β = 0.87 β = 0.13

of errors are reduced by using the maximum resistance feature instead of the entire vector of resistance for
normal and expulsion welds. On the other hand, for cold welds, the type 2 error degrades.

LVQ network shows good performance for complex classification problems because of its fast learn-
ing nature, reliability, and convenience of use. It particularly performs well with small training sets. This
property is especially important for automotive manufacturing applications, where the process of obtaining
large training data sets may require considerable time and cost. Overall, the results are very promising for
developing practical on-line quality monitoring systems for resistance spot-welding machines and complete
automation of the welding process.

4 Intelligent Constant Current Control Algorithm

Most of the conventional weld control systems are based on the concept of “stepper” type preprogrammed
scheduling of the primary current. A basis for setting up a current stepper can be developed by determining
the pattern of electrode growth obtained in a particular welding cell. Different approaches are used for
setting up a weld current stepper, including subjective methods, fixed increments, constant current density,
gradient following, and iterative approaches. In a subjective or “best guess” approach, current steps are based
on maintaining a slight red glow at the electrode/sheet interface and/or regularly adjusting the current to a
level just below the splash or expulsion level. This approach has been found to give significant improvements
in electrode life. While acceptable results can be achieved by this means, an extreme skill is required in
determining the point at which current is to be increased.

In a fixed (preprogrammed scheduling) increment approach, a current stepper can be based on increasing
either the heat control (i.e., phase shift control) or the actual welding current, in fixed increments after
performing a predetermined number of welds. Generally, the increment of phase shift can be set between
1 and 5%. It was concluded [10] that a stepper function based on a fixed increment of the heat control or
phase shift control was not a viable means of extending electrode life in many instances.

Automotive Manufacturing: Intelligent Resistance Welding 227

Multiple alternative approaches for adjusting the stepper algorithms based on different criteria have
been reported (constant current density [10], gradient following approach [11], fuzzy controlled adaptation
of delivered power [12], dynamic resistance profile estimation [13], prediction of weld strength [14], etc.) but
have not found strong acceptance in automotive industry for various reasons (sensitivity to the coating type,
undesirable rapid growth of electrode diameter, assumption of intrusive (electrode displacement) sensors,
lack of robustness with respect to expulsions, etc.

In this section, we present an intelligent control algorithm that addresses the problem of constant current
weld control of coated steels in the presence of significant electrode degradation [15]. The algorithm is
implemented as a fuzzy logic controller using a set of engineering rules with fuzzy predicates that dynamically
adapt the secondary current to the state of the welding process. Since the direct measurement of the main
process characteristics – weld quality and expulsion rate – is not feasible in an industrial environment, these
variables are estimated by soft (indirect) sensors.

A soft sensor for indirect estimation of the weld quality employing an LVQ type classifier that was
described in the previous section provides a real time approximate assessment of the weld nugget diameter.
Another soft sensing algorithm that is based on continuous monitoring of the secondary resistance is applied
to predict the instantaneous impact of the current changes on the expulsion rate of the weld process. The
reason for using the second soft sensor is to monitor the expulsion during the actual welding time (i.e., in
each millisecond) so if expulsion is detected during the welding process, current should be turned off or
reduced for the remaining welding time. Therefore, the second soft sensor complements the LVQ based soft
sensor that was introduced in Sect. 3 with a real time estimation of potential expulsion conditions, while the
LVQ soft sensor provides estimation of weld quality only after the completion of the weld process.

The main objective of the rule set of the fuzzy logic control algorithm is to describe a nonlinear control
strategy that adjusts the secondary current to maintain the expulsion rate just below a minimal accept-
able level guaranteeing satisfactory weld quality with robust process control performance, and minimize
the electrode degradation. The fuzziness of the rules predicates reflects the uncertainty of the indirectly
estimated weld quality and expulsion rate variables. The Intelligent Constant Current Control algorithm
was implemented and validated on a Medium Frequency Direct Current Constant Current (MFDC-CC)
Weld Controller. Results demonstrate a substantial improvement of weld quality and reduction of process
variability due to the proposed new control algorithm.

The fuzzy logic control algorithm is implemented in a supervisory control mode (Fig. 5) – it replaces
the conventional “stepper” type constant current weld control algorithm. The primary current remains
unchanged during the weld process but the primary current level for each weld is continuously adjusted
based on the estimated state of the weld process during the last p welds (parameter p represents the size
of a moving process window). The adjustment of the primary current results in a consequent adjustment
of the secondary current. Two of the main process characteristics that are used as inputs to the fuzzy logic
controller – the expulsion rate and the size of the weld nugget – are not directly measured but are derived
from the secondary resistance profiles of the last p welds. The dynamic resistance is calculated from the
measured secondary voltage and the calculated secondary current (Fig. 6).

On the other hand, in order to get the optimum strength for the weld, the input parameters (current,
time, force) need to be targeted just below the expulsion level.

The nugget quality estimation algorithm is used to determine the number of normal welds produced
during the last process window of p welds based on a LVQ neural network that was discussed in detail in the
previous section. We consider the full size input vector, i.e., P is a vector of dimension 167 (i.e., N = 167),
which is equal to the number of millisecond samples in one weld after the pre-heat and cooling phase. The
reason for using the vector of dynamic resistance profile rather than a single feature input (the maximum
of the profile) is to guarantee robustness of the proposed control algorithm. While an LVQ classifier with a
single feature input can be applied for process monitoring for the purpose of supervisory control we consider
the full size input vector classifier that contains complete information of the welding process. The number of
hidden neurons in the LVQ neural network is 12 while the number of output neurons is three corresponding
to the three categories of welding status; cold, normal, and expulsion. Consequently, the weight matrices W1

and W2 are of size (167 × 12) and (12× 3), respectively.

228 M. El-Banna et al.

Ip

Measure Secondary
Current

Measure Secondary
Voltage

Calculate
Secondary
Resistance

Fire Primary
Current

LVQ based
Quality Nugget

Estimation

Expulsion
Detection

Fuzzy Control
Algorithm

IsVs

N

E

di

Z-1

*Iin: Input Current (Start)
Ip: Primary Current
Is: Secondary Current
Vs: Secondary Voltage
Rs: Secondary Resistance

N: Number of normal welds from LVQ
E: Number of expulsion welds from

expulsion algorithm
Iold: Old primary current
di: Change of current gain

Iold

Welding
Process

Intelligent Constant Current Control

*Input Current
(first weld only)

Iin

Rs Ip

Measure Secondary
Current

Measure Secondary
Voltage

Calculate
Secondary
Resistance

Fire Primary
Current

LVQ based
Quality Nugget

Estimation

Expulsion
Detection

Fuzzy Control
Algorithm

IsVs

N

E

di

Z_1

*Iin: Input Current (Start)
Ip: Primary Current
Is: Secondary Current
Vs: Secondary Voltage
Rs: Secondary Resistance

N: Number of normal welds from LVQ
E: Number of expulsion welds from

expulsion algorithm
Iold: Old primary current
di: Change of current gain

Iold

Welding
Process

Intelligent Constant Current Control

*Input Current
()

Rs

Fig. 6. Intelligent constant current control

The LVQ model (Fig. 5) was trained on three, six, and five patterns of the secondary resistance vectors
for cold, normal, and expulsion welds, respectively. Twelve hidden neurons were trained with a learning rate
of 0.01.

Since the number of expulsions over time (expulsion rate) plays very significant role in the proposed
control algorithm, we complement the estimation of the expulsion welds with an alternative algorithm for
indirect estimation of the expulsion rate. Expulsion is estimated indirectly from the resistance profile. The
main indicator for expulsion, as pointed out in [6, 16, 17], is the instantaneous drop in the resistance (Fig. 4).
In this chapter we use a modified version of the expulsion algorithm from reference [18].

Lets R(k) denote the dynamic resistance value at the current millisecond cycle (the MFDC weld process
takes 233ms), and R(k − 1) and R(k − 2) the two previous resistance values. The soft sensing expulsion
algorithm continuously checks for a resistance drop with respect to a dynamically defined expulsion threshold
Elevel(k) (after the cooling period, i.e., in our experiment after 67ms) that is represented by the following
condition for the resistance:

If Max{R(k − 2), R(k − 1), R(k)} > Max{R(k − 1), R(k)}
Then Elevel(k) = Max{R(k−2),R(k−1),R(k)}−Max{R(k−1),R(k)}

Max{R(k−1),R(k)} ∗ 100
Else
Elevel(k) = 0
To determine if there is an expulsion in the examined weld, the following conditions are checked against

Elevel(k):
If Elevel(k) ≥ A
Or
If {Elevel(67) + . . . + Elevel(k)} ≥ B,

where A and B are threshold parameters for expulsion detection (in our experiment A = 3, and B = 14).
In order to enhance the indirect estimation of the weld status, another soft sensing algorithm (LVQ based

quality nugget estimation block in Fig. 6) based on quality nugget estimation is introduced. Quality nugget
estimation employing an LVQ classifier is designed to provide a real time approximation of the weld nugget
status. The primary current for the next window of p welds is calculated by using a fuzzy control algorithm
relating the number of expulsion welds and number of normal welds.

Let “E” denote the number of expulsion welds detected from the expulsion algorithm, “N” the number
of normal welds detected from LVQ neural network, for the last window of p welds, and dI be the change of
current that is inferred by the algorithm. We define the mechanism for adjusting the current gain based on

Automotive Manufacturing: Intelligent Resistance Welding 229

Table 8. Fuzzy logic controller rule-base

Rule

1 If “E” is low AND “N” is low THEN dI = Pa

2 If “E” is medium AND “N” is low THEN dI = Ng/2
3 If “E” is high AND “N” is low THEN dI = Ng

4 If “E” is low AND “N” is medium THEN dI = Pa/2
5 If “E” is medium AND “N” is medium THEN dI = Ng/4
6 If “E” is high AND “N” is medium THEN dI = Ng/2
7 If “E” is low AND “N” is high THEN dI = Pa/4
8 If “E” is medium AND “N” is high THEN dI = Ng/8
9 If “E” is high AND “N” is high THEN dI = Ng/4

Fig. 7. Membership functions of the number of expulsion welds and the number of normal welds in a process window
of the last p welds (p is a fixed parameter). Parameter p defines a universe [0, p] of the all possible expulsion and
normal welds within that moving window

the number of expulsion and normal welds in the last window of p welds through a set of rules with fuzzy
predicates (Table 8).

In the rules of the fuzzy logic controller low, medium, and high are fuzzy subsets defined on the [0, p]
universe for the number of expulsions “E,” and the number of normal welds “N” (Fig. 7). Ng < 0 and Pa > 0
are constants (fuzzy singletons) defining control changes of the current.

The first three fuzzy rules deal with the case where the number of normal welds “N” in the last window
is low. Based on the number of detected expulsions, three alternative strategies for changing current level
are considered:

• If the number of expulsions is low, it is reasonable to think that the state of the welds is close to the
cold welds status. Hence, it is necessary to increase gradually the amount of current, i.e., the current is
changed by. dI = Pa.

• If the number of detected expulsions is medium or high, it is reasonable to think that the state of the
welds is close to the expulsion state. Hence, it is necessary to decrease the amount of current. This is
performed selectively, based on the number of expulsions (high vs. medium), resulting in negative changes
of the current dI = Ng vs. dI = Ng/2.

When the number of normal welds N in the process window is medium, the strategies for adjusting the
current level are as follows (rules 4–6):

• When we have low expulsion detection rate, the weld state is likely approaching a cold weld. Therefore,
the level of current should be increased. This is done by increasing the current level, i.e., dI = Pa/2.
Note that the amount of increase when the number of normal welds “N” is medium (dI = Pa/2) is less
than in the case when that number “N” is low (dI = Pa).

• The next case deals with medium expulsion rate, i.e., the weld state is close to the expulsion status. This
requires a gradual reduction of the current dI. Note that the amount of decrease when “N” is medium
(dI = Ng/4) is also less than the case when the “N” is low (dI = Ng/2).

• The last case appears when the expulsion rate is high. Since this is an undesirable state, the level of current
should be lowered dramatically to minimize the number of expulsions. This is also done by modifying
the secondary current dI = Ng/2 when “N” is medium and dI = Ng when “N” is low.

230 M. El-Banna et al.

The last three fuzzy rules (7–9) consider high level of normal welds, i.e., satisfactory weld quality. Their
corresponding control strategies are:

• If we have low expulsion detection, the state of the welds will be approaching a cold weld status. Therefore,
current level should be increased to prevent potential cold welds. This is done by a minor positive change
of the current to dI = Pa/4.

• If we have medium expulsion detection, it is reasonable to consider that the state of the welds is close to
the expulsion welds status. Therefore the current level should be decreased gradually to dI = Ng/8).

• In the last case, when the expulsion detection is high, the level of the current should be decreased. The
corresponding change of the current is slightly negative (dI = Ng/4), i.e., significantly less than in the
cases when “N” is medium (dI = Ng/2) or when “N” is low (dI = Ng).

Applying the Simplified Fuzzy Reasoning algorithm [19], we obtain an analytical expression for the change
of the current dI depending on the rates of expulsion welds “E” and normal welds “N” as follows:

dI =

∑
∀i

∑
∀j

µi(x)νj(y)∆i,j∑
∀i

∑
∀j

µi(x)νj(y)

where:

µi: membership function of the linguistic value of the expulsion welds {low, medium, high}
νj: membership function of the linguistic value of the normal welds {low, medium, high}
x: number of expulsion welds in the process window detected by the expulsion algorithm
y: number of normal welds in the process window detected by the LVQ soft sensing algorithm
µi(x): firing level for the expulsion membership function
νj(y): firing level for the normal membership function
∆i,j : amount of increment/decrement when the linguistic value of expulsion welds is “i” and the linguistic

value of normal welds is “j” (for example, if the linguistic value of the expulsion welds is high and the
linguistic value of the normal welds is low then ∆high,low = Ng, where Ng negative value determines the
change of the current dI); see Table 8.

Triangular shape membership functions µi, νj are used in the fuzzy control algorithm (Fig. 7) to define the
linguistic values of the numbers of expulsion and normal welds in the process window. These membership
functions depend on the scalar parameters a, b, c as given by:

µi, νj(x, y; a, b, c) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ a
x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c

0, c ≤ x

⎫⎪⎪⎬
⎪⎪⎭

The new target current (Inew) for the next window of p welds will be:

Inew = Iold + dIIold

where Iold is the current in the previous window of p welds and dI is the change of the current that is
calculated from the fuzzy control algorithm.

Proposed Intelligent Constant Current Control algorithm was implemented in Matlab/Simulink and
was experimentally tested in a supervisory control mode in conjunction with an MFDC Constant Current
Controller. Four sets of experiments were performed as follows. The first group of tests (with/without sealer)
was performed using the Intelligent Constant Current Controller. The second group (with/without sealer)
was carried out by using a conventional stepper. The role of the sealer in this test is to simulate a typical
set of disturbances that are common for automotive weld processes. Sealer is commonly used to examine the
performance of weld controllers and their capability to control process variability.

Automotive Manufacturing: Intelligent Resistance Welding 231

Each group of tests consists of sixty coupons, i.e., 360 welds (for each test without sealer), and ten coupons,
i.e., 60 welds (for each test with sealer) with two metal stacks for each coupon are used for each test. Both
tests involved welding 2.00mm gage hot tip galvanized HSLA steel with 0.85mm gage electrogalvanized
HSLA steel. Thirty six coupons (216 welds) without a sealer between sheet metals and ten coupons (60
welds) with a sealer for each group of tests were examined. Cold and expulsion welds were checked visually
in each coupon.

The length of the moving window in the Intelligent Constant Current Controller algorithm was p = 10,
i.e., the soft sensing of expulsion and normal welds was performed on a sequence of ten consecutive welds.
The negative and positive consequent singleton values in the rule-base of the fuzzy control algorithm were
set at Ng = −0.09 and Pa = +0.07.

In the stepper mode test, an increment of one ampere per weld was used as a stepper for this test. The
initial input current was set at 11.2 kA for all tests, with no stabilization process to simulate the actual
welding setup conditions in the plant after tip dressing.

4.1 Intelligent Constant Current Control and Stepper Based Control without Sealer

Figure 8 shows the weld secondary current generated by the Intelligent Constant Current Control algorithm
without sealer. It can be seen that at the beginning of the welding process, there were a couple of cold welds,
so the fuzzy control scheme increased the current gradually until expulsion began to occur. When expulsion
was identified by the soft sensing algorithm, the fuzzy control algorithm began to decrease the current level
until expulsion was eliminated and normal welds were estimated again. After that it continued to increase
the current until expulsion occurred again and so on.

It can be concluded from the test above that the secondary current in the intelligent control scheme was
responding to the weld status; in case of expulsion welds, the secondary current was decreased, and in case
of cold welds, the secondary current was increased. Thus, the fuzzy control scheme was able to adapt the
secondary current level to weld state estimated by the soft sensing algorithms.

Figure 9 shows the secondary current in the case of conventional stepper mode. The weld primary current
was set to a constant value at the beginning of the test, and then an increment of one ampere per weld was
used as a stepper to compensate for the increase in electrodes diameter (mushrooming of the electrode);
observed nonlinearity of the secondary current is a result of the transformer nonlinearities. It can be seen
that there were several cold welds at the beginning of the test, followed by some of normal welds, and then
expulsion welds were dominant until the end of the test.

Evidently, the secondary current in the stepper mode was too aggressive towards the end of the welding
process, resulting in many expulsion welds. On the other hand, at the beginning, the secondary current was
not enough, resulting in cold welds. The stepper mode does not really adapt the current to the actual weld
state at the beginning or at the end of the welding process.

