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Preface

What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the
fields of neural networks (NN), fuzzy logic and evolutionary computation. Various definitions and opinions
exist, but what belongs to CI is still being debated; see, e.g., [1-3]. More recently there has been a proposal
to define the CI not in terms of the tools but in terms of challenging problems to be solved [4].

With this edited volume I have made an attempt to give a representative sample of contemporary CI
activities in automotive applications to illustrate the state of the art. While CI research and achievements in
some specialized fields described (see, e.g., [5, 6]), this is the first volume of its kind dedicated to automotive
technology. As if reflecting the general lack of consensus on what constitutes the field of CI, this volume
illustrates automotive applications of not only neural and fuzzy computations® which are considered to be
the “standard” CI topics, but also others, such as decision trees, graphical models, Support Vector Machines
(SVM), multi-agent systems, etc.

This book is neither an introductory text, nor a comprehensive overview of all CI research in this area.
Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth
reading for both professionals and students. When the details appear insufficient, the reader is encouraged
to consult other relevant sources provided by the chapter authors.

The chapter “Learning-based driver workload estimation” discusses research on estimation of driver
cognitive workload and proposes a new methodology to design driver workload estimation systems. The
methodology is based on decision-tree learning. It derives optimized models to assess the time-varying work-
load level from data which include not only measurements from various sensors but also subjective workload
level ratings.

The chapter “Visual monitoring of driver inattention” introduces a prototype computer vision system
for real-time detection of driver fatigue. The system includes an image acquisition module with an infrared
illuminator, pupil detection and tracking module, and algorithms for detecting appropriate visual behaviors
and monitoring six parameters which may characterize the fatigue level of a driver. To increase effectiveness
of monitoring, a fuzzy classifier is implemented to fuse all these parameters into a single gauge of driver
inattentiveness. The system tested on real data from different drivers operates with high accuracy and
robustly at night.

The chapter “Understanding driving activity using ensemble methods” complements the chapter “Visual
monitoring of driver inattention” by discussing whether driver inattention can be detected without eye and
head tracking systems. Instead of limiting themselves to working with just a few signals from preselected
sensors, the authors chose to operate on hundreds of signals reflecting the real-time environment both outside
and inside the vehicle. The discovery of relationships in the data useful for driver activity classification, as

! Another “standard” CI topic called evolutionary computation (EC) is not represented in this volume in the form
of a separate chapter, although some EC elements are mentioned or referenced throughout the book. Relevant
publications on EC for automotive applications are available (e.g., [7]), but unfortunately were not available as
contributors of this volume.
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well as ranking signals in terms of their importance for classification, is entrusted to an approach called
random forest, which turned out to be more effective than either hidden Markov models or SVM.

The chapter “Computer vision and machine learning for enhancing pedestrian safety” overviews methods
for pedestrian detection, which use information from on-board and infrastructure based-sensors. Many of
the discussed methods are sufficiently generic to be useful for object detection, classification and motion
prediction in general.

The chapter “Application of graphical models in the automotive industry” describes briefly how graphical
models, such as Bayesian and Markov networks, are used at Volkswagen and Daimler. Production planning
at Volkswagen and demand prediction benefit significantly from the graphical model based system developed.
Another data mining system is developed for Daimler to help assessing the quality of vehicles and identifying
causes of troubles when the vehicles have already spent some time in service. It should be noted that other
automotive companies are also pursuing data mining research (see, e.g., [8]).

The chapter “Extraction of maximum support rules for the root cause analysis” discusses extraction of
rules from manufacturing data for root cause analysis and process optimization. An alternative approach to
traditional methods of root cause analysis is proposed. This new approach employs branch-and-bound princi-
ples, and it associates process parameters with results of measurements, which is helpful in the identification
of the main drivers for quality variations of an automotive manufacturing process.

The chapter “Neural networks in automotive applications” provides an overview of neural network tech-
nology, concentrating on three main roles of neural networks: models, virtual or soft sensors and controllers.
Training of NN is also discussed, followed by a simple example illustrating the importance of recurrent NN.

The chapter “On learning machines for engine control” deals with modeling for control of turbocharged
spark ignition engines with variable camshaft timing. Two examples are considered: (1) estimation of the
in-cylinder air mass in which open loop neural estimators are combined with a dynamic polytopic observer,
and (2) modeling an in-cylinder residual gas fraction by a linear programming support vector regression
method. The authors argue that models based on first principles (“white boxes”) and neural or other “black
box” models must be combined and utilized in the “grey box” approach to obtain results which are not just
superior to any alternatives but are also more acceptable to automotive engineers.

The chapter “Recurrent neural networks for AFR estimation and control in spark ignition automotive
engines” complements the chapter “On learning machines for engine control” by discussing specifics of the
air-fuel ratio (AFR) control. Recurrent NN are trained off-line and employed as both the AFR virtual sensor
and the inverse model controller. The authors also provide a comparison with a conventional control strategy
on a real engine.

The chapter “Intelligent vehicle power management: An overview” presents four case studies: a conven-
tional vehicle power controller and three different approaches for a parallel HEV power controller. They
include controllers based on dynamic programming and neural networks, and fuzzy logic controllers, one of
which incorporates predictions of driving environments and driving patterns.

The chapter “Integrated diagnostic process for automotive systems” provides an overview of model-based
and data-driven diagnostic methods applicable to complex systems. Selected methods are applied to three
automotive examples, one of them being a hardware-in-the-loop system, in which the methods are put to
work together to solve diagnostic and prognostic problems. It should be noted that integration of different
approaches is an important theme for automotive research spanning the entire product life cycle (see, e.g.,
9).

The chapter “Automotive manufacturing: intelligent resistance welding” introduces a real-time control
system for resistance spot welding. The control system is built on the basis of neural networks and fuzzy
logic. It includes a learning vector quantization NN for assessing the quality of weld nuggets and a fuzzy
logic process controller. Experimental results indicate substantial quality improvement over a conventional
controller.

The chapter “Intelligent control of mobility systems” (ICMS) overviews projects of the ICMS Program
at the National Institute of Standards and Technology (NIST). The program provides architecture, interface
and data standards, performance test methods and infrastructure technology available to the manufacturing
industry and government agencies in developing and applying intelligent control technology to mobility
systems. A common theme among these projects is autonomy and the four dimensional/real-time control
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systems (4D /RCS) control architecture for intelligent systems proposed and developed in the NIST Intelligent
Systems Division.

Unlike the book’s index, each chapter has its own bibliography for the convenience of the reader, with
little overlap among references of different chapters.

This volume highlights important challenges facing CI in the automotive domain. Better vehicle diag-
nostics/vehicle system safety, improved control of vehicular systems and manufacturing processes to save
resources and minimize impact on the environment, better driver state monitoring, improved safety of pedes-
trians, making vehicles more intelligent on the road — these are important directions where the CI technology
can and should make the impact. All of these are consistent with the Toyota vision [10]:

Toyota’s vision is to balance “Zeronize” and “Mazimize”. “Zeronize” symbolizes the vision and philosophy
of our persistent efforts in minimizing negative aspects vehicles have such as environmental impact, traffic
congestion and traffic accidents, while “Maximize” symbolizes the vision and philosophy of our persistent
efforts in mazimizing the positive aspects vehicles have such as fun, delight, excitement and comfort, that
people seek in automobiles.

T am very thankful to all the contributors of this edited volume for their willingness to participate in this
project, their patience and valuable time. I am also grateful to Prof. Janusz Kacprzyk, the Springer Series
Editor, for his encouragement to organize and edit this volume, as well as Thomas Ditzinger, the Springer
production editor for his support of this project.

Ann Arbor-Canton, MI, USA, Danil V. Prokhorov
January 2008
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Learning-Based Driver Workload Estimation
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A popular definition of workload is given by O’Donnell and Eggmeir, which states that “The term workload
refers to that portion of the operator’s limited capacity actually required to perform a particular task” [1].
In the vehicle environment, the “particular task” refers to both the vehicle control, which is the primary
task, and other secondary activities such as listening to the radio. Three major types of driver workload are
usually studied, namely, visual, manual, and cognitive. Auditory workload is not treated as a major type of
workload in the driving context because the auditory perception is not considered as a major requirement to
perform a driving task. Even when there is an activity that involves audition, the driver is mostly affected
cognitively.

Lately, the advanced computer and telecommunication technology is introducing many new in-vehicle
information systems (IVISs), which give drivers more convenient and pleasant driving experiences. Active
research is being conducted to provide IVISs with both high functionality and high usability. On the usability
side, driver’s workload is a heated topic advancing in at least two major directions. One is the offline
assessment of the workload imposed by IVISs, which can be used to improve the design of IVISs. The
other effort is the online workload estimation, based on which IVISs can provide appropriate service at
appropriate time, which is usually termed as Workload Management. For example, the incoming phone call
may be delayed if the driver is engaged in a demanding maneuver.

Among the three major types of driver workload, cognitive workload is the most difficult to measure.
For example, withdrawing hands from the steering wheel to reach for a coffee cup requires extra manual
workload. It also may require extra visual workload in that the position of the cup may need to be located.
Both types of workload are directly measurable through such observations as hands-off-wheel and eyes-off-
road time. On the other hand, engaging in thinking (the so-called minds-off-road phenomenon) is difficult
to detect. Since the cognitive workload level is internal to the driver, it can only be inferred based on the
information that is observable. In this chapter, we report some of our research results on driver’s cognitive
workload estimation.® After the discussion of the existing practices, we propose a new methodology to design
driver workload estimation systems, that is, using machine-learning techniques to derive optimized models
to index workload. The advantage of this methodology will be discussed, followed by the presentation of
some experimental results. This chapter concludes with discussion of future work.

1 Background

Driver Workload Estimation (DWE) refers to the activities of monitoring the driver, the vehicle, and the
driving environment in real-time, and acquiring the knowledge of driver’s workload level continuously. A
typical DWE system takes sensory information of the driver, the vehicle and the driving environment as
inputs, and generates an index to the driver’s workload level as shown in Fig. 1. The central issue of DWE
is to design the driver workload estimation algorithm that generates the workload index with high accuracy.

L To simplify the terminology, we use “workload” interchangeably with “cognitive workload” in this chapter.
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Fig. 1. The working process of a driver workload estimation system

A practical DWE system fulfills the following three requirements in order to identify driver’s cognitive
status while the driver is engaged in naturalistic driving practice.

e Continuously measurable: A DWE system has to be able to continuously measure workload while the
driver is driving the vehicle so that workload management can be conducted appropriately to avoid
overloading the driver.

e Residual capacity sensitive: The residual capacity of the driver refers to the amount of spare capacity
of the driver while he/she is performing the primary task of maneuvering the vehicle, and, if applicable,
engaging in secondary tasks such as drinking a cup of coffee or operating an IVIS. If the residual capacity
is high, the driver is typically doing well in vehicle control and may be able to be engaging in even more
secondary activities. Residual capacity is the primary interest for DWE.

e Highly non-intrusive: A DWE system should not interfere with the driver by any means.

Before the discussion of existing DWE methodologies in the next section, it is helpful to give a brief intro-
duction of cognitive workload assessment methods. There exist four major categories of cognitive workload
assessment methods in present-day practice [2], namely primary-task performance measures, secondary-task
performance measures, subjective measures, and physiological measures.

The primary-task performance measures evaluate cognitive workload based on driving performance, such
as lane-position deviation, lane exceedences, brake pressure, and vehicle headway. These measures are usually
direct and continuous.

In the secondary-task approach, the driver is required to perform one or multiple secondary tasks, e.g.,
pushing a button when flashing LED light is detected in the peripheral vision. The secondary-task perfor-
mance such as reaction time is measured as the index of driver’s cognitive workload level. Secondary-task
performance may introduce tasks unnecessary to regular driving and is intrusive to the driver.

With the subjective measure approach, driver’s personal opinion on his/her operative experience is
elicited. After a trip or an experiment, the subject is asked to describe or rate several dimensions of effort
required to perform the driving task. If the driver and the experimenter establish clear mutual under-
standing of the rating scale, the subjective measure can be very reliable. Examples of popular subjective
workload rating index are NASA Task Load Index (TLX) [3] and Subjective Workload Assessment Technique
(SWAT) [4].

Physiological measures include brain activities such as event-related potential (ERP) and Electroen-
cephalogram (EEG), cardiac activities such as heart rate variance, as well as ocular activities such as eye
closure duration and pupil diameter changes. Physiological measures are continuous and residual-capacity
sensitive. The challenge, however, lies in reliably acquiring and interpreting the physiological data sets, in
addition to user acceptance issues.

Among the four workload assessment methods, primary-task performance measures and physiological
measures (obtained by non-intrusive sensors) fulfill the above-discussed DWE requirements and are generally
appropriate for DWE applications. Although not directly suitable for real-time DWE, the secondary-task
performance measures and the subjective measures are still valuable in developing DWE since they provide
ways to calibrate the index generated by a DWE system.
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2 Existing Practice and Its Challenges

Most existing researches on DWE follow this pattern. First, analyze the correlation between various features,
such as lane position deviation, and driver’s workload. The ground truth of driver’s workload is usually
assessed by subjective measures, secondary-task performance, or the analysis of the task. The features
are usually selected according to the prior understanding of human behaviors and then tested using well-
designed experiments. While there are attempts reported to analyze the features simultaneously [5], usually
the analysis is done on individual features [6, 7]. Second, models are designed to generate workload index by
combining features that have high correlation with driver workload. We refer to the above methodology as
manual analysis and modeling. The manual DWE design process is illustrated in Fig. 2. Research along this
line has achieved encouraging success. The well-known existing models include the steering entropy [8] and
the SEEV model [9]. However, there are yet difficulties in developing a robust cognitive workload estimator
for practical applications, the reasons of which are discussed below.

First, the existing data analysis methods very much rely on the domain knowledge in the field of human
behavior. Although many studies have been conducted and many theories have been proposed to explain the
way that human beings manage resources and workload [2, 10-12], the relationship between overt human
behavior and cognitive activities is by and large unclear to the scientific community. It is extremely difficult
to design the workload estimation models based on this incomplete domain knowledge.

Second, manual data analysis and modeling are not efficient. Until now, a large number of features related
to driver’s cognitive workload have been studied. A short list of them includes: lane position deviation, the
number of lane departure, lane departure duration, speed deviation, lateral deviation, steering hold, zero-
crossing and steering reversal rate, brake pressure, the number of brake presses, and vehicle headway. With
the fast advancing sensing technology, the list is quickly expanding. It has been realized that while each
individual feature may not index workload well under various scenarios, the fusion of multiple features tends
to provide better overall performance. However, in the course of modeling the data to estimate workload,
the models tend to be either relatively simple, such as the linear regression models, or narrowly scoped by
covering a small number of features. It is usually expensive and time-consuming to iteratively design models
over a large number of features and validate models on a huge data set.

Third, most researchers choose workload inference features by analyzing the correlation between the
observations of driver’s behavior and driver’s workload level. This analysis requires the assumption of uni-
mode Gaussian distribution, which is very likely to be violated in reality. In addition, a feature showing low
correlation with the workload levels is not necessarily a bad workload indicator.

For example, driver’s eye fixation duration is one of the extensively studied features for workload esti-
mation. However, studies show contradictory findings in the relation between workload level and fixation
duration. Some of them show positive correlation [13, 14] while others show negative correlation [15, 16].
Does this mean fixation duration is not a good workload indicator? Not necessarily. The fact, that the
average fixation duration may become either longer or shorter when driver’s workload is high, implies that

Subjective/
Secondary
Measures
Sensors for: l
pupil diameter, analysis/
vehicle speed, Sienal pre- design
Jateral processing
acceleration, > Workload
lane position, DWE index

e

Fig. 2. The existing DWE system design process
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Fig. 3. The probability distribution function of fixation duration under high and low workload

the probability distribution function (pdf) of fixation duration under high workload (p(tq|hw)) is multi-
modal, as shown in Fig. 3. With collected ocular data, one may estimate the conditional pdfs (p(t¢4|hwi) and
p(tyallwr)) and the prior probabilities for high and low workload (P (h.) and P(ly)). With this knowledge,
standard Bayesian analysis will tell the probability of high workload given the fixation duration,
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hwil|trg) = .
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3 The Proposed Approach: Learning-Based DWE

We proposed a learning-based DWE design process a few years ago [17, 18]. Under this framework, instead of
manually analyzing the significance of individual features or a small set of features, the whole set of features
are considered simultaneously. Machine-learning techniques are used to tune the DWE system, and derive
an optimized model to index workload.

Machine learning is concerned with the design of algorithms that encode inductive mechanisms so that
solutions to broad classes of problems may be derived from examples. It is essentially data-driven and is
fundamentally different from traditional AI such as expert systems where rules are extracted mainly by
human experts. Machine learning technology has been proved to be very effective in discovering the under-
lying structure of data and, subsequently, generate models that are not discovered from domain knowledge.
For example, in the automatic speech recognition (ASR) domain, models and algorithms based on machine
learning outperform all other approaches that have been attempted to date [19]. Machine learning has found
increasing applicability in fields as varied as banking, medicine, marketing, condition monitoring, computer
vision, and robotics [20].

Machine learning technology has been implemented in the context of driver behavior modeling. Kraiss [21]
showed that a neural network could be trained to emulate an algorithmic vehicle controller and that individual
human driving characteristics were identifiable from the input/output relations of a trained network. Forbes
et al. [22] used dynamic probabilistic networks to learn the behavior of vehicle controllers that simulate
good drivers. Pentland and Liu [23] demonstrated that human driving actions, such as turning, stopping,
and changing lane, could be accurately recognized very soon after the beginning of the action using Markov
dynamic model (MDM). Oliver and Pentland [24] reported a hidden Markov model-based framework to
predict the most likely maneuvers of human drivers in realistic driving scenarios. Mitrovié [25] developed a
method to recognize driving events, such as driving on left/right curves and making left/right turns, using
hidden Markov models. Simmons et al. [26] presented a hidden Markov model approach to predict a driver’s
intended route and destination based on observation of his/her driving habits.

Thanks to the obvious relation between driver behavior and driver workload, our proposal of learning-
based DWE is a result of the above progress. Similar ideas were proposed by other researchers [27, 28] around
the time frame of our work and many followup works have been reported ever since [29-31].

3.1 Learning-Based DWE Design Process

The learning-based DWE design process is shown in Fig.4. Compared to the one shown in Fig. 2, the new
process replaces the module of manual analysis/design with a module of a machine learning algorithm, which
is the key to learning-based DWE.
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Fig. 4. The learning-based DWE design process

A well-posed machine learning problem requires a task definition, a performance measure, and a set of
training data, which are defined as follows for the learning-based DWE:

Task: Identify driver’s cognitive workload level in a time interval of reasonable length, e.g., every few seconds.

Performance measure: The rate of correctly estimating driver’s cognitive workload level.

Training data: Recorded driver’s behavior including both driving performance and physiological mea-
sures together with the corresponding workload levels assessed by subjective measures, secondary task
performance, or task analysis.

In order to design the learning-based DWE algorithm, training data need to be collected while subjects
drive a vehicle in pre-designed experiments. The data includes the sensory information of the maneuvering
of the vehicle (e.g., lane position, which reflects driver’s driving performance) and the driver’s overt behavior
(e.g., eye movement and heart beat), depending on the availability of the sensor on the designated vehicle.
The data also includes the subjective workload ratings and/or the secondary-task performance ratings of the
subjects. These ratings serve as the training labels.

After some preprocessing on the sensory inputs, such as the computation of mean and standard devia-
tion, the data is fed to a machine-learning algorithm to extract the relationship between the noisy sensory
information and the driver’s workload level. The computational intelligence algorithm can be decision tree,
artificial neural network, support vector machine, or methods based on discriminant analysis. The learned
estimator, a mapping from the sensory inputs to the driver’s cognitive workload level, can be a set of rules,
a look-up table, or a numerical function, depending on the algorithm used.

3.2 Benefits of Learning-Based DWE

Changing from a manual analysis and modeling perspective to a learning-based modeling perspective will
gain us much in terms of augmenting domain knowledge, and efficiently and effectively using data.

A learning process is an automatic knowledge extraction process under certain learning criteria. It is very
suitable for a problem as complicated as workload estimation. Machine learning techniques are meant for ana-
lyzing huge amounts of data, discovering patterns, and extracting relationships. The use of machine-learning
techniques can save labor-intensive manual process to derive combined workload index and, therefore, can
take full advantage of the availability of various sensors. Finally, most machine learning techniques do not
require the assumption of the unimode Gaussian distribution. In addition to the advantages discussed above,
this change makes it possible for a DWE system to be adaptive to individual drivers. We will come back to
this issue in Sect. 7.

Having stated the projected advantages, we want to emphasize that the learning-based approach benefits
from the prior studies on workload estimation, which have identified a set of salient features, such as fixation
duration, pupil diameter, and lane position deviation. We utilize the known salient features as candidate
inputs.
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4 Experimental Data

Funded by GM R&D under a contract, researchers from the University of Illinois at Urbana-Champaign
conducted a driving simulator study to understand driver’s workload. The data collected in the simulator
study was used to conduct some preliminary studies on learning-based DWE as presented in this chapter.

The simulator system has two Ethernet-connected PCs running GlobalSim’s Vection Simulation Software
version 1.4.1, a product currently offered by DriveSafety Inc. (http://www.drivesafety.com). One of the
two computers (the subject computer) generates the graphical dynamic driving scenes on a standard 21-in
monitor with the resolution of 1,024 x 768 (Fig.5). Subjects use a non-force feedback Microsoft Sidewinder
USB steering wheel together with the accelerator and brake pedals to drive the simulator. The second
computer (the experimental computer) is used by an experimenter to create driving scenarios, and collect
and store the simulated vehicle data, such as vehicle speed, acceleration, steering angle, lateral acceleration,
lane position, etc. To monitor the driver’s behavior closely, a gaze tracking system is installed on the subject
computer and running at the same time as the driving simulation software. The gaze tracking system is an
Applied Science Lab remote monocular eye tracker, Model 504 with pan/tilt optics and a head tracker. It
measures the pupil diameter and the point of gaze at 60 Hz with an advertised tracking accuracy of about
+0.5 degree [32]. The gaze data is also streamed to and logged by the experimenter computer. A complete
data table is shown in Table 1.

Twelve students participated in the experiment. Each participant drove the simulator in three different
driving scenarios, namely, highway, urban, and rural (Fig.5). There were two sessions of driving for each
scenario, each lasting about 8-10min In each session, the participants were asked to perform secondary
tasks (two verbal tasks and two spatial-imagery tasks) during four different 30-s periods called critical
periods. In the verbal task, the subjects were asked to name words starting with a designated letter. In the
spatial-imagery task, the subjects were asked to imagine the letters from A to Z with one of the following
characteristics: (a) remaining unchanged when flipped sideways, (b) remaining unchanged when flipped
upside down, (c¢) containing a close part such as “A”, (d) having no enclosed part, (e) containing a horizontal
line, (f) containing a vertical line. Another four 30-s critical periods were identified as control sessions in
each session, during which no secondary tasks were introduced. In the following analysis, we concentrate
on the data during the critical periods. In total, there were 12 subjects X 3 scenarios X 2 sessions X
8 critical periods/session = 576 critical periods. Because of some technical difficulties during the experiment,
the data from some of the critical periods were missing, which ended up with a total of 535 critical periods
for use. The total number of data entries is 535 critical periods x 30 s x 60 Hz = 1,036,800.

In the simulator study, there was no direct evidence of driver’s workload level, such as the subjective
workload assessment. However, workload level for each data entry was needed in order to evaluate the idea
of learning-based DWE. We made an assumption that drivers bear more workload when engaging in the
secondary tasks. As we know, the primary driving task includes vehicle control (maintaining the vehicle in
a safe location with an appropriate speed), hazard awareness (detecting hazards and handling the elicited
problems), and navigation (recognizing landmarks and taking actions to reach destination) [33]. The visual
perception, spatial cognitive processing, and manual responses involved in these subtasks all require brain
resources. In various previous studies, many secondary mental tasks, such as verbal and spatial-imagery
tasks, have been shown to compete for the limited brain resources with the primary driving task. The
secondary mental tasks affect the drivers by reducing their hazard detection capability and delaying the
decision-making time [13, 14, 34]. Although a driver may respond to the multi-tasks by changing resource
allocation strategy to make the cooperation more efficient, in general, the more tasks a driver is conducting
at a time, the more resources he/she is consuming and, therefore, the higher workload he/she is bearing.
Based on this assumption, we labeled all the sensor inputs falling into the dual-task critical periods with
high workload. The sensor inputs falling into the control critical periods were labeled with low workload. We
understand that driver’s workload may fluctuate during a critical period depending on the driving condition
and her actual involvement in the secondary task.
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Fig. 5. The screen shots of the driving scene created by the GlobalSim Vection Simulation Software in three different
driving scenarios: (a) urban, (b) highway, and (c) rural
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Table 1. The vehicle and gaze data collected by the simulator system

Vehicle  Velocity, lane position, speed limit, steer angle, acceleration, brake, gear, horn, vehicle heading, vehicle
pitch, vehicle roll, vehicle X, vehicle Y, vehicle Z, turn signal status, latitudinal acceleration, longitudinal
acceleration, collision, vehicle ahead or not, headway time, headway distance, time to collide, terrain
type, slip.

Gaze Gaze vertical position, gaze horizontal position, pupil diameter, eye to scene point of gaze distance, head
x position, head y position, head z position, head azimuth, head elevation, head roll.

Feature vectors

»
L

time
Fig. 6. The rolling time windows for computing the feature vectors

Table 2. The features used to estimate driver’s workload
Feature number  Features

Mspa: mean vehicle velocity

Vepa: standard deviation of vehicle velocity

myp: mean lane position

Vip: standard deviation of vehicle lane position

Mms¢r: Mean steering angle

Vitr: standard deviation of steering angle

Mace: Mean vehicle acceleration

Vaee: standard deviation of vehicle acceleration

Mmpq: mean pupil diameter

Vpa: standard deviation of pupil diameter

11-18 n;: number of entries for the gaze moving into region 4, i = 1,2,...,8
19-26 ts;: portion of time the gaze stayed in region ¢, i = 1,2,...,8
27-34 tv;: mean visit time for region ¢, i =1,2,...,8

© 00~ DU =W

—
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5 Experimental Process

We preprocessed the raw measurements from the sensors and generated vectors of features over the fixed-size
rolling time windows as shown in Fig. 6. Table 2 lists all the features we used. The “regions” in Table 2 refer
to the eight regions of driver’s front view as shown in Fig. 7. It is desirable to estimate the workload at a
frequency as high as possible. However, it is not necessary to assess it at a frequency of 60 Hz because the
driver’s cognitive status does not change at that high rate. In practice, we tried different time window sizes,
of which the largest was 30s, which equals the duration of a critical period.

While many learning methods can be implemented, such as Bayesian learning, artificial neural networks,
hidden Markov models, case based reasoning, and genetic algorithms, we used decision tree learning , one of
the most widely used methods for inductive inference, to show the concept.

A decision tree is a hierarchical structure, in which each node corresponds to one attribute of the input
attribute vector. If the attribute is categorical, each arc branching from the node represents a possible value
of that attribute. If the attribute is numerical, each arc represents an interval of that attribute. The leaves of
the tree specify the expected output values corresponding to the attribute vectors. The path from the root
to a leaf describes a sequence of decisions made to generate the output value corresponding to an attribute
vector. The goal of decision-tree learning is to find out the attribute and the splitting value for each node of
the decision tree. The learning criterion can be to reduce entropy [35] or to maximize t-statistics [36], among
many others.

For the proof-of-concept purpose, we used the decision-tree learning software, Seeb, developed by
Quinlan [35]. In a Seeb tree, the attribute associated with each node is the most informative one among
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Fig. 7. The screen of the driving scene is divided into eight regions in order to count the gaze entries in each region.
The region boundaries were not shown on the screen during the experiment

the attributes not yet considered in the path from the root. The significance of finding the most informative
attribute is that making the decision on the most informative attribute can reduce the uncertainty about
the ultimate output value to the highest extent.

In information theory, the uncertainty metric of a data set S is defined by entropy H(.S),

H(S) = =Xi_, Piloga(Fy),

where, S is a set of data, ¢ is the number of categories in S, and P; is the proportion of category i in S.
The uncertainty about a data set S when the value of a particular attribute A is known is given by the
conditional entropy H(S|A),

H(S|A) = —Zycvatue(a) P(A = v)H(S|A = v),

where Value(A) is the set of all possible values for attribute A, and P(A = v) is the proportion of data in
S, whose attribute A has the value v. If we use S, to represent the subset of S for which attribute A has
the value v, the conditional entropy H(S|A) can be rewritten as,

10|

H(S|A) = T ~weValue(A) ‘Sl

H(Sy),
where |e| is the number of data points in the respective data set. As a result, the information gain of knowing
the value of attribute A is defined as,

. Sy
Gain(S,4) = H(S) - Sevanecn ) H(S.)

So, the most informative attribute A,,; is determined by,

Api = arg fogrﬁles Gain(S, A).

To improve the performance, a popular training algorithm called adaptive boosting or AdaBoost was
used. The AdaBoost algorithm [37, 38] is an interactive learning process which combines the outputs of a set
of N “weak” classifiers trained with different weightings of the data in order to create a “strong” composite
classifier. A “weak” learning algorithm can generate a hypothesis that is slightly better than random for any
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data distribution. A “strong” learning algorithm can generate a hypothesis with an arbitrarily low error rate,
given sufficient training data. In each successive round of weak classifier training, greater weight is placed
on those data points that were mis-classified in the previous round. After completion of N rounds, the N
weak classifiers are combined in a weighted sum to form the final strong classifier.

