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Preface 

This book deals with the mechanics of solid bodies in contact, a subject inti-
mately connected with such topics as fracture, hardness, and elasticity. Theoreti-
cal work is most commonly supported by the results of indentation experiments 
under controlled conditions. In recent years, the indentation test has become a 
popular method of determining mechanical properties of both brittle and ductile 
materials, and particularly thin film systems. 

The book begins with an introduction to the mechanical properties of materi-
als, general fracture mechanics, and the fracture of brittle solids. This is fol-
lowed by a detailed description of indentation stress fields for both elastic and 
elastic-plastic contact. The discussion then turns to the formation of Hertzian 
cone cracks in brittle materials, subsurface damage in ductile materials, and the 
meaning of hardness. The book concludes with an overview of practical meth-
ods of indentation. 

My intention is for this book to make contact mechanics accessible to those 
materials scientists entering the field for the first time. Experienced researchers 
may also benefit from the review of the most commonly used formulas and 
theoretical treatments of the past century.  

This second edition maintains the introductory character of the first with a 
focus on materials science as distinct from straight solid mechanics theory. 

In writing this book, I have been assisted and encouraged by many col-
leagues, friends, and family. I am most indebted to A. Bendeli, R.W. Cheary, 
R.E. Collins, R. Dukino, J.S. Field, A.K. Jämting, B.R. Lawn, C.A. Rubin, and 
M.V. Swain. I thank Dr. Thomas von Foerster who managed the 1st edition of 

tion, and of course the production team at Springer Science+Business Media 
LLC for their very professional and helpful approach to the whole publication 
process. 

 
Lindfield, Australia Anthony C. Fischer-Cripps 
 
 

Every chapter has been reviewed to make the book easier to read and more
informative. A new chapter on depth sensing indentation has been added, and
the contents of the other chapters have been completely overhauled with added
figures, formulae and explanations. 

this book and Dr. Alexander Greene for taking things through to this second edi-
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History 

It may surprise those who venture into the field of “contact mechanics” that the 
first paper on the subject was written by Heinrich Hertz. At first glance, the na-
ture of the contact between two elastic bodies has nothing whatsoever to do with 
electricity, but Hertz recognized that the mathematics was the same and so 
founded the field, which has retained a small but loyal following during the past 
one hundred years. 

Hertz wanted to be an engineer. In 1877, at age 20, he traveled to Munich to 
further his studies in engineering, but when he got there, doubts began to occupy 
his thoughts. Although “there are a great many sound practical reasons in favor 
of becoming an engineer” he wrote to his parents, “I still feel that this would 

builder’s materials and the like,” was really his lifelong ambition. Hertz was 
really more interested in mathematics, mechanics, and physics. Guided by his 
parents’ advice, he chose the physics course and found himself in Berlin a year 
later to study under Hermann von Helmholtz and Gustav Kirchhoff.  

In October 1878, Hertz began attending Kirchhoff’s lectures and observed 
on the notice board an advertisement for a prize for solving a problem involving 
electricity. Hertz asked Helmholtz for permission to research the matter and was 
assigned a room in which to carry out experiments. Hertz wrote: “every morning 
I hear an interesting lecture, and then go to the laboratory, where I remain, bar-
ring a short interval, until four o’clock. After that, I work in the library or in my 
rooms.” Hertz wrote his first paper, “Experiments to determine an upper limit to 
the kinetic energy of an electric current,” and won the prize.  

Next, Hertz worked on “The distribution of electricity over the surface of 
moving conductors,” which would become his doctoral thesis. This work im-
pressed Helmholtz so much that Hertz was awarded “Acuminis et doctrine 
specimen laudabile” with an added “magna cum laude.” In 1880, Hertz became 
an assistant to Helmholtz—in modern-day language, he would be said to have 
obtained a three-year “post-doc” position.  

On becoming Helmholtz’s assistant, Hertz immediately became interested in 
the phenomenon of Newton’s rings—a subject of considerable discussion at the 
time in Berlin. It occurred to Hertz that, although much was known about the 
optical phenomena when two lenses were placed in contact, not much was 

involve a sense of failure and disloyalty to myself.” While studying engineer-
ing at home in Hamburg, Hertz had become interested in natural science and
was wondering whether engineering, with “surveying, building construction, 
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xx 

known about the deflection of the lenses at the point of contact. Hertz was par-
ticularly concerned with the nature of the localized deformation and the distribu-
tion of pressure between the two contacting surfaces. He sought to assign a 
shape to the surface of contact that satisfied certain boundary conditions worth 
repeating here: 

 
1. The displacements and stresses must satisfy the differential equations of 

equilibrium for elastic bodies, and the stresses must vanish at a great dis-
tance from the contact surface—that is, the stresses are localized. 

2. The bodies are in frictionless contact. 
3. At the surface of the bodies, the normal pressure is zero outside and equal 

and opposite inside the circle of contact. 
4. The distance between the surfaces of the two bodies is zero inside and 

greater than zero outside the circle of contact. 
5. The integral of the pressure distribution within the circle of contact with 

respect to the area of the circle of contact gives the force acting between 
the two bodies. 

 
Hertz generalized his analysis by attributing a quadratic function to represent 

the profile of the two opposing surfaces and gave particular attention to the case 
of contacting spheres. Condition 4 above, taken together with the quadric sur-
faces of the two bodies, defines the form of the contacting surface. Condition 4 
notwithstanding, the two contacting bodies are to be considered elastic, semi-
infinite, half-spaces. Subsequent elastic analysis is generally based on an appro-
priate distribution of normal pressure on a semi-infinite half-space. By analogy 
with the theory of electric potential, Hertz deduced that an ellipsoidal distribu-
tion of pressure would satisfy the boundary conditions of the problem and found 
that, for the case of a sphere, the required distribution of normal pressure σz is: 

ar  , 1
2
3
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This distribution of pressure reaches a maximum (1.5 times the mean contact 
pressure pm) at the center of contact and falls to zero at the edge of the circle of 
contact (r = a). Hertz did not calculate the magnitudes of the stresses at points 
throughout the interior but offered a suggestion as to their character by interpo-
lating between those he calculated on the surface and along the axis of symme-
try. The full contact stress field appears to have been first calculated in detail by 
Huber in 1904 and again later by Fuchs in 1913, and by Moreton and Close in 
1922. More recently, the integral transform method of Sneddon has been applied 
to axis-symmetric distributions of normal pressures, which correspond to a vari-
ety of indenter geometries. In brittle solids, the most important stress is not the 
normal pressure but the radial tensile stress on the specimen surface, which 
reaches a maximum value at the edge of the circle of contact. This is the stress 
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that is responsible for the formation of the conical cracks that are familiar to all 
who have had a stone impact on the windshield of their car. These cracks are 
called “Hertzian cone cracks.” 

Hertz published his work under the title “On the contact of elastic solids,” 
and it gained him immediate notoriety in technical circles. This community in-
terest led Hertz into a further investigation of the meaning of hardness, a field in 

the man in the street.” It was appreciated very early on that hardness indicated a 
resistance to penetration or permanent deformation. Early methods of measuring 
hardness, such as the scratch method, although convenient and simple, were 
found to involve too many variables to provide the means for a scientific defini-
tion of this property. Hertz postulated that an absolute value for hardness was 
the least value of pressure beneath a spherical indenter necessary to produce a 
permanent set at the center of the area of contact. Hardness measurements em-
bodying Hertz’s proposal formed the basis of the Brinell test (1900), Shore scle-
roscope (1904), Rockwell test (1920), Vickers hardness test (1924), and finally 
the Knoop hardness test (1934). 

In addition to being involved in this important practical matter, Hertz also 
took up researches on evaporation and humidity in the air. After describing his 
theory and experiments in a long letter to his parents, he concluded with “this 
has become quite a long lecture and the postage of the letter will ruin me; but 
what wouldn’t a man do to keep his dear parents and brothers and sister from 
complete desiccation?” 

Although Hertz spent an increasing amount of his time on electrical experi-
ments and high voltage discharges, he remained as interested as ever in various 
side issues, one of which concerned the flotation of ice on water. He observed 
that a disk floating on water may sink, but if a weight is placed on the disk, it 
may float. This paradoxical result is explained by the weight causing the disk to 
bend and form a “boat,” the displacement of which supports both the disk and 
the weight. Hertz published “On the equilibrium of floating elastic plates” and 
then moved more or less into full-time study of Maxwellian electromagnetics 
but not without a few side excursions into hydrodynamics.  

Hertz’s interest and accomplishments in this area, as a young man in his 
twenties, are a continuing source of inspiration to present-day practitioners. Ad-
vances in mathematics and computational technology now allow us to plot full 
details of indentation stress fields for both elastic and elastic-plastic contact. 
Despite this technology, the science of hardness is still as vague as ever. Is hard-
ness a material property? Hertz thought so, and many still do. However, many 
recognize that the hardness one measures often depends on how you measure it, 
and the area remains as open as ever to scientific investigation. 

 
 
 
 

which he found that “scientific men have as clear, i.e., as vague, a conception as 



 

 

Chapter 1  
Mechanical Properties of Materials 

1.1 Introduction 

The aim of this book is to provide simple and clear explanations about the nature 
of contact between solid bodies. It is customary to use the term “indenter” to 
refer to the body to which the loading force is applied, and to refer to the body 
undergoing the deformation of interest as the “specimen.” Such contact may be 
purely elastic, or it may involve some plastic, or irreversible, deformation of 
either the indenter, the specimen, or both. The first two chapters of this book are 
concerned with the basic principles of elasticity, plasticity, and fracture. It is 
assumed that the reader is familiar with the engineering meaning of common 
terms such as force and displacement but not necessarily familiar with engineer-
ing terms such as stress, strain, elastic modulus, Poisson’s ratio, and other mate-
rial properties. The aim of these first two chapters is to inform and educate the 
reader in these basic principles and to prepare the groundwork for subsequent 
chapters on indentation and contact between solids.  

1.2 Elasticity 

1.2.1 Forces between atoms 

It is reasonable to suppose that the strength of a material depends on the strength 
of the chemical bonds between its atoms. Generally, atoms in a solid are at-
tracted to each other over long distances (by chemical bond forces) and are also 
repelled by each other at very short distances (by Coulomb repulsion). In the 
absence of any other forces, atoms take up equilibrium positions where these 
long-range attractions and short-range repulsions balance. The long-range attrac-
tive chemical bond forces are a consequence of the lower energy states that arise 
due to filling of electron shells. The short-range repulsive Coulomb forces are 
electrostatic in origin. 

Figure 1.2.1 shows a representation of the force required to move one atom 
away from another at the equilibrium position. The exact shape of this relation-
ship depends on the nature of the bond between them (e.g., ionic, covalent, or 
metallic). However, all bonds show a force−distance relationship of the same 
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general character. As can be seen, near the equilibrium position, the force F 
required to move one atom away from another is very nearly directly propor-
tional to the distance x:  

kxF =  (1.2.1a)  

A solid that shows this behavior is said to be “linearly elastic,” and this is 
usually the case for small displacements about the equilibrium position for most 
solid materials. Of course, in reality, the situation is complicated by the effect of 
neighboring atoms and the three-dimensional character of real solids. 

1.2.2 Hooke’s law 

Referring to Fig. 1.2.1, let us imagine one atom being slowly pulled away from 
the other by an external force. The maximum value of the external force re-
quired to break the chemical bond between them is called the “cohesive 
strength” To break the bond, at least this amount of force must be applied. From 
then on, less and less force can be applied until the atom is so far away that very 
little force is required to keep it there. The strength of the bond, by definition, is 
equal to the maximum cohesive force. 

In general, the shape of the force displacement curve may be approximated 
by a portion of a sine function, as shown in Fig 1.2.1. The region of interest is 
the section from the equilibrium position to the maximum force. In this region, 

Fig. 1.2.1 Schematic of the forces between atoms in a solid as a function of distance 
away from the center of the atom. Repulsive force acts over a very short distance. Attrac-
tive forces between atoms act over a very long distance. An atom at infinity has a higher 
potential energy than one at the equilibrium position. 

F+
attraction -gets stronger as molecules get 
closer together. Acts over a distance of a
few molecular diameters.

F-
repulsion - very strong force but 
only acts over a very short distance. 

distance x

equilibrium
position
(Low potential energy)

Movement of atom from
equilibrium position to
infinity requires a force F
acting through a distance.

High potential energy
(or bond energy)

“strength”
 of bond
Fmax

L
L
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⎞
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⎝
⎛=

L
xFF

2
sinmax

π  (1.2.2a)  

where L is the distance from the equilibrium position to the position at Fmax. 
Now, since sinθ ≈ θ for small values of θ, the force required for small displace-
ments x is: 

x
L

F
L
xFF

⎥
⎦

⎤
⎢
⎣

⎡
=

=

2

2
max

max

π

π

 (1.2.2b)  

Now, L and Fmax may be considered constant for any one particular material. 
Thus, Eq. 1.2.2b takes the form F = kx, which is more familiarly known as 
Hooke’s law. The result can be easily extended to a force distributed over a unit 
area so that: 

x
L2

maxπσ
σ =   (1.2.2c)  

where σmax is the “tensile strength” of the material and has the units of pressure.  
If Lo is the equilibrium distance, then the strain ε for a given displacement x 

is defined as: 

oL
x

=ε   (1.2.2d)  

Thus: 

E
L

Lo =⎥
⎦

⎤
⎢
⎣

⎡
=

2
maxπσ

ε
σ  (1.2.2e)  

All the terms in the square brackets may be considered constant for any one 
particular material (for small displacements around the equilibrium position) and 
can thus be represented by a single property E, the “elastic modulus” or 
“Young’s modulus” of the material. Equation 1.2.2e is a familiar form of 
Hooke’s law, which, in words, states that stress is proportional to strain.  

In practice, no material is as strong as its “theoretical” tensile strength. Usu-
ally, weaknesses occur due to slippage across crystallographic planes, impuri-
ties, and mechanical defects. When stress is applied, fracture usually initiates at 
these points of weakness, and failure occurs well below the theoretical tensile 
strength. Values for actual tensile strength in engineering handbooks are ob-
tained from experimental results on standard specimens and so provide a basis 
for engineering structural design. As will be seen, additional knowledge regard-
ing the geometrical shape and condition of the material is required to determine 
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whether or not fracture will occur in a particular specimen for a given applied 
stress. 

1.2.3 Strain energy 

In one dimension, the application of a force F resulting in a small deflection, dx, 
of an atom from its equilibrium position causes a change in its potential energy, 
dW. The total potential energy can be determined from Hooke’s law in the fol-
lowing manner:  

2

2
1 kxkxdxW

kxF
FdxdW

==

=
=

∫
 (1.2.3a)  

This potential energy, W, is termed “strain energy.” Placing a material under 
stress involves the transfer of energy from some external source into strain po-
tential energy within the material. If the stress is removed, then the strain energy 
is released. Released strain energy may be converted into kinetic energy, sound, 
light, or, as shall be shown, new surfaces within the material. 

If the stress is increased until the bond is broken, then the strain energy be-
comes available as bond potential energy (neglecting any dissipative losses due 
to heat, sound, etc.). The resulting two separated atoms have the potential to 
form bonds with other atoms. The atoms, now separated from each other, can be 
considered to be a “surface.” Thus, for a solid consisting of many atoms, the 
atoms on the surface have a higher energy state compared to those in the inte-
rior. Energy of this type can only be described in terms of quantum physics. This 
energy is equivalent to the “surface energy” of the material.  

1.2.4 Surface energy 

Consider an atom “A” deep within a solid or liquid, as shown in Fig. 1.2.2. 
Long-range chemical attractive forces and short-range Coulomb repulsive forces 
act equally in all directions on a particular atom, and the atom takes up an equi-
librium position within the material. Now consider an atom “B” on the surface. 
Such an atom is attracted by the many atoms just beneath the surface as well as 
those further beneath the surface because the attractive forces between atoms are 
“long-range”, extending over many atomic dimensions. However, the corre-
sponding repulsive force can only be supplied by a few atoms just beneath the 
surface because this force is “short-range” and extends only to within the order 
of an atomic diameter. Hence, for equilibrium of forces on a surface atom, the 
repulsive force due to atoms just beneath the surface must be increased over that 
which would normally occur.  
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Fig. 1.2.2 Long-range attractive forces and short-range repulsive forces acting on an atom 
or molecules within a liquid or solid. Atom “B” on the surface must move closer to atoms 
just beneath the surface so that the resulting short-range repulsive force balances the 
long-range attractions from atoms just beneath and further beneath the surface.  

This increase is brought about by movement of the surface atoms inward and 
thus closer toward atoms just beneath the surface. The closer the surface atoms 
move toward those beneath the surface, the larger the repulsive force (see Fig. 
1.2.1). Thus, atoms on the surface move inward until the repulsive short-range 
forces from atoms just beneath the surface balance the long-range attractive 
forces from atoms just beneath and well below the surface. 

The surface of the solid or liquid appears to be acting like a thin tensile skin, 
which is shrink-wrapped onto the body of the material. In liquids, this effect 
manifests itself as the familiar phenomenon of surface tension and is a conse-
quence of the potential energy of the surface layer of atoms. Surfaces of solids 
also have surface potential energy, but the effects of surface tension are not 
readily observable because solids are not so easily deformed as liquids. The sur-
face energy of a material represents the potential that a surface has for making 
chemical bonds with other like atoms. The surface potential energy is stored as 
an increase in compressive strain energy within the bonds between the surface 
atoms and those just beneath the surface. This compressive strain energy arises 
due to the slight increase in the short-range repulsive force needed to balance the 
long-range attractions from beneath the surface. 

1.2.5 Stress 

Stress in an engineering context means the number obtained when force is di-
vided by the surface area of application of the force. Tension and compression 
are both “normal” stresses and occur when the force acts perpendicular to the 
plane under consideration. In contrast, shear stress occurs when the force acts 
along, or parallel to, the plane. To facilitate the distinction between different 

A

B
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types of stress, the symbol σ denotes a normal stress and the symbol τ shear 
stress. The total state of stress at any point within the material should be given in 
terms of both normal and shear stresses. 

To illustrate the idea of stress, consider an elemental volume as shown in 
Fig. 1.2.3 (a). Force components dFx, dFy, dFz act normal to the faces of the ele-
ment in the x, y, and z directions, respectively. The definition of stress, being 
force divided by area, allows us to express the different stress components using 
the subscripts i and j, where i refers to the direction of the normal to the plane 
under consideration and j refers to the direction of the applied force. For the 
component of force dFx acting perpendicular to the plane dydz, the stress is a 
normal stress (i.e., tension or compression): 

dydz
dFx

xx =σ  (1.2.5a)  

The symbol σxx denotes a normal stress associated with a plane whose nor-
mal is in the x direction (first subscript), the direction of which is also in the x 
direction (second subscript), as shown in Fig. 1.2.4.  

Tensile stresses are generally defined to be positive and compressive stresses 
negative. This assignment of sign is purely arbitrary, for example, in rock me-
chanics literature, compressive stresses so dominate the observed modes of fail-
ure that, for convenience, they are taken to be positive quantities. The force 
component dFy also acts across the dydz plane, but the line of action of the force 
to the plane is such that it produces a shear stress denoted by τxy , where, as be-
fore, the first subscript indicates the direction of the normal to the plane under 
consideration, and the second subscript indicates the direction of the applied 
force. Thus: 

dydz
dFy

xy =τ  (1.2.5b)  

Fig. 1.2.3 Forces acting on the faces of a volume element in (a) Cartesian coordinates and 
(b) cylindrical-polar coordinates.  

x

y

z

Fx

Fy

Fz

dx
dz
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Fq

Fz

Fr

dq
dr
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Fig. 1.2.4 Stresses resulting from forces acting on the faces of a volume element in (a) 
Cartesian coordinates and (b) cylindrical-polar coordinates. Note that stresses are labeled 
with subscripts. The first subscript indicates the direction of the normal to the plane over 
which the force is applied. The second subscript indicates the direction of the force. 
“Normal” forces act normal to the plane, whereas “shear” stresses act parallel to the 
plane. 

For the stress component dFz acting across dydz, the shear stress is: 

dydz
dFz

xz =τ  (1.2.5c)  

Shear stresses may also be assigned direction. Again, the assignment is 
purely arbitrary, but it is generally agreed that a positive shear stress results 
when the direction of the line of action of the forces producing the stress and the 
direction of the outward normal to the surface of the solid are of the same sign; 
thus, the shear stresses τxy and τxz shown in Fig. 1.2.4 are positive. Similar con-
siderations for force components acting on planes dxdz and dxdy yield a total of 
nine expressions for stress on the element dxdydz, which in matrix notation  
becomes: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

zzzyzx

yzyyyx

xzxyxx

σττ
τστ
ττσ

 (1.2.5d)  

The diagonal members of this matrix σij are normal stresses. Shear stresses 
are given by τij. If one considers the equilibrium state of the elemental area, it 
can be seen that the matrix of Eq. 1.2.5d must be symmetrical such that τxy = τyx, 
τyz = τzy, τzx = τxz . It is often convenient to omit the second subscript for normal 
stresses such that σx = σxx and so on. 

σθ

τθz

τzθτzr

τrθ

τrz

τθr

σz

σr

θ(b)

x

y

z

σx

σy

σz

τyx

τzx

τzy

τyz

τxz

τxy
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The nine components of the stress matrix in Eq. 1.2.5d are referred to as the 
stress tensor. Now, a scalar field (e.g., temperature) is represented by a single 
value, which is a function of x, y, z:  

( )
[ ]TU

zyxfT
=
= ,,

 (1.2.5e)  

By contrast, a vector field (e.g., the electric field) is represented by three 
components, Ex, Ey, Ez , where each of these components may be a function of 
position x, y, z*.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

=

z

y

x

zyx

E
E
E

E

EEEGE ,,

 (1.2.5f)

where ( ) ( ) ( ). ,, ; ,, ; ,, zyxhEzyxgEzyxfE zyx ===  

A tensor field, such as the stress tensor, consists of nine components, each of 
which is a function of x, y, and z and is shown in Eq. 1.2.5d. The tensor nature of 
stress arises from the ability of a material to support shear. Any applied force 
generally produces both “normal” (i.e., tensile and compressive) stresses and 
shear stresses. For a material that cannot support any shear stress (e.g., a nonvis-
cous liquid), the stress tensor becomes “diagonal.” In such a liquid, the normal 
components are equal, and the resulting “pressure” is distributed equally in all 
directions.  

It is sometimes convenient to consider the total stress as the sum of the aver-
age, or mean, stress and the stress deviations. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

mzzyzx

yzmyyx

xzxymx

m

m

m

zzyzx

yzyyx

xzxyx

σσττ
τσστ
ττσσ

σ
σ

σ

σττ
τστ
ττσ

00
00
00

  

        (1.2.5g)  

The mean stress is defined as: 

( )zyxm σσσσ ++=
3
1  (1.2.5h)  

where it will be remembered that σx = σxx, etc. The remaining stresses, the de 
viatoric stress components, together with the mean stress, describe the actual 
state of stress within the material. The mean stress is thus associated with the 
change in volume of the specimen (dilatation), and the deviatoric component is 

 
* The stress tensor is written with two indices. Vectors require only one index and may be called 

tensors of the first rank. The stress tensor is of rank 2. Scalars are tensors of rank zero. 

______ 

( )
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responsible for any change in shape. Similar considerations apply to axis-
symmetric systems, as shown in Fig. 1.2.3b. 

Let us now consider the stress acting on a plane da, which is tilted at an an-
gle θ to the x axis, as shown in Fig. 1.2.5, but whose normal is perpendicular to 
the z axis.  

It can be shown that the normal stress acting on da is: 

( ) ( ) θτθσσσσ

θθτθσθσσ θ

2sin2cos  
2
1

2
1

cossin2sincos 22

xyyxyx

xyyx

+−++=

++=
 (1.2.5i)  

and the shear stress across the plane is found from: 

( ) ( )
( ) θτθσσ

θθτθθσστθ

2cos2sin  
2
1

cossin cossin  22

xyyx

xyyx

−−=

−+−=
  (1.2.5j)  

From Eq. 1.2.5i, it can be seen that when θ = 0, σθ = σx as expected. Further, 
when θ = π/2, σθ = σy. As θ varies from 0 to 360o, the stresses σθ and τθ vary 
also and go through minima and maxima. At this point, it is of passing interest 
to determine the angle θ such that τθ = 0. From Eq. 1.2.5j, we have: 

Fig. 1.2.5 (a) Stresses acting on a plane, which makes an angle with an axis. Normal and 
shear stresses for an arbitrary plane may be calculated using Eqs. 1.2.5i and 1.2.5j.        
(b) direction of stresses. (c) direction of angles. 
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yx

xy

σσ

τ
θ

−
=

2
2tan  (1.2.5k)  

which, as will be shown in Section 1.2.10, gives the angle at which σθ is a 
maximum. 

1.2.6 Strain 

1.2.6.1 Cartesian coordinate system 
Strain is a measure of relative extension of the specimen due to the action of the 
applied stress and is given in general terms by Eq. 1.2.2d. With respect to an x, 
y, z Cartesian coordinate axis system, as shown in Fig. 1.2.6 (a), a point within 
the solid undergoes displacements ux, uy, and uz and unit elongations, or strains, 
are defined as1: 

z
u

y
u

x
u z

z
y

y
x

x ∂
∂

ε
∂

∂
ε

∂
∂

ε === ;;   (1.2.6.1a)  

Normal strains εi are positive where there is an extension (tension) and nega-
tive for a contraction (compression). For a uniform bar of length L, the change 
of length as a result of an applied tension or compression may be denoted ∆L. 
Points within the bar would have a displacement in the x direction that varied 
according to their distance from the fixed end of the bar. Thus, a plot of dis-
placement ux vs x would be linear, indicating that the strain (∂ux/∂x) is a con-
stant. Thus, at the end of the bar, at x = L, the displacement ux = ∆L and thus the 
strain is ∆L/L. 

 

Fig. 1.2.6 Points within a material undergo displacements (a) ux, uy, uz in Cartesian coor-
dinates and (b) ur, uθ, uz in cylindrical polar coordinates as a result of applied stresses. 
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Shear strains represent the distortion of a volume element. Consider the dis-
placements ux and uy associated with the movement of a point P from P1 to P2 as 
shown in Fig. 1.2.7 (a). Now, the displacement uy increases linearly with x along 
the top surface of the volume element. Thus, just as we may find the displace-
ment of a particle in the y direction from the normal strain uy = εyy, and since uy 
= (δuy/δx)x, we may define the shear strain εxy = ∂uy/∂x. Similar arguments apply 
for displacements and shear strains in the x direction.  

However, consider the case in Fig. 1.2.7 (b), where ∂uy/∂x is equal and oppo-
site in magnitude to ∂ux/∂y. Here, the volume element has been rotated but not 
deformed. It would be incorrect to say that there were shear strains given by εxy 
= −∂uy/∂x and εyx = ∂ux/∂y, since this would imply the existence of some strain 
potential energy in an undeformed element. Thus, it is physically more appro-
priate to define the shear strain as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

x
u

z
u

y
u

z
u

x
u

y
u

zx
xz

zy
yz

yx
xy

∂
∂

∂
∂

ε

∂
∂

∂

∂
ε

∂

∂

∂
∂

ε

2
1

2
1

2
1

 (1.2.6.1b)  

where it is evident that shearing strains reduce to zero for pure rotations but have 
the correct magnitude for shear deformations of the volume element. 

Many engineering texts prefer to use the angle of deformation as the basis of 
a definition for shear strain. Consider the angle θ in Fig. 1.2.7 (a). After defor-
mation, the angle θ, initially 90°, has now been reduced by a factor equal to 
∂uy/∂x + ∂ux/∂y. This quantity is called the shearing angle and is given by γij

1. 
Thus: 

Fig. 1.2.7 Examples of the deformation of an element of material associated with shear 
strain. A point P moves from P1 to P2 , leading to displacements in the x and y directions. 
In (a), the element has been deformed. In (b), the volume of the element has been rotated 
but not deformed. In (c) both rotation and deformation have occurred.  
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  (1.2.6.1c)  

It is evident that εij = ½γij. The symbol γij indicates the shearing angle defined 
as the change in angle between planes that were initially orthogonal. The symbol 
εij indicates the shear strain component of the strain tensor and includes the ef-
fects of rotations of a volume element. Unfortunately, the quantity γij is often 
termed the shear strain rather than the shearing angle since it is often convenient 
not to carry the factor of 1/2 in many elasticity equations, and in equations to 
follow, we shall follow this convention.  

Figure 1.2.7 (c) shows the situation where both distortion and rotation occur. 
The degree of distortion of the volume element is the same as that shown in Fig. 
1.2.7 (a), but in Fig. 1.2.7 (c), it has been rotated so that the bottom edge coin-
cides with the x axis. Here, ∂uy/∂x = 0 but the displacement in the x direction is 
correspondingly greater, and our previous definitions of shear strain still apply. 
In the special case shown in Fig. 1.2.7 (c), the rotational component of shear 
strain is equal to the deformation component and is called “simple shear.” The 
term “pure shear” applies to the case where the planes are subjected to shear 
stresses only and no normal stresses†. The shearing angle is positive if there is a 
reduction in the shearing angle during deformation and negative if there is an 
increase.  

The general expression for the strain tensor is: 

⎥
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⎡

zzyzx

yzyyx

xzxyx

εεε
εεε
εεε

 (1.2.6.1d)  

and is symmetric since εij = εji, etc., and γij = 2εij. 

1.2.6.2 Axis-symmetric coordinate system 
Many contact stress fields have axial symmetry, and for this reason it is of inter-
est to consider strain in cylindrical-polar coordinates1, 2  

 
† An example is the stress that exists through a cross section of a circular bar subjected to a twisting 

force or torque. In pure shear, there is no change in volume of an element during deformation. 

______ 
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and for shear “strains”1,2: 
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where ur, uθ, and uz are the displacements of points within the material in the r, 
θ, and z directions, respectively, as shown in Fig. 1.2.6 (b). Recall also that the 
shearing angle γij differs from the shearing strain εij by a factor of 2. In axis-
symmetric problems, uθ is independent of θ, so ∂uθ/∂θ = 0 (also, σr and σθ are 
independent of θ and τrθ = 0; γrθ = 0); thus, Eq. 1.2.6.2a becomes: 
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u z
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rr

r ∂
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εε
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ε θ ===    ;   ;  (1.2.6.2c)  

Equations 1.2.6.2c are particularly useful for determining the state of stress 
in indentation stress fields since the displacement of points within the material 
as a function of r and z may be readily computed (see Chapter 5), and hence the 
strains and thus the stresses follow from Hooke’s law. 

1.2.7 Poisson’s ratio 

Poisson’s ratio ν is the ratio of lateral contraction to longitudinal extension, as 
shown in Fig. 1.2.8. Lateral contractions, perpendicular to an applied longitudi-
nal stress, arise as the material attempts to maintain a constant volume. Pois-
son’s ratio is given by: 

||ε
ε

ν ⊥=  (1.2.7a)  

and reaches a maximum value of 0.5, whereupon the material is a fluid, main-
tains a constant volume (i.e., is incompressible), and cannot sustain shear. 
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Fig. 1.2.8 The effect of Poisson’s ratio is to decrease the width of an object if the applied 
stress increases its length. 

1.2.8 Linear elasticity (generalized Hooke’s law) 

1.2.8.1 Cartesian coordinate system  
In the general case, stress and strain are related by a matrix of constants Eijkl 
such that: 

klijklij E ε=σ   (1.2.8.1a)  

For an isotropic solid (i.e., one having the same elastic properties in all direc-
tions), the constants Eijkl reduce to two, the so-called Lamé constants µ, λ, and 
can be expressed in terms of two material properties: Poisson’s ratio, ν, and 
Young’s modulus, E, where2: 

( )
( )µλ

λν
µλ

µλµ
+

=
+
+

=
2

  ;23E   (1.2.8.1b)  

The term “linear elasticity” refers to deformations that show a linear depend-
ence on stress. For applied stresses that result in large deformations, especially 
in ductile materials, the relationship between stress and strain generally becomes 
nonlinear. 

For a condition of uniaxial tension or compression, Eq. 1.2.2e is sufficient to 
describe the relationship between stress and strain. However, for the general 
state of triaxial stresses, one must take into account the strain arising from lateral 
contraction in determining this relationship. For normal stresses and strains 1,3: 
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For shear stresses and strains, we have1,3: 
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 (1.2.8.1d)  

where G is the shear modulus, a high value indicating a larger resistance to 
shear, given by: 

( )ν+
=

12
EG   (1.2.8.1e)  

Also of interest is the bulk modulus K, which is a measure of the compressi-
bility of the material and is found from: 

( )ν213 −
=

EK   (1.2.8.1f )  

1.2.8.2 Axis-symmetric coordinate system 
In cylindrical-polar coordinates, Hooke’s law becomes1: 
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1.2.9 2-D Plane stress, plane strain  

1.2.9.1 States of stress 
The state of stress within a solid is dependent on the dimensions of the specimen 
and the way it is supported. The terms “plane strain” and “plane stress” are 
commonly used to distinguish between the two modes of behavior for two-
dimensional loading systems. In very simple terms, plane strain usually applies 
to thick specimens and plane stress to thin specimens normal to the direction of 
applied load.  

As shown in Fig. 1.2.9, in plane strain, the strain in the thickness, or z direc-
tion, is zero, which means that the edges of the solid are fixed or clamped into 
position; i.e., uz = 0. In plane stress, the stress in the thickness direction is zero, 
meaning that the edges of the solid are free to move. Generally, elastic solutions 
for plane strain may be converted to plane stress by substituting ν in the solution 
with ν /(1+ν) and plane stress to plane strain by replacing ν with ν /(1−ν). 

1.2.9.2 2-D Plane stress 
In plane stress, Fig. 1.2.9 (a), the stress components in σz, τxz, τyz are zero and 
other stresses are uniformly distributed throughout the thickness, or z, direction. 
Forces are applied parallel to the plane of the specimen, and there are no con-
straints to displacements on the faces of the specimen in the z direction. Under 
the action of an applied force, atoms within the solid attempt to find a new equi-
librium position by movement in the thickness direction, an amount dependent 
on the applied stress and Poisson’s ratio. Thus, since 

0  ;0  ;0 === yzxzz ττσ  (1.2.9.2a)  

we have from Hooke’s law: 

( )yxz E
σσνε +−=

1   (1.2.9.2b)  

1.2.9.3 2-D Plane strain 
In plane strain, Fig. 1.2.9 (b), it is assumed that the loading along the thickness, 
or z direction of specimen is uniform and that the ends of the specimen are con-
strained in the z direction, uz = 0. The resulting stress in the thickness direction 
σz is found from: 

( )yxz σσνσ +=  (1.2.9.3a)  

and also, 

0   ;0   ;0 === yzxzz ττε  (1.2.9.3b)  
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Fig. 1.2.9 Conditions of (a) Plane stress and (b) Plane strain. In plane stress, sides are free 
to move inward (by a Poisson’s ratio effect), and thus strains occur in the thickness direc-
tion. In plane strain, the sides of the specimen are fixed so that there are no strains in the 
thickness direction. 

The stress σz gives rise to the forces on each end of the specimen which are 
required to maintain zero net strain in the thickness or z direction. Setting εz = 0 
in Eq. 1.2.8.1c gives: 

2

2

1

1

νε

σ
νε

σ

−
=

−
=

E

E

y

y

x

x

 (1.2.9.3c)  

Table 1.2.1 Comparison between formulas for plane stress and plane strain. 

 Plane stress Plane strain 
Geometry Thin Thick 

Normal stresses σz = 0 σz = ν (σx+σy) 
σz = ν (σr+σθ) 

Shear stresses τxz = 0, τyz = 0 τxz = 0, τyz = 0  
Normal strains ( )yxz E

σ+σν−=ε
1  εz = 0 

Shearing strains γxz = 0; γyz = 0 γxz = 0, γyz = 0 
Stiffness E E/(1−ν 

2) 

(a) Plane stress

x y

z

σ

stresses in
a flat plate

(b) Plane strain

x

y

z

σ

stresses in a
long retaining 
wall
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The quantity E/(1−ν 
2) may be thought of as the effective elastic modulus and 

is usually greater than the elastic modulus E. The constraint associated with the 
thickness of the specimen effectively increases its stiffness. 

Table 1.2.1 shows the differences in the mathematical expressions for 
stresses, strains, and elastic modulus for conditions of plane stress and plane 
strain. 

1.2.10 Principal stresses 

At any point in a solid, it is possible to find three stresses, σ1, σ2, σ3, which act 
in a direction normal to three orthogonal planes oriented in such a way that there 
is no shear stress across those planes. The orientation of these planes of stress 
may vary from point to point within the solid to satisfy the requirement of zero 
shear. Only normal stresses act on these planes and they are called the “principal 
planes of stress.” The normal stresses acting on the principal planes are called 
the “principal stresses.” There are no shear stresses acting across the principal 
planes of stress. The variation in the magnitude of normal stress, at a particular 
point in a solid, with orientation is given by Eq. 1.2.5i as θ varies from 0 to 360o 
and shear stress by Eq. 1.2.5j. The stresses σθ and τθ pass through minima and 
maxima. The maximum and minimum normal stresses are the principal stresses 
and occur when the shear stress equals zero. This occurs at the angle indicated 
by Eq. 1.2.5k. The principal stresses give the maximum normal stress (i.e., ten-
sion or compression) acting at the point of interest within the solid. The maxi-
mum shear stresses act along planes that bisect the principal planes of stress. 
Since the principal stresses give the maximum values of tensile and compressive 
stress, they have particular importance in the study of the mechanical strength of 
solids. 

1.2.10.1 Cartesian coordinate system: 2-D Plane stress 
The magnitude of the principal stresses for plane stress can be expressed in 
terms of the stresses that act with respect to planes defined by the x and y axes in 
a global coordinate system. The maxima and minima can be obtained from the 
derivative of σθ in Eq. 1.2.5i with respect to θ. This yields: 

2
2

2,1 22 xy
yxyx τ

σσσσ
σ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
±

+
=  (1.2.10.1a)  

τxy is the shear stress across a plane perpendicular to the x axis in the direction of 
the y axis. Since τxy = τyx, then τyx can also be used in Eq. 1.2.10.1a. σ1 and σ2  
are the maximum and minimum values of normal stress acting at the point of 
interest (x,y) within the solid. By convention, the principal stresses are labeled 
such that σ1 > σ2. Note that a very large compressive stress (more negative  
 



  1.2 Elasticity 19 

 

quantity) may be regarded as σ2 compared to a very much smaller compressive 
stress since, numerically, σ1 > σ2 by convention. Further confusion arises in the 
field of rock mechanics, where compressive stresses are routinely assigned posi-
tive in magnitude for convenience. 

Principal stresses act on planes (i.e., the “principal planes”) whose normals 
are angles θp and θp+ π/2 to the x axis as shown in Fig. 1.2.10 (a). Since the 
stresses σ1 and σ2 are “normal” stresses, then the angle θp, being the direction of 
the normal to the plane, also gives the direction of stress. The angle θp is calcu-
lated from: 

yx

xy
p σσ

τ
θ

−
=

2
2tan  (1.2.10.1b)  

This angle was shown to be that corresponding to a plane of zero shear in Sec-
tion 1.2.5, Eq. 1.2.5k.  

The maximum and minimum values of shearing stress occur across planes 
oriented midway between the principal planes of stress. The magnitudes of these 
stresses are equal but have opposite signs, and for convenience, we refer to them 
simply as the maximum shearing stress. The maximum shearing stress is half the 
difference between σ1 and σ2: 

( )21

2
2

max

2
1

2

σσ

τ
σσ

τ

−±=

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
±= xy

yx

 (1.2.10.1c)  

Fig. 1.2.10 Principal planes of stress. (a) In Cartesian coordinates, the principal planes are 
those whose normals make an angle of θ and θ′p as shown. In an axis-symmetric state of 
stress, (b), the hoop stress is always a principal stress. The other principal stresses make 
an angle of θp with the radial direction. 

(a)

θp

θ'p

σy

σx

σ
σ'

θp

(b)

σ3

σ1

σθ=σ2
(hoop)

σr

σz

-θp

θ3
+
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where the plus sign represents the maximum and the minus, the minimum shear-
ing stress. The angle θs with which the plane of maximum shear stress is ori-
ented with respect to the global x coordinate axis is found from: 

xy

yx
s τ

σσ
θ

2
2tan

−
=  (1.2.10.1d)  

There are two values of θs that satisfy this equation: θs and θs+90° corre-
sponding to τmax and τmin. The angle θs is at 45° to θp.  

The normal stress that acts on the planes of maximum shear stress is given 
by: 

( )212
1 σσσ +=m  (1.2.10.1e)  

which we may call the “mean” stress. On each of the planes of maximum shear-
ing stress, there is a normal stress which, for the two-dimensional case, is equal 
to the mean stress σm. The mean stress is independent of the choice of axes so 
that: 

( )

( )yx

m

σσ

σσσ

+=

+=

2
1
2
1

21
 (1.2.10.1f )  

1.2.10.2 Cartesian coordinate system: 2-D Plane strain 
For a condition of plane strain, the maximum and minimum principal stresses in 
the xy plane, σ1 and σ2, are given in Eq. 1.2.10.1a. A condition of plane strain 
refers to a specimen with substantial thickness in the z direction but loaded by 
forces acting in the x and y directions only. In plane strain problems, an addi-
tional stress is set up in the thickness or z direction an amount proportional to 
Poisson’s ratio and is a principal stress. Hence, for plane strain: 

( ) ( )213 σσνσσνσσ +=+== yxz  (1.2.10.2a)  

Although convention generally requires in general that σ1 > σ2 > σ3, we usu-
ally refer to σz as being the third principal stress in plane strain problems regard-
less of its magnitude; thus in some situations in plane strain, σ3 > σ2. 

Symmetry of stresses around a single point exists in many engineering prob-
lems, and the associated elastic analysis can be simplified greatly by conversion 
to polar coordinates (r,θ). In a typical polar coordinate system, there exists a 

1.2.10.3 Axis-symmetric coordinate system: 2 dimensions 
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radial stress σr and a tangential stress σθ, and the principal stresses are found 
from: 

( ) 2
2

2,1 2
 

2 θ
θθ τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
±

σ+σ
=σ r

rr

( )21max 2
1 σστ −=

( )zr

rz
p σσ

τ
θ

−
=

2
2tan

The shear stress τrθ reduces to zero for the case of axial symmetry, and σr 
and σθ are thus principal stresses in this instance. 

As noted above, in a three-dimensional solid, there exist three orthogonal planes 
across which the shear stress is zero. The normal stresses σ1, σ2, and σ3 on these 
principal planes of stress are called the principal stresses. At a given point within 
the solid, σ1 and σ3 are the maximum and minimum values of normal stress, 
respectively, and σ2 has a magnitude intermediate between that of σ1 and σ3. 
The three principal stresses may be found by finding the values of σ such that 
the determinant 

0=
−

−
−

σσττ
τσστ
ττσσ

zyzxz

zyyxy

zxyzx

obtained are arranged in order such that σ1 > σ2 > σ3. Solution of the cubic equa-
tion 1.2.3a is somewhat inconvenient in practice, and the principal stresses σ1, 
σ2, and σ3 may be more conveniently determined from Eq. 1.2.10.1a using σx, 
σy, τxy, and σy, σz, τyz, and then σx, σz, τxz in turn and selecting the maximum 
value obtained as σ1, the minimum as σ3, and σ2 is the maximum of the σ2’s 
calculated for each combination.  

The planes of principal shear stress bisect those of the principal planes of 
stress. The values of shear stress τ for each of these planes are given by: 

( ) ( ) ( )122331 2
1  , 

2
1  , 

2
1 σσσσσσ −−−

Note that no attempt has been made to label the stresses given in Eqs. 