Fig. 8. Secondary current using the intelligent constant current fuzzy control algorithm

232 M. El-Banna et al.

Fig. 9. Secondary current for the stepper based algorithm without sealer

Table 9. Number of expulsion welds for the fuzzy control algorithm and the conventional stepper mode without
sealer

Number of expulsion welds using Number of expulsion welds using
fuzzy controller stepper mode

68/216 = 31.5% 98/216 = 45.4%

Table 10. Number of cold welds for the fuzzy control algorithm and the conventional stepper mode without sealer

Number of cold welds using Number of cold welds using
fuzzy controller stepper mode

31/216 = 14.4% 44/216 = 20.4%

Tables 9 and 10 show the number of expulsion and cold welds for the Intelligent Constant Current Control
algorithm versus the conventional stepper mode implementation. As expected, the number of expulsion welds
in the stepper mode (98/216 = 45.4%) is higher than the number of expulsion welds in the fuzzy control
scheme (68/216 = 31.5%). It can also be seen that the number of cold welds in the fuzzy control scheme test
(31/216 = 14.4%) was less than the number of cold welds in the stepper mode (44/216 = 20.4%).

4.2 Intelligent Constant Current Control and Stepper Based Control with Sealer

It is a common practice in the automotive industry to intentionally introduce sealer material between the
two sheet metals to be welded. The purpose of this sealer is to prevent water from collecting between the
sheets and in turn reduce any potential corrosion of the inner surface of sheet metals. However, the sealer
creates problems for the spot welding process. In particular, the sealer increases the resistance significantly
between the two sheet metals to be welded. When the welding process starts, high current will be fired,
which is faced by high resistance (because of the sealer) in the desired spot to be welded, that prevents
the current from flowing in that direction. The other alternative direction for this current is to flow in the
direction of less resistance; this is what is known as shunting effect. Shunting effect produces cold welds, or
at least small welds, which will cause a serious problem to the structure.

Figure 10 shows the spot secondary current for the Intelligent Constant Current Control algorithm with
sealer. It demonstrates a performance similar to the case with no sealer – increasing/decreasing of the current
level to adapt to the estimated cold/expulsion welds.

Figure 11 shows the spot stepper mode secondary current in the presence of sealer. The weld secondary
current was set to a constant value at the beginning of the test with subsequent increments of one ampere
per weld. It can be seen that the cold welds were dominant until just before the end of the test. There were a

Automotive Manufacturing: Intelligent Resistance Welding 233

Fig. 10. Spot secondary current for the fuzzy control algorithm with sealer

Fig. 11. Spot secondary current for the stepper mode with sealer

Table 11. Number of expulsion welds for the fuzzy control scheme, the stepper, and the no stepper modes with
sealer

Number of expulsion welds using Number of expulsion welds using
fuzzy controller stepper mode

3/60 = 5% 0/60 = 0.0%

Table 12. Number of cold welds for the fuzzy control algorithm, the stepper, and the no stepper modes with sealer

Number of cold welds using Number of cold welds using
fuzzy controller stepper model

14/60 = 23.3% 43/60 = 71.7%

couple of normal welds towards the end of the test. No expulsion welds occurred in this test. Apparently, the
secondary current was not enough to produce cold welds. Using stepper mode does not adapt the secondary
current according to the weld status.

Tables 11 and 12 compare the number of expulsion and cold welds for the Intelligent Constant Current
Control algorithm and the conventional stepper mode implementation in the case of welding with sealer. The
number of expulsion welds in the fuzzy control scheme test (3/60 = 5%) is slightly higher than the number

234 M. El-Banna et al.

of expulsion welds in the stepper mode test (0/60 = 0.0%). However, the number of cold welds in the case
of application of the fuzzy control algorithm (14/60 = 23.3%) is much less than the number of cold welds in
the conventional stepper mode test (43/60 = 71.7%).

5 Conclusions

The problem of real time estimation of the weld quality from the process data is one of the major issues
in the weld quality process improvement. This is particularly the case for resistance spot welding. Most of
the models offered in the literature to predict nugget diameter from the process data employ measurements
such as ultrasonics, displacement, and thermal force and are not suitable in an industrial environment for
two major reasons: the input signals for prediction model are taken from intrusive sensors (which will affect
the performance or capability of the welding cell), and, the methods often required very large training and
testing datasets.

In order to overcome these shortcomings, we proposed a Linear Vector Quantization (LVQ) neural net-
work for nugget quality classification that employs the easily accessible dynamic resistance profile as input.
Instead of estimating the actual weld nugget size the algorithm provides an on-line estimate of the weld
quality by classifying the vectors of dynamic resistance profiles into three classes corresponding to normal,
cold, and expulsion welds. We also demonstrated that the algorithm can be successfully applied when the
dynamic resistance profile vector is replaced by a limited feature set. Based on the results from LVQ, a
control algorithm called the Intelligent Constant Current Control for Resistance Spot Welding was proposed
for adapting the weld current level to compensate for electrode degradation in resistance spot welding. The
algorithm employs a fuzzy logic controller using a set of engineering rules with fuzzy predicates that dynami-
cally adapt the secondary current to the state of the weld process. A soft sensor for indirect estimation of the
weld quality employing an LVQ type classifier was implemented in conjunction with the intelligent control
algorithm to provide a real time approximate assessment of the weld nugget status. Another soft sensing
algorithm was applied to predict the impact of the current changes on the expulsion rate of the weld process.
By maintaining the expulsion rate just below a minimal acceptable level, robust process control performance
and satisfactory weld quality were achieved. The Intelligent Constant Current Control for Resistance Spot
Welding was implemented and experimentally validated on a Medium Frequency Direct Current (MFDC)
Constant Current Weld Controller.

Results were verified by benchmarking the proposed algorithm against the conventional stepper mode
constant current control. In the case when there was no sealer between sheet metal, it was found that the
proposed intelligent control approach reduced the relative number of expulsion welds and the relative number
of cold welds by 31% (from absolute 45.4–31.5%) and 29% (from absolute 20.4–14.4%) respectively, when
compared to the stepper mode approach.

In the case when there was a sealer type disturbance, the proposed control algorithm once again demon-
strated robust performance by reducing the relative number of cold welds by 67% compared to the stepper
mode algorithm (from absolute 71.7–23.3%), while increasing the absolute number of expulsion welds by
only 5%.

Our Intelligent Constant Current Control Algorithm is capable of successfully adapting the secondary
current level according to weld state and to maintain a robust performance.

Our focus in this chapter was on the Medium Frequency Direct Current (MFDC) weld controllers. An
alternative version of the Intelligent Constant Current Control Algorithm that is applicable to the problem
of alternating current (AC) weld control in conjunction with the Constant Heat Control Algorithm [8] is
under development.

References

1. M. Jou, Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies,
Journal of Materials Processing Technology, 132, 102–113, 2003.

2. Y. Nishiwaki and Y. Endo, Resistance welding Controller, W. T. Corporation, Ed. USA, April 10, 2001.

Automotive Manufacturing: Intelligent Resistance Welding 235

3. http://www.romanmfg.com/
4. Y. Cho and S. Rhee, New Technology for measuring dynamic resistance and estimating strength in resistance

spot welding, Measurement Science & Technology, 11, 1173–1178, 2000.
5. S. R. Lee, Y. J. Choo, T. Y. Lee, M. H. Kim, and S. K. Choi, A quality assurance technique for resistance spot

welding using a neuro-fuzzy algorithm, Journal of Manufacturing Systems,20, pp. 320–328, 2001.
6. P. Podrzaj, I. Polajnar, J. Diaci, and Z. Kariz, Expulsion detection system for resistance spot welding based on

a neural network, Measurement Science & Technology, 15, 592–598, 2004.
7. Y. Park and H. Cho, Quality evaluation by classification of electrode force patterns in the resistance spot weld-

ing process using neural networks, Proceedings of the Institution of Mechanical Engineers, Part B (Journal of
Engineering Manufacture), 218, 1513, 2004.

8. M. El-Banna, D. Filev, and R. B. Chinnam, Online nugget quality classification using LVQ neural network for
resistance spot welding, International Journal of Advanced Manufacturing Technology, 36, 237–248, 2008.

9. T. Kohonen, Improved versions of learning vector quantization. In: (2nd ed.), Proceedings of International Joint
Conf. on Neural Networks I, pp. 545–550 San Diego, 1990.

10. N. T. Williams and J. D. Parker, Review of resistance spot welding of steel sheets Part 2 – Factors influencing
electrode life, International Materials Reviews, 49, 77–108, 2004.

11. N. T. Williams, R. J. Holiday, and J. D. Parker, Current stepping programmes for maximizing electrode campaign
life when spot welding coated steels, Science and Technology of Welding and Joining, 3, 286–294, 1998.

12. R. W. Messler, J. Min, and C. J. Li, An intelligent control system for resistance spot welding using a neural
network and fuzzy logic, presented at IEEE Industry Applications Conference, Orlando, FL, USA, Oct. 8–12, 1995.

13. X. Chen and K. Araki, Fuzzy adaptive process control of resistance spot welding with a current reference model,
presented at Proceedings of the IEEE International Conference on Intelligent Processing Systems, ICIPS, Beijing,
China, 1998.

14. S. Lee, Y. Choo, T. Lee, M. Kim, and S. Choi, A quality assurance technique for resistance spot welding using
a neuro-fuzzy algorithm, Journal of Manufacturing Systems, 20, 320–328, 2001.

15. M. El-Banna, D. Filev, and R. B. Chinnam, Intelligent Constant Current Control for Resistance Spot Welding,
Proceedings of 2006 IEEE World Congress of Computational Intelligence, 2006 IEEE International Conference
on Fuzzy Systems, Vancouver, 1570–1577, 2006.

16. D. Dickinson, J. Franklin, and A. Stanya, Characterization of Spot-Welding Behavior by Dynamic Electrical
Parameter Monitoring, Welding Journal, 59, S170–S176, 1980.

17. M. Hao, K. A. Osman, D. R. Boomer, C. J. Newton, and P. G. Sheasby, On-line nugget expulsion detection
for aluminum spot welding and weldbonding, SAE Transactions Journal of Materials and Manufacturing, 105,
209–218, 1996.

18. H. Hasegawa and M. Furukawa, Electric Resistance Welding System, U.S Patent 6130369, 2000.
19. R. R. Yager and D. Filev, Essentials of Fuzzy Modeling & Control. Wiley, New York, 1994.
20. T. Kohonen, Self-Organization and Associative Memory, 2nd ed., Springer, Berlin Heidelberg New York, 1987.

Intelligent Control of Mobility Systems

James Albus, Roger Bostelman∗, Raj Madhavan, Harry Scott, Tony Barbera, Sandor Szabo, Tsai Hong,
Tommy Chang, Will Shackleford, Michael Shneier, Stephen Balakirsky, Craig Schlenoff, Hui-Min Huang,
and Fred Proctor

Intelligent Systems Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Mail Stop
8230, Gaithersburg, MD 20899-8230, USA

1 Introduction

The National Institute of Standards and Technology (NIST) Intelligent Control of Mobility Systems (ICMS)
Program provides architectures and interface standards, performance test methods and data, and infra-
structure technology needed by the U.S. manufacturing industry and government agencies in developing and
applying intelligent control technology to mobility systems to reduce cost, improve safety, and save lives. The
ICMS Program is made up of several areas including: defense, transportation, and industry projects, among
others. Each of these projects provides unique capabilities that foster technology transfer across mobility
projects and to outside government, industry and academia for use on a variety of applications. A common
theme among these projects is autonomy and the Four Dimensional (3D + time)/Real-time Control System
(4D/RCS) standard control architecture for intelligent systems that has been applied to these projects.

NIST’s Intelligent Systems Division (ISD) has been developing the 4D/RCS [1, 2] reference model archi-
tecture for over 30 years. 4D/RCS is the standard reference model architecture that ISD has applied to many
intelligent systems [3–5]. 4D/RCS is the most recent version of RCS developed for the Army Research Lab
(ARL) Experimental Unmanned Ground Vehicle program. ISD has been applying 4D/RCS to the ICMS
Program for defense, industry and transportation applications.

The 4D/RCS architecture is characterized by a generic control node at all the hierarchical control levels.
Each node within the hierarchy functions as a goal-driven, model-based, closed-loop controller. Each node
is capable of accepting and decomposing task commands with goals into actions that accomplish task goals
despite unexpected conditions and dynamic perturbations in the world. At the heart of the control loop
through each node is the world model, which provides the node with an internal model of the external world.
The fundamental 4D/RCS control loop structure is shown in Fig. 1.

The world model provides a site for data fusion, acts as a buffer between perception and behavior, and
supports both sensory processing and behavior generation. In support of behavior generation, the world model
provides knowledge of the environment with a range and resolution in space and time that is appropriate to
task decomposition and control decisions that are the responsibility of that node.

The nature of the world model distinguishes 4D/RCS from conventional artificial intelligence (AI) archi-
tectures. Most AI world models are purely symbolic. In 4D/RCS, the world model is a combination of
instantaneous signal values from sensors, state variables, images, and maps that are linked to symbolic rep-
resentations of entities, events, objects, classes, situations, and relationships in a composite of immediate
experience, short-term memory, and long-term memory. Real-time performance is achieved by restricting the
range and resolution of maps and data structures to what is required by the behavior generation module at
each level. Short range, high resolution maps are implemented in the lower levels, with longer range, lower
resolution maps at the higher levels.

A world modeling process maintains the knowledge database and uses information stored in it to generate
predictions for sensory processing and simulations for behavior generation. Predictions are compared with

∗Corresponding author, roger.bostelman@nist.gov

J. Albus et al.: Intelligent Control of Mobility Systems, Studies in Computational Intelligence (SCI) 132, 237–274 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

238 J. Albus et al.

SENSORY
PROCESSING

WORLD MODELING
VALUE JUDGMENT

KNOWLEDGE

Images

Maps Entities

Sensors Actuators World

Classification
Estimation
Computation
Grouping
Windowing

Mission (Goal)

internal
external

Events
Planners
Executors

Task
Knowledge

BEHAVIOR
GENERATION

Fig. 1. The fundamental structure of a 4D/RCS control loop

observations and errors are used to generate updates for the knowledge database. Simulations of tentative
plans are evaluated by value judgment to select the “best” plan for execution. Predictions can be matched
with observations for recursive estimation and Kalman filtering. The world model also provides hypotheses
for gestalt grouping and segmentation. Thus, each node in the 4D/RCS hierarchy is an intelligent system
that accepts goals from above and generates commands for subordinates so as to achieve those goals.

The centrality of the world model to each control loop is a principal distinguishing feature between
4D/RCS and behaviorist architectures. Behaviorist architectures rely solely on sensory feedback from the
world. All behavior is a reaction to immediate sensory feedback. In contrast, the 4D/RCS world model
integrates all available knowledge into an internal representation that is far richer and more complete than
is available from immediate sensory feedback alone. This enables more sophisticated behavior than can be
achieved from purely reactive systems.

A high level diagram of the internal structure of the world model and value judgment system is also
shown in Fig. 1. Within the knowledge database, iconic information (images and maps) is linked to each
other and to symbolic information (entities and events). Situations and relationships between entities, events,
images, and maps are represented by pointers. Pointers that link symbolic data structures to each other form
syntactic, semantic, causal, and situational networks. Pointers that link symbolic data structures to regions
in images and maps provide symbol grounding and enable the world model to project its understanding of
reality onto the physical world.

Figure 2 shows a 4D/RCS high level diagram duplicated many times, both horizontally and vertically
into a hierarchical structure as applied to a single military vehicle (lowest level) through an entire battalion
formation (highest level). This structure, now adopted as a reference model architecture for the US Army
Future Combat System, among other organizations, could also be applied to civilian on-road single or multiple
vehicles as information could be passed from one vehicle to the next or to highway communication and control
infrastructure.

This chapter will briefly describe recent project advances within the ICMS Program including: goals,
background accomplishments, current capabilities, and technology transfer that has or is planned to occur.
Several projects within the ICMS Program have developed the 4D/RCS into a modular architecture for
intelligent mobility systems, including: an Army Research Laboratory (ARL) Project currently studying on-
road autonomous vehicle control, a Defense Advanced Research Project Agency (DARPA) Learning Applied
to Ground Robots (LAGR) Project studying learning within the 4D/RCS architecture with road following
application, and an Intelligent Systems Ontology project that develops the description of intelligent vehicle
behaviors. Within the standards and performance measurements area of the ICMS program, a Transporta-
tion Project is studying components of intelligent mobility systems that are finding their way into commercial
crash warning systems (CWS). In addition, the ALFUS (Autonomy Levels For Unmanned Systems) project
determines the needs for metrics and standard definitions for autonomy levels of unmanned systems. And
a JAUS (Joint Architecture for Unmanned Systems) project is working to set a standard for interoper-
ability between components of unmanned robotic vehicle systems. Testbeds and frameworks underway at
NIST include the PRIDE (Prediction in Dynamic Environments) framework to provide probabilistic pre-
dictions of a moving object’s future position to an autonomous vehicle’s planning system, as well as the

Intelligent Control of Mobility Systems 239

O
PE

R
A

T
O

R
 I

N
T

E
R

F
A

C
E

SP
WM BG

SP WM BG

SP WM BG

SP WM BG

Points

Lines

Surfaces

SP WM BG SP WM BG

SP WM BG

0.5 second plans
Steering,
velocity

5 second plans
Subtask on object surface
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

SUBSYSTEM

SURROGATE SECTION

SURROGATE PLATOON

SENSORS AND ACTUATORS

Plans for next 2 hours

Plans for next 24 hours

0.05 second plans
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

Objects of attention

LocomotionCommunication Mission Package

VEHICLE Plans for next 50 seconds
Task to be done on objects of attention

Plans for next 10 minutes
Tasks relative to nearby objects

Section Formation

Platoon Formation

Attention

Battalion Formation SURROGATE BATTALION

Fig. 2. The 4D/RCS Reference Model Architecture showing multiple levels of hierarchy

USARSim/MOAST (Urban Search and Rescue Simulation/Mobility Open Architecture Simulation and
Tools) framework that is being developed to provide a comprehensive set of open source tools for the develop-
ment and evaluation of autonomous agent systems. A NIST Industrial Autonomous Vehicles (IAV) Project
provides technology transfer from the defense and transportation projects directly to industry through col-
laborations with automated guided vehicles manufacturers by researching 4D/RCS control applications to
automated guided vehicles inside facilities. These projects are each briefly described in this Chapter followed
by Conclusions and continuing work.