Freund and Shapire have proven that if each weak classifier performs slightly better than a random
classifier, then the training error will decrease exponentially with N. In addition, they showed that the
test set or generalization error is bounded with high probability by the training set error plus a term that
is proportional to the square root of N/M, where M is the number of training data. These results show
that, initially, AdaBoost will improve generalization performance as N is increased, due to the fact that the
training set error decreases more than the increase of the N/M term. However, if N is increased too much,
the N/M term increases faster than the decrease of the training set error. That is when overfitting occurs
and the reduction in generalization performance will follow. The optimum value of N and the maximum
performance can be increased by using more training data. AdaBoost has been validated in a large number
of classification applications. Seeb incorporates AdaBoost as a training option. We utilized boosting with
N =10 to obtain our DWE prediction results. Larger values of N did not improve performance significantly.

6 Experimental Results

The researchers from the University of Illinois at Urbana-Champaign reported the effect of secondary tasks
on driver’s behavior in terms of the following features:

e Portion of gaze time in different regions of driver’s front view

e Mean pupil size

e Mean and standard deviation of lane position

e Mean and standard deviation of the vehicle speed

The significance of the effect was based on the analysis of variance (ANOVA) [39] with respect to each of
these features individually. The general conclusion was that the effect of secondary tasks on some features
was significant, such as speed deviation and lane position. However, there was an interaction effect of driving
environments and tasks on these features, which means the significance of the task effect was not consistent
over different driving environments [40].

It should be noted that ANOVA assumes Gaussian statistics and does not take into account the possible
multi-modal nature of the feature probability distributions. Even for those features showing significant
difference with respect to secondary tasks, a serious drawback of ANOVA is that this analysis only tells the
significance on average. We can not tell from this analysis how robust an estimator can be if we use the
features on a moment-by-moment basis.

In the study presented in this chapter, we followed two strategies when conducting the learning process,
namely driver-independent and driver-dependent. In the first strategy, we built models over all of the available
data. Depending on how the data were allocated to the training and testing sets, we performed training
experiments for two different objectives: subject-level and segment-level training, the details of which are
presented in the following subsection. In the second training strategy, we treated individual subjects’ data
separately. That is, we used part of one subject’s data for training and tested the learned estimator on
the rest data of the same subject. This is a driver-dependent case. The consideration here is that since the
workload level is driver-sensitive, individual difference makes a difference in the estimation performance.

The performance of the estimator was assessed with the cross-validation scheme, which is widely adopted
by the machine learning community. Specifically, we divided all the data into subsets, called folds, of equal
sizes. All the folds except one were used to train the estimator while the left-out fold was used for performance
evaluation. Given a data from the left-out fold, if the estimation of the learned decision tree was the same
as the label of the data, we counted it as a success. Otherwise, it was an error. The correct estimation rate,
7, Was given by,

TLC
Te = 5
Ntot
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where n. was the total number of successes and n;,; was the total number of data entries. This process rotated
through each fold and the average performance on the left-out folds was recorded. A cross validation process
involves ten folds (ten subsets) is called a tenfold cross validation. Since the estimator is always evaluated
on the data disjoint from the training data, the performance evaluated through the cross validation scheme
correctly reflects the actual generalization capability of the derived estimator.

6.1 Driver-Independent Training

The structure of the dataset is illustrated schematically in the upper part of Fig. 8. The data can be organized
into a hierarchy where individual subjects are at the top. Each subject experienced eight critical periods
with single or dual tasks under urban, highway, and rural driving scenarios. Each critical period can be
divided into short time windows or segments to compute the vectors of features. For clarity we do not show
all subjects, scenarios, and critical periods in Fig. 8.

In the subject-level training, all of the segments for one subject were allocated to either the training or
testing set. The data for any individual subject did not appear in both the training and testing sets. The
subject-level training was used for estimating the workload of a subject never seen before by the system. It is
the most challenging workload estimation problem. In the segment-level training, segments from each critical
period were allocated disjointly to both the training and testing sets. This learning problem corresponds to
estimating workload for individuals who are available to train the system beforehand. It is an easier problem
than the subject-level training.

The test set confusion table for the subject-level training with 30-s time window is shown in Table 3. We
were able to achieve an overall correct estimation rate of 67% for new subjects that were not in the training
set using segments equal in length to the critical periods (30s). The rules converted from the learned decision
tree are shown in Fig. 9. Reducing the segment length increased the number of feature vectors in the training

Subjects

Scenarios Urban 2

Tasks

1 Verbal 1

Segments
(Time windows
used to calculate
feature vectors)

e .:.:.:.:.:.:.:.]
level training

Subject-
level training

Fig. 8. Allocation of time windows or segments to training and testing sets for two training objectives

Table 3. The test set confusion table for the subject-level driver-independent training with time window size of 30s

Workload estimation Dual-task  Single-task  Total
High workload 186 93 -
Low workload 84 172 -
Correct estimation rate (%) 69 65 67

In the table, dual-task refers to the cases when the subjects were engaged in both primary and secondary tasks
and, therefore, bore high workload. Similarly, single-task refers to the cases when the subjects were engaged only in
primary driving task and bore low workload



12 Y. Zhang et al.

Rule 1/1: (41.4/4.6, lift 2.2)
F10 > 3.526
F21 <=0.0635
-> class High [0.871]

Rule 1/2: (13.9/1.5, lift 2.1)
FO1 <=0.3084
F21 <=0.0635
F23 <=0.0023
-> class High [0.841]

Rule 1/3: (3.8, lift 2.1)
FO1 <=2.4056
F21 <=0.0635
F30>50.5714
-> class High [0.828]

Rule 1/4: (3.8, lift 2.1)
FO8 <=0.0243
F15 <=0.0056
F26>0.3819
-> class High [0.828]

Rule 1/5: (11.5/1.5, lift 2.1)
FOI >2.4056
F21 <=0.0635
-> class High [0.812]

Rule 1/6: (21.4/3.8, lift 2.0)
F09 <=21.2443
-> class High [0.794]

Rule 1/7: (9.9/1.5, lift 2.0)
FO1 <=-1.563
F15<=0.0174
-> class High [0.788]

Rule 1/8: (11.5/3.1, lift 1.8)
F15>0.0174
F21 > 0.0635
F28 <=1.25
-> class High [0.699]

Rule 1/9: (45.2, lift 1.2)
F09 > 21.2443
FI5 >0.0056
FI5 <=0.0174
F21 >0.0635
> class Low [0.979]

Rule 1/10: (92.1/1.5, lift 1.2)
FO1 >-1.563
FO8 > 0.0243
F09 > 21.2443
F15<=0.0174
F21 > 0.0635
-> class Low [0.973]

Rule 1/11: (31.6, lift 1.2)
FO1 > 0.3084
FO1 <=2.4056
F10 <=3.526
F30 <=50.5714
-> class Low [0.970]

Rule 1/12: (28.7, lift 1.2)
FOl <=2.4056
F10 <=3.526
F23>0.0023
F30 <=50.5714
-> class Low [0.967]

Fig. 9. The rules converted from the driver-independent decision tree. Each rule is characterized by the statistics
(N/E, lift L), where N is the number of training cases covered by the rule, E (if shown) is the number of them that
do not belong to the rule’s class, and L is the estimated accuracy of the rule (the number in square brackets, e.g.,
[0.871]) divided by the prior probability of the rule’s class. The reason that N and E may be non-integral numbers
is that when the value of an attribute in the tree is not known, Seeb splits the case and sends a fraction down each
branch. Please refer to Table 2 for the attribute indices. For example, FO1 refers to feature 1 in Table 2

Table 4. The correct estimation rates in the subject-level driver-independent training with different time window
sizes

Time window size (s) 1.9 75 30

Correct estimation rate (%) 61 63 67

Table 5. The test set confusion table for the segment-level driver-independent training with time window size of 30's

Workload estimation Dual-task  Single-task  Total

High workload 219 50 -
Low workload 51 215 -
Correct estimation rate (%) 81 81 81

In the table, dual-task refers to the cases when the subjects were engaged in both primary and secondary tasks
and, therefore, bore high workload. Similarly, single-task refers to the cases when the subjects were engaged only in
primary driving task and bore low workload

set but the variance was also increased due to the shorter averaging period. The overall effect of reducing
the segment length on subject-level training was a degradation in performance (see Table 4).

The test set confusion table for segment-level training is shown in Table 5 for segments that were equal
to the critical period (30s). In this case, the data from all subjects was disjointly distributed in either the
training or testing sets. Compared to the results for subject-level training, the correct estimation rate was
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Table 6. The correct estimation rates in the segment-level driver-independent training with different time window
sizes

Time window size (s) 1.9 75 30

Correct estimation rate (%) 71 78 81

Table 7. The correct estimation rates of driver-dependent training with 0.5s time window under tenfold cross
validation

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 Average

Correct estimation rate (%) 85.7 80.6 864 81.8 77.8 824 88.0 879 81.3 934 90.8 884 85.4
Standard deviation (%) 07 08 06 08 09 09 07 07 08 04 05 05 0.69

Table 8. The average correct estimation rates of driver-dependent training with different time window sizes under
tenfold cross-validation

Time window size (s) 05 2 5
Correct estimation rate (%) 85.4 80.1 78.2

improved from 67 to 81%. Similar to the case of subject-level training, the overall effect of reducing the
segment length on segment-level training was a degradation in performance (see Table 6).

Note that, considering the significant reduction of segment length, the degradation of estimation
performance shown in both Tables 4 and 6 seems to be quite acceptable.

6.2 Driver-Dependent Training

The cognitive capacity required to perform the same tasks varies from person to person [2]. So does the
workload level for different drivers. This may violate one of the assumptions for any learning-based estimators,
i.e., the distribution of the training data is the same as the distribution of the testing data. As a result, the
workload estimator obtained from the data of some drivers may not yield good estimation performance when
applied to other drivers’ data. The driver-dependent training strategy is adopted to evaluate and address
this issue.

In driver-dependent training strategy, the data from a single subject was divided into disjoint training
and test sets for tenfold cross validation. The ten correct estimation rates for each subject was averaged to
represent the estimation performance over that subject’s data. The standard deviation of the ten correct
estimation rates was also calculated to evaluate the robustness of the estimation performance. Since there
was only limited data from each subject, we used relatively short time-window size in order to make sure
there was enough data to train the decision tree. Table 7 shows the performance of the learned estimator
for each of the twelve subjects when the size of the time window was 0.5s. The highest correct estimation
rate reached 93.4% and the average performance was 85.4%. Because of the limited amount of data, we
were only able to label the data with a temporal resolution of 30s (the duration of a critical period). This
labeling strategy failed to reflect the possible workload fluctuation within each critical period. As a result, it
introduced errors to both training and evaluation. In addition, the level of fluctuation differed for different
subjects, which is probably the major reason for the performance variance among subjects. However, given
that the standard deviation of the performance for each subject is under one percentage point, the estimator
design is highly robust.

We tried different window sizes for the feature vector computation and the average correct estimation
rates are listed in Table 8. As the windows size got larger, the amount of training data was reduced, which
contributed to the degraded performance of the estimator.
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6.3 Feature Combination

To understand the contribution of different subsets of the features to the estimation performance, we trained
Seeb decision trees using various combinations of the features with the segment-level training. The time
window size was set to be 30s. The performance for various groupings of features is shown in Table 9. The
best performance we were able to obtain was 81% using all of features. The eyegaze-related features were more
predictive than the driving-performance features since removing all other features (the driving-performance
features) from the training set reduced performance by only 1 percentage point from 81 to 80%. Removing
the eyegaze-related features (feature 9-34), on the other hand, reduced performance from 81 to 60%. All of
the driving-performance and eyegaze-related features, however, contributed to workload detection accuracy,
albeit in varying degrees.

From past experience we have found that there is a high correlation between feature frequency in a
decision tree and the predictive power of the feature. We did an analysis on the learned Seeb trees by
counting how many times each of the feature appeared. A histogram of feature usage in the learned rule
sets is shown in Fig. 10. The feature with the highest frequency is the standard deviation of pupil diameter,
which is consistent with the known correlation between pupil changes and workload [41], especially in the
controlled illumination conditions of the driving simulator.

Among the driving-performance features, vehicle speed (F1) and speed deviation (F2) have the highest
frequency of occurrence. The selection of F2 by the learning algorithm is consistent with the ANOVA results
done by the University of Illinois at Urbana-Champaign. The ANOVA analysis did not include vehicle speed
since the vehicle speed was largely determined by the driving scenarios such as the speed limit of the road
and was not considered a good predictor of workload. However, it is understandable that a driver under high
workload would tend to have higher speed deviation when the vehicle speed is high, compared to the case
when the vehicle speed is low. In other words, under high workload, speed deviation correlates with vehicle

Table 9. The correct estimation rates in the 30-s segment-level driver independent training with various feature
combinations

Feature combination Number of features ~ Correct estimation rate (%)
All features (F01-F34) 34 81
Eyegaze-related features (F09-F34) 26 80
All but pupil-diameter features (All but F09-F10) 32 70
Pupil-diameter features only (F09-F10) 2 61
Driving-performance features (F01-F08) 8 60

Please refer to Table 2 for the feature indices

12 —
Driving Eyegaze
Features M Features

-
o

Frequency (%)
o

4
2,

0 ﬂ”ﬂﬂﬂﬂnﬂﬂ
"ol MY o0t RRK RS Y

Feature numbers

Fig. 10. Histogram of feature frequency in the workload estimator trained by See5. Please refer to Table 2 for the
features
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speed. This correlation together with the correlation between speed deviation and workload may have made
the decision-tree algorithm to pick vehicle speed relatively frequently in order to determine the workload.

It is noteworthy, however, that all of the features are used at least to some extent by the workload esti-
mator, which indicates that all of the feature have some predictive power. The best estimation performance
should be obtained when all of the features are used together.

7 Conclusions and Future Work

Compared to the existing practice, the proposed learning-based DWE does not require sophisticated domain
knowledge or labor-intensive manual analysis and modeling efforts. With the help of mature machine learning
techniques, the proposed method provides an efficient way to derive models over a large number of sensory
inputs, which is critical for a problem as complicated as cognitive workload estimation.

The preliminary experimental results of learning-based DWE show that a driver’s cognitive status could
be estimated with an average correct rate of more than 85% for driver-dependent training. Although this
performance is still a long way from a practical DWE system, it is very encouraging especially considering
that the estimation was conducted at a rate of twice a second. As we anticipated, the estimation performance
was not as good in the driver-independent case as in the driver-dependent case, which restates the importance
that a DWE system should capture individual difference.

Recall that our labeling strategy was that all the sensor inputs in the dual-task critical periods had
high workload label and those in the control critical periods were labeled with low workload. Within each
critical period, the driver might switch their attention between the driving and secondary tasks and, thus,
change their actual workload level, which may have contributed to the error. In addition, in the conducted
experiments, we used a general machine learning package. Usually a customized algorithm has a better
performance than a general-purpose one. It will be interesting to see how much improvement we can achieve
with a fine tuned learning algorithm dedicated to our specific problem.

The significance of learning-based DWE is not limited to quickly getting good estimation results. With
the manual analysis and modeling methodology, a DWE system works in a static mode. That is, the rules
for workload estimation and the thresholds specified in the rules are usually determined through certain
human factors studies before the vehicles are sold to the customers. Whether the induced rules represent the
customer population very much depends on how the sample subjects are selected and the sample size of the
studies. It is also questionable whether one set of rules fit customers with different genders, different ages,
different driving experiences, different education background, and etc. Ideally, the rules for DWE should be
tailored to each individual driver in order to capture individual difference.

On the other hand, the learning-based method provides a possibility to automate the adaptation process.
Figure 11 illustrates one possible implementation of adaptive DWE. Instead of collecting the training data
in a pre-designed experiments, adaptive DWE collects data when the end customer is driving the vehicle.
Compared to Fig.4, Fig.11 replaces the Subjective/Secondary Measure module with a Driver Workload
Assessment module. The Driver Workload Assessment module allows the driver, while driving, to occasion-
ally submit the subjective assessment of workload level (e.g., 1, 2,...10, or high, medium, low) through an
driver—vehicle interaction mechanism, such as a push button or voice user interface. Such action triggers
the collection of a running cache of streaming sensor data. With both the sensory readings and the subjec-
tive assessment (the label of workload level) in place, the machine-learning algorithm module can update
the DWE module without manual interference, using pre-specified learning mechanisms, e.g., decision tree
learning with reducing entropy as the learning criterion.

Having stated the advantages that the learning-based method may deliver, it is important to understand
that not all problems are solved. For example, there is still a bottleneck in the learning-based DWE design
process, i.e., the subject/secondary task measures module that provides the training data with the labels.
We need to address the automatic label generation issue in order to reach a full automatic DWE design
process.
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Fig. 11. A possible implementation of adaptive DWE
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1 Introduction

The increasing number of traffic accidents due to driver inattention has become a serious problem for society.
Every year, about 45,000 people die and 1.5 million people are injured in traffic accidents in Europe. These
figures imply that one person out of every 200 European citizens is injured in a traffic accident every
year and that around one out 80 European citizens dies 40 years short of the life expectancy. It is known
that the great majority of road accidents (about 90-95%) are caused by human error. More recent data
has identified inattention (including distraction and falling asleep at the wheel) as the primary cause of
accidents, accounting for at least 25% of the crashes [15]. Road safety is thus a major European health
problem. In the “White Paper on European Transport Policy for 2010,” the European Commission declares
the ambitious objective of reducing by 50% the number of fatal accidents on European roads by 2010
(European Commission, 2001).

According to the U.S. National Highway Traffic Safety Administration (NHTSA), falling asleep while
driving is responsible for at least 100,000 automobile crashes annually. An annual average of roughly 70,000
nonfatal injuries and 1,550 fatalities results from these crashes [32, 33]. These figures only cover crashes hap-
pening between midnight and 6 a.m., involving a single vehicle and a sober driver traveling alone, including
the car departing from the roadway without any attempt to avoid the crash. These figures underestimate
the true level of the involvement of drowsiness because they do not include crashes at daytime hours involv-
ing multiple vehicles, alcohol, passengers or evasive maneuvers. These statistics do not deal with crashes
caused by driver distraction either, which is believed to be a larger problem. Between 13 and 50% of crashes
are attributed to distraction, resulting in as many as 5,000 fatalities per year. Increasing use of in-vehicle
information systems (IVISs) such as cell phones, GPS navigation systems, satellite radios and DVDs has
exacerbated the problem by introducing additional sources of distraction. That is, the more IVISs the more
sources of distraction from the most basic task at hand, i.e., driving the vehicle. Enabling drivers to benefit
from IVISs without diminishing safety is an important challenge.

This chapter presents an original system for monitoring driver inattention and alerting the driver when
he is not paying adequate attention to the road in order to prevent accidents. According to [40] the driver
inattention status can be divided into two main categories: distraction detection and identifying sleepiness.
Likewise, distraction can be divided in two main types: visual and cognitive. Visual distraction is straight-
forward, occurring when drivers look away from the roadway (e.g., to adjust a radio). Cognitive distraction
occurs when drivers think about something not directly related to the current vehicle control task (e.g.,
conversing on a hands-free cell phone or route planning). Cognitive distraction impairs the ability of drivers
to detect targets across the entire visual scene and causes gaze to be concentrated in the center of the driving
scene. This work is focused in the sleepiness category. However, sleepiness and cognitive distraction partially
overlap since the context awareness of the driver is related to both, which represent mental occurrences in
humans [26].

The rest of the chapter is structured as follows. In Sect. 2 we present a review of the main previous work in
this direction. Section 3 describes the general system architecture, explaining its main parts. Experimental
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results are shown in Sect.4. Section 5 discusses weaknesses and improvements of the system. Finally, in
Sect. 6 we present the conclusions and future work.

2 Previous Work

In the last few years many researchers have been working on systems for driver inattention detection using
different techniques. The most accurate techniques are based on physiological measures like brain waves, heart
rate, pulse rate, respiration, etc. These techniques are intrusive, since they need to attach some electrodes on
the drivers, causing annoyance to them. Daimler-Chrysler has developed a driver alertness system, Distronic
[12], which evaluates the EEG (electroencephalographic) patterns of the driver under stress. In advanced
safety vehicle (ASV) project by Toyota (see in [24]), the driver must wear a wristband in order to measure
his heart rate. Others techniques monitor eyes and gaze movements using a helmet or special contact lens
[3]. These techniques, though less intrusive, are still not acceptable in practice.

A driver’s state of vigilance can also be characterized by indirect vehicle behaviors like lateral position,
steering wheel movements, and time to line crossing. Although these techniques are not intrusive they
are subject to several limitations such as vehicle type, driver experience, geometric characteristics, state
of the road, etc. On the other hand, these procedures require a considerable amount of time to analyze
user behaviors and thereby they do not work with the so-called micro-sleeps: when a drowsy driver falls
asleep for some seconds on a very straight road section without changing the lateral position of the vehicle
[21]. To this end we can find different experimental prototypes, but at this moment none of them has been
commercialized. Toyota uses steering wheel sensors (steering wheel variability) and pulse sensor to record the
heart rate, as mentioned above [24]. Mitsubishi has reported the use of steering wheel sensors and measures
of vehicle behavior (such as lateral position of the car) to detect driver drowsiness in their advanced safety
vehicle system [24]. Daimler Chrysler has developed a system based on vehicle speed, steering angle and
vehicle position relative to road delimitation (recorded by a camera) to detect if the vehicle is about to leave
the road [11]. Volvo Cars recently announced its Driver Alert Control system [39], that will be available on
its high-end models from 2008. This system uses a camera, a number of sensors and a central unit to monitor
the movements of the car within the road lane and to assess whether the driver is drowsy.

People in fatigue show some visual behaviors easily observable from changes in their facial features like
eyes, head, and face. Typical visual characteristics observable from the images of a person with reduced
alertness level include longer blink duration, slow eyelid movement, smaller degree of eye opening (or even
closed), frequent nodding, yawning, gaze (narrowness in the line of sight), sluggish facial expression, and
drooping posture. Computer vision can be a natural and non-intrusive technique for detecting visual char-
acteristics that typically characterize a driver’s vigilance from the images taken by a camera placed in front
of the user. Many researches have been reported in the literature on developing image-based driver alertness
using computer vision techniques. Some of them are primarily focused on head and eye tracking techniques
using two cameras [27, 38]. In [34] a system called FaceLAB developed by the company Seeing Machines
is presented. The 3D pose of the head and the eye-gaze direction are calculated accurately. FaceLAB also
monitors the eyelids, to determine eye opening and blink rates. With this information the system estimates
the driver’s fatigue level. According to FaceLab information, the system operates day and night but at night
the performance of the system decreases. All systems explained above rely on manual initialization of feature
points. The systems appear to be robust but the manual initialization is a limitation, although it simplifies
the whole problem of tracking and pose estimation.

There are other proposals that use only a camera. In [6] we can find a 2D pupil monocular tracking
system based on the differences in color and reflectivity between the pupil and iris. The system monitors
driving vigilance by studying the eyelid movement. Another successful system of head/eye monitoring and
tracking for drowsiness detection using one camera, which is based on color predicates, is presented in [37].
This system is based on passive vision techniques and its functioning can be problematical in poor or very
bright lighting conditions. Moreover, it does not work at night, when the monitoring is more important.

In order to work at nights some researches use active illumination based on infrared LED. In [36] a system
using 3D vision techniques to estimate and track the 3D line of sight of a person using multiple cameras
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is proposed. The method relies on a simplified eye model, and it uses the Purkinje images of an infrared
light source to determine eye location. With this information, the gaze direction is estimated. Nothing
about monitoring driver vigilance is presented. In [23] a system with active infrared LED illumination and a
camera is implemented. Because of the LED illumination, the method can easily find the eyes and based on
them, the system locates the rest of the facial features. They propose to analytically estimate the local gaze
direction based on pupil location. They calculate eyelid movement and face orientation to estimate driver
fatigue. Almost all the active systems reported in the literature have been tested in simulated environments
but not in real moving vehicles. A moving vehicle presents new challenges like variable lighting, changing
background and vibrations that must be taken into account in real systems. In [19] an industrial prototype
called Copilot is presented. This system uses infrared LED illumination to find the eyes and it has been
tested with truck’s drivers in real environments. It uses a simple subtraction process to find the eyes and it
only calculates a validated parameter called PERCLOS (percent eye closure), in order to measure driver’s
drowsiness. This system currently works under low light conditions. Recently, Seeing Machines has presented
a commercial system called driver state sensor (DSS) [35] for driver fatigue detection in transportation
operation. The system utilizes a camera and LEDs for night working. It calculates PERCLOS and obtains
a 93% correlation with drowsiness.

Systems relying on a single visual cue may encounter difficulties when the required visual features cannot
be acquired accurately or reliably, as happens in real conditions. Furthermore, a single visual cue may
not always be indicative of the overall mental condition [23]. The use of multiple visual cues reduces the
uncertainty and the ambiguity present in the information from a single source. The most recent research
in this direction use this hypothesis. The European project AWAKE (2001-2004) [22] proposes a multi-
sensor system adapted to the driver, the vehicle, and the environment in an integrated way. This system
merges, via an artificial intelligent algorithm, data from on-board driver monitoring sensors (such as an eyelid
camera and a steering grip sensor) as well as driver behavior data (i.e., from lane tracking sensor, gas/brake
and steering wheel positioning). The system must be personalized for each driver during a learning phase.
Another European project, SENSATION (2004-2007) [16] is been currently founded to continue research
of the AWAKE project in order to obtain a commercial system. The European project AIDE — Adaptive
Integrated Driver—Vehicle InterfacE (2004-2008) [15] works in this direction as well.

This chapter describes a real-time prototype system based on computer vision for monitoring driver
vigilance using active infrared illumination and a single camera placed on the car dashboard. We have
employed this technique because our goal is to monitor a driver in real conditions (vehicle moving) and in
a very robust and accurate way mainly at nights (when the probability to crash due to drowsiness is the
highest). The proposed system does not need manual initialization and monitors several visual behaviors that
typically characterize a person’s level of alertness while driving. In a different fashion than other previous
works, we have fused different visual cues from one camera using a fuzzy classifier instead of different cues
from different sensors. We have analyzed different visual behaviors that characterize a drowsy driver and
we have studied the best fusion for optimal detection. Moreover, we have tested our system during several
hours in a car moving on a motorway and with different users. The basics of this work were presented by
the authors in [5].

3 System Architecture

The general architecture of our system is shown in Fig. 1. It consists of four major modules: (1) Image acqui-
sition, (2) Pupil detection and tracking, (3) Visual behaviors and (4) Driver monitoring. Image acquisition
is based on a low-cost CCD micro-camera sensitive to near-IR. The pupil detection and tracking stage is
responsible for segmentation and image processing. Pupil detection is simplified by the “bright pupil” effect,
similar to the red eye effect in photography. Then, we use two Kalman filters in order to track the pupils
robustly in real-time. In the visual behaviors stage we calculate some parameters from the images in order
to detect some visual behaviors easily observable in people in fatigue: slow eyelid movement, smaller degree
of eye opening, frequent nodding, blink frequency, and face pose. Finally, in the driver monitoring stage we
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fuse all the individual parameters obtained in the previous stage using a fuzzy system, yielding the driver
inattentiveness level. An alarm is activated if this level is over a certain threshold.

3.1 Image Acquisition System

The purpose of this stage is to acquire the video images of the driver’s face. In this application the acquired
images should be relatively invariant to light conditions and should facilitate the eye detection and tracking
(good performance is necessary). The use of near-IR illuminator to brighten the driver’s face serves these
goals [25]. First, it minimizes the impact of changes in the ambient light. Second, the near-IR illumination
is not detected by the driver, and then, this does not suppose an interference with the user’s driving. Third,
it produces the bright pupil effect, which constitutes the foundation of our detection and tracking system. A
bright pupil is obtained if the eyes are illuminated with an IR illuminator beaming light along the camera
optical axis. At the IR wavelength, the retina reflects almost all the IR light received along the path back
to the camera, and a bright pupil effect will be produced in the image. If illuminated off the camera optical
axis, the pupils appear dark since the reflected light of the retina will not enter the camera lens. An example
of the bright/dark pupil effect can be seen in Fig. 2. This pupil effect is clear with and without glasses, with
contact lenses and it even works to some extent with sunglasses.

Figure 3 shows the image acquisition system configuration. It is composed by a miniature CCD camera
sensitive to near-IR and located on the dashboard of the vehicle. This camera focuses on the driver’s head for
detecting the multiple visual behaviors. The IR illuminator is composed by two sets of IR LEDs distributed
symmetrically along two concentric and circular rings. An embedded PC with a low cost frame-grabber is
used for video signal acquisition and signal processing. Image acquiring from the camera and LED excitation
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is synchronized. The LED rings illuminate the driver’s face alternatively, one for each image, providing
different lighting conditions for almost the same scene.

Ring sizes has been empirically calculated in order to obtain a dark pupil image if the outer ring is
turned on and a bright pupil image if the inner ring is turned on. LEDs in the inner ring are as close as
possible to the camera, in order to maximize the “bright pupil” effect. The value of the outer ring radius is
a compromise between the resulting illumination, that improves as it is increased, and the available space
in the car’s dashboard. The symmetric position of the LEDs in the rings, around the camera optical axis,
cancels shadows generated by LEDs. The inner ring configuration obtains the bright pupil effect because the
center of the ring coincides with the camera optical axis, working as if there were an only LED located on
the optical axis of the lens. The outer ring provides ambient illumination that is used for contrast enhancing.
In spite of those LEDs producing the dark pupil effect, a glint can be observed on each pupil.