1.2.10.4 Cartesian coordinate system: 3 dimensions 

 (1.2.10.3a)  

 (1.2.10.3b)  

 (1.2.10.3c)  

Solution of Eq. 1.2.10.4a, a cubic equation in σ, and the three values of σ so 

 (1.2.10.4a)  

 (1.2.10.4a)  

1.2.10.4a since it is not known a priori which is the greater except that because 
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definition, σ1 > σ2 > σ3, the maximum principal shear stress is given by half the 
difference of σ1 and σ3: 

( )31max 2
1 σστ −=

The orientation of the planes of maximum shear stress are inclined at ±45° to 
the first and third principal planes and parallel to the second. 

The normal stresses associated with the principal shear stresses are given by: 

( ) ( ) ( )122331 2
1  , 

2
1  , 

2
1 σσσσσσ +++

The mean stress does not depend on the choice of axes, thus: 

( )

( )3213
1
3
1

σσσ

σσσσ

++=

++= zyxm

Note that the mean stress σm given here is not the normal stress which acts 
on the planes of principal shear stress, as in the two-dimensional case. The mean 
stress acts on a plane whose direction cosines l, m, n with the principal axes are 
equal. The shear stress acting across this plane has relevance for the formulation 
of a criterion for plastic flow within the material. 

Axial symmetry exists in many three-dimensional engineering problems, and the 
associated elastic analysis can be simplified greatly by conversion to cylindrical 
polar coordinates (r,θ,z). In this case, it is convenient to consider the radial stress 
σr, the axial stress σz, and the hoop stress σθ. Due to symmetry within the stress 
field, the hoop stress is always a principal stress, σr, σθ, and σz are independent 
of θ, and τrθ = τθz = 0. In indentation problems, it is convenient to label the prin-
cipal stresses such that: 

( ) 2
2

3,1 22 rz
zrzr τ

σσσσ
σ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
±

+
=

θσσ =2

[ ]31max 2
1 σστ −=

Figure 1.2.10 (b) illustrates these stresses. Using these labels, in the indenta-
tion stress field we sometimes find that σ3 > σ2, in which case the standard  

1.2.10.5 Axis-symmetric coordinate system: 3 dimensions 

 (1.2.10.4b)  

 (1.2.10.4c)  

 (1.2.10.4d)  

 (1.2.10.5a)  

 (1.2.10.5b)  

 (1.2.10.5c)  



  1.2 Elasticity 23 

 

convention σ1 > σ2 > σ3 is not strictly adhered to. Note that two of the principal 
stresses, σ1 and σ3, lie in the rz plane (with θ a constant). The directions of the 
principal stresses with respect to the r axis are given by: 

( )zr

rz
p σσ

τ
θ

−
=

2
2tan

p
from the r axis to the line of action of the stress. However, difficulties arise as 
this angle passes through 45°, and a more consistent value for θp is given by Eq. 
5.4.2o in Chapter 5. The planes of maximum shear stress bisect the principal 
planes, and thus: 

( )
rz

zr
s τ

σσ
θ

2
2tan

−
=

1.2.11 Equations of equilibrium and compatibility 

1.2.11.1 Cartesian coordinate system 
Equations of stress equilibrium and strain compatibility describe the nature of 
the variation in stresses and strains throughout the specimen. These equations 
have particular relevance for the determination of stresses and strains in systems 
that cannot be analyzed by a consideration of stress alone (i.e., statically inde-
terminate systems).  

For a specimen whose applied loads are in equilibrium, the state of internal 
stress must satisfy certain conditions which, in the absence of any body forces 
(e.g., gravitational or inertial effects), are given by Navier’s equations of equi-
librium1,2: 
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 (1.2.11.1a)  

Equations 1.2.11a describe the variation of stress from one point to another 
throughout the solid. Displacements of points within the solid are required to 
satisfy compatibility conditions which prescribe the variation in displacements 
throughout the solid and are given by1,2,3: 

 (1.2.10.5d)  

 (1.2.10.5e)  

In Eq. 1.2.10.5d, a positive value of θ  is taken in an anticlockwise direction 
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 (1.2.11.1b)  

The compatibility relations imply that the displacements within the material 
vary smoothly throughout the specimen. Solutions to problems in elasticity gen-
erally require expressions for stress components which satisfy both equilibrium 
and compatibility conditions subject to the boundary conditions appropriate to 
the problem. Formal methods for determining the nature of such expressions that 
meet these conditions were demonstrated by Airy in 1862. 

1.2.11.2 Axis-symmetric coordinate system 
Similar considerations apply to axis-symmetric stress systems, where in cylin-
drical polar coordinates we have (neglecting body forces)2: 
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 (1.2.11.2a)  

where τrθ and ∂/∂θ terms reduce to zero for symmetry around the z axis. 

1.2.12 Saint-Venant’s principle 

Saint-Venant’s principle4 facilitates the analysis of stresses in engineering struc-
tures. The principle states that if the resultant force and moment remain un-
changed (i.e., statically equivalent forces), then the stresses, strains and elastic 
displacements within a specimen far removed from the application of the force 
are unchanged and independent of the actual type of loading. For example, in 
indentation or contact problems, the local deformations beneath the indenter 
depend upon the geometry of the indenter, but the far-field stress distribution is 
approximately independent of the shape of the indenter. 
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1.2.13 Hydrostatic stress and stress deviation 

For a given volume element of material, the stresses σx, σy, σz, τxy, τyz, τzx, acting 
on that element may be conveniently resolved into a mean, or average compo-
nent and the deviatoric components. The mean, or average, stress is found from: 

3

3
321 σσσ

σσσ
σ

++
=

++
= zyx

m
 (1.2.13a)  

In Eq. 1.2.13a, σm may be considered the “hydrostatic” component of stress, 
and it should be noted that its value is independent of the choice of axes and is 
thus called a stress invariant. The hydrostatic component of stress may be con-
sidered responsible for the uniform compression, or tension, within the speci-
men. The mean, or hydrostatic, stress acts on a plane whose direction cosines 
with the principal axes are l = m = n = 1/31/2. This plane is called the “octahe-
dral” plane. The quantity σm is sometimes referred to as the octahedral normal 
stress. The octahedral plane is parallel to the face of an octahedron whose verti-
ces are on the principal axes. 

The remaining stress components required to produce the actual state of 
stress are responsible for the distortion of the element and are known as the  
deviatoric stresses, or stress deviations.  

mzdz
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−=

 (1.2.13b)  

The deviatoric components of stress are of particular interest since plastic 
flow, or yielding, generally occurs as a result of distortion of the specimen rather 
than the application of a uniform hydrostatic stress. The stress deviations do 
depend on the choice of axes. They must, since the hydrostatic component does 
not. Hence, the principal stress deviations are: 
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−=
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33
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 (1.2.13c)  

The maximum difference in stress deviation is given by σd1 minus σd3 which 
is easily shown to be directly related to the maximum shear stress defined in  

It is useful to note the following properties associated with the deviatoric 
components of stress: 

Eq. 1.2.10.5c. 



26 Mechanical Properties of Materials 

 

( )
( ) ( ) ( )[ ]2

21
2

13
2

32

2
3

2
2

2
1

2

321

6
1
2
1

3

σσσσσσ

σσσ
σ

σσσσσσσ

−+−+−=

++=

++=++=

ddd
o

dzdydxdddo

 (1.2.13d)  

where σ0 may be considered a constant that is directly related to the yield stress 
of the material when this equation is used as a criterion for yield. The shear 
stress that acts on the octahedral plane is called the “octahedral” shear stress and 
is given by: 

( ) ( ) ( )[ ] 212
21

2
13

2
323

1 σσσσσστ −+−+−=oct  (1.2.13e)  

1.2.14 Visualizing stresses 

It is difficult to display the complete state of stress at points within a material in 
one representation. It is more convenient to display various attributes of stress 
on separate diagrams. Stress contours (isobars) are curves of constant stress. 
Normal or shear stresses may be represented with respect to global, local, or 
principal coordinate axes. The direction of stress is not given by lines drawn 
normal to the tangents at points on a stress contour. Stress contours give no in-
formation about the direction of the stress. Stress contours only give information 
about the magnitude of the stresses.  

Stress trajectories, or isostatics, are curves whose tangents show the direction 
of one of the stresses at the point of tangency and are particularly useful in visu-
alizing the directions in which the stresses act. When stress trajectories are 
drawn for principal stresses, the trajectories for each of the principal stresses are 
orthogonal. Tangents to points on stress trajectories indicate the line of action of 
the stress. Stress trajectories give no information about the magnitude of the 
stresses at any point. 

Some special states of stress are commonly displayed graphically to enable 
easy comparison with experimental observations. For example, contours ob-
tained by photoelastic methods may be directly compared with shear stress con-
tours. Slip lines occurring in ductile specimens may be compared with shear 
stress trajectories. 

1.3 Plasticity 

In many contact loading situations, the elastic limit of the specimen material 
may be exceeded, leading to irreversible deformation. In the fully plastic state,
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the material may exhibit strains at a constant applied stress and hence the total 
strain depends upon the length of time the stress, is applied. Thus, we should 
expect that a theoretical treatment of plasticity involve time rates of change of 
strain, hence the term “plastic flow.” 

1.3.1 Equations of plastic flow 

Viscosity is resistance to flow. The coefficient of viscosity η is defined such 
that: 
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ud
dt
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 (1.3.1a)  

Equations for fluid flow, where flow occurs at constant volume, are known 
as the Navier–Stokes equations: 
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 (1.3.1b)  

where xy
.γ  is the rate of change of shearing strain given by: 

y
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x
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∂

+
∂

∂
=γ  (1.3.1c)  

and so on for yz and zx. 
It should be noted that Eqs. 1.3.1b reduce to zero for a condition of hydro-

static stress, indicating that no plastic flow occurs and that it is the deviatoric 
components of stress that are of particular interest. Thus, Eqs. 1.3.1b can be 
written: 
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 (1.3.1d)  

where σm is the mean stress. 
Since plastic behavior is so dependent on shear, or deviatoric, stresses, it is 

convenient to shows stress fields in the plastic regime as “slip-lines.” Slip lines 
are curves whose directions at every point are those of the maximum rate of 
shear strain at that point. The maximum shear stresses occur along two planes 
that bisect two of the three principal planes, and thus there are two directions of 
maximum shear strain at each point. 

1.4 Stress Failure Criteria 

In the previous section, we summarized equations that govern the mechanical 
behavior of material in the plastic state. Evidently, it is of considerable interest 
to be able to determine under what conditions a material exhibits elasticity or 
plasticity. In many cases, plastic flow is considered to be a condition of failure 
of the specimen under load. Various failure criteria exist that attempt to predict 
the onset of plastic deformation, and it is not surprising to find that they are con-
cerned with the deviatoric, rather than the hydrostatic, state of stress since it is 
the former that governs the behavior of the material in the plastic state. 

1.4.1 Tresca failure criterion 

Shear stresses play such an important role in plastic yielding that Tresca5 pro-
posed that, in general, plastic deformation occurs when the magnitude of the 
maximum shear stress τmax reaches half of the yield stress (measured in tension 
or compression) for the material. A simple example can be seen in the case of 
uniform tension, where σ1 equals the applied tensile stress and σ2 = σ3 = 0. 
Yielding will occur when σ1 reaches the yield stress Y for the material being 
tested. More generally, the Tresca criterion for plastic flow is: 
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 (1.4.1a)  

or, as is commonly stated: 

31 σσ −=Y  (1.4.1b)  

where σ1 and σ3 in these equations are the maximum and minimum principal 
stresses.  

For 2-D plane stress and plane strain, care must be exercised in interpreting 
and determining the maximum shear stress. Usually, the stress in the thickness 
direction is labeled σ3 in these problems, where σ3 = 0 for plane stress and σ3 = 
ν(σ1+σ2) for plane strain. In plane strain, the planes of maximum shear stress are 
usually parallel to the z, or thickness, direction. In plane stress, the maximum 
shear stress usually occurs across planes at 45° to the z or thickness direction. 

1.4.2 Von Mises failure criterion 

It is generally observed that the deviatoric, rather than the hydrostatic, compo-
nent of stress is responsible for failure of a specimen by plastic flow or yielding. 
In the three-dimensional case, the deviatoric components of stress can be writ-
ten: 
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 (1.4.2a)  

It is desirable that a yield criterion be independent of the choice of axes, and 
thus we may use the invariant properties of the deviatoric stresses given by Eqs. 
1.2.13d, to formulate a useful criterion for plastic flow. According to the von 
Mises6 criterion for yield, we have: 
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1 σσσσσσ −+−+−=Y  (1.4.2b)  

where Y is the yield stress of the material in tension or compression. Equation 
1.4.2b can be shown to be related to the strain energy of distortion of the mate-
rial and is also evidently a description of the octahedral stress as defined by Eq. 
1.2.13e. The criterion effectively states that yield occurs when the strain energy 
of distortion, or the octahedral shear stress, equals a value that is characteristic 
of the material. 

For the special case of plane strain, εz = 0, stresses and displacements in the 
xy plane are independent of the value of z. The z axis corresponds to a principal 
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plane, say σz = σ3. This leads to σ3 = ½(σ1+σ2) for an incompressible material  
(ν = 0.5). Equation 1.4.2b can then be written: 

Y
3

1
max =τ  (1.4.2c)  

where τmax
For the special case where any two of the principal stresses are equal, the 

Tresca and von Mises criteria are the same. The choice of criterion depends 
somewhat on the particular application, although the von Mises criterion is more 
commonly used by the engineering community since it appears to be more in 
agreement with experimental observations for most materials and loading sys-
tems. 

The two failure criteria considered above deal with the onset of plastic de-
formation in terms of shear stresses within the material. In brittle materials, fail-
ures generally occur due to the growth of cracks, and only in special applications 
would one encounter plastic deformations. However, as we shall see in later 
chapters, plastic deformation of a brittle material routinely occurs in hardness 
testing where the indentation stress field offers conditions of stress conducive to 
plastic deformation. 
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Chapter 2 
Linear Elastic Fracture Mechanics 

2.1 Introduction 

Beginning with the fabrication of stone-age axes, instinct and experience about 
the strength of various materials (as well as appearance, cost, availability and 
even divine properties) served as the basis for the design of many engineering 
structures. The industrial revolution of the 19th century led engineers to use iron 
and steel in place of traditional materials like stone and wood. Unlike stone, iron 
and steel had the advantage of being strong in tension, which meant that engi-
neering structures could be made lighter and at less cost than was previously 
possible. In the years leading up to World War 2, engineers usually ensured that 
the maximum stress within a structure, as calculated using simple beam theory, 
was limited to a certain percentage of the “tensile strength” of the material. Ten-
sile strength for different materials could be conveniently measured in the labo-
ratory and the results for a variety of materials were made available in standard 
reference books. Unfortunately, structural design on this basis resulted in many 
failures because the effect of stress-raising corners and holes on the strength of a 
particular structure was not appreciated by engineers. These failures led to the 
emergence of the field of “fracture mechanics.” Fracture mechanics attempts to 
characterize a material’s resistance to fracture—its “toughness.” 

2.2 Stress Concentrations 

Progress toward a quantitative definition of toughness began with the work of 
Inglis1 in 1913. Inglis showed that the local stresses around a corner or hole in a 
stressed plate could be many times higher than the average applied stress. The 
presence of sharp corners, notches, or cracks serves to concentrate the applied 
stress at these points. Inglis showed, using elasticity theory, that the degree of 
stress magnification at the edge of the hole in a stressed plate depended on the 
radius of curvature of the hole.  

The smaller the radius of curvature, the greater the stress concentration. Inglis 
found that the “stress concentration factor”, κ, for an elliptical hole is equal to: 
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Fig. 2.2.1 Stress concentration around a hole in a uniformly stressed plate. The contours 
for σyy shown here were generated using the finite-element method. The stress at the edge 
of the hole is 3 times the applied uniform stress. 

ρ
κ c21+=  (2.2a) 

where c is the hole radius and ρ is the radius of curvature of the tip of the hole.  
For a very narrow elliptical hole, the stress concentration factor may be very 

much greater than one. For a circular hole, Eq. 2.2a gives κ = 3 (as shown in 
Fig. 2.2.1). It should be noted that the stress concentration factor does not de-
pend on the absolute size or length of the hole but only on the ratio of the size to 
the radius of curvature. 

2.3 Energy Balance Criterion 

In 19202, A. A. Griffith of the Royal Aircraft Establishment in England became 
interested in the effect of scratches and surface finish on the strength of machine 
parts subjected to alternating loads. Although Inglis’s theory showed that the 
stress increase at the tip of a crack or flaw depended only on the geometrical 
shape of the crack and not its absolute size, this seemed contrary to the well-
known fact that larger cracks are propagated more easily than smaller ones. This 
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anomaly led Griffith to a theoretical analysis of fracture based on the point of 
view of minimum potential energy. Griffith proposed that the reduction in strain 
energy due to the formation of a crack must be equal to or greater than the in-
crease in surface energy required by the new crack faces. According to Griffith, 
there are two conditions necessary for crack growth:  

i. The bonds at the crack tip must be stressed to the point of failure. The 
stress at the crack tip is a function of the stress concentration factor, which 
depends on the ratio of its radius of curvature to its length. 

ii. For an increment of crack extension, the amount of strain energy released 
must be greater than or equal to that required for the surface energy of the 
two new crack faces. 

The second condition may be expressed mathematically as: 

dc
dU

dc
dU s γ≥  (2.3a) 

where Us is the strain energy, Uγ is the surface energy, and dc is the crack length 
increment. Equation 2.3a says that for a crack to extend, the rate of strain energy 
release per unit of crack extension must be at least equal to the rate of surface 
energy requirement. Griffith used Inglis’s stress field calculations for a very 
narrow elliptical crack to show that the strain energy released by introducing a 
double-ended crack of length 2c in an infinite plate of unit width under a uni-
formly applied stress σa is [2]:  

E
c

U a
s

22πσ
=  Joules (per meter width) (2.3b) 

We can obtain a semiquantitative appreciation of Eq. 2.3b by considering the 
strain energy released over an area of a circle of diameter 2c, as shown in Fig. 
2.3.1. The strain energy is U = (½σ2/E)(πc2). The actual strain energy computed 
by rigorous means is exactly twice this value as indicated by Eq. 2.3b.  

As mentioned in Chapter 1, for cases of plane strain, where the thickness of 
the specimen is significant, E should be replaced by E/(1−ν2). In this chapter, we 
omit the (1−ν2) factor for brevity, although it should be noted that in most prac-
tical applications it should be included. 

The total surface energy for two surfaces of unit width and length 2c is: 

U 4 cγ γ=  Joules (per meter width) (2.3c) 

The factor 4 in Eq. 2.3c arises because of there being two crack surfaces of 
length 2c. γ is the fracture surface energy of the solid. This is usually larger than 
the surface free energy since the process of fracture involves atoms located a 
small distance into the solid away from the surface. The fracture surface energy 
may additionally involve energy dissipative mechanisms such as microcracking, 
phase transformations, and plastic deformation. 
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Thus, taking the derivative with respect to c in Eq. 2.3b and 2.3c, this gives 
us the strain energy release rate (J/m per unit width) and the surface energy crea-
tion rate (J/m per unit width). The critical condition for crack growth is: 

γ
πσ

2
2

≥
E

ca  (2.3d) 

The left-hand side of Eq. 2.3d is the rate of strain energy release per crack tip 
and applies to a double-ended crack in an infinite solid loaded with a uniformly 
applied tensile stress. Equation 2.3d shows that strain energy release rate per 
increment of crack length is a linear function of crack length and that the required 
rate of surface energy per increment of crack length is a constant. Equation 2.3d 
is the Griffith energy balance criterion for crack growth, and the relationships 
between surface energy, strain energy, and crack length are shown in Fig. 2.3.2.  

A crack will not extend until the strain energy release rate becomes equal to 
the surface energy requirement. Beyond this point, more energy becomes avail-
able by the released strain energy than is required by the newly created crack 
surfaces which leads to unstable crack growth and fracture of the specimen.  

 

Fig. 2.3.1 The geometry of a straight, double-ended crack of unit width and total length 
2c under a uniformly applied stress σa. Stress concentration exists at the crack tip. Strain 
energy is released over an approximately circular area of radius c. Growth of crack cre-
ates new surfaces. 
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surfaces
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Fig. 2.3.2 Energy versus crack length showing strain energy released and surface energy 
required as crack length increases for a uniformly applied stress as shown in Fig. 2.3.1. 
Cracks with length below cc will not extend spontaneously. Maximum in the total crack 
energy denotes an unstable equilibrium condition. 

The equilibrium condition shown in Fig. 2.3.2 is unstable, and fracture of the 
specimen will occur at the equilibrium condition. The presence of instability is 
given by the second derivative of Eq. 2.3b. For d2Us/dc2 < 0, the equilibrium 
condition is unstable. For d2Us/dc2 > 0, the equilibrium condition is stable. Fig-
ure 2.3.3 shows a configuration for which the equilibrium condition is stable. In 
this case, crack growth occurs at the equilibrium condition, but the crack only 
extends into the material at the same rate as the wedge.  

The energy balance criterion indicates whether crack growth is possible, but 
whether it will actually occur depends on the state of stress at the crack tip. A 
crack will not extend until the bonds at the crack tip are loaded to their tensile 
strength, even if there is sufficient strain energy stored to permit crack growth. 
For example, if the crack tip is blunted or rounded, then the crack may not ex-
tend because of an insufficient stress concentration. The energy balance criterion 
is a necessary, but not a sufficient condition for fracture. Fracture only occurs 
when the stress at the crack tip is sufficient to break the bonds there. It is cus-
tomary to assume the presence of an infinitely sharp crack tip to approximate the 
worst-case condition. This does not mean, however, that all solids fail upon the 
immediate application of a load. In practice, stress singularities that arise due to 
an “infinitely sharp” crack tip are avoided by plastic deformation of the material. 
However, if such an infinitely sharp crack tip could be obtained, then the crack 
would not extend unless there was sufficient energy for it to do so. 
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Fig. 2.3.3 (a) Example of stable equilibrium (Obreimoff ’s experiment). (b) Energy versus 
crack length showing stable equilibrium as indicated by the minimum in the total crack 
energy. 

For a given stress, there is a minimum crack length that is not self-
propagating and is therefore “safe.” A crack will not extend if its length is less 
than the critical crack length, which, for a given uniform stress, is: 

c 2
a

2 Ec γ
πσ

=  (2.3e) 

In the analyses above, Eq. 2.3b implicitly assumes that the material is line-
arly elastic and γ in Eq. 2.3d is the fracture surface energy, which is usually 
greater than the intrinsic surface energy due to energy dissipative mechanisms in 
the vicinity of the crack tip. 

The discussion above refers to a decrease in strain potential energy with in-
creasing crack length. This type of loading would occur in a “fixed-grips” appa-
ratus, where the load is applied, and the apparatus clamped into position. It can 
be shown that exactly the same arguments apply for a “dead-weight” loading, 
where the fracture surface energy corresponds to a decrease in potential energy 
of the loading system. The term “mechanical energy release rate,” may be more 
appropriate than “strain energy release rate” but the latter term is more com-
monly used. 
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2.4 Linear Elastic Fracture Mechanics 

2.4.1 Stress intensity factor 

During the Second World War, George R. Irwin3 became interested in the frac-
ture of steel armor plating during penetration by ammunition. His experimental 
work at the U.S. Naval Research Laboratory in Washington, D.C. led, in 19574, 
to a theoretical formulation of fracture that continues to find wide application. 
Irwin showed that the stress field σ(r,θ) in the vicinity of an infinitely sharp 
crack tip could be described mathematically by: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
3sin

2
sin1

2
cos

2
1 θθθ
π

σ
r

K
yy  (2.4.1a) 

The first term on the right hand side of Eq. 2.4.1a describes the magnitude of 
the stress whereas the terms involving θ describe its distribution. K1 is defined 
as*: 

cYK a πσ=1  (2.4.1b) 

The coordinate system for Eqs. 2.4.1a and 2.4.1b is shown in Fig. 2.4.1. In 
Eqn. 2.4.1b, σa is the externally applied stress, Y is a geometry factor,  and c is 
the crack half-length. K1 is called the “stress intensity factor.” There is an impor-
tant reason for the stress intensity factor to be defined in this way. For a particu-
lar crack system, π and Y are constants so the stress intensity factor tells us that 
the magnitude of the stress at position (r,θ) depends only on the external stress 
applied and the square root of the crack length. For example, doubling the exter-
nally applied stress σa will double the magnitude of the stress in the vicinity of 
the crack tip at coordinates (r,θ) for a given crack size. Increasing the crack 
length by four times will double the stress at (r,θ) for the same value of applied 
stress. The stress intensity factor K1, which includes both applied stress and 
crack length, is a combined “scale factor,” which characterizes the magnitude of 
the stress at some coordinates (r,θ) near the crack tip. The shape of the stress 
distribution around the crack tip is exactly the same for cracks of all lengths.  

Equation 2.4.1a shows that, for all sizes of cracks, the stresses at the crack 
tip are infinite. Despite this, the Griffith energy balance criterion must be satis-
fied for such a crack to extend in the presence of an applied stress σa. The stress 
intensity factor K1 thus provides a numerical “value,” which quantifies the mag-
nitude of the effect of the stress singularity at the crack tip. We shall see later 
that there is a critical value for K1 for different materials which corresponds to 
the energy balance criterion being met. In this way, this critical value of K1 char-
acterizes the fracture strength of different materials. 

 
* Some authors prefer to define K1 without π1/2 in Eq. 2.4.1b. In this case, π−1/2 does not appear in 

Eq. 2.4.1a. 

______ 
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In Eq. 2.4.1b, Y is a function whose value depends on the geometry of the 
specimen, and σa is the applied stress. For a straight double-ended crack in an 
infinite solid, Y = 1. For a small single-ended surface crack (i.e., a semi-infinite 
solid), Y = 1.125,6. This 12% correction arises due to the additional release in 
strain potential energy (compared with a completely embedded crack) caused by 
the presence of the free surface† as indicated by the shaded portion in Fig. 2.4.1. 
This correction has a diminished effect as the crack extends deeper into the ma-
terial. For embedded penny-shaped cracks, Y = 2/π. For half-penny-shaped sur-
face flaws in a semi-infinite solid, the appropriate value is Y = 0.713. Values of 
Y for common crack geometries and loading conditions can be found in standard 
engineering texts. 

 

Fig. 2.4.1 Semi-infinite plate under a uniformly applied stress with single-ended surface 
crack of half-length c. Dark shaded area indicates additional release in strain energy due 
to the presence of the surface compared to a fully embedded crack in an infinite solid. 

 
† A further correction can be made for the effect of a free surface in front of the crack (i.e., the sur-

face to which the crack is approaching). This correction factor is very close to 1 for cracks with a 
length less than one-tenth the width of the specimen. 
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Equation 2.4.1a arises from Westergaard’s solution7 for the Airy stress func-
tion, which fulfills the equilibrium equations of stresses subject to the boundary 
conditions associated with a sharp crack, ρ = 0, in an infinite, biaxially loaded 
plate. Equation 2.4.1a applies only to the material in the vicinity of the crack tip. 
A cursory examination of Eq. 2.4.1a shows that σyy approaches zero for large 
values of r rather than the applied stress σa. To obtain values for stresses further 
from the crack tip, additional terms in the series solution must be included. 
However, near the crack tip, the localized stresses are usually very much greater 
than the applied uniform stress that may exist elsewhere, and the error is thus 
negligible. 

The subscript 1 in K1 is associated with tensile loading, as shown in Fig. 
2.4.2. Stress intensity factors exist for other types of loading, as also shown in 
this figure, but our interest centers mainly on type 1 loading—the most common 
type that leads to brittle failure.  

 

Fig. 2.4.2 Three modes of fracture. (a) Mode I, (b) Mode II, and (c) Mode III. Type I is 
the most common. The figures on the right indicate displacements of atoms on a plane 
normal to the crack near the crack tip. 
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An important property of the stress intensity factors is that they are additive 
for the same type of loading. This means that the stress intensity factor for a 
complicated system of loads may be derived from the addition of the stress in-
tensity factors determined for each load considered individually. It shall be later 
shown how the additive property of K1 permits the stress field in the vicinity of a 
crack can be calculated on the basis of the stress field that existed in the solid 
prior to the introduction of the crack. 

The power of Eq. 2.4.1b cannot be overestimated. It provides information 
about events at the crack tip in terms of easily measured macroscopic variables. 
It implies that the magnitude and distribution of stress in the vicinity of the crack 
tip can be considered separately and that a criterion for failure need only be con-
cerned with the “magnitude” or “intensity” of stress at the crack tip. Although 
the stress at an infinitely sharp crack tip may be “infinite” due to the singularity 
that occurs there, the stress intensity factor is a measure of the “strength” of the 
singularity. 

2.4.2 Crack tip plastic zone 

Equation 2.4.1a implies that at r = 0 (i.e., at the crack tip) σyy approaches infin-
ity. However, in practice, the stress at the crack tip is limited to at least the yield 
strength of the material, and hence linear elasticity cannot be assumed within a 
certain distance of the crack tip (see Fig. 2.4.1). This nonlinear region is some-
times called the “crack tip plastic zone8.” Outside the plastic zone, displace-
ments under the externally applied stress mostly follow Hooke’s law, and the 
equations of linear elasticity apply. The elastic material outside the plastic zone 
transmits stress to the material inside the zone, where nonlinear events occur 
that may preclude the stress field from being determined exactly. Equation 
2.4.1a shows that the stress is proportional to 1/r1/2. The strain energy release 
rate is not influenced much by events within the plastic zone if the plastic zone 
is relatively small. It can be shown that an approximate size of the plastic zone is 
given by: 

2

2
1

2 ys
p

K
r

πσ
=  (2.4.2a) 

where σys is the yield strength (or yield stress) of the material.  
The concept of a plastic zone in the vicinity of the crack tip is one favored by 

many engineers and materials scientists and has useful implications for fracture 
in metals. However, the existence of a crack tip plastic zone in brittle solids ap-
pears to be objectionable on physical grounds. The stress singularity predicted 
by Eq. 2.4.1a may be avoided in brittle solids by nonlinear, but elastic, deforma-
tions. In Chapter 1, we saw how linear elasticity applies between two atoms for 
small displacements around the equilibrium position. At the crack tip, the dis-
placements are not small on an atomic scale, and nonlinear behavior is to be 
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expected. In brittle solids, strain energy is absorbed by the nonlinear stretching 
of atomic bonds, not plastic events, such as dislocation movements, that may be 
expected in a ductile metal. Hence, brittle materials do not fall to pieces under 
the application of even the smallest of loads even though an infinitely large 
stress appears to exist at the tip of any surface flaws or cracks within it. The  
energy balance criterion must be satisfied for such flaws to extend. 

2.4.3 Crack resistance 

The assumption that all the strain energy is available for surface energy of new 
crack faces does not apply to ductile solids where other energy dissipative 
mechanisms exist. For example, in crystalline solids, considerable energy is con-
sumed in the movement of dislocations in the crystal lattice and this may happen 
at applied stresses well below the ultimate strength of the material. Dislocation 
movement in a ductile material is an indication of yield or plastic deformation, or 
plastic flow.  

Irwin and Orowan9 modified Griffith’s equation to take into account the non-
reversible energy mechanisms associated with the plastic zone by simply includ-
ing this term in the original Griffith equation: 

dc
dU

dc
dU

dc
dU ps += γ  (2.4.3a) 

The right-hand side of Eq. 2.4.3a is given the symbol R and is called the 
crack resistance. At the point where the Griffith criterion is met, the crack resis-
tance indicates the minimum amount of energy required for crack extension in 
J/m2 (i.e., J/m per unit crack width). This energy is called the “work of fracture” 
(units J/m2) which is a measure of toughness. 

Ductile materials are tougher than brittle materials because they can absorb 
energy in the plastic zone, as what we might call “plastic strain energy,” which 
is no longer available for surface (i.e., crack) creation. By contrast, brittle mate-
rials can only dissipate stored elastic strain energy by surface area creation. The 
work of fracture is difficult to measure experimentally.  

2.4.4 K1C, the critical value of K1 

The stress intensity factor K1 is a “scale factor” which characterizes the magni-
tude of the stress at some coordinates (r,θ) near the crack tip. If each of two 
cracks in two different specimens are loaded so that K1 is the same in each 
specimen, then the magnitude of the stresses in the vicinity of each crack is pre-
cisely the same. Now, if the applied stresses are increased, keeping the same 
value of K1 in each specimen, then eventually the energy balance criterion will 
be satisfied and the crack in each will extend. The stresses at the crack tip are 
exactly the same at this point although unknown (theoretically infinite for a  
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perfectly elastic material but limited in practice by inelastic deformations). The 
value of K1 at the point of crack extension is called the critical value: K1C.  

K1C then defines the onset of crack extension. It does not necessarily indicate 
fracture of the specimen—this depends on the crack stability. It is usually regarded 
as a material property and can be used to characterize toughness. In contrast to 
the work of fracture, its determination does not depend on exact knowledge of 
events within the plastic zone. Consistent and reproducible values of K1C can 
only be obtained when specimens are tested in plane strain. In plane stress, the 
critical value of K1 for fracture depends on the thickness of the plate. Hence, K1C 
is often called the “plane strain fracture toughness” and has units MPa m1/2. Low 
values of K1C mean that, for a given stress, a material can only withstand a small 
length of crack before a crack extends.  

The condition K1 = K1C does not necessarily correspond to fracture, or fail-
ure, of the specimen. K1C describes the onset of crack extension. Whether this is 
a stable or unstable condition depends upon the crack system. Catastrophic frac-
ture occurs when the equilibrium condition is unstable. For cracks in brittle ma-
terials initiated by contact stresses, the crack may be initially unstable and then 
become stable due to the sharply diminishing stress field. For example, in Chap-
ter 7, we find that the variation in strain energy release rate (directly related to 
K1), the quantity dG/dc, is initially positive and then becomes negative as the 
crack becomes longer. In terms of stress intensity factor, the crack is stable 
when dK1/dc < 0 and unstable when dK1/dc > 0. The condition K1 = K1C for the 
stable configuration means that the crack is on the point of extension but will not 
extend unless the applied stress is increased. If this happens, a new stable equi-
librium crack length will result. Under these conditions, each increment of crack 
extension is sufficient to account for the attendant release in strain potential en-
ergy. For the unstable configuration, the crack will immediately extend rapidly 
throughout the specimen and lead to failure. Under these conditions, for each 
increment of crack extension there is insufficient surface energy to account for 
the release in strain potential energy. 

2.4.5 Equivalence of G and K 

Let G be defined as being equal to the strain energy release rate per crack tip 
and given by the left-hand side of Eq. 2.3d, that is, for a double-ended crack 
within an infinite solid, the rate of release in strain energy per crack tip is: 

E
cG

2πσ
=  (2.4.5a) 

Thus, substituting Eq. 2.4.1b into Eq. 2.4.5a, we have: 

E
K

G
2
1=  (2.4.5b) 
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When K1 = K1C, then Gc becomes the critical value of the rate of release in 
strain energy for the material which leads to crack extension and possibly frac-
ture of the specimen. The relationship between K1 and G is significant because it 
means that the K1C condition is a necessary and sufficient criterion for crack 
growth since it embodies both the stress and energy balance criteria. The value 
of K1C describes the stresses (indirectly) at the crack tip as well as the strain  
energy release rate at the onset of crack extension. 

It should be remembered that various corrections to K, and hence G, are re-
quired for cracks in bodies of finite dimensions. Whatever the correction, the 
correspondence between G and K is given in Eq. 2.4.5b. 

A factor of π sometimes appears in Eq. 2.4.5b depending on the particular 
definition of K1 used. Consistent use of π in all these formulae is essential, espe-
cially when comparing equations from different sources. Again, we should rec-
ognize that Eq. 2.4.5b applies to plane stress conditions. In practice, a condition 
of plane strain is more usual, in which case one must include the factor (1−ν2) in 
the numerator. 

2.5 Determining Stress Intensity Factors 

2.5.1 Measuring stress intensity factors experimentally 

Direct application of Griffith’s energy balance criterion is seldom practical be-
cause of difficulties in determining work of fracture γ. Furthermore, the Griffith 
criterion is a necessary but not sufficient condition for crack growth. However, 
stress intensity factors are more easily determined and represent a necessary and 
sufficient condition for crack growth, but in determining the stress intensity fac-
tor, Eq. 2.4.1b cannot be used directly because the shape factor Y is not gener-
ally known.  

As mentioned previously, Y = 2/π applies for an embedded penny shaped 
circular crack of radius c in an infinite plate. Expressions such as this for other 
types of cracks and loading geometries are available in standard texts. To find 
the critical value of K1, it is necessary simply to apply an increasing load P to a 
prepared specimen, which has a crack of known length c already introduced, and 
record the load at which the specimen fractures.  

Figure 2.5.1 shows a beam specimen loaded so that the side in which a crack 
has been introduced is placed in tension. Equation 2.5.1 allows the fracture 
toughness to be calculated from the crack length c and load P at which fracture 
of the specimen occurs. Note that in practice the length of the beam specimen is 
made approximately 4 times its height to avoid edge effects. 
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Fig. 2.5.1 Single edge notched beam (SENB) 
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Consistent and reproducible results for fracture toughness can only be ob-
tained under conditions of plane strain. In plane stress, the values of K1 at frac-
ture depend on the thickness of the specimen. For this reason, values of K1C are 
measured in plane strain, hence the term “plane strain fracture toughness.” 

2.5.2 Calculating stress intensity factors from prior stresses 

Under some circumstances, it is possible10 to calculate the stress intensity factor 
for a given crack path using the stress field in the solid before the crack actually 
exists. The procedure makes use of the property of superposition of stress inten-
sity factors. 

Consider an internal crack of length 2c within an infinite solid, loaded by a 
uniform externally applied stress σa, as shown in Fig. 2.5.2a. The presence of 
the crack intensifies the stress in the vicinity of the crack tip, and the stress in-
tensity factor K1 is readily determined from Eq. 2.4.1b. Now, imagine a series of 
surface tractions in the direction opposite the stress and applied to the crack 
faces so as to close the crack completely, as shown in Fig. 2.5.2b. At this point, 
the stress distribution within the solid, uniform or otherwise, is precisely equal 
to what would have existed in the absence of the crack because the crack is now 
completely closed. The stress intensity factor thus drops to zero, since there is 
no longer a concentration of stress at the crack tip. Thus, in one case, the pres-
ence of the crack causes the applied stress to be intensified in the vicinity of the 
crack, and in the other, application of the surface tractions causes this intensifi-
cation to be reduced to zero. 

W
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Fig 2.5.2 (a) Internal crack in a solid loaded with an external stress σ. (b) Crack closed by 
the application of a distribution of surface tractions F. (c) Internal crack loaded with sur-
face tractions FA and FB. 

Consider now the situation illustrated in Fig. 2.5.2c. Wells11 determined the 
stress intensity factor K1 at one of the crack tips A for a symmetric internal crack 
of total length 2c being loaded by forces FA applied on the crack faces at a dis-
tance b from the center. The value for K1 for this condition is: 

( )

1 2

1 1 2π
+⎛ ⎞= ⎜ ⎟−⎝ ⎠

A
A

F c bK
c bc

 (2.5.2a) 

Forces FB also contribute to the stress field at A, and the stress intensity fac-
tor due to those forces is: 

( )

1 2

1 1 2π
−⎛ ⎞= ⎜ ⎟+⎝ ⎠

B
B

F c bK
c bc

 (2.5.2b) 

Due to the additive nature of stress intensity factors, the total stress intensity 
factor at crack tip A shown in Fig. 2.5.2c due to forces FA and FB, where FA = FB 

= F, is : 
1 2

1 1 1 1 2 2 2

2
π

⎛ ⎞= + = ⎜ ⎟−⎝ ⎠
A B

F cK K K
c b

 (2.5.2c) 

 
 It is important to note that the Green’s weighting functions here apply to a double-ended crack in 
an infinite solid. For example, Eq. 2.5.2a applies to a force FA applied to a double-ended symmet-
ric crack and not FA applied to a single crack tip alone. 
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Now, if the tractions F are continuous along the length of the crack, then the 
force per unit length may be associated with a stress applied σ(b) normal to the 
crack. The total stress intensity factor is given by integrating Eq. 2.5.2c with F 
replaced by dF = σ(b)db.  

1 2
1 1 2 2 2

0

2 ( )σ
=

π −
∫
c bK c db

c b
 (2.5.2d) 

However, if the forces F are reversed in sign such that they close the crack 
completely, then the associated stress distribution σ(b) must be that which ex-
isted prior to the introduction of the crack. The stress intensity factor, as calcu-
lated by Eq. 2.5.2d, for continuous surface tractions applied so as to close the 
crack, is precisely the same as that (except for a reversal in sign) calculated for 
the crack using the macroscopic stress σa in the absence of such tractions. For 
example, for the uniform stress case, where σ(b) = σa, Eq. 2.5.2d reduces to   
Eq. 2.4.1b . 

As long as the prior stress field within the solid is known, the stress intensity 
factor for any proposed crack path can be determined using Eq. 2.5.2d. The 
strain energy release rate G can be calculated from Eq. 2.4.5b. Of course, one 
cannot always immediately determine whether a crack will follow any particular 
path within the solid. It may be necessary to calculate strain energy release rates 
for a number of proposed paths to determine the maximum value for G. The 
crack extension that results in the maximum value for G is that which an actual 
crack will follow.  

In brittle materials, cracks usually initiate from surface flaws. The strain en-
ergy release rate as calculated from the prior stress field (i.e., prior to there being 
any flaws) applies to the complete growth of the subsequent crack. The condi-
tions determining subsequent crack growth depend on the prior stress field. The 
strain energy release rate, G, can be used to describe the crack growth for all 
flaws that exist in the prior stress field but can only be considered applicable for 
the subsequent growth of the flaw that actually first extends. Assuming there is a 
large number of cracks or surface flaws to consider, the one that first extends is 
that giving the highest value for G (as calculated using the prior stress field) for 
an increment of crack growth. Subsequent growth of that flaw depends upon the 
Griffith energy balance criterion (i.e., G ≥ 2γ) being met as calculated along the 
crack path still using the prior stress field, even though the actual stress field is 
now different due to the presence of the extending crack. 

 
 To show this, one must make use of the standard integral:  
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2.5.3 Determining stress intensity factors 
using the finite-element method 

 
Stress intensity factors may also be calculated using the finite-element method. 
The finite-element method is useful for determining the state of stress within a 
solid where the geometry and loading is such that a simple analytical solution 
for the stress field is not available. The finite-element solution consists of values 
for local stresses and displacements at predetermined node coordinates. A value 
for the local stress σyy at a judicious choice of coordinates (r,θ) can be used  
to determine the stress intensity factor K1. For example, at θ = 0, Eq. 2.4.1a      
becomes: 

( ) 21
1 2 rK yy πσ=  (2.5.3a) 

where σyy is the magnitude of the local stress at r. It should be noted that the 
stress at the node that corresponds to the location of the crack tip (r = 0) cannot 
be used because of the stress singularity there. Stress intensity factors deter-
mined for points away from the crack tip, outside the plastic zone, or more cor-
rectly the “nonlinear” zone, may only be used. However, one cannot use values 
that are too far away from the crack tip since Eq. 2.4.1a applies only for small 
values of r. At large r, σyy as given by Eq. 2.4.1a approaches zero, and not as is 
actually the case, σa.  