2 Autonomous On-Road Driving

2.1 NIST HMMWV Testbed

NIST is implementing the resulting overall 4D/RCS agent architecture on an ARL High-Mobility Multipur-
pose Wheeled Vehicle (HMMWV) testbed (see Fig. 3). Early work has focused on the lower agent control
modules responsible for controlling the speed, steering, and real-time trajectory paths based on sensed road
features such as curbs. This effort has resulted in sensor-based, on-road driving along dynamically-smooth
paths on roadways and through intersection turns [6]. Future work includes the implementation of selected
driving and tactical behaviors to further validate the knowledge set.

NIST has put in place several infrastructural elements at its campus to support the intelligent vehicle
systems development described above. An aerial survey was completed for the entire site, providing high
resolution ground truth data. A GPS base station was installed that transmits differential GPS correction
data across the site. Testbed vehicles, equipped with appropriate GPS hardware, can make use of these
corrections to determine their location in real-time with an uncertainty a few centimeters. This data can be
collected and compared to the ground truth data from the survey to make possible extensive vehicle systems
performance measurements of, for example, mobility control and perception components. In addition, lane
markings consistent with the DOT Manual on Uniform Traffic Control Devices, have been added to parts of
the campus to support development of perception capabilities required for urban driving.

240 J. Albus et al.

Fig. 3. ARL/NIST HMMWV Testbed showing several sensors mounted above the cab

Fig. 4. Sensor suite mounted on the HMMWV cab

Perception

The perception in an autonomous mobile robot provides information about the world that enables a mobile
robot to autonomously navigate its environment and react to events or changes that influence its task.
The goal of Perception is to build and maintain the internal representation of the world (World Model) that
the behavior generation components of the mobile robot can use to plan and execute actions that modify the
world or the robot’s position in the world. Since the world in general is not static, the perception algorithms
must update the internal model rapidly enough to allow changes, such as the positions of moving objects,
to be represented accurately. This places constraints on the sensors that can be used and on the processing
that can be applied.

This section will address the perception aspects of an autonomous mobile robot under the ARL project.
Under this project, we developed and demonstrated solutions to a number of perception problems in
autonomous navigation. In order to achieve goals in supporting navigation through real-time algorithms,
color cameras, FLIR (forward looking infrared), LADARs (laser detection and ranging) (see Fig. 4) are used
and the following topics are investigated and implemented:

Sensors, Sensor Registration, and Sensor Fusion: Sensors in use include color cameras, FLIR and scanning
and imaging LADARs. These sensors have to be registered so that data from the sensors can be combined.
Registration involves accurately locating the sensors relative to each other and time- and position-stamping
the outputs of each sensor and combined with vehicle motion. Sensor fusion allows a richer description of

Intelligent Control of Mobility Systems 241

the world and is particularly useful in associating range information with data from a two-dimensional,
monocular color camera.

Obstacle Detection: Obstacles may be features that lie above the ground or holes in the ground. They
need to be detected well before the vehicle reaches them and to know the true size of an obstacle to avoid it.
Hence a three-dimensional analysis is required. This can be obtained from LADAR or stereo sensors, while
a color camera may provide the best data to identify the obstacle.

Feature Detection: To build up a rich description of the world, a variety of features need to be recognized.
These include roads, road signs, water, other vehicles, pedestrians, etc. Special purpose processing is needed
for each of these features, which must not only be detected, but tracked while they are within the immediate
vicinity of the robotic vehicle.

Performance Evaluation: Sensory processing plays a critical part in keeping the vehicle operating safely.
Evaluating the performance of the sensory processing algorithms, which involves algorithm testing in realistic
scenarios, provides a way to ensure that they work correctly and robustly enough in the real world.

The world model is used in this project as a basis for temporal fusing the extracted feature from the
perception algorithms on different sensors and producing an internal world model. The world model contains
a representation of the current state of the world surrounding the vehicle and is updated continually by the
sensors. It acts as a bridge between perception and behavior generation by providing a central repository
for storing sensory data in a unified representation, and decouples the real-time sensory updates from the
rest of the system. The world model therefore constructs and maintains all the information necessary for
intelligent path planning.

2.2 4D/RCS Task Decomposition Controller for On-Road Driving

The 4D/RCS design methodology has evolved over a number of years as a technique to capture task
knowledge and organize it in a framework conducive to implementation in a computer control system. A
fundamental premise of this methodology is that the present state of the task sets the context that identifies
the requirements for all of the support processing. In particular, the task activity at any time determines
what is to be sensed in the world, what world model states need to be evaluated, which situations need to
be analyzed, what plans should be invoked, and what behavior generation knowledge needs to be accessed.
This view has resulted in the development of a design methodology that concentrates first and foremost on
a clear understanding of the task and all of the possible subtask activities.

The application of this methodology to the on-road driving task has led to the design of a 4D/RCS control
system that is formed from a number of agent control modules organized in a hierarchical relationship where
each module performs a finer task decomposition of the goal it receives from its supervising module. Each
of these control modules receives a goal task/command, breaks it down into a set of simpler subtasks,
determines what has to be known from the internal world model to decide on the next course of action,
alerts the sensory processing as to what internal world objects have to have their states updated by new
sensory readings/measurements, and evaluates the updated state of the world model to determine the next
output action.

An on-road driving 4D/RCS control hierarchy is shown in Fig. 5, which is an application of multiple
levels of the 4D/RCS reference model architecture diagram shown in Fig. 2. Here, over 170 intermediate level
subtask commands have been identified. These are shown as input commands to the corresponding control
module where they execute. A further expansion of these commands is shown at the Vehicle Manager and
the Mobility agent control modules. Their commands are underlined in Fig. 5 and the corresponding set of
possible plans that can be selected are listed under each underlined command. For example, at the Mobility
module, the FollowRoad command can select a plan to PassVehInFront, or DriveOnTwoLaneRd, or
DriveOnMultiLaneRd, or PullOntoRoad, etc. depending on the present world state. Each of these plans
is a separate state table describing this task behavior with an appropriate set of rules. Each of these rules
would have a branching condition/situation from which are derived detail world states, objects, and sensing
resolutions. An example of the command for each module at a particular instant in time is shown in Fig. 6: a
GoTo PostOffice command to the Destination Manager might result in a GoOn SouthDr TurnLeftOnto
ServiceDr command to Vehicle Manager resulting in a TurnRightAtInterTo ServiceDr command to

242 J. Albus et al.

GoOn_TurnRightOnto_
FollowRoute
TurnRightAtIntersection
TurnRightUsingExitRamp
TurnRightUsingFork

GoOn_TurnLeftOnto_
FollowRoute
TurnLeftAtIntersection
TurnLeftUsingExitRamp
TurnLeftUsingFork
TurnLeftUsingRightWithUTurn
TurnLeftUsingUWithRightTurn

GoOn_
FollowRoute

StopAt_
FollowRoute
TurnIntoDrive
ParkVehicle

FollowVehicle
FollowRoute
TurnLeftAtIntersection
TurnLeftUsingExitRamp
TurnLeftUsingFork
TurnLeftUsingRightWithUTurn
TurnLeftUsingUWithRightTurn
TurnRightAtIntersection
TurnRightUsingExitRamp
TurnRightUsingFork
TurnIntoDrive
ParkVehicle

GoOn_Becomes_
FollowRoute

RespondToEmerVeh
RespondToOwnVehEmer
RespondToSchoolBus
RespondToTrafficPerson

PullOntoRoad

Make_U_Turn
BackUp

Plans for Vehicle Manager

FollowRoad
PassVehInFront
DriveOnTwoLaneRd
DriveOnMultiLaneRd
PullOntoRoad
ChangeLaneToGoFaster
ChangeToGoalLane
AccomodatePassingVehicle
RespondToFollowingVeh
NegotiateLaneConstriction
NegotiateMovingConstriction
RespondToPedestrian
RespondToBicyclist
RespondToVehEnteringLane
DriveOnNarrowRoad
RespondToOncomingPassingVeh

CrossThru_Intersect
CrossThru_StopSign
CrossThru_YieldSign
CrossThru_SignalLight
CrossThru_UncontrolledInter
CrossThru_TrafficPerson
MergeInto_TravelLane
AccomodateMerge
Negotiate_RRCrossing
Negotiate_TollBooth
Negotiate_PedestrianCross
Negotiate_GateKeeper

TurnLeftAtInterTo_
TurnLeft_StopSign
TurnLeft_YieldSign
TurnLeft_SignalLight
TurnLeft_UncontrolledInter
TurnLeft_IntoDrive
TurnLeft_FromDrive
TurnLeft_IntoParkingSpace
TurnLeft_TrafficPerson

TurnRightAtInterTo_
TurnRight_StopSign
TurnRight_YieldSign
TurnRight_SignalLight
TurnRight_UncontrolledInter
TurnRight_IntoDrive
TurnRight_FromDrive
TurnRight_IntoParkingSpace
TurnRight_TrafficPerson

Make_U_Turn
Do_U_TurnAtIntersection
Do_U_TurnThruAccess
TurnAroundUsingDrive
TurnAroundInRoad
TurnAround_TrafficPerson

Plans for Mobility
Manager

Backup__
BackupVehicle
BackupIntoParallelPark
BackupOutOfParkSpace

BackLeftTo__
BackLeft_IntoLane
BackLeft_IntoDrive
BackLeft_IntoParkingSpace

BackRightTo__
BackRight_IntoLane
BackRight_IntoDrive
BackRight_IntoParkingSpace

Steer
Servo

Speed
Servo

GoAt_Speed,Acc,Dir(Fwd/Rev)
InitializeSubsystems
PrepForStarting

Destination
Manager

Vehicle
Manager

Uses maps, traffic, weather,
and construction reports to
plan a sequence of MapQuest-
like route segments.

Mobility
Manager

Determines center-of-lane path.
Detects/classifies objects
1)to determine right-of-way,
2)to determine which objects
might affect own vehicle’s path.

Builds goal paths that follow
command lane segments at
proper speeds while avoiding
the set of objects specified by
Mobility.

Primitive/
Trajectory

Calculates the dynamic
trajectories based on the
command goal paths and
controls vehicle to follow
trajectory using speed and
heading commands.

Elemental
Movement

BrakeSteering

Uses a feedforward
servo to estimate
throttle position and
brake-line pressure
to go at command
speed/acceleration.

Uses a feedforward
servo to estimate
steering wheel
position to go at
command heading.

Reads signs and detects
road intersections to identify
where to turn and which lane
to be in.

4D/RCS On-road Driving
Agent Hierarchy with Commands

PrepForShutDown
MaintainForPark/Idle
Stop/Halt

SteerFwd_HeadingAngle
SteerRev_HeadingAngle
InitializeSubsystems
PrepForStarting

InitSubsystems
StartupVehicle
ShutDownVehicle
TurnOffSubsystems

Follow_StLine
Follow_CirArcCW
Follow_CirArcCCW

Stop/Halt
SetupForwardDirTraj
SetupReverseDirTraj

InitSubsystems
StartupVehicle
ShutDownVehicle
TurnOffSubsystems
FollowLane
PassOnLeft
PassOnRight
FollowRightTurnLane
FollowLeftTurnLane
StopAt

CreepForward
PeekForPass
Backup
BackOut_ToGoLeft
BackOut_ToGoRight
BackInto_FromLeft
BackInto_FromRight
DoUTurn_AtInter
DoUTurn_MidRoad
Do3Pt_UTurn

CreepBackward
AllowVehToEnter_FromLeft
AllowVehToEnter_FromRight
YieldToPassingVeh
ReactToPassingVehAbort
PullOntoRd_FromLeftSh
PullOntoRd_FromRightSh

PullOff_OnLeftShoulder
PullOff_OnRightShoulder
GotoGap_LeftLane
GotoGap_RightLane
Premerge_LeftLane
Premerge_RightLane
ChangeTo_LeftLane
ChangeTo_RightLane
StopAtIntersection
AbortPass

InitializeSytem
MakeVehOperational
ShutDownVehicle
TurnOffSystem

Goto_Destination
FollowVehicle

InitializeSystems
StartupVehicle
TurnOffSystems
ShutDownVehicle

InitSubsystems
StartUpVehicle
ShutDownVehicle
TurnOffSubsystems

Fork_Right
Fork_Left
Merge_Right
Merge_Left
GoTo_RightExitRamp
GoTo_LeftExitRamp

BackOut_GoLeft
BackOut_GoRight
RespondTo_OwnVehEmer
Accommodate_SchoolBus
Accommodate_EmerVeh

Throttle

Fig. 5. 4D/RCS on-road driving control hierarchy with over 170 identified intermediate level subtask com-
mands/plans that decompose the GoTo Destination command all the way down to the instant-by-instant steer
and speed/acceleration commands to control the vehicle

Mobility Manager resulting in a FollowRightTurnLane command to Elemental Movement resulting in a
Follow CirArcCW goal path command to Primitive/Trajectory resulting in a SteerFwd HeadingAngle
command to the Steer Servo module and a GoAt Speed,Acc,Fwd command to Speed Servo module. With
each of these control modules in Fig. 6, a summary view of the road network data structure is also pictured.
The commands (goal/action-verbs) in this example are emphasized by a red font with parameters shown in
green. There are, of course, many more parameters (not shown here) associated with each of these commands
that identify specific road and lane parameters, and objects of interest that can affect right-of-way and own
vehicle motion paths. At each control cycle, each of the agent control modules executes as a state machine
where its input state is defined by the input command from its supervisor module, status from its subordinate
module and the present state of its view of the world model. If this input state has changed from the last cycle,

Intelligent Control of Mobility Systems 243

TurnRightAtInterTo_ServiceDr

Destination
Manager

Vehicle
Manager

Uses maps, with real-time
traffic, weather, and
construction reports to plan
MapQuest-like route segments.

Mobility
Manager

Builds accurate center-of-lane
path using constant curvature arcs
designated as lane segments.
Classifies objects
1) to determine right-of-way,
2) to determine which objects
 might affect own vehicle’s path.

Builds goal paths that follow
command lane segments at
proper speeds while avoiding
the set of objects specified by
Mobility.

Primitive/
Trajectory

Calculates the dynamic
trajectories based on the
command goal paths.
Controls vehicle to follow
trajectory using speed and
heading commands.

Elemental
Movement

Reads signs and detects
road intersections to identify
where to turn and which lane
to be in. Converts route plan
to individual lanes with forks
and merges.

4D/RCS On-road Driving
Agent Hierarchy with Road Network

Follow_CirArcCW
GoalPath 115

Goto_PostOffice

GoOn_South Dr
TurnRightAt_Service Dr

FollowRightTurnLane
Lane-Segments-Path

Fig. 6. Upper 4D/RCS agent control modules of an on-road driving control hierarchy summarizing the road network
interactions for each control module. Each lower module processes a more detailed representation of the vehicle’s
goal path

244 J. Albus et al.

then the control module transitions to a new state and may change the output command to a subordinate
module, and/or the status to the supervisor module, along with changes to the world model.

The following outline will detail activities at each of these agent control modules summarizing the level
and type of knowledge and data each process. This outline uses a standardized format where each module is
described by a five part section consisting of summary of its responsibilities and actions including the world
model data generated, its input command from the supervisor control module, its input from the world
model, its output command to its subordinate control module, and its output status. Again, each command
name will be highlighted in red (with parameters in green). Road network data structure elements will be
highlighted in blue.

Destination Manager Control Module

Responsibilities and Actions: This module’s primary responsibility is to plan the route to get to a single
commanded destination, which may include passing through specified intermediate control points. This
is route planning at the level that determines which road to follow and which intersections to turn at.
At any time, real-time inputs concerning weather, traffic, construction, civil situations, etc. can cause a
re-planning/re-sequencing of route elements used to define the route.

Retrieves and builds a sequence of route elements to specify a route segment .

This module is commanded to go to a destination , which is described by not only the destination point
itself but also by a list of possible intermediate control points so that the supervisor module can control the
shape of the solution path. The input command further constrains the route to be planned to arrive at the
destination by a specified time and to be prioritized by the shortest distance, or time, or the least number
of turns or controlled intersections. As a result, this module has the responsibility to plan the sequence of
the route elements (see Fig. 7) that meet the commanded constraints. It creates multiple sets of possible
sequences of route elements and evaluates them against the commanded constraints to select a plan set
to execute. It is continually updating the attributes of the route elements based on the real-time reports
of weather, traffic, construction, civil situations, and accidents. Anytime new real-time inputs are available,
this module re-plans the sequence of route elements. It processes present experiences to create a history
of average effects of these parameters versus time of day, day of week, time of year to build more accurate
estimates of the route elements availability and average speeds. From this, over time, it can improve the
accuracy of its estimations and its planned routes. It commands the Vehicle control module to execute a route
segment , which is a sequence of route elements, all of which pass through each intervening intersection
except the last route element, which specifies a turn onto a different road. When the subordinate control
module indicates it is nearing completion of its commanded route segment, this module re-plans its set of
route elements and groups the next sequence of route elements that represents the next route segment
and issues this command to the subordinate module.

Input-Command: A command to Goto Post Office, which is the form of a Goal Destination specifi-
cation. The associated command data includes the parameters of the final goal point along with a sequential
list of any intermediate points (control points) to pass through (e.g., Goto Post Office (from the present
position which is the school) by way of the intersection at Service Dr and Research Dr (a control point)) along
with a specific time to be at this goal destination (e.g., arrive at Post Office by 10:00 a.m.). Additionally,
the command specifies that a route is to be planned that prioritizes on the shortest time, or the shortest
distance, or the least number of turns, or least number of controlled intersections.