The explained acquisition system works very well under controlled light conditions, but real scenarios
present new challenges that must be taken into account. Lighting conditions were one of the most important
problems to solve in real tests. As our system is based on the reflection of the light emitted by the IR LEDs,
external light sources are the main source of noise. Three main sources can be considered, as are depicted in
Fig. 4: artificial light from elements just outside the road (such as light bulbs), vehicle lights, and sun light.
The effect of lights from elements outside the road mainly appears in the lower part of the image (Fig. 4a)
because they are situated above the height of the car and the beam enters the car with a considerable
angle. Then, this noise can be easily filtered. On the other hand, when driving on a double direction road,
vehicle lights directly illuminate the driver, increasing the pixels level quickly and causing the pupil effect to
disappear (Fig.4b). Once the car has passed, the light level reduces very fast. Only after a few frames, the
automatic gain controller (AGC) integrated in the camera compensates the changes, so very light and dark
images are obtained, affecting the performance of the inner illumination system.
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Regarding the sun light, it only affects at day time but its effect changes as function of the weather
(sunny, cloudy, rainy, etc.) and the time of the day. With the exception of the sunset, dawn and cloudy days,
sun light hides the inner infrared illumination and then the pupil effect disappears (Fig. 4¢). For minimizing
interference from light sources beyond the IR light emitted by our LEDs, a narrow band-pass filter, centered
at the LED wavelength, has been attached between the CCD and the lens. This filter solved the problem of
artificial lights and vehicle light almost completely, but it adds a new drawback for it reduces the intensity
of the image, and then the noise is considerably amplified by the AGC. The filter does not eliminate the sun
light interference, except for cases when the light intensity is very low. This is caused by the fact that the
power emitted by the sun in the band of the filter is able to hide the inner illumination. An image of this
case, taken by the sunset, is depicted in Fig. 4d. A possible solution for this problem could be the integration
of IR filters in the car glasses.

3.2 Pupil Detection and Tracking

This stage starts with pupil detection. As mentioned above, each pair of images contains an image with
bright pupil and another one with a dark pupil. The first image is then digitally subtracted from the second
to produce the difference image. In this image, pupils appear as the brightest parts in the image as can
be seen in Fig. 2. This method minimizes the ambient light influence by subtracting it in the generation of
the difference image. This procedure yields high contrast images where the pupils are easily found. It can be
observed that the glint produced by the outer ring of LEDs usually falls close to the pupil, with the same
grey level as the bright pupil. The shape of the pupil blob in the difference image is not a perfect ellipse
because the glint cuts the blob, affecting the modeling of the pupil blobs and, consequently, the calculation
depending on it, as will be explained later. This is the reason why the system only uses subtracted images
during initialization, and when light conditions are poor (this initialization time varies depending on the
driver and light conditions, but it was below 5s for all test). In other cases, only the image obtained with
the inner ring is processed, increasing accuracy and reducing computation time.

Pupils are detected on the resulting image, by searching the entire image to locate two bright blobs that
satisfy certain constraints. The image is binarized, using an adaptive threshold, for detecting the brighter
blobs in the image.

A standard 8-connected components analysis [18] is then applied to the binarized difference image to
identify binary blobs that satisfy certain size and shape constraints. The blobs that are out of some size
constraints are removed, and for the others an ellipse model is fit to each one. Depending on their size,
intensity, position and distance, best candidates are selected, and all the possible pairs between them are
evaluated. The pair with the highest qualification is chosen as the detected pupils, and its centroids are
returned as the pupil positions.

One of the main characteristics of this stage is that it is applicable to any user without any supervised
initialization. Nevertheless, the reflection of the IR in the pupils under the same conditions varies from one
driver to another. Even for the same driver, the intensity depends on the gaze point, head position and
the opening of the eye. Apart from those factors, lighting conditions change with time, which modifies the
intensity of the pupils. On the other hand, the size of the pupils also depends on the user, and the distance to
the camera. To deal with those differences in order to be generic, our system uses an adaptive threshold in the
binarization stage. The parameters of the detected pupils are used to update the statistics that set thresholds
and margins in the detection process. Those statistics include size, grey level, position and apparent distance
and angle between pupils, calculated over a time window of 2. The thresholds also get their values modified
if the pupils are not found, widening the margins to make more candidates available to the system.

Another question related to illumination that is not usually addressed in the literature is the sensitivity
of the eye to IR emission. As the exposure time to the IR source increases, its power has to be reduced in
order to avoid damaging the internal tissues of the eye. This imposes a limit on the emission of the near-IR
LEDs. To calculate the power of our system, we have followed the recommendations of [1], based on IEC
825-1 and CENELEC 60825-1 infrared norms. With these limitations, no negative effects have been reported
in the drivers that collaborated in the tests.
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Fig. 5. Tracking results for a sequence

To continuously monitor the driver it is important to track his pupils from frame to frame after locating
the eyes in the initial frames. This can be done efficiently by using two Kalman filters, one for each pupil, in
order to predict pupil positions in the image. We have used a pupil tracker based on [23] but we have tested
it with images obtained from a car moving on a motorway. Kalman filters presented in [23] works reasonably
well under frontal face orientation with open eyes. However, it will fail if the pupils are not bright due to
oblique face orientations, eye closures, or external illumination interferences. Kalman filter also fails when
a sudden head movement occurs because the assumption of smooth head motion has not been fulfilled. To
overcome this limitation we propose a modification consisting on an adaptive search window, which size is
determined automatically, based on pupil position, pupil velocity, and location error. This way, if Kalman
filtering tracking fails in a frame, the search window progressively increases its size. With this modification,
the robustness of the eye tracker is significantly improved, for the eyes can be successfully found under eye
closure or oblique face orientation.

The state vector of the filter is represented as x; = (c¢,r, s, v¢), where (cq,r) indicates the pupil
pixel position (its centroid) and (uy, v¢) is its velocity at time ¢ in ¢ and r directions, respectively. Figure 5
shows an example of the pupil tracker working in a test sequence. Rectangles on the images indicate the
search window of the filter, while crosses indicate the locations of the detected pupils. Figure 5f, g draws the
estimation of the pupil positions for the sequence under test. The tracker is found to be rather robust for
different users without glasses, lighting conditions, face orientations and distances between the camera and
the driver. It automatically finds and tracks the pupils even with closed eyes and partially occluded eyes,
and can recover from tracking-failures. The system runs at 25 frames per second.

Performance of the tracker gets worse when users wear eyeglasses because different bright blobs appear
in the image due to IR reflections in the glasses, as can be seen in Fig. 6. Although the degree of reflection
on the glasses depends on its material and the relative position between the user’s head and the illuminator,
in the real tests carried out, the reflection of the inner ring of LEDs appears as a filled circle on the glasses,
of the same size and intensity as the pupil. The reflection of the outer ring appears as a circumference with
bright points around it and with similar intensity to the pupil. Some ideas for improving the tracking with
glasses are presented in Sect. 5. The system was also tested with people wearing contact lenses. In this case
no differences in the tracking were obtained compared to the drivers not wearing them.
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Fig. 6. System working with user wearing glasses
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3.3 Visual Behaviors

Eyelid movements and face pose are some of the visual behaviors that reflect a person’s level of inattention.
There are several ocular measures to characterize sleepiness such as eye closure duration, blink frequency,
fixed gaze, eye closure/opening speed, and the recently developed parameter PERCLOS [14, 41]. This last
measure indicates the accumulative eye closure duration over time excluding the time spent on normal eye
blinks. It has been found to be the most valid ocular parameter for characterizing driver fatigue [24]. Face pose

Frequent head tilts indicate the onset of fatigue. Moreover, the nominal face orientation while driving is
frontal. If the driver faces in other directions for an extended period of time, it is due to visual distraction.
Gaze fixations occur when driver’s eyes are nearly stationary. Their fixation position and duration may relate
to attention orientation and the amount of information perceived from the fixated location, respectively.
This is a characteristic of some fatigue and cognitive distraction behaviors and it can be measured by
estimating the fixed gaze. In this work, we have measured all the explained parameters in order to evaluate
its performance for the prediction of the driver inattention state, focusing on the fatigue category.

To obtain the ocular measures we continuously track the subject’s pupils and fit two ellipses, to each of
them, using a modification of the LIN algorithm [17], as implemented in the OpenCV library [7]. The degree
of eye opening is characterized by the pupil shape. As eyes close, the pupils start getting occluded by the
eyelids and their shapes get more elliptical. So, we can use the ratio of pupil ellipse axes to characterize
the degree of eye opening. To obtain a more robust estimation of the ocular measures and, for example, to
distinguish between a blink and an error in the tracking of the pupils, we use a Finite State Machine (FSM)
as we depict in Fig.7. Apart from the init state, five states have been defined: tracking ok, closing, closed,
opening and tracking lost. Transitions between states are achieved from frame to frame as a function of the
width-height ratio of the pupils.
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The system starts at the init state. When the pupils are detected, the FSM passes to the tracking ok state
indicating that the pupil’s tracking is working correctly. Being in this state, if the pupils are not detected in
a frame, a transition to the tracking lost state is produced. The FSM stays in this state until the pupils are
correctly detected again. In this moment, the FSM passes to the tracking ok state. If the width-height ratio
of the pupil increases above a threshold (20% of the nominal ratio), a closing eye action is detected and the
FSM changes to the closing state. Because the width-height ratio may increase due to other reasons, such as
segmentation noise, it is possible to return to the tracking ok state if the ratio does not constantly increase.

When the pupil ratio is above the 80% of its nominal size or the pupils are lost, being in closing state, a
transition of the FSM to closed state is provoked, which means that the eyes are closed. A new detection of the
pupils from the closed state produces a change to opening state or tracking ok state, depending on the degree
of opening of the eyelid. If the pupil ratio is between the 20 and the 80% a transition to the opening state is
produced, if it is below the 20% the system pass to the tracking ok state. Being in closed state, a transition
to the tracking lost state is produced if the closed time goes over a threshold. A transition from opening to
closing is possible if the width-height ratio increases again. Being in opening state, if the pupil ratio is below
the 20% of the nominal ratio a transition to tracking ok state is produced.

Ocular parameters that characterize eyelid movements have been calculated as a function of the FSM.
PERCLOS is calculated from all the states, except from the tracking lost state, analyzing the pupil width-
height ratio. We consider that an eye closure occurs when the pupil ratio is above the 80% of its nominal
size. Then, the eye closure duration measure is calculated as the time that the system is in the closed state.
To obtain a more robust measurement of the PERCLOS, we compute this running average. We compute
this parameter by measuring the percentage of eye closure in a 30-s window. Then, PERCLOS measure
represents the time percentage that the system is at the closed state evaluated in 30s and excluding the
time spent in normal eye blinks. Eye closure/opening speed measures represent the amount of time needed
to fully close the eyes or to fully open the eyes. Then, eye closure/opening speed is calculated as the time
during which pupil ratio passes from 20 to 80% or from 80 to 20% of the nominal ratio, respectively. In
other words, the time that the system is in the closing state or opening state, respectively. Blink frequency
measure indicates the number of blinks detected in 30s. A blink action will be detected as a consecutive
transition among the following states: closing, closed, and opening, given that this action was carried out in
less than a predefined time. Many physiology studies have been carried out on the blinking duration. We
have used the recommendation value derived in [31] but this could be easily modified to conform to other
recommended value. Respecting the eye nominal size used for the ocular parameters calculation, it varies
depending on the driver. To calculate its correct value a histogram of the eyes opening degree for the last
2,000 frames not exhibiting drowsiness is obtained. The most frequent value on the histogram is considered
to be the nominal size. PERCLOS is computed separately in both eyes and the final value is obtained as the
mean of both.

Besides, face pose can be used for detecting fatigue or visual distraction behaviors among the categories
defined for inattentive states. The nominal face orientation while driving is frontal. If the driver’s face
orientation is in other directions for an extended period of time it is due to visual distractions, and if it
occurs frequently (in the case of various head tilts), it is a clear symptom of fatigue. In our application, the
precise degree of face orientation for detecting this behaviors is not necessary because face poses in both
cases are very different from the frontal one. What we are interested in is to detect whether the driver’s head
deviates too much from its nominal position and orientation for an extended period of time or too frequently
(nodding detection).

This work provides a novel solution to the coarse 3D face pose estimation using a single un-calibrated
camera, based on the method proposed in [37]. We use a model-based approach for recovering the face pose
by establishing the relationship between 3D face model and its two-dimensional (2D) projections. A weak
perspective projection is assumed so that face can be approximated as a planar object with facial features,
such as eyes, nose and mouth, located symmetrically on the plane. We have performed a robust 2D face
tracking based on the pupils and the nostrils detections on the images. Nostrils detection has been carried
out in a way similar to that used for the pupils’ detection. From these positions the 3D face pose is estimated,
and as a function of it, face direction is classified in nine areas, from upper left to lower right.
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This simple technique works fairly well for all the faces we tested, with left and right rotations specifically.
A more detailed explanation about our method was presented by the authors in [5]. As the goal is to detect
whether the face pose of the driver is not frontal for an extended period of time, this has been computed
using only a parameter that gives the percentage of time that the driver has been looking at the front, over
a 30-s temporal window.

Nodding is used to quantitatively characterize one’s level of fatigue. Several systems have been reported
in the literature to calculate this parameter from a precise estimation of the driver’s gaze [23, 25]. However,
these systems have been tested in laboratories but not in real moving vehicles. The noise introduced in real
environments makes these systems, based on exhaustive gaze calculation, work improperly. In this work, a
new technique based on position and speed data from the Kalman filters used to track the pupils and the
FSM is proposed. This parameter measures the number of head tilts detected in the last 2min. We have
experimentally observed that when a nodding is taking place, the driver closes his or her eyes and the head
goes down to touch the chest or the shoulders. If the driver wakes up in that moment, raising his head, the
values of the vertical speed of the Kalman filters will change their sign, as the head rises. If the FSM is in
closed state or in tracking lost and the pupils are detected again, the system saves the speeds of the pupils
trackers for ten frames. After that, the data is analyzed to find if it conforms to that of a nodding. If so, the
first stored value is saved and used as an indicator of the “magnitude” of the nodding.

Finally, one of the remarkable behaviors that appear in drowsy drivers or cognitively distracted drivers
is fixed gaze. A fatigued driver looses the focus of the gaze, not paying attention to any of the elements of
the traffic. This loss of concentration is usually correlated with other sleepy behaviors such as a higher blink
frequency, a smaller degree of eye opening and nodding. In the case of cognitive distraction, however, fixed
gaze is decoupled from other clues. As for the parameters explained above, the existing systems calculate this
parameter from a precise estimation of the driver’s gaze and, consequently, experience the same problems. In
order to develop a method to measure this behavior in a simple and robust way, we present a new technique
based on the data from the Kalman filters used to track the pupils.

An attentive driver moves his eyes frequently, focusing to the changing traffic conditions, particularly
if the road is busy. This has a clear reflection on the difference between the estimated position from the
Kalman filters and the measured ones.

Besides, the movements of the pupils for an inattentive driver present different characteristics. Our system
monitors the position on the = coordinate. Coordinate y is not used, as the difference between drowsy and
awake driver is not so clear. The fixed gaze parameter is computed locally over a long period of time, allowing
for freedom of movement of the pupil over time. We refer here to [5] for further details of the computation
of this parameter.

This fixed gaze parameter may suffer from the influence of vehicle vibrations or bumpy roads. Modern
cars have reduced vibrations to a point that the effect is legible on the measure. The influence of bumpy roads
depends on their particular characteristics. If bumps are occasional, it will only affect few values, making
little difference in terms of the overall measure. On the other hand, if bumps are frequent and their magnitude
is high enough, the system will probably fail to detect this behavior. Fortunately, the probability for a driver
to get distracted or fall asleep is significantly lower in very bumpy roads. The results obtained for all the
test sequences with this parameter are encouraging. In spite of using the same a priori threshold for different
drivers and situations, the detection was always correct. Even more remarkable was the absence of false
positives.

3.4 Driver Monitoring

This section describes the method to determine the driver’s visual inattention level from the parameters
obtained in the previous section. This process is complicated because several uncertainties may be present.
First, fatigue and cognitive distractions are not observable and they can only be inferred from the available
information. In fact, this behavior can be regarded as the result of many contextual variables such as
environment, health, and sleep history. To effectively monitor it, a system that integrates evidences from
multiple sensors is needed. In the present work, several fatigue visual behaviors are subsequently combined
to form an inattentiveness parameter that can robustly and accurately characterize one’s vigilance level.
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The fusion of the parameters has been obtained using a fuzzy system. We have chosen this technique for its
well known linguistic concept modeling ability. Fuzzy rule expressions are close to expert natural language.
Then, a fuzzy system manages uncertain knowledge and infers high level behaviors from the observed data.
As an universal approximator, fuzzy inference system can be used for knowledge induction processes. The
objective of our fuzzy system is to provide a driver’s inattentiveness level (DIL) from the fusion of several
ocular and face pose measures, along with the use of expert and induced knowledge. This knowledge has
been extracted from the visual observation and the data analysis of the parameters in some simulated fatigue
behavior carried out in real conditions (driving a car) with different users. The simulated behaviors have
been done according to the physiology study of the US Department of Transportation, presented in [24].
We do not delve into the psychology of driver visual attention, rather we merely demonstrate that with the
proposed system, it is possible to collect driver information data and infer whether the driver is attentive
or not.

The first step in the expert knowledge extraction process is to define the number and nature of the vari-
ables involved in the diagnosis process according to the domain expert experience. The following variables are
proposed after appropriate study of our system: PERCLOS, eye closure duration, blink frequency, nodding
frequency, fixed gaze and frontal face pose. Eye closing and opening variables are not being used in our input
fuzzy set because they mainly depend on factors such as segmentation and correct detection of the eyes, and
they take place in the length of time comparable to that of the image acquisition. As a consequence, they
are very noisy variables. As our system is adaptive to the user, the ranges of the selected fuzzy inputs are
approximately the same for all users. The fuzzy inputs are normalized, and different linguistic terms and its
corresponding fuzzy sets are distributed in each of them using induced knowledge based on the hierarchical
fuzzy partitioning (HFP) method [20]. Its originality lies in not yielding a single partition, but a hierarchy
including partitions with various resolution levels based on automatic clustering data. Analyzing the fuzzy
partitions obtained by HFP, we determined that the best suited fuzzy sets and the corresponding linguistic
terms for each input variable are those shown in Table 1. For the output variable (DIL), the fuzzy set and
the linguistic terms were manually chosen. The inattentiveness level range is between 0 and 1, with a normal
value up to 0.5. When its value is between 0.5 and 0.75, driver’s fatigue is medium, but if the DIL is over
0.75 the driver is considered to be fatigued, and an alarm is activated. Fuzzy sets of triangular shape were
chosen, except at the domain edges, where they were semi-trapezoidal.

Based on the above selected variables, experts state different pieces of knowledge (rules) to describe certain
situations connecting some symptoms with a certain diagnosis. These rules are of the form “If condition,
Then conclusion”, where both premise and conclusion use the linguistic terms previously defined, as in the
following example:

e IF PERCLOS is large AND Eye Closure Duration is large, THEN DIL is large

In order to improve accuracy and system design, automatic rule generation and its integration in the
expert knowledge base were considered. The fuzzy system implementation used the licence-free tool Knowl-
edge Base Configuration Tool (KBCT) [2] developed by the Intelligent Systems Group of the Polytechnics
University of Madrid (UPM). A more detailed explanation of this fuzzy system can be found in [5].

Table 1. Fuzzy variables

Variable Type Range Labels Linguistic terms

PERCLOS In (0.0, 1.0] 5 Small, medium small, medium, medium large, large
Eye closure duration  In  [1.0-30.0] 3 Small, medium, large

Blink freq. In  [1.0-30.0] 3 Small, medium, large

Nodding freq. In [0.0-8.0] 3 Small, medium, large

Face position In  [0.0-1.0] 5 Small, medium small, medium, medium large, large
Fixed gaze In [0.0-0.5] 5 Small, medium small, medium, medium large, large
DIL Out  [0.0-1.0] 5 Small, medium small, medium, medium large, large
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4 Experimental Results

The goal of this section is to experimentally demonstrate the validity of our system in order to detect fatigue
behaviors in drivers. Firstly, we show some details about the recorded video sequences used for testing, then,
we analyze the parameters measured for one of the sequences. Finally, we present the performance of the
detection of each one of the parameters, and the overall performance of the system.

4.1 Test Sequences

Ten sequences were recorded in real driving situations over a highway and a two-direction road. Each sequence
was obtained for a different user. The images were obtained using the system explained in Sect.3.1. The
drivers simulated some drowsy behaviors according to the physiology study of the US Department of Trans-
portation presented in [24]. Each user drove normally except in one or two intervals where the driver simulated
fatigue. Simulating fatigue allows for the system to be tested in a real motorway, with all the sources of noise
a deployed system would face. The downside is that there may be differences between an actual drowsy
driver and a driver mimicking the standard drowsy behavior, as defined in [24]. We are currently working
on testing the system in a truck simulator.

The length of the sequences and the fatigue simulation intervals are shown in Table 2. All the sequences
were recorded at night except for sequence number 7 that was recorded at day, and sequence number 5
that was recorded at sunset. Sequences were obtained with different drivers not wearing glasses, with the
exception of sequence 6, that was recorded for testing the influence of the glasses in real driving conditions.

4.2 Parameter Measurement for One of the Test Sequences

The system is currently running on a PC Pentium4 (1.8 Ghz) with Linux kernel 2.6.18 in real time (25 pairs
of frames/s) with a resolution of 640x480 pixels. Average processing time per pair of frames is 11.43ms.
Figure 8 depicts the parameters measured for sequence number 9. This is a representative test example with
a duration of 465s where the user simulates two fatigue behaviors separated by an alertness period. As can
be seen, until second 90, and between the seconds 195 and 360, the DIL is below 0.5 indicating an alertness
state. In these intervals the PERCLOS is low (below 0.15), eye closure duration is low (below the 200ms),
blink frequency is low (below two blinks per 30-s window) and nodding frequency is zero. These ocular
parameters indicate a clear alert behavior. The frontal face position parameter is not 1.0, indicating that
the predominant position of the head is frontal, but that there are some deviations near the frontal position,
typical of a driver with a high vigilance level. The fixed gaze parameter is low because the eyes of the driver
are moving caused by a good alert condition. DIL increases over the alert threshold during two intervals
(from 90 to 190 and from 360 to 565s) indicating two fatigue behaviors. In both intervals the PERCLOS
increases from 0.15 to 0.4, the eye closure duration goes up to 1,000 ms, and the blink frequency parameter

Table 2. Length of simulated drowsiness sequences

Seq. Num. Drowsiness behavior time (s)  Alertness behavior time (s) Total time (s)

1 394 (two intervals: 180 + 214) 516 910
2 90 (one interval) 210 300
3 0 240 240
4 155 (one interval) 175 330
5 160 (one interval) 393 553
6 180 (one interval) 370 550
7 310 (two intervals: 150 + 160) 631 941
8 842 (two intervals: 390 +452) 765 1,607
9 210 (two intervals: 75+ 135) 255 465
10 673 (two intervals: 310 + 363) 612 1,285
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Fig. 8. Parameters measured for the test sequence number 9

Table 3. Parameter measurement performance

Parameters Total % correct
PERCLOS 93.1
Eye closure duration 84.4
Blink freq. 79.8
Nodding freq. 72.5
Face pose 87.5
Fixed gaze 95.6

increases from 2 to 5 blinks. The frontal face position is very close to 1.0 because the head position is fixed
and frontal. The fixed gaze parameter increases its value up to 0.4 due to the narrow gaze in the line of sight
of the driver. This last variation indicates a typical loss of concentration, and it takes place before other
sleepy parameters could indicate increased sleepiness, as can be observed. The nodding is the last fatigue
effect to appear. In the two fatigue intervals a nodding occurs after the increase of the other parameters,
indicating a low vigilance level. This last parameter is calculated over a temporal window of 2min, so its
value remains stable most of the time.

This section described an example of parameter evolution for two simulated fatigue behaviors of one
driver. Then, we analyzed the behaviors of other drivers in different circumstances, according to the video
tests explained above. The results obtained are similar to those shown for sequence number 9. Overall results
of the system are explained in what follows.

4.3 Parameter Performance

The general performance of the measured parameters for a variety of environments with different drivers,
according to the test sequences, is presented in Table 3. Performance was measured by comparing the
algorithm results to results obtained by manually analyzing the recorded sequences on a frame-by-frame
basis. Each frame was individually marked with the visual behaviors the driver exhibited, if any. Inaccuracies
of this evaluation can be considered negligible for all parameters. Eye closure duration is not easy to evaluate
accurately, as the duration of some quick blinks is around 5-6 frames at the rate of 25 frames per second
(fps), and the starting of the blink can fall between two frames. However, the number of quick blinks is not
big enough to make further statistical analysis necessary.

For each parameter the total correct percentage for all sequences excluding sequence number 6 (driver
wearing glasses) and sequence number 7 (recorded during the day) is depicted. Then, this column shows
the parameter detection performance of the system for optimal situations (driver without glasses driving at
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night). The performance gets considerably worse by day and it dramatically decreases when drivers wear
glasses.

PERCLOS results are quite good, obtaining a total correct percentage of 93.1%. It has been found to
be a robust ocular parameter for characterizing driver fatigue. However, it may fail sometimes, for example,
when a driver falls asleep without closing her eyes. Eye closure duration performance (84.4%) is a little worse
than that of the PERCLOS, because the correct estimation of the duration is more critical. The variation
on the intensity when the eye is partially closed with regard to the intensity when it is open complicates the
segmentation and detection. This causes the frame count for this parameter to be usually less than the real
one. These frames are considered as closed time. Measured time is slightly over the real time, as a result
of delayed detection. Performance of blink frequency parameter is about 80% because some quick blinks
are not detected at 25 fps. Then, the three explained parameters are clearly correlated almost linearly, and
PERCLOS is the most robust and accurate one.

Nodding frequency results are the worst (72.5%), as the system is not sensible to noddings in which
the driver rises her head and then opens her eyes. To reduce false positives, the magnitude of the nodding
(i.e., the absolute value of the Kalman filter speed), must be over a threshold. In most of the non-detected
noddings, the mentioned situation took place, while the magnitude threshold did not have any influence on
any of them. The ground truth for this parameter was obtained manually by localizing the noddings on the
recorded video sequences. It is not correlated with the three previous parameters, and it is not robust enough
for fatigue detection. Consequently, it can be used as a complementary parameter to confirm the diagnosis
established based on other more robust methods.

The evaluation of the face direction provides a measure of alertness related to drowsiness and visual
distractions. This parameter is useful for both detecting the pose of the head not facing the front direction
and the duration of the displacement. The results can be considered fairly good (87.5%) for a simple model
that requires very little computation and no manual initialization. The ground truth in this case was obtained
by manually looking for periods in which the driver is not clearly looking in front in the video sequences,
and comparing their length to that of the periods detected by the system. There is no a clear correlation
between this parameter and the ocular ones for fatigue detection. This would be the most important cue in
case of visual distraction detection.

Performance of the fixed gaze monitoring is the best of the measured parameters (95.6%). The maxi-
mum values reached by this parameter depend on users’ movements and gestures while driving, but a level
above 0.05 is always considered to be an indicator of drowsiness. Values greater than 0.15 represent high
inattentiveness probability. These values were determined experimentally. This parameter did not have false
positives and is largely correlated with the frontal face direction parameter. On the contrary, it is not clearly
correlated with the rest of the ocular measurements. For cognitive distraction analysis, this parameter would
be the most important cue, as this type of distraction does not normally involve head or eye movements.
The ground truth for this parameter was manually obtained by analyzing eye movements frame by frame
for the intervals where a fixed gaze behavior was being simulated. We can conclude from these data that
fixed gaze and PERCLOS are the most reliable parameters for characterizing driver fatigue, at least for our
simulated fatigue study.

All parameters presented in Table 3 are fused in the fuzzy system to obtain the DIL for final evaluation
of sleepiness. We compared the performance of the system using only the PERCLOS parameter and the
DIL(using all of the parameters), in order to test the improvements of our proposal with respect to the
most widely used parameter for characterizing driver drowsiness. The system performance was evaluated by
comparing the intervals where the PERCLOS/DIL was above a certain threshold to the intervals, manually
analyzed over the video sequences, in which the driver simulates fatigue behaviors. This analysis consisted
of a subjective estimation of drowsiness by human observers, based on the Wierwille test [41].

As can be seen in Table 4, correct detection percentage for DIL is very high (97%). It is higher than the
obtained using only PERCLOS, for which the correct detection percentage is about the 90% for our tests.
This is due to the fact that fatigue behaviors are not the same for all drivers. Further, parameter evolution
and absolute values from the visual cues differ from user to user. Another important fact is the delay between
the moment when the driver starts his fatigue behavior simulation and when the fuzzy system detects it.
This is a consequence of the window spans used in parameter evaluation. Each parameter responds to a
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Table 4. Sleepiness detection performance

Parameter Total % correct
PERCLOS 90
DIL 97

different stage in the fatigue behavior. For example, fixed gaze behavior appears before PERCLOS starts
to increase, thus rising the DIL to a value where a noticeable increment of PERCLOS would rise an alarm
in few seconds. This is extensible to the other parameters. Using only the PERCLOS would require much
more time to activate an alarm (tens of seconds), especially if the PERCLOS increases more slowly for some
drivers. Our system provides an accurate characterization of a driver’s level of fatigue, using multiple visual
parameters to resolve the ambiguity present in the information from a single parameter. Additionally, the
system performance is very high in spite of the partial errors associated to each input parameter. This was
achieved using redundant information.

5 Discussion

It has been shown that the system’s weaknesses can be almost completely attributed to the pupil detection
strategy, because it is the most sensitive to external interference. As it has been mentioned above, there are
a series of situations where the pupils are not detected and tracked robustly enough. Pupil tracking is based
on the “bright pupil” effect, and when this effect does not appear clearly enough on the images, the system
can not track the eyes. Sunlight intensity occludes the near-IR reflected from the driver’s eyes. Fast changes
in illumination that the Automatic Gain Control in the camera can not follow produce a similar result. In
both cases the “bright pupil” effect is not noticeable in the images, and the eyes can not be located. Pupils
are also occluded when the driver’s eyes are closed. It is then not possible to track the eyes if the head
moves during a blink, and there is an uncertainty of whether the eyes may still be closed or they may have
opened and appeared in a position on the image far away from where they were a few frames before. In this
situation, the system would progressively extend the search windows and finally locate the pupils, but in
this case the measured duration of the blink would not be correct. Drivers wearing glasses pose a different
problem. “Bright pupil” effect appears on the images, but so do the reflections of the LEDs from the glasses.
These reflections are very similar to the pupil’s, making detection of the correct one very difficult.