Values of K1 determined from finite-element results and using Eq. 2.5.3a 
should be the same no matter which node is used for the calculation, subject to 
the conditions regarding the choice of r mentioned previously. However, it is not 
always easy to choose which value of r and the associated value of σyy to use. In 
a finite-element model, the specimen geometry, density of nodes in the vicinity 
of the crack tip, and the types of elements used are just some of the things that 
affect the accuracy of the resultant stress field. One method of estimation is to 
determine values for K1 at different values of r along a line ahead of the crack 
tip at θ = 0. These values for K1 are then fitted to a smooth curve and extrapo-
lated to r = 0, as shown in Fig. 2.5.3.  

Fig. 2.5.3 Estimating K1 from finite-element results. For elements near the crack tip, Eq. 
2.4.1a is valid and K1 can be determined from the stresses at any of the nodes near the 
crack tip. In practice, one needs to determine a range of K1 for a fixed θ (e.g., θ = 0) for a 
range of r and extrapolate back to r = 0. 
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Chapter 3  
Delayed Fracture in Brittle Solids 

3.1 Introduction 

The fracture of a brittle solid usually occurs due to the growth of a flaw on the 
surface rather than in the interior. Depending on environmental conditions, brit-
tle solids may exhibit time-delayed failure where fracture may occur some time 
after the initial application of load. Time-delayed failure of this type usually 
occurs due to the growth of a pre-existing flaw to the critical size given by the 
Griffith energy balance criterion. Subcritical crack growth is very important in 
determining a safe level of operating stress for brittle materials in structural ap-
plications. In practice, specimens may be tested for their ability to withstand a 
design stress for a specified service life by the application of a higher “proof ” 
stress. In this chapter, we investigate the effect of the environment on crack 
growth in glass, although the general principles apply to other brittle solids. The 
principles discussed here may be used to determine the service life of a parti-
cular specimen subjected to indentation loading where brittle cracking is of  
concern. 

3.2 Static Fatigue 

The strength of glass is highly variable and experience shows that it depends on: 
i. The rate of loading. Glass is stronger if the load is applied quickly or for 

short periods. Wiederhorn1 makes reference to Grenet2, who in 1899 ob-
served this behavior, but could not account for it. Since then, many other 
researchers3-7 have described similar effects.  

ii. The degree of abrasion of the surface. A large proportion of fracture me-
chanics as applied to the strength of brittle solids is devoted to this topic. 
Work of any significance begins with Inglis in 19138 and Griffith in 
19209. 

iii. The humidity of the environment. Orowan10, in 1944, showed that the 
surface energy of mica (and hence its fracture toughness) was three and a 
half times greater in a vacuum than in air that contained a significant propor-
tion of water vapor. Since then, many researchers11-13 have demonstrated 
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that the presence of water in conjunction with an applied stress signifi-
cantly weakens glass. 

iv. The temperature. Kropschot and Mikesell14 in 1957 and other research-
ers15-17 showed that the strength of glass increases at low temperatures 
and that time-dependent fracture is insignificant at cryogenic tempera-
tures. 

For most materials, resistance to fracture may be conveniently described by 
the “plane strain fracture toughness,” K1C, introduced in Chapter 2. K1C is the 
critical value of Irwin’s18 stress intensity factor, K1, defined as: 

cYK πσ=1  (3.2a) 

where σ is the applied stress, Y is a geometrical shape factor, and c is the crack 
length. For an applied stress intensity factor K1 < K1C, crack growth may still be 
possible due to the effect of the environment. Crack growth under these condi-
tions is called “subcritical crack growth” or “static fatigue” and may ultimately 
lead to fracture some time after the initial application of the load.  

Experiments show that there is an applied stress intensity factor K1 = K1scc, 
which depends on the material, below which subcritical crack growth is either 
undetectable or does not occur at all. K1scc is often called the “static fatigue 
limit.” Experimental results for crack propagation in glass in the vicinity of the 
static fatigue limit have been widely reported. Shand7, Wiederhorn and Bolz19, 
and Michalske20 report a fatigue limit for soda-lime glass of 0.25 MPa m1/2. 
Wiederhorn21 implies a K1scc of 0.3 MPa m1/2, and Wan, Latherbai, and Lawn22 
report a static fatigue limit for soda lime glass at about 0.27 MPa m1/2. It is gen-
erally accepted, however, that more experimental data are needed to clarify 
whether crack growth ceases entirely for K1 < K1scc or whether such growth oc-
curs in this domain but at an extremely low rate.  

In contrast to the proposed change in crack length described above, 
Charles4,5 and Charles and Hillig23 proposed a mechanism that expresses crack 
velocity in terms of the thermodynamic and geometrical properties of the crack 
tip. Charles and Hillig proposed that, depending on the applied stress and the 
environment, the rate of dissolution of material at the crack tip leads to an in-
crease, a decrease, or no change in the crack tip radius, and hence to correspond-
ing changes in the (Inglis) stress concentration factor over time. The change in 
stress concentration factor may eventually result in localized stress levels that 
cause failure of the specimen. Their theory also predicts that, under certain con-
ditions, crack tip blunting leads to a static fatigue limit. It should be noted that 
Charles and Hillig propose that the change in stress concentration factor is due 
to the changing geometry of the crack tip, and not to a change in crack length, 
over time. The stress corrosion theory of Charles and Hillig has considerable 
historical importance and forms the basis of some present-day architectural glass 
design strategies. For this reason, it is in our interest to consider it in some detail 
here. 
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3.3 The Stress Corrosion Theory of Charles and Hillig 

Charles and Hillig23 developed a theory of time-delayed failure based upon 
thermodynamic and geometrical considerations. They proposed that the pres-
ence of water causes chemical corrosion in glass, which produces a reaction 
product that is unable to support stress. In addition to being dependent on the 
chemical potential, the reaction rate also depends on the magnitude of the local 
stress. The magnitude of the local stress is given by the externally applied stress 
magnified by the (Inglis) stress concentration factor. Charles and Hillig conjec-
tured that the large stresses at the tip of a flaw or crack cause corrosion to occur 
preferentially at these sites (see Fig. 3.3.1). This has the effect of changing the 
crack tip geometry and hence also the local stress level since a change in geome-
try changes the magnitude of the stress concentration factor. The stress and the 
corrosion rate at the crack tip are mutually dependent. Charles and Hillig de-
scribed the velocity of corrosion normal to the interface between the material 
and the environment by a rate equation of the following form: 

* 1exp
⎡ ⎤⎛ ⎞⎛ ⎞

= ′ + γ − σ⎢ ⎥⎜ ⎟⎜ ⎟ρ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

m
o o l

V
v A E V

kT
 (3.3a) 

In this equation, A′ is a factor characteristic of the material, Eo is the activa-
tion energy in the absence of stress, γo is the surface free energy, Vm is molar 
volume of material, ρ is the radius of curvature of the crack, V 

* is defined as the 
“activation volume” and is equal to the change in activation energy with respect 
to stress (dE/ds), σl is the local stress at the reaction site—the crack tip, k is 
Boltzmann’s constant, and T is the absolute temperature. 

Equation 3.3a gives the crack velocity, or the velocity of the crack front, 
where it is assumed that the reaction product is incapable of carrying any stress. 
The magnitude of the stress at the tip of a crack is found from the Inglis stress 
concentration factor (see Chapter 2), which gives the local stress level expressed 
in terms of the average applied stress and the crack tip geometry. 

 

Fig. 3.3.1 Stress corrosion theory of Charles and Hillig. 
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ρ
σ=σ

c
al 2  (3.3b) 

In Eq. 3.3b, ρ is the crack tip radius and a is the crack half length. σa is the 
externally applied tensile stress and σl is the local stress at the crack tip.  

The crack tip radius can be expressed in terms of its geometry from the sec-
ond derivative of the displacement of the crack face in the direction parallel to 
the crack with respect to the displacement in the direction perpendicular to this. 
Charles and Hillig expressed the time rate of change of the stress concentration 
factor by a differential equation which, by relating the velocity of the reaction 
process at the crack face to an analytical expression for the resulting change in 
the crack tip radius, gives this rate of change in terms of thermodynamic and 
geometrical parameters. The differential equation has the following form: 

( ) [ ]RT
dt

d
o

nx
γ−σΚ=

ρ exp  (3.3c) 

In Eq. 3.3c, Κ and n are constants, x represents the displacement of the crack 
boundary into the material, and the other symbols are as in Eq. 3.3a. Charles and 
Hillig assign the value n = 16 based upon a fit to the experimental results of 
Mould and Southwick.  

Various parameter assignments in Eq. 3.3c lead Charles and Hillig to pro-
pose three possible solutions of the rate equation which qualitatively describe 
experimentally observed events associated with the extension of a flaw under 
the combined influence of water-induced corrosion and the presence of stress. 
Charles and Hillig proposed that:  

i. The crack may become sharper due to stress corrosion which increases 
the stress concentration, leading to a corresponding increase in corro-
sion rate and so on. The crack tip velocity is found from the rate of cor-
rosion of the bulk glass. Fracture eventually occurs after time tf when 
the increase in stress concentration results in a tip stress equal to the 
theoretical strength of the material. 

ii. The crack tip may become rounded with the increase in flaw radius 
balancing the increase in crack length, leading to no increase in the 
stress concentration factor and no increase in the local stress level.  
Under these conditions, the crack length increases very slowly, which 
effectively means that the applied stress can be supported indefinitely. 

iii. The crack tip radius and crack width and length may all increase due to 
corrosion, leading to an effective decrease in the stress concentration 
factor and hence a decrease in the local stress level and rate of dissolu-
tion. Under these conditions, the specimen becomes stronger. 

Integration of Eq. 3.3c permits the failure time to be calculated given the  
applied stress, the temperature, and the geometry of the flaw. Charles and  
Hillig claim that the rate of change of crack tip radius, rather than the rate of 
change in crack length, is the parameter most responsible for the change in stress 
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concentration. To simplify the integration, they therefore assume that the crack 
length remains essentially constant over a limited range of large stresses. This 
implies that the integration is to be taken over a negligible change in crack 
length for a large change in tip radius for a given applied stress. This only occurs 
at applied stresses smaller than would be associated with the fatigue limit, since 
at the fatigue limit, a small change in stress level results in a change in crack 
velocity of several orders of magnitude. Combining Eqs. 3.3b and 3.3c, Brown24 
was able to show that for a specific flaw that leads to failure, the integrated form 
of Eq. 3.3c is: 

( ) [ ] SdtRTT
ft

o
n

a  exp
0

=γ−σ∫  (3.3d) 

where S is a constant. This important integral forms the basis of modern window 
glass failure prediction models (e.g., Glass Failure Prediction Model25,26 and 
Load Duration Theory24).  

reaches the ultimate tensile stress of the material. Charles and Hillig showed that 
an application of their theory to the experimental data for fatigue strength of 
glass of Mould and Southwick6,17 leads to the ratio of the applied stress σa at the 
fatigue limit to the fracture strength σn of 0.15 at liquid nitrogen temperatures, 
where fatigue effects are not in evidence23: 

15.0=
σ

σ

n

a  (3.3e) 

Expressed in terms of (Irwin) stress intensity factors, where K1scc represents 
the fatigue limit, this becomes for glass27: 

mMPa

KK Cscc

117.0

15.0 11

=

=
  (3.3f) 

Wiederhorn21, in 1977, showed that crack velocities fall off sharply when K1 
is below 0.3 MPa m1/2, a value somewhat larger than that predicted by Charles 
and Hillig. The existence of the fatigue limit is implicit in Charles and Hillig’s 
work and was given further attention by Marsh28, who described the fracture and 
static fatigue of glass in terms of plastic flow at the crack tip. Marsh reported 
experimental evidence of plastic flow in glass at stresses well below the theo-
retical tensile strength. The flow stress is dependent on temperature and time. 
Plastic flow occurs at the highly stressed crack tip and following Irwin, this  
region is called the “crack tip plastic zone” the size of which is calculated from: 

2

2

2Y
c

r a
p

σ
=  (3.3g) 
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fatigue limit,” which is identified by the condition where the tip stress never 
In Charles and Hillig’s theory, item (ii) above implies the existence of a 

“
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Here, rp is the radius of the plastic zone, c is the crack length, σa is the ap-
plied stress, and Y is the yield strength of the material. Failure occurs when the 
plastic zone reaches a critical size. The “flow” stress σy, however, is dependent 
on time and temperature which permits the fracture stress σa to be calculated at 
different environmental conditions. This work appears to be an alternative 
statement of Irwin’s concept of K1C except that the effects of time and tempera-
ture on the variation in fracture strength are included. 

Of particular interest is the influence of crack tip plasticity with respect to 
the static fatigue limit. Marsh stated that Charles and Hillig’s theory (which is 
based upon brittle fracture theory—i.e., Griffith energy balance and Inglis stress 
concentration factor) requires a crack tip radius of 3 Å when applied to the ex-
perimental data of Shand29 at the lower fatigue limit. Marsh postulated that the 
selective nature of stress-enhanced corrosion is not likely to result in such small 
radii. Experimental evidence suggests that the plastic zone should be of order  
20 Å and Marsh’s calculations show a value for glass of 60 Å. Marsh found that 
the strength of glass at the static fatigue limit is more accurately described in 
terms of the size of the plastic zone rather than the rate equation of Charles and 
Hillig. He claimed that the analysis explains all of the mechanical properties of 
glass covered by brittle fracture theories and additional issues not covered by 
them. 

It is generally recognized that the stress corrosion theory of Charles and   
Hillig is insufficient to explain fully the phenomenon of static fatigue although it 
does attempt to do so in terms of the physics of the phenomenon. 

3.4 Sharp Tip Crack Growth Model 

Charles and Hillig’s theory attempts to describe the physical mechanisms of 
subcritical crack growth. By contrast, many researchers32 make no attempt to do 
so other than to assume a sharp crack tip and to describe subcritical crack veloci-
ties using an empirical mathematical model. Crack velocities in Region I of Fig. 
3.4.1 are thought to be dependent on both the applied stress intensity factor and 
the partial pressure of water vapor in the environment. For a static applied stress 
σa, the crack velocity is given by: 

nDK
dt
dc

=  (3.4a) 

In Eq. 3.4a, dc/dt is the crack velocity, and D and n are constants which 
characterize subcritical crack growth in Region I of Fig. 3.4.1. The time to fail-
ure tf may be found by integrating Eq. 3.4a: 
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Fig. 3.4.1 Crack velocity versus stress intensity factor showing three regions of crack 
growth behavior. 
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1  (3.4b) 

where ci and cf are initial and final crack lengths and Kc is the value of K1 below 
the value of K1C. tf is the time for the crack to grow from ci to cf. 

Equation 3.4a can be written in terms of K1 using Eq. 3.2a:  
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Integrating Eq. 3.4c gives: 

( )
( )

2 n 2 n
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f 2 2
a

2 K K
t

Y D n 2σ π

− −−
=

−
 (3.4d) 

where Kt is the value of Kc at the end of Region I and Ki is the initial value of Kc. 

The value of n is typically greater than 10, thus: 
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 (3.4e) 

and since Ki and ci are related by Eq. 3.2a:  
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Equation 3.4f may also be expressed in terms of a “proof stress” σp (see 
Section 3.5) where: 

p

aC
i

K
K

σ
σ

= 1  (3.4g) 

Substituting into Eq. 3.4e gives: 
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σ σ

σ π
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−=
−

 (3.4h) 

The slope of a plot of log tf vs log σa, using experimental results, yields a 
value for n, and substitution into Eq. 3.4h allows D to be determined. For glass 
immersed in water, data from Weiderhorn21 show that n may be taken to be 17 
and log D = −102.6. Other values for n have been experimentally determined 
and are summarized in Table 3.4.1. There are no values for D available directly 
from the literature, but these may be obtained from reported experimental data 
simply by reading the coordinates from the graph, using the value for n, and then 
using Eq. 3.1.2. 

The analysis described above is generally referred to as the sharp tip crack 
growth model since, in contrast to the stress corrosion theory of Charles and 
Hillig, it describes the growth of a crack at stresses below the critical stress. 

Table 3.4.1 Literature values for n, the subcritical crack growth rate constant, 
for glass immersed in water. 

Source n Comments 
Matthewson30 11   
Ritter31 13.4 (abraded) 
Ritter14 13.0  (acid etched) 
Ritter and LaPorte32 13  (abraded) 
Mould and Southwick6 12–14  (abraded) 
Wiederhorn and Bolz19 16.6  
Simmons and Freiman33 18.1  

3.5 Using the Sharp Tip Crack Growth Model 

The sharp tip crack growth model provides a convenient way to determine 
whether a specimen will survive its intended lifetime under the design stress. 

(3.4f )
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For example, a manufacturer may wish to guarantee that all specimens will sur-
vive a specified lifetime under a given load. To do this, the specimens may be 
subjected to a “proof stress,” which will cause all those specimens that will not 
last the intended lifetime to fail before being put into service. 

Consider the diagram shown in Fig. 3.5.1. During the lifetime tf of the speci-
men at a steady applied stress σa, flaws of length greater than ci may grow to the 
critical size and cause the specimen to fracture. Thus, it is desirable to filter out 
any specimens in a batch that have a flaw of size greater than ci. The remaining 
specimens will have flaws of size less than ci and those flaws may still undergo 
subcritical crack growth during time tf but will not reach the critical size ac dur-
ing that time. Specimens with a flaw size greater than ci can be failed immedi-
ately before being placed into service by subjecting all specimens to the critical 
stress σp for that flaw size. σp, when applied to all specimens, will cause all 
those specimens containing flaws of a size greater than ci to fracture. Those 
specimens that contain flaws all of size below ci will not fracture. The remaining 
unbroken specimens can then be expected not to fail at the applied stress during 
the time tf. The flaws that they contain may indeed extend during that time but 
will not reach the critical size for σa. 

The proof stress σp to apply can be calculated from a rearrangement of  
Eq. 3.4f: 

 

Fig. 3.5.1 Stress versus crack length. 
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The flaw size ci can be found from: 
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However, it should be realized that there is strong evidence of the existence 
of a static fatigue limit K1scc, a stress intensity factor below which subcritical 
crack growth does not occur. It is possible, depending on the value of σa, that 
the flaw size ci may be less than that of the flaw size corresponding to the static 
fatigue limit. Since K1scc is a material property, the critical flaw size for an ap-
plied stress σa is readily found from: 
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⎠
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⎛

πσ
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Y
K

c
a

scc
u   (3.5c) 

Thus, if cu happens to be larger than ci for a given value of σa, then only 
those flaws larger than cu will undergo subcritical crack growth during the time 
tf. In this case, the proof stress required is less than that given by Eq. 3.5a as 
shown in Fig. 3.5.1. The critical stress for a flaw size cu can be found from: 

uuC cK πσ=1   (3.5d) 

Which proof stress should be applied, σp or σu? 
i. Calculate a value for cu using Eq. 3.5c. 

ii. Calculate a value for ci using Eq. 3.5b. 
iii. If ci is larger than cu, then the proof stress required is σp (from Eq. 3.5a). 

If ci is less than cu, then the proof stress required is σu (from Eq. 3.5d). 
Application of the proof stress will guarantee failure of specimens that con-

tain flaws of the critical size to fail. Flaws of such length may be pre-existing or 
result from subcritical crack growth during loading. But, if subcritical crack 
growth occurs during unloading, then the specimen, at the conclusion of the 
proof test, may contain flaws of length larger than the critical size. Such poten-
tially dangerous flaws thus will be undetected by the proof test procedure. To 
minimize the possibility of this occurring, the unloading sequence should be 
performed as quickly as possible. 
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Chapter 4  
Statistics of Brittle Fracture 

4.1 Introduction 

Fractures in brittle solids usually occur due to the existence of surface flaws or 
cracks in the presence of a tensile stress field according to the Griffith criterion 
for crack growth. 

γ≥
πσ 2

2

E
c  (4.1a) 

The left-hand side of Eq. 4.1a describes the release in strain energy and the 
right hand side gives the surface energy required for the crack to grow. 

Griffith’s energy balance criterion can also be expressed in terms of Irwin’s 
stress intensity factor: 

cK πσ=1  (4.1b) 

Here, σ is the applied stress and c is the crack length. A geometrical shape 
factor Y is sometimes included in this definition but is not shown here. The criti-
cal value of K1, called K1C, is the fracture toughness of the material. K1C can be 
regarded as a single-valued material property for most materials. A crack will 
extend and possibly lead to fracture of the specimen when: 

CKK 11 =  (4.1c) 

Weibull statistics are used to predict the existence of a flaw that is capable  
of causing specimen failure. Weibull statistics1 have proved useful in a wide 
variety of situations not necessarily related to the strength of materials. Weibull 
statistics, when applied to the fracture of brittle solids, refers to instantaneous 
failure at a particular applied stress. However, the effects of subcritical crack 
growth can be included for the purposes of predicting the expected lifetime of 
specimens subjected to a tensile stress. 
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4.2 Basic Statistics 

Let X be some random variable that is associated with some event. For example, 
X might be the number of heads obtained upon two tosses of a coin. Each value 
of X has a certain probability of occurring, given by: 

( ) ( )xfxXP ==  (4.2a) 

For example, P(X = 1) may give the probability of obtaining one head in two 
tosses of a coin. f (x) is called a probability function. Figure 4.2.1 shows f (x) for 
zero, one, or two heads obtained in two tosses of a coin. 

A cumulative probability distribution function for the random variable X 
may be defined as: 

( ) ( )xFxXP =≤  (4.2b) 

where P(X ≤ x) = F(x) gives the probability that X takes on some value less than 
or equal to x. For example, Fig. 4.2.2 shows the probability of obtaining at most 
zero, one, or two heads in two tosses of a coin. The cumulative probability func-
tion can be obtained from the probability function by adding the probabilities for 
all values of X less than x. 

 

Fig. 4.2.1 Probability function. The y axis gives the probability that the random variable 
X equals some particular value x, for example, the function shown here indicates the 
probability of obtaining x number of heads in two tosses of a coin.  

Fig. 4.2.2 Cumulative probability distribution. The y axis gives the probability that the 
random variable X is equal to or less than a particular value x. The function shown here 
indicates the probability of obtaining 0, 1, or 2 heads in two tosses of a coin. 
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( ) ( )∑
−∞=

=
x

u

ufxF  (4.2c) 

where u in Eq. 4.2c is a dummy variable and takes on all values of x for which u 
≤ x. The cumulative distribution function F(x) always increases with increasing 
values of x. 

Now, if the random variable X is a continuous variable, then the probability 
that X takes on a particular value x is zero. However, the probability that X lies 
between two different values of x, say a and b, is by definition given by: 

( ) ( ) dxxfbxaP
b

a
∫=<<  (4.2d) 

where ( ) 0≥xf  and ( ) 1=∑
+∞

∞−

xf .  

 
Note, that it is the area under the curve of f (x) that gives the probability, as 

shown in (a) in Fig. 4.2.3. For the continuous case, the value of f (x) at any point 
is not a probability. Rather, f (x) is called the probability density function. 

A cumulative distribution, F(x), for the continuous case gives the probability 
that X takes on some value ≤ x and can be found from: 

( ) ( ) ( ) ( ) duufufxFxXP
xx

∫∑
∞−∞−

===≤  (4.2e) 

where u is a dummy variable which takes on all values between minus infinity 
and x. The value of F(x) approaches 1 with increasing x as shown in Fig. 4.2.3 
(b). Equations 4.2d and 4.2e satisfy the basic rules of probability. 

 
 

Fig. 4.2.3 (a) Probability density function and (b) cumulative probability distribution 
function for a continuous random variable X. 
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4.3 Weibull Statistics 

4.3.1 Strength and failure probability 

Consider a chain that consists of n links carrying a load W, as shown in Fig. 
4.3.1. Because of the load, a stress σa is induced in each link of the chain. Let 
the tensile strength of each link be represented by a continuous random variable 
S. The value of S may in principle take on all values from −∞ to +∞ , but in the 
present work we may assume that links only fail in tension and hence S > 0, or 
more realistically, S > σu, where σu ≥ 0 and is a lower limiting value of tensile 
strength. All links are said to have a tensile strength equal to or greater than σu. 

For distributions involving continuous random variables (as in the present 
case), by definition the chance of any one link having a tensile stress S less than 
a particular value σa is in general given by an integration of the probability den-
sity function f (σ): 

( ) ( )

( )aSP

dfF
a

σ<<=

σσ=σ ∫
σ

0
0

  (4.3.1a) 

F(σ) is the cumulative probability function and represents the accumulated 
area under the probability density function f (σ). F(σ) increases with increasing  
σa. Since S > 0, the total area under f (σ) from 0 to +∞ is equal to 1. 

If σa is an applied stress, what is the probability of failure of the chain? Let 
the chain have n links. Now, the chain will fail at an applied stress σa when any 
one of the n links has a strength S ≤ σa. A larger number of links leads to a 
greater chance that there exists a weak link in the chain; hence, we expect Pf to 
increase with n. Let: 

 
 

Fig. 4.3.1 Chain of n links carrying load W. The chain is only as strong as its weakest 
link. 

W
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( ) ( ) ( ) σσ=σ<<=σ ∫
σ

dfSPF
a

aa
0

0  (4.3.1b) 

where F(σa) gives the probability of there being a link with S < σa. The prob-
ability of there being a link with strength S greater than σa is: 

( )as FP σ−= 1  (4.3.1c) 

because the integral of f (σa)dσ from zero to infinity equals one. 
 Thus, the probability that all n links have S > σa is given by the product of 

the individual probabilities:  

( )( ) ( )( ) ( )( ) ( )( )
( )( )

s a a a a1 2 3 n

n
a

P 1 F 1 F 1 F ...... 1 F

1 F

σ σ σ σ

σ

= − − − −

= −
 (4.3.1d) 

where Ps is the probability of survival for the chain loaded to a stress σa and      
F(σa) is the same for each link. Equation 4.3.1d gives the probability of the   
simultaneous nonfailure of all the links.  

The probability of failure for the chain is thus: 

( )( )n
af FP σ−−= 11  (4.3.1e) 

It is very important to note that we must express the probability of failure of 
the chain in terms of the simultaneous probability of nonfailure of all the links. 
This is because the chain fails when any one of the links has a strength S ≤ σa, 
rather than all the links having S ≤ σa. The probability given by Eq. 4.3.1d ap-
plies to all n links.  

What is F(σ)? Weibull, for no particular reason other than that of simplicity 
and convenience, proposed the cumulative probability function: 
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⎠

⎞
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⎝

⎛
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σ−σ
−−=σ

m

o

uaF exp1   (4.3.1f ) 

where σu, σo, and m are adjustable parameters, and σu represents a stress level 
below which failure never occurs*. As we shall see, σo is an indication of the 
scale of the values of strength and m describes the spread of strengths. 

 
* There is an alternate three-parameter form which Weibull enunciated and that may be thought to 

be more academically pleasing than Eq. 4.3.1f. In this alternative form, the probability of failure is 
given by the difference between the probabilities of failure evaluated at the stress σ and the stress 
σu, adjusted by a factor that represents the total number of flaws are able to cause failure. In this 
form, we have F(σ) = 1–exp[– (σa

m–σu
m)/ σo

m]. Sometimes, the parameter σu is not included in Eq. 
4.3.1f, in which case the equation is referred to as a two-parameter expression. 

4.3 Weibull Statistics

______ 
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Substituting Eq. 4.3.1f into 4.3.1e, it is easy to show that the probability of 
failure for a chain of n links is given by: 
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o

ua
f nP exp1  (4.3.1g) 

Now, this is fine if we know the number of links in advance, however, this 
may not always be the case, especially when we are dealing with a very large 
number of links. If ρ is the number or links per unit length, then n = ρL. The 
probability of failure for the chain Pf may then be computed from: 
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where L is the total length of the chain, and ρ is the number of links per unit 
length. The exponent in the Weibull formula is sometimes referred to as the 
“risk function” and is given the symbol B. 

4.3.2 The Weibull parameters 

The parameter σu represents a lower limit to the tensile strength of each link, 
where all links have a tensile strength greater than this. The probability of sur-
vival for an applied stress σa ≤ σu is 1.  

The parameter m is commonly known as the Weibull modulus and it is the 
presence of this exponent that provides the statistical basis for the treatment. A 
high value of m indicates a narrow range in strengths (see Fig. 4.3.2). As m→∞, 
the range of strengths approaches zero, and all links have the same strength. 

It is more difficult to give a physical meaning to the parameter σo. Various 
authors give a variety of explanations whereas many do not venture a definition 
at all. Weibull states “... σo is that stress which for the unit of volume gives the 
probability of rupture S = 0.63.”; Davidge2 gives “...σo is a normalizing parame-
ter of no physical significance.”; Matthewson3 says “...σo gives the scale of 
strengths...”; and Atkins and Mai4 offer: “...a normalizing parameter of no physi-

o

The cumulative probability function, F(σ), is given by Eq. 4.3.1f. It can be 
readily shown by integration that the corresponding probability density function, 
f (σ), is, for the case of n = 1, from Eq. 4.3.1a: 

 
 

tensile strength and for this reason is usually called the “reference strength.”
However, as we shall see, it does not give the position of the maximum number
of links with a certain tensile strength in the way that would perhaps be first
expected. 

cal significance.” σ  certainly positions the spread of strengths on a scale of
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Fig. 4.3.2 Probability density function f (σ) and cumulative probability function F(σ). The 
effect of values of the Weibull strength parameters is shown. 
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 (4.3.2a) 

A plot of f (σ) against σa gives a bell-shaped figure (for m > 1), the width of 
which depends on m, and the position of which depends on σo (see Fig. 4.3.2). 
For a given value of σo, the cumulative probability F(σ), Eq. 4.3.1f, always 
passes through 0.63 for any value of m. A first derivative test on Eq. 4.3.2a, for 
the special case of σu = 0, indicates that the maximum value of f (σ) occurs at a 
stress that is related to σo: 

m

o m

1

max
11 ⎟

⎠
⎞

⎜
⎝
⎛ −σ=σ  (4.3.2b) 

where it is evident that σmax does not equal σo (except for m = ∞). Hence, it is 
evident that σo is not the stress at which f (σ) rises to a maximum, although it 
approaches this for large m. In practice, though, m is not particularly large (e.g., 
for brittle solids, m can be anywhere between 1 and 20) and hence, the position 
of σo is such that σo > σmax but the difference is not very significant. 

The parameter σo itself has no real physical significance but indicates the 
scale of strength. It should be noted that if the applied stress σa = σo, and for the 
case of σu = 0, then the probability of failure for each link is 0.63, leading to an 
undesirably high probability of failure, Pf, for the chain of n links. 

The Weibull parameters, m, σo, and σu may be determined by experiment, 
and the results so obtained can be used to predict the probability of failure for 
other specimens of the same surface condition placed under a different stress 
distribution.  

Determined 
by m and σo

Determined by m

σ

f (σ)

F(σ)
1

σ

0.63

σo

(a) (b)

4.3 Weibull Statistics
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4.4 The Strength of Brittle Solids 

4.4.1 Weibull probability function 

Consider a brittle solid of area A with this area consisting of a large number of 
area elements da. The area elements are analogous to the links in the chain in the 
previous discussion.  

i. Each element da has an associated tensile strength.  
ii. Fracture of the specimen as a result of an applied tensile stress occurs 

when any one area element fails.  
iii. An element fails when it contains a flaw greater than a critical size which 

depends on the magnitude of the prevailing applied stress (per Griffith). 
The probability of failure for an element at a stress σa is then related to the 

probability of that element containing a flaw that is greater than or equal to the 
critical flaw size.  

In general, there may exist flaw distributions in size, density, and orientation 
on the surface of the solid. The orientation distribution may be combined with 
size distribution if each flaw that is not normal to the applied stress is given an 
“equivalent” size as if it were normal. Further, it will be assumed that each flaw 
that is likely to cause fracture can be assigned an equivalent “penny-shaped” 
flaw size, a “standard” geometry for fracture analysis. 

If ρ is the density of flaws (number per unit area) that could possibly lead to 
failure for the particular loading condition†, then the total number of flaws that 
could lead to failure in the area A is ρA. Later it will be seen that the ρ term 
(usually unknown) can be conveniently incorporated into the σo term (also un-
known) to allow a combined parameter to be determined from experimental re-
sults. 

The Weibull probability function may be expressed: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

σ−σ
ρ−−=

m

o

ua
f AP exp1  (4.4.1a) 

In general, the stress may not be uniform over an area A, and thus if σa is a 
function of position, then the following integral is appropriate: 
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† It can be seen that the flaw density ρ may be taken as the density of flaws that can conceivably 

lead to failure. The total probability of failure is given by the product of the individual probabili-
ties of survival as in Eq. 4.3.4. If there are some area elements da that for some reason are incapa-
ble of causing failure, then the product (1-F(σ)) for those elements equals 1 and hence does not 
contribute to the numerical value of Ps. 
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Weibull himself acknowledged that the form of the function F(σ) has no 
theoretical basis but nevertheless serves to give satisfactory results in a         
large number of practical situations. Since F(σ) has three adjustable parame-
ters—m, σu, and σo—a reasonable fit to experimental data is usually obtainable. 

It is customary to incorporate the flaw density term ρ inside the function  
F(σ) so that, for the uniform stress case is: 
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where 
m

o
1

*

ρ

σ
=σ  

It is evident that ρ and σo are interdependent, which is the reason for com-
bining them into a single parameter σ*. Usually, a value for σ* can only be de-
termined from suitable fracture experiments. It is very difficult to determine the 
equivalent, penny-shaped, infinitely sharp, perpendicularly oriented flaw size for 
every surface flaw on a specimen. 

Since σ* is a property of the surface, it is sometimes useful to write: 

( )[ ]m
uaf kAP σ−σ−−= exp1  (4.4.1d) 

where mk
*

1

σ
=  

which, when σu = 0, becomes: 

[ ]m
af kAP σ−−= exp1  (4.4.1e) 

This last expression is a commonly used Weibull probability function and re-
lates the probability of failure for an area A with a surface flaw distribution 
characterized by m and k subjected to a uniform tensile stress σa. 

4.4.2 Determining the Weibull parameters 

In practice, the Weibull parameters can be found from suitable analysis of ex-
perimental data. Rearranging Eq. 4.4.1c gives: 
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and taking logarithms of both sides twice: 
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By letting σu = 0 (which is equivalent to saying that there is a probability for 
failure at every stress level, including zero), then: 
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A plot of lnln(1/(1−Pf)) vs ln σa yields a value for m and σ*. Any curvature 
in such a plot implies that σu differs from zero. Trial plots for different estimates 
of σu may be made until the most linear curve is obtained. There is no particular 
reason why strength data should follow the Weibull distribution, and hence a 
straight line plot may not be possible even with the three adjustable parameters. 
The only justification for using the technique is that experience has shown that 
good practical solutions are usually possible. 

The probability of failure Pf, for a group of specimens, also gives the ratio of 
specimens that fail at an applied stress divided by the total number of specimens. 
To obtain a plot of lnln(1/(1−Pf)) vs ln σa, a large number of specimens, say N, 
is subjected to a slowly increasing stress σa. At convenient intervals of stress, 
the number of failed specimens is counted (i.e., n). Then, an estimate of the 
probability of failure at that stress is: 

N
nPf =  (4.4.2d) 

Equation 4.4.2d is called an “estimator.” Equation 4.4.2d is not generally 
used because it is not quite statistically correct. The simplest, most common 
estimator is: 

1+
=

N
nPf  (4.4.2e) 

Another common estimator is: 

N
nPf

5.0−
=

The precise form of the estimator is the subject of ongoing research.5 For ex-
ample, Eq. 4.4.2e is thought to bias experimental measurements to a lower value 
for the Weibull modulus. 
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 As-received glass Weathered glass 
Brown6,7. m = 7.3  

k = 5.1×10−57 m−2 Pa−7.3 

A in sq m, σ in Pa 

(k = 5×10−30 sqft−1 psi−7.3,  
A in sqft, σ psi) 

 

Beason and 
Morgan8. 

m = 9 
k = 1.32×10−69 m−2Pa−9 

(k = 3.02×10−38 in16 lb−9) 

 

Beason9.  m = 6 

k = 7.19×10−45 m−2 Pa−6 

(= 4.97×10−25 sq in−1psi−6) 

 

Table 4.4.1 shows Weibull parameters obtained from various workers for ar-
eas of plate window glass. The Weibull parameters determined from experi-
ments using one particular set of samples can in principle be used to predict the 
probability of failure for other specimens with the same surface condition. 

4.4.3 Effect of biaxial stresses 

Common sense indicates that a specimen under uniaxial stress will have a lower 
probability of failure than the same specimen under biaxial stress because in the 
second case a greater number of flaws will be normal (or nearly so) to an ap-
plied tensile stress. So far, we have considered a tensile stress in one direction 
only acting across an area A. A biaxial, or two-dimensional, stress distribution 
may be incorporated into the analysis by determining an equivalent one-
dimensional stress which acts normal to each flaw.  

In the case of biaxial stress, the equivalent stress at some angle to the princi-
pal stresses σ1 and σ2 can be found, by linear elasticity, from: 

( )θσ+θσ=σθ
2

2
2

1 sincos  (4.4.3a) 

This then is the equivalent stress which acts normal to a flaw that is oriented 
at an angle θ to the maximum principal stress. Weibull aimed to reduce the prin-
cipal stresses to one equivalent stress for each flaw orientation in the specimen. 
The correction to the risk function B takes the form: 

( ) θφθσ+θσφ= ∫ ∫
π φ+

φ−

+ ddkB
mm

2

0

2
2

2
1

12
1 sincoscos 2  (4.4.3b) 
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Table 4.4.1 Summary of experimentally determined values of surface flaw para-   
meters m and k. 
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where φ is the angle that the equivalent stress makes with an axis normal to θ 
and has the range −π/2 to +π/2. Equation 4.4.3b is difficult to solve for all but 
the simplest cases (small m and/or σx = σy). As an example, Weibull shows that 
for the case of σx = σy and m = 3, the probability of failure is given by: 

[ ]32.3exp1 σ−−= kPf  (4.4.3c) 

Weibull’s original work actually was based on a one-dimensional tensile 
stress and applies a correction which increases the probability of failure for the 
two-dimensional case. The nature of the correction involves an integration of the 
form (equation 39, Weibull 19391): 

( ) θφφθσ+θσ= ∫ ∫
π

φ+

φ−

+ ddkB mm
2

0

122
2

2
1 cossincos 2  (4.4.3d) 

and can only be evaluated readily for small m, or for the case of σx = σy. 
In experimental studies involving flat plates, a biaxial stress distribution ex-

ists as a matter of course. Weibull parameters m and k are often determined by 
experiments involving biaxial stresses, and hence, the biaxial stress correction 
factor should be applied in a reverse direction. A good example of this proce-
dure is given by Beason9.  

Beason defines C(x,y) as the biaxial stress correction factor to be applied at 
any particular point on the surface of the plate. At locations where the principal 
stresses in the two biaxial directions are equal, C(x,y) = 1. σmax is the equivalent 
principal stress after corrections have been made for time, temperature and hu-
midity as previously described. Beason gives C(x,y) as: 
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where n is the ratio of the minimum to the maximum principal stresses.  
The upper limit of the integration is π/2 if both principal stresses are tensile. 

If one is compressive, then the upper limit is given by: 
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The factor C(x,y) decreases as the ratio n increases. Beason and Morgan8 
give a table of values for C(x,y) for ranges of m and n, part of which is repro-
duced in Table 4.4.2. 
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Table 4.4.2 Biaxial Stress Correction Factor C(x,y) for m = 7 for different ratios 
of minimum to maximum principal stress9. 

  n Correction factor 
1.0 1.00 
0.8 0.92 
0.6 0.86 
0.4 0.83 
0.2 0.81 
0.0 0.80 

−0.2 0.79 
−0.4 0.78 
−0.6 0.77 
−0.8 0.77 
−1.0 0.76 

 
Interestingly, it can be shown that if Beason’s correction factor is rescaled so 

that c = 1 at n = 0, then the value of c at n = 1 is very close to that calculated by 
Weibull. For example, Beason shows that at m = 3 and n = 0: 
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Now, rescaling so that c = 1 at n = 0, the projected value of c' at n = 1 is: 
31

0.679
3.2

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

=

c  (4.4.3h) 

which is equal to Weibull’s correction factor for n = 1 and m = 3. Another ex-
ample at m = 6 yields c = 0.724. Rescaling so that c = 1 at n = 0, the projected 
value of c' at n = 1 is 6.91. Weibull’s formula (Eq. 4.4.3d) for m = 6, n = 1 
yields 4.43. Evidently, Beason’s approximation does not hold as well at larger 
values of m. 

4.4.4 Determining the probability of delayed failure 

In previous chapters, we have seen that a critical flaw size can be associated 
with a uniform applied external stress through K1C. This relationship is illus-
trated in Fig. 3.5.1, where the stress intensity factor is shown in terms of an  
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applied external stress σa and crack length c. In this figure, K1C indicates the 
condition where instantaneous failure occurs and cc is the critical crack length 
for a particular value of σa.  

For an applied stress σa, Pf as given by Eq. 4.4.1e is the probability that an 
area A contains a flaw of size equal to or larger then cc and is the probability of 
instantaneous failure at that stress. However, if subcritical crack growth occurs 
during a time tf, flaws of size ci, less than cc, will extend to a length cc over that 
time. Thus, for failure within a time tf at stress σa we need to know the probabil-
ity of the area A containing a flaw of size greater than or equal to ci. 

The procedure for determining this probability is very similar to what was 
seen in Chapter 3 for determining the proof stress σp. The proof stress is the 
critical stress for instantaneous failure for flaws of size ci, or more correctly, the 
larger of ci or cu, where it will be remembered that cu is associated with the static 
fatigue limit. However, instead of calling it a proof stress, we should now think 
of it as an equivalent applied stress, σe. That is, the probability of instantaneous 
failure at a stress σe is precisely the same as the probability of delayed failure at 
a stress σa. Since the Weibull probability formula gives only the probability of 
instantaneous failure, we need to use σe in Eq. 4.4.1e for determining the prob-
ability of delayed failure at an applied stress σa. That is: 

[ ]m
ef kAP σ−−= exp1  (4.4.4a) 

We must also be aware of the effect of the static fatigue limit. Flaws of size 
below the static fatigue limit will not undergo subcritical crack growth during 
the time tf. Thus, following the same procedure as in Chapter 3, we determine 
values for cu and ci and proceed as follows: 

i. Calculate a value for cu using Eq. 3.5c in Chapter 3. 
ii. Calculate a value for ci using Eq. 3.5b. in Chapter 3. 

iii. If ci is larger than cu, then the equivalent stress required is σp. If ci is less 
than cu, then the equivalent stress required is σu. σp and σu are calculated 
according to Eqs. 3.5a and 3.5d. 

Depending on the magnitude of the applied stress, the static fatigue limit 
places an upper limit on the probability of failure as calculated by this proce-
dure. For example, for an applied stress of 8 MPa over a 1 m2 area, ci is only 
greater than cu for a time to failure less than 60 days‡. For longer failure times, ci 
is always less than cu, and the probability of failure approaches a constant value 
based on the value for the equivalent stress associated with cu. The time to fail-
ure at which Pf approaches a constant value depends upon the applied stress. 
Table 4.4.3 shows some representative values. 

For the situation where cu > ci, then the equivalent stress becomes: 

a
scc

e K
K

σ=σ
1

1  (4.4.4b) 

 
‡ With other parameters as follows: m = 7.3, k = 5.1×10−57 m−2Pa−m, log10D =  −102.6, n = 17. 
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For 4 mm thick, simply supported glass sheets carrying a uniform lateral 
pressure of 2.2 kPa, the time at which the probability of failure approaches a 
constant value appears to be about 36 days§. 