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a
map at the level of route elements (an interconnecting single direction of travel between two intersections
with a direction pointing out of the second intersection (e.g., turn left, or pass through, or turn right). Each
route element is a unique possible path for a vehicle to travel. Each is assigned a number of attributes that
identify its availability (i.e., is it available for a vehicle to travel on it), time constraints on its availability
(not available from 7:30 to 9:00 a.m., such as might apply to a left turn), average travel speeds with time
constraints (e.g., 35 kph from 7:00 p.m. to 7:30 a.m., 15 kph from 7:30 a.m. to 7:00 p.m.), average travel
speeds with weather constraints (35 kph clear weather, 20 kph in rain, 15 kph in snow), average travel speeds

Intelligent Control of Mobility Systems 245

63

8

RE2

RE14
712

Goal
Route Segment

Fig. 7. Route Elements (RE) are route representations that connect two Map Points (which are either intersections
or boundary points of the map and are labeled by yellow stars) and indicate a direction away from the end Map
Point. Here Route Element 2 (RE2) starts at Map Point 7 and ends at Map Point 1 heading in a direction straight
through the intersection at Map Point 1 towards Map Point 2. RE14 starts at Map Point 1 and ends at Map Point
2 heading in a direction of a right turn at the intersection towards Map Point 3. The Destination Manager control
module plans a route as the sequence of these route elements that best meet the constraints of minimum distance,
minimum time, or minimum number of turns

with traffic constraints (35 kph normal traffic, 25 kph in moderate traffic, 15kph in heavy traffic) conditions
that make it unavailable (e.g., unavailable in heavy rain – has a creek that floods, unavailable in snow or
ice because has too steep of a hill, unavailable because of accident report or construction report or civil
situation report such as a parade or demonstration). Most of the real-time information is usually received
from remote sensing since most of the route is beyond own vehicle’s sensing capabilities, but own vehicle’s
sensing can contribute in situations like observing an accident in the road ahead which has not yet been
reported on the radio.

World model road network data includes a set of history attributes that store average times to traverse
each route element under the various conditions, which should improve planning estimates.

Output-Command: Goal Route Segment which is a Map Quest-like command GoOn SouthDr Turn-
RightAt ServiceDr , which is basically a command to follow a specified road until you have to turn onto
a different road.

Associated command data: Sequential list of the route elements that combined make up the specified
route segment command.

Output-Status: Present state of goal accomplishment (i.e., the commanded goal destination) in terms
of executing, done, or error state, and identification of which intermediate control points have been executed
along with estimated times to complete the remaining control points.

Vehicle Manager Control Module

Responsibilities and Authority: This module’s primary responsibility is to use the commanded planned route
elements to build out the actual available lanes along these route elements, identifying wherever a physical

246 J. Albus et al.

1
2

3

LE18
LE21

LE32

M13

M27

F23

F37

Goal
 Lane

Fig. 8. A Lane Element (LE) is defined single lane section of road that connects two Lane Junctions. Lane Junctions
are either Forks (e.g., F23 which is a right turn fork) or Merges (e.g., M27 which is a merge of a left turn and a right
turn). This figure illustrates the lane elements for a single Route Element that turns right at the intersection (defined
as Map Point 2). Here, Lane Element 18 (LE18) is one lane of a two lane road that goes from Merge 13 (M13) to
Fork 23 (F23). LE21 goes from F23 to M27 and LE32 goes from M27 to F37. The Vehicle Manager Control Module
carries out this further refinement of the commanded Route Element 14 from the Destination Manager to build the
sequence of these three Lane Elements (LE18, LE21, and LE32) that define the planned Goal Lane for the vehicle

branching (fork) exists and selecting the correct branch (such as a right turn as opposed to passing through
an intersection). This module assembles the resultant lane element sequences in groups that define a goal
lane on a roadway between intersections or a goal lane that defines the maneuver through an intersection.
Real-time navigational data input from road name signs, exit signs and lane-use restriction signs are used
to assist plan execution.

Retrieves and builds a sequence of lane elements to specify a goal lane.

This module is commanded to go along a route segment , which is described by the corresponding
sequence list of route elements. This control module converts this higher level of route abstraction into
the actual lanes that are available for own vehicle to travel on along these route elements. It does this by
building out the sequence of lane elements that will represent the more detailed route plan for the vehicle
and then groups these lane elements into commanded goal lanes as shown in Fig. 8. It further decides,
based on navigational concerns at this level, what priority to set on the commanded goal lane. If there is
an upcoming right hand turn, for instance, on a multi-lane road, it may specify that the goal lane (which is
the furthest lane to the right) for a FollowRoad command is at the priority of only-required-to-be-in-goal-
lane-when-reach-end-of-goal-lane so that the subordinate control modules are free to chose adjacent lanes to
respond to drive behavior issues but the vehicle must be in that lane at the end of the lane in time for the
upcoming right turn.

This module assembles lane elements in order to specify either the goal lanes between intersections
or the goal lanes that navigate through intersections (including turns). In this way, these goal lane
specifications accompany the commands to the subordinate Mobility control module to carry out Follow
Road, Turn Right At Intersection, Pass Through Intersection, etc. actions.

This module uses those real-time world model data that can affect the choice of lane elements, which
affects which fork and/or merge lane junction to use. Its world data includes the road names of its own
road and all crossing roads as well as navigational signs that indicate upcoming intersections, turn lanes and
exit ramps, as well as any lane restrictions such as “No Left Turn – 4:30 to 7:00 p.m.”. It also monitors for

Intelligent Control of Mobility Systems 247

any situations that might cause changes in the set of lane elements selected to execute a commanded route
element. As an example, a right turn ramp might be closed for construction requiring the vehicle to proceed
into the intersection to make the turn, or the left turn lane may be blocked by an accident requiring the
vehicle to pass through the intersection and make a U-turn then a left turn. But in all cases, the commanded
route element is still being followed. However, if the right hand turn road were completely blocked by
an accident, this would create a situation requiring a response beyond the level of authority of this Vehicle
control module since the commanded route element can no longer be followed. This data would feedback
through the world model to the Destination manager module to trigger a re-planning of a new sequence of
route elements to deal with this situation. The Destination manager would then command the Vehicle
module with a new route segment composed of a new sequence of route elements. The Vehicle control
module would, in turn, build out its corresponding set of lane elements to specify the new goal lane and
command these to the Mobility control module. All of these responses would happen in a small fraction of a
second. This illustrates how each module can only make decisions at its level of responsibility and authority.

Input-Command: A command to GoOn SouthDr TurnRightAt ServiceDr which is the form of a
Goal Route Segment (similar to a MapQuest-like command), which is basically a command to follow a
specified road until you have to turn onto a different road.

Associated command data: Sequential list of the route elements that when combined, make up the
specified route segment command. This is a list of route elements, each of which specifies the route through
the next succeeding intersection (these will all be pass-through-the-intersection route elements) until the last
route element of the list that will specify the turn required to go onto a different road completing the
specification of the commanded route segment .

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a map
at the level of lane junctions and lane elements. Lane junctions are all of the points along a single
travelway where either a physical fork from one lane to two lanes occurs (a Fork Junction) or two lanes come
together into one lane (a Merge Junction). The interconnecting stretches of single lane travelways are the
lane elements. This is analogous to a train track where all of the switches represent the lane junctions
and the connecting track sections are the lane elements. This is a very appropriate analogy since a vehicle
traveling on a road is very much constrained to its present lane as a train is to its track and can only change
to a different lane at junction/switch points. Every physical fork junction is a decision point where the
controller has to decide which of the two lanes to choose. The decision to change lanes along a route with
multiple lanes in the same direction is not a navigation issue but a drive behavior issue that will be discussed
below. This module’s map representation is concerned with navigational decisions at the level of physical
road forks and merges. These structures of lane junctions and lane elements carry many attributes to
aid in route planning. Each lane junction is classified as a Fork or a Merge. If it is a Fork, it is classified
as forming a right or left turn, or adding a lane. For a Merge, it is classified as to which merging lane, right
or left, has the right-of-way. If there is a right-of-way control point at the lane junction, then whether the
control is a stop sign, yield sign, signal light, or own direction of travel has right-of-way is specified.

Each lane element is classified as to its type, i.e., right or left turn, entering, exiting, or passing through
an intersection, or a roadway. If there is a right-of-way control point within the lane element, then whether
the control is a stop sign, yield sign, signal light, or own direction of travel has right-of-way. The data
structures for the lane elements also maintain a large number of relationships, such as, the next following
and previous lane elements, the adjacent lane elements, the type of road (two-lane undivided, four-lane
undivided, four-lane divided, etc.) and the lane element’s position relative to other lane elements in the
roadway, whether it starts or ends at an intersection, passes through an intersection or turns, etc. They are
also classified by the action taken to enter them (fork right or left, come from merge) and the action at their
end (merge-to-left, merge-to-right, etc.). Each lane element also references its start and end lane junction.
All of the lane elements carry navigational information in the form of start and end UTM coordinates,
overall length, speed limits, heading direction, average times to traverse, name of the road, and which route
element (used by the Destination Manager control module) that they are a part of. In a corresponding
cross-referencing, each route element maintains a list of lane elements that make it up.

World model road network data includes a set of history attributes that store average times to traverse
each lane element under various conditions. These should improve the planning estimates.

248 J. Albus et al.

Output-Command: A command to Follow Road, or Turn Right At Intersection, or Cross Through
Intersection along with the data specification of the corresponding Goal Lane in the form of a sequential
list of lane elements along with a specific time to arrive at end of the goal lane. Additionally, in the case
of a multi-lane travelway with lanes traveling parallel with the goal lane, the priority of own vehicle being
in the goal lane is specified by parameters such as desired-to-be-in-goal-lane, or required-to-be-in-goal-lane,
or only-required-to-be-in-goal-lane-when-reach-end-of-goal-lane.

Associated command data: Sequential list of the lane elements that identify the goal lane for own vehicle
to travel. Additionally, the time of arrival at the end of the specified GoalLane is also commanded.

Output-Status: Present state of goal accomplishment (i.e., the commanded route segment) in terms of
executing, done, or error state, and identification of which intermediate route elements have been executed
along with estimated time to complete each remaining route element.

Mobility Control Module

Responsibilities and Authority: This module’s primary responsibility is to determine own vehicle’s present
right-of-way based on the road/intersection topography, control devices, rules of the road, and the state of
other vehicles and pedestrians. It determines when own vehicle can go and determines the lane segments
that define its nominal path (see Fig. 9). It also determines which objects might affect its path motion and
places these in an Objects-of-Interests table to send to the Elemental Movement control module to plan
a path around them.

Retrieves and builds a sequence of lane segments to specify a goal lane-segment path. Builds a table
of active objects (with evaluation costs) that might influence own vehicle’s path.

This module is commanded to go along a goal lane, which is described by a list of lane elements. It
derives a set of lane segments, which are constant curvature arcs that specify the expected center-of-lane
path for the lane elements. This module registers/aligns real-time updates of these lane segments as
derived from sensed position of the road and lanes.

Additionally, this module applies road and intersection topography templates to fill in all of the relevant
lane data, specifying such information as to which lanes cross, or merge, or do not intersect own lane

2

LnSeg82
LnSeg87

LnSeg91
M27

F23

Goal
 Lane-Segments-Path

LnSeg81

LnSeg92

M13

F37

Fig. 9. Lane Segments (LnSeg) are defined as the nominal center-of-lane path representations in the form of constant
curvature arcs and straight lines. They pass through the forks and merges that bound the Lane Elements. In this
example, the Lane Element 18 references a linked list of lane segments containing LnSeg81 and LnSeg82, LE21
references LnSeg87, and LE32 references LnSeg91 and LnSeg92. Thus, the Lane Element is a data structure to
abstract and reference the set of actual center-of-lane paths (Lane Segments). The Mobility control module manages
this relationship by constantly updating the list of Lane Segments for a particular Lane Element based on real-time
sensing of the lane position and curvature

Intelligent Control of Mobility Systems 249

Right Turn
at

3-way
Intersection

Own Vehicle’s Path

Intersecting Lanes

Merging Lanes

Non-Intersect Lanes

Fig. 10. A Lane Intersection Template for a 3-way intersection describes the type of intersecting interactions between
own vehicle goal lane and all of the other lanes in the intersection

Right Turn
at

3-way
Intersection

Own Vehicle’s Path
has right-of-way

Merging Lanes that
yield to own vehicle

Non-Intersect Lanes

Stop-Line for
Stop Sign

Fig. 11. The specific control devices (here – a Stop Sign) are populated into the template to arrive at the right-of-way
behaviors of vehicles in all of the lanes of the intersection

(see Fig. 10) These structures are then further overlaid with present detected control devices such as stop
signs to specify the relative right-of-way considerations (see Fig. 11) for all of the lanes nearby own vehicle’s
goal lane. This world model structure serves as the basis for real-time assessment of own vehicle’s right of
way when overlaid with other vehicles and their behavior states.

This module uses these observed vehicles’ and pedestrians’ world states including position, velocity and
acceleration vectors, classification of expected behavior type (aggressive, normal, conservative), and intent
(stopping at intersection, turning right, asserting right-of-way, etc.) to decide what action own vehicle should
do and when to do it.

This module also provides classification of objects relevant to the present commanded driving task (see
Fig. 12) by determining which objects are close enough to the identified relevant lanes to have the potential
to affect own vehicle’s planned path. These objects (see Fig. 13) are placed into an Objects-of-Interest
table along with a number of computed parameters such as required offset distance, passing speed, cost to
violate offset or passing speed, cost to collide, as well as dynamic state parameters such as velocity and
acceleration vectors and other parameters. This table will serve as part of the command data set to the
Elemental Movement control module.

250 J. Albus et al.

2

M27

F23 M13

F37

Pedestrians
Pot Hole

Fig. 12. Objects relevant to on-road driving (here pedestrians and pot holes) are sensed, classified, and placed into
the world model

2

M27

F23 M13

F37

X

X

X

Object-1

Object-2

Object-3

Off-Path Distance

2
Posit

ion

Objec
t-ID

Offs
et
Pas

sS
pee

d

Follo
wing

Dist

Costs
 to

 Viol
ate

X-80934
Y-23882
Z-23457

X-8093
Y-23882 X-80934 X-80934

X-80934
Y-23882
Z-23457

Objects-of-Interest
Table

Fig. 13. The Mobility control module tests the objects in the world model to see which ones are within a specified
distance to own vehicle’s goal lane (here shown as a shaded green area). In this figure, only Object-2 (a pedestrian) is in
this region. Mobility manager places this object into an Objects-of-Interest table along with parameters of minimum
offset distance, passing speed, following distance and cost values to exceed these. This is part of the command to the
subordinate Elemental Movement control module

Input-Command: A command to FollowRoad, or TurnRightAtIntersection, or Cross ThroughIn-
tersection, etc. along with the data specification of the corresponding Goal Lane in the form of a sequential
list of lane elements, with a specific time to be at the end of the goal lane. In the case of adjacent lanes
in the same direction as the goal lane, the priority of own vehicle being in the goal lane is specified with
parameters such as desired, or required, or required-when-reach-end-of-lane.

Intelligent Control of Mobility Systems 251

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a map
at the level of lane segments which are the nominal center-of-lane specifications in the form a constant
curvature arcs. This module builds out the nominal lane segments for each lane element and cross-
references them with the corresponding lane elements. The world model contains estimates of the actual
lane segments as provided by real-time sensing of roads and lanes and other indicators. This module will
register these real-time lane segments with its initial nominal set.

This module’s world model contains all of the surrounding recognized objects and classifies them according
to their relevance to the present commanded driving task. All objects determined to have the potential to
affect own vehicle’s planned path are placed into an Objects-of-Interest table along with a number of
parameters such as offset distance, passing speed, cost to violate offset or passing speed, cost to collide as
well as dynamic state parameters such as velocity and acceleration and other parameters.

Other objects include detected control devices such as stop signs, yield signs, signal lights and the present
state of signal lights. Regulatory signs such as speed limit, slow for school, sharp turn ahead, etc. are included.

The observed other vehicles’ and pedestrians’ and other animate objects’ world states are contained here
and include position, velocity and acceleration vectors, classification of expected behavior type (aggressive,
normal, conservative), and intent (stopping at intersection, turning right, asserting right-of-way, following-
motion-vector, moving-randomly, etc.).

Additionally, this module’s world model contains road and intersection topography, intersection, and
right-of-way templates for a number of roadway and intersection situations. These are used to aid in the
determination of which lanes cross, or merge, or do not intersect own lane and to aid in the determination
of right-of-way.

Output-Command: A command to FollowLane, FollowRightTurnLane, FollowLeftTurnLane,
StopAtIntersection, ChangeToLeftLane, etc. along with the data specification of a Goal Lane-
Segment Path in the form of a sequential list of lane segments that define the nominal center-of-lane path
the vehicle is to follow. Additionally, the command includes an Objects-of-Interest table that specifies a
list of objects, their position and dynamic path vectors, the offset clearance distances, passing speeds, and
following distances relative to own vehicle, the cost to violate these values, these object dimensions, and
whether or not they can be straddled.

Output-Status: Present state of goal accomplishment (i.e., the commanded GoalLane) in terms of exe-
cuting, done, or error state, and identification of which lane elements have been executed along with
estimated time to complete each of the remaining lane elements.

Elemental Movement Control Module

Responsibilities and Authority: This module’s primary responsibility is to define the GoalPaths that will
follow the commanded lane, slowing for turns and stops, while maneuvering in-lane around the objects in
the Objects-of-Interests table.

Constructs a sequence of GoalPaths.

This module is commanded to follow a sequence of lane segments that define a goal lane-segment
path for the vehicle. It first generates a corresponding set of goal paths for these lane segments by determining
decelerations for turns and stops as well as maximum speeds for arcs both along the curving parts of the
roadway and through the intersection turns. This calculation results in a specified enter and exit speed for
each goal path. This will cause the vehicle to slow down properly before stops and turns and to have the
proper speeds around turns so as not to have too large a lateral acceleration. It also deals with the vehicle’s
ability to decelerate much faster than it can accelerate.