We are exploring alternative approaches to the problem of pupil detection and tracking, using methods
that are able to work 24/7 and in real time, and that yield accurate enough results to be used in other
modules of the system. A possible solution is to use an eye or face tracker that does not rely on the “bright
pupil” effect. Also, tracking the whole face, or a few parts of it, would make it possible to follow its position
when eyes are closed, or occluded.

Face and eye location is an extensive field in computer vision, and multiple techniques have been devel-
oped. In recent years, probably the most successful have been texture-based methods and machine learning.
A recent survey that compares some of these methods for eye localization can be found in [8]. We have
explored the feasibility of using appearance (texture)-based methods, such as Active Appearance Models
(AAM) [9]. AAM are generative models, that try to parameterize the contents of an image by generating a
synthetic image as close as possible to the given one. The synthetic image is obtained from a model consisting
of both appearance and shape. These appearance and shape are learned in a training process, and thus can
only represent a constrained range of possible appearances and deformations. They are represented by a
series of orthogonal vectors, usually obtained using Principal Component Analysis (PCA), that form a base
in the appearance and deformation spaces.

AAMs are linear in both shape and appearance, but are nonlinear in terms of pixel intensities. The shape
of the AAM is defined as the coordinates of the v vertices of the shape

$ = (T1,Y1, 22,2, Tus Yo)' (1)



34 L.M. Bergasa et al.

0 s w0 w0 a0 20 w0 w0

Fig. 9. A triangulated shape

and can be instantiated from the vector base simply as:

S:SOJrZPi'Si (2)
i=1

where sg is the base shape and s; are the shape vectors. Appearance is instantiated in the same way
m
A(x) = Ao(x) + > i+ Ai(x) (3)
i=1

where A (x) is the base appearance, A;(x) are the appearance vectors and \; are the weights of these vectors.
The final model instantiation is obtained by warping the appearance A(x), whose shape is sq, so it
conforms to the shape s. This is usually done by triangulating the vertices of the shape, using Delaunay [13]
or another triangulation algorithm, as shown in Fig.9. The appearance that falls in each triangle is affine
warped independently, accordingly to the position of the vertices of the triangle in sg and s.
The purpose of fitting the model to a given image is to obtain the parameters that minimize the error
between the image I and the model instance:

m 2
3 [0+ 3w = W) (W
XEso i=1
where W (x; p) is a warp defined over the pixel positions x by the shape parameters p.

These parameters can be then analyzed to gather interesting data, in our case, the position of the eyes
and head pose. Minimization is done using the Gauss—Newton method, or some efficient variations, such as
the inverse compositional algorithm [4, 28].

‘We tested the performance and robustness of the Active Appearance Models on the same in-car sequences
described above. AAMs perform well in sequences where the IR-based system did not, such as sequence 6,
where the driver is wearing glasses (Figs. 10a,b), and is able to work with sunlight (10c), and track the face
under fast illumination changes (10d-f). Also, as the model covers most of the face, the difference between
a blink and a tracking loss is clearer, as the model can be fitted when eyes are either open or closed.

On our tests, however, AAM was only fitted correctly when the percentage of occlusion (or self-occlusion,
due to head turns) of the face was below 35% of the face. It was also able to fit with low error although the
position of the eyes was not determined with the required precision (i.e., the triangles corresponding to the
pupil were positioned closer to the corner of the eye than to the pupil). The IR-based system could locate
and track an eye when the other eye was occluded, which the AAM-based system is not able to do. More
detailed results can be found on [30].

Overall results of face tracking and eye localization with AAM are encouraging, but the mentioned
shortcomings indicate that improved robustness is necessary. Constrained Local Models (CLM) are models
closely related to AAM, that have shown improved robustness and accuracy [10]. Instead of covering the
whole face, CLM only use small rectangular patches placed in specific points that are interesting for its
characteristic appearance or high contrast. Constrained Local Models are trained in the same way as AAMs,
and both a shape and appearance vector bases are obtained.
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Fig. 10. Fitting results with glasses and sunlight

H‘

Fig. 11. A constrained local model fitted over a face

Fitting the CLM to an image is done in two steps. First, the same minimization that was used for AAMs
is performed, with the difference that now no warping is applied over the rectangles. Those are only displaced
over the image. In the second step, the correlation between the patches and the image is maximized, with
an iterative algorithm, typically the Nelder-Mead simplex algorithm [29].

The use of small patches and the two-step fitting algorithm make CLM more robust and efficient
than AAM. See Fig.11 for an example. The CLM is a novel technique that performs well in controlled
environments, but that has to be thoroughly tested in challenging operation scenarios.

6 Conclusions and Future Work

We have developed a non-intrusive prototype computer vision system for real-time monitoring of driver’s
fatigue. It is based on a hardware system for real time acquisition of driver’s images using an active IR illu-
minator and the implementation of software algorithms for real-time monitoring of the six parameters that
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better characterize the fatigue level of a driver. These visual parameters are PERCLOS, eye closure duration,
blink frequency, nodding frequency, face pose and fixed gaze. In an attempt to effectively monitor fatigue,
a fuzzy classifier was implemented to merge all these parameters into a single Driver Inattentiveness Level.
Monitoring distractions (both visual and cognitive) would be possible using this system. The system devel-
opment has been discussed. The system is fully autonomous, with automatic (re)initializations if required.
It was tested with different sequences recorded in real driving condition with different users during several
hours. In each of them, several fatigue behaviors were simulated during the test. The system works robustly
at night for users not wearing glasses, yielding accuracy of 97%. Performance of the system decreases during
the daytime, especially in bright days, and at the moment it does not work with drivers wearing glasses. A
discussion about improvements of the system in order to overcome these weaknesses has been included.

The results and conclusions obtained support our approach to the drowsiness detection problem. In the
future the results will be completed with actual drowsiness data. We have the intention of testing the system
with more users for long periods of time, to obtain real fatigue behaviors. With this information we will
generalize our fuzzy knowledge base. Then, we would like to improve our vision system with some of the
techniques mentioned in the previous section, in order to solve the problems of daytime operation and to
improve the solution for drivers wearing glasses. We also plan to add two new sensors (a steering wheel sensor
and a lane tracking sensor) for fusion with the visual information to achieve correct detection, especially at
daytime.
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1 Introduction

Motivation for the use of statistical machine learning techniques in the automotive domain arises from our
development of context aware intelligent driver assistance systems, specifically, Driver Workload Management
systems. Such systems integrate, prioritize, and manage information from the roadway, vehicle, cockpit,
driver, infotainment devices, and then deliver it through a multimodal user interface. This could include
incoming cell phone calls, email, navigation information, fuel level, and oil pressure to name a very few. In
essence, the workload manager attempts to get the right information to the driver at the right time and in
the right way in order that driver performance is optimized and distraction is minimized.

In order to do its job, the workload manager system needs to track the wider driving context including
the state of the roadway, traffic conditions, and the driver. Current automobiles have a large number of
embedded sensors, many of which produce data that are available through the car data bus. The state
of many on-board and carried-in devices in the cockpit is also available. New advanced sensors, such as
video-based lane departure warning systems and radar-based collision warning systems are currently being
deployed in high end car models. All of these could be used to define the driving context [17]. But a number
of questions arise:

e  What are the range of typical driving maneuvers, as well as near misses and accidents, and how do drivers
navigate them?

e Under what conditions does driver performance degrade or driver distraction increase?

e  What are the optimal set of sensors and algorithms that can recognize each of these driving conditions
near the theoretical limit for accuracy, and what is the sensor set that are accurate yet cost effective?

There are at least two approaches to address these questions. The first is more or less heuristic: experts
offer informed opinions on the various matters and sets of sensors are selected accordingly with algorithms
coded using rules of thumb. Individual aspects of the resulting system are tested by using narrow human
factors testing controlling all but a few variables. Hundreds of iterations must be completed in order to
test the impact on driver performance of the large combinations of driving states, sensor sets, and various
algorithms.

The second approach, which we advocate in this chapter and in [28], involves using statistical machine
learning techniques that enable the creation of new human factors approaches. Rather than running large
numbers of narrowly scoped human factors testing with only a few variables, we chose to invent a “Hypervari-
ate Human Factors Test Methodology” that uses broad naturalistic driving experiences that capture wide
conditions resulting in hundreds of variables, but decipherable with machine learning techniques. Rather
than pre-selecting our sensor sets we chose to collect data from every sensor we could think of and some not
yet invented that might remotely be useful by creating behavioral models overlaid with our vehicle system.
Furthermore, all sensor outputs were expanded by standard mathematical transforms that emphasized vari-
ous aspects of the sensor signals. Again, data relationships are discoverable with machine learning. The final
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data set consisted of hundreds of driving hours with thousands of variable data outputs which would have
been nearly impossible to annotate without machine learning techniques.

In this chapter we describe three major efforts that have employed our machine learning approach. First,
we discuss how we have utilized our machine learning approach to detect and classify a wide range of driving
maneuvers, and describe a semi-automatic data annotation tool we have created to support our modeling
effort. Second, we perform a large scale automotive sensor selection study towards intelligent driver assistance
systems. Finally, we turn our attention to creating a system that detects driver inattention by using sensors
that are available in the current vehicle fleet (including forwarding looking radar and video-based lane
departure system) instead of head and eye tracking systems.

This approach resulted in the creation of two generations of our workload manager system called Driver
Advocate, Driver Advocate that was based on data rather than just expert opinions. The described techniques
helped reduce the research cycle times while resulting in broader insight. There was rigorous quantification of
theoretical sensor subsystem performance limits and optimal subsystem choices given economic price points.
The resulting system performance specs and architecture design created a workload manager that had a
positive impact on driver performance [23, 33].

2 Modeling Naturalistic Driving

Having the ability to detect driving maneuvers can be of great benefit in determining a driver’s current
workload state. For instance, a driving workload manager may decide to delay presenting the driver with
non-critical information if the driver was in the middle of a complex driving maneuver. In this section we
describe our data-driven approach to classifying driving maneuvers.

There are two approaches to collecting large databases of driving sensor data from various driving sit-
uations. One can outfit a fleet of cars with sensors and data collection equipment, as has been done in the
NHTSA 100-car study [18]. This has the advantage of being as naturalistic as possible. However, the disad-
vantage is that potentially interesting driving situations will be extremely rare in the collected data. Realistic
driving simulators provide much more controlled environments for experimentation and permit the creation
of many interesting driving situations within a reasonable time frame. Furthermore, in a driving simulator,
it is possible to simulate a large number of potential advanced sensors that would be yet too expensive or
impossible to install in a real car. This will also enable us to study what sensors really are necessary for
any particular task and what kind of signal processing of those sensors is needed in order to create adequate
driving situation models based on those sensors.

We collect data in a driving simulator lab, which is an instrumented car in a surround video virtual world
with full visual and audio simulation (although no motion or G-force simulation) of various roads, traffic and
pedestrian activity. The driving simulator consists of a fixed based car surrounded by five front and three
rear screens (Fig.1). All driver controls such as the steering wheel, brake, and accelerator are monitored
and affect the motion through the virtual world in real-time. Various hydraulics and motors provide realistic
force feedback to driver controls to mimic actual driving.

The basic driving simulator software is a commercial product with a set of simulated sensors that,
at the behavioral level, simulate a rich set of current and near future on-board sensors (http://www.
drivesafety.com). This set consists of a radar for locating other traffic, a GPS system for position infor-
mation, a camera system for lane positioning and lane marking detection, and a mapping data base for
road names, directions, locations of points of interest, etc. There is also a complete car status system for
determining the state of engine parameters (coolant temperature, oil pressure, etc.) and driving controls
(transmission gear selection, steering angle, gas pedal, brake pedal, turn signal, window and seat belt status,
etc.). The simulator setup also has several video cameras, microphones, and infrared eye tracking sensors
to record all driver actions during the drive in synchrony with all the sensor output and simulator tracking
variables. The Seeing Machines eye tracking system is used to automatically acquire a driver’s head and eye
movements (http://www.seeingmachines.com). Because such eye tracking systems are not installed in cur-
rent vehicles, head and eye movement variables do not enter into the machine learning algorithms as input.
The 117 head and eye-tracker variables are recorded as two versions, real-time and filtered. Including both
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Fig. 1. The driving simulator

versions, there are altogether 476 variables describing an extensive scope of driving data — information about
the auto, the driver, the environment, and associated conditions. An additional screen of video is digitally
captured in MPEG4 format, consisting of a quad combiner providing four different views of the driver and
environment. Combined, these produce around 400 MB of data for each 10 min of drive time. Thus we are
faced with processing massive data sets of mixed type; there are both numerical and categorical variables,
and multimedia, if counting also the video and audio.

3 Database Creation

We describe now our approach to collecting and constructing a database of naturalistic driving data in the
driving simulator. We concentrate on the machine learning aspect; making the database usable as the basis
for learning driving/driver situation classifiers and detectors. Note that the same database can be (and will
be) used in driver behavioral studies, too.

3.1 Experiment Design

Thirty-six participants took part in this study, with each participant completing about ten 1-hour driving
sessions. In each session, after receiving practice drives to become accustomed to the simulated driving
environment, participants were given a task for which they have to drive to a specific location. These drives
were designed to be as natural and familiar for the participants as possible, and the simulated world replicated
the local metropolitan area as much as possible, so that participants did not need navigation aids to drive to
their destinations. The driving world was modeled on the local Phoenix, AZ topology. Signage corresponded
to local street and Interstate names and numbers. The topography corresponded as closely as possible to
local landmarks.

The tasks included driving to work, driving from work to pick up a friend at the airport, driving to lunch,
and driving home from work. Participants were only instructed to drive as they normally would. Each drive
varied in length from 10 to 25 min. As time allowed, participants did multiple drives per session.
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This design highlights two crucial components promoting higher realism in driving and consequently in
collected data: (1) familiarity of the driving environment, and (2) immersing participants in the tasks. The
experiment produced a total of 132h of driving time with 315 GB of collected data.

3.2 Annotation of the Database

We have created a semi-automatic data annotation tool to label the sensor data with 28 distinct driving
maneuvers. This data annotation tool is unique in that we have made parts of the annotation process
automatic, enabling the user just to verify automatically generated annotations, rather than annotating
everything from scratch.

The purpose of the data annotation is to label the sensor data with meaningful classes. Supervised learning
and modeling techniques then become available with labeled data. For example, one can train classifiers for
maneuver detection [29] or for inattention detection [30]. Annotated data also provides a basis for research
in characterizing driver behavior in different contexts.

The driver activity classes in this study were related to maneuvering the vehicle with varying degrees of
required attention. An alphabetical listing is presented in Table 1. Note that the classes are not mutually
exclusive. An instant in time can be labeled simultaneously as “TurningRight” and “Starting,” for example.

We developed a special purpose data annotation tool for the driving domain (Fig.2). This was necessary
because available video annotation tools do not provide a simultaneous view of the sensor data, and tools
meant for signals, such as speech, do not allow simultaneous and synchronous playback of the video. The
major properties of our annotation tool are listed below:

. Ability to navigate through any portion of the driving sequence

. Ability to label (annotate) any portion of the driving sequence with proper time alignment
. Synchronization between video and other sensor data

. Ability to playback the video corresponding to the selected sensor signal segment

. Ability to visualize any number of sensor variables

. Provide persistent storage of the annotations

. Ability to modify existing annotations

N O U W N

Since manual annotation is a tedious process, we automated parts of the process by taking advantage
of automatic classifiers that are trained from data to detect the driving maneuvers. With these classifiers,
annotation becomes an instance of active learning [7]. Only if a classifier is not very confident in its decision,
its results are presented to the human to verify. The iterative annotation process is thus as follows:

Table 1. Driving maneuvers used in the study

ChangingLaneLeft ChangingLaneRight
ComingToLeftTurnStop ~ ComingToRight TurnStop
Crash CurvingLeft
CurvingRight EnterFreeway
ExitFreeway LaneChangePassLeft
LaneChangePassRight LaneDepartureLeft
LaneDepartureRight Merge

PanicStop PanicSwerve

Parking PassinglLeft
PassingRight ReversingFromPark
RoadDeparture SlowMoving

Starting StopAndGo

Stopping TurningLeft
TurningRight WaitingForGapInTurn

Cruising (other)

“Cruising” captures anything not included in the actual 28 classes
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. Manually annotate a small portion of the driving data
. Train classifiers based on all annotated data
. Apply classifiers to a portion of database
. Present unsure classifications to the user to verify

. Add new verified and annotated data to the database

As the classifier improves due to increased size of training data, the decisions presented to the user improve,
too, and the verification process takes less time [25]. The classifier is described in detail in the next section.

4 Driving Data Classification

‘We describe now a classifier that has turned out to be very appropriate for driving sensor data. Characteristics

of this data are hundreds of variables (sensors), millions of observations, and mixed type data. Some variables

have continuous values and some are categorical. The latter fact causes problems with conventional statistical
classifiers that typically operate entirely with continuous valued variables. Categorical variables need to be
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converted first into binary indicator variables. If a categorical variable has a large number of levels (possible
discrete values), each of them generates a new indicator variable, thus potentially multiplying the dimension
of the variable vector. We attempted this approach using Support Vector Machines [24] as classifiers, but
the results were inferior compared to ensembles of decision trees.

4.1 Decision Trees

Decision trees, such as CART [6], are an example of non-linear, fast, and flexible base learners that can easily
handle massive data sets even with mixed variable types.

A decision tree partitions the input space into a set of disjoint regions, and assigns a response value to
each corresponding region (see Fig.3). It uses a greedy, top-down recursive partitioning strategy. At every
step a decision tree uses exhaustive search by trying all combinations of variables and split points to achieve
the maximum reduction in node impurity. In a classification problem, a node is “pure” if all the training
data in the node has the same class label. Thus the tree growing algorithm tries to find a variable and a
split point of the variable that best separates the data in the node into different classes. Training data is
then divided among the resulting nodes according to the chosen decision test. The process is repeated for
each resulting node until a certain maximum node depth is reached, or until the nodes become pure. The
tree constructing process itself can be considered as a type of embedded variable selection, and the impurity
reduction due to a split on a specific variable could indicate the relative importance of that variable to the
tree model.

For a single decision tree, a measure of variable importance is proposed in [6]:

VI, T) =Y Al(w;,t) (1)

teT

where AlI(z;,t) = I(t) — prI(ty) — prl(tr) is the decrease in impurity due to an actual (or potential) split
on variable z; at a node ¢ of the optimally pruned tree 7. The sum in (1) is taken over all internal tree nodes
where z; is a primary splitter. Node impurity I(¢) for classification I(t) = Gini(t) where Gini(t) is the Gini

index of node t:
Gini(t) = pip) (2)
i#j
and p! is the proportion of observations in ¢ whose response label equals i (y = ) and 7 and j run through all
response class numbers. The Gini index is in the same family of functions as cross-entropy, — >, ptlog(p!),
and measures node impurity. It is zero when ¢ has observations only from one class, and reaches its maximum
when the classes are perfectly mixed.
However, a single tree is inherently instable. The ability of a learner (a classifier in this case) to generalize
to new unseen data is closely related to the stability of the learner. The stability of the solution could be
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Fig. 3. An example of a decision tree for a three-class classification problem. The right side depicts the data with
two variables. The final decision regions are also displayed
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loosely defined as a continuous dependence on the training data. A stable solution changes very little when
the training data set changes a little. With decision trees, the node structure can change drastically even
when one data point is added or removed from the training data set. A comprehensive treatment of the
connection between stability and generalization ability can be found in [3].

Instability can be remedied by employing ensemble methods. Ensemble methods train multiple simple
learners and then combine the outputs of the learners for the final decision. One well known ensemble method
is bagging (bootstrap aggregation) [4]. Bagging decision trees is explained in detail in Sect. 4.2.

Bagging can dramatically reduce the variance of instable learners by providing a regularization effect.
Each individual learner is trained using a different random sample set of the training data. Bagged ensembles
do not overfit the training data. The keys to good ensemble performance are base learners that have a low
bias, and a low correlation between their errors. Decision trees have a low bias, that is, they can approximate
any nonlinear decision boundary between classes to a desirable accuracy given enough training data. Low
correlation between base learners can be achieved by sampling the data, as described in the following section.

4.2 Random Forests

Random Forest (RF) is a representative of tree ensembles [5]. It grows a forest of decision trees on bagged
samples (Fig. 4). The “randomness” originates from creating the training data for each individual tree by sam-
pling both the data and the variables. This ensures that the errors made by individual trees are uncorrelated,
which is a requirement for bagging to work properly.

Fig. 4. A trivial example of Random Forest in action. The task is to separate class “v” from “c” and “s” (upper
right corner) based on two variables only. Six decision trees are constructed sampling both examples and variables.
Each tree becomes now a single node sampling one out of the two possible variables. Outputs (decision regions) are
averaged and thresholded. The final nonlinear decision border is outlined as a thick line
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Each tree in the Random Forest is grown according to the following parameters:

1. A number m is specified much smaller than the total number of total input variables M (typically m is
proportional to v/M).
2. Each tree of maximum depth (until pure nodes are reached) is grown using a bootstrap sample of the
training set.
. At each node, m out of the M variables are selected at random.
4. The split used is the best possible split on these m variables only.

w

Note that for each tree to be constructed, bootstrap sampling is applied. A different sample set of training
data is drawn with replacement. The size of the sample set is the same as the size of the original dataset.
This means that some individual samples will be duplicated, but typically 30% of the data is left out of
this sample (out-of-bag). This data has a role in providing an unbiased estimate of the performance of the
tree.

Also note that the sampled variable set does not remain constant while a tree is grown. Each new node
in a tree is constructed based on a different random sample of m variables. The best split among these m
variables is chosen for the current node, in contrast to typical decision tree construction, which selects the
best split among all possible variables. This ensures that the errors made by each tree of the forest are not
correlated. Once the forest is grown, a new sensor reading vector will be classified by every tree of the forest.
Majority voting among the trees produces then the final classification decision.

We will be using RF throughout our experimentation because of it simplicity and excellent performance.
In general, RF is resistant to irrelevant variables, it can handle massive numbers of variables and observations,
and it can handle mixed type data and missing data. Our data definitely is of mixed type, i.e., some variables
are continuous, some variables are discrete, although we do not have missing data since the source is the
simulator.

1

4.3 Random Forests for Driving Maneuver Detection

A characteristic of the driving domain and the chosen 29 driving maneuver classes is that the classes are not
mutually exclusive. For example, an instance in time could be classified simultaneously as “SlowMoving” and
“TurningRight.” The problem cannot thus be solved by a typical multi-class classifier that assigns a single
class label to a given sensor reading vector and excludes the rest. This dictates that the problem should be
treated rather as a detection problem than a classification problem.

Furthermore, each maneuver is inherently a sequential operation. For example, “ComingToLeft TurnStop”
consists of possibly using the turn signal, changing the lane, slowing down, braking, and coming to a full
stop. Ideally, a model of a maneuver would thus describe this sequence of operations with variations that
naturally occur in the data (as evidenced by collected naturalistic data). Earlier, we have experimented with
Hidden Markov Models (HMM) for maneuver classification [31]. A HMM is able to construct a model of
a sequence as a chain of hidden states, each of which has a probabilistic distribution (typically Gaussian)
to match that particular portion of the sequence [22]. The sequence of sensor vectors corresponding to a
maneuver would thus be detected as a whole.

The alternative to sequential modeling is instantaneous classification. In this approach, the whole duration
of a maneuver is given just a single class label, and the classifier is trained to produce this same label for
every time instant of the maneuver. Order, in which the sensor vectors are observed, is thus not made use
of, and the classifier carries the burden of being able to capture all variations happening inside a maneuver
under a single label. Despite these two facts, in our initial experiments the results obtained using Random
Forests for instantaneous classification were superior to Hidden Markov Models.

Because the maneuver labels may be overlapping, we trained a separate Random Forest for each maneuver
treating it as a binary classification problem — the data of a particular class against all the other data. This
results in 29 trained “detection” forests.

1 We use Leo Breiman’s Fortran version 5.1, dated June 15, 2004. An interface to Matlab was written to facilitate
easy experimentation. The code is available at http://www.stat.berkeley.edu/users/breiman/.
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New sensor data is then fed to all 29 forests for classification. Each forest produces something of a
“probability” of the class it was trained for. An example plot of those probability “signals” is depicted
in Fig.5. The horizontal axis represents the time in tenths of a second. About 45s of driving is shown.
None of the actual sensor signals are depicted here, instead, the “detector” signals from each of the forests
are graphed. These show a sequence of driving maneuvers from “Cruising” through “LaneDepartureLeft,”
“CurvingRight,” “TurningRight,” and “SlowMoving” to “Parking.”

The final task is to convert the detector signals into discrete and possibly overlapping labels, and to assign
a confidence value to each label. In order to do this, we apply both median filtering and low-pass filtering to
the signals. The signal at each time instant is replaced by the maximum of the two filtered signals. This has
the effect of patching small discontinuities and smoothing the signal while still retaining fast transitions. Any
signal exceeding a global threshold value for a minimum duration is then taken as a segment. Confidence of
the segment is determined as the average of the detection signal (the probability) over the segment duration.

An example can be seen at the bottom window depicted in Fig.2. The top panel displays some of the
original sensor signals, the bottom panel graphs the raw maneuver detection signals, and the middle panel
shows the resulting labels.

‘We compared the results of the Random Forest maneuver detector to the annotations done by a human
expert. On the average, the annotations agreed 85% of the time. This means that only 15% needed to be
adjusted by the expert. Using this semi-automatic annotation tool, we can drastically reduce the time that
is required for data processing.

5 Sensor Selection Using Random Forests

In this section we study which sensors are necessary for driving state classification. Sensor data is collected
in our driving simulator; it is annotated with driving state classes, after which the problem reduces to that
of feature selection [11]: “Which sensors contribute most to the correct classification of the driving state
into various maneuvers?” Since we are working with a simulator, we have simulated sensors that would be
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expensive to arrange in a real vehicle. Furthermore, sensor behavioral models can be created in software.
Goodness or noisiness of a sensor can be modified at will. The simulator-based approach makes it possible
to study the problem without implementing the actual hardware in a real car.

Variable selection methods can be divided in three major categories [11, 12, 16]. These are:

1. Filter methods, that evaluate some measure of relevance for all the variables and rank them based on the
measure (but the measure may not necessarily be relevant to the task, and any interactions that variables
may have will be ignored)

2. Wrapper methods, that using some learner, actually learn the solution to the problem evaluating all
possible variable combinations (this is usually computationally too prohibitive for large variable sets)

3. Embedded methods that use a learner with all variables, but infer the set of important variables from the
structure of the trained learner

Random Forests (Sect.4.2) can act as an embedded variable selection system. As a by-product of the
construction, a measure of variable importance can be derived from each tree, basically from how often
different variables were used in the splits of the tree and from the quality of those splits [5]. For an ensemble
of N trees the importance measure (1) is simply averaged over the ensemble.

1 N
M) = > VI(2:,Tn) (3)

The regularization effect of averaging makes this measure much more reliable than a measure extracted from
just a single tree.

One must note that in contrast to simple filter methods of feature selection, this measure considers
multiple simultaneous variable interactions — not just two at a time. In addition, the tree is constructed for
the exact task of interest. We apply now this importance measure to driving data classification.

5.1 Sensor Selection Results

As the variable importance measure, we use the tree node impurity reduction (1) summed over the forest (3).
This measure does not require any extra computation in addition to the basic forest construction process.
Since a forest was trained for each class separately, we can now list the variables in the order of importance
for each class. These results are combined and visualized in Fig. 6.

This figure has the driving activity classes listed at the bottom, and variables on the left column. Head-
and eye-tracking variables were excluded from the figure. Each column of the figure thus displays the impor-
tances of all listed variables, for the class named at the bottom of the column. White, through yellow, orange,
red, and black, denote decreasing importance.

In an attempt to group together those driving activity classes that require a similar set of variables to be
accurately detected, and to group together those variables that are necessary or helpful for a similar set of
driving activity classes, we clustered first the variables in six clusters and then the driving activity classes in
four clusters. Any clustering method can be used here, we used spectral clustering [19]. Rows and columns
are then re-ordered according to the cluster identities, which are indicated in the names by alternating blocks
of red and black font in Fig. 6.

Looking at the variable column on the left, the variables within each of the six clusters exhibit a similar
behavior in that they are deemed important by approximately the same driving activity classes. The topmost
cluster of variables (except “Gear”) appears to be useless in distinguishing most of the classes. The next five
variable clusters appear to be important but for different class clusters. Ordering of the clusters as well as
variable ordering within the clusters is arbitrary. It can also be seen that there are variables (sensors) that
are important for a large number of classes.

In the same fashion, clustering of the driving activity classes groups those classes together that need
similar sets of variables in order to be successfully detected. The rightmost and the leftmost clusters are
rather distinct, whereas the two middle clusters do not seem to be that clear. There are only a few classes
that can be reliably detected using a handful of sensors. Most notable ones are “ReversingFromPark” that
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4

only needs “Gear,” and “CurvingRight” that needs “lateralAcceleration” with the aid of “steeringWheel.”
This clustering shows that some classes need quite a wide array of sensors in order to be reliably detected.
The rightmost cluster is an example of those classes.