The implications of these observations are that failure models are able to 
predict the probability that an article will fail within the failure time at which Pf 
approaches a constant value. Designing for longer failure times has no effect on 
the probability of failure since smaller flaw sizes, which would be predicted to 
extend to a critical size without considering the static fatigue limit, will not ex-
tend because they are below that associated with the static fatigue limit. Thus, if 
a particular sample lasts longer than this critical time, then as long as the stress 
level, flaw distribution, and environmental conditions do not change, one would 
expect the sample to last indefinitely. However, it should be noted that this ap-
proach to fracture analysis cannot easily be applied to brittle solids that show an 
increase in crack resistance with crack extension. For example, a crack in con-
crete may be arrested by the interface between the cement and a piece of gravel, 
hence, the failure of the weakest link may not necessarily lead to fracture of the 
specimen.  

Table 4.4.3 Time to failure at which Pf approaches a constant value for some 
values of applied uniform tensile stress. 

Applied stress σa 
(MPa) 

Failure time (days) at 
which Pf is constant 

8 60 
16 15 
22 8 
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Chapter 5  
Elastic Indentation Stress Fields 

5.1 Introduction 

The nature of the stresses arising from the contact between two elastic bodies is 
of considerable importance and was first studied by Hertz1,2 in 1881 before his 
more well-known work on electricity. Stresses arising from indentations with 
point loads, spheres, cylindrical flat punches, and diamond pyramids are all of 
practical interest. The subsequent evolution of the field of contact mechanics has 
led to applications of the theory to a wide range of disciplines. The elastic stress 
fields generated by an indenter, whether it be a sphere, cylinder, or diamond 
pyramid, although complex, are well defined. Certain aspects of an indentation 
stress field, in particular its localized character, make it an ideal tool for investi-
gating the mechanical properties of engineering materials. Before such an inves-
tigation can be considered, our first requirement is a detailed knowledge of the 
elastic stress fields associated with various indenter geometries, and this is the 
topic of the present chapter. Although a full mathematical derivation of the in-
dentation stress fields associated with a variety of indenters is not given here, 
enough detail is presented to give an overall picture of how these stresses are 
calculated from first principles. 

5.2 Hertz Contact Pressure Distribution 

Hertz was concerned with the nature of the localized deformation and the distri-
bution of pressure between two elastic bodies placed in mutual contact. He 
sought to assign a shape to the surface of contact that satisfied certain boundary 
conditions, namely: 

i. The displacements and stresses must satisfy the differential equations of 
equilibrium for elastic bodies, and the stresses must vanish at a great dis-
tance from the contact surface. 

ii. The bodies are in frictionless contact. 
iii. At the surface of the bodies, the normal pressure is zero outside and equal 

and opposite inside the circle of contact. 
iv. The distance between the surfaces of the two bodies is zero inside and 

greater than zero outside the circle of contact. 
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v. The integral of the pressure distribution within the circle of contact with 
respect to the area of the circle of contact gives the force acting between 
the two bodies. 

These conditions define a framework within which a mathematical treatment 
of the problem may be formulated. Hertz made his analysis general by attribut-
ing a quadratic function to represent the profile of the two opposing surfaces and 
gave particular attention to the case of contacting spheres. Condition 4 above, 
taken together with the quadric surfaces of the two bodies, defines the form of 
the contacting surface. Condition 4 notwithstanding, the two contacting bodies 
are to be considered elastic, semi-infinite, half-spaces. Subsequent elastic analy-
sis is generally based on an appropriate distribution of normal pressure on a 
semi-infinite half-space, hence our stipulation that, in the formulas to follow, the 
radius of the circle of contact be very much smaller than the radius of the con-
tacting bodies. By analogy with the theory of electric potential, Hertz deduced 
that an ellipsoidal distribution of pressure would satisfy the boundary conditions 
of the problem and found that, for the case of a sphere, the required distribution 
of pressure is: 

ar
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Hertz did not calculate the magnitudes of the stresses at points throughout 
the interior but offered a suggestion as to their character by interpolating be-
tween those he calculated on the surface and along the axis of symmetry. The 
stress field associated with indentation of a flat surface with a spherical indenter 
appears to have been first calculated in detail by Huber3 in 1904 and again later 
by Fuchs4 in 1913, Huber and Fuchs5 in 1914, and Moreton and Close6 in 1922. 
More recently, the integral transform method of Sneddon7 has been applied to 
axis-symmetric distributions of normal pressures which correspond to a variety 
of indenters. An extensive mathematical treatment is given by Gladwell8, and an 
accessible text directed to practical applications is that of Johnson9. In sections 
to follow, we summarize some of the most commonly used indentation formulae 
but without going into their derivation. 

5.3 Analysis of Indentation Stress Fields 

A mathematical description of the indentation stress field associated with a par-
ticular indenter begins with the analysis of the condition of a point contact. This 
was studied by Boussinesq10 in 1885. The so-called Boussinesq solution for a 
point contact allows the stress distribution to be determined for any distribution 
of pressure within a contact area by the principle of superposition. Any contact 
configuration, such as indentation with a spherical or cylindrical flat punch in-
denter, can be viewed as an appropriate distribution of point loads of varying 
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intensity at the specimen surface, and the stress distribution within the interior is 
given by the superposition of each of the point-load indentation stress fields. 

5.3.1 Line contact 

The two-dimensional case of a uniformly distributed concentrated force acting 
along a line, as occurs in a knife edge contact, is of particular interest. The first 
analytical solution to the problem is attributed to Flamant.11,12 The distribution 

0
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−=

θθ τσ

θ
π

σ

r

r r
P

 (5.3.1a)  

σr is a principal stress. The tangential σθ and shearing stresses τrθ at any 
point within the specimen are zero. For any circle of diameter d tangent to the 
point of application of load and centered on the x axis, it is easy to show that r = 
dcosθ, and σr given by Eq. 5.3.1a is the same for all points on that circle except 
for the point r = 0 where a stress singularity occurs (infinite stress and infinite 
displacement). The stress singularity is avoided in practice by plastic yielding of 
the specimen material, which serves to spread the load over a small, finite area.  

In Cartesian coordinates, the stresses in the xy plane are13: 
3 22

4 4 4

2 2

2 2 2;   ;   x y xy
Px Pxy Px y
r r r

r x y

= = =

= +

σ σ τ
π π π  (5.3.1b)  

 

of stress within the specimen is radially directed toward the point of contact.
At any point r within the specimen, the radial stress, in two-dimensional polar
co-ordinates (see Fig. 5.3.1 for coordinate system), for a load per unit length P
perpendicular to the surface of the specimen is given by: 

Fig. 5.3.1 Polar coordinate system for line contact on a semi-infinite solid. 

P

θ

σr

σθ
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5.3.2 Point contact 

The stresses within a solid loaded by a point contact were calculated by  
Boussinesq10 and are given in cylindrical polar coordinates by Timoshenko and 
Goodier12: 
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 (5.3.2a) 

Except at the origin, the surface stresses σz, τyz, τzx = 0. Stresses calculated 
using Eq. 5.3.2a are shown in Fig. 5.3.2. Note that with Eq. 5.3.2a, and other 
equations to be presented in later sections, the coordinates r and z are to be en-
tered as positive quantities even though in many texts it is customary to present 
increasing values of |z| as vertically downward. Also, the load P, customarily 
shown as acting downward, is also a positive quantity.  

The strains corresponding to these stresses may be obtained from Hooke’s 
law, which in cylindrical polar coordinates becomes: 
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The strains εr and εθ are related to the displacements by: 
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At the surface, z = 0, the displacements are: 
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load” configuration calculated for load P = 100 N and Poisson’s ratio ν = 0.26. Distances 
r and z in mm. (a) σ1, (b) σ2, (c) σ3, (d) τmax, (e) the hydrostatic stress σH, (f) σ1 and σ3 
trajectories, (g) τmax trajectories. 

Fig. 5.3.2 Stress trajectories and contours of equal stress in MPa for Boussinesq “point 
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The displacements may be expressed in spherical polar coordinates thus:  

( ) ( )( )

( ) ( )

4 1 cos 1 2
4

1 2 sin
3 4 sin

4 1 cos

r
Pu
Gr
Pu
Gr

= − − −

−⎛ ⎞
= − −⎜ ⎟

+⎝ ⎠
θ

ν θ ν
π

ν θ
ν θ

π θ

 (5.3.2e) 

where G is the shear modulus. Note that Eqs. 5.3.2d indicate that ur and  
uz → 0 as r → ∞, thus allowing the displacements to be given with reference to 
what may be considered “fixed” points, or points on the surface of the specimen 
at a relatively large distance from the point of contact.  

5.3.3 Analysis of stress and deformation 

If the contact pressure distribution is known, then the surface deflections and 
stresses may be obtained by a superposition of those arising from individual 
point contacts. Consider a general point on the surface G with coordinates (r,θ), 
as shown in Fig. 5.3.3.  

We define a local coordinate system at G by radial and angular variables 
(s,φ). At some local distance s from this point, a pressure dp acts on a small ele-
mental area. The corresponding point force dP is given by: 

( ) φφ= sdsdspdP , . (5.3.3a) 

The deflection of the surface at G due to the point force dP is given by uz in 
Eq. 5.3.2d with the variable r being replaced by s. The total deflection of the 
surface at G is the sum of the deflections arising from each dP. An expression 
for the total deflection of the surface uz = f(r,θ) is obtained by expressing the 
local coordinates s and φ in terms of r and θ. Thus, substituting Eq. 5.3.3a into 
5.3.2d gives uz in terms of r and θ and where S is the area of the surface of con-
tact: 

Fig. 5.3.3 Deflection of a general point on the surface is found from the sum of the  
deflections due to distributed point loads P, the sum of which characterizes the contact 
pressure distribution. 
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( ) φφ
π

ν dsdsp
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u
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= ,1 2
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or: 

( ) θθ
π

ν drdrp
E

u
S

z ∫∫
−

= ,1 2
 (5.3.3c) 

Note that the local coordinates s and φ correspond to the coordinates r,θ 
when the point G under consideration is at the axis of symmetry r = 0. The 
strains may be computed from Eq. 5.2.3c and the stresses from Hooke’s law, Eq. 
5.2.3b. Using this procedure, it can be shown for example that a pressure distri-
bution of the form given by Eq. 5.2a gives rise to displacements beneath the 
contact circle corresponding to that of a spherical indenter. For a given contact 
pressure distribution, equations for the stresses within the interior of the speci-
men may be formulated from a superposition of the Boussinesq field given by 
Eq. 5.3.2a. Alternatively, one may prescribe the displacements of the surface 
beneath the circle of contact and, for axis-symmetric indenters, employ integral 
transform methods7 to determine the stresses. 

5.4 Indentation Stress Fields 

We are now in a position to examine indentation stress fields of practical inter-
est. In sections to follow, formulas are presented, without derivation, which give 
the stresses and deflections of points both on the surface and in the interior of 
the specimen for a variety of prescribed contact pressure distributions. Our at-
tention will be focused on those indentation configurations for the data shown in 
Fig. 5.4.1, namely, axis-symmetric spherical, cylindrical punch, and conical 
indenters. We shall also consider the case of a uniform pressure. Specific atten-
tion to the role of the elastic properties of the indenter is discussed in Chapter 6.  

In all of the formulas to be presented, the coordinates r and z are positive 
quantities with positive z corresponding to the direction from the surface into the 
bulk of the solid. A positive value of displacement uz indicates a displacement 
into the bulk of the specimen. A positive value for ur indicates a displacement 
away from the axis of symmetry. The contact pressure pm and radius of circle of 
contact a are positive quantities. For the stresses, a negative value indicates 
compression and a positive value indicates tension.  
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Fig. 5.4.1 (a) Normalized contact pressure distribution σz/pm for spherical indenter, cylin-
drical punch, and conical indenters. (b) Deflection of the surface spherical, cylindrical, 
and conical indenters. Deflections in mm calculated for pm = 1 MPa and radius of circle 
of contact = 1 mm and for E = 70000 MPa. (c) Magnitude of normalized surface radial 
stress σr/pm for spherical, cylindrical, and conical indenters. Calculated for ν = 0.26. 

5.4.1 Uniform pressure 

In this case, the contact pressure distribution is simply p = pm. For the case of 
uniform pressure acting over a circular area of radius a, we have: 

arpmz ≤−=    σ . (5.4.1a) 

The displacement of the surface, at a general point (r,θ) within the contact 
circle, is given by Eq. 5.3.3c with p(r,θ) = pm in which case we have:  

( ) θθ
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ν
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a
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E
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2
2

22
 sin114  (5.4.1b) 

where the integral is a complete elliptical integral of the second kind, solutions 
for which are cumbersome except for the simplest of cases. For example, be-
neath the indenter at the center of contact r = 0, the normal displacement meas-
ured with respect to the original specimen surface is given by9,12: 

( )
0    

12 2
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−
= rap

E
u mz

ν
. (5.4.1c) 

At the edge of the contact circle, r = a, we have9,12: 

( )
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E
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−
=    

14 2
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. (5.4.1d) 
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Outside the contact circle, the normal displacement can only be calculated 
using elliptical integrals, solutions of which are beyond the scope of this book 
but have the form: 
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. (5.4.1e) 

The radial and hoop stresses on the surface are9: 

( ) ar
pp mm

r <
+

−==    
2
21 νσσ θ . (5.4.1f) 

Outside the contact circle, use of elliptical integrals is again required. These 
stresses are determined from Eq. 5.4.1e and derivatives in Eq. 5.3.2c. 

The radial displacements at the surface are given by9,14: 

( )( ) arrp
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121 νν  (5.4.1g) 

and9: 
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where it will be noticed that ur for r > a in the present case is the same as that for 
spherical, cylindrical, and conical indenters given later by Eqs. 5.4.2g, 5.4.4f, 
and 5.4.5j. 

For points within the specimen, along the z axis at r = 0, Timoshenko and 
Goodier12 give: 
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For points within the specimen, Sneddon15 gives: 
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An analytical expression for the stress distribution at general points within 
the specimen half-space is difficult to obtain since the integral in Eq. 5.4.1b is  
an elliptical integral which cannot be solved for all but the most convenient co-
ordinates, e.g., z = 0 or r = 0. The complexities of an analytical result may be 
conveniently bypassed by use of the finite-element method, and the stress distri-
bution within the interior as calculated using this procedure is shown in Fig. 
5.4.2. 

 

Fig. 5.4.2 Contours of equal stress for uniform pressure calculated for Poisson’s ratio ν = 
0.26. Distances r and z normalized to the contact radius a and stresses expressed in terms 
of 100 times the mean contact pressure pm. (a) σ1, (b) σ2, (c) σ3, (d) τmax, (e) σH. 
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5.4.2 Spherical indenter 

The normal pressure distribution directly beneath a spherical indenter was given 
by Hertz: 
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As shown in Fig. 5.4.1, for the pressure distribution given by Eq. 5.4.2a,  
σz = 1.5pm is a maximum at the center of contact and is zero at the edge of the 
contact circle. Outside the contact circle, the normal stress σz is zero, it being a 
free surface.  

The displacement of points on the surface of the specimen within the contact 
circle, measured with respect to the original specimen free surface, is9: 
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and outside the contact circle is*: 
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Equations 5.4.2b and 5.4.2c give displacements of points on the surface of 
the specimen subjected to the pressure distribution given by Eq. 5.4.2a. For the 
special case of a perfectly rigid indenter, Eq. 5.4.2b evaluated at r = 0 gives the 
penetration depth beneath the original specimen surface and also the distance of 
mutual approach between two distance points in both the indenter and specimen. 
Generally, however, the elastic deformations of the indenter must also be con-
sidered (see Chapter 6). Equations 5.4.2b shows that the depth beneath the 
original surface of the contact circle (at r/a = 1) is exactly one-half of the total 
depth at r = 0. The displacements of points on the surface calculated using Eqs. 
5.4.2b and 5.4.2c are shown in Fig. 5.4.1. 

Inside the contact circle, the radial stress distribution at the surface is: 
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and on the surface outside the contact circle: 
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* Reference 9, Eq. 3.42a incorrectly shows a minus sign. 

______ 
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It can be shown that the radial displacements, and hence the radial stresses, 
on the surface outside the contact circle are the same for any symmetrical distri-
bution of pressure within the contact circle; i.e., Eq. 5.4.2e applies also to cylin-
drical and conical indenters for r > a. The maximum value of σr occurs at r = a. 
The radial stresses on the specimen surface calculated using Eqs. 5.4.2d and 
5.4.2e are shown in Fig. 5.4.1. Displacements of points on the surface beneath 
the indenter in the radial direction are given by9: 
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Note that for all values of r < a, the displacement of points on the surface is 
inward toward the center of contact. Outside the contact area, the radial dis-
placements are the same as those given previously (Eq. 5.4.1i) for the case of 
uniform pressure and are given by: 
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The hoop stress, on the surface, is always a principal stress and outside the 
contact circle is equal in magnitude to the radial stress: 

arr >−= σσθ  (5.4.2h) 

Within the interior of the specimen, the stresses are calculated from3,16:  
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where: 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ +−++−+=

21
222222222 4

2
1 zaazrazru  (5.4.2m) 

It should be noted that for z = 0, and for values of r/a < 1, the value for u 
given by Eq. 5.4.2m is always zero but the state of stress directly beneath the 
indenter may be calculated with reasonable accuracy by taking a sufficiently 
small value of z. 

The principal stresses in the rz plane are given by: 
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The angle θp between the normal of the plane over which σ1 is acting and the r 
axis (surface of the specimen—see Fig. 1.1.10) is found from: 
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where ± is the sign of τrz. In all the formulas involving angles in this book, a 
regular x–y (or r–z) coordinate system is assumed in which the top right quad-
rant is +ve x (or r) and +ve y (or z) even though it is customary to show indenta-
tion stress fields using the bottom right quadrant (with −ve z). Thus, in Eq. 
5.4.2o, a positive value of θp is taken from the +ve r axis in an anticlockwise 
direction to the line of action of σ1 (see Fig. 1.1.10).  

On the surface (at z = 0 and all values of r/a), and also beneath the indenter 
along the z axis at r = 0, σr, σθ, and σz are principal stresses. The hoop stress, σθ, 
is always a principal stress because of symmetry. On the surface of the speci-
men, beneath the indenter (r < a), all three principal stresses are compressive 
and all have approximately the same magnitude. Outside the contact circle but 
still on the surface, the first principal stress σ1 = σr is tensile with a maximum 
value at the edge of the contact circle. This stress is responsible for the forma-
tion of Hertzian cone cracks. The second principal stress, σ2 = σθ, is a hoop 
stress and is compressive in this region. Outside the contact area along the sur-
face, σ2 = −σ1, and beneath the surface along the axis of symmetry at r = 0, the 
two principal stresses are equal, σ2 = σ1. The magnitude of σ3 at the surface is 
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zero outside the contact circle since it acts normal to a free surface in this region. 
Along the surface, at all values of r/a, σ1 = σr and acts in a radial direction. σ2 is 
of course a hoop stress, and σ3 acts normal to the surface.  

It is convenient to label the stresses such that σ1 > σ2 > σ3 nearly always†. 
Fig. 5.4.3 shows contours of equal values of stress calculated using Eqs. 5.4.2i 
to 5.4.2n. Note that the contours shown in Figs. 5.4.3 (a) to (e) give no informa-
tion about the direction or line of action of these stresses. Such information is 
only available by examining stress trajectories. Stress trajectories are curves 
whose tangents show the direction of one of the principal stresses at the point of 
tangency and are particularly useful in visualizing the directions in which the 
principal stresses act. The stress trajectories of σ2, being a hoop stress, are cir-
cles around the z axis. Stress trajectories for σ1 and σ3 can be determined from 
Eq. 5.4.2o and are shown in Figs. 5.4.3 (f ) and (g).  

The feature of the indentation stress field that is important for the initiation 
of a conical fracture in brittle materials is the tensile region in the specimen sur-
face just outside the area of contact. When the load on the indenter is sufficient, 
the characteristic cone crack that forms appears to start close to the circle of 
contact where σ1 is greatest and proceeds down and outward. Cracks in brittle 
solids tend to follow a direction of orthogonality with the greatest value of ten-
sile stress; i.e., σ1. Thus, it is not surprising to observe that cone cracks, as they 
travel downward into the specimen, appear to follow the σ3 stress trajectory, 
which is orthogonal to the σ1 trajectory. However, in many materials, there is a 
disparity between the path delineated by this calculated stress trajectory and that 
taken by the conical portion of an actual crack. Calculations show that, in glass 
with Poisson’s ratio = 0.21, the angle of the cone crack, if it were to follow a 
direction given by the σ3 trajectory, should make an angle of approximately 33o 
to the specimen surface. The actual angle is dependent on Poisson’s ratio. How-
ever, experimental evidence is that the angle is much shallower, by up to 10o 
less in some cases. Lawn, Wilshaw, and Hartley16 attempted to resolve this dis-
parity by analytical computation but were unsuccessful. Yoffe17 predicts that the 
answer lies in the modification to the pre-existing stress field by the presence of 
the actual cone crack as it progresses through the solid, and Lawn18 proposes a 
change in local elastic properties in the vicinity of the highly stressed crack tip. 
As can be seen in Fig. 5.4.3, the position of maximum shear occurs in the 
specimen at a depth ≈0.5a and has a maximum value of about 0.49pm (for ν = 
0.22). Plastic deformation in contact loading usually occurs in ductile materials 
as a result of these shear stresses.  

 

 
† In general, principal stresses are defined so that σ1 > σ2 > σ3. In the indentation stress field, σ3 > σ2 

at some points just below the surface, but it is usual to specify σ2 as the hoop stress throughout. 
Thus, σ1 > σ2 > σ3 nearly always. 

______ 
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Fig. 5.4.3 Stress trajectories and contours of equal stress for spherical indenter calculated 
for Poisson’s ratio ν = 0.26. Distances r and z normalized to the contact radius a and 
stresses expressed in terms of the mean contact pressure pm. (a) σ1, (b) σ2, (c) σ3, (d) τmax, 
(e) σH, (f ) σ1 and σ3 trajectories, (g) τmax trajectories. 
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5.4.3 Cylindrical roller (2-D) contact 

In the previous section, we summarized the elastic equations for the three-
dimensional indentation of a flat-plane, semi-infinite half-space subjected to a 
pressure distribution associated with a spherical indenter. The two-dimensional 
analogue of this is the line loading associated with an infinitely long cylindrical 
“roller.” In this case, the indenter load P is given in units of force per unit thick-
ness of the specimen. Johnson9 shows that the pressure distribution over the area 
of contact is: 

 14
21

2

2

⎟
⎟
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⎞
⎜
⎜
⎝

⎛
−−=

a
x

pm

z
π

σ  (5.4.3a) 

where x is the horizontal distance from the axis of symmetry (equivalent to r in 
axis-symmetric three-dimensional cases). Along the z, or vertical, axis in the 
interior of the specimen: 
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σx and σz given above are principal stresses on the axis of symmetry x = 0.  

5.4.4 Cylindrical (flat punch) indenter 

The stress field generated by indentation of a flat surface by a cylindrical flat 
punch is similar to that involving the classical Hertzian stress field. In many 
ways, a flat punch geometry is preferred over that of a sphere since the contact 
radius is a constant, independent of the indenter load, thus reducing the number 
of variables to be analyzed. Further, with a cylindrical punch indenter, the onset 
of multiple cone cracking, which occurs with a spherical indenter under the ex-
panding contact area, is avoided. However, the sharp edge of a cylindrical punch 
indenter leads to a singularity in the stress field at the edge of the circle of con-
tact. This leads to plastic deformation of either the specimen or the indenter ma-
terial. However, if the load on the indenter is not too large, then a small amount 

The stress field associated with a cylindrical punch indenter has been deter-
mined analytically by Sneddon and others14,19, with a more recent treatment by 
Barquins and Maugis20. The stress field is computed by a superposition of the 

−1 2

of plastic deformation at the edge of the contact circle does not appreciably
affect the elastic stress distribution within the specimen material. 
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Boussinesq stress field according to the distribution of pressure beneath the in-
denter. In the case of a rigid cylindrical flat punch, the contact pressure distribu-
tion is: 

a r
a
r

pm

z ≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

−

 1
2
1

21

2

2σ . (5.4.4a) 

As shown in Fig. 5.4.1 (a), σz = 0.5pm is a minimum at the center of contact 
and approaches infinity at the edge. Outside the indenter, σz = 0 along the sur-
face. Beneath the indenter, uz is the penetration depth beneath the original 
specimen free surface and is found from9: 

arap
E

u mz ≤
−

=     
2

1 2 πν  (5.4.4b) 

which is independent of r. Outside the contact circle‡, the normal displacement 
is: 9,14,20 
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The displacements for points on the surface calculated using Eqs. 5.4.4b and 
5.4.4c are shown in Fig. 5.4.1 (b).  

For a cylindrical punch indenter, the radial stress on the surface is: 
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Outside the contact circle, the radial tensile stress along the surface for a cy-
lindrical punch indenter is precisely the same as that for a spherical indenter and 
is given by Eq. 5.4.2e, and the radial stresses so computed are shown in Fig. 
5.4.1 (c). The radial displacements on the surface are given by14: 
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and 

( )( ) p
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a
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u mr
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−=
2
3

3
121 2νν

Note that Eqs. 5.4.1i, 5.4.2g, and 5.4.4f are identical. The radial stresses and 
displacements on the surface outside the circle of contact for both spherical and 

 
‡ Equation 3.38 in reference 9 incorrectly contains the ratio r/a. 

   r > a (5.4.4f )

______ 
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cylindrical punch indenters are equivalent for the same value of pm
21. Note also 

that the direction of positive z is in the direction of the application of load. 
The stress distribution within the specimen in cylindrical coordinates, in 

terms of the mean contact pressure pm = P/πa2 and the contact radius a, is: 
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 (5.4.4k) 

For tanφ > 0, 0 < φ < π/2, and for tanφ < 0, π/2 < φ < π20. Note that Sned-
don14 contains misprints corrected by Barquins and Maugis20. Note also that the 
factor R in Eqs. 5.4.4k is equivalent to u in Eq. 5.4.2m. Principal stresses and 
maximum shear stresses can be found by substituting Eqs. 5.4.4i to 5.4.4l into 
Eqs. 5.4.2n where appropriate. The hoop stress on the specimen surface, is al-
ways a principal stress and outside the contact circle is given by Eq. 5.4.2h.  
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Fig. 5.4.4 Stress trajectories and contours of equal stress for cylindrical flat punch in-
denter calculated for Poisson’s ratio ν = 0.26. Distances r and z normalized to the contact 
radius a and stresses expressed in terms of the mean contact pressure pm. (a) σ1, (b) σ2,  
(c) σ3, (d) τmax, (e) σH, (f) σ1 and σ3 trajectories, (g) τmax trajectories. 
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Figures 5.4.4 (a) to (e) shows contours of equal stress, normalized to the 
mean contact pressure, for a cylindrical punch indenter. Figures 5.4.4 (f ) and (g) 
show the stress trajectories for σ1, σ3 and τmax. A comparison between Fig. 5.4.3 
and Fig. 5.4.4 shows that the indentation stress fields for a spherical indenter and 
a cylindrical punch indenter are very similar—except for near the edge of the 
contact circle. A stress singularity exists at the edge of the contact circle for the 
cylindrical punch indenter which, in practice, is avoided by localized plastic 
deformation of either the indenter or the specimen.  

Care should be taken in the use of terminology with this type of indenter be-
cause the term “cylindrical indenter” may be taken to mean line contact, such as 
in a cylindrical roller bearing. The term “cylindrical punch indenter” is preferred 
and removes any ambiguity. 

5.4.5 Rigid cone 

The stresses within a semi-infinite half-space loaded by a rigid conical indenter 
are of significant practical interest because this approximates that used in vari-
ous hardness tests to be described in Chapter 9. The solutions presented here22 
are similar in format to those presented previously for the case of a cylindrical 
flat punch indenter. The contact pressure distribution is shown in Fig. 5.4.1 (a) 
and is given by: 

1coshz

m

a     r a
p r

−= − ≤
σ

 (5.4.5a) 

In all the cases to be presented in this section, α is the cone semi-angle and 
quantity acot α, the depth of penetration measured with respect to the radius of 
the contact circle (see Fig. 10.4.2). In equations to follow, cot α may be ex-
pressed in terms of the mean contact pressure as: 

( )
E

pm
212cot να −

=  (5.4.5b) 

Note that the mean contact pressure depends only on the cone angle and is 
independent of the load P. 

Beneath the indenter, the displacement beneath the original specimen surface 
is given by22: 
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The depth of the circle of contact beneath the specimen surface is given by 
Eq. 5.4.5c with r/a = 1. Outside the contact circle r > a, the normal displacement 
is: 
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Displacements of points on the surface calculated using Eqs. 5.4.5c and 
5.4.5d are shown in Fig. 5.4.1 (b).  

The stresses on the surface are: 
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where σz for r < a is given by Eq. 5.15a and σz = 0 for r ≥ a, and: 
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The stresses σr, σθ, and σz at all points on the surface are principal stresses. 
Outside the contact circle, on the surface of the specimen, the radial and hoop 
stresses given by Eqs. 5.4.5e and 5.4.5f are precisely the same as those for a 
cylindrical and spherical indenter. The radial stress on the surface calculated 
using Eq. 5.4.5f is shown in Fig. 5.4.1. 

The radial displacements for r < a are given by: 

( ) ( )
( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+−
−

= 22

2122

2122

11

11
lncot

14
21

ar
ar

ar

ar
a
raur α

ν
ν  (5.4.5i) 

and for r ≥ a: 
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ν
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which, by making use of Eq. 5.4.5b, is the same as that for spherical and cylin-
drical indenters and also the case of uniform pressure. 

For points within the interior of the specimen: 
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where: 
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Contours of equal stress and stress trajectories for a conical indenter are 
shown in Fig. 5.4.5. As a final note, the expressions for tan 2φ and R are cor-
rectly stated in reference 22 but are not so in reference 7. 
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Fig. 5.4.5 Stress trajectories and contours of equal stress for conical indenter calculated 
for Poisson’s ratio ν = 0.26. Distances r and z normalized to the contact radius a and 
stresses expressed in terms of the mean contact pressure pm. (a) σ1, (b) σ2, (c) σ3, (d) τmax, 
(e) σH, (f) σ1 and σ3 trajectories, (g) τmax trajectories. 
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Chapter 6 
Elastic Contact 

6.1 Hertz Contact Equations 

The stresses and deflections arising from the contact between two elastic solids 
have practical application in hardness testing, wear and impact damage of engi-
neering ceramics, the design of dental prostheses, gear teeth, and ball and roller 
bearings. In many cases, the contact between a rigid “indenter” and a flat, exten-
sive “specimen” is of particular interest. The most well-known scenario is the 
contact between a rigid sphere and a flat surface, where Hertz1,2 found that the 
radius of the circle of contact a is related to the indenter load P, the indenter 
radius R, and the elastic properties of the materials by: 

*
3

4
3

E
PRa =  (6.1a) 

where E* is the combined modulus of the indenter and the specimen given by3: 
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*
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E EE
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ν ν
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In Eq. 6.1b, E' and v', and E and ν, describe the elastic modulus and Pois-
son’s ratio of the indenter and the specimen respectively. Hertz also found that 
the maximum tensile stress in the specimen occurs at the edge of the contact 
circle at the surface and is given by: 

( ) 2max 2
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a
P

π
νσ −=  (6.1c) 

This stress, acting in a radial direction on the surface outside the indenter, 
decreases as the inverse square of the distance away from the center of contact 
and is usually considered responsible for the production of Hertzian cone cracks 
(see Chapter 7). Combining Eqs. 6.1a and 6.1c, the maximum tensile stress out-
side the circle of contact can be expressed in terms of the indenter radius R: 
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The mean contact pressure, pm, is given by the indenter load divided by the 
projected contact area and is a useful normalizing parameter, which has the ad-
ditional virtue of having actual physical significance. 

2a
Ppm π

=  (6.1e) 

It can be shown from Eq. 6.1a that the contact area is proportional to P2/3 and 
therefore pm is proportional to P1/3. Substituting Eq. 6.1e into Eq. 6.1a gives: 
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2 3
4  (6.1f)  

We may refer to the mean contact pressure as the “indentation stress” and 
the quantity a/R as the “indentation strain.” We may question this definition of 
“indentation strain”, but it is appropriate since the elastic strains within the 
specimen scale with this ratio. For example, without some external reference, it 
is not possible to tell the difference between indentations made with indenters of 
different radii if the quantity a/R is the same in each. The functional relationship 
between pm and a/R foreshadows the existence of a stress–strain response similar 
in nature to that more commonly obtained from conventional uniaxial tension 
and compression tests. In both cases, a fully elastic condition yields a linear re-
sponse. However, due to the localized nature of the stress field, an indentation 
stress-strain relationship yields valuable information about the elastic-plastic 
properties of the test material that is not generally available from uniaxial ten-
sion and compression tests.  

6.2 Contact Between Elastic Solids 

In sections to follow, Hertz’s original analysis is reviewed to gain an under-
standing of the process of indentation and the nature of the contact between elastic 
solids. The following assumptions (originally made by Hertz) serve to facilitate 
the analysis: 

i. The radii of curvature of the contacting bodies are large compared with 
the radius of the circle of contact. With this assumption, we may treat 
each surface as an elastic half-space where equations for the stresses and 
displacements have been given in Chapter 5. 

ii. The dimensions of each body are large compared with the radius of the 
circle of contact. This allows indentation stresses and strains to be consid-
ered independently of those arising from the geometry, method of attach-
ment, and boundaries of each solid. 

iii. The contacting bodies are in frictionless contact. That is, only a normal 
pressure is transmitted between the indenter and the specimen. Table 6.1 
summarizes the distribution of surface normal pressures to be considered. 
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Table 6.1 Equations for surface pressure distributions beneath the indenter for 
different types of indentations.  

Indenter type Equation for normal pressure distribution r < a 
Sphere 

 1
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6.2.1 Spherical indenter 

Consider the contact of a sphere of radius R′ with elastic modulus E′ and Pois-
son’s ratio ν′ with the surface of a specimen of radius RS whose elastic constants 
are E and ν. With no load applied, and with the indenter just touching the 
specimen, the distance h between a point on the periphery of the indenter to the 
specimen surface as a function of radial distance r is given by: 

R
rh
2

2
=  (6.2.1a)  

where R is the relative curvature of the indenter and the specimen:  

1 1 1
= +

′ SR R R
 (6.2.1b)  

In Eqn. 6.2.1b we set the radius of the indenter R′ to be positive always, and RS 
to be positive if its centre of curvature is on the opposite side of the surface to 
that of R′. 
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Fig. 6.2.1 Schematic of contact between two elastic solids. (a) Nonrigid spherical in-
denter and nonrigid, flat specimen; (b) two identical nonrigid spheres; (c) nonrigid 
spherical indenter and flat, rigid specimen; (d) rigid, spherical indenter and flat, nonrigid 
specimen (with kind permission of Springer Science and Business Media, Reference 4). 

Now, in Fig. 6.2.1a, load is applied to the indenter in contact with a flat sur-
face (RS in Eq. 6.2.1b = ∞) such that the point at which load is applied moves a 
vertical distance δ. This distance is often called the “load-point displacement” 
and when measured with respect to a distant point in the specimen may be con-
sidered the distance of mutual approach between the indenter and the specimen. 
In general, both the indenter and specimen surface undergo deformation. These 
deformations are shown in the figure by u′z and uz at some arbitrary point inside 
the contact circle for both the indenter and the specimen respectively. Inspection 
of Fig. 6.2.1a shows that the load-point displacement is given by: 

δ = ′ + +z zu u h  (6.2.1c)  

If the indenter is perfectly rigid, then u′z = 0 (see Fig. 6.2.1d). For both rigid 
and nonrigid indenters, h = 0 at r = 0, and thus the load-point displacement is 
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given by δ = u′z + uz. Note that u′z, uz, and h are all functions of r, although we 
have yet to specify this function uz(r) precisely. 

Hertz showed that a distribution of pressure of the form given by that for a 
sphere in Table 6.1 results in displacements of the specimen surface (see Chap-
ter 5) as given by: 

( ) arra
a

p
E

u mz ≤−
−

= 22
2

2
42

31 πν  (6.2.1d)  

After deformation, the contact surface lies between the two original surfaces 
and is also part of a sphere whose radius depends on the relative radii of curva-
ture of the two opposing surfaces and elastic properties of the two contacting 
materials. For the special case of contact between a spherical indenter and a flat 
surface where the two materials have the same elastic properties, the radius of 
curvature of the contact surface is twice that of the radius of the indenter. The 
Hertz pressure distribution acts equally on both the surface of the specimen and 
the indenter, and the deflections of points on the surface of each are thus given 
by Eq. 6.2.1d*. Thus, substituting Eq. 6.2.1d into Eq. 6.2.1c for both uz′ and uz 
and making use of Eq. 6.2.1a, we obtain, for the general case of a nonrigid in-
denter and specimen: 

( )2 2
*

2

1 3 2
4 2

2

z z mu u p a r
aE

r
R

⎛ ⎞′ + = −⎜ ⎟
⎝ ⎠

= −

π

δ
 (6.2.1e)  

where R is the relative radius of curvature (see Eqn. 6.2.1b). With a little rear-
rangement, and setting r = a in Eq. 6.2.1e, it is easy to obtain the Hertz equation, 
Eq. 6.1a, and to show that at r = 0, the distance of mutual approach δ between 
two distant points within the indenter and the specimen is given by: 
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where E* is as given in Eq. 6.1b. Substituting Eq. 6.1a into 6.2.1f, we have the 
distance of mutual approach, or load-point displacement, for both rigid and non-
rigid indenters as: 

    
2

R
a

=δ  (6.2.1g)  

 
* The Hertz analysis approximates the curved surface of a sphere as a flat surface since the radius of 

curvature is assumed to be large in comparison to the area of contact. 

______ 
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When the indenter is perfectly rigid, the distance of mutual approach δ is 
equal to the penetration depth uz|r=0 below the original specimen free surface as 
given by Eq. 6.2.1d. From Eq. 6.2.1d, for both rigid and nonrigid indenters, the 
depth of the edge of the circle of contact is exactly one half of that of the total 
depth of penetration beneath the surface; i.e., uz|r=a = 0.5uz|r=0. 

For a particular value of load P, the distance of mutual approach δ for a non-
rigid indenter is greater than that for a rigid indenter due to the deformation of 
the indenter. The use of E* in Eq. 6.2.1f allows the contact to be viewed as oc-
curring between a perfectly rigid indenter of radius Ri and a specimen of 
modulus E*. Although this might satisfy the contact mechanics of the situation, 
relating indenter load with the radius of circle of contact and load-point dis-
placement, as shown in Fig. 6.2.2, physically, the deformation experienced by 
the specimen is somewhat different. 

Hertz showed that, for contact between two spheres, the profile of the sur-
face of contact was also a sphere with a radius of curvature intermediate bet-
ween that of the contacting bodies and more closely resembling the body with 
the greatest elastic modulus. Thus, as shown in Fig. 6.2.1a and Fig. 6.2.2, con-
tact between a flat surface and a nonrigid indenter of radius Ri is equivalent to 
that between the flat surface and a perfectly rigid indenter of a larger radius R+, 
which may be computed using Eq. 6.1a with E* set as for a rigid indenter. If the 
contact is viewed in this manner, then the load-point displacement of an equiva-
lent rigid indenter is given by Eq. 6.2.1d with r = 0 and not Eq. 6.2.1f. Thus, in 
terms of the radius of the contact circle a, the equivalent rigid indenter radius is 
given by: 

( )P
EaR 2

3

13
4

ν−
=+  (6.2.1h)  

 

 

Fig. 6.2.2 Contact between a non-rigid indenter and the flat surface of a specimen with 
modulus E is equivalent to that, in terms δ, a, and P, as occurring between a rigid in-
denter of radius Ri and a specimen with modulus E* in accordance with Eq. 6.2.1f. How-
ever, physically, the contact could also be viewed as occurring between an indenter of 
radius R+ and a specimen of modulus E as described by Eq. 6.2.1h. 
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+

and the profile of the contact surface is a straight line (see Fig. 6.2.1b). 
Finally, it should be noted that for a spherical indenter, the mean contact 

pressure is proportional to P1/3. 

6.2.2 Flat punch indenter 

For a pressure distribution corresponding to that of a rigid cylindrical indenter, 
the relationship between load and displacement of the surface uz relative to the 
specimen free surface beneath the indenter is: 

zauEP *2=  (6.2.2a) 

For both rigid and nonrigid indenters, the radius of the circle of contact is a 
constant and hence so is the mean contact pressure for a given load P (neglect-
ing any localized deformations of the indenter material at its periphery). There-
fore, the deflection of points on the specimen surface beneath the indenter must 
remain unchanged. In this case, in Eq. 6.2.2a, with E = E*, uz is the distance of 
mutual approach between the indenter and the specimen for a given load P. In 
Eq. 6.2.2a, with E equal to that of the specimen, uz is the penetration depth. For 
a rigid indenter, uz in Eq. 6.2.2a is both the penetration depth and the distance of 
mutual approach δ as shown in Fig. 6.2.3. Thus, unlike the case of a spherical 
indenter, the penetration depth for a cylindrical punch indenter is the same for 
both rigid and nonrigid indenters since the pressure distribution is the same for 
each case.  

Finally, for a cylindrical indenter, the mean contact pressure is directly pro-
portional to the load since the contact radius a is a constant. 

Fig. 6.2.3 Geometry of contact with cylindrical flat punch indenter. 

radii and the same elastic constants, the equivalent rigid indenter radius R →∞ 
Note that for the special case of the contact between two spheres of equal

a

δ
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6.2.3 Conical indenter 

For a conical indenter, we have5: 

απ cot
2

*2EaP =  (6.2.3a) 

and 
 

a ra
a
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⎠
⎞

⎜
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⎛ −=    cot

2
απ  (6.2.3b) 

where α is the cone semiangle as shown in Fig. 6.2.4. Substituting Eq. 6.2.3b 
with r = 0 into 6.2.3a, we obtain: 

2
0|

*2tan == rzuEP
π

α  (6.2.3c) 

where uz|r=0 is the depth of penetration of the apex of the indenter beneath the 
original specimen free surface. Note that due to geometrical similarity of the 
contact, the mean contact pressure is a constant and independent of the load (see 
Table 6.1). 

 

 

Fig. 6.2.4 Geometry of contact with conical indenter. 

6.3 Impact 

In many practical applications, the response of brittle materials to projectile im-
pacts is of considerable interest. In most cases, an equivalent static load may be 
calculated and the indentation stress fields of Chapter 5 applied as required.  

The load-point displacement can be expressed in terms of the indenter load P 
as given in Eq. 6.2.1f. For a sphere impacting on a flat plane specimen, the time 
rate of change of velocity is related to the mass of the indenter and the load: 

δ

a

α
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P
dt
dm −=2

2δ  (6.3.1)  

Equating Eqs. 6.2.1f and 6.3.1,6 multiplying both sides by velocity and inte-
grating, we obtain: 
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Equation 6.3.2 equates the kinetic energy of the projectile to the strain poten-

is thus: 
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where m is the mass of the indenter, R is the indenter radius, vo is the indenter 
velocity, E* is the combined modulus of the indenter and the specimen. The 
load given by Eq. 6.3.3 can be used for calculating stress fields and displace-
ments for impact loading.  