This module also receives a table of Objects-of-Interests that provides cost values to allow this module
to calculate how to offset these calculate GoalPaths and how to vary the vehicle’s speed to meet these cost
requirements while being constrained to stay within some tolerance of the commanded GoalPath . This
tolerance is set to keep the vehicle within its lane while avoiding the objects in the table. If it cannot
meet the cost requirements associated with the Objects-of-Interest by maneuvering in its lane, it slows
the vehicle to a stop before reaching the object(s) unless it is given a command from the Mobility control

252 J. Albus et al.

2

The commanded Lane Segments are
offset and their speed modified around
an object from the Objects-of-Interest
table to generate a set of goal paths for
the vehicle that meets the control
values specified in the table.

GP113GP114

GP115

GP116

GP117

Vehicle’s Goal Paths -

Fig. 14. Elemental Movement control module generates a set of goal paths with proper speeds and accelerations
to meet turning, slowing, and stopping requirements to follow the goal lane as specified by the commanded lane
segments (center-of-lane paths). However, it will modify these lane segments by offsetting certain ones and altering
their speeds to deal with the object avoidance constraints and parameters specified in the Objects-of-Interest table
from the Mobility control module. Here, Goal Path 114 (GP114) and GP115 are offset from the original lane segment
specifications (LnSeg82 and LnSeg87) to move the vehicle’s goal path far enough out to clear the object (shown
in red) from the Objects-of-Interest table at the specified offset distance. The speed along these goal paths is also
modified according to the values specified in the table

module allowing it to go outside of its lane. The Elemental Movement module is continually reporting status
to the Mobility control module concerning how well it is meeting its goals. If it cannot maneuver around
an object while staying in-lane, the Mobility module is notified and immediately begins to evaluate when a
change lane command can be issued to Elemental Movement module.

This module will construct one or more GoalPaths (see Fig. 14) with some offset (which can be zero)
for each commanded lane segment based on its calculations of the values in the Objects-of-Interest table.
It commands one goal path at a time to the Primitive control module but also passes it the complete set
of planned GoalPaths so the Primitive control module has sufficient look-ahead information to calculate
dynamic trajectory values. When the Primitive control module indicates it is nearing completion of its
commanded GoalPath , the Elemental Movement module re-plans its set of GoalPaths and sends the next
GoalPath . If, at anytime during execution of a GoalPath , this module receives an update of either the
present commanded lane segments or the present state of any of the Objects-of-Interest , it performs a
re-plan of the GoalPaths and issues a new commanded GoalPath to the Primitive control module.

Input-Command: A command to FollowLane, FollowRightTurnLane, FollowLeftTurnLane,
StopAtIntersection, ChangeToLeftLane, etc. along with the data specification of a Goal Lane-
Segment Path in the form of a sequential list of lane segments that define the nominal center-of-lane path
the vehicle is to follow. Additionally, the command includes an Objects-of-Interest table that specifies a
list of objects, their position and dynamic path vectors, the offset clearance distances, passing speeds, and
following distances relative to own vehicle, the cost to violate these values, these object dimensions, and
whether or not they can be straddled.

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a
map at the level of present estimated lane segments. This includes the lane segments that are in the
commanded goal lane segment path as well as the real-time estimates of nearby lane segments such as

Intelligent Control of Mobility Systems 253

the adjacent on-coming lane segments. This world model also contains the continuously updated states
of all of the objects carried in the Objects-of-Interest table. Each object’s state includes the position,
velocity, and acceleration vectors, and history and classification of previous movement and reference model
for the type of movement to be expected such.

Output-Command: A command to Follow StraightLine, Follow CirArcCW, Follow CirArcCCW,
etc. along with the data specification of a single goal path within a sequential list of GoalPaths that define
the nominal path the vehicle is to follow.

Output-Status: Present state of goal accomplishment (i.e., commanded goal lane-segment path) in
terms of executing, done, or error state, and identification of which lane segments have been executed
along with estimated time to complete each of the remaining lane segments.

Primitive (Dynamic Trajectory) Control Module

Responsibilities and Authority: This module’s primary responsibility is to pre-compute the set of dynamic
trajectory path vectors for the sequence of goal paths, and to control the vehicle along this trajectory.
Constructs a sequence of dynamic path vectors which yields the speed parameters and heading vector.

This module is commanded to follow a GoalPath for the vehicle. It has available a number of relevant
parameters such as derived maximum allowed tangential and lateral speeds, accelerations, and jerks. These
values have rolled up the various parameters of the vehicle, such as engine power, braking, center-of-gravity,
wheel base and track, and road conditions such as surface friction, incline, and side slope. This module uses
these parameters to pre-compute the set of dynamic trajectory path vectors (see Fig. 15) at a much faster
than real-time rate (100 − 1), so it always has considerable look-ahead. Each time a new command comes
in from Elemental Movement (because its lane segment data was updated or some object changed state),
the Primitive control module immediately begins a new pre-calculation of the dynamic trajectory vectors
from its present projected position and immediately has the necessary data to calculate the Speed and Steer
outputs from the next vehicle’s navigational input relative to these new vectors.

On each update of the vehicle position, velocity, and acceleration from the navigation system (every
10ms), this module projects these values to estimate the vehicle’s position at about 0.4 s into the future,
finds the closest stored pre-calculated dynamic trajectory path vector to this estimated position, calculates
the off-path difference of this estimated position from the vector and derives the next command speed,
acceleration, and heading from these relationships.

Input-Command: A command to Follow StraightLine, Follow CirArcCW, Follow CirArcCCW,
etc. with the data of a single goal path in the form of a constant curvature arc specification along with
the allowed tangential and lateral maximum speeds, accelerations, and jerks. The complete set of constant
curvature paths that define all of the planned output goal paths from the Elemental Movement control
module are also provided.

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a
map at the level of goal paths commanded by the Elemental Movement control module. Other world model
information includes the present state of the vehicle in terms of position, velocity, and acceleration vectors.
This module’s world model also includes a number of parameters about the vehicle such as maximum
acceleration, deceleration, weight, allowed maximum lateral acceleration, center-of-mass, present heading,
dimensions, wheel base, front and rear overhang, etc.

Output-Command: Commanded maximum speed, present speed, present acceleration, final speed at path
end, distance to path end, and end motion state (moving or stopped) are sent to the Speed Servo control
module. Commanded vehicle center absolute heading, present arc radius, path type (straight line, arc CW,
or arc CCW), the average off-path distance, and the path region type (standard-roadway, beginning-of-
intersection-turn, mid-way-intersection-turn, arc-to-straight-line-blend) are sent to the Steer Servo control
module.

Output-Status: Present state of goal accomplishment (i.e., the commanded goal path) in terms of exe-
cuting, done, or error state, and estimated time to complete present goal path . This module estimates time
to the endpoint of the present goal path and outputs an advance reach goal point state to give an early
warning to the Elemental Movement module so it can prepare to send out the next goal path command.

254 J. Albus et al.

2

Dynamic Trajectories
built from Goal Paths.

GP113GP114

GP117

GP116

GP115

Fig. 15. Primitive/Trajectory control module pre-calculates (at 100× real-time) the set of dynamic trajectory vectors
that pass through the specified goal paths while observing the constraints of vehicle-based tangential and lateral
maximum speeds, accelerations, and jerks. As seen here, this results in very smooth controlled trajectories that blend
across the offset goal paths commanded by the Elemental Movement control module

Speed Servo Control Module

Responsibilities and Authority: This module’s primary responsibility is to use the throttle and brake to cause
the vehicle to move at the desired speed and acceleration and to stop at the commanded position.

Uses a feedforward model-based servo to estimate throttle and brake-line pressure values.

This module is commanded to cause the vehicle to move at a speed with a specific acceleration constrained
by a maximum speed and a final speed at the path end, which is known by a distance value to the endpoint
that is continuously updated by the Primitive module.

This module basically uses a feedforward servo module to estimate the desired throttle and brake-line
pressure values to cause the vehicle to attain the commanded speed and acceleration. An integrated error
term is added to correct for inaccuracies in this feedforward model. The parameters for the feedforward servo
are the commanded speed and acceleration, the present speed and acceleration, the road and vehicle pitch,
and the engine rpm. Some of these parameters are also processed to derive rate of change values to aid in
the calculations.

Input-Command: A command to GoForwardAtSpeed or GoBackwardAtSpeed or StopAtPoint
along with the parameters of maximum speed, present speed, present acceleration, final speed at path end,
distance to path end, and end motion state (moving or stopped) are sent to the Speed Servo control module.

Input-World Model: Present estimate of relevant vehicle parameters – this includes real-time measure-
ments of the vehicle’s present speed and acceleration, present vehicle pitch, engine rpm, present normalized
throttle position, and present brake line pressure. Additionally, estimates are made for the projected vehicle

Intelligent Control of Mobility Systems 255

speed, the present road pitch and the road-in-front pitch. The vehicle’s present and projected positions are
also utilized.

Output-Command: The next calculated value for the normalized throttle position is commanded to the
throttle servo module and the desired brake-line pressure value is commanded to the brake servo module.

Output-Status: Present state of goal accomplishment (i.e., the commanded speed, acceleration, and stop-
ping position) in terms of executing, done, or error state, and an estimate of error if this commanded goal
cannot be reached.

Steer Servo Control Module

Responsibilities and Authority: This module’s primary responsibility is to control steering to keep the vehicle
on the desired trajectory path.

Uses a feedforward model-based servo to estimate steering wheel values.

This module is commanded to cause the heading value of the vehicle-center forward pointing vector
(which is always parallel to the vehicle’s long axis) to be at a specified value at some projected time into the
future (about 0.4 s for this vehicle). This module uses the present steer angle, vehicle speed and acceleration
to estimate the projected vehicle-center heading at 0.4 s into the future. It compares this value with the
commanded vehicle-center heading and uses the error to derive a desired front wheel steer angle command.
It evaluates this new front wheel steer angle to see if it will exceed the steering wheel lock limit or if it will
cause the vehicle’s lateral acceleration to exceed the side-slip limit. If it has to adjust the vehicle center-
heading because of these constraints, it reports this scaling back to the Primitive module and includes the
value of the vehicle-center heading it has scaled back to.

This module uses the commanded path region type to set the allowed steering wheel velocity and acceler-
ation which acts as a safe-guard filter on steering corrections. This module uses the average off-path distance
to continuously correct its alignment of its internal model of the front wheel position to actual position. It
does this by noting the need to command a steer wheel value different than its model for straight ahead
when following a straight section of road for a period of time. It uses the average off-path value from the
Primitive module to calculate a correction to the internal model and updates this every time it follows a
sufficiently long section of straight road.

Input-Command: A GoForwardAt HeadingAngle or GoBackwardAt HeadingAngle is com-
manded along with the parameters of vehicle-center absolute heading, present arc radius, path type (straight
line, arc CW, or arc CCW), the average off-path distance, and the path region type (standard-roadway,
beginning-of-intersection-turn, mid-way-intersection-turn, arc-to-straight-line-blend).

Input-World Model: Present estimate of relevant vehicle parameters – this includes real-time measure-
ments of vehicle’s lateral acceleration as well as the vehicle present heading, speed, acceleration, and steering
wheel angle. Vehicle parameters of wheel lock positions, and estimated vehicle maximum lateral acceleration
for side-slip calculations, vehicle wheel base and wheel track, and vehicle steering box ratios.

Output-Command: The next commanded value of steering wheel position along with constraints on
maximum steering wheel velocity and acceleration are commanded to the steering wheel motor servo module.

Output-Status: Present state of goal accomplishment (i.e., the commanded vehicle-center heading angle)
in terms of executing, done, or error state, along with status on whether this commanded value had to be
scaled back and what the actual heading value used is.

This concludes the description of the 4D/RCS control modules for the on-road driving example.

2.3 Learning Applied to Ground Robots (DARPA LAGR)

Recently, ISD has been applying 4D/RCS to the DARPA LAGR program [7]. The DARPA LAGR program
aims to develop algorithms that enable a robotic vehicle to travel through complex terrain without having
to rely on hand-tuned algorithms that only apply in limited environments. The goal is to enable the control
system of the vehicle to learn which areas are traversable and how to avoid areas that are impassable or that
limit the mobility of the vehicle. To accomplish this goal, the program provided small robotic vehicles to each

256 J. Albus et al.

GPS Antenna

Dual stereo cameras

Computers, IMU
inside

Infrared sensors

Casters

Drive wheels

Bumper

Fig. 16. The DARPA LAGR vehicle

SP2

SP1

BG2
Planner2

Executor2

10 step plan

Group pixels

Classify objects

images
name
class

images
color
range
edges
class

Classify pixels
Compute attributes

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

BG1
Planner1

Executor1

10 step plan

Sensors
Cameras, INS, GPS, bumper, encoders, current

Actuators
Wheel motors, camera controls

Scale & filter

signals

status commands

commands

commands

SP2

SP1

BG2
Planner2

Executor2

10 step plan

Group pixels

Classify objects

images
name
class

images
color
range
edges
class

Classify pixels
Compute attributes

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

BG1
Planner1

Executor1

10 step plan

Sensors
Cameras, INS, GPS, bumper, encoders, current

Actuators
Wheel motors, camera controls

Scale & filter

signals

status commands

commands

commands

200 ms

20 ms

Fig. 17. Two-level instantiation of the 4D/RCS hierarchy for LAGR

of the participants (Fig. 16). The vehicles are used by the teams to develop software and a separate DARPA
team, with an identical vehicle, conducts tests of the software each month. Operators load the software onto
an identical vehicle and command the vehicle to travel from a start waypoint to a goal waypoint through
an obstacle-rich environment. They measure the performance of the system on multiple runs, under the
expectation that improvements will be made through learning.

The vehicles are equipped with four computer processors (right and left cameras, control, and the plan-
ner), wireless data and emergency stop radios, GPS receiver, inertial navigation unit, dual stereo cameras,
infrared sensors, switch-sensed bumper, front wheel encoders, and other sensors listed later in the Chapter.

4D/RCS Applied to LAGR

The 4D/RCS architecture for LAGR (Fig. 17) consists of only two levels. This is because the size of the
LAGR test areas is small (typically about 100m on a side, and the test missions are short in duration
(typically less than 4 min)). For controlling an entire battalion of autonomous vehicles, there may be as
many as five or more 4D/RCS hierarchical levels.

The following sub-sections describe the type of algorithms implemented in sensor processing, world mod-
eling, and behavior generation, as well as a section that describes the application of this controller to road
following [8].

Intelligent Control of Mobility Systems 257

Sensory Processing

The sensor processing column in the 4D/RCS hierarchy for LAGR starts with the sensors on board the
LAGR vehicle. Sensors used in the sensory processing module include the two pairs of stereo color cameras,
the physical bumper and infra-red bumper sensors, the motor current sensor (for terrain resistance), and
the navigation sensors (GPS, wheel encoder, and INS). Sensory processing modules include a stereo obstacle
detection module, a bumper obstacle detection module, an infrared obstacle detection module, an image
classification module, and a terrain slipperiness detection module.

Stereo vision is primarily used for detecting obstacles [9]. We use the SRI Stereo Vision Engine [10] to
process the pairs of images from the two stereo camera pairs. For each newly acquired stereo image pair, the
obstacle detection algorithm processes each vertical scan line in the reference image and classifies each pixel
as GROUND, OBSTACLE, SHORT OBSTACLE, COVER or INVALID.

A model-based learning process occurs in the SP2 module of the 4D/RCS architecture, taking input from
SP1 in the form of labeled pixels with associated (x, y, z) positions from the obstacle detection module. This
process learns color and texture models of traversable and non-traversable regions, which are used in SP1 for
terrain classification [11]. Thus, there is two-way communication between the levels, with labeled 3D data
passing up, and models passing down. The approach to model building is to make use of the labeled SP1
data including range, color, and position to describe regions in the environment around the vehicle and to
associate a cost of traversing each region with its description. Models of the terrain are learned using an
unsupervised scheme that makes use of both geometric and appearance information [12].

The system constructs a map of a 40 by 40m region of terrain surrounding the vehicle, with map cells
of size 0.2m by 0.2m and the vehicle in the center of the map. The map is always oriented with one axis
pointing north and the other east. The map scrolls under the vehicle as the vehicle moves, and cells that
scroll off the end of the map are forgotten. Cells that move onto the map are cleared and made ready for
new information. The model-building algorithm takes its input from SP1 as well as the location and pose of
the vehicle when the data were collected.

The models are built as a kind of learning by example. The obstacle detection module identifies regions
by height as either obstacles or ground. Models associate color and texture information with these labels,
and use these examples to classify newly-seen regions. Another kind of learning is also used to measure
traversability. This is especially useful in cases where the obstacle detection reports a region to be of one
class when it is actually of another, such as when the system sees tall grass that looks like an obstacle but
is traversable, perhaps with a greater cost than clear ground. This second kind of learning is learning by
experience: observing what actually happens when the vehicle traverses different kinds of terrain. The vehicle
itself occupies a region of space that maps into some neighborhood of cells in the traversability cost map.
These cells and their associated models are given an increased traversability weight because the vehicle is
traversing them. If the bumper on the vehicle is triggered, the cell that corresponds to the bumper location
and its model, if any, are given a decreased traversability weight. We plan to further modify the traversability
weights by observing when the wheels on the vehicle slip or the motor has to work harder to traverse
a cell.

The models are used in the lower sensory processing module, SP1, to classify image regions and assign
traversability costs to them. For this process only color information is available, with the traversability being
inferred from that stored in the models. The approach is to pass a window over the image and to compute
the same color and texture measures at each window location as are used in model construction. Matching
between the windows and the models operates exactly as it does when a cell is matched to a model in the
learning stage. Windows do not have to be large, however. They can be as small as a single pixel and the
matching will still determine the closest model, although with low confidence (as in the color model method
for road detection described below). In the implementation the window size is a parameter, typically set to
16 × 16. If the best match has an acceptable score, the window is labeled with the matching model. If not,
the window is not classified. Windows that match with models inherit the traversability measure associated
with the model. In this way large portions of the image are classified.