5.2 Sensor Selection Discussion

We present first results of a large scale automotive sensor selection study aimed towards intelligent driver
assistance systems. In order to include both traditional and advanced sensors, the experiment was done on
a driving simulator. This study shows clusters of both sensors and driving state classes: what classes need
similar sensor sets, and what sensors provide information for which sets of classes. It also provides a basis
to study detecting an isolated driving state or a set of states of interest and the sensors required for it.

6 Driver Inattention Detection Through Intelligent Analysis of Readily
Available Sensors

Driver inattention is estimated to be a significant factor for 78% of all crashes [8]. A system that could
accurately detect driver inattention could aid in reducing this number. In contrast to using specialized sensors
or video cameras to monitor the driver we detect driver inattention by using only readily available sensors. A
classifier was trained using Collision Avoidance Systems (CAS) sensors which was able to accurately identify
80% of driver inattention and could be added to a vehicle without incurring the cost of additional sensors.

Detection of driver inattention could be utilized in intelligent systems to control electronic devices [21]
or redirect the driver’s attention to critical driving tasks [23].

Modern automobiles contain many infotainment devices designed for driver interaction. Navigation mod-
ules, entertainment devices, real-time information systems (such as stock prices or sports scores), and
communication equipment are increasingly available for use by drivers. In addition to interacting with on-
board systems, drivers are also choosing to carry in mobile devices such as cell phones to increase productivity
while driving. Because technology is increasingly available for allowing people to stay connected, informed,
and entertained while in a vehicle many drivers feel compelled to use these devices and services in order to
multitask while driving.

This increased use of electronic devices along with typical personal tasks such as eating, shaving, putting
on makeup, reaching for objects on the floor or in the back seat can cause the driver to become inattentive
to the driving task. The resulting driver inattention can increase risk of injury to the driver, passengers,
surrounding traffic and nearby objects.

The prevailing method for detecting driver inattention involves using a camera to track the driver’s
head or eyes [9, 26]. Research has also been conducted on modeling driver behaviors through such methods
as building control models [14, 15] measuring behavioral entropy [2] or discovering factors affecting driver
intention [10, 20].

Our approach to detecting inattention is to use only sensors currently available on modern vehicles
(possibly including Collision Avoidance Systems (CAS) sensors) without using head and eye tracking system.
This avoids the additional cost and complication of video systems or dedicated driver monitoring systems.
We derive several parameters from commonly available sensors and train an inattention classifier. This results
in a sophisticated yet inexpensive system for detecting driver inattention.

6.1 Driver Inattention
What is Driver Inattention?
Secondary activities of drivers during inattention are many, but mundane. The 2001 NETS survey in Table 2

found many activities that drivers perform in addition to driving. A study, by the American Automobile
Association placed miniature cameras in 70 cars for a week and evaluated three random driving hours from
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Table 2. 2001 NETS survey

96%  Talking to passengers

89%  Adjusting vehicle climate/radio controls
74%  Eating a meal/snack

51%  Using a cell phone

41%  Tending to children

34% Reading a map/publication

19%  Grooming

11%  Prepared for work

Activities drivers engage in while driving

each. Overall, drivers were inattentive 16.1% of the time they drove. About 97% of the drivers reached or
leaned over for something and about 91% adjusted the radio. Thirty percent of the subjects used their cell
phones while driving.

Causes of Driver Inattention
There are at least three factors affecting attention:

1. Workload. Balancing the optimal cognitive and physical workload between too much and boring is an
everyday driving task. This dynamic varies from instant to instant and depends on many factors. If we
chose the wrong fulcrum, we can be overwhelmed or unprepared.

2. Distraction. Distractions might be physical (e.g., passengers, calls, signage) or cognitive (e.g., worry,
anxiety, aggression). These can interact and create multiple levels of inattention to the main task of
driving.

3. Perceived Experience. Given the overwhelming conceit that almost all drivers rate their driving ability
as superior than others, it follows that they believe they have sufficient driving control to take part of
their attention away from the driving task and give it to multi-tasking. This “skilled operator” over-
confidence tends to underestimate the risk involved and reaction time required. This is especially true in
the inexperienced younger driver and the physically challenged older driver.

Effects of Driver Inattention

Drivers involved in crashes often say that circumstances occurred suddenly and could not be avoided. How-
ever, due to laws of physics and visual perception, very few things occur suddenly on the road. Perhaps more
realistically an inattentive driver will suddenly notice that something is going wrong. This inattention or
lack of concentration can have catastrophic effects. For example, a car moving at a slow speed with a driver
inserting a CD will have the same effect as an attentive driver going much faster. Simply obeying the speed
limits may not be enough.

Measuring Driver Inattention

Many approaches to measuring driver inattention have been suggested or researched. Hankey et al. suggested
three parameters: average glance length, number of glances, and frequency of use [13]. The glance parameters
require visual monitoring of the drivers face and eyes. Another approach is using the time and/or accuracy
of a surrogate secondary task such as Peripheral Detection Task (PDT) [32]. These measures are yet not
practical real time measures to use during everyday driving.

Boer [1] used a driver performance measure, steering error entropy, to measure workload, which unlike eye
gaze and surrogate secondary-tasks, is unobtrusive, practical for everyday monitoring, and can be calculated
in near real time.

We calculate it by first training a linear predictor from “normal” driving [1]. The predictor uses four previ-
ous steering angle time samples (200 ms apart) to predict the next time sample. The residual (prediction error)
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is computed for the data. A ten-bin discretizer is constructed from the residual, selecting the discretization
levels such that all bins become equiprobable. The predictor and discretizer are then fixed, and applied
to a new steering angle signal, producing a discretized steering error signal. We then compute the run-
ning entropy of the steering error signal over a window of 15 samples using the standard entropy definition
FE=- Z}il pilogi pi, where p; are the proportions of each discretization level observed in the window.

Our work indicates that steering error entropy is able to detect driver inattention while engaged in
secondary tasks. Our current study expands and extends this approach and looks at other driver performance
variables, as well as the steering error entropy, that may indicate driver inattention during a common driving
task, such as looking in the “blind spot.”

Experimental Setup

We designed the following procedure to elicit defined moments of normal driving inattention.

The simulator authoring tool, HyperDrive, was used to create the driving scenario for the experiment.
The drive simulated a square with curved corners, six kilometers on a side, 3-lanes each way (separated by
a grass median) beltway with on- and off-ramps, overpasses, and heavy traffic in each direction. All drives
used daytime dry pavement driving conditions with good visibility.

For a realistic driving environment, high-density random “ambient” traffic was programmed. All “ambi-
ent” vehicles simulated alert, “good” driver behavior, staying at or near the posted speed limit, and reacted
reasonably to any particular maneuver from the driver.

This arrangement allowed a variety of traffic conditions within a confined, but continuous driving space.
Opportunities for passing and being passed, traffic congestion, and different levels of driving difficulty were
thereby encountered during the drive.

After two orientation and practice drives, we collected data while drivers drove about 15min in the
simulated world. Drivers were instructed to follow all normal traffic laws, maintain the vehicle close to the
speed limit (55 mph, 88.5kph), and to drive in the middle lane without lane changes. At 21 “trigger” locations
scattered randomly along the road, the driver received a short burst from a vibrator located in the seatback
on either the left or right side of their backs. This was their alert to look in their corresponding “blind spot”
and observe a randomly selected image of a vehicle projected there. The image was projected for 5s and the
driver could look for any length of time he felt comfortable. They were instructed that they would receive
“bonus” points for extra money for each correctly answered question about the images. Immediately after
the image disappeared, the experimenter asked the driver questions designed to elicit specific characteristics
of the image — i.e., What kind of vehicle was it?, Were there humans in the image?, What color was the
vehicle?, etc.

Selecting Data for Inattention Detection

Though the simulator has a variety of vehicle, environment, cockpit, and driver parameters available for
our use, our goal was to experiment with only readily extractable parameters that are available on modern
vehicles. We experimented with two subsets of these parameter streams: one which used only traditional
driver controls (steering wheel position and accelerator pedal position), and a second subset which included
the first subset but also added variables available from CAS systems (lane boundaries, and upcoming road
curvature). A list of variables used and a brief description of each is displayed in Table 3.

Eye/Head Tracker

In order to avoid having to manually label when the driver was looking away from the simulated road, an
eye/head tracker was used (Fig. 7).

When the driver looked over their shoulder at an image in their blind spot this action caused the eye
tracker to lose eye tracking ability (Fig.8). This loss sent the eye tracking confidence to a low level. These
periods of low confidence were used as the periods of inattention. This method avoided the need for hand
labeling.
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Table 3. Variables used to detect inattention

Variable Description

steeringWheel Steering wheel angle

accelerator Position of accelerator pedal

distToLeftLaneEdge Perpendicular distance of left front wheel from left lane edge

crossLaneVelocity Rate of change of distToLeftLaneEdge

crossLaneAcceleration  Rate of change of crossLaneVelocity

steeringError Difference between steering wheel position and ideal position
for vehicle to travel exactly parallel to lane edges

aheadLaneBearing Angle of road 60m in front of current vehicle position

Fig. 8. Loss of eye/head tracking during inattentive driving

6.2 Inattention Data Processing

Data was collected from six different drivers as described above. This data was later synchronized and re-
sampled at a constant sampling rate of 10 Hz. resulting in 40,700 sample vectors. In order to provide more
relevant information to the task at hand, further parameters were derived from the original sensors. These
parameters are as follows:

1.

ra9: Running average of the signal over nine previous samples (smoothed version of the signal).

2. rd5: Running difference five samples apart (trend).
3.
4. ent15: Entropy of the error that a linear predictor makes in trying to predict the signal as described in

rv9: Running variance of nine previous samples according to the standard definition of sample variance.

[1]. This can be thought of as a measure of randomness or unpredictability of the signal.

. stat3: Multivariate stationarity of a number of variables simultaneously three samples apart as described

in [27]. Stationarity gives an overall rate of change for a group of signals. Stationarity is one if there are
no changes over the time window and approaches zero for drastic transitions in all signals of the group.

The operations can be combined. For example, “ rd5 ra9” denotes first computing a running difference

five samples apart and then computing the running average over nine samples.

1.

Two different experiments were conducted.

The first experiment used only two parameters: steeringWheel and accelerator, and derived seven other
parameters: steeringWheel rd5 ra9, accelerator rd5 ra9, stat3 of steeringWheel accel,
steeringWheel ent15 ra9, accelerator ent15 ra9, steeringWheel rv9, and accelerator rv9.
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2. The second experiment used all seven parameters in Table 1 and derived 13 others as follows:
steeringWheel rd5 ra9, steeringError rd5 ra9, distToLeftLaneEdge rd5 ra9, accelerator rd5 ra9,
aheadLaneBearing rd5 ra9, stat3 of steeringWheel accel,
stat3 of steeringError crossLaneVelocity distToLeftLaneEdge aheadLaneBearing,
steeringWheel ent15 ra9, accelerator ent15 ra9, steeringWheel rv9, accelerator rv9,
distToLeftLaneEdge rv9, and crossLaneVelocity rv9.

Variable Selection for Inattention

In variable selection experiments we are attempting to determine the relative importance of each variable to
the task of inattention detection. First a Random Forest classifier is trained for inattention detection (see
also Sect. 6.2). Variable importances can then be extracted from the trained forest using the approach that
was outlined in Sect. 5.

‘We present the results in Tables 4 and 5. These tables provide answers to the question “Which sensors
are most important in detecting driver’s inattention?” When just the two basic “driver control” sensors
were used, some new derived variables may provide as much new information as the original signals, namely
the running variance and entropy of steering. When CAS sensors are combined, the situation changes: lane

Table 4. Important sensor signals for inattention detection derived from steering wheel and accelerator pedal

Variable Importance
steeringWheel 100.00
accelerator 87.34
steeringWheel rv9 68.89
steeringWheel ent15 ra9 58.44
stat3 of steeringWheel accelerator 41.38
accelerator ent15 ra9 40.43
accelerator rv9 35.86
steeringWheel rd5 ra9 32.59
accelerator rd5 ra9 29.31

Table 5. Important sensor signals for inattention detection derived from steering wheel, accelerator pedal and CAS
sensors

Variable Importance
dist ToLeftLaneEdge 100.00
accelerator 87.99
steeringWheel rv9 73.76
dist ToLeftLaneEdge rv9 65.44
distToLeftLaneEdge rd5 ra9 65.23
steeringWheel 64.54
Stat3 of steeringWheel accel 60.00
steeringWheel ent15 ra9 57.39
steeringError 57.32
aheadLaneBearing rd5 ra9 55.33
aheadLeneBearing 51.85
crossLaneVelocity 50.55
Stat3 of steeringError crossLaneVelocity distToLeftLaneEdge aheadLaneBearing 38.07
crossLaneVelocity rv9 36.50
steeringError rd5 ra9 33.52
Accelerator ent15 ra9 29.83
Accelerator rv9 28.69
steeringWheel rd5 ra9 27.76
Accelerator rd5 ra9 20.69

crossLaneAcceleration 20.64
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position (distToLeftLaneEdge) becomes the most important variable together with the accelerator pedal.
Steering wheel variance becomes the most important variable related to steering.

Inattention Detectors

Detection tasks always have a tradeoff between desired recall and precision. Recall denotes the percentage
of total events of interest detected. Precision denotes the percentage of detected events that are true events
of interest and not false detections. A trivial classifier that classifies every instant as a true event would have
100% recall (since none were missed), but its precision would be poor. On the other hand, if the classifier
is so tuned that only events having high certainty are classified as true events, the recall would be low,
missing most of the events, but its precision would be high, since among those that were classified as true
events, only a few would be false detections. Usually any classifier has some means of tuning the threshold of
detection. Where that threshold will be set depends on the demands of the application. It is also noteworthy
to mention that in tasks involving detection of rare events, overall classification accuracy is not a meaningful
measure. In our case only 7.3% of the database was inattention so a trivial classifier classifying everything
as attention would thus have an accuracy of 92.7%. Therefore we will report our results using the recall and
precision statistics for each class.

First, we constructed a Random Forests (RF) classifier of 75 trees using either the driver controls or the
driver controls combined with the CAS sensors. Figure 9 depicts the resulting recall /precision graphs.

One simple figure of merit that allows comparison of two detectors is equal error rate, or equal accuracy,
which denotes the intersection of recall and precision curves. By that figure, basing the inattention detector
only on driver control sensors results in an equal accuracy of 67% for inattention and 97% for attention,
whereas adding CAS sensors raises the accuracies up to 80 and 98%, respectively. For comparison, we used
the same data to train a quadratic classifier [29]. Compared to the RF classifier, the quadratic classifier
performs poorly in this task. We present the results in Table 6 for two different operating points of the
quadratic classifier. The first one (middle rows) is tuned not to make false alarms, but its recall rate remains
low. The second one is compensated for the less frequent occurrences of inattention, but it makes false
alarms about 28% of the time. Random Forest clearly outperforms the quadratic classifier with almost no
false alarms and good recall.
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Fig. 9. Precision/recall figures for detection of inattention using only driver controls (left) and driver controls
combined with CAS sensors (right). Random Forest is used as the classifier. Horizontal axis, prior for inattention,
denotes a classifier parameter which can be tuned to produce different precision/recall operating points. This can
be thought of as a weight or cost given to missing inattention events. Typically, if it is desirable not to miss events
(high recall — in this case a high parameter value), the precision may be low — many false detections will be made.
Conversely, if it is desirable not to make false detections (high precision), the recall will be low — not all events will
be detected. Thus, as a figure of merit we use equal accuracy, the operating point where precision equals recall
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Table 6. Comparison of Random Forest (RF) to Quadratic classifier using equal accuracy as the figure of merit

Detector Sensors Inattention (%)  Attention (%)
RF Driver control sensors only 67 97
RF Additional CAS sensors 80 98
Quadratic Driver control sensors only 29 91
Quadratic Additional CAS sensors 33 93
Quadratic (prior compensated)  Driver control sensors only 58 59
Quadratic (prior compensated)  Additional CAS sensors 72 72

Operating point where recall of the desired events equals the precision of the detector

Future Driver Inattention Work

The experiments described in this section are only our first steps in investigating how driver attention can
be detected. We have several ideas of how to improve the accuracy of detectors based on modifications to
our described approach. The first technique will be to treat inattentive periods as longer time segments that
actually have a weighting mechanism that prohibits rapid toggling between states. Also, an edge detector
could be trained to detect the transitions between attention/inattention states instead of states for individual
time samples. Even with improvements we will end up with a less than perfect inattention detector and we
will have to study user experiences in order to define levels of accuracy required before inattention detectors
could be used as an acceptable driver assistant tool.

Future work should also include modeling how drivers “recover” from inattentive periods. Even with
perfect eye tracking it is unlikely that when a driver’s eyes return to the road that the driver is instantly
attentive and aware of his environment. This is a general attention modeling problem and is not specific to
our technique.

Once driver inattention is detected there still needs to be experimentation on how to best assist the
driver. Good driving habits will include periods that we have defined as inattentive, such as a “blind spot”
glance before changing lanes. The system must understand the appropriate frequency and duration of these
“blind spot” glances and not annoy the driver by offering counter-productive or unreasonable advice.

7 Conclusion

In this chapter, we have demonstrated three instances of using computational intelligence techniques such
as the random forest method in developing intelligent driver assistance systems. Random Forest appears to
be a very well suited tool for massive heterogeneous data sets that are generated from the driving domain.
A driver activity classifier based on Random Forests is also fast enough to run in real time in a vehicle.

First, the random forest method is used to create a semi-automatic data annotation tool for driving
database creation to support data-driven approaches in the driving domain such as driving state classi-
fication. The tool significantly reduces the manual annotation effort and thus enables the user to verify
automatically generated annotations, rather than annotating from scratch. In experiments going through
the whole database annotation cycle, we have observed sixfold reductions in the annotation time by a
human annotator [25].

Second, the random forest method is employed to identify the sensor variables that are important for
determining the driving maneuvers. Different combinations of sensor variables are identified for different
driving maneuvers. For example, steering wheel angle is important for determining the turning maneuver, and
brake status, acceleration, and headway distance are important for determining the panic brake maneuver.

Third, our random forest technique enabled us to detect driver inattention through the use of sensors
that are available in modern vehicles. We compared both traditional sensors (detecting only steering wheel
angle and accelerator pedal position) and CAS sensors against the performance of a state-of-the-art eye/head
tracker. As expected, the addition of CAS sensors greatly improve the ability for a system to detect inat-
tention. Though not as accurate as eye tracking, a significant percentage of inattentive time samples could
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be detected by monitoring readily available sensors (including CAS sensors) and it is believed that a driver
assistant system could be built to use this information to improve driver attention. The primary advantage
of our system is that it requires only a small amount of code to be added to existing vehicles and avoids the
cost and complexity of adding driver monitors such as eye/head trackers.

A driving simulator is an excellent tool to investigate driver inattention since this allows us to design
experiments and collect data on driver behaviors that may impose a safety risk if these experiments were
performed in a real vehicle. There is still much to be learned about the causes and effects of driver inattention,
but even small steps toward detecting inattention can be helpful in increasing driver performance.
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Summary. Accidents involving pedestrians is one of the leading causes of death and injury around the world.
Intelligent driver support systems hold a promise to minimize accidents and save many lives. Such a system would
detect the pedestrian, predict the possibility of collision, and then warn the driver or engage automatic braking or
other safety devices. This chapter describes the framework and issues involved in developing a pedestrian protection
system. It is emphasized that the knowledge of the state of the environment, vehicle, and driver are important for
enhancing safety. Classification, clustering, and machine learning techniques for effectively detecting pedestrians are
discussed, including the application of algorithms such as SVM, Neural Networks, and AdaBoost for the purpose of
distinguishing pedestrians from background. Pedestrians unlike vehicles are capable of sharp turns and speed changes,
therefore their future paths are difficult to predict. In order to estimate the possibility of collision, a probabilistic
framework for pedestrian path prediction is described along with related research. It is noted that sensors in vehicle are
not always sufficient to detect all the pedestrians and other obstacles. Interaction with infrastructure based systems
as well as systems from other vehicles can provide a wide area situational awareness of the scene. Furthermore,
in infrastructure based systems, clustering and learning techniques can be applied to identify typical vehicle and
pedestrian paths and to detect anomalies and potentially dangerous situations. In order to effectively integrate
information from infrastructure and vehicle sources, the importance of developing and standardizing vehicle-vehicle
and vehicle-infrastructure communication systems is also emphasized.

1 Introduction

Intelligent Transportation Systems (ITS) show promise of making road travel safer and comfortable. Auto-
mobile companies have recently taken considerable interest in developing Intelligent Driver Support Systems
(IDSS) for high-end vehicles. These include active cruise control, lane departure warning, blind spot moni-
toring, and pedestrian detection systems based on sensors such as visible light and thermal infrared cameras,
RADARs, or LASER scanners. However, for an effective driver support system, it is desirable to take a
holistic approach, using all available data from the environment, vehicle dynamics, and the driver that can
be obtained using various sensors incorporated in vehicle and infrastructure [35]. Infrastructure based sen-
sors can complement the vehicle sensors by filling gaps and providing more complete information about the
surroundings. Looking in the vehicle at driver’s state is as important as looking out in surroundings in order
to convey warnings to the driver in the most effective and least distracting manner. Furthermore, due to the
highly competitive nature of automobile manufacturing, it is necessary to make such systems cost effective.
This makes multi-functional sensors that are used by several of these systems highly desirable.

Accidents involving pedestrians and other vulnerable road users such as bicyclists are one of the leading
causes of death and injury around the world. In order to reduce these accidents, pedestrian protection
systems need to detect pedestrians, track them over time, and predict the possibility of collision based on
the paths that the pedestrian and the vehicle are likely to take. The system should relay the information
to the driver in efficient and non-distracting manner or to the control system of the vehicle in order to
take preventive actions. Considerable efforts have been made on enhancing pedestrian safety by programs
in United states [3, 4], Europe [2, 5] and Japan [1]. Conferences such as Intelligent Vehicles Symposium [6]
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and Intelligent Transportation Systems Conference [7] have a number of publications related to pedestrian
detection every year. The recent survey on pedestrian protection [19] has covered the current research on
pedestrian detection, tracking, and collision prediction. It is observed that detecting pedestrians in cluttered
scenes from a moving vehicle is a challenging problem that involves a number of computational intelligence
techniques spanning image processing, computer vision, pattern recognition, and machine learning. This
paper focuses on specific computational intelligence techniques used in stages of sensor based pedestrian
protection system for detecting and classifying pedestrians, and predicting their trajectories to assess the
possibility of collision.

2 Framework for Pedestrian Protection System

Figure 1 shows the components of a general pedestrian protection system. The data from one or more
types of sensors can be processed using computer vision algorithms to detect pedestrians and determine
their trajectories. The trajectories can then be sent to collision prediction module that would predict the
probability of collision between the host vehicle and pedestrians. In the case of high probability of collision,
the driver is given appropriate warning that enables corrective action. If the collision is imminent, the
automatic safety systems could also be triggered to decelerate the vehicle and reduce the impact of collision.
In the following sections we illustrate these components using examples focusing on approaches used for
these tasks.

Environment Sensors in Vehicle and Infrastructure Vehicle
Dynamic
Imaging sensors: Visible light, near IR, thermal IR Sensors
Time of flight sensors: RADARs, LASER scanners
Sensor data
4
Pedestrian Detection Pedestrian
Candidate generation P appearance
Classification/Verifica tion and motion
Tracking models
Pedestrian trajectories
A
Collision Prediction X
Trajectory prediction B p edestl: lan
Monte Carlo Simulations behavior
Particle filtering models
Collision probabilities
4
Action X
Warning driver ’ Driver 'State
Activation of automatic braking, Sensing
passive safety systems

Fig. 1. Data flow diagram for pedestrian protection systems
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3 Techniques in Pedestrian Detection

Pedestrian detection is usually divided into two stages. The candidate generation stage processes raw data
using simple cues and fast algorithms to identify potential pedestrian candidates. The classification and
verification stage then applies more complex algorithms to the candidates from the attention focusing stage
in order to separate genuine pedestrians from false alarms. However, the line between these stages is often
blurred and some approaches combine the stages into one. Table 1 shows the approaches used by researchers
for stages in pedestrian detection.

3.1 Candidate Generation

Cues such as shape, appearance, motion, and distance can be used to generate potential pedestrian
candidates. Here, we describe selected techniques used for generating pedestrian candidates using these cues.

Chamfer Matching

Chamfer matching is a generic technique to recognize objects based on their shape and appearance using
hierarchical matching with a set of object templates from training images. The original image is converted
to a binary image using an edge detector. A distance transform is then applied to the edge image. Every
pixel r = (x,y) in the distance transformed image has a value d;(t) equal to the distance to the nearest edge
pixel:

dr(r) = [l =7l 1

min
r'cedges(I)

The distance transformed image is matched to the binary templates generated from examples. For this
purpose, the template is slided over the image and at every displacement, the chamfer distance between the
image and template is obtained by taking the mean of all the pixels in the distance transform image that
have an ‘on’ pixel in template image:

1
DIT.D= > di(r) (2)
reT

Positions in the image where the chamfer distance is less than a threshold are considered as successful
matches.

Table 1. Approaches used in stages of pedestrian protection

Publication Candidate generation Feature extraction Classification

Gavrila ECCV00 [20], Chamfer matching Image ROI pixels LRF Neural Network

1JCVOT [21], Munder

PAMIO6 [27]

Gandhi MMO04 [15], Omni camera based planar
MVAO5 [16] motion estimation

Gandhi ICIPO5 [17], Stereo based U disparity
ITS06 [18] analysis

Krotosky IV06 [25]

Papageorgiou 1JCV00 [28]
Dalal CVPRO5 [13]

Viola TICV05 [37]

Park ISI07 [29]

Stereo based U and V/
disparity analysis

Background subtraction,
homography projection

Histogram of oriented
gradients

Haar wavelets

Histogram of oriented
gradients

Haar-like features in spatial
and temporal domain
Shape and size of object

Support Vector Machine

Support Vector Machine
Support Vector Machine

AdaBoost
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In order to account for the variations between individual objects, the image is matched with number
of templates. For efficient matching, a template hierarchy is generated using bottom up clustering. All the
training templates are grouped into K clusters, each represented by a prototype template pi and the set
of templates Sy in the cluster. Clustering is performed using using an iterative optimization algorithm that
minimizes an objective function:

K

E= Diin(ti, ] 3
;fr,nﬁagi nnn( 17[)76) ( )

where D,yin (ti, pr) denotes the minimum chamfer distance between the template ¢; and the prototype py for
all relative displacements between them. The process is repeated recursively by treating the prototypes as
templates and re-clustering them to form a tree as shown in Fig. 2.

For recognition, the given image is recursively matched with the nodes of the template tree, starting
from the root. At any level, the branches where the minimum chamfer distance is greater than a threshold
are pruned to reduce the search time. For remaining nodes, matching is repeated for all children nodes.
Candidates are generated at image positions where the chamfer distance with any of the template nodes is
below threshold.

Motion-Based Detection

Motion is an important cue in detecting pedestrians. In the case of moving platforms, the background
undergoes ego-motion that depends on camera motion as well as the scene structure, which needs to be
accounted for. In [15, 16], a parametric planar motion model is used to describe the ego-motion of the ground
in an omnidirectional camera. The perspective coordinates of a point P on the ground in two consecutive
camera positions is governed by a homography matrix H as:

X, hi1 hiz his Xa
Yo | = A ho1 hso has Y (4)
Zy hs1 haa 1 Za

The perspective camera coordinates can be mapped to pixel coordinates (uq,v,) and (up,vp) using the
internal calibration of the camera:

(“a-, 71&) = Fint([Xa-, Ya, Za]T)7
(up,v6) = Fint ([ X0, Ys, Z)7) = Fint(HF;} (110, va)) (5)

The image motion of the point satisfies the optical flow constraint:

Gutp — Ua) + go(vp —va) = —gr +v (6)

where g, gy, and g; are the spatial and temporal image gradients and v is the noise term.

Based on these relations, the parameters of the homography matrix can be estimated using the spatio-
temporal image gradients at every point (ug,v,) in the first image using non-linear least squares. Based on
these parameters, every point (uq,v,) on the ground plane in first frame corresponds to a point (up, vp,) in the
second frame. Using this transformation, the second image can be transformed to first frame, compensating
the image motion of the ground plane. The objects that have independent motion or height above ground do
not obey the motion model and their motion is not completely compensated. Taking the motion compensated
frame difference between adjacent video frames highlights these areas that are likely to contain pedestrians,
vehicles, or other obstacles. These regions of interest can then be classified using the classification stage.
Figure 3 shows detection of a pedestrian and vehicle from a moving platform. The details of the approach
are described in [15].
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Fig. 2. Chamfer matching illustration: (a) template of pedestrian (b) test image (c) edge image (d) distance transform
image (e) template hierarchy (partial) used for matching with distance transform (figure based on [27])

Depth Segmentation Using Binocular Stereo

Binocular stereo imaging can provide useful information about the depth of the objects from the cameras.
This information has been used for disambiguating pedestrians and other objects from features on ground
plane [18, 25, 26], segmenting images based on layers with different depths [14], handling occlusion between
pedestrians [25], and using the size-depth relation to eliminate extraneous objects [32]. For a pair of stereo
cameras with focal length f and baseline distance of B between the cameras situated at the height of H
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(©) (d

Fig. 3. Detection of people and vehicles using an omnidirectional camera on a moving platform [15] (a) estimated
motion based on parametric motion of ground plane (b) image pixels used for estimation. Gray pixels are inliers, and
white pixels are outliers. (¢) Motion-compensated image difference that captures independently moving objects (d)
detected vehicle and person

above the road as shown in Fig.4a. An object at distance D will have disparity of d = Bf/D between the
two cameras, that is inversely proportional to object distance. The ground in the same line of sight is farther
away and has a smaller disparity of dyg = Bf/Dsy. Based on this difference, objects having height above
the ground can be separated.