Similar expressions can be developed for cylindrical and conical indenters. 
For a cylindrical punch indenter, the maximum impact loading is: 

1 2*2⎡ ⎤= ⎣ ⎦oP v E am  (6.3.4)  

and for a conical indenter, we obtain: 
32
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π

 (6.3.5)  

In practice, the nature of cracking of brittle materials under impact loading is 
dependent on the thickness of the specimen since bending stresses, as well as 
contact stresses, act on surface flaws. A relationship between impact velocity 
and specimen thickness is given by Ball7, who shows that the type of cracking 
can range from a “star” on the back side of the specimen to completely perfect 
cones, incomplete cones with crushing, or just small ring cracks.  

tial energy stored in the specimen. Maximum strain energy occurs when the
final velocity is zero. Substituting δ from Eq. 6.2.1f, the maximum load at impact 



 Elastic Contact 

 

110 

6.4 Friction 

In all the equations presented so far, no account has been made of any effects of 
friction between the indenter and the specimen surface (i.e., interfacial friction). 
Indeed, one of the original boundary conditions of Hertz’s original analysis was 
that of frictionless contact. Now, although such an assumption may be accept-
able for a large number of cases of practical interest, it is nevertheless important 
to have some understanding of the effects of interfacial friction for those cases 
in which friction is an important parameter.  

Figure 6.4.1 shows four different scenarios relating to interfacial friction 
which will facilitate our introductory treatment of this complex phenomenon. 
Consider two points on the indenter and specimen surfaces which come into 
contact during an indentation loading. For the purposes of discussion, we shall 
assume that the indenter and specimen have different elastic properties, with the 
modulus of the indenter being much larger than that of the specimen. As shown 
in Fig. 6.4.1 (a), for the condition of full slip (no friction), upon loading, points 
on both specimen and indenter move inward toward the axis of symmetry under 
the influence of the applied forces Fa. No friction forces are involved. Move-
ment of points within the specimen material generates “internal” forces Fs (i.e., 
from the stresses set up in the material) which are proportional to the relative 
displacement. Movement ceases when the internal forces Fs balance the applied 
forces. Upon unloading, internal forces diminish as the applied force is de-
creased. Points on the surface move back to their original positions.  

 

Fig. 6.4.1 Points on the indenter and specimen surfaces that have come into contact dur-
ing loading. (a) full slip, (b) no slip, (c) partial slip—loading, (d) partial slip—unloading. 
In (d), reverse slip may occur, leading to residual stresses. 

Consider now the case of no slip (i.e., full adhesive contact). As shown in 
Fig. 6.4.1 (b), upon loading, points on the specimen surface want to move in-
ward under the influence of the applied forces Fa but are prevented from doing 
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so by frictional forces Ff. The applied force Fa is balanced by the friction force 
Ff. Upon unloading, frictional forces diminish as the applied force is decreased. 
Points on the two surfaces remain in their original positions.  

In the case of partial slip, loading and unloading must be considered sepa-
rately. Upon loading, Fig. 6.4.1 (c), points on the specimen surface want to 
move inward under the influence of the applied forces Fa. Some points are pre-
vented from doing so by frictional forces which, due to the local magnitude of 
the normal forces, are large enough to balance the applied forces. For other 
points, the applied forces are greater than the frictional force and those points do 
move inwards—slip occurs between the surfaces. For those points that have 
slipped, the frictional force has reached its maximum value. Internal forces can 
still increase with increasing load. Relative movement occurs until the internal 
force Fs plus the maximum frictional force Ff opposes the applied force Fa. The 
friction force is now applied by a new point on the indenter, which has now 
come into contact with the point on the surface of the specimen. Now, at full 
load, the applied force at a point that has slipped is balanced by the sum of the 
maximum frictional force and the internal force. The frictional force arises when 
there is relative shear loading on the contacting surfaces. The magnitude of the 
frictional force is equal and opposite to the shear force loading and reaches a 
maximum value dependent on the coefficient of friction and the magnitude of 
the normal force between the surfaces at that point.  

Consider now the forces between two points that have slipped during load-
ing, such as shown in Fig. 6.4.1 (d). If the applied force is relaxed slightly, then 
the frictional force diminishes. No relative movement of the points occurs so the 
internal forces remain constant. As the load is reduced a little further, the fric-
tional forces reduce and eventually are reduced to zero. At this point, the applied 
force is balanced entirely by the internal force and there is no shear force  
between the surfaces. As the load is reduced even further, frictional forces of 
opposite sign act on the surface. Internal forces are now balanced by both the 
frictional forces and the applied forces. As the applied load is reduced, the re-
verse frictional force increases up to a maximum value. No relative movement 
of the surfaces occur so there is no reduction in the internal forces yet. At the 
limit of adhesion, the friction force has reached a maximum value and any fur-
ther reduction in applied load results in relative movement between the surfaces. 
This has the effect of diminishing the internal forces (internal stresses begin to 
relax). At this point, reverse slipping is occurring. The friction force remains at 
its maximum value as the applied load is decreased. As the applied load is re-
duced to zero, the frictional force remains at its maximum value and is balanced 
by “residual” internal forces. During unloading, the limiting value of friction 
force may never be reached (i.e., the applied force is reduced to zero with fric-
tional forces continuing to increase and balance the internal forces). This also 
results in the specimen containing residual stress (at a larger magnitude than 
would have resulted if reverse slip had occurred).  

The effect of interfacial friction is to create an inner region of full adhesive 
contact with an outer annulus where the surfaces have slipped. The inner radius 
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of this annulus is called the “slip radius” whereas the outer radius is the radius of 
the circle of contact. For the case of full slip, the slip radius is zero. For the case 
of no slip, the slip radius is equal to the contact radius. Analytical treatments of 
contact with interfacial friction are usually presented for the simplest cases of 
either full slip, µ = 0, or no slip, µ = ∞8. Perhaps the most complete treatment is 
that of Spence9, who calculated the distribution of surface stresses for both a 
sphere and punch. There have also been a number of finite-element studies of 
frictional contact10,11,12 reported in the literature.  

Consider the case of a spherical indenter for various coefficients of friction. 
Figure 6.4.2 (a) shows finite-element results undertaken by the author for the 
variation of radial stress on the specimen surface for a particular indenter radius 
and loading condition for different coefficients of friction ranging from full slip 
µ = 0 to no slip or fully bonded contact. For comparison purposes, the radial 
stresses as computed using Eqs. 5.4.2d and 5.4.2e are shown along with the fi-
nite-element results for µ = 0. Note the diminished magnitude of the maximum 
radial stress just outside the contact radius as the friction coefficient increases. 
Radial stresses in this region are responsible for the production of Hertzian cone 
cracks. Due to the reduction in radial stress with increasing values of µ, one may 
conclude that the probability of a cone crack occurring for a given indenter load 
may be reduced with an increasing friction coefficient between the indenter and 
specimen surfaces. Figure 6.4.2 (b) shows radial displacements along the speci-
men surface. In this figure, the horizontal axis is normalized to the radius of the 
circle of contact. The contact radius is thus r/a = 1. The slip radius can be read-
ily determined from the point where each line for each value of µ meets the up-
per horizontal axis. For points on the surface within the slip radius, the radial 

However, there is one important difference between the relationship between 
the slip radius and the contact radius for spherical and cylindrical punch indent-
ers. Finite-element results show that for a spherical indenter, the slip radius is 
dependent on the indenter load, although the ratio of the slip radius to the con-
tact radius remains fairly independent of load but does depend, almost linearly, 
on the coefficient of friction. For a cylindrical punch indenter, the slip radius is 
independent of indenter load and only depends (nonlinearly) on the coefficient 
of friction for the contacting surfaces. 

Finally, it should be noted that finite-element results indicate that the stresses 
σz and displacements uz in the normal direction appear to be unaffected by the 
presence of interfacial friction. 
 

displacements are very small since the material is constrained from moving
inward by frictional forces. Similar behavior is seen with a cylindrical punch
indenter, as shown in Fig. 6.4.3. 
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Fig. 6.4.2 Finite-element results for (a) the variation of normalized radial stress and      
(b) radial displacements (mm) of the specimen surface for a spherical indenter R = 3.18 
mm at P = 1000 N. The radius of the circle of contact is a = 0.3203 mm which gives a 
mean contact pressure pm = 3103 MPa. Results are shown for different coefficients of 
friction from full slip µ = 0 to no slip or fully bonded contact.  

 

Fig. 6.4.3 Finite-element results for (a) the variation of normalized radial stress and      

m
for different coefficients of friction from full slip µ = 0 to no slip or fully bonded contact.  

(b) radial displacements (mm) of the specimen surface for a cylindrical punch indenter  
R = 1 mm at P = 1000 N. The mean contact pressure p  = 318.3 MPa. Results are shown 
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Chapter 7 
Hertzian Fracture 

7.1 Introduction 

The tensile or bending strength of a particular specimen of brittle material may 
be severely reduced in the presence of cone cracks formed due to contact load-
ing. The conditions required to initiate a cone crack in a brittle material are 
therefore of significant practical interest. Cone cracks resulting from contact 
with spherical indenters were first reported in the scientific literature by Hertz in 
18811,2 and are referred to as Hertzian cone cracks regardless of the indenter 
type used to produce them. We have examined the nature of the contact stress 
fields associated with various indenters in Chapter 5 and presented equations for 
elastic contact in Chapter 6. In this chapter, we investigate those factors that 
influence the load required to initiate a Hertzian cone crack for a particular in-
denter size and specimen surface condition. 

7.2 Hertzian Contact Equations 

As we saw in Chapter 6, Hertz formulated mathematical relationships between 
indenter load P, indenter radius R, contact area a, and maximum tensile stress, 
σmax. The contact radius depends on the load, the indenter radius, and the elastic 
properties of both the specimen and the indenter according to: 

*
3

4
3

E
PRa =  (7.2a) 

where E* is the combined modulus of the indenter and the specimen given by3: 

( ) ( )2 2

*

1 11
E EE

− − ′
= +

′

ν ν
 (7.2b) 

The maximum tensile stress occurs at the edge of the contact circle and is 
given by: 

( ) 2max 2
21

a
P

π
νσ −=  (7.2c) 
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Fig. 7.2.1 Geometry of Hertzian cone crack. The crack begins normal to the specimen 
surface and extends down a small distance before widening into a fully developed cone 
(with kind permission of Springer Science and Business Media, Reference 4).  

Substituting Eq. 7.2a into Eq. 7.2c we have: 

2/3*
1/3 2/3

max
(1 2 ) 4

2 3
E P R−⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

νσ
π

 (7.2d) 

The tensile stress on the specimen surface near the edge of the circle of con-
tact is usually responsible for the production of Hertzian cone cracks. As shown 
in Fig. 7.2.1, Hertzian cone cracks generally consist of an initial ring (normal to 
the specimen free surface) which extends a very short distance into the specimen 
before evolving into a cone, the angle of which depends on Poisson’s ratio of the 
material and also on the method of specimen support and thickness. 

7.3 Auerbach’s Law 

During an experimental investigation into the hardness of materials, Auerbach5 
in 1891 found that for a wide range of brittle materials, the force P required to 
produce a cone crack was proportional to the radius of the indenter R such that: 

ARP =  (7.3a) 

where A is termed the Auerbach constant. Equation 7.3a is an empirical result 
(i.e., based upon experimental observations without any explanation as to its 
physical cause), which has become known as “Auerbach’s law.” 

Equation 7.3a can be alternatively written in terms of the radius of the con-
tact area a, using Eq. 7.2a: 

R

a

P

ro

Cone
crack
length c

b

rb
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1 2
* 3 24

3
⎛ ⎞= ⎜ ⎟
⎝ ⎠

P AE a  (7.3b) 

and substituting Eq. 7.3a into 7.2d gives: 

( ) 2/31/3
* 1/3
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1 2 4
2 3

A
E R−⎛ ⎞− ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

ν
σ

π
. (7.3c) 

If σmax is the maximum tensile stress upon the occurrence of a cone crack, 
then Auerbach’s law appears to imply that the tensile strength of material de-
pends on the radius of the indenter rather than being a material property—a size 
effect worthy of special note. 

7.4 Auerbach’s Law and the Griffith Energy  
Balance Criterion 

The Griffith6 criterion for fracture relates the energy needed to form new crack 
surfaces and the attendant release in strain energy (see Chapter 3). The exter-
nally applied uniform stress σa required for the growth of an existing flaw of 
length 2c and unit width in an infinite solid is given by: 

21

2
2

1

/

a c
Eσ ⎟

⎠
⎞

⎜
⎝
⎛

−
≥

π
γ

ν
  (7.4a) 

where γ is the fracture surface energy in J m−2. The 1−ν2 term is included for the 
general case of plane strain. Equation 7.4a applies directly to a double-ended 
crack of length 2c contained fully within a uniformly stressed solid where the 
stress is applied normal to the crack. It may also be applied with only a small 
error to a half crack of length c, such as a surface flaw.  

The Griffith criterion is more commonly stated in terms of Irwin’s stress in-
tensity factor7 K1, where:  

( )
γ

ν
2

1 22
1 ≥

−
E

K  (7.4b) 

where, for the case of an infinite solid:  

cK πσ=1 . (7.4c) 

The left-hand side of Eq. 7.4b is termed the strain energy release rate and is 
given the symbol G. The Griffith criterion is satisfied for K1 ≥ K1C, where K1C 
may be considered a material property which can be readily measured in the 
laboratory. A typical value for soda-lime glass is 0.78 MPa m1/2. Using this 
value, Eqs. 7.4b and 7.4c give a fracture surface energy for soda-lime glass of  
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γ = 3.6 J m−2, which is in agreement with various experimentally determined 
values of this quantity8. 

Early workers applied the Griffith fracture criterion to flaws in the vicinity of 
an indenter in terms of the surface tensile stress only, as given by the Hertz 
equations. Using this method, a combination of Eqs. 7.2d and 7.4a gives the 
critical condition for failure as: 

( )1 2 2/3 1/3
*

2 2/3
1 22 4

2 31
E PE

c R
−⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

νγ
π πν

 (7.4d) 

Equation 7.4d states that P is proportional to R2c−3/2. If all the flaws in a 
specimen were of a uniform size, then the Griffith energy balance criterion 
would appear to predict that P is proportional to R2, in contradiction to Auer-
bach’s empirical law (P∝R). This apparent contradiction was widely studied for 
some 80 years, and two schools of thought evolved—the flaw statistical expla-
nation and the energy balance explanation. 

7.5 Flaw Statistical Explanation of Auerbach’s Law 

Some workers9,10 attempted to explain Auerbach’s law in terms of the surface 
flaw statistics of the specimen. It was argued that for a larger indenter radius, the 
increased chance that the region of maximum tensile stress would encompass a 
particularly large flaw may result in the formation of a cone crack at a reduced 
load, thus reducing the R2 dependency. The main criticisms of the flaw statistical 
explanation are first that, it is extremely improbable that every piece of material 
would have the exact flaw distribution required to produce the linear form of 
Auerbach’s law. Second, since smaller indenters sample smaller areas of speci-
men surface, the scatter in results would be expected to increase with decreasing 
R. Langitan and Lawn11 claim that this scatter is not observed, although the data 
of Hamilton and Rawson9 appear to show otherwise. Finally, the flaw statistical 
explanation predicts that if all flaws are of the same size, then P is proportional 
to R2 if one applies the Griffith energy balance criterion as given by Eq. 7.4d. 
Langitan and Lawn11 show that there does exist a range of flaw sizes for which 
Auerbach’s law still holds, even when all flaws are of the same size. 

7.6 Energy Balance Explanation of Auerbach’s Law 

Despite some quantitative agreement with experimental results, flaw statistical 
explanations of Auerbach’s law were never considered entirely satisfactory. An 
alternative approach, based upon fracture mechanics principles, was proposed 
by Frank and Lawn12 in 1968 and given a more complete treatment by Mouginot 
and Maugis13 in 1984. 
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For the case of a crack in a nonuniform stress field, Frank and Lawn12 
showed that the stress intensity factor may be calculated using the prior stress 
field along the proposed crack path using: 

( )
1 2

1 1 22 20

2 ( )c bK c db
c b

=
−

∫
σ

π
 (7.6a) 

where c is the length of the crack and b is a variable which represents the length 
of travel along the crack path (see Chapter 2). The apparent violation of the 
Griffith energy balance criterion embodied in Eq. 7.4d is a consequence of the 
assumption that the stress distribution along the length of a cone crack is uni-
form, and equal to the surface stresses given by the Hertz equations. In fact, the 
tensile stress diminishes very quickly with depth into the specimen, and hence 
the pre-existing tensile stress acting along the full length of a surface flaw can-
not be considered uniform over its length. Frank and Lawn determined the stress 
intensity factor for the special case of a crack path that started at the radius of 
the circle of contact and followed the σ3 stress trajectory down into the interior 
of the specimen in terms of the prior stress field using Eq. 7.6a. The fracture 
mechanics analysis in the indentation stress field predicted the formation of a 
hitherto unobserved shallow ring crack which precedes the formation of the 
more familiar cone crack. They proposed that Auerbach’s law relates to the ob-
servation of a fully developed cone crack rather than the seminal ring crack. In a 
further development of this idea, Mouginot and Maugis13 applied Eq. 7.6a for 
potential crack paths for a range of starting radii in the vicinity of the indenter 
and showed that Auerbach’s law is a consequence of the interaction between the 
diminishing stress field, the indenter radius, and the starting radius of the cone 
crack. They argued that for a high density of flaws of uniform size, the cone 
crack is initiated at the radius for which the strain energy release rate is greatest. 
In this latter treatment, the seminal ring crack is not a necessary feature of the 
analysis.  

Now, Eq. 7.6a applies to a straight crack. To account for the change in stress 
intensity factor for an expanding cone crack in which the width of the crack 
front increases as the crack path increases, Mouginot and Maugis include a cor-
rection in Eq. 7.6a to give: 

( )
1 2

1 1 22 20

2 ( )c
b

c

r bK c db
r c b

=
−

∫
σ

π
 (7.6b) 

where 2πrc represents the length of the crack front at the tip of the cone crack, 
and 2πrb is the crack length at the point defined by the variable b at which σ(b) 
applies. In this form, the integral includes the change in length of crack front as 
b increases from 0 to c. There are several important assumptions embodied  
in the use of Eqs 7.6a or 7.6b to the Hertzian crack system as presented here. 
First, Eq. 7.6a, in the strictest sense applies to one crack tip of a fully embedded, 
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double-ended, symmetric crack in an infinite solid. If we assume that the rate of 
strain energy release for a single ended crack is exactly half that of a double-
ended crack, then Eqs. 7.6a and 7.6b apply equally well to the tip of a single-
ended crack and thus are appropriate for the present analysis*. Second, although 
it is customary to apply a +12% correction to the value of K1 for surface flaws 
(see Chapter 2), this is only generally applicable to surface flaws being acted on 
by a uniformly applied stress and cannot be justified in the sharply diminishing 
indentation stress field. Third, we are assuming that the crack path is defined by 
the σ3 stress trajectory, since it has been intuitively assumed that this represents 
the maximum strain energy release rate. In the case of Hertzian cone cracks, the 
angle of the cone is generally observed to be somewhat shallower than that of 
the σ3 stress trajectory. For example, for Poisson’s ratio ν = 0.2, the angle of the 
Hertzian cone is approximately 22°, whereas the σ3 stress trajectory makes an 
angle of about 33° to the specimen surface. Despite this difference, the proce-
dure to be followed here need not be invalidated since the features of interest in 
the analysis occur within the very beginnings of the evolving crack where the 
crack path is almost normal to the specimen free surface (i.e., in the seminal ring 
rather than the fully produced cone). Finally, throughout this discussion, circular 
symmetry is always assumed. Flaw size refers to the flaw depth, and not its 
length along the surface. The growth of a flaw into a circular ring is not consid-
ered here. 

Equation 7.6b may be rewritten with stresses in terms of the mean contact 
pressure pm = P/(πa2) and distances expressed with respect to the contact radius 
a such that: 

( ) ( )
mp

f abab σ
=   (7.6c) 

Combining Eqs. 7.6b and 7.6c, we may define a function φ(c/a), related to 
K1C, as: 
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c a ( ) d
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rc c b f b a b a
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Since pm = P/πa2, Eq. 7.6d allows the Griffith criterion at the critical fracture 
condition for the case of the sphere to be expressed in terms of R as: 

( ) )/(132
*
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E
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PG φ

π
νγ −

==  (7.6e) 

 
* It would be instructive to review Section 2.5.2. Equations 2.5.2a and 2.5.2b apply to one end of a 

double-ended crack and not to a single crack tip in isolation. However, it is not unreasonable to 
assume that the rate of strain energy release is equal for both crack tips, hence the use of Eq. 
2.5.2d for the Hertzian crack in Eq. 8.6a.  

______ 
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and for either the sphere or punch in terms of a: 

( )
)/(

14
2 33
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G φ
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ν
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−
== . (7.6f) 

The function φ(c/a) contains an integral which is characteristic of the pre-
existing stress field. The function φ(c/a) must be evaluated for a particular starting 
radius, ro/a, since this determines the values of the stress along the crack path.  

Rearranging Eq. 7.6f gives the critical load for fracture P = Pc for the case of 
the sphere or the punch: 
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( / ) 4 1c
a EP
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φ ν

 (7.6g) 

The factors in the second term on the right-hand side of Eq. 7.6g are all ma-
terial constants. It would appear therefore that Auerbach’s empirical law would 
be consistent with the analysis if φ(c/a) is also a constant, since the critical load 
would then be proportional to a3/2 (which according to Eq. 7.3b, is equivalent to 
Auerbach’s law). However, φ(c/a) cannot be assumed constant since it contains 
terms for the stress field, the initial flaw size and indenter radius—all of which 
are variables. It is later shown that there is a range of values of stress level, in-
denter radius, and flaw size for which φ(c/a) is nearly constant. This range of  
cf /a is therefore called the “Auerbach range.” 

Figure 7.6.1 shows values for σ1 along the path of the σ3 stress trajectory for 
different starting radii for both spherical and flat punch indenters and illustrates 
the diminishing stress field along the prospective crack paths. It can be seen that 
there is a range of crack lengths for which the maximum principal stress σ1 re-
mains at a higher level for cracks that are initiated further away from the in-
denter than for those that commence nearer to the indenter. This apparently 
anomalous result occurs because cracks that commence very close to the in-
denter propagate more quickly away from the surface to where the stresses are 
much less.  

For a surface with a high density of flaws, the largest strain energy release 
rate for a given flaw size determines where and at what load a flaw will develop 
into a crack. The integral in Eq. 7.6d may be evaluated numerically for the stress 
distribution along each σ3 stress trajectory and plotted as a function of c/a as 
shown in Fig. 7.6.2. The value of φ(c/a) for any particular normalized radius ro/a 
is proportional to the strain energy release rate for a crack of size c/a that com-
mences at radius ro/a. For any flaw size cf, there is a particular radius, ro, for 
which the strain energy release rate is greatest. This corresponds to the upper 
envelope of the curves of φ(c/a) in Fig. 7.6.2. This upper envelope, not drawn in 
these figures, is denoted as φ(cf /a). When the indenter load is steadily increased, 
the Griffith criterion will be first met when the strain energy release rate, given 
by Eqs. 7.6e and 7.6f with the envelope of the curves φ(cf /a), becomes equal to 
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twice the fracture surface energy. A cone crack will initiate at the lowest load 
for which a flaw of size cf/a exists in the specimen at a radius for which φ(cf /a) 
is greater than the critical value. 

 

Fig. 7.6.1 Normalized radial stress σ1/pm plotted as a function of normalized distance c/a 
along the σ3 stress trajectory for different starting radii ro/a for (a) spherical indenter and 
(b) cylindrical flat punch indenter. Stresses and trajectories calculated for ν = 0.26 (with 
kind permission of Springer Science and Business Media, Reference 4). 

Fig. 7.6.2 Strain energy release function φ(c/a) as a function of normalized crack length 
c/a, for different starting radii ro/a for (a) spherical indenter and (b) cylindrical flat punch 
indenter. The Auerbach range, where the outer envelope of φ(c/a) is approximately con-
stant, is indicated in each figure along with the estimated value of φa (with kind permis-
sion of Springer Science and Business Media, Reference 4). 
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For a high density of very small flaws, in the size range cf /a < 0.01, the criti-
cal load Pc, given by Eq. 7.6g, decreases as the flaw size increases, since the 
stress level along the length of the flaw is fairly constant and is approximately 
equal to the surface stress as given by the Hertz equation. In this case, the Grif-
fith criterion for a uniform constant stress level may be employed. Smaller flaws 
are more likely to extend at a lower ro/a, since the surface stress level is higher 
closer to the contact radius. Auerbach’s law would not hold in this case. 

For larger flaws, in the size range 0.1 < cf /a < 0.2, the situation is qualita-
tively different. Equation 7.6g and Fig. 7.6.2 show that the critical load increases 
with increasing flaw size because the strain energy release rate given by φ(c/a) 
decreases with increasing flaw size. The reason for this surprising result is in the 
form of the integral in Eq. 7.6d. The strain energy release rate depends on both 
the stress distribution along the flaw and the factor (c2−b2)−1/2. Larger values of c 
cause the integral to evaluate to a lower value compared to smaller flaws at the 
same ro. 

From Eq. 7.6g, Pc/a3/2 is proportional to φ(cf /a)−1/2. Figure 7.6.2 shows that 
there is a range of cf /a where the outer envelope, φ(cf /a), (and hence φ(cf /a)−1/2) 
is fairly constant. This is the Auerbach range. In this range, the critical load Pc 
which initiates fracture is virtually independent of the flaw size and is therefore 
proportional to a3/2. Assuming the existence of flaws of all sizes everywhere on 
the specimen surface, then for a particular flaw size, the starting radius is that 
which gives the maximum strain energy release rate. The Griffith criterion will 
be first met, upon increasing load, at the position where the maximum strain 
energy release rate occurs. For another flaw size, the starting radius is different 
but the strain energy release rate, and hence the critical load, is not much differ-
ent. 

For flaws within the Auerbach range of flaw sizes, the minimum critical load 
is given the symbol Pa and is found from φ(c/a) = φa and Eq. 7.6g: 
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for the sphere and: 
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for the punch where the term in the square bracket in Eq. 7.6h is the Auerbach 
constant directly. In Eqs. 7.6h and 7.6i, φa is the value of φ(c/a) at the plateau. 
From Fig. 7.6.2, this is estimated to be at φ(c/a) = 0.0011 for the case of the 
sphere and φ(c/a) = 0.0007 for the punch. The value of φa is important since it 
influences the fracture surface energy, which is estimated from data obtained 
from indentation experiments. Combining Eqs. 7.6h and 7.6i, and 7.6e and 7.6f, 
it may be shown that: 
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for the case of the punch. Plots of G/2γ as calculated using Eqs. 7.6j and 7.6k are 
shown in Fig. 7.7.1. 

The term “fracture” in the present context signifies the extension of a flaw to 
a circular ring crack concentric with the contact radius. Once a flaw has become 
a propagating crack, it extends according to the strain energy release function 
curve, Fig. 7.6.3, appropriate to its starting radius. The development of this start-
ing flaw into a ring crack precludes the extension of other flaws in the vicinity, 
even though the value of φ(c/a) for those flaws at some applied load above the 
flaw initiation load may be larger than that calculated for the starting flaw as it 
follows its φ(c/a) curve. This is because the conditions that determine crack 
growth depend on the prior stress field. The function φ(c/a) can be used to de-
scribe the initiation of crack growth for all flaws that exist in the prior stress 
field but can only be considered applicable for the subsequent elongation for the 
flaw that actually first extends. Note that the Auerbach range shown in Fig. 7.6.2 
corresponds to crack lengths c/a in the range 0.01 to 0.1. These crack lengths 
correspond to the initial ring shape of the crack and not the developing cone, and 
hence the difference in observed angle of cone crack and σ3 stress trajectory 
mentioned previously does not alter the results or the validity of the method of 
analysis presented here. 

The energy balance explanation of Auerbach’s law requires the existence of 
surface flaws within the so-called “Auerbach range.” We are now in a position 
to develop a procedure to determine the conditions for the initiation of a 
Hertzian cone crack in specimens whose surfaces contain flaw distributions of a 
specific character. This procedure brings together the flaw statistical and energy 
balance explanations of Auerbach’s law4,14. 

7.7 The Probability of Hertzian Fracture 

7.7.1 Weibull statistics 

Both the size and distribution of surface flaws characterize the strength of brittle 
solids and the probability of failure of a specimen of surface area A subjected to 
a uniform tensile stress σ can be calculated using Weibull statistics15 (see Chap-
ter 4): 
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( )m
f kAσ−−= exp1P  (7.7.1a) 

where m and k are the Weibull parameters. The parameter m describes the 
spread in strengths (a large value indicating a narrow range), and the parameter k 
is associated with the “reference strength” and the surface flaw density of the 
specimen. Typical values for as-received soda-lime glass windows are16 m = 7.3 
and k = 5.1×10

−57
 m

−2
 Pa

−7.3
. 

The probability of failure given by Eq. 7.7.1a is equal to the probability of 
finding a flaw within an area A of the specimen surface that is larger than the 
critical flaw size (as given by the Griffith criterion) for a uniform stress σ. The 
critical flaw size is given by Eq. 7.4c with K1 = K1C. 

On the surface of any given specimen, there may exist a considerable num-
ber of flaws of lengths below, above, and within the Auerbach range on the sur-
face of a specimen. The probability of failure (initiation of a Hertzian cone 
crack) for a given indenter load depends directly on the probability of finding a 
surface flaw of critical size within the indentation stress field. Critical stress and 
flaw size are related by Eq. 7.4c, where the stress is applied along the full depth 
of the flaw. In an indentation stress field, however, this only applies for very 
small flaws where the tensile stress is given by Hertz’s equations. The uniform 
stress field approximation gets progressively worse as the Auerbach range is 
approached. For larger flaws, within the Auerbach range, the fracture load be-
comes nearly independent of the flaw size since the maximum strain energy 
release rate, as described by the outer envelope of the curves of Fig. 7.6.2, is 
approximately constant. The probability of fracture from these flaws must there-
fore be expressed in terms of the probability of finding a flaw of the required 
size at a starting radius commensurate with the curves of Fig. 7.6.2. 

7.7.2 Application to indentation stress field 

We are now in a position to calculate the probability of fracture for a given load 
and radius of indenter. Let Pa be the minimum critical load for values of c/a 
within the Auerbach range. Figure 7.7.1 shows the relationship between the 
normalized strain energy release rate G/2γ, flaw size c/a, and starting radius ro/a 
for three different values of P: P−, a load below the minimum critical load; Pa, 
the minimum critical load; and P+, a load greater than the minimum critical 
load. The Griffith criterion is met when G/2γ ≥ 1. On this diagram, the line G/2γ 
= 1 has been drawn at positions corresponding to P−, Pa and P+. This allows the 
graph to be presented more clearly, showing only one family of curves. The 
curves shown in Fig. 7.7.1 rely only upon the choice of φa and are independent 
of the value of γ. However, if one wishes to draw curves as in Fig. 7.7.1 for a 
particular indenter load, then Pa must be determined from Eq. 7.6.k or Eq. 7.6.l, 
for frictionless contact, which requires an estimate of γ.  
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Fig 7.7.1 Relationship between strain energy release rate, G and flaw size c/a for differ-
ent indenter loads P/Pa. The vertical axis scaling applies to P/Pa = 1. The vertical axis 
positions for the condition G = 2γ for different ratios P/Pa are drawn relative to the family 
of curves shown. The flaw size range for G/2γ > 1 for a starting radius ro/a = 1.2 for P/Pa 
= 1.5 is indicated (with kind permission of Springer Science and Business Media, Refer-
ence 4). 

It is immediately evident that if the load is less than the minimum critical 
load Pa, failure will not occur from any flaws, no matter how large, since the 
Griffith criterion is never met. It can be seen that failure can only occur from 
flaws within the Auerbach range for loads equal to or greater than Pa. Fracture 
from flaws of size below, including, and beyond the Auerbach range can only 
occur if the load is greater than Pa. At a load P+, greater than Pa, the Griffith 
criterion is met for various ranges of flaw sizes which depend on the particular 
values of starting radii. Fracture will occur from a flaw located at a particular 
starting radius if that flaw is within the range for which G/2γ ≥ 1 for that radius. 

This range of flaw sizes can be determined from Fig. 7.7.1 and is given by 
the c/a axis coordinates for the upper and lower bounds of the region where G/2
γ > 1 for the curve that corresponds to the radius under consideration. The prob-
lem has been reduced to that from calculating the probability of indentation frac-
ture occurring at a particular radius and load to the probability of finding at least 
one flaw within a specific size range at that radius. For the case of a punch, the 
procedure is straightforward since the radius of circle of contact a is a constant. 
For a sphere, the contact radius depends on the load, and the procedure for de-
termining the required flaw sizes is slightly more complicated. 

To determine these probabilities, it is convenient to divide the area surround-
ing the indenter into n annular regions of radii ri (i = 1 to n). To determine the 
probability of finding a flaw that meets the Griffith criterion within each annular 
region, Eq. 7.7.1a may be used. Eq. 7.7.1a gives the probability of failure for an  
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applied uniform stress but also can be used to calculate the probability of finding 
a flaw of size greater than or equal to the critical value for that stress, as given 
by Eq. 7.4c, within an area A of the surface of the solid. The strength para-
meters, m and k, for Eq. 7.7.1a are those appropriate to the specimen surface 
condition. The probabilities calculated for each annular region can be suitably 
combined to yield a total probability of failure for a particular indenter load and 
radius for a given surface flaw distribution. 

We proceed as follows. Curves as shown in Fig. 7.7.1 are drawn for a par-
ticular value of indenter load P. Consider an annular region with radius ri and 
area δAi. The range of values of flaw size that satisfies the Griffith criterion may 
be determined for this region by considering the appropriate line for φ(c/a) in 
Fig. 7.7.1. For example, the vertical lines in Fig. 7.7.1 show the range of flaw 
sizes for P/Pa = 1.5, which, should they exist within the increment centered on 
ri/a = 1.1, will cause fracture at that radius. Let this range be denoted by c1 ≤ c ≤ 
c2. We therefore require the probability of finding such a flaw within this size 
range in the area δA. This is equal to the difference between the probability of 
finding a flaw of size c > c1 and the probability of finding a flaw of size c > c2. 
However, the probability of finding a flaw of size greater than a specific size, 
say c1, within the area δAi is precisely equal to the Weibull probability of failure 
(Eq. 7.7.1a) under the corresponding critical stress as given by Eq. 7.4c.  

Once a particular indenter size has been specified, the probability of finding 
a flaw of size greater than c1 within the annular region of radius ri and width δri, 
which has an area δAi = 2πriδri, is: 
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Similarly, the probability of finding a flaw of size greater than c2 within the 
same area element δAi is given by: 
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The probability of finding a flaw of size in the range c1 ≤ c ≤ c2 within area δ
Ai is the difference in probabilities given by Eqs. 7.7.2a and 7.7.2b and is equal 
to the probability of failure from a flaw of size within that range. 

( ) ( ) ( )2121 ccPccPcccP iiif >−>=≤≤  (7.7.2c) 

The values c1 and c2 may be determined for all annular regions by inspection 
of Fig. 7.7.1. Since a two-parameter Weibull function gives a nonzero probabil-
ity of failure for even the lowest stresses, it would appear that the upper limit of 
ri/a should extend to the full dimensions of the specimen, where the effect of the 
indentation stress field may still be apparent. However, if one is interested in 
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loads near to the minimum critical load for flaws within the Auerbach range, Pa, 
then it is necessary to consider only starting radii that correspond to the upper 
end of the Auerbach range; that is, ri/a = 1.5, which gives a maximum φ(cf /a) at 
c/a = 0.1. The probability of fracture not occurring from a flaw within the region 
δA is found from: 

ifs PP
i

−= 1  (7.7.2d) 

The probability of survival for the entire region of n annular elements sur-
rounding the indenter is thus given by: 

niS sssss PPPPPP .......
321

=  (7.7.2e) 

Therefore, finally, the probability of failure PF for the entire region, at the 
load P/Pa, is then given by:  

SF PP −= 1  (7.7.2f) 

This calculation is repeated for different values of P/Pa to obtain the depend-
ence on indenter load of probability of failures for a particular value of indenter 
radius. For the case of a sphere, the situation is complicated by the expanding 
radius of circle of contact with increasing load. Combining Eqs. 7.2a and 7.6h, it 
is easy to show that the radius of circle of contact for a given radius of indenter 
and ratio P/Pa may be calculated from: 
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γ π
φν

 (7.7.2g) 

This permits values for cf to be determined as a function of P/Pa for a con-
stant R and proceeding as for the case of the punch. Figure 7.7.2 shows the 
probability of failure as a function of indenter load for a particular size of in-
denter for both spherical and cylindrical punch indenters.  

Calculated values are shown along with those determined from indentation 
experiments. The experimental work was performed on as-received soda-lime 
glass specimens using a hardened steel cylindrical punch and a tungsten carbide 
sphere. Agreement is fairly good especially when one considers that the Weibull 
parameters used in the calculations were determined on glass specimens from a 
completely different source than those used in the experimental work. The 
curves in Fig. 7.7.2 rely on an estimation of the fracture surface energy γ in Eqs. 
7.6h and 7.6i.  

Although the fracture surface energy may in principle be determined from 
indentation tests, such estimations are inaccurate due to the inevitable presence 
of friction between the indenter and the specimen. Nevertheless, the calculated 
curves in Fig. 7.7.2 have been obtained using Eqs. 7.6h and 7.6i with fracture 
surface energies determined from the experimental data (see Section 7.8). In Fig. 
7.7.2, the cutoff at Pa for each indenter size indicates a zero probability of failure 
for loads below the minimum critical load. 
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Fig. 7.7.2 Probability of failure versus indenter load for as-received soda-lime glass for 
(a) spherical indenter R = 4 mm and (b) cylindrical flat punch indenter a = 0.4 mm. Solid 
line indicates calculated values with surface energy γ as given in Table 7.1 and (●) indi-

It is of interest to note that the probability of indentation failure may be ex-
pressed in terms of Weibull strength parameters that are usually determined 
from bending tests involving a stress field which is nearly constant with depth 
over a distance characteristic of the flaw size. This is possible since the probabil-
ity of indentation failure is being expressed in terms of the probability that cer-
tain areas of surface contain flaws within various size ranges. This probability is 
a property of the surface, and the surface strength parameters m and k may be 
determined through bending tests. A suitable combination of these probabilities 
gives the probability of failure for the special case of the diminishing stress field 
associated with an indentation fracture.  

7.8 Fracture Surface Energy and the Auerbach Constant 

7.8.1 Minimum critical load 

The procedure given in previous sections for calculating the probability of initia-
tion of a Hertzian cone crack relies on an estimation of the fracture surface en-
ergy of the specimen material. Experimental indentation work reported by 
Fischer-Cripps and Collins14 indicates a fracture surface energy nearly 2.5 times 
that determined by other means8, causing those workers to postulate that the 
inevitable presence of friction beneath the indenter leads to an increase in the 
apparent surface energy estimated from indentation experiments, even with  

Media, Reference 4). 
cates experimental results (with kind permission of Springer Science and Business
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lubricated contacts. However, this work was done using flaw statistics (m and k) 
from literature values on other specimens where as the actual experimental work 
was done on only a few specimens. Recent work by Wang, Katsube, Seghi and 
Roklin17 where the material properties, flaw statistics and fracture loads were 
obtained from the same specimens shows more realistic values of surface energy 
can be ontained using this method. Estimations of fracture surface energy are 
best undertaken with respect to the minimum critical load for failure.  

As before, let Pa denote the minimum critical load for an indentation fracture 
to occur. We would expect this minimum critical load to correspond to the frac-
ture load observed in experiments on glass with a high density of flaws (i.e., on 
abraded glass). Equations 7.6h and 7.6i predict a straight line relationship be-
tween spherical indenter radius and the punch radius to the 3/2 power, respec-
tively and the minimum critical load. This is expected since Eqs. 7.6h and 7.6i 
assume a specimen surface containing flaws of all sizes and do not give any 
information about the probability of finding a particular sized flaw at a particular 
starting radius. As the indenter size is increased, the flaw size corresponding to 
the Auerbach range also increases and it is from flaws within the Auerbach 
range that failure first occurs since the functions φ(c/a), as shown in Figs. 7.6.2, 
are a maximum in the Auerbach range of flaw sizes. From Eq. 7.6h, the Auer-
bach constant is given by: 
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For the case of the punch, the Auerbach constant for an “equivalent” sphere 
of radius R giving a contact circle of radius a may be found from Eq. 7.6i and 
the Hertz equation, Eq. 7.2a: 
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As can be seen from Eqs. 7.8.1a and 7.8.1b, the Auerbach constant depends 
upon the value of fracture surface energy γ. For a perfectly rigid indenter, E* = 
E/(1-ν2) and so the values of the Auerbach constant become a function of the 
surface energy term only.  

Figure 7.8.1 shows experimental data for the minimum critical load obtained 
on abraded soda-lime glass using both spherical and flat punch indenters. The 
data for the punch have been plotted as a function of a3/2 to give a linear rela-
tionship with the minimum critical load; the actual punch diameter is indicated 
for each data point. The slope of the line of best fit (solid lines in Figs. 7.8.1) 
through the data provides an estimate of the magnitude of the Auerbach constant 
A with φa estimated from the plateau regions of Fig. 7.6.2. Values of surface
energy γ can then be calculated from Eqs. 7.8.1a and 7.8.1b.  

Values of A and γ estimated in this manner are given in Table 7.1. As can be 
seen, the fracture surface energies obtained using this method for the two
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tor of ≈2) than the expected value of γ = 3.5 J/m2 for this material. Differences 
between the value of A obtained from the experiments using the sphere and that 
with the punch are most probably due to the different dependence on friction on 
the indentation response of the two types of indenter. It should be noted that the 
probability of failure shown in Fig. 7.7.2 has been calculated using the fracture 
surface energies shown in Table 7.1. 

Fig. 7.8.1 Minimum critical load versus indenter radius for (a) spherical and (b) cylindri-
cal indenters for abraded glass. (●) indicates experimental results with lubricated con-
tacts. The horizontal axis in (b) is given as the indenter radius raised to the 2/3 power, the 
actual radius of the indenter in mm is shown for each experimental result. The solid line 
is the best linear fit through the experimental data, the slope of which is used to deter-
mine the value of the Auerbach constant in Table 7.1 (with kind permission of Springer 
Science and Business Media, Reference 4).  

Table 7.1 Fracture surface energy and Auerbach constant for soda-lime glass 
from indentation tests with spherical and cylindrical flat punch indenters. 

 Sphere Punch 
Fracture surface energy (J/m2) 8.88 7.46 

Auerbach constant (N/m) 10.5×104 13.8×104 

 
Environmental effects also have an influence on the probability of fracture, 

and an equivalent load may be calculated using the “Modified crack growth 
model” presented in Chapter 3.  

Auerbach’s law, if applied to situations where flaws within the Auerbach 
range are present, offers a convenient way of measurement of fracture toughness 
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indenters are not all that different, although they are appreciably higher (by a fac-
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from indentation test data. For a perfectly rigid indenter, and from Eqs. 7.4b and 
7.8.1a, we obtain: 
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from which K1C can be determined using measured values for A, φa and E.  

7.8.2 Median fracture load 

In an attempt to explain Auerbach’s law, some workers have correlated the val-
ues of scatter in the fracture loads with the surface flaw characteristics of the 
specimen to arrive at a relationship between the median fracture load and in-
denter radius. For example, Oh and Finnie10 initially determined Weibull para-
meters from bending tests on glass strips. The probabilities of failure for annular 
regions surrounding the indenter were calculated on the basis of a nondiminish-
ing stress field and combined to give a total probability of failure. From these 
results, the expected value of the fracture load for a given indenter size was cal-
culated and compared with the mean fracture load obtained from indentation 
experiments. In a similar series of experiments, Hamilton and Rawson9 deter-
mined the Weibull parameters that best described indentation fractures. Argon18 
determined a strength distribution function that described the variation in frac-
ture load for a fixed indenter radius, but he did not express his results in terms of 
Weibull strength parameters. 