258 J. Albus et al.

World Modeling

The world model is the system’s internal representation of the external world. It acts as a bridge between
sensory processing and behavior generation in the 4D/RCS hierarchy by providing a central repository for
storing sensory data in a unified representation. It decouples the real-time sensory updates from the rest of
the system. The world model process has two primary functions: To create a knowledge database and keep
it current and consistent, and to generate predictions of expected sensory input.

For the LAGR project, two world model levels have been built (WM1 and WM2). Each world model
process builds a two dimensional map (200 × 200 cells), but at different resolutions. These are used to
temporally fuse information from sensory processing. Currently the lower level (Sensory Processing level
one, or SP1) is fused into both WM1 and WM2 as the learning module in SP2 does not yet send its models
to WM. Figure 18 shows the WM1 and WM2 maps constructed from the stereo obstacle detection module
in SP1. The maps contain traversal costs for each cell in the map. The position of the vehicle is shown as
an overlay on the map. The red, yellow, blue, light blue, and green are cost values ranging from high to low
cost, and black represents unknown areas. Each map cell represents an area on the ground of a fixed size
and is marked with the time it was last updated. The total length and width of the map is 40m for WM1
and 120m for WM2. The information stored in each cell includes the average ground and obstacle elevation
height, the variance, minimum and maximum height, and a confidence measure reflecting the “goodness”
of the elevation data. In addition, a data structure describing the terrain traversability cost and the cost
confidence as updated by the stereo obstacle detection module, image classification module, bumper module,
infrared sensor module, etc. The map updating algorithm relies on confidence-based mapping as described
in [15].

We plan additional research to implement modeling of moving objects (cars, targets, etc.) and to broaden
the system’s terrain and object classification capabilities. The ability to recognize and label water, rocky
roads, buildings, fences, etc. would enhance the vehicle’s performance [16–20].

Behavior Generation

Top level input to Behavior Generation (BG) is a file containing the final goal point in UTM (Universal
Transverse Mercator) coordinates. At the bottom level in the 4D/RCS hierarchy, BG produces a speed for

Fig. 18. OCU display of the World Model cost maps built from sensor processing data. WM1 builds a 0.2 m resolution
cost map (left) and WM2 builds a 0.6 m resolution cost map (right)

Intelligent Control of Mobility Systems 259

each of the two drive wheels updated every 20ms, which is input to the low-level controller included with the
government-provided vehicle. The low-level system returns status to BG, including motor currents, position
estimate, physical bumper switch state, raw GPS and encoder feedback, etc. These are used directly by BG
rather than passing them through sensor processing and world modeling since they are time-critical and
relatively simple to process.

Two position estimates are used in the system. Global position is strongly affected by the GPS antenna
output and received signal strength and is more accurate over long ranges, but can be noisy. Local position
uses only the wheel encoders and inertial measurement unit (IMU). It is less noisy than GPS but drifts
significantly as the vehicle moves, and even more if the wheels slip.

The system consists of five separate executables. Each sleeps until the beginning of its cycle, reads its
inputs, does some planning, writes its outputs and starts the cycle again. Processes communicate using the
Neutral Message Language (NML) in a non-blocking mode, which wraps the shared-memory interface [21].
Each module also posts a status message that can be used by both the supervising process and by developers
via a diagnostics tool to monitor the process.

The LAGR Supervisor is the highest level BG module. It is responsible for starting and stopping the
system. It reads the final goal and sends it to the waypoint generator. The waypoint generator chooses a
series of waypoints for the lowest-cost traversable path to the goal using global position and translates the
points into local coordinates. It generates a list of waypoints using either the output of the A∗ Planner [22]
or a previously recorded known route to the goal.

The planner takes a 201 × 201 terrain grid from WM, classifies the grid, and translates it into a grid of
costs of the same size. In most cases the cost is simply looked up in a small table from the corresponding
element of the input grid. However, since costs also depend on neighboring costs, they are automatically
adjusted to allow the vehicle to continue motion. By lowering costs of unknown obstacles near the vehicle,
it does not hesitate to move as it would with for example, detected false or true obstacles nearby. Since the
vehicle has an instrumented bumper, the choice is to continue vehicle motion.

The lowest level module, the LAGR Comms Interface, takes a desired heading and direction from the
waypoint follower and controls the velocity and acceleration, determines a vehicle-specific set of wheel speeds,
and handles all communications between the controller and vehicle hardware.

Road and Path Detection in LAGR

In the LAGR environment, roads, tracks, and paths are often preferred over other terrain. A color-based image
classification module learns to detect and classify these regions in the scene by their color and appearance,
making the assumption that the region directly in front of the vehicle is traversable. A flat world assumption
is used to estimate the 3D location of a ground pixel in the image. Our algorithm segments an image of
a region by building multiple color models similar to those proposed by Tan et al. [23], who applied the
approach to paved road following. For off-road driving, the algorithm was modified to segment an image into
traversable and non-traversable regions. Color models are created for each region based on two-dimensional
histograms of the colors in selected regions of the image. Previous approaches to color modeling have often
made use of Gaussian mixture models, which assumes Gaussian color distributions. Our experiments showed
that this assumption did not hold in our domain. Instead, we used color histograms. Many road detection
systems have made use of the RGB color space in their methods. However, previous research [24–26] has
shown that other color spaces may offer advantages in terms of robustness against changes in illumination.
We found that a 30×30 histogram of red (R) and green (G) gave the best results in the LAGR environment.

The approach makes the assumption that the area in front of the vehicle is safe to traverse. A trapezoidal
region at the bottom of the image is assumed to be ground. A color histogram is constructed for the points
in this region to create the initial ground model. The trapezoidal region is the projection of a 1m wide by
2m long area in front of the vehicle under the assumption that the vehicle is on a plane defined by its current
pose. In [27] Ulrich and Nourbakhsh addressed the issue of appearance-based obstacle detection using a color
camera without range information. Their approach makes the same assumptions that the ground is flat and
that the region directly in front of the robot is ground. This region is characterized by Hue and Saturation
histograms and used as a model for ground. Ulrich and Nourbakhsh do not model the background, and have

260 J. Albus et al.

only a single ground model (although they observe that more complex environments would call for multiple
ground models). Their work was applied to more homogeneous environments than ours, and we found that
multiple models of ground are essential for good performance in the kinds of terrain used to test the LAGR
vehicles. Substantial work has since been done in the DARPA LAGR program on learning traversability
models from stereo, color, and texture (e.g., [16–20]). Other work, such as [28], that makes use of LADAR
instead of stereo has also been of growing interest, but is not covered here.

In addition to the ground models, a background model is also built. Construction starts by randomly
sampling pixels in the area above the horizon, assuming that they represent non-traversable regions. Because
this area might only contain sky pixels, we extend the sampling area to 50 pixels below the horizon. The
horizon is the line determined by the points where the line of sight of the cameras stops intersecting the
ground plane. Once the algorithm is running, the algorithm randomly samples pixels in the current frame
that the previous result identified as background. This enables the background regions to expand below the
horizon. These samples are used to update the background color model using temporal fusion. Only one
background model is constructed since there is no need to distinguish one type of background from another.

To enable the vehicle to remember traversable terrain with different color characteristics, multiple ground
color models are learned. As new data are processed, each color distribution model is updated with new
histograms, changing with time to fit changing conditions. Potential new histograms for representing ground
are compared to existing models. If the difference is less than a threshold, the histogram is used to upgrade the
best matching ground model. Otherwise, if a maximum number of ground models has not yet been reached,
the algorithm enters a period known as learning mode. During learning mode, the algorithm monitors new
histograms in an attempt to pick out the histogram that is most different from the existing ground models.
This is done to avoid picking color models that contain significant amounts of overlap. In the learning mode,
if a histogram is found to be more different than a previous histogram, learning mode is extended. Eventually
learning mode will end, and the most different histogram is used to create a new color model.

Learning mode is turned off when the region in front of the vehicle assumed to be ground contains
obstacles. This is determined by projecting obstacles from the world model map into the image. It is also
disabled if the LAGR vehicle is turning faster than 10 degrees per second or if the LAGR vehicle is not
moving. The algorithm can also read in a priori models of certain features that commonly appear in the
LAGR tests. These include models for a path covered in mulch or in white lime. Figure 19 shows two examples
of the output of the color model based classifier. Figure 19a shows a view of an unpaved road, while Fig. 19b
shows a path laid down in a field that the vehicle is supposed to follow.

Fig. 19. (a) Top: the original images, with the classification images based on the histogram color model shown
underneath. Green means ground, the other colors are background regions with higher traversability costs. (b) Another
scene showing clearly the algorithm’s ability to learn to associate traversability with a distinctively-colored path

Intelligent Control of Mobility Systems 261

Given the models, the algorithm goes through every pixel in an image and calculates a ground probability
based upon its color. The end result is a probability map that represents the likelihood that an area is
ground. Given the pixel’s color, a ground color model and the model for background, ground probability is
calculated as:

Pground =
Nground

Nground + Nbackground

where Nground is the count in the ground histogram bin indexed by the pixel, Nbackground is the count in
the background histogram bin indexed by the pixel, and Pground is the probability that the pixel is a ground
pixel. When there are multiple ground models, all are matched and the largest ground probability is selected.
Thus multiple ground probabilities are calculated at each pixel. The largest ground probability is selected
as the ground probability for that pixel.

The next step applied to the ground histograms is temporal fusion. This combines ground probabilities
across multiple image frames to improve stability and reduce noise. The temporal fusion algorithm can
be described as a running average with a parameter to adjust for the influence of new data. The update
equation is:

Pt =
(wt−1 × Pt−1) + (c × P)

(wt−1 + c)

wt = wt−1 + c if wt−1 < wmax

where P is the current probability that the pixel should be labeled ground, Pt−1 is the probability that
the same pixel was labeled ground in the previous frame, Pt is the temporally-fused ground probability of
the pixel, and w and c are weighting constants. wmax is the maximum number of images used for temporal
fusion. The final probability map is used to determine the traversability cost at each pixel as

Cost = (1 − Pt) ∗ 250

Costs run from 0 being most traversable to 250 being least traversable.
In order to reduce processing requirements, probabilities are calculated on a reduced version of the original

image. The original image is resized to 128× 96 pixels using an averaging filter. This step has the additional
benefit of noise reduction. Experiments show that this step does not significantly impact the final segmenta-
tion. A noteworthy aspect of this algorithm is that the color models are constructed from the original image
for better accuracy, whereas probabilities are calculated on a reduced version of the image for greater speed.
The cost of each pixel in the image is sent to the world model with a 3D location determined using the
assumption of a flat ground plane.

Summary

The NIST 4D/RCS reference model architecture was implemented on the DARPA LAGR vehicle, which
was used to prove that 4D/RCS can learn. Sensor processing, world modeling, and behavior generation
processes have been described. Outputs from sensor processing of vehicle sensors are fused with models in
WM to update them with external vehicle information. World modeling acts as a bridge between multiple
sensory inputs and a behavior generation (path planning) subsystem. Behavior generation plans vehicle paths
through the world based on cost maps provided from world modeling. Road following is the example used
here to describe how 4D/RCS can be applied in a two-level architecture.

Future research will include completion of the sensory processing upper level (SP2) and developing even
more robust control algorithms than those described above.

In the second 18-month phase of the LAGR program, NIST was tasked to develop a standard operator
control unit color scheme [29] for all performers to use.

The Operator Control Unit (OCU) for a mobile robot needs to display a lot of complex information about
the state and planned actions of the vehicle. This includes displays from the robot’s sensors, maps of what
it knows about the world around it, traces of the path it has already traveled and predictions of the path

262 J. Albus et al.

Fig. 20. (left) A schematic showing the meaning of the colors on the map, (right) A sample NIST high resolution,
short-range map

it is planning to take, and information about obstacles, clear ground, and unseen regions. The information
needs to be easy to understand even by people who have no understanding of the way the control system of
the robot works, and should enable them to halt the vehicle only if it is about to take an action that will
cause damage.

In order to display all the information in an understandable way, it is necessary to use color to represent
the different types of region. Figure 20 shows the common color scheme NIST developed that is being used
for the LAGR program. The color scheme was distributed to the teams in December 2006 for use by the
January 2007 test. Use of the color scheme has had the desired effect. The Government evaluation team
can more easily understand the OCUs of different teams. It was a useful, if somewhat tedious process to
develop the common color scheme. Work needs to be done more broadly to develop common color schemes
for different application areas, such as medical images, geographic information systems, and other complex
visual displays that require substantial effort to understand.

Also in the second phase, NIST has defined interfaces in a “best-of” LAGR controller for performers
to send their best algorithms to NIST for plug-and-play testing against other performers’ algorithms. This
work is currently ongoing and expected to be completed in 2008.

3 Standards and Performance Measurements

3.1 Autonomy Levels for Unmanned Systems (ALFUS)

The ICMS Program emphasizes to the mobile robotics research community a standard set of related ter-
minology and representation of knowledge. The Autonomy Levels for Unmanned Systems (ALFUS) Ad
Hoc Work Group [28], led by NIST, aims at developing a framework to facilitate the characterization of
the autonomy capabilities of unmanned systems (UMS). The Group was formed in 2003 to respond to the
user community needs, including many Federal Agencies and private industry. The group has been holding
quarterly workshops ever since.

An ALFUS premise is that the autonomous capabilities are characterized with three significant aspects:
mission complexity, environmental complexity, and human independence, as shown in Fig. 21. Detailed
metrics, in turn, further characterize each of the three aspects.

ALFUS is collaborating with the U.S. Army Future Combat System (FCS) (http://www.army.mil/fcs/)
and a number of other UMS programs on the issues of autonomy requirements, testing, and evaluation.

Intelligent Control of Mobility Systems 263

Fig. 21. ALFUS framework contextual autonomous capability model

Interim results have been published [21–23]. They have been significantly referenced in various public docu-
ments, including the ASTM Standards E2521-07, F 2395-05, and F 2541-06 for various UMSs as well as the
U.S. Army UNMANNED and AUTONOMOUS SYSTEMS TESTING Broad Agency Announcement.

3.2 Joint Architecture for Unmanned Systems (JAUS)

The Joint Architecture for Unmanned Systems (JAUS) is a standard for interoperability between components
of unmanned robotic vehicle systems such as unmanned ground, air and underwater vehicles (UGV, UAV
and UUV, respectively). JAUS is sponsored by the Office of the Under Secretary of Defense for Acquisition,
Technology and Logistics through the Joint Ground Robotics Enterprise (JGRE). It is mandated for use by
all JGRE programs. The goals of JAUS are to reduce life cycle costs, reduce development and integration
time, provide a framework for technology insertion, and accommodate expansion of existing systems with
new capabilities. JAUS is a standard published by the Society of Automotive Engineers (SAE) via their
Aerospace Avionics Systems Division AS-4 committee on Unmanned Systems.

JAUS is a component based, message-passing architecture that specifies data formats and methods of
communication among computing nodes. It defines messages and component behaviors that are independent
of technology, computer hardware, operator use, and vehicle platforms and isolated from mission. It uses the
SAE Generic Open Architecture (GOA) framework to classify the interfaces.

JAUS benefits from an active user and vendor community, including Government programs such as FCS,
academia such as University of Florida and Virginia Polytechnic Institute and State University (Virginia
Tech), and industry such as Applied Perception, Autonomous Solutions, Kairos Autonomi, OpenJAUS,
RE2 and TORC Technologies, which can easily be identified with a search on the internet. Users define
requirements and sponsor pilot projects. Together with vendors, they participate in testing that helps JAUS
evolve toward better performance and to support new technology.

JAUS products include commercially-available ground robots as well as software development kits (SDKs)
that help robot vendors put a JAUS-compliant interface on their new or legacy products. Open-source
implementations of JAUS exist that serve as reference implementations and help speed deployment.

NIST was one of two teams that participated in an early Red Team/Blue Team interoperability test. The
test objective was to determine how well the JAUS specification enabled independent implementors to build
JAUS-compliant systems that worked seamlessly together. For this particular test, one team built a JAUS
component that continually produced vehicle position data. The other team built a component that displayed
the current vehicle position in real time. Neither team knew the identity of the other, and interacted only
with the JGRE test sponsor. The sponsor provided information necessary for interoperability but not part of
the JAUS specification, such as the particular communication mechanism (in this case, TCP/IP Ethernet).
The sponsor also resolved ambiguities in the specification that resulted in different interpretations of how
JAUS works. These resolutions were provided to the working groups responsible for the specification for
incorporation into the next versions of the relevant documents.

Since those early tests, the JAUS working group has expanded their test activities. These are now
conducted by the Experimental Test Group (ETG). The ETG is chartered with implementing and testing

264 J. Albus et al.

proposed changes or extensions of the JAUS specification, and reporting back with recommendations for how
these proposals should be formalized into the specification. The ETG is comprised of a core group of JAUS
experts from the vendor community who are well equipped to quickly build and test new JAUS capabilities.
The JAUS ETG has invested in infrastructure development, such as setting up a distributed virtual private
network that allows participants to connect to a JAUS system from any location.

3.3 The Intelligent Systems (IS) Ontology

The level of automation in ground combat vehicles being developed for the Army’s objective force is greatly
increasing over the Army’s legacy force. This automation is taking many forms in emerging ground vehicles,
varying from operator decision aides to fully autonomous unmanned systems. The development of these
intelligent systems requires a thorough understanding of all of the intelligent behavior that needs to be
exhibited by the system so that designers can allocate functionality to humans and/or machines. Traditional
system specification techniques focus heavily on the functional description of the major systems of a vehicle
and implicitly assume that a well-trained crew would operate these systems in a manner to accomplish
the tactical mission assigned to the vehicle. In order to allocate some or all of these intelligent behaviors
to machines in future ground vehicles, it is necessary to be able to identify and describe these intelligent
behaviors.