Stereo disparity computation can be performed using software packages such as SRI Stereo Engine [24].
Such software produces a disparity map that gives disparities of individual pixels in the image. In [17],
the concept of U-disparity proposed by Labayrade et al. [26] is used to identify potential obstacles in the
scene using images from a stereo pair of omnidirectional cameras as shown in Fig.4b. The disparity image
disp(u,v) generated by a stereo engine separates the pedestrian in a layer of nearly constant depth. U-
disparity udisp(u, d) image counts occurrences of every disparity d for each column v in the image. In order
to suppress the ground plane pixels, only the pixels with disparity significantly greater than ground plane
disparity are used.

udisp(u,d) = #{v|disp(u,v) = d, d > dpg(u,v) + dinresn } (7)

where # stands for number of elements in the set.

Pixels in an object at a particular distance would have nearly same disparity and therefore form a
horizontal ridge in the disparity histogram image. Even if disparities of individual object pixels are inaccurate,
the histogram image clusters the disparities and makes it easier to isolate the objects. Based on the position
of the line segments, the regions containing obstacles can be identified. The nearest (lowest) region with
largest disparity corresponds to the pedestrian. The parts of the virtual view image corresponding to the
U-disparity segments can then be sent to classifier for distinguishing between pedestrians and other objects.
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Fig. 4. (a) Stereo geometry (top and side views). The disparity between image positions in the two cameras decrease
with object distance. (b) Stereo based pedestrian candidate generation [17]: Row 1: Color images from a stereo
pair of omni camera containing pedestrian. Row 2: Virtual front view images generated from omni images. Row 3:
Superimposed front view images and disparity image with lighter shades showing nearer objects with larger disparity.
Row 4: U-disparity image taking histogram of disparities for each column. The lower middle segment in U-disparity
image corresponds to the pedestrian. Other segments corresponds to more distant structures above the ground (figure
based on [17])
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Fig. 5. Validation stage for pedestrian detection. Training phase uses positive and negative images to extract features
and train a classifier. Testing phase applies feature extractor and classifier to candidate regions of interest in the images

3.2 Candidate Validation

The candidate generation stage generates regions of interest (ROI) that are likely to contain a pedestrian.
Characteristic features are extracted from these ROIs and a trained classifier is used to separate pedestrian
from the background and other objects. The input to the classifier is a vector of raw pixel values or character-
istic features extracted from them, and the output is the decision showing whether a pedestrian is detected
or not. In many cases, the probability or a confidence value of the match is also returned. Figure 5 shows
the flow diagram of validation stage.

Feature Extraction

The features used for classification should be insensitive to noise and individual variations in appearance and
at the same time able to discriminate pedestrians from other objects and background clutter. For pedestrian
detection features such as Haar wavelets [28], histogram of oriented gradients [13], and Gabor filter outputs
[12], are used.

Haar Wavelets

An object detection system needs to have a representation that has high inter-class variability and low intra-
class variability [28]. For this purpose, features must be identified at resolutions where there will be some
consistency throughout the object class, while at the same time ignoring noise. Haar wavelets extract local
intensity gradient features at multiple resolution scales in horizontal, vertical, and diagonal directions and
are particularly useful in efficiently representing the discriminative structure of the object. This is achieved
by sliding the wavelet functions in Fig. 6 over the image and taking inner products as:

ok 12k 1

wi(m,n) = Z Z om0 F(2F T m +m/ 25 4 ) (8)

m=0 n=0

where f is the original image, 1, is any of the wavelet functions at scale k with support of length 2%, and
27 is the over-sampling rate. In the case of standard wavelet transforms, k = 0 and the wavelet is translated
at each sample by the length of the support as shown in Fig. 6. However, in over-complete representations,
k > 0 and the wavelet function is translated only by a fraction of the length of support. In [28] the over-
complete representation with quarter length sampling is used in order to robustly capture image features.



Computer Vision and Machine Learning for Enhancing Pedestrian Safety 67

+1 ER |:
H

scaling function vertical standard
-1 1 1
+1 -1 +1
horizontal diagonal overcomplete

(a)

|
®)

Pedestrian 16x 16 32x32

Fig. 6. Haar wavelet transform framework. Left: Scaling and wavelet functions at a particular scale. Right: Standard
and overcomplete wavelet transforms (figure based on [28])

The wavelet transform can be concatenated to form a feature vector that is sent to a classifier. However, it is
observed that some components of the transform have more discriminative information than others. Hence,
it is possible to select such components to form a truncated feature vector as in [28] to reduce complexity
and speed up computations.

Histograms of Oriented Gradients

Histograms of oriented gradients (HOG) have been proposed by Dalal and Triggs [13] to classify objects such
as people and vehicles. For computing HOG, the region of interest is subdivided into rectangular blocks and
histogram of gradient orientations is computed in each block. For this purpose, sub-images corresponding
to the regions suspected to contain pedestrian are extracted from the original image. The gradients of the
sub-image are computed using Sobel operator [22]. The gradient orientations are quantized into K bins each
spanning an interval of 27/ K radians, and the sub-image is divided into M x N blocks. For each block (m, n)
in the subimage, the histogram of gradient orientations is computed by counting the number of pixels in
the block having the gradient direction of each bin k. This way, an M x N x K array consisting of M x N
local histograms is formed. The histogram is smoothed by convolving with averaging kernels in position and
orientation directions to reduce sensitivity to discretization. Normalization is performed in order to reduce
sensitivity to illumination changes and spurious edges. The resulting array is then stacked into a B = M NK
dimensional feature vector x. Figure 7 shows examples with pedestrian snapshots along with the HOG
representation shown by red lines. The value of a histogram bin for a particular position and orientation is
proportional to the length of the respective line.

Classification

The classifiers employed to distinguish pedestrians from non-pedestrian objects are usually trained using fea-
ture vectors extracted from a number of positive and negative examples to determine the decision boundary
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Fig. 7. Pedestrian subimages with computed Histograms of Oriented Gradients (HOG). The image is divided into
blocks and the histogram of gradient orientations is individually computed for each block. The lengths of the red
lines correspond to the frequencies of image gradients in the respective directions

between them. After training, the classifier processes unknown samples and decides the presence or absence
of the object based on which side of the decision boundary the feature vector lies. The classifiers used for
pedestrian detection include Support Vector Machines (SVM), Neural Networks, and AdaBoost, which are
described here.

Support Vector Machines

The Support Vector Machine (SVM) forms a decision boundary between two classes by maximizing the
“margin,” i.e., the separation between nearest examples on either side of the boundary [11]. SVM in con-
junction with various image features are widely used for pedestrian recognition. For example, Papageorgiou
and Poggio [28] have designed a general object detection system that they have applied to detect pedes-
trians for a driver assistance. The system uses SVM classifier on Haar wavelet representation of images. A
support vector machine is trained using a large number of positive and negative examples from which the
image features are extracted. Let x; denote the feature vector of sample ¢ and y; denote one of the two class
labels in {0,1}. The feature vector x; is projected into a higher dimensional kernel space using a mapping
function @ which allows complex non-linear decision boundaries. The classification can be formulated as an
optimization problem to find a hyperplane boundary in the kernel space:

wld(x;) +b=0 (9)
using

L
1
. T
Jnin wiw —vpt ;& (10)
subject to
wiB(xi)+b>p—&, & >0i=1...L,p>0

where v is the parameter to accommodate training errors and £ is used to account for some samples that
are not separated by the boundary. Figure 8 illustrates the principle of SVM for classification of samples.
The problem is converted into the dual form which is solved using quadratic programming [11]:

L L
miny Y ey (xi %;)y;0; (11)
i=1 j=1
subject to
L L
0<ai <1/LY ai>v, Yy oy =0 (12)
i=1 i=1

where K (x;,%x;) = ®(x;)T®(x;) is the kernel function derived from the mapping function @, and represents
the distance in the high-dimensional space. It should be noted that the kernel function is usually much easier
to compute than the mapping function @. The classification is then given by the decision function:
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Fig. 8. Illustration of Support Vector Machine principle. (a) Two classes that cannot be separated by a single
straight line. (b) Mapping into Kernel space. SVM finds a line separating two classes to minimize the “margin,” i.e.,
the distance to the closest samples called ‘Support Vectors’

L
D(x) = Z ;i K(x;,x) + b (13)

Neural Networks

Neural networks have been used to address problems in vehicle diagnostics and control [31]. They are par-
ticularly useful when the phenomenon to be modeled is highly complex but one has large amount of training
data to enable learning of patterns from them. Neural networks can obtain highly non-linear boundaries
between classes based on the training samples, and therefore can account for large shape variations. Zhao
and Thorpe [41] have applied neural networks on gradient images of regions of interest to identify pedestrians.
However, unconstrained neural networks require training of a large number of parameters necessitating very
large training sets. In [21, 27], Gavrila and Munder use Local receptive fields (LRF) proposed by Wéhler and
Anlauf [39] (Fig. 9) to reduce the number of weights by connecting each hidden layer neuron only to a local
region of input image. Furthermore, the hidden layer is divided into a number of branches, each encoding
a local feature, with all neurons within a branch sharing the same set of weights. Each hidden layer can be
represented by the equation:

Grr)=f {Z Wii F(T(r) + Ary) (14)

where F(p) denotes the input image as a function of pixel coordinates p = (z,y), G(r) denotes the output
of the neuron with coordinate r = (r5, ry) in the branch k of the hidden layer, W, are the shared weights for
branch k, and f(-) is the activation function of the neuron. Each neuron with coordinates of r is associated
with a region in the image around the transformed pixel ¢ = T'(r), and Ar; denote the displacements for

pixels in the region. The output layer is a standard fully connected layer given by:
H,, = f |:Z w7nk(way)Gk(w7y):| (15)
i

where H,, is the output of neuron m in output layer, w,,; is the weight for connection between output
neuron m and hidden layer neuron in branch k with coordinate (z,y).

LeCun et al. [40] describe similar weight-shared and grouped networks for application in document
analysis.
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Fig. 9. Neural network architecture with Local Receptive Fields (figure based on [27])

Adaboost Classifier

Adaboost is a scheme for forming a strong classifier using a linear combination of a number of weak classi-
fiers based on individual features [36, 37]. Every weak classifier is individually trained on a single feature.
For boosting the weak classifier, the training examples are iteratively re-weighted so that the samples which
are incorrectly classified by the weak classifier are assigned larger weights. The final strong classifier is a
weighted combination of weak classifiers followed by a thresholding step. The boosting algorithm is described
as follows (8, 36]:

e Let x; denote the feature vector and y; denote one of the two class labels in {0,1} for negative and
positive examples, respectively
e Initialize weights w; to 1/2M for each of the M negative samples and 1/2L for each of the L positive
samples
o [Iterate fort=1...T
—  Normalize weights: wy; < wy,i/ >\ Wik
For each feature j, train classifier h; that uses only that feature. Evaluate weighted error for all
samples as: €; = Y, wy,i|h;(x:) — yi
— Choose classifier h; with lowest error €;
)1*\hg(xz)*yz\

1—e

—  Update weights: wy41,; < we; ( “



Computer Vision and Machine Learning for Enhancing Pedestrian Safety 71

The final strong classifier decision is given by the linear combination of weak classifiers and

1—e€¢
€t

thresholding the result: >, ayhy(x) > 3, ay/2 where oy = log (

4 Infrastructure Based Systems

Sensors mounted on vehicles are very useful for detecting pedestrians and other vehicles around the host
vehicle. However, these sensors often cannot see objects that are occluded by other vehicles or stationary
structures. For example, in the case of the intersection shown in Fig. 10, the host vehicle X cannot see the
pedestrian P occluded by a vehicle Y as well as the vehicle Z occluded by buildings. Sensor C mounted on
infrastructure would be able to see all these objects and help to fill the ‘holes’ in the fields of view of the
vehicles. Furthermore, if vehicles can communicate with each other and the infrastructure, they can exchange
information about objects that are seen by one but not seen by others. In the future, infrastructure based
scene analysis as well as infrastructure-vehicle and vehicle-vehicle communication will contribute towards
robust and effective working of Intelligent Transportation Systems.

Cameras mounted in infrastructure have been extensively applied to video surveillance as well as traffic
analysis [34]. Detection and tracking of objects from these cameras is easier and more reliable due to absence
of camera motion. Background subtraction which is one of the standard methods to extract moving objects
from stationary background is often employed, followed by classification of objects and activities.

4.1 Background Subtraction and Shadow Suppression

In order to separate moving objects from background, a model of the background is generated from multiple
frames. The pixels not satisfying the background model are identified and grouped to form regions of interest
that can contain moving objects. A simple approach for modeling the background is to obtain the statistics
of each pixel described by color vector x = (R, G, B) over time in terms of mean and variance. The mean
and variance are updated at every time frame using:

p—1—-a)p+ax

0* — (1-a)o +afx— ) (x ) (16)
If for a pixel at any given time, ||x — p| /o is greater than a threshold (typically 2.5), the pixel is classi-
fied as foreground. Schemes have been designed that adjust the background update according to the pixel

V4

Fig. 10. Contribution of sensors mounted in infrastructure. Vehicle X cannot see pedestrian P or vehicle Z, but the
infrastructure mounted camera C can see all of them
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currently being in foreground or background. More elaborate models such as Gaussian Mixture Models [33]
and codebook model [23] are used to provide robustness against fluctuating motion such as tree branches,
shadows, and highlights.

An important problem in object-background segmentation is the presence of shadows and highlights of
the moving objects, which need to be suppressed in order to get meaningful object boundaries. Prati et al.
[30] have conducted a survey of approaches used for shadow suppression. An important cue for distinguishing
shadows from background is that the shadow reduces the luminance value of a background pixel, with little
effect on the chrominance. Highlights similarly increase the value of luminance. On the other hand, objects
are more likely to have different color from the background and brighter than the shadows. Based on these
cues, bright objects can often be separated from shadows and highlights.

4.2 Robust Multi-Camera Detection and Tracking

Multiple cameras offer superior scene coverage from all sides, provide rich 3D information, and enable robust
handling of occlusions and background clutter. In particular, they can help to obtain the representation
of the object that is independent of viewing direction. In [29], multiple cameras with overlapping fields of
view are used to track persons and vehicles. Points on the ground plane can be projected from one view to
another using a planar homography mapping. If (u1,v1) and (ug,vs) are image coordinates of a point on
ground plane in two views, they are related by the following equations:

~ hirug + hagvr + has ~ horug + hogvr + hos

- = 17
27 harur + haovy +has’ © hayun + hasvr + hag (17

The matrix H formed from elements h;; is the Homography matrix. Multiple views of the same object are
transformed by planar homography which assumes that pixels lie on ground plane. Pixels that violate this
assumption result in mapping to a skewed location. Hence, the common footage region of the object on
ground can be obtained by intersecting multiple projections of the same object on the ground plane. The
footage area on the ground plane gives an estimate of the size and the trajectory of the object, independent
of the viewing directions of the cameras. Figure 11 depicts the process of estimating the footage area using
homography. The locations of the footage areas are then tracked using Kalman filter in order to obtain object
trajectories.

4.3 Analysis of Object Actions and Interactions

The objects are classified into persons and vehicles based on their footage area. The interaction among
persons and vehicles can then be analyzed at semantic level as described in [29]. Each object is associated
with spatio-temporal interaction potential that probabilistically describes the region in which the object can
be subsequent time. The shape of the potential region depends on the type of object (vehicle/pedestrian)
and speed (larger region for higher speed), and is modeled as a circular region around the current position.
The intersection of interaction potentials of two objects represents the possibility of interaction between
them as shown in Fig.12a. They are categorized as safe or unsafe depending on the site context such as
walkway or driveway, as well as motion context in terms of trajectories. For example, as shown in Fig. 12b, a
person standing on walkway is normal scenario, whereas the person standing on driveway or road represents
a potentially dangerous situation. Also, when two objects are moving fast, the possibility of collision is higher
than when they are traveling slowly. This domain knowledge can be fed into the system in order to predict
the severity of the situation.

5 Pedestrian Path Prediction

In addition to detection of pedestrians and vehicles, it is important to predict what path they are likely to
take in order to estimate the possibility of collision. Pedestrians are capable of making sudden maneuvers
in terms of the speed and direction of motion. Hence, probabilistic methods are most suitable for predicting
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Fig. 11. (a) Homography projection from two camera views to virtual top views. The footage region is obtained by
the intersection of the projections on ground plane. (b) Detection and mapping of vehicles and a person in virtual
top view showing correct sizes of objects [29]

the pedestrian’s future path and potential collisions with vehicles. In fact, even for vehicles whose paths are
easier to predict due to simpler dynamics, predictions beyond 1 or 2 seconds is still very challenging, making
probabilistic methods valuable even for vehicles.

For probabilistic prediction, Monte-Carlo simulations can be used to generate a number of possible
trajectories based on the dynamic model. The collision probability is then predicted based on the fraction
of trajectories that eventually collide with the vehicle. Particle filtering [10] gives a unified framework for
integrating the detection and tracking of objects with risk assessment as in [8]. Such a framework is shown
in Fig. 13a with following steps:

1. Every tracked object can be modeled using a state vector consisting of properties such as 3-D position,
velocity, dimensions, shape, orientation, and other appropriate attributes. The probability distribution of
the state can then be modeled using a number of weighted samples randomly chosen according to the
probability distribution.

2. The samples from the current state are projected to the sensor fields of view. The detection module would
then produce hypotheses about the presence of vehicles. The hypotheses can then be associated with the
samples to produce likelihood values used to update the sample weights.
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Fig. 12. (a) Schematic diagrams for trajectory analysis in spatio-temporal space. Circles represent interaction poten-
tial boundaries at a given space/time. Red curves represent the envelopes of the interaction boundary along tracks.
(b) Spatial context dependency of human activity (c¢) Temporal context dependency of interactivity between two
objects. Track patterns are classified into normal (open circle), cautious (open triangle) and abnormal (times) [29]

3. The object state samples can be updated at every time instance using the dynamic models of pedestrians
and vehicles. These models put constraints on how the pedestrian and vehicle can move over short and
long term.

4. In order to predict collision probability, the object state samples are extrapolated over a longer period of
time. The number of samples that are on collision course divided by the total number of samples gives
the probability of collision.

Various dynamic models can be used for predicting the positions of the pedestrians at subsequent time.
For example, in [38], Wakim et al. model the pedestrian dynamics using Hidden Markov Model with four
states corresponding to standing still, walking, jogging, and running as shown in Fig. 13b. For each state,
the probability distributions of absolute speed as well as the change of direction is modeled by truncated
Gaussians. Monte Carlo simulations are then used to generate a number of feasible trajectories and the
ratio of the trajectories on collision course to total number of trajectories give the collision probability. The
European project CAMELLIA [5] has conducted research in pedestrian detection and impact prediction
based in part on [8, 38]. Similar to [38], they use a model for pedestrian dynamics using HMM. They use the
position of pedestrian (sidewalk or road) to determine the transition probabilities between different gaits and
orientations. Also, the change in orientation is modeled according to the side of the road that the pedestrian
is walking.

In [9], Antonini et al. another approach called “Discrete Choice Model” which a pedestrian makes a
choice at every step about the speed and direction of the next step. Discrete choice models associate a utility
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Fig. 13. (a) Integration of detection, tracking, and risk assessment of pedestrians and other objects based on particle
filter [10] framework. (b) Transition diagram between states of pedestrians in [38]. The arrows between two states are
associated with non-zero probabilities of transition from one state to another. Arrows on the same state corresponds
to the pedestrian remaining in the same state in the next time step

value to every such choice and select the alternative with the highest utility. The utility of each alternative
is a latent variable depending on the attributes of the alternative and the characteristics of the decision-
maker. This model is integrated with person detection and tracking from static cameras in order to improve
performance. Instead of making hard decisions about target presence on every frame, it integrates evidence
from a number of frames before making a decision.

6 Conclusion and Future Directions
Pedestrian detection, tracking, and analysis of behavior and interactions between pedestrians and vehicles are

active research areas having important application in protection of pedestrians on road. Pattern classification
approaches are particularly useful in detecting pedestrians and separating them from background. It is
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seen that pedestrian detection can be performed using sensors on vehicle itself or in the infrastructure.
Vehicle based sensing gives continuous awareness of the scene around the vehicle and systems are being
designed to detect pedestrians from vehicles. However, it is also seen that relying on vehicle sensors is not
always sufficient to give full situational awareness of the scene. Infrastructure based sensors can play a
complementary role of providing wide area scene coverage. For seamless integration of information from
vehicle and infrastructure, efficient and reliable communication is needed. Communication can be performed
at image level or object level. However, transmitting full images over the network is likely to be very expensive
in terms of bandwidth. Hence, it would be desirable to perform initial detection locally and transmit candidate
positions and trajectories along with sub-images of candidate bounding boxes as needed. Future research will
be directed towards developing and standardizing these communications between vehicle and infrastructure
to efficiently convey all the information needed to get complete situational awareness of the scene.
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1 Introduction

The production pipeline of present day’s automobile manufacturers consists of a highly heterogeneous and
intricate assembly workflow that is driven by a considerable degree of interdependencies between the par-
ticipating instances as there are suppliers, manufacturing engineers, marketing analysts and development
researchers. Therefore, it is of paramount importance to enable all production experts to quickly respond
to potential on-time delivery failures, ordering peaks or other disturbances that may interfere with the
ideal assembly process. Moreover, the fast moving evolvement of new vehicle models require well-designed
investigations regarding the collection and analysis of vehicle maintenance data. It is crucial to track down
complicated interactions between car components or external failure causes in the shortest time possible to
meet customer-requested quality claims.

To summarize these requirements, let us turn to an example which reveals some of the dependencies men-
tioned in this chapter. As we will see later, a normal car model can be described by hundreds of variables each
of which representing a feature or technical property. Since only a small number of combinations (compared
to all possible ones) will represent a valid car configuration, we will present a means of reducing the model
space by imposing restrictions. These restrictions enter the mathematical treatment in the form of depen-
dencies since a restriction may cancel out some options, thus rendering two attributes (more) dependent.
This early step produces qualitative dependencies like “engine type and transmission type are dependent.”
To quantify these dependencies some uncertainty calculus is necessary to establish the dependence strengths.
In our cases probability theory is used to augment the model, e.g., “whenever engine type 1 is ordered, the
probability is 56% of having transmission type 2 ordered as well.” There is a multitude of sources to estimate
or extract this information from. When ordering peaks occur like an increased demand of convertibles during
the Spring, or some supply shortages arise due to a strike in the transport industry, the model is used to
predict vehicle configurations that may run into delivery delays in order to forestall such a scenario by, e.g.,
acquiring alternative supply chains or temporarily shifting production load. Another part of the model may
contain similar information for the aftercare, e.g., “whenever a warranty claim contained battery type 3,
there is a 30% chance of having radio type 1 in the car.” In this case dependencies are contained in the
quality assessment data and are not known beforehand but are extracted to reveal possible hidden design
flaws.

These examples — both in the realm of planning and subsequent maintenance measures — call for treatment
methods that exploit the dependence structures embedded inside the application domains. Furthermore, these
methods need to be equipped with dedicated updating, revision and refinement techniques in order to cope
with the above-mentioned possible supply and demand irregularities. Since every production and planning
stage involves highly specialized domain experts, it is necessary to offer intuitive system interfaces that are
less prone to inter-domain misunderstandings.

The next section will sketch the underlying theoretical frameworks, after which we will present and discuss
successfully applied planning and analysis methods that have been rolled out to production sites of two large
automobile manufacturers. Section 3 deals with the handling of production planning at Volkswagen. The
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underlying data is sketched in Sect. 3.1 which also covers the description of the model structure. Section 3.2
introduces three operations that serve the purpose of modifying the model and answering user queries.
Finally, Sect. 3.3 concludes the application report at Volkswagen. The Daimler AG application is introduced
in Sect. 4 which itself is divided to explain the data and model structure: Sect. 4.1 to propose the visualization
technique for data exploration (Sect.4.2) and finally Sect. 4.3 to present empirical evidence of the usability.

2 Graphical Models

As motivated in the introduction, there are a lot of dependencies and independencies that have to be
taken into account when to approach the task of planning and reasoning in complex domains. Graphical
models are appealing since they provide a framework of modeling independencies between attributes and
influence variables. The term “graphical model” is derived from an analogy between stochastic independence
and node separation in graphs. Let V = {A;,...,A,} be a set of random variables. If the underlying
probability distribution P(V') satisfies some criteria (see, e.g., [5, 13]), then it is possible to capture some of
the independence relations between the variables in V' using a graph G = (V, E), where E denotes the set
of edges. The underlying idea is to decompose the joint distribution P(V') into lower-dimensional marginal
or conditional distributions from which the original distribution can be reconstructed with no or at least
as few errors as possible [12, 14]. The named independence relations allow for a simplification of these
factor distributions. We claim, that every independence that can be read from a graph also holds in the
corresponding joint distribution. The graph is then called an independence map (see, e.g., [4]).

2.1 Bayesian Networks

If we are dealing with an acyclic and directed graph structure GG, the network is referred to as a Bayesian
network. The decomposition described by the graph consists of a set of conditional distributions assigned to
each node given its direct predecessors (parents). For each value of the attribute domains (dom), the original
distribution can be reconstructed as follows:

Vai € dom(Ay) : -+ Va, € dom(A4,) :
P(Alzah...,An:an): HP(Az:al\ /\ A]-:aj)

AieV (Aj,A)eEE

2.2 Markov Networks

Markov networks rely on undirected graphs where the lower-dimensional factor distributions are defined as
marginal distributions on the cliques C' = {C4, ..., C,} of the graph G. The original joint distribution P(V')
can then be recombined as follows:

Ya; € dom(4,) : ---Va, € dom(4,,) :
P(Ai=ai,..., A, =a,) = H ¢C7,< /\ A; = aj)

cieC A;eC;

For a detailed discussion on how to choose the functions ¢c,, see, e.g., [4].

3 Production Planning at Volkswagen Group

One goal of the project described here was to develop a system which plans parts demand for the production
sites of the Volkswagen Group [8]. The market strategy is strongly customer-focused — based on adaptable
designs and special emphasis on variety. Consequently, when ordering an automobile, the customer is offered
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several options of how each feature should be realized. The result is a very large number of possible car
variants. Since the particular parts required for an automobile depend on the variant of the car, the overall
parts demand can not be successfully estimated from total production numbers alone. The modeling of
domains with such a large number of possible states is very complex. Therefore, decomposition techniques
were applied and augmented by a set of operations on these subspaces that allow for a flexible parts demand
planning and also provide a useful tool to simulate capacity usage in projected market development scenarios.

3.1 Data Description and Model Induction

The first step towards a feasible planning system consists of the identification of valid vehicle variants. If
cars contain components that only work when combined with specific versions of other parts, changes in
the predicted rates for one component may have an influence on the demand for other components. Such
relations should be reflected in the design of the planning system.

A typical model of car is described by approximately 200 attributes, each consisting of at least 2, but
up to 50 values. This scaffolds a space of possible car variants with a cardinality of over 10%. Of course,
not every combination corresponds to a valid specification. To ensure only valid combinations, restrictions
are introduced in form of a rule system. Let us assume we are dealing with three variables E, T and B
representing engine type, transmission type and brake type with the following respective domains:

dom(E) = {ey,ez,e3}, dom(T) = {t1,t2,t3,ta}, dom(B) = {b1, b2, b3}
A set of rules could for example contain statements like

If T =t3 then B = by
or
If B = ey then T € {t2,t3}

A comprehensive set of rules cancels out invalid combinations and may result in our example in a relation
as depicted in Fig. 1.

It was decided to employ a probabilistic Markov network to represent the distribution of the value
combinations. Probabilities are thus interpreted in terms of estimated relative frequencies. Therefore, an
appropriate decomposition has to be found. Starting from a given rule base R and a production history to
estimate relative frequencies from, the graphical component is generated as follows: We start out with an
undirected graph G' = (V, E) where two variables F; and F; are connected by an edge (Fj, F;) € E if there
is a rule in R that contains both variables. To make reasoning efficient, it is desirable that the graph has
hypertree structure. This includes the triangulation of G, as well as the identification of its cliques. This
process is depicted in Fig. 2. To complete the model, for every clique a joint distribution for the variables of
that clique has to be estimated from the production history.
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Fig. 1. The 3-dimensional space dom(F) X dom(7') x dom(B) is thinned out by a rule set, sparing only the depicted
value combinations. Further, one can reconstruct the 3-dimensional relation § from the two projections dgr and dpr
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Triangulated graph

Cliques Hypertree representation

Fig. 2. Transformation of the model into hypertree structure. The initial graph is derived from the rule base. For
reasoning, the hypertree cliques have to have the running intersection property which basically allows for a composition
of the original distribution from the clique distributions. See [5] for details. This property can be asserted by requiring
the initial graph to be triangulated

3.2 Operations on the Model

A planning model that was generated using the above method, usually does not reflect the whole potential
of available knowledge. For instance, experts are often aware of differences between the production history
and the particular planning interval the model is meant to be used with. Thus, a mechanism to modify the
represented distribution is required. Planning operators have been developed [10] to efficiently handle this
kind of problem, so modification of the distribution and restoration of a consistent state can be supported.

Updating

Consider a situation where previously forbidden item combinations become valid. This can result for example
from changes in the rule base. The relation in Fig.1 does not allow engine type 2 to be combined with
transmission type 1 because (es,t;) ¢ E x T. If this option becomes valid probability mass, it has to be
transferred to the respective distribution. Another scenario would be the advent of a new engine type, i.e.,
a change in the domain itself. Then, a multitude of new probabilities have to be assessed. Another related
problem arises when subsets of cliques are altered while the information of the remaining network is retained.
Both scenarios are addressed with the updating operation.
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This operation marks these combinations as valid by assigning a positive near-zero probability to their
respective marginals. Due to this small value, the quality of the estimation is not affected by this alteration.
Now instead of using the same initialization for all new combinations, the proportion of the values is chosen
in accordance to an existing combination, i.e., the probabilistic interaction structure is copied from reference
item combinations.