Here, no distinction is made between the mean load and the median fracture 
load, although it should be noted that the median fracture load corresponds to a 
probability of failure of precisely 50%. The mean fracture load may thus be es-
timated by determining the load for Pf = 50% in Fig. 7.7.2. Estimates for both 
the sphere and the punch are plotted in Fig. 7.8.2 and compared with those de-
termined from experiments on as-received glass. Although the theory predicts 
that, within the Auerbach range there is a linear relationship between the mini-
mum critical load and the indenter radius, there is no particular reason why this 
should be so for median or mean fracture loads. Indeed, if a linear relationship 
existed, it would be expected that the Auerbach constants obtained from such 
data would be largely determined by the flaw statistics of the sample rather than 
by intrinsic material properties. 

Figure 7.8.2 shows that a linear relationship is not indicated for the mean 
fracture load for both spherical and punch indenters, in either calculated or ex-
perimental determinations. 
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Fig. 7.8.2 Mean failure load versus indenter radius for (a) spherical and (b) cylindrical 
indenters for as-received glass. The horizontal axis in (b) is given as the indenter radius 
raised to the 2/3 power; the actual radius of the indenter in mm is shown for each experi-
mental result. ( ) indicates calculated values with surface energy γ as given in Table 7.1, 
and (●) indicates experimental results with lubricated contacts.  

7.9 Cone Cracks 

7.9.1 Crack path 

Despite the apparent satisfaction at being able to account for the initiation of a 
Hertzian cone crack in terms of both flaw statistics and the requirements of the 
Griffith energy-balance criterion, there exists an important unexplained anomaly 
in this type of treatment. The method relies on a calculation of stress intensity 
factor along an assumed crack path which is assumed to be normal to the maxi-
mum principal tensile stress, (i.e., the σ3 stress trajectory) of the prior stress 
field. However, in many materials, there is a disparity between the path deline-
ated by this calculated stress trajectory and that taken by the conical portion of 
an actual crack. Calculations show that, in glass with Poisson’s ratio = 0.21, the 
angle of the cone crack, if it were to follow a direction given by the σ3 trajec-
tory, should be approximately 33o to the specimen surface. The actual angle is 
dependent on Poisson’s ratio. However, experimental evidence19 is that the an-
gle is typically much shallower, by up to 10o in some cases. Lawn, Wilshaw, and 
Hartley20 attempted to resolve this disparity by analytical computation but were 
unsuccessful. Until recently, no one has attended to this issue, except perhaps 
for Yoffe21, who predicted that the answer lies in the modification to the pre-
existing stress field by the presence of the actual cone crack as it progressed  
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through the solid, and Lawn22, who proposed a change in local elastic properties 
in the vicinity of the highly stressed crack tip.  

Although the notion that the path of a crack may be predicted in terms of the 
pre-existing stress field may appear to be untenable, it is fundamentally correct 
as long as the crack proceeds normal to the maximum pre-existing principal 
tensile stress σ1 (i.e., tensile, or Mode I fracture), since it is this path that usually 
results in a maximum value for stress intensity factor K and hence the greatest 
value of energy release G. In the Hertzian stress field, this path would be the 
trajectory of the minimum principal stress σ3. Recently, Kocer and Collins23 
have used a numerical approach to show that the trajectory of a Hertzian cone 
crack is such that incremental growth according to a criterion of maximum strain 
energy release occurs at a shallower angle than would be expected from a con-
sideration of just the σ3 stress trajectory. This numerical result is in complete 
agreement with experimental evidence and thus infers that the path of maximum 
release of strain energy is not that resulting in pure Mode 1 loading. This is an 
extremely important result, not only for the Hertzian cone crack system but for 
any crack system involving nonuniform triaxial stress fields. However, despite 
the satisfaction of knowing that the crack path does represent the path of maxi-
mum G, the reason for the disagreement with the stress trajectory of the prior 
field is not yet explained. No doubt, the presence of the specimen free surface 
has an effect (the Green’s function approach of Eq. 7.6d is for an embedded 
crack in an infinite solid), as does the presence of interfacial friction between the 
indenter and specimen (which modifies the elastic stress field calculated using 
the equations of Chapter 5).  

7.9.2 Crack size 

Once a cone crack has initiated, the rate of strain energy release will follow the 
appropriate curve of Fig. 7.7.1 for the particular value of c/a at which initiation 
occurred. Note that the rising portion of these curves represents unstable crack 
growth. The falling edge of any one curve is stable crack growth and the crack 
will assume an equilibrium length when G/2γ approaches 1. Increasing the load 
shifts all these curves upward and the crack extends in a stable manner until a 
new equilibrium is reached. Experiments and theoretical analysis24,25 show that 
the radius of the stabilized cone crack varies as the indenter load P raised to the 
2/3 power.  

2

3 2P ED
R

= γ  (7.9.1) 

where D is a constant dependent on Poisson’s ratio and R is the radius of  
the base of the fully formed cone crack. Roesler determined D = 2.75×10−3 for  
ν = 0.25. Equation 7.9.1 is Roesler’s “scaling” law and is obtained from a  
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fundamental analysis of the strain energy contained within the truncated cone 
geometry of the Hertzian cone crack system.  
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Chapter 8 
Elastic-Plastic Indentation Stress Fields 

8.1 Introduction 

In Chapters 5 and 6, we considered the elastic stress fields associated with the 
contact of elastic solids for indenters of various shapes. It was noted that the 
indentation stress field could be derived analytically by the superposition of 
stress fields for a series of point loads arranged to give the required contact pres-
sure distribution for the type of indenter being considered. In the present chap-
ter, we focus on another very important type of indentation, that which occurs 
with plastic deformation of the specimen material. In brittle materials, this most 
commonly occurs with pointed indenters such as the Vickers diamond pyramid. 
In ductile materials, plasticity may be readily induced with a “blunt” indenter 
such as a sphere or cylindrical punch. Indentation tests are used routinely in the 
measurement of hardness of materials, but Vickers, Berkovich, and Knoop dia-
mond indenters may be used to investigate other mechanical properties of solids 
such as specimen strength, fracture toughness, and internal residual stresses. 
Analysis of the stress fields associated with an elastic-plastic contact is compli-
cated by the presence of plastic deformation in the specimen material. The plas-
tically deformed material modifies the previously described elastic stress fields, 
and in brittle materials the initiation and growth of cracks often occurs within 
the specimen on both loading and unloading of the indenter. 

8.2 Pointed Indenters 

8.2.1 Indentation stress field 

In practice, an indentation made with a Vickers pyramidal indenter is initially 
elastic, due to the finite radius of the indenter tip, but very quickly induces plas-
ticity in the specimen material with increasing load. Removal of load generally 
results in a residual impression in the surface of the specimen. The elastic stress 
field is similar to that described in Chapter 5 for a conical indenter, although the 
four-sided nature of the pyramidal indenter means that the loading is no longer 
axis-symmetric. However, the general characteristics of the field remain un-
changed (more so with increasing distance from the indentation in accordance 
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with Saint-Venant’s principle). With reference to Fig. 5.3.2, it is shown that σ1 
is tensile, with a maximum value at the specimen surface at r = 0, normal stress 
σ3 is compressive, and the hoop stress σ2 is compressive at the surface and ten-
sile beneath the indentation with a maximum tension in a zone directly beneath 
the indenter. For sharp indenters, it is the condition of plasticity beneath the in-
denter that is of considerable practical interest since the modifications to the 
elastic stress field are responsible for cracking within the specimen for both 
loading and unloading of the indenter.  

Theoretical analysis of the elastic-plastic indentation stress field associated 
with a pyramidal indenter is difficult, if not impossible, due to the complexities 
of the nature of the plastic deformation within the specimen material. Since plas-
tic strains in these types of indentations are very much larger than any of the 
elastic strains, the specimen is usually held to behave as a rigid-plastic material 
in which plastic flow is assumed to be governed by flow velocity considerations. 
Marsh1 compared the plastic deformation in the specimen beneath the indenter 
to that occurring during the radial expansion of a spherical cavity subjected to 
internal pressure, an analysis of which was given previously by Hill2. The most 
widely accepted analytical treatment is that of Johnson3, who replaced the ex-
pansion of the cavity with that of an incompressible hemispherical core of mate-
rial subjected to an internal pressure, the so-called “expanding cavity” model. 
Analytical models of the elastic-plastic stress field have been proposed by 
Chiang, Marshall, and Evans4,5 and also Yoffe6. These analyses build on the 
expanding cavity model and generally include the influence of the specimen free 
surface. For example, Chiang, Marshall and Evans4,5 show that the value of the 
hoop stress in the elastically strained material, on the axis of symmetry, is a 
maximum at the elastic-plastic boundary and is approximately 0.1–0.2 times the 
mean contact pressure (pm), some 10 times that for an equivalent elastic contact 
with a spherical indenter loaded to the same value of pm.  

The analytical models mentioned above deal with an axis-symmetric loading 
of an infinite half-space with a pointed indenter. The most accessible is the 
Yoffe model6, which gives the stress distribution outside a hemispherical plastic 
zone of radius a equal to the radius of the circle of contact as shown in Fig. 
8.2.1. 

 

 

Fig. 8.2.1 Geometry of plastic zone for axis-symmetric conical indenter of semiangle α. 
It is assumed that the plastic zone meets the surface at r = a.  
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Fig. 8.2.2 Coordinate system and schematic of indentation with pointed indenter.  

With a coordinate system as shown in Fig. 8.2.2, the stresses are given by: 
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where P is the indenter load and B is a constant which characterizes the extent of 
the plastic zone. For porous materials beneath a large-angled indenter, the B is 
small. Yoffe  determined that B = 0.06pma3  for soda-lime glass ν = 0.26 with
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a cone semi-angle of 70  (p  is the mean contact pressure and a is the radius
of circle of contact). Substituting this value of B into Eqs. 8.2.1a to 8.2.1d and
normalizing to mean contact pressure p  and radius of circle of contact a, we
obtain: 
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Equations 8.2.1a to 8.2.1h are obtained by adding the elastic Boussinesq 
field (the first term in these equations with a 1/r2 dependency) to that of a plastic 
“blister” field (second term with a 1/r3 dependency). Yoffe has obtained this 
blister field by combining a symmetrical center of pressure (similar to that used 
in “expanding cavity” models to be discussed in Chapter 9) with surface forces 
which account for the specimen free surface.  

Cook and Pharr7, in a review of the field in 1990, expressed the parameter B 
in terms of indentation parameters and material properties. They argued that B 
could be found from: 
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with f, a densification factor* which varies from 0 (volume accommodated en-
tirely by densification) and 1 (no densification of specimen material), and H the 
hardness value defined as: 

22a
PH =  (8.2.1j) 

where a is the radius of the circle of contact. Inserting Eq. 8.2.1j into 8.2.1i 
gives: 

fEaB
π

3
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Figure 8.2.3 shows the stresses computed from Eqs. 8.2.1e to 8.2.1h.  
The significance of these stresses is that generally, the different types of cracks  

 
* The volume of material displaced by the indenter may be taken up by varying proportions of den-

sification (i.e., compaction), elastic strains, plastic strains, and piling up at surface, etc. 

______ 
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observed in nominally brittle materials are a result of the action of different 
components of the stress field. For example, surface ring cracks are produced by 
σr radial tensile stresses (θ = π/2); cracks that emanate from the corners of a 
pyramidal indentation are a result of the σφ hoop stress (θ = π/2); median cracks 
beneath the indentation arise from outward σθ (θ = 0) stresses along the axis of 
symmetry and lateral cracks from radial stresses σr (θ = 0). Further details of 
these crack systems is given in Section 8.2.2. 

Yoffe6 presented a qualitative description of the residual stresses after 
unloading in which σr = −0.42pm and σφ = 0.12pm on the surface, and σr = 
0.72pm and σf σφ = −0.06pm on the axis beneath the indenter. Cook and Pharr7 
argue that upon unloading, the parameter B associated with the blister field is set 
at its maximum value corresponding to Pmax. At r = amax, the stresses now be-
come dependent on the ratio P/Pmax and the material properties f, E, and H. It is 
found that for small values of the product fE/H, radial cracking is predicted dur-
ing unloading, but for large values, radial cracking may form during loading. 
Cook and Pharr7 present details of the maximum stresses at r = amax for both 
loading and unloading for different values of fE/H. For the purposes of this sec-

 

Fig. 8.2.3 Axis-symmetric stress distributions outside the plastic zone calculated using 
Eqs. 8.2.1e to 8.2.1h. Stresses have been normalized to mean contact pressure. Distances 
have been normalized to radius of circle of contact. (a) σr, (b) σθ, (c) σφ. 

8.2.2 Indentation fracture 

Fracture in brittle materials loaded with a pyramidal indenter occurs during both 
loading and unloading. Upon loading, tensile stresses are induced in the speci-
men material as the radius of the plastic zone increases. Upon unloading, addi-
tional stresses arise as the elastically strained material outside the plastic zone  
 

dependence on material parameters.  
tion, we need only be aware of the complex nature of the stresses and their
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attempts to resume its original shape but is prevented from doing so by the per-
manent deformation associated with the plastic zone. However, the nature of the 
cracking depends on test conditions, and large variations in the number and lo-
cation of the cracks that form in the specimen occur with only minor variations 
in the shape of the indenter, the loading rate, and the environment. There exists a 
large body of literature on the subject of indentation cracking with Vickers and 
other sharp indenters extending from the early 1970s to the late 1980s. A review 
of the field given by Cook and Pharr7 in 1990 summarizes the details of the 
work done during this period.  

For the present, it is sufficient for us to identify the types of cracks generally 
seen in specimens loaded with a Vickers or Berkovich indenter without being 
overly concerned about their initiation sequence (which depends on the experi-
mental conditions). Generally, there are three types of crack, and they are illus-
trated in Fig. 8.2.4:  

i. Radial cracks† are “vertical” half-penny type cracks8 that occur on the sur-
face of the specimen outside the plastic zone and at the corners of the re-
sidual impression at the indentation site. These radial cracks are formed 
by a hoop stress σφ (θ = π/2) and extend downward into the specimen but 
are usually quite shallow (see Fig. 8.2.2 for coordinate system).  

ii. Lateral cracks are “horizontal” cracks that occur beneath the surface and 
are symmetric with the load axis. They are produced by a tensile stress σr 
(θ = 0) and often extend to the surface, resulting in a surface ring which 
may lead to chipping of the surface of the specimen. 

iii. Median cracks are “vertical” circular penny cracks that form beneath the 
surface along the axis of symmetry and have a direction aligned with the 
corners of the residual impression. Depending on the loading conditions, 
median cracks may extend upward and join with surface radial cracks, 
thus forming two half-penny cracks which intersect the surface as shown 
in Fig. 8.2.4d. They arise due to the action of an outward stress σθ (θ = 0). 

As mentioned previously, the exact sequence of initiation of these three 
types of cracks is sensitive to experimental conditions. However, it is generally 
observed that in soda-lime glass (a popular and readily available test material) 
loaded with a Vickers indenter, median cracks initiate first. When the load is 
removed, the elastically strained material surrounding the median cracks cannot 
resume its former shape due to the presence of the permanently deformed plastic 
material (which leaves a residual impression in the surface of the specimen). 
Residual tensile stresses in the normal direction then produce a “horizontal” 
lateral crack which may or may not curve upward and intersect the specimen 
surface. Upon reloading, the lateral cracks close and the median cracks reopen. 
For low values of indenter load, radial cracks also form during unloading (in 
other materials, radial cracks may form during loading). For larger loads, upon 

 
† Shallow radial cracks are sometimes referred to as Palmqvist cracks after S. Palmqvist, who ob-

served and described them in WC-Co specimens in 1957. 

______ 
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unloading, the median cracks extend outward and upward and may join with the 
radial cracks to form a system of half-penny cracks, which are then referred to 
as “median/radial” cracks. In glass, the observed cracks at the corners of the 
residual impression on the specimen surface are usually fully formed me-
dian/radial cracks. However, in other brittle materials, with higher values of E/Y, 
radial cracks are usually quite distinct from the median cracks and form upon 
loading.  

Experimental observations suggest that there is no one general sequence of 
indentation cracking. Chiang, Marshall, and Evans4,5, and also Yoffe6, have pro-
posed analytical models that attempt to describe the cracking sequence in terms 
of a superposition of the Boussinesq elastic stress field and that associated with 
the expanding cavity model of Johnson. The Yoffe6 model describes the evolu-
tion of stresses for both loading and unloading in terms of material and E/Y and 
appears to account for the appearance of radial and lateral cracking for loading 
and unloading sequences for a wide range of test materials. However, the model, 
as with that of Chiang, Marshall, and Evans4,5, deals with axis-symmetric, 
pointed indenters. Clearly, the corners of a pyramidal indenter play an important 
role, since both median and radial cracks align themselves with the corners of 
the indentation. However, development of a three-dimensional analytical model 
that deals with this type of geometry would be an extremely difficult undertak-
ing and would be best left to numerical finite-element analysis. The value of the 
axis-symmetric models is to provide physical insight, and that they do quite 
well.  

It is the radial and lateral cracks that are of particular importance, since their 
proximity to the surface has a significant influence on the fracture strength of 
the specimen. Fracture mechanics treatments of these types of cracks seek to 
provide a measure of fracture toughness based on the length of the radial surface 
cracks.  

 

Fig. 8.2.4 Crack systems for Vickers indenter: (a) radial cracks, (b) lateral cracks,         
(c) median cracks, (d) half-penny cracks.  

8.2.3 Fracture toughness 

One of the main features of an indentation crack is that it is stable with increas-
ing load.9 While straight cracks in beam-type specimens are routinely used for 
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fracture toughness testing of ductile materials, this type of test is very difficult to 
undertake with brittle materials. Attempts to do so usually end with catastrophic 
failure of the specimen. Further, indentation cracks require only a small surface 
test area, and multiple indentations can usually be made on the face of a single 
specimen. For these reasons, it is desirable to be able to measure fracture tough-
ness using crack length data available from indentation tests. 

Attention is usually given to the length of the radial cracks as measured from 
the corner of the indentation and then radially outward along the specimen sur-
face as shown in Fig. 8.2.5.  

Palmqvist8 noted that the crack length l varied as a linear function of the in-
dentation load. Lawn, Evans, and Marshall10 formulated a different relationship, 
where they treated the fully formed median/radial crack and found the ratio 
P/c3/2 (where c is measured from the center of contact to the end of the corner 
radial crack) is a constant, the value of which depends on the specimen material. 
Fracture toughness is found from: 
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where k is a calibration constant equal to 0.016 and n = ½ with c = l+a. 
 

 

Fig. 8.2.5 Crack parameters for Vickers and Berkovich indenters. Crack length c is 
measured from the center of contact to end of crack at the specimen surface. 

Various other studies have since been performed, and Anstis, Chantikul, Lawn, 
and Marshall11 determined n = 3/2 and k = 0.0098. Laugier12-14 undertook an 
extensive review of previously reported experimental results and determined: 
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With xv = 0.015, Laugier showed that the radial and half-penny models make 
almost identical predictions of the dependence of crack length on load (note the 
similarity between Eqs. 8.2.3a and 8.2.3b. Experiments show that the term 
(a/l)1/2 shows little variation between glasses (median/radial) and ceramics (ra-
dial). The significance of this result is that it is thus generally not possible to 
infer the existence of a fully formed median/radial crack from the observable 
crack length, and for opaque materials it is necessary to undertake sectioning of 
the specimen to obtain a full knowledge of the crack in any particular material. 

8.2.4 Berkovich indenter 

The vast majority of toughness determinations using indentation techniques are 
performed with a Vickers diamond pyramid indenter. This indenter takes the 
form of a square pyramid with opposite faces at an angle of 136° (edges at 
148°). However, the advantages of a Berkovich indenter have become increas-
ingly important, especially in ultra-micro-indentation work, where the faces of 
the pyramid are more likely to meet at a single point rather than a line. However, 
despite this advantage, the loss of symmetry presents some problems in deter-
mining specimen toughness because half-penny cracks can no longer join two 
corners of the indentation. Ouchterlony15 investigated the nature of the radial 
cracking emanating from a centrally loaded expansion star crack and determined 
a modification factor for stress intensity factor to account for the number of ra-
dial cracks formed. 

n
n
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π
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2

1

2
1

+
= . (8.2.4a)  

As proposed by Dukino and Swain16, this modification has relevance to the 
crack pattern observed from indentations with a Berkovich indenter. The ratio of 
k1 values for n = 4 (Vickers) and n = 3 (Berkovich) is 1.073 and thus the length 
of a radial crack (as measured from the center of the indentation to the crack tip) 
from a Berkovich indenter should be 1.0732/3 = 1.05 that from a Vickers indenter 
for the same value of K1

16. The Laugier expression can thus be written: 

( )
2/3

1 2
3/21.073 ⎛ ⎞= ⎜ ⎟

⎝ ⎠
c v

E PK x a l
H c

. (8.2.4b)  

8.3 Spherical Indenter 

elastic-plastic contact are made complex by the presence of plasticity beneath
As mentioned previously, analytical treatments of the indentation stress field for
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the indenter. However, these difficulties can be circumvented by making use of 
the finite-element method17-21. Such modeling is of considerable importance 
because it provides numerical data for indentations involving complex geome-
tries and material properties (see Chapter 12).  

Fig. 8.3.1 shows a comparison between the elastic and elastic-plastic stress 
distributions for a spherical indenter.  

Fig. 8.3.1 Contours of principal stress for glass-ceramic material with spherical indenter. 
Left side of figure shows elastic solutions from Eqs. 5.4.2i to 5.4.2o in Chapter 5. Right 
side of figure shows finite-element results for elastic-plastic response. Magnitudes are 
shown for (a) σ1, (b) σ2, (c) σ3. For both elastic and elastic-plastic results, distances are 
expressed relative to the contact radius ao = 0.326 mm and stresses in terms of the mean 
contact pressure pm = 3.0 GPa for the elastic case at P = 1000 N (with kind permission of 
Springer Science and Business Media, Reference 22). 
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The presence of the “plastic” or damage zone significantly alters the near-
field indentation stresses. In general, the magnitudes of the maximum principal 
stresses appear to shift outward, away from the center of contact when compared 
to the elastic case. The far-field stresses, however, appear to be little changed 
from the elastic case. The shift in magnitudes of stresses away from the center of 
contact, indicates an outward shift in the distribution of upward pressure which 
serves to support the indenter. This is reflected in the contact pressure distribu-
tions shown in Fig. 8.3.2, where the contact pressure for the elastic-plastic case, 
appears to be more uniformly distributed (except for the rise in contact pressure 
near the edge of the contact circle) compared to the elastic case. As will be seen 
in Chapter 9, the actual shape and size of the plastic zone depend on the me-
chanical properties of the specimen material, particularly the ratio E/Y, where E 
is the elastic modulus and Y is the yield stress22. In Fig. 8.3.2, results are plotted 
normalized to the mean contact pressure pm = 3.0 GPa and contact radius ao = 

 

Fig. 8.3.2 Contact pressure distribution for elastic (equation), and elastic-plastic (finite-
element) contact for P = 1000 N, R = 3.18 mm. Results are normalized to ao and pm as in 
Fig. 8.3.1. The bar at the bottom of the horizontal axis indicates the radius of circle of 
contact a = 0.437 mm for the elastic-plastic condition (with kind permission of Springer 
Science and Business Media, Reference 22). 

Figure 8.3.3 shows the variation in stress along the surface and downward 
along the axis of symmetry. As for Fig. 8.2.3, results are plotted normalized to 
the elastic contact pressure (pm = 3.0 GPa) and contact radius (ao = 0.326 mm). 
Also shown in this figure are the results for the elastic solution for the maximum 
principal stress σ1. As shown in Fig. 8.3.3 (a), along the surface, the maximum 
value of σ1 is very much the same as for the elastic case, although the con 
tact pressure is correspondingly lower due to the larger area of contact in the  
 

Y = 770 MPa with the load P = 1000 N and R = 3.18 mm. Absolute values may
be obtained by multiplying by these factors. 

0.326 mm for the elastic case. Stresses have been calculated for a yield stress
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elastic-plastic case (with a = 0.437 mm). There is an interesting change in mag-
nitude for all stresses within the contact zone near the edge of the circle of contact. 
Later we shall see that this arises due to the plastic zone being contained within 
the area of the circle of contact, and this discontinuity flattens out for contacts 
on materials, such as metals, where the plastic zone extends beyond the radius of 
circle of contact. In Fig. 8.3.3 (b), the variation in stresses along the axis of 
symmetry downward into the specimen material is shown. Note that the maxi-
mum tensile stress occurs at the elastic-plastic boundary and is larger by a factor 
of ≈3.6 than that calculated for an elastic contact.  

The significance of these results is particularly important when we wish to 
use indentation stress fields for structural reliability analysis. The failure of brit-
tle materials is often attributed to the action of tensile stresses on surface flaws. 
For example, the procedure for determining the conditions for initiation of a 
Hertzian crack in soda-lime glass (presented in Chapter 7) applies to a purely 
elastic contact. For the type of material described here—a nominally brittle ce-
ramic which undergoes shear-driven failure within a “plastic” zone—an analysis 
involving Weibull statistics may not be appropriate or may need to be applied to 
flaws within the interior of the specimen rather than on the surface. Whatever 
analysis is selected, a detailed knowledge of the state of stress within the mate-
rial is required.  

Fig. 8.3.3 Variation in stresses σ1, σ2, σ3, the hydrostatic component σH, and maximum 
shear stress τmax along (a) the surface of the specimen at z = 0 and (b) downward along 
the axis of symmetry at r = 0. In both (a) and (b), the dashed curve σ1E shows the varia-
tion in σ1 as calculated from elastic formulas for comparison with the elastic-plastic  
finite-element result. The horizontal bar in (a) indicates the radius of circle of contact a = 
0.437 mm for the elastic-plastic condition. The shaded area in (b) indicates the region in 
which plastic strains have occurred (with kind permission of Springer Science and Busi-
ness Media, Reference 22). 

0.0 1.0 2.0 3.0
-1.2

-0.8

-0.4

0.0

0.4
σ1

σ2
σ3

σ1E

τmax

σΗ

-8.0-6.0-4.0-2.00.0
-0.8

-0.6

-0.4

-0.2

0.0

0.2
τmax

σH

σ3

σ1E

σ1,2

plastic elastic

σ/pm

r/ao z/ao

σ/pm

(a) (b)



  References  

 

149 

References 
 
1. D.M. Marsh, “Plastic flow in glass,” Proc. R. Soc. London, Ser. A279, 1964, pp. 

420–435. 
2. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950. 
3. K.L. Johnson, “The correlation of indentation experiments,” J. Mech. Phys. Solids 18, 

1970, pp. 115–126. 
4. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic 

indentation. 1. Stresses and residual stresses,” J. Appl. Phys. 53 1, 1982, pp. 298–311. 
5. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic 

indentation. 2. Fracture initiation,” J. Appl. Phys. 53 1, 1982, pp. 312–317. 
6. E.H. Yoffe, “Elastic stress fields caused by indenting brittle materials,” Philos. Mag. 

A, 46, 1982, pp. 617–628. 
7. R.F. Cook and G.M. Pharr, “Direct observation and analysis of indentation cracking 

in glasses and ceramics,” J. Am. Ceram. Soc. 73 4, 1990, pp. 787–817. 
8. S. Palmqvist, “A method to determine the toughness of brittle materials, especially 

hard materials,” Jernkontorets Ann. 141, 1957, pp. 303–307. 
9. F.C. Roesler, “Brittle fractures near equilbrium,” Proc. R. Soc. London, Ser. B69 

1956, pp. 981–992. 
10. B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in 

ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63, 1980, pp. 574–
581. 

11. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of 
indentation techniques for measuring fracture toughness: I Direct crack measure-
ments,” J. Am. Ceram. Soc. 64 9, 1981, pp. 533–538. 

12. M.T. Laugier, “Palmqvist indentation toughness in WC-Co composites,” J. Mater. 
Sci. Lett. 6, 1987, pp. 897–900. 

13. M.T. Laugier, “Palmqvist toughness in WC-Co composites viewed as a ductile/brittle 
transition,” J. Mater. Sci. Lett. 6, 1987, pp. 768–770. 

14. M.T. Laugier, “New formula for indentation toughness in ceramics,” J. Mater. Sci. 
Lett. 6, 1987, pp. 355–356. 

15. F. Ouchterlony, “Stress intensity factors for the expansion loaded star crack,” Eng. 
Frac. Mechs. 8, 1976, pp. 447–448. 

16. R. Dukino and M.V. Swain, “Comparative measurement of indentation fracture 
toughness with Berkovich and Vickers indenters,” J. Am. Ceram. Soc. 75 12, 1992, 
pp. 3299–3304. 

17. C. Hardy, C.N. Baronet, and G.V. Tordion, “The elastic-plastic indentation of a half-
space by a rigid sphere,” Int. J. Numer. Methods Eng. 3, 1971, pp. 451–462. 

18. P.S. Follansbee and G.B. Sinclair, “Quasi-static normal indentation of an elasto-
plastic half-space by a rigid sphere-I,” Int. J. Solids Struct. 20, 1981, pp. 81–91. 

19. R. Hill, B. Storakers and A.B. Zdunek, “A theoretical study of the Brinell hardness 
test,” Proc. R. Soc. London, Ser. A423, 1989, pp. 301–330. 

20. K. Komvopoulos, “Finite element analysis of a layered elastic solid in normal contact 
with a rigid surface,” J. Tribology, Trans. ASME, 111, 1988, pp. 477–485. 

 
 
 
 



 Elastic-Plastic Indentation Stress Fields 

 

150 

21. K. Komvopoulos, “Elastic-plastic finite element analysis of indented layered media,” 
J. Tribology, Trans. ASME, 111, 1989, pp. 430–439. 

22. G. Caré and A.C. Fischer-Cripps, “Elastic-plastic indentation stress fields using the 
finite element method,” J. Mater. Sci. 32, 1997, pp. 5653–5659. 



 

 

Chapter 9 
Hardness 

9.1 Introduction 

Indentation tests involving hard, spherical indenters have been the basis of hard-
ness testing since the time of Hertz in 18811,2. Conventional indentation hardness 
tests involve the measurement of the size of a residual plastic impression in the 
specimen as a function of the indenter load. Theoretical approaches to hardness 
can generally be categorized according to the properties of the indenter and the 
assumed response of the specimen material. For sharp indenters, the specimen is 
usually approximated by a rigid-plastic material in which plastic flow is as-
sumed to be governed by flow velocity considerations. For blunt indenters, the 
specimen responds in an elastic-plastic manner, and plastic flow is usually des-
cribed in terms of the elastic constraint offered by the surrounding material. The 
hardness of brittle materials is conveniently measured using a diamond pyramid 
indenter, since a residual impression is readily obtained at relatively low values 
of indenter load. The use of spherical indenters in hardness measurements  
is usually restricted to tests involving ductile materials but has recently been 
applied to certain brittle ceramics that exhibit a shear-driven “plasticity” in the 
indentation stress field. 

9.2 Indentation Hardness Measurements 

9.2.1 Brinell hardness number 

The Brinell test involves the indentation of the specimen with a hard spherical 
indenter. The method was developed by J.A. Brinell in 19003. For an indenter 
diameter D, and diameter of the residual impression d, the hardness number is 
calculated from:  
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Fig. 9.2.1 Geometry of a Brinell hardness test. 

This formula gives the hardness as a function of the load and the actual surface 
area of the residual impression. The diameter of the impression d is measured in 
the plane of the original surface. Brinell hardness measurements are usually made 
such that the ratio d/D is between 0.25 and 0.5 and the load applied for at least 30 
seconds. For iron and steel, a ball diameter of 10 mm with a load of 30 kN is 
commonly used. Figure 9.2.1 shows the relevant features of the test geometry. 

The Brinell hardness number is favored by some engineers because of the 
existence of an empirical relationship between it and the ultimate tensile 
strength of the specimen material*. However, for physical reasons, it is prefer-
able to use the projected contact area rather than the actual surface area of the 
specimen as the divisor since this gives the pressure beneath the indenter which 
opposes the applied force. 

9.2.2 Meyer hardness 

The Meyer hardness is similar to the Brinell hardness except that the projected 
area of contact rather than the actual curved surface area is used to determine the 
hardness. In this case, the hardness number is equivalent to the mean contact 
pressure between the indenter and the surface of the specimen. As we shall see, 
the mean contact pressure is a quantity of considerable physical significance. 
The Meyer hardness is given by: 

2
4
d
PpH m π

==  (9.2.2a)  

where d is the diameter of the contact circle at full load (assumed to be equal to 
the diameter of the residual impression in the surface—see Chapter 10).  

 
* Ultimate tensile strength is defined as the maximum nominal stress measured using the original 

cross-sectional area of the test specimen. 
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9.2.3 Vickers diamond hardness 

The Vickers diamond indenter takes the form of a square pyramid with opposite 
faces at an angle of 136° (edges at 148°). The indenter was suggested by Smith 
and Sandland in 19244. The Vickers diamond hardness, VDH, is calculated us-
ing the indenter load and the actual surface area of the impression. The area of 
the base of the pyramid, at a plane in line with the surface of the specimen, is 
equal to 0.927 times the surface area of the faces that contact the specimen. The 
mean contact pressure pm is given by the load divided by the projected area of 
the impression . Thus, the Vickers hardness number is lower than the mean con-
tact pressure by ≈ 7%. The Vickers diamond hardness is found from: 

22 86.1
2

136sin2
d
P

d
PVDH =

°
=  (9.2.3a)  

with d equal to the length of the diagonal measured from corner to corner as 
shown in Fig. 9.2.3. From geometry, it can be easily shown that the length d of 
the diagonal is precisely 7 times the total penetration depth. 

Fig. 9.2.3 Geometry of Vickers hardness test. 

9.2.4 Knoop hardness 

The Knoop indenter is similar to the Vickers indenter except that the diamond 
pyramid has unequal length edges, resulting in an impression that has one dia-
gonal with a length approximately seven times the shorter diagonal. The angles 
for the opposite faces of a Knoop indenter are 172°30′ and 130°. The Knoop 
indenter is particularly useful for the study of very hard materials since the 
length of the long diagonal of the residual impression is more easily measured  
compared to the dimensions of the impression made by Vickers or spherical 
indenters.  

 

 
 Assuming frictionless contact between the indenter and the specimen. 
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†
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Fig. 9.2.4 Geometry of a Knoop indenter. 

Due to the unequal lengths of the diagonals, this indenter is also very useful 
for investigating anisotropy of the surface of the specimen. The indenter was 
invented in 1934 at the National Bureau of Standards in the United States by F. 
Knoop, C.G. Peters, and W.B. Emerson5.  

As shown in Fig. 9.2.4, the length d of the longer diagonal is used to deter-
mine the projected area of the impression. The Knoop hardness number calcu-
lated from: 

⎥⎦
⎤

⎢⎣
⎡

=

2
130tan

2
5.172cot

2
2a

PKHN  (9.2.4a)  

For indentations in highly elastic materials, there is observed a substantial 
difference in the length of the short axis diagonal for a condition of full load 
compared to full unload. Marshall, Noma and Evans6 likened the elastic recov-
ery along the short axis direction to that of a cone with major and minor axes 
and applied elasticity theory to arrive at an expression for the recovered indenta-
tion size in terms of the geometry of the indenter and the ratio H/E.  

b b H
a Ea

α
′

′ = −  (9.2.4b) 

In Eq. 9.2.4b, α is a geometry factor found from experiments on a wide 
range of materials to be equal to 0.45. The ratio of the dimension of the short 
diagonal b to the long diagonal a at full load is given by the indenter geometry 
and for a Knoop indenter, b/a = 1/7.11. The primed values of a and b are the 
lengths of the long and short diagonals after removal of load. Since there is ob-
served to be negligible recovery along the long diagonal, we can say that a′ ≈ a. 
When H is small and E is large (e.g., metals), then b′ ≈ b indicating negligible 
elastic recovery along the short diagonal. When H is large and E is small (e.g., 
glasses and ceramics), there we would expect b′ << b. Using measurements of  
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the axes of the recovered indentations, it is possible to estimate the ratio E/H for 
a specimen material using Eq. 9.2.4b.  

For a Knoop indenter, the length of the long diagonal is approximately 30 
times that of the depth of penetration for a Knoop indenter.  

9.2.5 Other hardness test methods 

The Rockwell hardness test was introduced in 1920, and the hardness value is 
obtained from the depth of the indentation of an indenter of specified geometry 
(usually either a cone or a sphere). The major advantage of this type of test is its 
simplicity, since the hardness is read as a number from a dial gauge on the in-
strument. In this test, a preload force is applied to the indenter for a few seconds 
followed by application of maximm load for 4 seconds. The load is then reduced 
to the preload force and the resulting permanent deformation h read from a dial 
gauge. For a Rockwell sphere, the Rockwell hardness HRC is given by: 

002.0
130 hHRC −=  (9.2.5a) 

and for a Rockwell cone: 

002.0
100 hHRC −=  (9.2.5b) 

where h is measured in mm.  
Another popular instrument is the Shore scleroscope. This instrument, de-

vised by A.F. Shore in 1906, allows the indenter to fall onto the test specimen, 
and the hardness is given in terms of the rebound height of the indenter. The 
height through which the indenter falls is held constant. 

9.3 Meaning of Hardness 

The meaning of hardness has been the subject of considerable attention by scien-
tists and engineers since the early 1700s. It was appreciated very early on that 
hardness indicated a resistance to penetration or permanent deformation. Early 
methods of measuring hardness, such as the scratch method, although conven-
ient and simple, were found to involve too many variables to provide the means 
for a scientific definition of hardness. Static indentation tests involving spherical 
or conical indenters were first used as the basis for theories of hardness. Com-
pared to “dynamic” tests, static tests enabled various criteria of hardness to be 
established since the number of test variables was reduced to a manageable 
level. The most famous criterion is that of Hertz2, who postulated that an abso-
lute value for hardness was the least value of pressure beneath a spherical in-
denter necessary to produce a permanent set at the center of the area of contact.  
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Later treatments by Auerbach7, Meyer8, and Hoyt9 were all directed to removing 
some of the practical difficulties in Hertz’s original proposal. As we shall see, 
more than 100 years later, an absolute definition of hardness is still open to in-
vestigation. 

9.3.1 Compressive modes of failure 

Indentation hardness measurements are concerned with the residual impression 
in the surface of the test specimen. Such impressions arise from the plastic de-
formation of material in shear in the compressive stress field beneath the in-
denter and are generally easily obtained with ductile materials. In uniaxial tests, 
compressive failure with ductile materials is at once recognized by “barreling” 
and failure is due to yielding, which can be characterized by the compressive 
yield strength of the material. Generally, the compressive yield strength for duc-
tile materials does not change significantly with varying loading mechanisms 
and can be regarded as a material property. 

For brittle specimens subjected to compressive loading, three modes of fail-
ure have been identified: axial splitting10, where failure initiates from a fissure 
oriented in the same direction as the compressive stress; shear fracture, first 
studied in detail by Coulomb11, where failure occurs at an angle to the applied 
compressive stress; and ductile failure12, which can occur in some brittle materi-
als in the presence of a confining pressure. These modes of failure are illustrated 
in Fig. 9.3.1. It is ductile failure that is of interest in indentation hardness testing 
of brittle materials.  

Experiments14,13 show that the mode of compressive failure in brittle materi-
als depends on the degree of confining pressure. With no confining pressure, a 
brittle specimen loaded in uniaxial compression usually fails by axial splitting. 

Fig. 9.3.1 Compressive modes of failure. (a) Slabbing occurs in the absence of confining 
pressure (σ3 = 0). (b) At moderate confining pressure, cracks nucleate within the material 
to form a “shear zone” and (c) at high confining pressures, distributed microcracking is in 
evidence14. 

(a) (b) (c)

σ1 σ1

σ3 σ3 σ3 σ3

σ1
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With a small confining pressure, failure usually occurs as a single shear frac-

confining pressure of a magnitude comparable with the applied compressive 
stress is applied, failure occurs as a series of multiple shear fractures distributed 
throughout the specimen volume. The material is said to be “ductile” due to the 
similarity of shape of the uniaxial stress-strain curve with that obtained on tests 
with ductile materials. 

9.3.2 The constraint factor 

Static indentation hardness tests usually involve the application of load to a 
spherical or diamond pyramid indenter. The pressure distribution beneath the 
indenter is of particular interest. The value of the mean contact pressure pm at 
which there is no increase with increasing indenter load is related to the hard-
ness number H. For hardness methods that employ the projected contact area, 
the hardness number H is given directly by the mean pressure pm. Experiments 
show that for the hardness methods mentioned in Section 9.3, the mean pressure 
between the indenter and the specimen is directly proportional to the material’s 
yield, or flow stress in compression and can be expressed as: 

CYH ≈  (9.3.2a)  

where Y is the yield, or flow stress, of the material . The mean contact pressure 
in an indentation test is higher than that required to initiate yield in a uniaxial 
compression test since it is the shear component of stress that is responsible for 
plastic flow. The maximum shear stress is equal to half the difference between 
the maximum and minimum principal stresses, and in an indentation stress field, 
where the stress material is constrained by the surrounding matrix, there is a 
considerable hydrostatic component. Thus, the mean contact pressure is greater 
than that required to initiate yield compared to a uniaxial compressive stress. It 
is for this reason that C in Eq. 9.3.2a is called the “constraint factor,” the value 
of which depends upon the type of specimen, the type of indenter and other ex-
perimental parameters. For the indentation methods mentioned here, both ex-
periments and theory predict C ≈ 3 for materials with a large value of the ratio 
E/Y (e.g., metals)15 although higher values can be obtained in some alloys. For 
low values of E/Y (e.g., glasses16,17), C ≈ 1.5. The flow, or yield stress Y, in this 
context is the stress at which plastic yielding first occurs.  

9.3.3 Indentation response of materials 

The nature of the constraint factor, which relates hardness to yield stress, has 
been the subject of considerable scientific research. The aim of such research  

 
 The terms yield stress and flow stress are used interchangeably in this book. 
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ture oriented at ≈45° to the line of action of the compressive stress. When a 
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has been to explain the origin and value for the constraint factor in terms of the 
indenter geometry and mechanical and physical properties of the test specimens. 
As we have seen, hardness is intimately related to the mean contact pressure pm 
beneath the indenter. In general, the mean contact pressure depends on the load 
and the geometry of the indenter. Valuable information about the elastic and 
plastic properties of a material can be obtained with spherical indenters when the 
mean contact pressure, called the “indentation stress,” is plotted against the ratio 
a/R, where a is the contact area radius and R is the indenter radius. The quantity 
a/R is termed the “indentation strain.” The indentation stress-strain response of 
an elastic-plastic solid can generally be divided into three regimes which depend 
on the uniaxial compressive yield stress Y of the material. 

1. pm < 1.1Y—full elastic response, no permanent or residual impression 
left in the test specimen after removal of load. 

2. 1.1Y < pm < CY—plastic deformation exists beneath the surface but is 
constrained by the surrounding elastic material, where C is a constant 
whose value depends on the material and the indenter geometry. 

3. pm = CY—plastic region extends to the surface of the specimen and 
continues to grow in size such that the indentation contact area in-
creases at a rate that gives little or no increase in the mean contact pres-
sure for further increases in indenter load. 