The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) has funded
NIST to explore approaches to model the ground vehicle domain with explicit representation of intelligent
behavior. This exploration has included the analysis of modeling languages (i.e., UML, DAML, OWL) as
well as reference architectures. A major component of this effort has been the development of an Intelligent
Systems (IS) Ontology.

NIST has taken the view that an IS can be viewed as a multi-agent system, where agents can represent
components within the vehicle (e.g., a propulsion system, a lethality system, etc.). In addition, an Intelligent
Ground Vehicle (IGV), as a whole, can serve as a single agent within a troop, platoon, or section, where
multiple IGVs are present. In order for a group of agents to work together to accomplish a common goal,
they must be able to clearly and unambiguously communicate with each other without the fear of loss of
information or misinterpretation. The IS Ontology has been used to specify a common lexicon and semantics
to address this challenge.

The IS Ontology uses that OWL-S upper ontology [24] as the underlying representation to document
4D/RCS in a more open XML (eXtensible Markup Language) format. OWL-S is a service ontology, which
supplies a core set of markup language constructs for describing the properties and capabilities of services in
an unambiguous, computer-interpretable format. This ontology has been built within the Protégé framework
[25], which is an ontology editor, a knowledge-base editor, as well as an open-source, Java tool that provides
an extensible architecture for the creation of customized knowledge-based applications.

The IS Ontology is based on the concept of agents, service that the agents can perform, and procedures
that the agents follow to perform the services. Figure 22 shows an agent hierarchy for a light cavalry troop.
A detailed description of this hierarchy is outside the scope of this chapter. Also specified in the constraints
for each class is whom each agent can send external service requests to and who they can receive them
from. Any activity that can be called by another agent is considered a service in OWL-S. Any activity that
the agent performs internally that cannot be externally requested is called a process. As such, “Conduct A
Tactical Road March to an Assembly Area” is modeled as a service that is provided by a Troop agent (and
can be called by a Squadron agent). The Troop agent can call services provided by other agents. In this
example, a service called “Conduct Route Reconnaissance” is defined and associated with the Scout Platoon
agent.

Process models in OWL-S are used to capture the steps that must be accomplished to carry out the
service, and the ordering constraints on those steps. Each step can be performed internally by the agent or
could involve making an external service request (a service call) to another agent. OWL-S provides a number
of control constructs that allow one to model just about any type of process flow imaginable. Control
constructs provided in OWL-S have been sufficient to model all the behaviors explored to date.

Intelligent Control of Mobility Systems 265

Fig. 22. Agent hierarchy

Environmental entities and their attributes are a primary output of the 4D/RCS methodology. These
include other vehicles, bridges, vegetation, roads, water bodies; anything that is important to perceive in the
environment relative to task that is being performed. An environment ontology in OWL-S has been built
from the bottom up (i.e., including only entities that prove to be important). Environmental ontologies have
started to be explored to see what could be leveraged.

3.4 DOT Integrated Vehicle Based Safety System (IVBSS)

The Transportation Project within the ICMS Program, although not 4D/RCS based, is an important part
of the program. While autonomous vehicles on the nations highway are still many years in the future,
components of intelligent mobility systems are finding their way into commercial crash warning systems
(CWS). The US Department of Transportation, in attempt to accelerate the deployment of CSW, recently
initiated the Integrated Vehicle-Based Safety System (IVBSS) program designed to incorporate forward
collision, side collision and road-departure warning functions into a single integrated CSW for both light
vehicles and heavy trucks [26]. Current analyses estimate that IVBSS has the potential to address 3.6M
crashes annually, of which 27,500 result in one or more fatalities.

NIST role in the IVBSS program is to assist in the development of objective tests and to evaluate system
performance independently during the tests. NIST approach for measurement-based performance evaluation
starts by developing a set of scenarios describing the problem, which in this case evolved from a DOT
analysis of the crash database statistics. The scenarios lead to a set of track- and road-based test procedures
to determine the system’s effectiveness in dealing with the problems. Current plans call for carrying out over
34 track-based tests. Figure 23 provides an example of a multiple threat scenario that forces the system to
recognize and respond to both a forward- and side-collision situation.

The pass/fail criteria for the tests include metrics that quantify acceptable performance. Various Crash
Prevention Boundary (CPB) equations [27] determine the acceptable time for a warning; a driver cannot
respond to late warnings and early warning may annoy the driver. To promote objectivity further, the
tests rely on an independent measurement system (IMS) to provide performance data as opposed to using
measurements taken by the system under test. NIST is currently developing a third generation IMS that
incorporates calibrated cameras (for lane geometry measurements) and two laser-scanners (for obstacle range
measurements). Figure 24 shows the sensor package mounted on the front of the NIST/DOT test bed vehicle.

266 J. Albus et al.

P2

P1SV

Fig. 23. Multiple threat test scenario. SV (equipped with IVBSS) encounters stopped vehicle (P1) and attempts to
avoid collision by changing lanes into second vehicle (P2)

dual laser scanners

quick mount bracket registered camera

Fig. 24. IMS consisting of calibrated cameras and laser-scanners mounted on the NIST/DOT testbed vehicle.
Program goals for this year include track testing and on-road testing of an IVBSS developed for light vehicles and a
second IVBSS developed for heavy truck

The IMS design allows for quick installation on cars and trucks. Data is collected in real time and a suite of
software exists for post-process analysis.

NIST is developing static and dynamic accuracy tests to verify the IMS meets requirements that range
error be less than 5% of the actual range. Static tests evaluate sensor performance from a stationary position
with targets at different ranges, reflectivity and orientations. The mean errors (mean of differences between
measured range and actual range) serve as a calibration factor and the standard deviations of the errors
define the uncertainty. Dynamic tests yield insight into sensor performance when operated from a fast moving
vehicle (e.g., highway speeds). No standard procedure exists for dynamic testing and NIST is working on
a novel approach involving precise time measurement, using a GPS receiver, of when a range reading takes
place. For a dynamic test, an optical switch mounted on the vehicle senses when the vehicle crosses over
reflectors placed on a track at known distances from a target. The switch causes a GPS receiver to latch
the GPS time. The approach requires that all measurements, for example video streams, laser-scanner range
measurements, etc., be stamped using GPS time (which is the case with the IVBSS warning system and
the IMS). The range error comes from the difference (at the GPS time the vehicle crosses the reflector)
between the laser-scanner’s measured range to the target and the known range. We compute a mean error
and uncertainty from measurements taken over several laps around a track. Current results indicate the laser
scanner uncertainty is approximately 1% of the actual range.

Intelligent Control of Mobility Systems 267

4 Testbeds and Frameworks

4.1 USARSim/MOAST Framework

Many of the systems described in this chapter may be viewed as intelligent embodied agents. These agents
require an environment to operate in, an embodiment that allows them to affect and move in the environ-
ment, and intelligence that allows them to execute useful behaviors that have the desired outcome in the
environment. There are many aspects of the development of these agents in which simulations can play a
useful role. If correctly implemented, simulation can be an effective first step in the development and deploy-
ment of new algorithms. Simulation environments enable researchers to focus on the algorithm development
without having to worry about hardware aspects of the robots such as maintenance, availability, and oper-
ating space. Simulation provides extensive testing opportunities without the risk of harm to personnel or
equipment. Major components of the robotic architecture (for example, advanced sensors) that may be too
expensive for an institution to purchase can be simulated and enable the developers to focus on algorithm
development. The remainder of this section will present an overview of a control framework that provides
all three aspects of the embodied agent. Urban Search and Rescue Simulation (USARSim) provides the
environment and embodiment, while Mobility Open Architecture Simulation and Tools (MOAST) provides
the intelligence.

Urban Search and Rescue Simulation (USARSim)

The current version of Urban Search and Rescue Simulation (USARSim) [2] is based on the UnrealEngine21

game engine that was released by Epic Games as part of UnrealTournament 2004. This engine may be
inexpensively obtained by purchasing the Unreal Tournament 2004 game. The USARSim extensions may
then be freely downloaded from sourceforge.net/projects/usarsim. The engine handles most of the basic
mechanics of simulation and includes modules for handling input, output (3D rendering, 2D drawing, and
sound), networking, physics and dynamics. USARSim uses these features to provide controllable camera views
and the ability to control multiple robots. In addition to the simulation, a sophisticated graphical development
environment and a variety of specialized tools are provided with the purchase of Unreal Tournament.

The USARSim framework builds on this game engine and consists of:

• Standards that dictate how agent/game engine interaction is to occur
• Modifications to the game engine that permit this interaction
• An Application Programmer’s Interface (API) that defines how to utilize these modifications to control

an embodied agent in the environment
• 3-D immersive test environments
• Models of several commercial and laboratory robots and effectors
• Models of commonly used robotic sensors

The USARSim interaction standards consist of items such as robot coordinate frame definitions and unit
declarations while the API specifies the command vocabulary for robot/sensor control and feedback. Both of
these items have become the de facto standard interfaces for use in the RoboCup Rescue Virtual Competition
which utilizes USARSim to provide an annual Urban Search and Rescue competition. In 2007 this competition
had participation from teams representing five countries.

Highly realistic environments are also provided with the USARSim release. Example indoor and outdoor
environments may be seen in Fig. 25a, b. In addition, a provided editor and the ability to import models
simplifies the creation of additional worlds. In addition to environments, USARSim provides numerous robot
and sensor models. Figure 26 shows the virtual version of the Talon robot. This robot features a simulated

1 Certain commercial software and tools are identified in this paper in order to explain our research. Such identifi-
cation does not imply recommendation or endorsement by the authors, nor does it imply that the software tools
identified are necessarily the best available for the purpose.

268 J. Albus et al.

(a) Indoor office scene (b) Outdoor accident scene

Fig. 25. Sample USARSim environments

Fig. 26. Simulated Talon Robot

track and arm with gripper. In addition to laboratory robots, aerial, road vehicles, commercial robots (both
for manufacturing and bomb disposal), and robotic arms are modeled.

USARSim does not provide a robot controller. However, several open source controllers may be
freely downloaded. These include the community developed Mobility Open Architecture Simulation and
Tools (MOAST) controller (sourceforge.net/projects/moast), the player middle-ware (sourceforge.net/
projects/playerstage), and any of the winning controllers from previous year’s competitions (2006 and 2007
winning controllers may be found on the robocup rescue wiki (www.robocuprescue.org/wiki). A description
of the winning algorithms may be found in [1].

Mobility Open Architecture Simulation and Tools (MOAST)

MOAST is a framework that provides a baseline infrastructure for the development, testing, and analysis of
autonomous systems that is guided by three principles:

• Create a multi-agent simulation environment and tool set that enables developers to focus their efforts
on their area of expertise without having to have the knowledge or resources to develop an entire control
system.

• Create a baseline control system which can be used for the performance evaluation of the new algorithms
and subsystems.

• Create a mechanism that provides a smooth gradient to migrate a system from a purely virtual world to
an entirely real implementation.

Intelligent Control of Mobility Systems 269

• MOAST has the 4D/RCS architecture at its core (described elsewhere in this chapter) and consists of
the additional components of control modules, interface specs, tools, and data sets. MOAST is fully
integrated with the USARSim simulation system and may communicate with real hardware through the
Player interface.

MOAST provides an implementation of primitive echelon through the section echelon of the 4D/RCS ref-
erence model architecture. This implementation is not designed to be complete, but rather is designed
to provide examples of control strategies and a starting point for further research. The framework provides
methods of mobility control for vehicles including Ackerman steered, skid steered, omni-drive, helicopter-type
flying machines, and water craft. Control modalities increase in complexity as one moves up the hierarchy
and include velocity/steering angle control, waypoint following, and an exploration behavior.

All of the control modules are designed to be self-contained and fully accessible through well-defined
interfaces. This allows a developer to create a module that conforms to the specifications and replace any
MOAST provided system. The idea is to allow a researcher to utilize all of the architecture except for the
modules that are in the area of their expertise. These modules would be replaced with their own research code.

In order to simplify this replacement, several debug and diagnostic tools are also provided. These allow
for unit testing of any module by providing a mechanism to send any command, status, and data into a
module that is under test. In this way, a module may be fully and repeatedly tested. Once the system is
debugged in simulation, the standardized interfaces allow the user to slowly move systems from simulation
to actual hardware. For example, planning algorithms may be allowed to control the actual vehicle while
sensing may be left in simulation.

4.2 PRediction in Dynamic Environments (PRIDE) Framework

There have been experiments performed with autonomous vehicles during on-road navigation. Perhaps the
most successful was that of Prof. Dr. Ernst Dickmanns [33] as part of the European Prometheus project in
which the autonomous vehicle performed a trip from Munich to Odense (>1,600 km) at a maximum velocity
of 180 km h−1. Although the vehicle was able to identify and track other moving vehicles in the environment,
it could only make basic predictions of where those vehicles were expected to be at points in the future,
considering the vehicle’s current velocity and acceleration.

What is missing from all of these experiments is a level of situation awareness of how other vehicles in the
environment are expected to behave considering the situation in which they find themselves. To date, the
authors are not aware of any autonomous vehicle efforts that account for this information when performing
path planning. To address this need, a framework, called PRIDE (PRediction in Dynamic Environments)
was developed that provides an autonomous vehicle’s planning system with information that it needs to
perform path planning in the presence of moving objects [34]. The underlying concept is based upon a multi-
resolutional, hierarchical approach that incorporates multiple prediction algorithms into a single, unifying
framework. This framework supports the prediction of the future location of moving objects at various levels
of resolution, thus providing prediction information at the frequency and level of abstraction necessary for
planners at different levels within the hierarchy. To date, two prediction approaches have been applied to
this framework.

At the lower levels, estimation theoretic short-term predictions is used via an extended Kalman filter-
based algorithm using sensor data to predict the future location of moving objects with an associated
confidence measure [35]. At the higher levels of the framework, moving object prediction needs to occur at
a much lower frequency and a greater level of inaccuracy is tolerable. At these levels, moving objects are
identified as far as the sensors can detect, and a determination is made as to which objects should be classified
as “objects of interest”. In this context, an object of interest is an object that has a possibility of affecting
the path in the planning time horizon. Once objects of interest are identified, a moving object prediction
approach based on situation recognition and probabilistic prediction algorithms is used to predict where
object will be at various time steps into the future. Situation recognition is performed using spatio-temporal
reasoning and pattern matching with an a priori database of situations that are expected to be seen in the
environment.

270 J. Albus et al.

Fig. 27. Moving object prediction process

The algorithms are used to predict the future location of moving objects in the environment at longer
time planning horizons on the order of tens of seconds into the future with plan steps at about one second
intervals.

The steps within the algorithm shown in Fig. 27 are:

• For each vehicle on the road (α), the algorithm gets the current position and velocity of the vehicle by
querying external programs/sensors (β).

• For each set of possible future actions (δ), the algorithm creates a set of next possible positions and
assigns an overall cost to each action based upon the cost incurred by performing the action and the cost
incurred based upon the vehicle’s proximity to static objects. An underlying cost model is developed to
represent these costs.

• Based upon the costs determined in Step 2, the algorithm computes the probability for each action the
vehicle may perform (ε).

• Predicted Vehicle Trajectories (PVT) (ξ) are built for each vehicle which will be used to evaluate the
possibility of collision with other vehicles in the environment. PVTs are a vector that indicates the
possible paths that a vehicle will take within a predetermined number of time steps into the future.

• For each pair of PVTs (η), the algorithm checks if a possible collision will occur (where PVTs intersect)
and assigns a cost if collision is expected. In this step, the probabilities of the individual actions (θ) are
recalculated, incorporating the risk of collision with other moving objects.

At the end of the main loop, the future positions with the highest probabilities for each vehicle represent
the most likely location of where the vehicles will be in the future. More information about the cost-based
probabilistic prediction algorithms can be found in [35].

4.3 Industrial Automated Guided Vehicles

Study of Next Generation Manufacturing Vehicles

This effort, called the Industrial Autonomous Vehicles (IAV) Project, aims to provide industries with stan-
dards, performance measurements, and infrastructure technology needs for the material handling industry.

Intelligent Control of Mobility Systems 271

The NIST ISD have been working with the material handling industry, specifically on automated guided
vehicles (AGVs), to develop next generation vehicles. A few example accomplishments in this area include:
determining the high impact areas according to the AGV industry, partnering with an AGV vendor to
demonstrate pallets visualization using LADAR towards autonomous truck unloading, and demonstrating
autonomous vehicle navigation through unstructured facilities. Here, we briefly explain each of these points.

Generation After Next AGV

NIST recently sponsored a survey of AGV manufacturers in the US, conducted by Richard Bishop Consulting,
to help determine their “generation-after-next” technology needs. Recognizing that basic engineering issues
to enhance current AGV systems and reduce costs are being addressed by AGV vendors, the study looks
beyond today’s issues to identify needed technology breakthroughs that could open new markets and improve
US manufacturing productivity. Results of this study are described in [36].

Within the survey and high on the list, AGV vendors look to the future for: reduced vehicle costs,
navigation in unstructured environments, onboard vehicle processing, 3D imaging sensors, and transfer of
advanced technology developed for Department of Defense. Current AGVs are “guided” by wire, laser or
other means, operate in structured environments tailored to the vehicle, have virtually no 3D sensing and
operate from a host computer with limited onboard-vehicle control.

Visualizing Pallets

Targeting the high impact area of using 3D imaging sensors on AGV, NIST ISD teamed with Transbotics, an
AGV vendor, to visualize pallets using panned line-scan LADAR towards autonomous truck unloading [37].
A cooperative agreement between NIST and Transbotics allowed NIST to: (1) set up mock pallets, conveyer
and truck loading on a loading dock, (2) to develop software to visualize pallets, the conveyer and the truck
in 3D space, and (3) verify if the pallet, conveyor and truck are in their expected location with respect to
the AGV. The project was successful on mock components used at NIST and software was transferred to
Transbotics for implementation on their AGV towards use in a production facility.