Since updating only provides the qualitative aspect of the dependence structure, it is usually followed by
the subsequent application of the revision operation, which is used to reassign probability mass to the new
item combinations.

Revision

The revision operation, while preserving the network structure, serves to modify quantitative knowledge in
such a way that the revised distribution becomes consistent with the new specialized information. There is
usually no unique solution to this task. However, it is desirable to retain as much of the original distribution
as possible so that the principle of minimal change [7] should be applied. Given that, a successful revision
holds a unique result [9]. As an example for a specification, experts might predict a rise of the popularity of a
recently introduced navigation system and set the relative frequency of this respective item from 20 to 30%.

Focusing

While revision and updating are essential operations for building and maintaining a distribution model, it
is much more common activity to apply the model for the exploration of the represented knowledge and its
implications with respect to user decisions. Typically users would want to concentrate on those aspects of the
represented knowledge that fall into their domain of expertise. Moreover, when predicting parts demand from
the model, one is only interested in estimated rates for particular item combinations. Such activities require
a focusing operation. It is implemented by performing evidence-driven conditioning on a subset of variables
and distributing the information through the network. Apart from predicting parts demand, focusing is
often employed for market analyses and simulation. By analyzing which items are frequently combined by
customers, experts can tailor special offers for different customer groups. To support planning of buffer
capacities, it is necessary to deal with the eventuality of temporal logistic restrictions. Such events would
entail changes in short-term production planning so that consumption of the concerned parts is reduced.

3.3 Application

The development of the planning system explained was initiated in 2001 by the Volkswagen Group. System
design and most of the implementation is currently done by Corporate IT. The mathematical modeling,
theoretical problem solving, and the development of efficient algorithms have been entirely provided by
Intelligent Systems Consulting (ISC) Gebhardt. Since 2004 the system is being rolled out to all trademarks
of the Volkswagen Group. With this software, the increasing planning quality, based on the many innovative
features and the appropriateness of the chosen model of knowledge representation, as well as a consider-
able reduction of calculation time turned out to be essential prerequisites for advanced item planning and
calculation of parts demand in the presence of structured products with an extreme number of possible
variants.

4 Vehicle Data Mining at Daimler AG

While the previous section presented techniques that were applied ahead-of-time, i.e., prior and during the
manufacturing process, we will now turn to the area of assessing the quality of cars after they left the assembly
plant. For every car that is sold, a variety of data is collected and stored in corporate-wide databases. After
every repair or checkup the respective records are updated to reflect the technical treatment. The analysis
scenario discussed here is the interest of the automobile manufacturer to investigate car failures by identifying
common properties that are exposed by specific subsets of cars that have a higher failure rate.
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4.1 Data Description and Model Induction

As stated above, the source of information consists of a database that contains for every car a set of up to
300 attributes that describe the configuration of every car that has been sold.

The decision was made to use Bayesian networks to model the dependence structure between these
attributes to be able to reveal possible interactions of vehicle components that cause higher failure rates.
The induction of a Bayesian network consists of identifying a good candidate graph that encodes the inde-
pendencies in the database. The goodness of fit is estimated by an evaluation measure. Therefore, usual
learning algorithms consist of two parts: a search method and the mentioned evaluation measure which may
guide the search. Examples for both parts are studied in [2, 6, 11].

Given a network structure, an expert user will gain first insights into the corresponding application
domain. In Fig. 3 one could identify the road surface conditions to have a major (stochastic) impact on the
failure rate and type. Of course, arriving at such a model is not always a straightforward task since the
available database may lack some entries requiring the treatment of missing values. In this case possibilistic
networks [3] may be used. However, with full information it might still be problematic to extract significant
statistics since there may be value combinations that occur too scarcely. Even if we are in the favorable
position to have sufficient amounts of complete data, the bare network structure does not reveal information
about which which road conditions have what kind of impact on which type of failure. Fortunately, this
information can be retrieved easily in form of conditional probabilities from the underlying dataset, given
the network structure. This becomes clear if the sentence above is re-stated: Given a specific road surface
condition, what is the failure probability of a randomly picked vehicle?

4.2 Model Visualization

Every attribute with its direct parent attributes encodes a set of conditional probability distributions. For
example, given a database D, the sub-network consisting of Failure, RoadSurface and Temperature in Fig. 3
defines the following set of distributions:

Pp(Failure | Temperature, RoadSurface)

For every distinct combination of values of the attributes RoadSurface and Temperature, the conditional
probability of the attribute Failure is estimated (counted) from the database D. We will argue in the
next section, that it is this information that enables the user to gain better insight into the data under
consideration [15].

Climate Zone

Precipitation

( Road Surface >

Fig. 3. An example of a Bayesian network illustrating qualitative linkage of components
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Given an attribute of interest (in most cases the class variable like Failure in the example setting) and its
conditioning parents, every probability statement like

P(Failure = Suspension | RoadSurface = rough, Temperature = low) = p*

can be considered an association rule':

If RoadSurface = rough A Temperature = low, then there will be a suspension failure in 100 - p*% of
all cases.

The value p* is then the confidence of the corresponding association rule. Of course, all known evaluation
measures can be applied to assess the rules. With the help of such measures one can create an intuitive visual
representation according to the following steps:

e For every probabilistic entry (i.e., for every rule) of the considered conditional distribution P(C' |
Ay, ..., Ap) acircle is generated to be placed inside a two-dimensional chart.

e The gray level (or color in the real application) of the circle corresponds the the value of attribute C.

e The circle’s area corresponds to the value of some rule evaluation measure selected before displaying.
For the remainder of this chapter, we choose this measure to be the support, i.e., the relative number of
vehicles (or whatever instances) specified by the values of C and Ay, ..., A,,. Therefore, the area of the
circle corresponds to the number of vehicles.

e In the last step these circles are positioned. Again, the value of the x- and y-coordinate are determined
by two evaluation measures selected in advance. We suggest these measures to be recall? and lift.? Circles
above the darker horizontal line in every chart mark subsets with a lift greater than 1 and thus indicate
that the failure probability is larger given the instantiation of A;,..., A, in contrast to the marginal
failure probability P(C' = c).

With these prerequisites we can recommend to the user the following heuristic in order to identify
suspicious subsets:

Sets of instances in the upper right hand side of the chart may be good candidates for a closer
inspection.

The greater the y-coordinate (i.e., the lift value) of a rule, the stronger is the impact of the conditioning
attributes’ values on the class variable. Larger x-coordinates correspond to higher recall values.

4.3 Application

This section illustrates the proposed visualization method by means of three real-world datasets that were
analyzed during a cooperate research project with a automobile manufacturer. We used the K2 algorithm? [6]
to induce the network structure and visualized the class variable according to the given procedure.

Example 1

Figure 4 shows the analysis result of 60,000 vehicles. The chart only depicts failed cars. Attributes
Transmission and Country had most (stochastic) impact on the Class variable. The subset labeled 1 was
re-identified by experts as a problem already known. Set 2 could not be given a causal explanation.

! See [1] for details.
2 The recall is definded as PAi=ai,...,Ar=ar | C =c).

3 The lift of a rule indicates the ratio between confidence and the marginal failure rate; ©(C=¢l41=at....Ak=ak)

P(C=c)

4Tt is a greedy approach that starts with a single attribute (here: the class attribute) and tries to add parent
attributes greedily. If no addition of an attribute yields a better result, the process continues at the just inserted
parent attributes. The quality of a given network is measured with the K2 metric (a Bayesian model averaging
metric).
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Fig. 4. The subset marked 1 corresponds to approx. 1,000 vehicles whose attributes values of Country and Transmission
yielded a causal relationship with the class variable. Unfortunately, there was not found a causal description of
subset 2. The cluster of circles below the lift-1 line corresponds to sets of cars that fail less often, if their instantiations
of attributes become known

Example 2

The second dataset consisted of 300,000 cars that exposed a many-valued class variable, hence the different
gray levels of the circles in Fig. 5. Although there was no explanation for the sets 3, the subset 4 represented
900 cars the increased failure rate of which could be tracked down to the respective values of the attributes
Mileage and RoadSurface.

Example 3

As the last example, the same dataset as in example 2 yielded the result as shown in Fig. 6. Here, an expert
user changed the conditioning attributes manually and identified the set 5 which represented a subset of cars
whose failure type and rate were affected by the respective attribute values.

User Acceptance

The proposed visualization technique has proven to be a valuable tool that facilitates the identification of
subsets of cars that may expose a critical dependence between configuration and failure type. Generally, it
represents an intuitive way of displaying high-dimensional, nominal data. A pure association rule analysis
needs heavy postprocessing of the rules since a lot of rules are generated due to the commonly small failure
rate. The presented approach can be considered a visual exploration aid for association rules. However, one
has to admit that the rules represented by the circles share the same attributes in the antecedence, hence
the sets of cars covered by these rules are mutually disjoint, which is a considerable difference to general
rule sets.
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Fig. 5. Although it was not possible to find a reasonable description of the vehicles contained in subsets 3, the
attribute values specifying subset 4 were identified to have a causal impact on the class variable
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Fig. 6. In this setting the user selected the parent attributes manually and was able to identify the subset 5, which
could be given a causal interpretation in terms of the conditioning attributes Temperature and Mileage
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5 Conclusion

This paper presented an empirical evidence that graphical models can provide a powerful framework for
data- and knowledge-driven applications with massive amounts of information. Even though the underlying
data structures can grow highly complex, both presented projects implemented at two automotive companies
result in effective complexity reduction of the methods suitable for intuitive user interaction.
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Summary. Rule extraction for root cause analysis in manufacturing process optimization is an alternative to tradi-
tional approaches to root cause analysis based on process capability indices and variance analysis. Process capability
indices alone do not allow to identify those process parameters which have the major impact on quality since these
indices are only based on measurement results and do not consider the explaining process parameters. Variance
analysis is subject to serious constraints concerning the data sample used in the analysis. In this work a rule search
approach using Branch and Bound principles is presented, considering both the numerical measurement results and
the nominal process factors. This combined analysis allows to associate the process parameters with the measurement
results and therefore to identify the main drivers for quality deterioration of a manufacturing process.

1 Introduction

An important group of intelligent methods is concerned with discovering interesting information in large
data sets. This discipline is generally referred to as Knowledge Discovery or Data Mining.

In the automotive domain, large data sets may arise through on-board measurements in cars. However,
more typical sources of huge data amounts are in vehicle, aggregate or component manufacturing process.
One of the most prominent applications is the manufacturing quality control, which is the topic of this
chapter.

Knowledge discovery subsumes a broad variety of methods. A rough classification may be into:

e Machine learning methods
e Neural net methods
e Statistics

This partitioning is neither complete nor exclusive. The methodical frameworks of machine learning methods
and neural nets have been extended by aspects covered by classical statistics, resulting in a successful
symbiosis of these methods.

An important stream within the machine learning methods is committed to a quite general representation
of discovered knowledge: the rule based representation. A rule has the form x — y, x and y being, respectively
the antecedent and the consequent. The meaning of the rule is: if the antecedent (which has the form of a
logical expression) is satisfied, the consequent is sure or probable to be true.

The discovery of rules in data can be simply defined as a search for highly informative (i.e., interesting
from the application point of view) rules. So the most important subtasks are:

1. Formulating the criterion to decide to which extent a rule is interesting
2. Using an appropriate search algorithm to find those rules that are the most interesting according to this
criterion

The research of the last decades has resulted in the formulation of various systems of interestingness criteria
(e.g., support, confidence or lift), and the corresponding search algorithms.

T. Hrycej and C.M. Strobel: Extraction of Mazimum Support Rules for the Root Cause Analysis, Studies in Computational Intelligence
(SCI) 132, 89-99 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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However, general algorithms may miss the goal of a particular application. In such cases, dedicated
algorithms are useful. This is the case in the application domain reported here: the root cause analysis for
process optimization.

The indices for quality measurement and our application example are briefly presented in Sect. 2. The
goal of the application is to find manufacturing parameters to which the quality level can be attributed. In
order to accomplish this, rules expressing relationships between parameters and quality need to be searched
for. This is what our rule extraction search algorithm based on Branch and Bound principles of Sect. 3
performs. Section 5 shows results of our comparative simulations documenting the efficiency of the proposed
algorithm.

2 Root Cause Analysis for Process Optimization

The quality of a manufacturing process can be seen as the ability to manufacture a certain product within its
specification limits U, L and as close as possible to its target value T', describing the point where its quality is
optimal. A deviation from 7" generally results in quality reduction, and minimizing this deviation is crucial for
a company to be competitive in the marketplace. In literature, numerous process capability indices (PCIs)
have been proposed in order to provide a unitless quality measures to determine the performance of a
manufacturing process, relating the preset specification limits to the actual behavior [6].

The behavior of a manufacturing process can be described by the process variation and process location.
Therefore, to assign a quality measure to a process, the produced goods are continuously tested and the
performance of the process is determined by calculating its PCI using the measurement results. In some
cases it is not feasible to test/measure all goods of a manufacturing process, as the inspection process might
be too time consuming, or destructive. Only a sample is drawn, and the quality is determined upon this
sample set. In order to predict the future quality of a manufacturing process based on the past performance,
the process is supposed to be stable or in control. This means that both process mean and process variation
have to be, in the long run, in between pre-defined limits. A common technique to monitor this is control
charts, which are an essential part of the Statistical Process Control.

The basic idea for the most common indices is to assume the considered manufacturing process follows
a normal distribution and the distance between the upper and lower specification limit U and L equals 120.
This requirement implies a lot fraction defective of the manufacturing process of no more than 0.00197 ppm
= 0% and reflects the widespread Siz-Sigma principle (see [7]). The commonly recognized basic PCIs Cp,
Cpm, Cpi and Cppyp can be summarized by a superstructure first introduced by Vannman [9] and referred
to in literature as Cp(u, v)

d —ulp— M|
3y/02 +v(u — )2’
where o is the process standard deviation, p the process mean, d = (U — L) /2 tolerance width, m = (U+L)/2
the mid-point between the two specification limits and T the target value. The basic PCIs can be obtained
by choosing v and v according to

C’p(uvv) = (1)

CP( 70)
Cp(1,1).

The estimators for these indices are obtained by substituting ; by the sample mean X = S, Xi/n and
o by the sample variance S? = 37| (X; — X)?/(n — 1). They provide stable and reliable point estimators
for processes following a normal distribution. However, in practice, normality is hardly encountered. Con-
sequently the basic PCIs as defined in (1) are not appropriate for processes with non-normal distributions.
What is really needed are indices which do not make assumptions about the distribution, in order to be
useful for measuring quality of a manufacturing process

Cp = Cp(0,0); Cpp
= 1 Cpmk

1
| (2)

! (u, ) = d—ulm— M|
3\/[F99.860gFU,135]2 + 1,(m _ T)Z
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In 1997, Pearn and Chen introduced in their paper [8] a non-parametric generalization of the PCIs superstruc-
ture (1) in order to cover those cases in which the underlying data does not follow a Gaussian distribution.
The authors replaced the process standard deviation ¢ by the 99.865 and 0.135 quantiles of the empiric
distribution function and p by the median of the process. The rationale for it is that the difference between
the Fyg 865 and Fj 135 quantiles equals again 60 or Clg(u,v) = 1, under the standard normal distribution
with m = M = T. As an analogy to the parametric superstructure (1), the special non-parametric PCIs Cy,
Chms Cpy and €}, can be obtained by applying u and v as in (2).

Assuming that the following assumptions hold, a class of non-parametric process indices and a particular
specimen thereof can be introduced: Let Y : 2 — R be a random variable with Y(w) = (Y!,...,Y™) €
S={S8"x---x 8™}, 5" € {si,...,sh,} where si € N describe the possible influence variables or process
parameters. Furthermore, let X : 2 — R be the corresponding measurement results with X (w) € R. Then
the pair X = (X,Y) denotes a manufacturing process and a class of process indices can be defined as

Definition 1. Let X = (X,Y) describe a manufacturing process as defined above. Furthermore, let f(x,y)
be the density function of the underlying process and w : R — R an arbitrary measurable function. Then

Qu.x = E(w(x)[Y €8) = E(Z;((‘Qlé‘f;f}) (4)

defines a class of process indices.

Obviously, if w(z) = z or w(z) = 2% we obtain the first and the second moment of the process, respectively, as
P(Y € S) = 1. However, to determine the quality of a process, we are interested in the relationship between
the designed specification limits U, L and the process behavior described by its variation and location. A
possibility is to choose the function w(x) in such way that it becomes a function of the designed limits U
and L. Given a particular manufacturing process X with (z;,y;),4 = 1,...,n we can define

Definition 2. Let X = (X,Y) be a particular manufacturing process with realizations (z;,y;),i = 1,....,n
and U, L be specification limits. Then, the Empirical Capability Index (E,;) is defined as

) " W pem<ty iy
B, = izt (r<a<uliyiesy. 5)
2ici Lyiesy

By choosing the function w(z) as the identity function 1 (z<e<v), the E.; measures the percentage of data
points which are within the specification limits U and L. A disadvantage is that for processes with a relatively
good quality, it may happen that all sampled data points are within the Six-Sigma specification limits (i.e.,
C;, > 1), and so the sample E.; becomes one. To avoid this, the specification limits U and L have to be
relaxed to values realistic for the given sample size, in order to get “further into the sample”, by linking
them to the behavior of the process. One possibility is to choose empirical quantiles

[I’a U] = [Fon Fl—a]-

The drawback of using empirical quantiles as specification limits is that L and U do not depend anymore
on the actual specification limits U and L. But it is precisely the relation of the process behavior and
the designed limits which is essential for determining the quality of a manufacturing process. A combined
solution, which on one hand depends on the actual behavior and on the other hand incorporates the designed
specification limit U and L can be obtained by

o5 — LSL . USL — ji
Ho.5 . fios + , Ho.5

[L,U] = |fio,5 —
with ¢ € R being a adjustment factor. When setting ¢ = 4 the new specification limits incorporate the
Siz-Sigma principle, assuming the special case of a centralized normally distributed process.

As stated above, the described PCIs only provide a quality measure but do not identify the major influence
variables responsible for poor or superior quality. But knowing these factors is necessary to continuously
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Table 1. Measurement results and process parameters for the optimization at a foundry of an automotive
manufacturer

Result Tool Shaft Location

60092 1 1  Right
6008 4 2 Right
60061 4 2 Right
6.0067 1 2 Left

60076 4 1  Right
6.0082 2 2 Left

60075 3 1  Right
60077 3 2 Right
60061 2 1  Left

60063 1 1  Right
60063 1 2  Right

improve a manufacturing process in order to produce high quality products in the long run. In practice it
is desirable to know, whether there are subsets of influence variables and their values, such that the quality
of a process becomes better, if constraining the process by only these parameters. In the following section
a non-parametric, numerical approach for identifying those parameters is derived and an algorithm, which
efficiently solves this problem is presented.

2.1 Application Example

To illustrate the basic ideas of the employed methods and algorithms, an example is used throughout this
paper, including an evaluation in the last section. This example is a simplified and anonymized version of a
manufacturing process optimization at a foundry of a premium automotive manufacturer.

In Table 1 an excerpt from the data sheet for such a manufacturing process is shown which is used for
further explanations. There are some typical influence variables (i.e., process parameters, relevant for the
quality of the considered product) as the used tools, locations and used shafts, each with their specific values
for each manufacture specimen. Additionally, the corresponding quality measurement (column “Result”) —
a geometric property or the size of a drilled hole — is a part of a data record.

2.2 Manufacturing Process Optimization: The Traditional Approach

A common technique to identify significant discrete parameters having an impact on numeric variables like
measurement results, is the Analysis of Variance (ANOVA). Unfortunately, the ANOVA technique is only
useful if the problem is relatively low dimensional. Additionally, the considered variables ought to have
a simple structure and should be well balanced. Another constraint is the assumption that the analyzed
data follows a multivariate Gaussian distribution. In most real world applications these requirements are
hardly complied with. The distribution of the parameters describing the measured variable is in general
non-parametric and often high dimensional. Furthermore, the combinations of the cross product of the
parameters are non-uniformly and sparely populated, or have a simple dependence structure. Therefore, the
method of Variance Analysis is only applicable in some special cases. What is really needed is a more general,
non-parametric approach to determine a set of influence variables responsible for lower or higher quality of
a manufacturing process.

3 Rule Extraction Approach to Manufacturing Process Optimization

A manufacturing process X is defined as a pair (X,Y) where Y (w) describes the influence variables (i.e.,
process parameters) and X (w) the corresponding goal variables (measurement results). As we will see later,
it is sometimes useful to constrain the manufacturing process to a particular subset of influence variables.
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Table 2. Possible sub-processes with support and conditional F.; for the foundry’s example
Nx, Qx, Sub-process X

123 0.85 Tool in (2,4) and location in (left)
126 0.86 Shaft in (2) and location in (right)
127 0.83 Tool in (2,3) and shaft in (2)

130 0.83 Tool in (1,4) and location in (right)
133 0.83 Tool in (4)

182 0.81 Tool not in (4) and shaft in (2)

183 0.81 Tool not in (1) and location in (right)
210  0.84 Tool in (1,2)

236 0.85 Tool in (2,4)

240 0.81 Tool in (1,4)

244 0.81 Location in (right)

249  0.83 Shaft in (2)

343 0.83 Tool not in (3)

Definition 3. Let X' describe a manufacturing process as stated in Definition 1 and Yo : 2 — R be a
random variable with Yo(w) € So C S. Then a sub-process of X is defined by the pair Xy = (X, Yy).

This subprocess constitutes the antecedent (i.e., precondition) of a rule to be discovered. The consequent of
the rule is defined by the quality level (as measured by a process capability index) implied by this antecedent.
To remain consistent with the terminology of our application domain, we will talk about subprocesses and
process capability indices, rather than about rule antecedents and consequents.

Given a manufacturing process X with a particular realization (z;,y;),7 = 1,...,n the support of a
sub-process Xy can be written as

NXU = Z ]1{}’1650)7 (6)
i=1

and consequently, a conditional PCI is defined as Qx,. Any of the indices defined in the previous section
can be used, whereby the value of the respective index is calculated on the conditional subset Xy = {x; :
yi € So,i = 1,...,n}. We henceforth use the notation X C X to denote possible sub-processes of a given
manufacturing process X. An extraction of possible sub-process of the introduced example with their support
and conditional E.; is given in Table 2.

To determine those parameters which have the greatest impact on quality, an optimal sub-process con-
sisting of optimal influence combinations has to be identified. The first approach could be to maximize @ 3
over all sub-processes X of X. In general, this approach would yield an “optimal” sub-process X*, which
has only a limited support (Ng. < n) (the fraction of the cases that meet the constraints defining this
subprocess). Such a formal optimum is usually of limited practical value since it is not possible to constrain
any parameters to arbitrary values. For example, constraining the parameter “working shift” to the value
“morning shift” would not be economically acceptable even if a quality increase were attained.

A better approach is to think in economic terms and to weigh the factors responsible for minor quality,
which we want to eliminate, by the costs of removing them. In practise this is not feasible, as tracking the
actual costs is too expensive. But it is likely that infrequent influence factors, which are responsible for lower
quality are cheaper to remove than frequent influences. In other words, sub-processes with high support are
preferable over those sub-processes yielding a high quality measure but having a low support.

In most applications, the available sample set for process optimization is small, often having numerous
influence variables but only a few measurement results. By limiting ourselves only to combinations of vari-
ables, we might get too small a sub-process (having low support). Therefore, we extend the possible solutions
to combinations of variables and their values — the search space for optimal sub-processes is spanned by the
powerset of the influence parameters P(Y). The two sided problem, to find the parameter set combining
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on one hand an optimal quality measure and on the other hand a maximal support, can be summarized,
according to the above notation, by the following optimization problem:

Definition 4.
N — max
(Px) =1 Q% = qmin
XCXx.

The solution X* of the optimization problem is the subset of process parameters with maximal support among
those processes, having a quality better than the given threshold gn,. Often, gmin is set to the common
values for process capability of 1.33 or 1.67. In those cases, where the quality is poor, it is preferable to set
Qmin to the unconditional PClIs, to identify whether there is any process optimization potential.

Due to the nature of the application domain, the investigated parameters are discrete which inhibits an
analytical solution but allows the use of Branch and Bound techniques. In the following section a root cause
algorithm (RCA) which efficiently solves the optimization problem according to Definition 4 is presented.
To avoid the exponential amount of possible combinations spanned by the cross product of the influence
parameters, several efficient cutting rules for the presented algorithm are derived and proven in the next
subsection.

4 Manufacturing Process Optimization

4.1 Root Cause Analysis Algorithm

In order to access and efficiently store the necessary information and to apply Branch and Bound techniques, a
multi-tree was chosen as representing data structure. Each node of the tree represents a possible combination
of the influence parameters (sub-process) and is built on the combination of the parent influence set and a
new influence variable and its value(s). Figure 1 depicts the data structure, whereby each node represents
the set of sub-processes generated by the powerset of the considered variable(s). Let I, J be to index sets
with I = {1,...,m} and J C I. Then X, denotes the set of sub-processes constrained by the powerset of
Y7, j € J and arbitrary other variables (Y?,i € I\ J).

To find the optimal solution to the optimization problem according to Definition 4, a combination of
depth-first and breadth-first search is applied to traverse the multitree (see Algorithm 1) using two Branch
and Bound principles. The first, an generally applicable principle is based on the following relationship: by

Fig. 1. Data structure for the root cause analysis algorithm

Algorithm 1 Branch & Bound algorithm for process optimization

1: procedure TRAVERSETREE(X)
2: X = GenerateSubProcesses(X)
3 for all # € X do

4: TraverseTree(Z)

5 end for

6: end procedure
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descending a branch of the tree, the number of constraints is increasing, as new influence variables are added
and therefore the sub-process support decreases (see Fig. 1). As in Table 2, two variables (sub-processes), i.e
X1 = Shaft in (2) and X = Location in (right) have supports of Ny, = 249 and Ny, = 244, respectively.
The joint condition of both has a lower (or equal) support than any of them (N, x, = 126).

Thus, if a node has a support lower than an actual minimum support, there is no possibility to find a node
(sub-process) with a higher support in the branch below. This reduces the time to find the optimal solution
significantly, as a good portion of the tree to traverse can be omitted. This first principle is realized in the
function GENERATESUBPROCESSES as listed in Algorithm 2 and can be seen as the breadth-first-search of
the RCA. This function takes as its argument a sub-process and generates all sub-processes with a support
higher than the actual n,,q-

Algorithm 2 Branch & Bound algorithm for process optimization
1: procedure GENERATESUBPROCESSES(X)

2: for all ¥ C X do

3: if Ni > nmae and Q5 > gmin then
4: Nmaz = N

5: end if

6: if Ng > nmae and Q5 < gmin then
7: X = {XUux}

8: end if

9: end for

10: return X
11: end procedure

The second principle is to consider disjoint value sets. For the support of a sub-process the following
holds: Let X, X2 be two sub-sets with Yi(w) € §; C S, Ya(w) € So € S with § NSy = & and X} U X»
denote the unification of two sub-processes. It is obvious that Nx,ux, = N, + Nx,, which implies that by
extending the codomain of the influence variables, the support Nx,ux, can only increase. For the a class of
convex process indices, as defined in Definition 1, the second Branch and Bound principle can be derived,
based on the next theorem:

Theorem 1. Given two sub-processes X1 = (X, Y1), Xo = (X,Y2) of a manufacturing process X = (X,Y)
with Y1(w) €51 C 8, Ya(w) €S2 €S and S1 NSy = @. Then for the class of process indices as defined in
(4), the following inequality holds:

min 2 S Qu,xiux, <
ZE{Xl,Xz}Qw' Qw, 1UX

Qw,Z~

max
Ze{x, Xz}

Proof. With p = P(I;(:.;ﬁ;z) the following convex property holds:

Qu,xux, = E (w(z)|Y(w) € $1US,)

B (w(@)liywes,us.})
P(Y(w) €S USy)

E(w@)liywesy) + B (w@)liywes.))
P(Y(w) cS USZ)

E (w(@) Ly wes:})

E (w(I)]l{Y(w)GSQ))
P(Y(w) €S8) .

O by e 8y)

=P
Therefore, by combining two disjoint combination sets, the E.; of the union of these two sets lies in between
the maximum and minimum FE,; of these sets. This can be illustrated by considering Table 2 again. The two
disjoint sub-processes X; = Tool in (1,2) and X = Tool in (4) yield a conditional E.; of Qx, = 0.84 and
Qx, = 0.82. The union of both sub-processes yields E¢; value of Qx,ux, = QTool not in (3) = 0.82. This value
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is within the interval < 0.82,0.84 >, as stated by the theorem. This convex property reduces the number of
times the E.; actually has to be calculated, as in some special cases we can estimate the value of E.; by its
upper and lower limits and compare it with ¢,

In the root cause analysis for process optimization, we are in general not interested in one global optimal
solution but in a list of processes, having a quality better than the defined threshold ¢, and maximal
support. An expert might choose out of the n-best processes the one which he wishes to use as a benchmark.
To get the n-best sub-processes, we need to traverse also those branches which already exhibit a (local)
optimal solution. The rationale is that a (local) optimum X* with N + > Nimaz might have a child node in
its branch, which might yield the second best solution. Therefore, line 4 in Algorithm 2 has to be adapted by
postponing the found solution X to the set of sub-nodes X. Hence, the actual maximal support is no longer
defined by the (actual) best solution, but by the (actual) n-th best solution.

In many real-world applications, the influence domain is mixed, consisting of discrete data and numerical
variables. To enable a joint evaluation of both influence types, the numerical data is transformed into nominal
data by mapping the continuous data onto pre-set quantiles. In most of our applications, the 10, 20, 80 and
90% quantiles have performed best. Additionally, only those influence sets have to be accounted for which
are successional.