In Region 1, during the initial application of load, the response is elastic and 
can be predicted from the Hertz relation1: 

R
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where E* is the combined modulus of the indenter and the specimen given by:18 
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E EE
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ν ν
 (9.3.3b) 

where ν and ν′ are Poisson’s ratio, and E and E′ are Young’s modulus of the 
specimen and the indenter, respectively. Equation 9.3.3a assumes a condition of 
linear elasticity and makes no allowance for yield within the specimen material. 
For a fully elastic response, the principal shear stress for indentation with a 
spherical indenter is a maximum at ≈ 0.47pm at a depth of ≈ 0.5a beneath the 
specimen surface directly beneath the indenter19. Following Tabor15, we may 
employ either the Tresca or von Mises shear stress criteria, where plastic flow 
occurs at τ ≈ 0.5Y, to show that plastic deformation in the specimen beneath a 
spherical indenter can be first expected to occur when pm ≈ 1.1Y. Figure 9.3.2 
shows the surface and section view of the results of an indentation test using a 
spherical indenter at very low load on a specimen of micaceous glass-ceramic—
a nominally brittle material that exhibits shear-driven plasticity in the indenta-
tion stress field. Note that shear-driven damage occurs initially beneath the 
specimen surface. 
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Fig. 9.3.2 Indentation test result for glass-ceramic material, E/Y = 90, at low load. Top is 
the surface view showing residual impression, and bottom is a section view showing 
subsurface shear-driven damage occurring beneath the specimen surface. Indenter load of 
P = 100 N and indenter radius R = 3.18 mm.  

Theoretical treatment of events within Region 2 is difficult because of the 
uncertainty regarding the size and shape of the evolving plastic zone. At high 
values of indentation strain (Region 3), the mode of deformation appears to de-
pend on the type of indenter and the specimen material. The presence of the free 
surface has an appreciable effect, and the plastic deformation within the speci-
men is such that, assuming no work hardening, little or no increase in pm occurs 
with increasing indenter load.  

9.3.4 Hardness theories 

Theoretical approaches to hardness can generally be categorized according to 
the characteristics of the indenter and the assumed response of the specimen 
material. For sharp indenters, the specimen is usually approximated by a rigid-
plastic material in which plastic flow is assumed to be governed by flow velocity 
considerations. For blunt indenters, the specimen responds in an elastic-plastic 
manner, and plastic flow is usually described in terms of the elastic constraint 
offered by the surrounding material. Various semiempirical models that des 
cribe experimentally observed phenomena at values of indentation strain at  
or near a condition of full plasticity have been given considerable attention in 
the literature.15,17,20-32 These models variously describe the response of the speci-
men material in terms of slip lines, elastic displacements, and radial compres-
sions. For sharp wedge or conical indenters, substantial upward flow is usually  
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observed, and since elastic strains are thus negligible compared to plastic strains, 
the specimen can be regarded as being rigid plastic. A cutting mechanism  
is involved, and new surfaces are formed beneath the indenter as the volume 
displaced by the indenter is accommodated by the upward flow of plastically 
deformed material. The constraint factor C in this case arises due to flow and 
velocity considerations.20 With blunt indenters, Samuels and Mulhearn23 noted 
that the mode of plastic deformation at a condition of full plasticity appears to be 
a result of compression rather than cutting, and the displaced volume is assumed 
to be taken up entirely by elastic strains within the specimen material. This idea 
was given further attention by Marsh,22 who compared the plastic deformation in 
the vicinity of the indenter to that which occurs during the radial expansion of a 
spherical cavity subjected to internal pressure, an analysis of which was given 
previously by Hill.21 The most widely accepted treatment is that of Johnson,25,32 
who replaced the expansion of the cavity with that of an incompressible hemi-
spherical core of material subjected to an internal pressure. Here, the core pressure 
is directly related to the mean contact pressure. This is the so-called “expanding 
cavity” model, which is worthy of or special attention. 

9.3.4.1 Expanding cavity model 
Johnson postulated that the analysis for the expansion of a spherical cavity in an 
elastic-plastic material could be applied to the hemispherical radial mode of de-
formation observed in indentation tests by replacing the cavity with an incom-
pressible, hemispherical core of material directly beneath the indenter of radius 
equal to the contact circle. Surrounding the core is a hemispherical plastic zone, 
which connects with the elastically strained material at some larger radius c. As 
shown in Fig. 9.3.3, penetration of the indenter causes material particles at the 
outer boundary of the core, r = a, to be displaced radially outward an amount 
du(a) so that the volume swept out by the movement of these particles is equal 
to the volume of material displaced by the indenter. As the indenter penetrates 
the specimen, the radius of the core, assumed to be equal to the radius of the 
circle of contact, increases an amount da, which is greater than du(a). Material 
particles formerly at the outer boundary of the core are now in the interior, the 
core boundary having moved outward beyond them. But, it is important to note 
that it is the radial displacements of particles at the initial core boundary and 
not the movement of the boundary that gives rise to the volumetric compatibility 
with the movement of the indenter. The elastic-plastic boundary, at radius c, also 
extends an amount dc, which depends on the type of indenter. For geometrically 
similar indentations, such as a conical indenter, the ratio c/a is a constant for all 
values of load and penetration depths. 

The volume of the material displaced by the indenter is accommodated by 
radial displacements du(a) of material at the moving boundary of the rigid, hy-
drostatic core. These displacements give rise to stresses that are sufficiently high 
to cause plastic deformation in the surrounding material—the plastic zone.  
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Fig. 9.3.3 Expanding cavity model schematic. The contacting surface of the indenter is 
encased by a hydrostatic “core” of radius ac which is in turn surrounded by a hemispheri-
cal plastic zone of radius c. An increment of penetration dh of the indenter, results in an 
expansion of the core da and the volume displaced by the indenter is accommodated by 
radial movement of particles du(r) at the core boundary. This in turn causes the plastic 
zone to increase in radius by an amount dc (with kind permission of Springer Science and 
Business Media, Reference 33). 

Within the plastic zone, a < r < c, the stresses are given by Hill21 as: 
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The yield criterion in this case is simply σr−σθ = Y. At the core boundary, r = 
a, the radial stress given by Eq. 9.3.4.1a is equal to the pressure p within the 
core (with a change in sign) so that: 
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Note that at c = a, Eq. 9.3.4.1b predicts yielding to occur first when p = 2/3Y. 
Outside the plastic zone, r ≥ c, and: 
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Thus, within the plastic zone, the radial stress decreases in magnitude from 
that within the core, p, to −2/3Y and the hoop stress correspondingly increases to 
satisfy the yield criterion to reach a maximum value of 1/3Y at the elastic-plastic 
boundary. Outside the plastic zone, both stresses decrease with increasing r, and 
the yield criterion is no longer met. 

Radial displacements of material at the boundary of the core r = a, according 
to Hill,21 can be found from: 
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Now, for an increment of penetration dh, the volume displaced by the in-
denter is equivalent to that of the movement of material particles on the bound-
ary of the hydrostatic core, hence, for a conical indenter: 
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where β is the angle of inclination of the indenter with the specimen surface.  
Since: 

dc
da

da
adu

dc
adu )()(

=  (9.3.4.1f)  

we have: 
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For geometrically similar indentations, such as with a conical indenter, the 
radius of the plastic zone increases at the same rate as that of the core, hence, 
da/dc = a/c. Using this result in Eq. 9.3.4.1g and substituting the resulting ex-
pression for c/a into Eq. 9.3.4.1b we obtain: 
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where p is the pressure within the core and is related to the mean contact pres-
sure beneath the indenter (see Eq. 9.3.4.1l). For the case of a spherical indenter, 
Johnson32 suggests that tanβ in Eq. 9.3.4.1h can be replaced with a/R for small 
values of β, since Eq. 9.3.4.1e applies equally well to both conical and spherical 
indenters (where the depth of penetration for a cone is twice that of a sphere for 
the same value of a—see Section 9.5.2). However, Eq. 9.3.4.1h with tanβ = a/R 
is not appropriate since it was formulated using the geometrical similarity of the 
stress field associated with a conical indenter (i.e., da/dc = c/a). This is not true 
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for the case of the spherical indenter, and hence we need to consider the more 
general equation: 
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We require information concerning the product of da/dc and c/a. We may 
expect that since the elastic stress distribution within the specimen for a spheri-
cal indenter is directly proportional to a, then if c/a = Ka, where K is a constant, 
then dc/da = 2Ka and hence: 
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Equation 9.3.4.1j relates the core pressure p and the ratio a/R for a spherical 
indenter based on the assumption that c/a = Ka. 

As noted previously, in the case of a spherical indenter, the transition be-
tween elastic and full plastic response occurs as a result of yielding of elastically 
constrained material some distance beneath the surface of the specimen at some 
finite value of contact radius a*. Swain and Hagan17 suggested therefore that 
tanβ in Eq. 9.3.4.1h should be replaced by (a−a*)/R but doing so not only ig-
nores the condition of nongeometrical similarity associated with a spherical in-
denter but also violates the volumetric compatibility specified by Johnson25. If 
appropriate adjustments are made to Eq. 9.3.4.1h to account for both the geome-
try of the indentation and the finite value of the contact radius at the initiation of 
yield, we obtain: 
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where a′ = a−a* and is the effective radius of the core. 
The core pressure is directly related to the mean contact pressure beneath the 

indenter and according to Johnson32 is given by: 

Yppm 3
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The size of the plastic zone c/a can be found from Eq. 9.3.4.1g. We should 
note in passing that the expanding cavity model requires the distribution of pres-
sure across the face if the indenter is uniform and equal to pm. 
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9.3.4.2 The elastic constraint factor 
An alternative to the expanding cavity model is given by Shaw and DeSalvo26,27, 
who showed that the observed region of plasticity in their bonded-interface 
specimens was evidence of an elastically constrained mode of deformation. Like 
the expanding cavity model, the specimen material is assumed to behave in an 
elastic-plastic manner, and the volume displaced by the indenter is ultimately 
taken up by elastic displacements in the specimen material remote from the in-
dentation. By comparing the elastic stress field for a spherical indenter and that 
for an equivalent inverted wedge, Shaw and DeSalvo argue that the perimeter of 
the fully developed plastic zone is restricted to passing through the edge of the 
contact circle at the specimen surface. As an illustration of the idea, Figure 9.3.4 
shows the results of an indentation experiment, using a bonded-interface tech-
nique on a mica-containing glass-ceramic showing the correspondence between 
the shape of the plastic zone and the elastic stress field.  

the constraint factor C which they imply is independent of the indention strain—
the only proviso being that the plastic zone be fully developed. It can be seen 
from Fig. 9.3.4 that the edge of the plastic zone corresponds to the elastic stress 
contour such that τmax/pm = 0.23 and that plasticity occurs when τmax = Y/2, 
where Y is the yield stress of the specimen material.  

 

Fig. 9.3.4 Elastic constraint theory demonstrated for glass-ceramic material. Contours of 
normalized maximum shear stress calculated using Hertzian elastic stress field have been 
overlaid onto the section view of subsurface damage beneath the indentation. Elastic-
plastic  boundary  appears  to  coincide  with τmax/pm ≈ 0.23,  leading  to a constraint factor 
C

 
≈ 2.2 for this material. 

Shaw and DeSalvo do not present quantitative data in the form of an indenta-

ship equivalent to Eq. 9.3.4.1k. Rather, they present a method for determining 
tion stress-strain curve, nor do they offer an analytical expression of such a relation-
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Now, since pm = CY for a condition of full plasticity, then: 
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The theory appears to be inconsistent with their requirement that the pressure 
distribution across the contact area be unchanged from the Hertzian, or fully 
elastic, case which predicts pm directly proportional to a/R.  

9.3.4.3 Region 3: Rigid-plastic—Slip line theory 
When the free surface of the specimen begins appreciably to influence the shape 
of the plastic zone, and the plastic material is no longer elastically constrained, 
the volume of material displaced by the indenter is accommodated by upward 
flow around the indenter. The specimen then takes on the characteristics of a 
rigid-plastic solid, since any elastic strains present are very much smaller than 
the plastic flow of unconstrained material. Plastic yield within such a material 
depends upon a critical shear stress which may be calculated using either of the 
von Mises or Tresca failure criteria. In the slip-line field solution, developed 
originally in two dimensions by Hill, Lee, and Tupper20, the volume of material 
displaced by the indenter is accounted for by upward flow, as shown in Fig. 
9.3.5. This upward flow requires relative movement between the indenter and 
the material on the specimen surface, and hence the solution depends on the 
amount friction at this interface.  

 

Fig. 9.3.5 Slip-line theory. 

Figure 9.3.5 shows the situation for frictionless contact. The material in the 
region ABCDE flows upward and outward as the indenter moves downward 
under load. Since frictionless contact is assumed, the direction of stress along 
the line AB is normal to the face of the indenter. The lines within the region 
ABDEC are oriented at 45o to AB and are called “slip lines” (lines of maximum 
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shear stress). Hill, Lee, and Tupper20 formulated a mathematical treatment of the 
two-dimensional case of Fig. 9.3.5. If the indenter is assumed to be penetrating 
the specimen with a constant velocity, and if geometrical similarity is main-
tained, the angle ψ can be chosen so that the velocities of elements of material 
on the free surface, contact surface, and boundary of the rigid plastic material 
are consistent. Note that this type of indentation involves a “cutting” of the 
specimen material along the line 0A and the creation of new surfaces which 
travel upward along the contact surface. The contact pressure across the face of 
the indenter  is given by: 
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where τmax is the maximum value of shear stress in the specimen material and α 
is the cone semi-angle (radians). Invoking the Tresca shear stress criterion, (τmax 
= 0.5Y ), and substituting into Eq. 9.3.4.3a, gives: 
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We refer to the constraint factor determined by this method as Cflow and as 
such it is a “flow” constraint. For values of α between 70° and 90°, Eq. 9.3.4.3b 
gives only a small variation in Cflow of 2.22 to 2.6. Friction between the indenter 
and the specimen increases the value of Cflow. A slightly larger value for Cflow is 
found when the von Mises stress criterion is used (where τmax ≈ 0.58Y). For ex-
ample, at α = 90°, Eq. 9.3.4.3b with the von Mises criterion gives C = 3. 

Experiments23 show that the shape of the plastic deformation in metals does 
not follow that predicted by the theory when the cone semiangle is greater than 
about 60–70°. In particular, as the indenter becomes less sharp (i.e., larger cone 
semi-angle), the displacement of material upward in the vicinity of the indenter 
is significantly less than that predicted by the theory. In practice, hardness test-
ing is usually performed with indenters with a cone semi-angle greater than 60° 
and the failure of the slip-line theory to account for the observed deformations 
somewhat downgrades the applicability of the theory under these conditions. 

9.3.4.4 Region 3: Elastic-brittle—Compaction and densification 
Plastic deformation is normally associated with ductile materials. Brittle materi-
als generally exhibit purely elastic behavior, and fracture occurs rather than plas-
tic yielding at high loads. However, plastic deformation is routinely observed in 
brittle materials, such as glass, beneath the point of a diamond pyramid indenter. 
The mode of plastic deformation is considerably different from that occurring in 

 
 Tabor shows that for a fully plastic state in three dimensions, the pressure distribution across the 
face of a cylindrical indenter is not uniform but higher at the center of the contact area. 
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metals. In brittle materials, plastic deformation is more likely to be a result of 
densification, where the specimen material undergoes a phase change as a result 
of the high value of compressive stress beneath the indenter17. The Tabor rela-
tionship, which relates yield stress to hardness, with C ≈ 3 applies to metals, 
where plastic flow occurs as a result of slippage of crystal planes and dislocation 
movement, and may not be so appropriate for determining the yield strength of 
brittle solids.  

9.3.4.5 Comparison of the models 
It is generally accepted that the mode of deformation experienced by specimens 
in an indentation hardness test depends on the characteristics of the indenter and 
the specimen material. Indenters whose tangents at the edge of the area of con-
tact make an included angle of less than ≈ 120°, and specimens whose ratio of 
E/Y < 100, lead to deformations of an elastic character34. For materials with a 
higher E/Y, or with a sharper indenter, the mode of deformation appears to be 
that of radial compression and may be described in terms of the expanding  
cavity model. It appears that the radial flow pattern observed by Samuels and 
Mulhearn23 and given popular attention through the expanding cavity model 
depends upon the ratio E/Y of the specimen material for a given indenter angle. 
For conical or Vickers diamond pyramid indenters, the indenter angle is fixed; 
for a spherical indenter, the effective angle, as measured by tangents to the sur-
face at the point of contact with the specimen, depends on the load.  

Figures 9.3.6 and 9.3.7 show experimental and finite-element results for in-
dentations in two materials, one with a relatively high value of E/Y, mild steel 
(E/Y = 550), and another with a low value, a glass-ceramic (E/Y = 90).  

The predictions of various hardness theories are most markedly character-
ized by the proposed shape of the plastically deformed region. The expanding 
cavity model requires a hemispherical plastic zone coincident with the center of 
contact at the specimen surface. Indeed, such a shape, for metal specimens with 
spherical and conical or wedge type indenters, has been widely reported in the 
literature and is demonstrated here in Fig. 9.3.6. However, the hemispherical 
shape required by the expanding cavity model is not demonstrated for the mate-
rial with a low value of E/Y as shown in Fig. 9.3.7. In both materials, there is a 
deviation from linearity in the indentation stress-strain relationship, as shown in 
Fig. 9.3.8, indicating the presence of plastic deformation within the specimen 
material. 
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Fig. 9.3.6 Indentation response for glass-ceramic material, E/Y = 90. (a) test results for 
indenter load of P = 1000 N and indenter of radius 3.18 mm showing residual impression 
in the surface. (b) Section view with subsurface accumulated damage beneath the inden-
tation site. (c) Finite-element results for contact pressure distribution. (d) Finite-element 
results showing development of the plastic zone in terms of contours of maximum shear 
stress at τmax/Y = 0.5. In (c) and (d), results are shown for indentation strains of a/R = 
0.035, 0.05, 0.07, 0.09, 0.10, 0.13. Distances are expressed in terms of the contact radius 
a = 0.315 mm for the elastic case of P = 1000 N.  
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Fig. 9.3.7 Indentation response for mild steel material, E/Y = 550. (a) test results for an 
indenter load of P = 1000 N and indenter of radius 3.18 mm showing residual impression 
in the surface. (b) Section view with subsurface accumulated damage beneath the inden-
tation site. (c) Finite-element results for contact pressure distribution. (d) Finite-element 
results showing development of the plastic zone in terms of contours of maximum shear 
stress at τmax/Y = 0.5. In (c) and (d), results are shown for indentation strains of a/R = 
0.04, 0.06, 0.08, 0.11, 0.14, 0.18. Distances are expressed in terms of the contact radius a 
= 0.218 mm for the elastic case of P = 1000 N.  

0 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

0

−1.5

−1.0

−0.5

0.0

(a)    Top view

(b)    Section view

(c)    Contact pressure distribution

(d)    Development of plastic zone

P = 1000N
P = 1000N
elastic
solution

P = 1000N
elastic
solution

τmax

Y
= 0.5

Expanding
cavity model



 Hardness 

 

170 

Fig. 9.3.8 Indentation stress-strain curves for materials with a low value of E/Y (glass-
ceramic) and high value of E/Y (mild steel). Indentation stress is the mean contact pres-
sure found by dividing the indenter load by the area of contact. Indentation strain is the 
ratio of the radius of the circle of contact divided by the radius of the indenter. The Hertz 
elastic solutions for both material types are shown as full lines. Deviation from linearity 
in the experimental and finite-element data indicates plastic deformation. 

Detailed theoretical analysis of events within the specimen material is diffi-
cult because of the variable geometry of the evolving plastic zone with increas-
ing indenter load. As load is applied to the indenter, the principal stresses σ1 and 
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tional stress σR arises, which serves to maintain the flow criterion as the load is 
increased. Plastic flow occurs until the magnitude of σR is such that, with respect 
to the total state of stress, the net vertical force is sufficient to balance the ap-
plied load. Beyond the elastic-plastic boundary, the stresses σR diminish until the 
stress field is substantially the same as the Hertzian elastic case, in accordance 
with Saint-Venant’s principle. Upon removal of load, the elastically strained 
material attempts to resume its original configuration but is largely prevented 
from doing so by the plastically deformed material. Except for a slight relaxa-
tion due to any elastic recovery that does take place, the stresses σR remain 
within the material and are therefore “residual” stresses (see Section 9.5). 
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Due to the constraint offered by the surrounding elastic continuum, an addi-

σ  within the specimen material increase until eventually the flow criterion is 
met and thus |σ −σ | = Y. An element of such material is shown at (a) in Fig. 9.3.9. 
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Fig. 9.3.9 Schematic of plastic deformation beneath spherical indenter. Contours of 
maximum elastic shear stress are drawn in the background. Element of material at (a) has 
the direction of maximum shear oriented at approximately 45° to the axis of symmetry. 
Direction of maximum shear follows approximately that of the Hertzian elastic stress 
field for low value of E/Y. Element of material at (b) undergoes plastic deformation such 
that the direction of residual field supports the indenter load. Shaded areas indicate plastic 
strains which are ultimately taken up by elastic strains outside the plastic zone (with kind 
permission of Springer Science and Business Media, Reference 33). 

The indentation stress-strain curves in Fig. 9.3.8 show that there is a de-
crease in the mean contact pressure, compared to the fully elastic case, as plastic 
deformation occurs beneath the indenter. For the case of a spherical indenter, a 
decrease in mean contact pressure, at a particular value of indenter load, corres-
ponds to an increase in the size of the contact area and penetration depth. The 
observed increase in penetration depth indicates an increased energy consump-
tion compared to the fully elastic case since the indenter load does additional 
work. 

Neglecting any frictional or other dissipative mechanisms, it is not immedia-
tely evident why there should be more energy transferred from the loading sys-
tem into strain energy within the specimen material after plastic flow has  
occurred. It is quite conceivable that, due to the elastic constraint, plastic flow 
occurs and the residual stress field is established without any increase in pene-
tration depth as was thought by Shaw and DeSalvo26. However, experimental 
evidence, in the form of a deviation from linearity on the indentation stress-
strain curve, suggests otherwise. The shaded area in Fig. 9.3.9 at (a) indicates 
the volume of material that is displaced by additional downward movement of 
the indenter as sliding takes place. This displaced volume is accounted for by 
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additional elastic strains in the specimen material within and outside the plastic 
zone. In Fig. 9.3.9, note that the direction of maximum shear stress for the mate-
rial at position (a) is approximately 45° to the axis of symmetry and that σR acts 
in a direction normal to the application of load. Thus, due to the orientation of 
the sliding, the additional elastic strains appear not underneath but off to the side 
of the plastic zone, where they are less effective in supporting the indenter load. 
For the material at position (b) in Fig. 9.3.9, similar events occur, but this time 
the direction of maximum shear is oriented approximately parallel to the direc-
tion of applied load. Thus, at this position, the local compliance is increased due 
to plastic deformation, but a significant component of the residual stress σR 
tends to act in a direction to support the indenter load. These observations ac-
count for the shift in the maximum of the contact pressure distribution from the 
center to the points near the edge of the circle of contact, as shown in Fig. 9.3.7, 
as plastic deformation proceeds.  

What then determines the shape of the plastic zone? For shear driven plastic-
ity, the edge of the plastic zone coincides with the shear stress contour whose 
magnitude just satisfies the chosen flow criterion. Here it is shown that the loca-
tion of the edge of the fully developed plastic zone depends on the ratio E/Y. 
The change in character from a contained to an uncontained plastic zone occurs 
due to the shift in the balance of elastic strain from material directly beneath the 
indenter outward toward the edge of the circle of contact. As the plastic zone 
evolves, material away from the axis of symmetry is being asked to take an in-
creasing level of shear. For materials with a low value of E/Y, a large proportion 
of this can be accommodated by elastic strain. However, for materials with a 
high value of E/Y, plastic flow is comparatively more energetically favorable 
and thus occurs at a lower value of indenter load. The plastic zone thus takes on 
an elongated shape well before reaching the specimen surface, and the cumula-
tive effect is for the zone to grow ever outward with increasing indenter load. 
The proximity of the specimen surface also plays a role as the material attempts 
to accommodate the residual field, and leads to the slight “return” in the shape 
of the quasi-semicircular plastic zone as shown in Figs. 9.3.6 and 9.3.7. It is thus 
concluded that the semi-circular plastic zone shape associated with the expand-
ing cavity model and observed in specimens with a high value of E/Y at high 
values of indentation strain arises due to the nature of the shift in elastic strain 
energy from material beneath to that adjacent to the evolving plastic zone. The 
rate of growth of the plastic zone, with respect to increasing indenter load, af-
fects its subsequent shape, the effect being magnified by materials with a high 
value of E/Y. The distribution of stress around the periphery of the plastic zone 
becomes more uniform as the gradients associated with the elastic stress field 
are redistributed as a result of plastic deformation. For both high and low ratios 
of E/Y, the volume displaced by the indenter is accommodated eventually by 
elastic strains in the specimen material. As the ratio E/Y increases, the distribu-
tion of elastic strain outside the plastic zone assumes a semicircular shape con-
sistent with that required by the expanding cavity model. 
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Chapter 10  
Elastic and Elastic-Plastic Contact 

10.1 Introduction 

Experiments show that a wealth of information is available concerning the elastic-
plastic properties of materials using indentation tests. Having examined elastic 
and elastic-plastic contact in Chapters 5, 6, 7, and 9, we are now in a position to 
consider various issues that have a bearing on the interpretation and design of 
indentation tests. Of particular interest is the connection between different types 
of indenter and events that occur after the removal of the indenter from the 
specimen. Depending on the nature of the specimen material and the geometry 
of the indenter, one may observe brittle cracking of a characteristic pattern or a 
residual impression which may be either raised up at the edges or sunk down. A 
very good example is ordinary soda-lime glass. Loading with a spherical in-
denter usually produces brittle fracture—a conical crack. Loading with a py-
ramidal indenter yields a plastic residual impression in the specimen surface. 
These types of phenomena yield information about the mechanical properties of 
the specimen material.  

10.2 Geometrical Similarity 

With a diamond pyramid or conical indenter, the ratio of the length of the dia-
gonal or radius of circle of contact to the depth of the indentation*, d/δ, remains 
constant for increasing indenter load, as shown in Fig. 10.2.1. Indentations of 
this type have the property of “geometrical similarity.” When there is geometri-
cal similarity, it is not possible to set the scale of an indentation without some 
external reference. Unlike a conical indenter, the radius of the circle of contact 
for a spherical indenter increases more proportionatly than the depth of the in-
dentation as the load increases. The ratio a/δ increases with increasing load. In 
this respect, indentations with a spherical indenter are not geometrically similar. 
Increasing the load on a spherical indenter is equivalent to decreasing the tip 
semiangle of a conical indenter.  

 
* In this section only, δ is the indentation depth below the edge of contact, not below the original 

free surface as in Chapter 5. 

______ 
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Fig. 10.2.1 Geometrical similarity for (a) diamond pyramid or conical indenter; (b) sphe-
rical indenter.  

Geometrically similar indentations may be obtained with spherical indenters 
of different radii. If the ratio a/R is maintained constant, then so is the mean con-
tact pressure, and the indentations are geometrically similar. 

The principle of geometrical similarity is widely used in hardness measure-
ments. For example, due to geometrical similarity, hardness measurements made 
using a diamond pyramid indenter are expected to yield a value for hardness that 
is independent of the load. For spherical indenters, the same value of mean con-
tact pressure may be obtained with different sized indenters and different loads 
as long as the ratio of the radius of the circle of contact to the indenter radius, 
a/R, is the same in each case. The practical importance of such a relationship 
will be explored further in Chapter 12. 

10.3 Indenter Types 

10.3.1 Spherical, conical, and pyramidal indenters 

Indentation hardness tests are generally made with either spherical, pyramidal, 
or conical indenters. Some examples are shown in Fig. 10.3.1. Consider a Vick-
ers indenter with opposing faces at a semiangle of α = 68° and therefore making 
an angle β = 22° with the specimen surface. For a particular contact radius a,  
the radius R of a spherical indenter whose edges are at a tangent to the point of 

α
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contact with the specimen is given by sin β = a/R, which for β = 22° gives a/R = 
0.375. It is interesting to note that this is precisely the indentation strain  at 
which Brinell hardness tests, using a spherical indenter, are generally performed, 
and the angle α = 68° for the Vickers indenter was chosen for this reason. The 
Berkovich indenter1 is generally used in small-scale indentation studies and has 
the advantage that the edges of the pyramid are more easily constructed to meet 
at a single point, rather than the inevitable line that occurs in the four-sided 
Vickers pyramid. The apex angle of the Berkovich indenter is 65.3o, which gives 
the same area-to-depth ratio as the Vickers indenter. The cube corner indenter is 
finding increasing popularity in sub-micron indentation testing. It is similar to 
the Berkovich indenter but has a semi-angle at the faces of 35.26o. The Knoop 
indenter is a four-sided pyramidal indenter with two different semi-angles. 
Measurement of the unequal lengths of the diagonals of the residual impression 
is a very useful for investigating anisotropy of the surface of the specimen.  

Fig. 10.3.1 SEM photographs of the tips of (a) Berkovich, (b) Knoop and (c) cube-corner 
indenters used for sub-mircon indentation testing. 

Conical indenters have the advantage of possessing axial symmetry and, 
with reference to Fig. 10.3.2, equivalent projected areas of contact between 
conical and pyramidal indenters are obtained when: 

 

 2 2A h tanπ α= ′  (10.3.1a) 

 
where h is depth of penetration measured from the edge of the circle or area of 
contact. For a Vickers or Berkovich indenter, the projected area of contact is A = 
24.5h2 and thus the angle α′ for an equivalent conical indenter is 70.3°.  

 
 Recall that the term “indentation strain” refers to the ratio a/R. 

†

†
______ 

(a) (b) (c)
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Fig. 10.3.2 Indentation parameters for (a) spherical, (b) conical (c) pyramidal, and  
(d) Berkovich indenters (not to scale). 

Now, consider the comparative shapes of the indentation profiles for a 
sphere and a cone shown in Fig. 10.3.3. If we were to say that the mean contact 
pressure represents the common ground between different types of indenters, 
then the shaded volume of material shown underneath the spherical indenter in 
this figure requires explanation. The indentation depth measured with respect to 
the edge of the circle of contact for the sphere, hs, is (from Eq. 6.2.1d): 

R
ahs 2

2
=  (10.3.1b) 

 

Fig. 10.3.3 Comparative geometries for indentation with a sphere and cone. 

For small angles of β (large α), then sinβ = a/R = tanβ. But tan β is related 
directly to the depth hv beneath the contact circle for the cone. Hence, equating 
the cone and the sphere, we obtain: 
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 (10.3.1c) 

more material has to be displaced by the indenter. Equation 6.2.3c in Chapter 6 
shows that, for the case of the cone, the indentation depth h = uz|r=0 is propor-
tional to P1/2 and for the sphere Eq. 6.2.li shows that the indentation depth is 
proportional to P2/3. Thus, although the mean contact pressures may be the same, 
the work done in achieving this contact pressure is higher for the case of the 
cone than for the sphere since, on a plot of P vs h, the rate of increase of P with 
h is initially higher for the cone than for the sphere. 

During an indentation stress-strain test involving a spherical indenter, one 
may be tempted to conclude that the limiting value of the mean contact pressure 
is the hardness value H. That is, within Region 3, there is no difference in the 
mean contact pressure obtained with a Vickers diamond pyramid indenter and 
that obtained with a spherical indenter. This infers that the constraint factor is 
the same for each type of indenter. Although experimental evidence suggests 
that this is approximately the case, there is no particular physical reason for this 
behavior. It is interesting to note that the comparison made by Samuels and Mul-
hearn2 is usually presented without regard to the different distance scales on the 
vertical axes in their diagrams. However, if the size of the plastic zone is large in 
comparison to the size of the radius of circle of contact, then one may consider 
the mean contact pressure to be independent of the shape of the indenter. 

10.3.2 Sharp and blunt indenters 

Indenters can generally be classified into two categories—sharp or blunt. The 
criteria upon which a particular indenter is classified, however, are the subject of 
opinion. For example, some authors3 classify sharp indenters as those resulting 
in permanent deformation in the specimen upon the removal of load. A Vickers 
diamond pyramid is such an example in this scheme. However, others2 prefer to 
classify a conical or pyramidal indenter with a cone semiangle α > 70° as being 
blunt. Thus, a Vickers diamond pyramid with α = 68° would in this case be con-
sidered blunt. A spherical indenter may be classified as sharp or blunt depending  
 

radius a (and hence identical mean contact pressures), it is evident that more 
Now, for a given value of load P leading to equivalent contact areas of 

energy is required to obtain this contact pressure for the case of the cone since 
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on the applied load according to the angle of the tangent at the point of contact. 
The latter classification is based upon the response of the specimen material in 
which it is observed that plastic flow according to the slip-line theory occurs for 
sharp indenters and the specimen behaves as a rigid-plastic solid. For blunt in-
denters, the response of the specimen material follows that predicted by the ex-
panding cavity model or the elastic constraint model, depending on the type of 
specimen material and magnitude of the load. Generally speaking, cylindrical 
flat punch and spherical indenters are termed blunt, and cones and pyramids are 
sharp. 

10.4 Elastic-Plastic Contact 

10.4.1 Elastic recovery 

Consider an element of material, surrounded by an elastic continuum, and 
loaded by a compressive stress σ1 as shown in Fig. 10.4.1 (a). Since in this fig-
ure σ3 = 0, the maximum shear stress τmax = σ1/2. Assuming the Tresca criterion 
for plastic flow is appropriate (σ1−σ3 = Y), slippage occurs when σ1 = Y and a 
section of the element slides downward as shown in Fig. 10.4.1 (b). However, 
this sliding section is constrained by a surrounding elastic continuum. The side 
of the section acts as if to “indent” the elastic surroundings, and a reaction stress 
σR is created as a result The magnitude of σR increases as σ1 increases so as to 
keep the flow criterion satisfied within the element. The yield stress Y is a meas-
ure of the cohesive strength of the sliding interface. At full load, within the ele-
ment, both elastic and plastic strains exists. In the elastic continuum, only elastic 
strains exist. Due to the constraint offered by the elastic continuum, the plastic 
strains are restricted to an order of magnitude comparable to the elastic strains. 
The total state of stress is given by the superposition of σ1 and σR. Since plastic 
deformation has occurred at this point, this total distribution of stress may be 
termed the “elastic-plastic” stress field σep.  

When the load σ1 is removed, the element and the elastic continuum attempt 
to regain their original configuration but are prevented from doing so by the 
permanently deformed element. The stresses σR thus remain acting on the de-
formed element and are called “residual” stresses. Since the element is subjected 
to the stress σR only, the flow criterion then becomes σR = Y, which, if satisfied, 
may cause “reverse” plasticity. Relaxation of the initial elastic strains within and 
outside the element upon removal of the load σ1 results in a partial resumption 
in shape of the material which is termed “elastic recovery,” as shown in (d) in 
Fig. 10.4.1. If the stress σ1 is now reapplied, then the element resumes the shape 
which it took at full load (i.e., back to condition (c) in Fig. 10.4.1) and the elas-
tic-plastic stress field is re-established. The reapplication of load involves only 
elastic displacements.  
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Fig. 10.4.1 Elastic constraint and residual stresses. (a) compressive loading with no elas-
tic constraint; (b) compressive loading with elastic constraint; (c) elastic and plastic de-
formation at full load; (d) removal of load and residual stresses. 

It should be noted that this reloading, even though it may be a completely 
elastic process, is not energetically equivalent to the loading of an initially 
stress-free elastic material, since the system is already in a state of residual 
stress. That is, more work is required in compressing a spring if it is pre-
compressed compared with the same deformation from its free length. The “pre-
compression” in this case is the residual stress σR.  

Consider now the profile of the fully loaded and unloaded indentation im-
pressions shown in Fig. 10.4.2 (a). After unloading, elastically strained material 
outside the plastic zone will attempt to resume its original shape but is mostly 
prevented by permanently deformed plastic material beneath the indenter. The 
specimen material is therefore left in a state of residual stress. Any resulting 
differences in the shape of the indentation profile between that at full load and 
unload will be due to elastic recovery of the specimen material. Experiments 
show that the radius of circle of contact between fully loaded and fully unloaded 
conditions remains virtually unchanged due to geometry of the indentation load-
ing. Reloading the indenter involves purely elastic deformation of the elastically 
recovered profile. The distribution of contact pressure required to bring the in-
dentation profile back to that at full load is that which exists beneath the indenter 
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at full load (i.e., the elastic-plastic pressure distribution) . As with any elastic 
contact, the elastic-plastic pressure distribution can thus be determined from the 
superposition of line or point loads where the total elastic displacement uz is the 
sum of the component displacements at a particular radius r (see Section 5.3.3): 

( )∫= drrpuz  (10.4.1a)  

The total displacement uz at any particular value of r may be determined ex-
perimentally. This is particularly straightforward if the indenter is considered to 
be rigid since the displacement of the surface at full load simply matches the 
profile of the indenter. The shape, or profile, of the residual impression may also 
be measured experimentally. The differences between the loaded and unloaded 
configurations are thus the elastic displacements, he, which occur during reloading. 
Working backward from Eq. 10.4.1a would provide the pressure distribution p(r), 
which would result in these displacements. Hirst and Howse4 used this pressure 
distribution as being representative of that associated with the elastic-plastic load-
ing (i.e., the elastic-plastic pressure distribution at full load). However, as noted 
previously, the residual stresses σR impose a “pre-stress” condition on these elastic 
displacements which is not accounted for in this procedure. The error was probably 
not significant for Hirst and Howse since their perspex specimens exhibited 
elastic recoveries on the order of ≈ 75%.  

The occurrence of reverse plasticity during unloading depends on the magni-
tude of σR and the yield stress Y. The term “elastic recovery” should be used 
with care since it refers to a purely elastic event involving no reverse plasticity. 
Reloading of an indenter should be thought of as generally involving both elastic 
deformations as well as a partial repeat of the original elastic-plastic contact to 
account for the possibility of reverse slip.  

 

 

Fig. 10.4.2 Schematic of elastic-plastic indentation with (a) conical indenter and           
(b) spherical indenter. For a perfectly rigid indenter, ht is the total indentation depth, hr is 
the depth of the residual impression, he is the indentation depth associated with the elastic 
unloading/reloading, and hp is the depth of the circle of contact at full load. 

 
 This result applies to both elastic and elastic-plastic deformation of the specimen material. 
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Fig. 10.4.3 Indentation contact for a glass ceramic. (a) Single application of load;       
(b) repeated application of load. The top half of each figure shows the impression in the 
specimen surface, and the bottom half shows a section view through the thickness of the 
specimen beneath the circle of contact. 

Figure 10.4.3 shows the result of repeated indentations, compared to a single 
application of load, for a glass-ceramic. Note that the degree and severity of 
damage are markedly increased after many repeated applications of load, indi-
cating that the reloading, in this particular material, is not at all an elastic event 
and that reverse slip must occur upon unloading. 

10.4.2 Compliance 

When plasticity occurs during an indentation, an increase in indentation depth 
over that expected for a purely elastic deformation is generally observed. Con-
sider the case of a cylindrical flat punch indenter. For this type of indenter, the 
indentation depth, h, beneath the specimen free surface is given by (see Section 
6.2.2): 

( )
a
P

E
h

2
1 2ν−

=  (10.4.2a) 

A schematic of the indenter load P vs indentation depth h is shown in Fig. 
10.4.4. For the fully elastic case, the response of the material upon loading and 
unloading is the straight line segment AC. When full load is applied, the elastic, 
recoverable strain energy is the area bounded by ACF. For the elastic-plastic 
case, loading proceeds along the curved path ABD. For elastic unloading, load-
ing proceeds from D to G. If there were no residual stresses, or complete elastic 
recovery, then unloading would proceed from D to A. The area bounded by 
ABD is thus an indication of energy dissipated during plastic deformation. The 

(b)(a)



 Elastic and Elastic-Plastic Contact 

 

184 

area bounded by the triangle ADG is then an indication of the energy stored 
within the residual field. 

 

 
Fig. 10.4.4 Schematic of load versus indentation depth for cylindrical flat punch indenter. 

Shaw and DeSalvo5 based their elastic constraint model (see Chapter 9) on 
the assumption that the establishment of the residual field requires no additional 
energy beyond that required for the fully elastic case (i.e., path ACH in Fig. 
10.4.4). However, the energy required to establish the residual field is that indi-
cated by the area ADG and that dissipated by plastic events by the area ABD. 
Although Fig. 10.4.4 applies to a cylindrical indenter, the same general princi-
ples apply to the case of a spherical indenter. 

Table 10.4.1 shows expressions for load in terms of displacement h from the 
original specimen free surface for a range of indenters. 

Table 10.4.1 Compliance for different indenter types. 

Indenter type Compliance 
Sphere 2321*

3
4

ehREP =  

Punch 
eahEP *2=  

Cone 2*   tan2
ehEP α

π
=  

10.4.3 The elastic-plastic contact surface 

In Chapter 6, it was shown that for an elastic contact between two spheres, the 
profile of the surface of contact is spherical, with a radius of curvature interme-
diate between that of the contacting bodies and more closely resembling that 
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body with the greatest elastic modulus. Thus, contact between a flat surface and 
a nonrigid indenter of radius R is equivalent to that between the flat surface and 
a perfectly rigid indenter of a larger radius R+, which may be computed using 
Eq. 6.1a with E* set as for a rigid indenter. Of further interest is the profile of the 
deformed surfaces when plastic deformation occurs in the specimen and/or the 
indenter material. Finite-element analysis6 shows that there is, not surprisingly, a 
considerable increase in the indentation depth over that for an elastic contact 
since, due to plastic deformation, the same indenter load now must be supported 
by strains elsewhere in the specimen material rather than immediately beneath 
the indenter. Figure 10.4.5 shows the displacements of the specimen surface for 
an elastic-plastic specimen response. 

The finite-element results suggest that the indentation surface does have a 
spherical profile, as indicated by the very low uncertainty in the fitted value of 
the effective radius R+. Table 10.4.2 shows that although there is a considerable 
discrepancy between the effective radius R+ as calculated using Eq. 6.2.lj (as 
would be expected since this equation assumes no plastic deformation), the re-
sults show that the profile of the surface beneath the indenter is spherical but has 
a smaller radius of curvature.  

 

Fig. 10.4.5 Displacements of the specimen surface in the vertical, or z axis, direction in 
the vicinity of the contact surface at full load (P = 1000 N, R = 3.18 mm) for specimen 
elastic-plastic response. Solid line indicates Hertzian theoretical result. Data points indi-
cate finite-element results, and dashed line is the spherical contact surface computed 
using fitted values of R+ from finite-element results (with kind permission of Springer 
Science and Business Media, Reference 6).  
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Table 10.4.2 Comparison between finite-element results for a WC indenter and 
an elastic-plastic glass-ceramic specimen and theoretical results for purely elas-
tic contact with P = 1000 N and R = 3.18 mm. 

 a (mm) uz (mm) δ (mm) R+ (mm) 
Hertz 0.3375 −0.0325 0.0358 3.518 
Elastic-plastic 
F.E. result 

0.4766 −0.0464 0.0485 3.257±2.2×10−5 

∆% +29.2 +50.6 +26.1 −8.0 

10.5 Internal Friction and Plasticity 

Plasticity is usually associated with slippage across planes within the material 
due to shear stresses. Slippage between such planes raises the question of the 
effect of “internal” friction. Jaeger and Cook7 show that slip along an internal 
plane of weakness may occur when the Coulomb8 criterion is satisfied: 

NoS µστ +=  (10.5a)  

In Eq. 10.5a, τ is the applied shear stress, So is a constant for the material, µ 
is the coefficient of “internal” sliding friction, and σN is the normal stress on the 
plane under consideration. The parameter So represents the inherent shear 
strength of the material. The normal stress σN and shear stress τ on a plane ori-
ented at angle β can be expressed in terms of the maximum shear stress τmax and 
mean, or average, stress σm. 