Navigation Through Unstructured Facilities

Also targeting a high impact AGV industry requested area, the ICMS Program has been transferring tech-
nology from defense mobility projects through its IAV Project to the AGV industry. By focusing on AGV
industry related challenges, for example autonomous vehicle navigation through unstructured facilities [38],
the IAV project attempts to provide improved AGV capabilities to do more than point–to–point, part pick-
up/delivery operations. For example, AGV could avoid obstacles and people in the vehicle path, adapt
to facilities instead of vice versa, navigate both indoors and outdoors using the same adaptable absolute
vehicle position software modules – all towards doing more with end users’ vehicle capital investments and
developing niche markets.

A number of changes were made to the LAGR control system software in order to transfer the military
outdoor vehicle application to an indoor industrial setting. Two RFID sensors, batteries, laptop, and network
hub were added. Active RFID sensors were integrated into the vehicle position estimate. Also, a passive RFID
system was used including tags that provide a more accurate vehicle position to within a few centimeters.
RFID systems updates replaced the outdoor GPS positioning system updates in the controller.

The control system also needed to be less aggressive for safety of people and equipment, use stereo vision
indoors, negotiate tighter corners than are typically encountered outdoors, display facility maps and expected
paths (see Fig. 28), and many other modifications detailed in [38]. The demonstration was successful and
allowed the AGV industry to view how vehicles could adapt to a more cluttered facility than AGVs typically
navigate.

Future research will include integration of a 2D safety sensor to eliminate false positives on obstacles near
ground level caused by low stereo disparity. Demonstration of controlling more than one intelligent vehicle
at a time in the same unstructured environment along with other moving obstacles is also planned.

272 J. Albus et al.

Fig. 28. LAGR AGV Graphical Displays – right and left stereo images (upper left); images overlaid with stereo
obstacle (red) and floor (green) detection and 2D scanner obstacle detection (purple) (middle left); right and left cost
maps (lower left); low level map (upper right); and high level map (lower right)

5 Conclusions and Continuing Work

The field of autonomous vehicles has grown tremendously over the past few years. This is perhaps most evi-
dent by the performance of these vehicles in the DARPA-sponsored Grand Challenge events which occurred
in 2004, 2005 and most recently in 2007 [39]. The purpose of the DARPA Grand Challenge was to develop
autonomous vehicle technologies that can be applied to military tasks, notably robotic “mules” or troop
supply vehicles. The Grand Challenge courses gradually got harder, with the most recent event incorporat-
ing moving on-road objects in the urban environment. The 2007 Challenge turned out to have more civilian
focus than military’s, with the DARPA officials and many teams emphasizing safe robotic driving as a very
important objective. The performance of the vehicles improved tremendously from 2004 to 2007, even as the
environment got more difficult. This is in part due to the advancement of technologies that are being explored
as part of the ICMS program. The ICMS Program and its development of 4D/RCS has been ongoing for
nearly 30 years with the goal to provide architectures and interface standards, performance test methods
and data, and infrastructure technology needed by US manufacturing industry and government agencies in
developing and applying intelligent control technology to mobility systems to reduce cost, improve safety,
and save lives.

The 4D/RCS has been the standard intelligent control architecture on many of the Defense, Learning, and
Industry Projects providing application to respective real world issues. The Transportation Project provides
performance analysis of the latest mobile system sensor advancements. And the Research and Engineering
Projects allow autonomy capabilities to be defined along with simulation and prediction efforts for mobile
robots.

Intelligent Control of Mobility Systems 273

Future ICMS efforts will focus deeper into these projects with even more autonomous capabilities. Broader
applications to robots supporting humans in manufacturing, construction, and farming are expected once
major key intelligent mobility elements in perception and control are solved.

References

1. Albus, J.S., Huang, H.-M., Messina, E., Murphy, K., Juberts, M., Lacaze, A., Balakirsky, S., Shneier, M.O.,
Hong, T., Scott, H., Horst, J., Proctor, F., Shackleford, W., Szabo, S., and Finkelstein, R., 4D/RCS Version 2.0:
A Reference Model Architecture for Unmanned Vehicle Systems, NIST, Gaithersburg, MD, NISTIR 6912, 2002

2. Balakirsky, S., Messina, E., Albus, J.S., Architecting a Simulation and Development Environment for Multi-Robot
Teams, Proceedings of the International Workshop on Multi Robot Systems, 2002

3. Balakirsky, S.B., Chang, T., Hong, T.H., Messina, E., Shneier, M.O., A Hierarchical World Model for an
Autonomous Scout Vehicle, Proceedings of the SPIE 16th Annual International Symp. on Aerospace/Defense
Sensing, Simulation, and Controls, Orlando, FL, April 1–5, 2002

4. Albus, J.S., Juberts, M., Szabo, S., RCS: A Reference Model Architecture for Intelligent Vehicle and High-
way Systems, Proceedings of the 25th Silver Jubilee International Symposium on Automotive Technology and
Automation, Florence, Italy, June 1–5, 1992

5. Bostelman, R.V., Jacoff, A., Dagalakis, N.G., Albus, J.S., RCS-Based RoboCrane Integration, Proceedings of the
International Conference on Intelligent Systems: A Semiotic Perspective, Gaithersburg, MD, October 20–23, 1996

6. Madhavan, R., Messina, E., and Albus, J. (Editors), Low-Level Autonomous Mobility Implementation part of
Chapter 3: Behavior Generation in the book, Intelligent Vehicle Systems: A 4D/RCS Approach, 2007

7. Jackel, Larry, LAGR Mission, http://www.darpa.mil/ipto/programs/lagr/index.htm, DARPA Information Pro-
cessing Technology Office

8. Albus, J., Bostelman, R., Chang, T., Hong, T., Shackleford, W., and Shneier, M., 2006. Learning in a Hierarchical
Control System: [4D/RCS in the DARPA LAGR Program. Journal of Field Robotics, Special Issue on Learning
in Unstructured Environments, 23(11/12): 975–1003.]

9. Konolige, K., SRI Stereo Engine, http://www.ai.sri.com/∼konolige/svs/
10. Tan, C., Hong, T., Shneier, M., and Chang, T., Color Model-Based Real-Time Learning for Road Following, in

Proceedings of the IEEE Intelligent Transportation Systems Conference (Submitted) Toronto, Canada, 2006
11. Shneier, M., Chang, T., Hong, T., Shackleford, W., Bostelman, R., and Albus, J. S. Learning traversability models

for autonomous mobile vehicles. Autonomous Robots 24, 1, January 2008, 69–86.
12. Oskard, D., Hong, T., Shaffer, C., Real-time Algorithms and Data Structures for Underwater Mapping,

Proceedings of the SPIE Advances in Intelligent Robotics Systems Conference, Boston, MA, November, 1988
13. Shackleford, W., The NML Programmer’s Guide (C++ Version) http://www.isd.mel.nist.gov/projects/rcslib/

NMLcpp.html
14. Heyes-Jones, J., A∗ algorithm tutorial, http://us.geocities.com/jheyesjones/astar.html
15. Tan, C., Hong, T., Shneier, M., Chang, T., Color Model-Based Real-Time Learning for Road Following,

Proceedings of the IEEE Intelligent Transportation Systems Conference, 2006
16. He, Y., Wang, H., Zhang, B., Color-based road detection in urban traffic scenes, IEEE Transactions on Intelligent

Transportation Systems, 5(4), 309–318, 2004
17. Kristensen, D., Autonomous Road Following. PhD thesis, KTH Royal Institute of Technology, Stockholm,

Sweden, 2004
18. Lin, X., Chen, S., Color image segmentation using modified HSI system for road following, IEEE International

Conference on Robotics and Automation, 1991, pp. 1998–2003
19. Ulrich, I., Nourbakhsh, I., Appearance-Based Obstacle Detection with Monocular Color Vision, Proceedings of

the AAAI National Conference on Artificial Intelligence, 2000
20. Shneier, M., Bostelman, R., Albus, J.S., Shackleford, W., Chang, T., Hong, T., A Common Operator Control

Unit Color Scheme for Mobile Robots, National Institute of Standards and Technology, Gaithersburg, MD,
August, 2007

21. Huang, H.-M., The Autonomy Levels for Unmanned Systems (ALFUS) Framework–Interim Results, in
Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, Maryland, 2006

22. Huang, H.-M. et al., Characterizing Unmanned System Autonomy: Contextual Autonomous Capability and Level
of Autonomy Analyses, in Proceedings of the SPIE Defense and Security Symposium, April, 2007

23. Huang, H.-M. ed., Autonomy Levels for Unmanned Systems (ALFUS) Framework, Volume I: Terminology, NIST
Special Publication 1011, Gaithersburg: National Institute of Standards and Technology, 2004

274 J. Albus et al.

24. The OWL Services Coalition, “OWL-S 1.0 Release,” http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003
25. Schlenoff, C., Washington, R., and Barbera, T., Experiences in Developing an Intelligent Ground Vehicle (IGV)

Ontology in Protege, Proceedings of the 7th International Protege Conference, Bethesda, MD, 2004
26. http://www.its.dot.gov/ivbss
27. Szabo, S., Wilson, B., Application of a Crash Prevention Boundary Metric to a Road Departure Warning System.

Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, NIST, Gaithersburg, MD,
August, 24–26, 2004. http://www.isd.mel.nist.gov/documents/szabo/PerMIS04.pdf

28. http://www.isd.mel.nist.gov/projects/autonomy levels/
29. Balakirsky, S., Scrapper, C., Carpin, S., and Lewis, M., USARSim: Providing a Framework for Multi-

robot Performance Evaluation, Proceedings of the Performance Metrics for Intelligent Systems (PerMIS)
Workshop, 2006

30. Scrapper, C., Balakirsky, S., and Messina, E., MOAST and USARSim – A Combined Framework for the
Development and Testing of Autonomous Systems, SPIE 2006 Defense and Security Symposium, 2006

31. USARSim Homepage. http://usarsim.sourceforge.net/, 2007
32. MOAST Homepage. http://sourceforge.net/projects/moast/, 2007
33. Dickmanns, E.D., A General Dynamic Vision Architecture for UGV and UAV, Journal of Applied Intelligence,

2, 251, 1992
34. Schlenoff, C., Ajot, J., and Madhavan, R., PRIDE: A Framework for Performance Evaluation of Intelligent

Vehicles in Dynamic, On-Road Environments, Proceedings of the Performance Metrics for Intelligent Systems
(PerMIS) 2004 Workshop, 2004

35. Madhavan, R. and Schlenoff, C., The Effect of Process Models on Short-term Prediction of Moving Objects for
Autonomous Driving, International Journal of Control, Automation and Systems, 3, 509–523, 2005

36. Bishop, R., Industrial Autonomous Vehicles: Results of a Vendor Survey of Technology Needs, Bishop Consulting,
February 16, 2006

37. Bostelman, R., Hong, T., Chang, T., Visualization of Pallets, Proceedings of SPIE Optics East 2006 Conference,
Boston, MA, USA, October 1–4, 2006

38. Bostelman, R., Hong, T., Chang, T., Shackleford, W., Shneier, M., Unstructured Facility Navigation by Applying
the NIST 4D/RCS Architecture, CITSA 06 Conference Proceedings, July 20–23, 2006

39. Iagnemma, K., Buehler, M., Special Issues on the DARPA Grand Challenge, Journal of Field Robotics, Volume
23, Issues 8 & 9, Pages 461–835, Aug/Sept 2006

Index

4D/RCS, 241, 256, 258, 261, 269

Active Appearance Models, 33
Adaptive boosting (AdaBoost), 9, 10, 59, 68, 70, 210
Adaptive DWE, 15
AFR Control, 146, 148, 149, 151, 155, 160, 164, 165
AFR Prediction, 149, 155, 159, 162
Agent architecture, 239
Agent control module, 239, 241, 243
Air intake subsystem (AIS), 194, 197
Air–fuel ratio (AFR), 145, 165
Air-intake system, 196, 198
Airpath

control, 131, 132
in-cylinder air mass observer, 135
manifold pressure, 137
recirculated gas mass, 133, 134
residual gases, 138
volumetric efficiency, 134

ALOPEX, 114
Analysis of variance, 10
Annotation tool, 40, 42, 43, 47, 56
Anti-lock braking system (ABS), 194, 213
Automotive suspension system, 194, 204
Autonomous agent, 239

Backpropagation through time (BPTT)
truncated, 111

Bayesian network, 80, 84
Blink frequency, 21, 26, 27, 29
Branch and bound, 89, 90, 94, 97–99

Chamfer matching, 61, 63
Classifier fusion techniques, 208
Cognitive workload, 1
Computer vision, 21, 33
Constrained Local Models, 34
Control hierarchy, 241, 242
Cross validation, 10

Decision tree, 5, 8, 10–14, 44–46, 210
Decision tree learning, 8, 15

Diagnostic matrix (D-matrix), 199, 200
Diagnostic tree, 200
Direct Control System, 151
Direct Inverse Model (DIM), 151, 152
Distraction, 19

cognitive distraction, 19, 26, 28, 32
visual distraction, 19, 26

Driver assistance, 39, 40, 50, 56, 57, 68
Driver inattention, 19, 20, 26, 40, 50–52, 56, 57

detection, 50, 52, 56
driver inattentiveness level, 29

Driver support, 59
Driver workload estimation (DWE), 1–3, 10
Driving activity, 48
Driving Patterns, 169, 173, 184
Driving/driver activity, 39, 42, 56
Dynamic fusion, 210
Dynamic Programming, 169, 171, 174, 176, 188
Dynamic resistance approach, 222
Dynamic resistance profile, 223, 224, 226, 227, 234

Embodied agent, 267
Engine

actuators, 125
control, 125, 131

common features, 125
development cycle, 127

downsizing, 131
Spark Ignition (SI) —, 131
turbocharging, 131

Error-correcting output codes (ECOC), 210
Extended kalman filter (EKF), 196
Eye closure duration, 29

Face pose, 21, 26, 27, 29, 36
Fatigue, 20, 21, 26–28, 30, 31
Fault detection and diagnosis (FDD), 191
Fixed gaze, 26, 28–30, 32, 36
Four Dimensional (3D+time)/Real-time Control System

(4D/RCS), 237
Fuzzy logic, 174, 175, 220, 227, 229, 234

276 Index

Fuzzy rules, 174, 175, 180, 182, 229, 230
Fuzzy system, 22, 29

Graphical models, 79, 80, 88
Grey box approach, 127

Hardware-in-the-loop, 191
Hessian matrix, 113
HILS, 191, 196
Hybrid Vehicle, 169, 173, 176
Hypervariate, 39

Image acquisition, 21
Indirect Control System, 151, 153
Intelligent constant current control, 220, 226, 227,

230–234
Intelligent embodied agents, 267
Intelligent vehicle, 239, 271
Internal Model Control (IMC), 151

K-Nearest Neighbor (KNN), 207
Kalman filter, 21, 25, 28, 32

extended (EKF), 113, 114, 116
multi-stream, 114

non-differential or nonlinear, 115
Kernel function, 130
Knowledge discovery, 89

LAGR, 256, 259, 261, 271
Lane tracking, 36
Learning Applied to Ground Robots (LAGR), 238, 255
Learning machines, 125
Learning rate, 114
Learning vector quantization (LVQ), 185, 220, 223–226,

228, 234
Learning-based DWE design process, 4
Linear parameter varying (LPV) system, 136

Maneuver, 1, 4, 39, 40, 42, 46, 47, 52, 56, 72
classification, 46, 47
detection, 42, 46, 47

Manufacturing process optimization, 89, 92, 94, 99
Markov network, 80, 81
Micro-camera, 21
Multi-agent simulation environment, 268
Multi-agent system, 264
Multi-way partial least squares (MPLS), 206, 207
Multilayer perceptron (MLP), 102, 103, 126, 128

Near-IR, 21, 22, 24, 33
Neural network, 69, 178, 179, 185

controller, 106, 108, 110, 112
in engine control, 126
models, 103, 116, 128

Neuro-fuzzy inference system, 222
Nodding, 20, 29

Observer, 103, 127, 132–135, 137, 147, 149, 195
polytopic, 125, 134, 136

Output error (prediction-error) method, 195

Partial least squares (PLS), 211
Particle swarm optimization (PSO), 115
PERCLOS, 21, 26, 27, 29, 30, 32, 33, 36
Prior knowledge, 127, 139
Process capability index, 89, 90, 93, 96, 99
Prognostic model, 202
Prognostics, 201
Pupil detection, 24

Radial basis function (RBF)
kernel, 130, 139
networks, 103, 104, 126, 129, 130

Random Forest, 45–48, 54–56
Real-rime recurrent learning (RTRL), 111
Recurrent Neural Network (RNN), 101, 102, 105, 109,

111, 116, 146, 149–151, 153, 155, 165
Remaining useful life, 193
Residual, 199–201, 203
Resistance spot welding, 219, 220, 222, 234
Root cause analysis, 89, 90, 94, 96
Rule extraction, 89, 90, 92, 99

Sensor selection, 40, 47, 48, 50
Simultaneous Perturbation Stochastic Approximation

(SPSA), 115
Soft (indirect) sensor, 227
Soft sensing, 222, 228, 230, 231, 234
Soft sensor, 103, 127, 220, 227, 234
Stochastic Meta-Descent (SMD), 114, 115
Support vector machine regression (SVMR), 61, 68, 69,

129, 138, 207, 211

Traffic accidents, 19

Variable camshaft timing (VCT), 131, 132, 138
Vehicle Power Management, 169, 171, 180, 184, 185, 188
Virtual or soft (indirect) sensor, 220
Virtual sensing, 149, 155
Virtual sensor, 101, 103–106, 164, 166
Visual behaviors, 20, 21, 26–28, 32
Visualization, 80, 84–86

Weight update method, 111, 112
first-order, 112
second-order, 113

Workload management, 1, 39, 40

	front-matter
	fulltext01
	fulltext02
	fulltext03
	fulltext04
	fulltext05
	fulltext06
	fulltext07
	fulltext08
	fulltext09
	fulltext10
	fulltext11
	fulltext12
	fulltext13
	back-matter