4.2 Verification

As in practice the samples to analyze are small and the used PCIs are point estimators, the optimum of the

problem according to Definition 4 can only be defined in statistical terms. To get a more valid statement

of the true value of the considered PCI, confidence intervals have to be used. In the special case, where the

underlying data follows a known distribution, it is straightforward to construct a confidence interval. For

example, if a normal distribution can be assumed, the distribution of g" (C'p denotes the estimator of Cf)
P

is known, and a (1 — «)% confidence interval for C,, is given by

V2 V2
s Xn—1g 4 [ Xn—131-9
X) = 2 B I
C(X) Cp\/ ne1 ,Cp\/ - (7)

For the other parametric basic indices, in general there exits no analytical solution as they all have a non-
centralized x? distribution. In [2, 10] or [4], for example, the authors derive different numerical approximations
for the basic PCIS, assuming a normal distribution.

If there is no possibility to make an assumption about the distribution of the data, computer based, sta-
tistical methods such as the well known Bootstrap method [5] are used to determine confidence intervals for
process capability indices. In [1], three different methods for calculating confidence intervals are derived and
a simulation study is performed for these intervals. As result of this study, the bias-corrected-method (BC)
outperformed the other two methods (standard-bootstrap and percentile-bootstrap-method). In our appli-
cations, an extension to the BC-Method called the Bias-corrected-accelerated-method (BCa) as described in
[3] was used for determining confidence intervals for the non-parametric basic PCls, as described in (3). For
the Empirical Capability Index E.; a simulation study showed that the standard-bootstrap-method, as used
in [1], performed the best. A (1 — )% confidence interval for the E.; can be obtained using

C(X) = [Bu — (1 — @)op, Bt +371(1 —a)aB], ®)

where Ec,; denotes an estimator for E.;, op is the Bootstrap standard deviation, and $~! is the inverse
standard normal.

As all statements that are made using the RCA algorithm are based on sample sets, it is important
to verify the soundness of the results. Therefore, the sample set to analyze is to be randomly divided into
two disjoint sets: training and test set. A list of the n best sub-processes is generated, by first applying the
described RCA algorithm and second the referenced Bootstrap-methods to calculate confidence intervals.
In the next step, the root cause analysis algorithm is applied to the test set. The final output is a list of
sub-processes, having the same influence sets and a comparable level for the used PCI.
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5 Experiments

An evaluation of the concept was performed on data from a foundry plant for engine manufacturing in the
premium automotive industry (see Sect. 2). Three different groups of data sets where used with a total of 33
different data sets of samples to evaluate the computational performance of the used algorithms. Each of the
analyzed data sets comprises measurement results describing geometric characteristics like positions of drill
holes or surface texture of the produced products and the corresponding influence sets like a particular
machine number or a worker’s name. The first group of analyzed data, consists of 12 different measurement
variables with four different influence variables, each with two to nine different values. The second group
of data sets comprises 20 different sample sets made up of 14 variables with up to seven values each. An
additional data set, recording the results of a cylinder twist measurement having 76 influence variables, was
used to evaluated the algorithm for numerical parameter sets. The output for each sample set was a list of the
20 best sub-processes in order to cross check with the quality expert of the foundry plant. g, was chosen
to the unconditional PCI value. The analyzed data sets had at least 500 and at most 1,000 measurement
results.

The first computing series was performed using the empirical capability index E.; and the non-parametric
C;Jk. To demonstrate the efficiency of the first Branch and Bound principle, an additional combinatorial search
was conducted. The reduction of computational time, using the first Branch and Bound principle, amounted
to two orders of magnitude in comparison with the combinatorial search as can be seen in Fig. 2. Obviously,
the computational time for finding the n best sub-processes increases with the number of influence variables.
This fact explains the jump of the combinatorial computing time in Fig. 2 (the first 12 data sets correspond
to the first group introduced in the section above). On average, the algorithm using the first Branch and
Bound principle outperformed the combinatorial search by a factor of 160. Using the combinatorial search,
it took on average 18 min to evaluate the available data sets. However, using the first Branch and Bound
principle decreased the computing time to only 4.4s for Cll)k and to 5.7s using the E.;. The evaluation was
performed to a search up to a depth of 4, which means, that all sub-process have no more than four different
influence variables. A higher depth level did not yield different results, as the support of the sub-processes
diminishes with increasing the number of influence variables used as constraints.

Applying the second Branch and Bound principle reduced the computational time even further. As Fig. 3
depicts, the identification of the 20 optimal sub-processes using the E.; was on average reduced by a factor
of 5 in comparison to the first Branch and Bound principle and resulted in an average computational time of
only 0.92s vs. 5.71s. Over all analyzed sample sets, the second principle reduced the computing time by 80%.
Even using the E.; and the second Branch and Bound principle, it still took 20s to compute, and for the
non parametric calculation using the first Branch and Bound principle approximately 2 min. In this special
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Fig. 2. Computational time for combinatorial search vs. Branch and Bound using the C,;k and E;
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Fig. 3. Computational time first Branch and Bound vs. second Branch and Bound principle using E.;
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Fig. 4. Density plot for optimal sub-process (narrower plot) and its original process (broader plot) using E.;

case, the combinatorial search was omitted, as the evaluation of 76 influence variables with four values each
would have taken too long.

5.1 Optimum Solution

Applying the identified sub-processes to the original data set, the original, unconditional PCI is improved.
More precisely, considering for example the sub-process X = Tool in (1,2) and using the E.; the index
improves from 0.49 to 0.70. As Fig.4 shows, the quality of the sub-process (narrower distribution plot)
clearly outperforms the original process (broader distribution plot), having less variance and a better process
location.

On the test set, the performance of the optimum solution, characterized by Qres; is over its lower bound
determined by the bootstrap procedure on the training set, as shown in Table 3.
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Table 3. Results for the process optimization for one data set

Index Nrest Qrest Nrrain Ch
FEei 244 0.85 210 0.84

6 Conclusion

We have introduced an algorithm for efficient rule extraction in the domain of root cause analysis. The appli-
cation goal is the manufacturing process optimization, with the intention to detect those process parameters
which have a major impact on the quality of a manufacturing process. The basic idea is to transform the
search for those quality drivers into an optimization problem and to identify a set of optimal parameter sub-
sets using two different Branch and Bound principles. These two methods allow for a considerable reduction
of the computational time for identifying optimal solutions, as the computational results show.

A new class of convex process capability indices, E.;, was introduced and its superiority over common
PClIs is shown with regard to computing time. As the identification of major quality drivers is crucial to
industrial practice and quality management, the presented solution may be useful and applicable to a broad
set of quality and reliability problems.
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Neural Networks in Automotive Applications

Danil Prokhorov

Toyota Technical Center — a division of Toyota Motor Engineering and Manufacturing (TEMA), Ann Arbor,
MI 48105, USA

Neural networks are making their ways into various commercial products across many industries. As in
aerospace, in automotive industry they are not the main technology. Automotive engineers and researchers are
certainly familiar with the buzzword, and some have even tried neural networks for their specific applications
as models, virtual sensors, or controllers (see, e.g., [1] for a collection of relevant papers). In fact, a quick search
reveals scores of recent papers on automotive applications of NN, fuzzy, evolutionary and other technologies
of computational intelligence (CI); see, e.g., [2-4]. However, such technologies are mostly at the stage of
research and not in the mainstream of product development yet. One of the reasons is “black-box” nature
of neural networks. Other, perhaps more compelling reasons are business conservatism and existing/legacy
applications (trying something new costs money and might be too risky) [5, 6].

NN technology which complements, rather than replace, the existing non-CI technology in applications
will have better chances of wide acceptance (see, e.g., [8]). For example, NN is usually better at learning from
data, while systems based on first principles may be better at modeling underlying physics. NN technology
can also have greater chances of acceptance if it either has no alternative solution, or any other alternative
is much worse in terms of the cost-benefit analysis. A successful experience with CI technologies at the Dow
Chemical Company described in [7] is noteworthy.

Ford Motor Company is one of the pioneers in automotive NN research and development [9, 10]. Relevant
Ford papers are referenced below and throughout this volume.

Growing emphasis on model based development is expected to help pushing mature elements of the
NN technology into the mainstream. For example, a very accurate hardware-in-the-loop (HIL) system is
developed by Toyota to facilitate development of advanced control algorithms for its HEV platforms [11].
As discussed in this chapter, some NN architectures and their training methods make possible an effective
development process on high fidelity simulators for subsequent on-board (in-vehicle) deployment. While
NN can be used both on-board and outside the vehicle, e.g., in a vehicle manufacturing process, only
on-board applications usually impose stringent constraints on the NN system, especially in terms of available
computational resources.

Here we provide a brief overview of NN technology suitable for automotive applications and discuss a
selection of NN training methods. Other surveys are also available, targeting broader application base and
other non-NN methods in general; see, e.g., [12].

Three main roles of neural network in automotive applications are distinguished and discussed: models
(Sect. 1), virtual sensors (Sect. 2) and controllers (Sect. 3). Training of NN is discussed in Sect. 4, followed by
a simple example illustrating importance of recurrent NN (Sect. 5). The issue of verification and validation
is then briefly discussed in Sect. 6, concluding this chapter.

1 Models

Arguably the most popular way of using neural networks is shown in Fig. 1. NN receives inputs and produces
outputs which are compared with target values of the outputs from the system/process to be modeled or
identified. This arrangement is known as supervised training because the targets for NN training are always

D. Prokhorov: Neural Networks in Automotive Applications, Studies in Computational Intelligence (SCI) 132, 101-123 (2008)
www.springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A very popular arrangement for training NN to model another system or process including decision making
is termed supervised training. The inputs to the NN and the system are not necessarily identical. The error between
the NN outputs and the corresponding outputs of the system may be used to train the NN
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Fig. 2. Selected nodes in this network may be declared outputs. Any connectivity pattern, e.g., a popular layered
architecture such as in multilayer perceptron (MLP), can be created by specifying the NN connectivity table. The
order in which the nodes “fire,” or get activated, also needs to be specified to preserve causality. Furthermore, explicit
delays longer than one time step can also be included

provided by the system (“supervisor”) to be modeled by NN. Figure 1 pertains to not only supervised
modeling but also decision making, e.g., when it is required to train a NN classifier.

A general architecture of discrete-time NN is shown in Fig. 2. The neurons or nodes of the NN are labeled
as 1 through N. The links or connections may have adjustable or fixed parameters, or NN weights. Some
nodes in the NN serve as inputs of signals external to the NN, others serve as outputs from the NN to
the external world. Each node can sum or multiply all the links feeding it. Then the node transforms the
result through any of a variety of functions such as soft (sigmoidal) and hard thresholds, linear, quadratic,
or trigonometric functions, Gaussians, etc.

The blocks Z~! indicates one time step delay for the NN signals. A NN without delays is called feedforward
NN. If the NN has delays but no feedback connections, it is called time delay NN. A NN with feedback is
called recurrent NN (RNN).

A large variety of NN exists. The reader is referred to [13] for a comprehensive discussion about many of
the NN architectures and their training algorithms.
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Clearly, many problem specific issues must be addressed to achieve successful NN training. They include
pre- and (sometimes) post-processing of the data, the use of training data sufficiently representative of
the system to be modeled, architectural choices, the optimal accuracy achievable with the given NN
architecture, etc.

For a NN model predicting next values of its inputs it is useful to verify whether iterative predictions
of the model are meaningful. A model trained to predict its input for the next time step might have a very
large error predicting the input two steps into the future. This is usually the sign of overfitting. A single-
step prediction might be too simple a task, especially for a slowly changing time series. The model might
quickly learn that predicting the next value to be the same as its current value is good enough; the iterative
prediction test should quickly reveal this problem with the model.

The trick above is just one of many useful tricks in the area of NN technology. The reader is referred to
[14] and others for more information [13, 15].

Automotive engine calibration is a good example for relatively simple application of NN models. Tra-
ditionally, look-up tables have been used within the engine control system. For instance, a table linking
engine torque production (output) with engine controls (inputs), such as spark angle (advance or retard),
intake/exhaust valve timing, etc. Usually the table is created by running many experiments with the engine
on a test stand. In experiments the space of engine controls is explored (in some fashion), and steady state
engine torque values are recorded. Clearly, the higher the dimensionality of the look-up table, and the finer
the required resolution, the more time it takes to complete the look-up table.

The least efficient way is full factorial experimental design (see, e.g., [16]), where the number of necessary
measurement increases exponentially with the number of the table inputs. A modern alternative is to use
model-based optimization with design of experiment [17-20]. This methodology uses optimal experimental
design plans (e.g., D- or V-optimal) to measure only a few predetermined points. A model is then fitted to
the points, which enables the mapping interpolation in between the measurements. Such a model can then
be used to optimize control strategy, often with significant computational savings (see, e.g., [21]).

In terms of models, a radial basis function (RBF) network [22, 23], a probabilistic NN which is implemen-
tationally simpler form of the RBF network [24], or MLP [25, 26] can all be used. So-called cluster weighted
models (CWM) may be advantageous over RBF even in low-dimensional spaces [27-29]. CWM is capable of
essentially perfect approximation of linear mappings because each cluster in CWM is paired with a linear
output model. In contrast, RBF needs many more clusters to approximate even linear mappings to high
accuracy (see Fig.3).

More complex illustrations of NN models are available (see, e.g., [30, 31]). For example, [32] discusses
how to use a NN model for an HEV battery diagnostics. The NN is trained to predict an HEV battery
state-of-charge (SOC) for a healthy battery. The NN monitors the SOC evolution and signals about abnor-
mally rapid discharges of the battery if the NN predictions deviate significantly from the observed SOC
dynamics.

2 Virtual Sensors

A modern automobile has a large number of electronic and mechanical devices. Some of them are actuators
(e.g., brakes), while others are sensors (e.g., speed gauge). For example, transmission oil temperature is
measured using a dedicated sensor. A virtual or soft sensor for oil temperature would use existing signals
from other available sensors (e.g., air temperature, transmission gear, engine speed) and an appropriate
model to create a virtual signal, an estimate of oil temperature in the transmission. Accuracy of this virtual
signal will naturally depend on both accuracy of the model parameters and accuracies of existing signals
feeding the model. In addition, existing signals will need to be chosen with care, as the presence of irrelevant
signals may complicate the virtual sensor design. The modern term “virtual sensor” appears to be used
sometimes interchangeably with its older counterpart “observer.” Virtual sensor assumes less knowledge of
the physical process, whereas observer assumes more of such knowledge. In other words, the observer model is
often based on physical principles, and it is more transparent than that of virtual sensor. Virtual sensors are
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Fig. 3. A simple linear mapping Y = 2X +0.5 subjected to a uniform noise (red) is to be approximated by CWM and
RBF network. CMW needs only one cluster in the input space X and the associated mean-value linear model (the
cluster and its model are shown in blue). In contrast, even with five clusters (green) the RBF network approximation
(thick green line) is still not as good as the CWM approximation

often “black boxes” such as neural networks, and they are especially valuable when the underlying physics
is too complex or uncertain while there is plenty of data to develop/train a virtual sensor.

In the automotive industry, significant resources are devoted to the development of continuous monitor-
ing of on-board systems and components affecting tailpipe emissions of vehicles. Ideally, on-board sensors
specialized to measuring the regulated constituents of the exhaust gases in the tailpipe (mainly hydrocar-
bouns, nitrogen oxides (NOy) and carbon monoxide) would check whether the vehicle is in compliance with
government laws on pollution control. Given that such sensors are either unavailable or impractical, the
on-board diagnostic system must rely on limited observations of system behavior and inferences based on
those observations to determine whether the vehicle emissions are in compliance with the law. Our example
is the diagnostics of engine combustion failures, known as misfire detection. This task must be performed
with very high accuracy and under virtually all operating conditions (often the error rate of far less than
1% is necessary). Furthermore, the task requires the identification of the misfiring cylinder(s) of the engine
quickly (on the order of seconds) to prevent any significant deterioration of the emission control system
(catalytic converter). False alarm immunity becomes an important concern since on the order of one billion
events must be monitored in the vehicle’s lifetime.

The signals available to analyze combustion behavior are derived primarily from crankshaft position
sensors. The typical position sensor is an encoder (toothed) wheel placed on the crankshaft of the engine
prior to torque converter, transmission or any other engine load component. This wheel, together with its
electronic equipment, provides a stream of accurately measured time intervals, with each interval being the
time it takes for the wheel to rotate by one tooth. One can infer speed or acceleration of the crankshaft
rotation by performing simple numerical manipulations with the time intervals. Each normal combustion
event produces a slight acceleration of the crankshaft, whereas misfires exhibit acceleration deficits following
a power stroke with little or no useful work (Fig. 4).
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Fig. 4. A representative segment of the engine misfire data. Each cylinder firing is either normal (circle) or abnormal
(misfire; cross). The region where misfire detection is not required is shown in the middle by diamonds. In terms of the
crankshaft acceleration (y axis), sometimes misfires are easily separable from normal (the region between k = 18,000
and k ~ 20,000), and other times they are not (the region around k = 16,000)

The accurate detection of misfires is complicated by two main factors:

1. The engine exhibits normal accelerations and decelerations, in response to the driver input and from
changing road conditions.

2. The crankshaft is a torsional oscillator with finite stiffness. Thus, the crankshaft is subject to torsional
oscillations which may turn the signature of normal events into that of misfires, and vice versa.

Analyzing complex time series of acceleration patterns requires a powerful signal processing algorithm
to infer the quality of the combustion events. It turns out that the best virtual sensor of misfires can be
developed on the basis of a recurrent neural network (RNN) [33]; see Sect. 4 as well as [34] and [35] for training
method details and examples. The RNN is trained on a very large data set (on the order of million of events)
consisting of many recordings of driving sessions. It uses engine context variables (such as crankshaft speed
and engine load) and crankshaft acceleration as its inputs, and it produces estimates of the binary signal
(normal or misfire) for each combustion event. During each engine cycle, the network is run as many times
as the number of cylinders in the engine. The reader is referred to [36] for illustrative misfire data sets used
in a competition organized at the International Joint Conference on Neural Networks (IJCNN) in 2001. The
misfire detection NN is currently in production.

The underlying principle of misfire detection (dependence of crankshaft torsional vibrations on engine
operation modes) is also useful for other virtual sensing opportunities, e.g., engine torque estimation.

Concluding this section, we list a few representative applications of NN in the virtual sensor category:

e NN can be trained to estimate emissions from engines based on a number of easily measured engine
variables, such as load, RPM, etc., [37-39], or in-cylinder pressure [40] (note that using a structure
identification by genetic algorithms for NOy estimation can result in performance better than that of a
NN estimator; see [41] for details).
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e Air flow rate estimating NN is described in [19], and air-fuel ratio (AFR) estimation with NN is developed
in [42], as well as in [43] and [44].

e A special processor Vindax is developed by Axeon, Ltd. (http://www.axeon.com/), to support a variety
of virtual sensing applications [45], e.g., a mass airflow virtual sensor [46].

3 Controllers

NN as controllers have been known for years; see, e.g., [47-51]. We discuss only a few popular schemes in this
section, referring the reader to a useful overview in [52], as well as [42] and [8], for additional information.

Regardless of the specific schemes employed to adapt or train NN controllers, there is a common issue
of linkage between the cause and its effect. Aside of the causes which we mostly do not control such as
disturbances applied to plant (an object or system to be controlled), the NN controller outputs or actions in
reinforcement learning literature [53] also affect the plant and influence a quality or performance functional.
This is illustrated in Fig. 5.

To enable NN training/adaptation, the linkage between NN actions and the quality functional can be
achieved through a model of the plant (and a model of the quality functional if necessary), or without a
model. Model-free adaptive control is implemented sometimes with the help of a reinforcement learning
module called critic [54, 55]. Applications of reinforcement learning and approximate dynamic programming
to automotive control have been attempted and not without success (see, e.g., [56] and [57]).

Figure 6 shows a popular scheme known as model reference adaptive control. The goal of adaptive
controller which can be implemented as a NN is to make the plant behave as if it were the reference model
which specifies the desired behavior for the plant. Often the plant is subject to various disturbances such as
plant parameter drift, measurement and actuator noise, etc. (not shown in the figure).

Shown by dashed lines in Fig. 6 is the plant model which may also be implemented as a NN (see Sect. 1).
The control system is called indirect if the plant model is included, otherwise it is called direct adaptive
control system.

We consider a process of indirect training NN controllers by an iterative method. Our goal is to improve
the (ideal) performance measure I through training weights W of the controller

I(W(Z)) = Ex,ex {ZU(W(iLx(t),e(t))}, (1)

t=0

Quality
Functional
A 'y A
Mediator
Action(t-h) Action(t-1) Action(t)
Input

p NN NN NN

Controller Controller Controller

Fig. 5. The NN controller affects the quality functional through a mediator such as a plant. Older values of controls
or actions (prior to t) may still have an effect on the plant as dynamic system with feedback, which necessitates the
use of dynamic or temporal derivatives discussed in Sect. 4. For NN adaptation or training, the mediator may need
to be complemented by its model and/or an adaptive critic
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Fig. 6. The closed-loop system in model reference adaptive control. If the plant model is used (dashed lines), then
the system is called indirect adaptive system; otherwise the system is called direct. The state vector x (not shown)
includes state vectors of not only the plant but also the controller, the model of the plant and the reference model.
The output vector y includes a, yp, ym and yr. The error between yp and yr may be used as an input to the
controller and for controller adaptation (dotted lines)

where W (i) is the controller weight vector at the ith training iteration (or epoch), Ex is a suitable expectation
operator (e.g., average) in the domain of permissible initial state vectors xo = x(0), and U(-) is a non-
negative definite function with second-order bounded derivatives often called the instantaneous utility (or
cost) function. We assume that the goal is to increase (W (i)) with i. The state vector x evolves according
to the closed-loop system

x(t+1) = £(x(t), e(t), W(0)) +&(t) (2)
y(t) = h(x(?)) + p(t), ®)

where e(t) is a vector of external variables, e.g., reference signals r, e and p are noise vectors adding
stochasticity to otherwise deterministic dynamic system, and y(¢) is a vector of relevant outputs. Our closed-
loop system includes not just the plant and its controller, which are usual components of the closed-loop
system, but also the plant model and the reference model.

In reality, both E and oo in (1) must be approximated. Assuming that all initial states xo(k) are
equiprobable, the average operator can be approximated as

T
AW =Y YU, (4)

x0(k)EX,k=1,2,...,N t=0

where N is the total number of trajectories of length 7" along which the closed-loop system performance is
evaluated at the iteration ¢. The first evaluation trajectory begins at time ¢ = 0 in x0(1), i.e., x(0) = x0(1),
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the second trajectory starts at ¢ = 0 in x(0) = x¢(2), etc. The coverage of the domain X should be as broad
as practically possible for a reasonably accurate approximation of I.

Training the NN controller may impose computational constraints on our ability to compute (4) many
times during our iterative training process. It may be necessary to contend with this approximation of R

H

AW (i) = > > UG,t). (5)

xo0(s)€X,s=1,2,...,S t=0

The advantage of A over R is in faster computations of derivatives of A with respect to W (i) because the
number of training trajectories per iteration is S < N, and the trajectory length is H < T'. However, A must
still be an adequate replacement of R and, possibly, I in order to improve the NN controller performance
during its weight training. And of course A must also remain bounded over the iterations, otherwise the
training process is not going to proceed successfully.

We assume that the NN weights are updated as follows:

W(i+1) =W(@)+d(), (6)

where d(¢) is an update vector. Employing the Taylor expansion of I around W (i) and neglecting terms
higher than the first order yields

- A
I(W(i +1)) = [(W(i)) + ad\fv(g) (W(i +1) — W(i)). (7)
Substituting for (W (i + 1) — W(2)) from (6) yields
I(W(i +1) = I(W(i) + 63#2) d(i). (®)
The growth of I with iterations i is guaranteed if
ara)
owi(p 40 >0 )

Alternatively, the decrease of I is assured if the inequality above is strictly negative; this is suitable for cost
minimization problems, e.g., when U(t) = (yr(t) — yp(t))?, which is popular in tracking problems.
It is popular to use gradients as the weight update

. . OA(D)
400 = (i) ) (10)
where 7(7) > 0 is a learning rate. However, it is often much more effective to rely on updates computed with
the help of second-order information; see Sect. 4 for details.

The condition (9) actually clarifies what it means for A to be an adequate substitute for R. The plant
model is often required to train the NN controller. The model needs to provide accurate enough d such that
(9) is satisfied. Interestingly, from the standpoint of NN controller training it is not critical to have a good
match between plant outputs yp and their approximations by the model ym. Coarse plant models which
approximate well input-output sensitivities in the plant are sufficient. This has been noticed and successfully
exploited by several researchers [58-61].

In practice, of course it is not possible to guarantee that (9) always holds. This is especially questionable
when even simpler approximations of R are employed, as is sometimes the case in practice, e.g., S = 1 and/or
H =1 in (5). However, if the behavior of R(i) over the iterations ¢ evolves towards its improvement, i.e., the
trend is that R grows with ¢ but not necessarily R(i) < R(i + 1), Vi, this would suggest that (9) does hold.

Our analysis above explains how the NN controller performance can be improved through training with
imperfect models. It is in contrast with other studies, e.g., [62, 63], where the key emphasis is on proving the



Neural Networks in Automotive Applications 109

uniform ultimate boundedness (UUB) [64], which is not nearly as important in practice as the performance
improvement because performance implies boundedness.

In terms of NN controller adaptation and in addition to the division of control to indirect and direct
schemes, two adaptation extremes exist. The first is represented by the classic approach of fully adaptive
NN controller which learns “on-the-fly,” often without any prior knowledge; see, e.g., [65, 66]. This approach
requires a detailed mathematical analysis of the plant and many assumptions, relegating NN to mere uncer-
tainty compensators or look-up table replacement. Furthermore, the NN controller usually does not retain
its long-term memory as reflected in the NN weights.

The second extreme is the approach employing NN controllers with weights fixed after training which
relies on recurrent NN. It is known that RNN with fixed weights can imitate algorithms [67-72] or adaptive
systems [73] after proper training. Such RNN controllers are not supposed to require adaptation after deploy-
ment/in operation, thereby substantially reducing implementation cost especially in on-board applications.
Figure 7 illustrates how a fixed-weight RNN can replace a set of controllers, each of which is designed for
a specific operation mode of the time-varying plant. In this scheme the fixed-weight, trained RNN demon-
strates its ability to generalize in the space of tasks, rather than just in the space of input-output vector
pairs as non-recurrent networks do (see, e.g., [74]). As in the case of a properly trained non-recurrent NN
which is very good at dealing with data similar to its training data, it is reasonable to expect that RNN
can be trained to be good interpolators only in the space of tasks it has seen during training, meaning that
significant extrapolation beyond training data is to be neither expected nor justified.

The fixed-weight approach is very suitable to such practically useful direction as training RNN off-line,
i.e., on high-fidelity simulators of real systems, and preparing RNN through training to various sources of
uncertainties and disturbances that can be encountered during system operation. And the performance of the
trained RNN can also be verified on simulators to increase confidence in successful deployment of the RNN.

Selector Selector (choose one from M)
Logic

A
Noise/disturbances
Controller 1
Input(t) Time-varying
Controller 2 Plant
Controller M
Previous observations
fapu) R RNN Action(t) Time-varying
P 4 Controller Plant

Noise

Previous observations

Fig. 7. A fixed-weight, trained RNN can replace a popular control scheme which includes a set of controllers
specialized to handle different operating modes of the time-varying plant and a controller selector algorithm which
chooses an appropriate controller based on the context of plant operation (input, feedback, etc.)
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The fully adaptive approach is preferred if the plant may undergo very significant changes during its
operation, e.g., when faults in the system force its performance to change permanently. Alternatively, the
fixed-weight approach is more appropriate if the system may be repaired back to its normal state after the
fault is corrected [32]. Various combinations of the two approaches above (hybrids of fully adaptive and
fixed-weight approaches) are also possible [75].

Before concluding this section we would like to discuss on-line training implementation. On-line or con-
tinuous training occurs when the plant can not be returned to its initial state to begin another iteration of
training, and it must be run continuously. This is in contrast with off-line training which assumes that the
plant (its model in this case) can be reset to any specified state at any time.

On-line training can be done in a straightforward way by maintaining two distinct processes (see also [58]):
foreground (network execution) and background (training). Figures 8 and 9 illustrate these processes.

The processes assume at least two groups of copies of the controller C' labeled C'1 and C2, respectively.
The controller C'1 is used in the foreground process which directly affects the plant P through the sequence
of controller outputs al.

The controller C'1 weights are periodically replaced by those of the NN controller C2. The controller C2 is
trained in the background process of Fig. 9. The main difference from the previous figure is the replacement
of the plant P with its model M. The model serves as a sensitivity pathway between utility U and controller
C2 (cf. Fig.5), thereby enabling training C2 weights.

The model M could be trained as well, if necessary. For example, it can be done through adding another
background process for training model of the plant. Of course, such process would have its own goal, e.g.,
minimization of the mean squared error between the model outputs ym(¢+i) and the plant outputs yp(t+7).
In general, simultaneous training of the model and the controller may result in training instability, and it is
better to alternate cycles of model-controller training.

When referring to training NN in this and previous sections, we did not discuss possible training
algorithms. This is done in the next section.

Controller execution (foreground process)

al(t)| | al(t+1) ]
Cl Cl Cl

yp(t) yp(t+1

-~ P - -->P - P
L - L7

k=t k=t+1 k=t+h-1 k=t+h

Fig. 8. The fixed-weight NN controller C1 influences the plant P through the controller outputs al (actions) to
optimize utility function U (not shown) in a temporal unfolding. The plant outputs yp are also shown. Note that this
process in general conti