βττ
βτσσ

2sin
2cos

max

max

−=
+= mN  (10.5b)  

where 

( )
2

2
31

31
max

σσσ

σσ
τ

+
=

−
=

m

 

For β = 45°, τ = τmax and σN = σm. Thus, for the two-dimensional case, the 
criterion for failure, or sliding, is: 

( ) om S=−+ µστµ max
212 1  (10.5c)  

or 
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( ) ( ) oS211
212

3
212

1 =⎥⎦
⎤

⎢⎣
⎡ ++−⎥⎦

⎤
⎢⎣
⎡ −+ µµσµµσ  (10.5d)  

In Eq. 10.5d and those to follow, we specify the positive value of σ1 as being 
the maximum value of compressive stress in accordance with the rock mechan-
ics literature (i.e., σ1 here is equal to −σ3 in conventional terminology). The Tre-
sca failure criterion (Eq. 1.4.1) is thus a special case of the Coulomb criterion 
(Eq. 10.5d) with µ = 0 and So = Y/2.  

The angle at which sliding occurs is found from: 

µ
β 12tan −=  (10.5e)  

and thus β is between 45° and 90°. For the case of µ = 0, β = 45°. In real materi-
als, where µ ≠0, shear fracture does not take place in the direction of maximum 
shear stress but, due to friction, is always inclined at an acute angle to the direc-
tion of maximum compressive stress σ1. 

Equations 10.5a to 10.5e were developed by Coulomb8 and are given by  
Jaeger and Cook7 for shear failure in rock, but the same principles apply to the 
indentation experiments. Consider a simple uniaxial compression with σ3 = 0. 
We may call the value of σ1 at which the failure criterion is met the uniaxial 
compressive strength Co where, from Eq. 10.5e:  

( ) ⎥⎦
⎤

⎢⎣
⎡ ++= µµ

212 12 oo SC  (10.5f)  

Substituting back into Eq. 10.5.3b gives the following flow criterion: 

( ) oC+⎥⎦
⎤

⎢⎣
⎡ ++= 3

2212
1 1 σµµσ  (10.5g)  

The friction coefficient µ can be determined from the slope of a plot of σ1 vs 
σ3 at failure and the inherent shear strength from the σ1 axis intercept. Accord-
ing to Eq. 10.5g, when plasticity occurs, the relationship between σ1 and σ3 
should be linear if the material follows the Coulomb criterion.  
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Chapter 11  
Depth-Sensing Indentation Testing 

11.1 Introduction 

A popular application of contact mechanics is found in depth-sensing, or instru-
mented indentation. This type of indentation testing is usually applied to depths 
of penetration in the sub-micron range and is termed “nanoindentation”. In this 
type of test, the applied load and the depth of penetration of an indenter into the 
specimen are recorded and used to indirectly determine the area of contact and 
hence the hardness of the test specimen. The contact equations also allow the 
determination of the elastic modulus of the specimen. Other properties such as 
the strain-hardening index, fracture toughness, yield strength and residual stress 
can also be obtained in some circumstances. The method relies on there being an 
accurate determination of the initial contact of the indenter with the specimen 
surface (for establishing a datum for the displacement or depth measurements), 
corrections for compliance of the load frame, corrections for the departure of 
ideal shape of the indenter, and corrections for materials-related issues such as 
piling-up and indentation size-effect, residual stress, etc. While the most popular 
application of nanoindentation testing is that of thin films, the method is equally 
useful for any specimen whose mechanical properties over small size scales 
need to be measured. Surface modified layers, individual phases or grains in a 
ceramic, are typical examples. The testing finds common application in the bio-
logical field (teeth and bone), the semiconductor industry, ceramics, thin films, 
polymers, and most recently, MEMs testing. In this chapter, the main features of 
the technique are presented.  

11.2 Indenter 

The three-sided Berkovich indenter is the most popular geometry for nanoinden-
tation testing since the tip of the indenter can be made very sharp and avoids the 
line of conjunction usually found in a Vickers indenter. The face half-angle of a 
Berkovich indenter is 65.27° ≈ 65.3°. This gives the same projected area to 
depth ratio as a four-sided Vickers indenter (face angle 68°).  
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Fig. 11.2.1 Optical image of Berkovich indenter, face on, showing three-sided symmetry.  

 
Experience shows that the face angles of a Berkovich indenter can be made 

with high accuracy. An ideal Berkovich indenter tip has an infinitely sharp ra-
dius, but this is impossible to achieve in practice. Usually, the tip radius of a 
new Berkovich indenter is in the order of 50-150 nm. Fig. 11.2.1 shows a typical 
Berkovich indenter. The diamond tip is ground to shape and sintered in a vac-
uum furnace on to a stainless steel chuck.  

The essential element of a depth-sensing or instrumented indentation test is 
the load-displacement curve. Usually, such a curve consists of a loading part 
(containing both elastic and plastic deformations) followed by an unloading part 
(usually thought to be wholly elastic). Fig. 11.2.2 (a) shows a cross sectional 
schematic of the indentation geometry. Fig. 11.2.2 (b) shows a typical load-
displacement curve.  

In the initial part of the loading response, it is important to understand that 
there is a transition from purely elastic contact to a plastic contact even for a 
Berkovich indenter. For an initial elastic contact, the mean contact pressure in-
creases with increasing load as predicted by the Hertz contact equations. At the 
condition of a fully-developed plastic zone, the mean contact pressure levels off 
to a constant value with increasing load and this value of mean contact pressure 
is called the hardness. Once the penetration depth becomes larger than the tip 
radius, the pyramidal shape of the indenter becomes the dominant geometrical 
feature of the indentation. The contact then usually involves an appreciable 
amount of plastic deformation within the specimen. 

It is the data taken on the unloading that is used to determine the area of con-
tact at the maximum load. This is done by using equations of contact for a coni-
cal indenter where we mathematically transform the actual pyramidal geometry 
into an equivalent cone. That is, we find a cone angle that gives the same area-to 
depth ratio as the actual pyramidal indenter. This can be calculated from geome-
try where for a Berkovich indenter of face angle θ we have: 

θ22 tan33 chA =  (11.2a) 
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Fig. 11.2.2 (a) Schematic of indenter and specimen surface geometry at full load and full 
unload for conical indenter. (b) Load versus displacement for elastic-plastic loading fol-
lowed by elastic unloading. hf is the depth of the residual impression, hmax is the depth 
from the original specimen surface at maximum load Pmax, he is the elastic displacement 
during unloading, and ha is the distance from the edge of the contact to the specimen 
surface at full load. Upon elastic reloading, the tip of the indenter moves through a dis-
tance he, and the eventual point of contact with the specimen surface moves through a 
distance ha.  

For a conical indenter of half-apical angle α the area of contact is expressed: 

απ 22 tanchA =  (11.2b) 

where in both cases, hc is the distance as measured vertically from the indenter 
tip as shown in Fig. 11.2.2 (a). Equating Eqs. 11.2a and 11.2b for θ = 65.27°, we 
have α = 70.296° ≈ 70.3°. Theoretical analysis of the load-displacement curve, 
and finite element modeling of the indentation process, is therefore usually done 
in terms of an axis-symmetric cone of half-angle 70.3°.  

11.3 Load-Displacement Curve 

As mentioned previously, the main outcome of a depth-sensing indentation test 
is the load-displacement curve. For hardness measurements, the maximum load 
is selected so as to be certain that a fully developed plastic zone in the specimen 
material has been achieved.  This is sometimes difficult to achieve in the case of 
nanoindentation testing of thin films whereby it is required to limit the total 
penetration depth to usually less than 10% of the film thickness (to avoid or  
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reduce influence from the substrate). For this reason, it is important to have a 
very sharp tip for thin film testing. At full load, a hold period is often applied to 
account for creep effects before the indenter is unloaded. Creep and thermal drift 
in nanoindentation testing are very important sources of error and are difficult to 
distinguish. In both cases, for a constant load hold period, the depth reading may 
change. In the case of thermal drift, the depth reading may increase (deeper into 
the specimen) with time or decrease. When creep occurs, the depth reading us-
ually increases. Thermal drift errors are usually brought about by changes in the 
dimension of the contact (indenter, indenter shaft, and specimen) from thermal 
expansion or contraction due to temperature changes during testing. Thermal 
drift can usually be minimized by waiting a sufficiently long time after handling 
to allow thermal equilibrium to be established before beginning the test. Creep 
occurs due to the movement of material within the specimen under high pressure 
in the indentation stress field. In some materials, creep effects may slowly dissi-
pate while in others, they may increase as long as the load is applied. The 
amount of creep can also depend on the rate of application of load. For materials 
with a significant amount of creep, it can sometimes be impossible to conduct a 
nanoindentation test in the usual way, and instead, a visco-elastic creep test may 
be required.  

After maximum load, or the optional hold period, the applied load is reduced 
and the resulting penetration depth recorded. The unloading process is usually 
assumed to be an entirely elastic affair. The elastic strains relax during unload-
ing and the surface of the material attempts to recover its original shape. Full 
elastic recovery is usually prevented from happening by the presence of the plas-
tic zone. The incomplete elastic recovery can easily be identified on the load-
displacement curve. For a fully elastic contact, such as what can happen with a 
spherical indenter, the unloading curve lies on top of the loading curve. The area 
enclosed between the loading and unloading curves represents the energy lost as 
heat during plastic deformation. The slope of the unloading curve at any point is 
called the contact stiffness. As will be shown below, the contact stiffness can be 
used in conjunction with the calculated contact area to provide a measurement of 
the combined elastic modulus of the system.  

11.4 Unloading Curve Analysis 

The elastic unloading curve can be used with elastic equations of contact to de-
termine the area of the contact under load and hence the hardness. The area, in 
combination with the contact stiffness, can also be used to determine the com-
bined elastic modulus.  

Treating the contact as an axis-symmetric cone, the contact between a rigid 
conical indenter and an elastic half space is found from:1 
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απ cot
2

*aEaP =  (11.4a)  

where α is the effective cone semi-angle (70.3° for a Berkovich indenter). The 
quantity acotα is the depth of penetration hc measured at the circle of contact. 
The depth beneath the specimen free surface within the circle of contact is given 
by: 

.   cot
2

a ra
a
rh ≤⎟

⎠
⎞

⎜
⎝
⎛ −= απ  (11.4b) 

Setting r = 0, and substituting into Eq. 11.4b, we obtain: 

α
π

tan2 2
*

hEP =  (11.4c)  

Historically, it was noted that the initial unloading response for many mate-
rials was linear.2 This implied that the contact conditions were those of a cylin-
drical punch instead of a cone where: 

haEP *2=  (11.4d) 

where a is the radius of the indenter equal to the radius of the circle of contact 
and where it should be noted that the depth of penetration is linearly dependent 
on the load. For this reason, some practitioners prefer to use Eq. 11.4d rather 
than Eq. 11.4c.  

Referring now to Eq. 11.4c, the derivative of the load P with respect to the 
displacement h (the contact stiffness) is given by: 

hE
dh
dP

π
αtan22

*
=  (11.4e) 

Substituting into Eq. 11.4c, we have: 

h
dh
dPP

2
1

=  (11.4f) 

If the total depth of penetration is hmax, at load Pmax, then as the load is re-
moved, the indenter moves through a distance he as shown in Fig. 11.2.2.  

At P = Pmax the displacements hr=0 = he and hr=a = ha. From Eq. 11.4b at r = 
a, the plastic (or contact) depth hc is found from: 

( )
dhdP

Phh tc
max22

⎥⎦
⎤

⎢⎣
⎡ −

−=
π

π  (11.4g) 

where Pmax and dP/dh are measured during an experiment. The square-bracketed 
term in Eq. 11.4g is often given the symbol ε and evaluates to 0.72 but it is 
common practice to use a value of 0.75 since this has been shown to account for 
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non-uniformities in the material response as the load is withdrawn. In the cylin-
drical punch approximation (Eq. 11.4d) the constant ε = 1.  

Once a value for hc has been determined, the area of contact is found from 
Eq. 11.2b where, for a Berkovich indenter (α = 70.3°), Eq. 11.2b evaluates to: 

25.24 chA =  (11.4h) 

Combining Eqs. 11.2b and 11.4e, the reduced elastic modulus is found from:  

Adh
dPE π

2
1* =  (11.4i) 

Experiments and finite element analysis shows that a correction factor β is 
needed for Eq. 11.4i. The correction factor is applied as the factor 1/β to the 
measured value of dP/dh. Accordingly we have: 

Adh
dPE π

β 2
11* =  (11.4j) 

and so Eq. 11.4g becomes: 

dhdP
Phh tc

maxεβ−=  (11.4k) 

where dP/dh is the actual experimental quantity. There are various estimates and 
explanations of the value of β in the literature, the most popular being that of 
King at 1.034.3 

11.5 Experimental and Analytical Procedures 

11.5.1 Analysis of the unloading curve 

From Section 11.4, it can be seen that the contact depth hc follows from the con-
tact stiffness dP/dh at maximum load Pmax. This is usually done by fitting an 
equation to the unloading data, then finding the derivative of that equation 
which gives the contact stiffness dP/dh. Initially, it was noticed that the unload-
ing response, at least for the initial part, was fairly linear. This means that in-
stead of a 2nd order polynomial, Eq. 11.4c, the contact appeared to have a linear 
dependence on the load as if the indenter were a cylindrical punch, Eq. 11.4d. 
For some materials, the initial unloading data is indeed almost linear and a linear 
fit to the upper portion of the unloading data is entirely reasonable. However, for 
other materials, particularly those with a relatively large amount of elastic re-
covery (low value of the ratio E/H), the unloading data is observed to be curved.  
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In most cases, a 2nd degree polynomial fit to the unloading data provides a rea-
sonable fit to the data, but for best results, a power law fit is appropriate. For a 
power law fit, we fit the data using: 

( )= −
m

fP B h h  (11.5.1a) 

where m is the power law index, B is a constant, and hf is the final residual depth 
measured from the original specimen free surface, all of which are unknown 
quantities. Fitting using this equation is usually done with an iterative procedure 
with initial guesses at the values of the unknown quantities. When a power law 
fitting is done, it is found that the index m ranges from 1.1 to 1.8 depending on 
the specimen material. The reason for the index not being precisely equal to 2 
appears to be due to that fact that the contact described by Eq. 11.4d assumes a 
conical indenter and a flat surface (or straight-sided residual impression) Careful 
measurement with an AFM and finite element analysis shows that the sides of 
the residual impression are usually curved upwards. According to Pharr and 
Bolshakov,4 this results in contact actually occurring between a notional elastic 
half space and an indenter with an arbitrary shape that provides the necessary 
observed unloading response. We need not be too concerned about the actual 
shape of the effective indenter because it is embodied in the power law index m 
in Eq. 11.5.1a which in turn is obtained from the fitting of the experimental data.  

The analysis procedure given above is often called the “Oliver and Pharr” 
method.5 A similar method, using the contact equations directly instead of the 
derivative in Eq. 11.4e, was proposed by Field and Swain.6 Several other meth-
ods now exist for determining quantities of interest from the load-displacement 
curve.  

11.5.2 Corrections to the experimental data 

In depth-sensing indentation for nanoindentation, it is necessary to account for 
small-scale deformations and departures from ideal geometry in the test instru-
ment. Three of the most common, and necessary corrections are the initial pene-
tration, the instrument frame compliance, and the indenter area function.  

The establishment of the initial contact in a depth-sensing indentation test is 
important because the contact point determines the datum of the subsequent dis-
placement measurement. There are a variety of ways in which the contact point 
is estimated. In one method, the force and depth signals are constantly moni-
tored at a rapid rate and the software or the operator determines the point of con-
tact from a sharp rise in the force data. In another method, an initial contact 
force, set by the user, is commanded, and once achieved, the depth sensor is then 
set to zero and the loading then proceeds. Afterwards, a smooth curve is fitted to 
the initial data and then extrapolated back to zero force. This provides a measure 
of the initial contact depth which is then added on to all the subsequent depth 
readings. The lowest force that can be detected or set in a typical nanoindenter is 
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in the order of 2 – 5 µN. Typically, the initial penetration is a few nanometers. 
For a typical maximum load of over 10 mN in a moderately hard and stiff mate-
rial, the initial penetration correction will make a few percent difference to the 
computed values of E and H.  

Frame compliance is the contribution to the depth readings arising from de-
flections of the load frame instead of displacement into the specimen material. 
When load is applied, the reaction force is taken up by deflection of the load 
frame and it is this deflection that is typically added to the depth readings due to 
the mechanical arrangement of the depth and force sensors. The compliance 
correction takes the form of the product of the known instrument compliance Cf 
and the current force P and is subtracted from the depth reading as recorded by 
the instrument. Unlike the correction for initial penetration, the compliance cor-
rection is dependent on the load and is not a constant. The presence of the com-
pliance of the load frame effectively adds to the value of the contact stiffness so 
that the measured contact stiffness comprises the actual contact stiffness (given 
the symbol S) and the frame compliance: 

fC
S

dh
dP

+
= 1

1  (11.5.2a) 

 The compliance correction is particularly important when testing very stiff 
materials. In this case, the contribution to the depth signals from the frame com-
pliance is a greater proportion of the overall signal. If not correctly applied, the 
compliance correction can make up to a 50% difference in the resulting estima-
tions for modulus and hardness. The value of Cf can be obtained by performing 
tests on a standard material and finding a value for the intercept of the inverse of 
Eq. 11.5.2a:  

f
c

C
hEdP

dh
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

1
2

1
5.24 *

π  (11.5.2b) 

Another important correction for depth-sensing indentation data, especially 
in nanoindentation, is to account for non-ideal geometry of the indenter. The 
area function of the indenter is a function or a table of values that provides the 
best estimate of the area of contact as a function of the contact depth for the in-
denter being used. The ideal geometry of a typical indenter often breaks down 
near the very tip where the shape is usually spherical rather than pyramidal. The 
most common method for measuring the area function is to test a material of 
known modulus and to use Eq. 11.4i to determine the value of A as a function of 
hc over the load range of the instrument. In many cases, the area function equa-
tion takes the form: 

....41
4

21
32

2
1 ++++= cccc hChChChCA   (11.5.2c) 
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where C1 is usually a number close to 24.5 and the remaining fitting constants 
account for the tip rounding and other departures from the ideal shape. While 
this is convenient, it is usually better practice to employ a running average ap-
proach so as to capture local irregularities in the tip shape without imposing an 
artificial mathematical function on them. The area function is typically the most 
important source of error in nanoindentation test results since the operator may 
not have performed this important calibration procedure on an indenter that has 
been well used, and often abused, by others.  

Even if the corrections listed above are attended to, there remain various ma-
terials-related effects which can cause errors in the estimation of modulus and 
hardness of the test specimen. The most significant of these materials-issues is 
that of piling-up. The equations of contact predict a certain amount of sinking-in 
of material at the contact edge as shown in Fig. 11.2.2 (a). Depending on the 
ratio E/H of the specimen, there is the possibility of the surface actually being 
raised up at the edge of the indentation. This is called piling-up. When piling-up 
does occur (as if often the case with indentation testing of metals), the material 
which has piled-up supports the load applied to the indenter and so the indenter 
penetrates less compared to the case where there is no piling-up. However, the 
analysis method discussed in Section 3.3 does not take this into account and so 
the material appears to be stiffer and harder. The area of contact A, computed 
from the equations above is less than the actual area and so both E and H are 
over-estimated. The only satisfactory method to eliminate this error is to meas-
ure the area of contact directly. An AFM image is probably the most convenient, 
but even so, requires considerable capital outlay and investment in time. For 
testing of such materials, measurements of E and H are probably best used in a 
comparative way.  

11.6 Application to Thin-Film Testing 

The main application of depth-sensing indentation is nanoindentation testing of 
thin film structures. For this application, specific care is needed in the interpreta-
tion of results so as to account for the presence of the substrate when estimating 
the properties of the film.  

For measurement of hardness, the objective is to obtain a fully developed 
plastic zone within the film. Depending on the film/substrate properties and the 
radius of the indenter and the thickness of the film, this may not be possible. 
Usually, a plot of H vs penetration depth is made and if there is a plateau in the 
values of H, then this is taken as the hardness of the film only. It is generally 
observed that an influence from the substrate is negligible if the penetration 
depth is less than 10% of the film thickness. Fig. 11.6.1 illustrates the issues 
involved.  
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Fig. 11.6.1 Plastic zone in thin film system. (a) Film on hard substrate, (b) film on soft 
substrate. To measure the hardness of the film only, the plastic zone must be contained 
within the film as in (a). Usually, a penetration depth of no more than 10% of the film 
thickness is used to obtain this condition. 

For measurement of elastic modulus, any indentation will result in some in-
fluence from the substrate since, as shown in Fig. 11.6.2, the elastic deflections 
of both the substrate and the film contribute to support the indenter load. How-
ever, because of the localized nature of the indentation stress fields, more sup-
port comes from the film than the substrate. Hence, the 10% rule does not apply 
to modulus determinations although it is a reasonable place to begin. It is best to 
perform a series of indentations from a very low load to a reasonably high load 
and then plotting modulus vs indentation depth. Extrapolation of the data back 
to zero depth should result in a value of modulus for the film only.  

 

Fig. 11.6.2 Measurement of elastic modulus of the film will always be affected by the 
presence of the substrate because of the elastic support given by both film and substrate. 
Although the 10% rule does not strictly apply here, it is usually used anyway without 
justification.  
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Chapter 12  
Indentation Test Methods 

12.1 Introduction 

In previous chapters, we looked in detail at various theoretical aspects of elastic 
and elastic-plastic indentation. It is now appropriate to discuss how one may 
undertake this type of indentation testing for particular applications. Hence, we 
now turn our attention to more practical matters and investigate: 

 
i. Bonded-interface technique 

ii. Indentation stress-strain curves 
iii. Compliance curves 
iv. Strength testing 
v. Hardness testing 

 
The information provided here will enable the practitioner to undertake in-

dentation testing that is appropriate to the material and will yield the desired 
information. 

12.2 Bonded-Interface Technique 

The bonded-interface specimen technique1,2 provides a simple and effective way 
of assessing the subsurface damage arising from indentation loading. The 
specimens are prepared first by polishing the faces of two rectangular half-
specimens and then bonding them together with adhesive. The prospective in-
dentation test surface, perpendicular to the bonded interface, is then polished. As 
shown in Fig. 12.2.1, a sequence of indentations, centered over the interface, is 
made on the test surface. A light clamping force is applied during testing in a 
direction normal to the load to assist the adhesive in keeping the two faces of the 
specimen in intimate contact during the application of load. After indentation, 
the specimens are immersed in a solvent to dissolve the adhesive and to separate 
the specimens into their two halves. Optical microscopy using Nomarski inter-
ference contrast can then be used to examine the test surfaces and the subsurface 
damage and fracture patterns.  
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The experiment is best performed using a mechanical testing machine which 
can apply load to the indenter through a cross-head member. Due to the localized 
nature of the indentation stress field, a relatively large number of indentations 
may be made on one prepared specimen. It is important that the indentations are 
centered over the interface. 

Estimation of the prospective indentation site by eye is not recommended. In 
a typical test, the center of the indenter and the interface need to be aligned to 
within a few microns, and it is recommended that the specimen be mounted on a 
calibrated stage. Small indentations may then be made on each side of the inter-
face at an arbitrary position. The distance between these indentations and the 
interface may then be measured with an optical microscope. Calibration for the 
stage vernier adjustments may thus be found by a geometrical analysis leading 
to a series of vernier readings which permit indentations to be performed very 
rapidly and with great precision. 

The results of a bonded interface experiment are best viewed with an optical 
microscope fitted with Nomarksi interference filters. Metallurgical microscopes 
are also suitable. The indented specimen is placed in a solvent to dissolve the 
glue, and the two halves are thus separated. After washing in solvent, both top 
and section views of the indentation can be viewed. The Nomarksi filters high-
light very small surface irregularities. The specimen surfaces must not be polished 
after indentation because this will remove the surface detail, which contains the 
damage information. 

 

Fig. 12.2.1 Bonded interface schematic. Specimen top and section faces are polished to 
1µm. Faces are glued together. Light clamping C is applied to outer faces to assist in 
preventing fracture of the specimen. Load P is applied to indenter placed on interface. 
Solvent used to dissolve bond. Top and section faces viewed with Nomarski interference 
microscope. 

P

C
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Fig 12.2.2 Bonded interface results. Accumulated damage in both surface (top) and sec-
tion (bottom) views for a series of coarse-grained glass-ceramics. (a) relatively coarse-
grained micaceous glass-ceramic; (b) the same composition as (a) but with a smaller 
grain size; (c) relatively fine grain size. Results show a transition from classically ductile 
behavior in (a) to a brittle response (c). The beginnings of a Hertzian cone crack are dis-
cernible in the section views of (c) (after Reference 3). 

Figure 12.2.2 shows accumulated damage in both surface (top) and section 
(bottom) views for a series of coarse-grained glass-ceramics using this tech-
nique. The materials tested here had different microstructural characteristics, 
and this is manifested in the section views shown. In Fig. 12.2.2, (a) shows the 
results for a relatively coarse-grained micaceous glass-ceramic, (b) shows the 
results for a glass-ceramic of the same composition as (a) but with a smaller 
grain size, and (c) shows the results for the same glass-ceramic with a relatively 
fine grain size. Note that these results show a transition from classically ductile 
behavior in (a) to a brittle response (c). The beginnings of a Hertzian cone crack 
are discernible in the section views of (c). 

12.3 Indentation Stress-Strain Response 

12.3.1 Theoretical 

Valuable information about the elastic and plastic properties of a material can be 
obtained when the indentation stress, defined as the mean contact pressure pm, is 
plotted against the indentation strain, equal to the contact area radius a divided 
by the indenter radius R for a range of indenter loads and sizes. For a linearly 
elastic response, a straight-line relationship for these normalized quantities is 
predicted from the Hertz relation: 
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where E* is the combined modulus of the indenter and the specimen given by: 

( ) ( )2 2

*

1 11 ν ν− − ′
= +

′E EE
 (12.3.1b) 

where ν and ν′ are Poisson’s ratio, and E and E′ are Young’s modulus of the 
specimen and the indenter, respectively. 

Equation 12.3.1a assumes linear elasticity and makes no prediction about the 
onset of nonlinear behavior followed by plastic yielding within the specimen 
when the indenter load is sufficiently high. In conventional compression tests, 
plastic deformation generally does not occur in brittle materials at normal ambi-
ent temperatures and pressures due to tensile induced fractures which inevitably 
occur before the yield stress of the material is reached. However, in tests where 
there is a significant confining pressure, brittle fracture is suppressed in favor of 
shear faulting and plastic flow. This phenomenon is familiar to workers in the 
rock mechanics field4. In an indentation stress field, the stresses in the compres-
sive zone beneath the indenter can be made sufficiently high to induce plastic 
deformation, even in brittle materials. 

For the fully elastic case, the principal shear stress distribution beneath a 
spherical indenter can be readily determined (see Chapter 5) and the maximum 
shear stress has a value of about 0.47pm and occurs at a depth in the specimen of 
about 0.5a beneath the indenter. Tabor5 uses both the von Mises and Tresca 
stress criteria to show that plastic deformation beneath a spherical indenter with 
increasing load can be expected to occur first upon increasing the indenter load 
when:  

ym

ym

p

p

σ

σ

1.1

5.047.0

≈

=
 (12.3.1c)  

As the load on the indenter is increased further, the amount of plastic defor-
mation also increases. The mean contact pressure pm also increases with increas-
ing load. At high values of indentation strain, the response of the material may 
be predicted using the various hardness theories described in Chapter 9. Experi-
ments5 show that for metals where the indenter load is such that pm is about three 
times the yield stress σy, no increase in pm occurs with increasing indenter load. 
At this point, the material in the vicinity of the indenter can be regarded as being 
in a fully plastic state. 

12.3.2 Experimental method 

Indentation stresses and strains can be measured by recording the indenter loads 
and corresponding contact diameters of the residual impressions in the surface 
of gold coated, polished specimens for a range of loads and indenter radii. The 
specimens should be indented after the deposition of a very thin film of gold,  
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which may be applied using an ordinary sputter coater. The gold film makes the 
contact diameter easier to distinguish from the unindented surface when the 
specimen is viewed through an optical microscope. It is important not to make 
the gold coating too thick, as the measured contact diameter may then be overes-
timated. 

Figure 12.3.1 shows a worksheet that may be used for an indentation stress-
strain experiment. The first two columns indicate a range of indentation strains 
and indentation stresses calculated using Hertzian theory. The body of the work-
sheet contains spaces for recording experimentally measured indenter loads and 
contact diameters for a range of indenter radii. The column on the left of each 
data entry area shows the load required to give the indicated indentation stress 
and strain as calculated using Hertzian elastic theory.  

In practice, an indentation stress-strain curve of reasonable range cannot be 
obtained with a single indenter because most testing machines are limited in 
their load measuring capability. It should be noted that a particular value of  
indentation stress and strain may be obtained with different indenter sizes at 
different loads. Some overlap between the range of stresses and strains with dif-
ferent indenters gives a convenient check of the validity of the experimental 
procedure. 

Many materials can be considered elastic-plastic where the transition from 
elastic to plastic occurs very suddenly in brittle materials. In the ideal case, the 
indentation stress-strain relationship is expected to show an initial straight-line res-
ponse, as given by Eq. 12.3.1, followed by a decrease in slope until the indentation 
stress approaches that corresponding approximately to the hardness value H.  

Figure 12.3.2 shows the results for a coarse-grained micaceous glass-ceramic 
(see also Fig. 12.2.2). The solid line shows the Hertzian elastic response as cal-
culated using Eq. 12.3.1. Finite-element results and experimental measurements 
for WC spheres of radius R = 0.79, 1.59, 1.98, 3.18, 4.76 mm are also shown 
together with hardness computed from the projected area of indentation with a 
Vickers diamond pyramid. 

For a brittle material, one cannot expect to obtain the full stress-strain re-
sponse using the experimental procedure described here because of the inevitable 
presence of conical fractures which would occur at high indenter loads. Indeed, 
one would be very fortunate to obtain indentation stresses and strains in the 
nonlinear region for brittle materials without the presence of a significant num-
ber of conical fractures and perhaps bulk specimen failure. An indentation 
stress-strain response for a ductile material is readily obtained using this test 
procedure. For a brittle material, only a relatively narrow range of readings can 
be obtained with a spherical indenter, and attempts to obtain data at higher 
strains will probably result in conical fractures and specimen failure. 
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Indentation Stres s -Strain (Experiment) Page #

Elas tic  properties
I Specimen

Materia l WC
E 614 70 GPa
υ 0.22 0.26
k 1.12 (as  per M&M)
k 0.59 (as  per Frank&Lawn)

S tep 0.02 mm

x axis Mean Sug ees ted indenter loads  (N)
des ired pres s ure

a /R GPa
0.02 0.57 R
0.04 1.14 R 1.59 Contact
0.06 1.71 1.19 Contact Sugges ted # Actual diameter
0.08 2.28 R Sugges ted # Actual diameter 116
0.10 2.85 0.79 Contact 127 227
0.12 3.43 Sugges ted # Actual diameter 219 392
0.14 4.00 154 348 622
0.16 4.57 229 520 929
0.18 5.14 326 741 1322
0.20 5.71 448 1016 1813
0.22 6.28 596 1352 2414
0.24 6.85 774 1755 3134
0.26 7.42 984 2232
0.28 7.99 1228 2787
0.30 8.56 1511
0.32 9.13 1834
0.34 9.70 2199

R
R 4.76 Contact

R 3.18 Contact Sugges ted # Actual diameter
0.02 0.57 1.98 Contact Sugges ted # Actual diameter
0.04 1.14 Sugges ted # Actual diameter 58 130
0.06 1.71 76 196 439
0.08 2.28 180 464 1040
0.10 2.85 352 907 2032
0.12 3.43 607 1567
0.14 4.00 965 2488
0.16 4.57 1440
0.18 5.14 2050
0.20 5.71 2812

R R R
6.35 Contact 7.94 Contact 9.53 Contact

Sugges ted Actual diameter Sugges ted Actual diameter Sugges ted Actual diameter
0.025 0.71 56 88 127
0.030 0.86 98 153 220
0.035 1.00 155 242 349
0.040 1.14 231 362 521
0.045 1.28 329 515 742
0.050 1.43 452 707 1018
0.055 1.57 602 941

This worksheet provides an estimate of the indenter loads required for different ball 
radii which gives a selected range of contact pressures. The smallest radii provide 
high contact pressures at a moderate load. Larger radii cannot be used for a load 
cell maximum of 5kN. Select a range of loads of about 400-1200N within each ball 
radius column and allow one or two overlapping load/radius pair in each which 
gives the same contact pressure.
Data in grey boxes may be changed by the user.

( )p E
k

a
Rm =

−

4
3

1
1 2υ π

P p a
R

Rsuggestd m= ⎛
⎝⎜

⎞
⎠⎟π

2

 

Fig. 12.3.1 Worksheet for indentation stress-strain experiment. Note that the indenter 
sizes and loads have been selected to give some overlap in indentation strains as the in-
denter is changed. The important parameter is the quantity a/R, the indentation strain. For 
a particular test, it may not be possible to use a single indenter to cover the desired range 
of indentation strain. However, the load and indenter radius in different combinations 
may permit a wide range of indentation strains to be measured with a readily available 
apparatus. 
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Fig. 12.3.2 Indentation stress strain results for a coarse-grained micaceous glass-ceramic. 
Solid line shows Hertzian elastic response. (+) Finite-element results, (•) experimental 
measurements for WC spheres of radius R = 0.79, 1.59, 1.98, 3.18, 4.76 mm, and hard-
ness from projected area of indentation with Vickers diamond pyramid are shown (data 
after reference 3).  

12.4 Compliance Curves 

Compliance curves are obtained by measuring the load point displacement (see 
Chapter 6). Typically, a polished specimen is mounted on the horizontal platen 
of a universal testing machine. Load is applied to an indenter by causing the 
crosshead of the testing machine to move downward at a constant rate of dis-
placement with time. A clip gauge is attached so as to measure the load-point 
displacement as shown in Fig. 12.4.1.  

The output signal from the clip gauge is often interfaced to a computer sys-
tem that records displacement at regular time intervals during the application of 
load. A fully elastic response, for a spherical indenter, is given by: 
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Fig. 12.4.1 Compliance testing schematic. Specimen is mounted on the horizontal platen 
of a universal testing machine. Load is applied to an indenter by causing the crosshead of 
the testing machine to move downward at a constant rate of displacement with time. A 
clip gauge is attached to measure the load-point displacement. The output from the clip 
gauge is often interfaced to a computer system that records displacement at regular time 
intervals during the application of load (with kind permission of Springer Science and 
Business Media, Reference 3). 

In order to obtain meaningful results from a compliance test, it is necessary 
to make certain corrections to the clip-gauge output, depending on the nature of 
the experimental apparatus. For example, in Fig. 12.4.1, the clip gauge is 
mounted between “fixed” points on the crosshead post and the indenter surface. 
The slip gauge thus measures both the indentation and the longitudinal strain 
arising from the compression of the post. All that is actually required is the dis-
placement of the crosshead arising from indentation of the specimen. Further, 
depending on the geometry and mounting arrangements of the indenter, the in-
denter may indent into the crosshead post in addition to the specimen under test. 
For this reason, it is best to use an indenter with a relatively large area upper 
surface. For example, with spherical indenters, a cup or half-sphere should be 
used.  

Figure 12.4.2 shows the results obtained on specimens of glass and a coarse-
grained glass-ceramic material. The glass displays a characteristic brittle re-
sponse, and the displacements are in reasonable agreement with those calculated 
using Eq. 12.4a. The glass-ceramic undergoes shear-driven “plasticity” (see Fig. 
12.2.2) and thus displays a considerable deviation from the elastic response. The 
area under these curves is an indication of the energy associated with the inden-
tation. Note that the unloading curve meets the x axis at a depth corresponding 
to that of the residual impression in the specimen surface. 

Clip gauge 
unit

P

Specimen

Indenter

crosshead

Rigid platen
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Fig. 12.4.2 Compliance curves, loading, and unloading, for glass (elastic) and glass-
ceramic (elastic-plastic) specimen materials. Specimens were loaded with a spherical 
indenter R = 3.18 mm at a constant rate. Displacement was recorded at regular intervals. 
Solid line indicates Hertzian elastic response calculated using Eq. 12.4a. Data are shown 
for experiments performed on glass and a coarse-grained glass-ceramic. Note the residual 
impression upon full unload for the coarse-grained ceramic, indicating plastic deforma-
tion (data from reference 6).  

The discussion thus far applies to indentations on an engineering scale, that 
is, where the dimensions of the indenter and specimen are measured in millime-
ters and loads in N or even kN. In many cases, useful material properties and 
physical insights on damage on a microscopic scale can be obtained submicron 
indentation systems. These machines use micron-size indenters and mN loadings 
to produce extremely shallow indentations in test materials. Such machines are 
particularly suited for measuring the mechanical properties of thin films. Be-
cause of this small scale, these instruments are typically computer controlled, 
with the test specimen and loading mechanism located in a protective cabinet. 

12.5 Inert Strength 

Bending strength tests provide a quantitative measure of damage caused by in-
dentation with a sharp or blunt indenter. Theoretical analysis shows that for brit-
tle materials with a constant value of toughness, the following relation holds for 
a well-developed cone crack in a previously indented specimen7: 
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In this equation, σI—the “inert strength”—is the macroscopic tensile stress 
applied to the specimen during bending. To is the toughness, and ψ and χ are 
constants found from theoretical analysis and experimental calibration, respec-
tively. P is the indenter load used to indent the specimen on the prospective ten-
sile side prior to bending. Equation 12.5.1 shows that an ideal elastic response, 
with a constant value of To, gives σI proportional to P−1/3. This relationship ap-
plies to well-developed cone cracks, which generally occur in classical brittle 
materials. The relationship between P and σI for material showing accumulated 
subsurface damage is not currently defined.  

In a typical experiment, bars of the specimen material are prepared and the 
prospective test faces polished to a 3 µm finish. The edges of each bar are cham-
fered to minimize edge failures during the test. A single indentation is made on 
the polished face of each specimen using, say, a 3.18 mm WC sphere. Some 
specimens are left unindented to measure the “natural” strength of the material. 
The specimens are then loaded at a rate of 1000 N/sec in four-point bending so 
that the polished, indented surface is placed in tension (see Fig. 12.5.1). 

The tensile stress σ1 on the test surface at a measured failure load P is calcu-
lated from: 
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Iσ  (12.5.2)  

 

Fig. 12.5.1 Schematic of strength experiment using prismatic bar specimens. Specimens 
are polished and edges chamfered. A single indentation is made on the polished surface. 
The bar is then put into 4 point bending with the indented surface being placed in tension 
as shown. 
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where t is the thickness and w the width of the specimen. L is the outer span and 
l the inner span, as shown in Fig. 12.5.1. The load P is that indicated by the test-
ing machine at specimen fracture. This may not always be easy to determine, 
and the use of a calibrated piezoelectric force transducer may be required. Fig-
ure 12.5.2 shows the results of such a test on a glass-ceramic material.  

In Fig. 12.5.2, the shaded box on the left indicates the strength of the speci-
mens that failed at a location away from where the indentation was made (i.e., 
from “natural” flaws). In this figure, results for both the base-glass state and the 
fired, crystallized material are shown. In contrast to the base-glass state of the 
material, the strength data shown for the crystallized material show that the ten-
sile strength is not significantly affected by the presence of the subsurface ac-
cumulated damage (see Fig. 12.2.2) beneath the indentation site, although an 
overall decrease in strength with increasing indenter load is indicated. In the 
case of the base-glass, a cone crack forms above a critical indenter load, the 
magnitude of which depends on the specimen surface condition and the radius of 
the indenter.  

 

Fig. 12.5.2 Strength of glass-ceramic and base-glass after indentation with a WC spheri-
cal indenter of radius R = 3.18 mm. Shaded area indicates range of strengths for samples 
that failed from a flaw other than that due to the indentation. Also included in the shaded 
areas are the strengths of a small number of unindented samples. Each data point repre-
sents a single specimen. Solid curves are empirical best fits to the data. For the base-
glass, the critical indenter load for the formation of a cone crack was ≈ 500 N. 
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In the present case, the critical load for formation of a cone crack is ≈ 500 N 
for an indenter radius R = 3.18 mm. The results shown in Fig. 12.5.2 indicate 
that the tensile strength of the base-glass is significantly affected by the presence 
of a conical crack, and the strength is reduced as the size of the crack is made 
larger (increasing indenter load). Note the increased variability of the strength 
(height of shaded area) of the unindented specimens of the base-glass compared 
to the crystallized glass-ceramic material. 

12.6 Hardness Testing 

12.6.1 Vickers hardness 

The Vickers hardness number is one of the most widely used measures of hard-
ness in engineering and science. In a typical hardness tester, the diamond in-
denter is mounted on a sliding post brought to bear on the specimen, which is 
mounted on the flat movable platen. The indenter and mechanism can then be 
swung to the side and a calibrated optical microscope positioned over the inden-
tation to measure the dimensions of the residual impression. Figure 12.6.1 shows 
typical shapes of indentations made with a Vickers indenter.  

The Vickers diamond indenter takes the form of a square pyramid with op-
posite faces at an angle of 136° (edges at 148°). The Vickers diamond hardness, 
VDH, is calculated using the indenter load and the actual surface area of the 
impression. The resulting quantity is usually expressed in kgf/mm2. The area of 
the base of the pyramid, at a plane in line with the surface of the specimen,  
is equal to 0.927 times the surface area of the faces that actually contact the 
specimen. The mean contact pressure pm is given by the load divided by the pro-
jected area of the impression. Thus, the Vickers hardness number is lower than 
the mean contact pressure by ≈ 7%. In many cases, scientists prefer to use the 
projected area for determining hardness because this gives the mean contact 
pressure—a value of some physical significance—while also providing a com-
parative measure of hardness. The hardness calculated using the actual area of 
contact does not have any physical significance and can only be used as a com-
parative measure of hardness. 

The Vickers diamond hardness is found from: 
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 (12.6.1a)  

with d the length of the diagonal as measured from corner to corner on the re-
sidual impression. The projected area of contact can be readily calculated from a 
measurement of the diagonal and is equal to: 
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2

2dAp =  (12.6.1b)  

The ratio between the length of the diagonal d and the depth of the impres-
sion h beneath the contact is 7.006, and thus the projected area Ap, in terms of 
the depth h, is equal to: 

2504.24 hAp =  (12.6.1c)  

The residual impression in the surface of a specimen made from a Vickers 
diamond indenter may not be perfectly square. Depending on the material, the 
sides may be slightly curved to give either a pin-cushion appearance (sinking 
in—annealed materials) or a barrel-shaped outline (piling up—work-hardened 
materials) as shown in Fig. 12.6.1. It is a matter of individual judgment whether 
the curved sides of the impression should be taken into consideration when de-
termining the contact area. The formal definition of the Vickers hardness num-
ber8 involves the use of the mean value of the two diagonals, regardless of the 
shape of the sides of the impression.  

Various experimental factors affect the value of VDH as calculated using Eq. 
12.6.1a. Vickers hardness data are usually quoted together with the load used 
and the loading time. The loading time, which is normally 10–15 seconds, is that 
at which full load is applied. The load should be applied and removed smoothly. 
Although the load rate is not specified in the ASTM Standards8, McColm9 
claims that a load rate of less than 250 µm s−1 is required for low load applica-
tions in order to avoid the calculation of artificially low hardness values. 

 

Fig. 12.6.1 Residual impression made using a Vickers diamond pyramid indenter.  
(a) Normal impression, (b) Sinking in, (c) Piling up. 

d d d
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12.6.2 Berkovich indenter 

Microhardness testing on a very small scale is conveniently carried out using a 
Berkovich three-sided pyramidal indenter, since the facets of the pyramid may 
be constructed to meet at a single point rather than a line, which usually results 
at the apex of a four-sided pyramidal indenter. The Berkovich indenter is thus 
very useful for the investigation of the mechanical properties of thin films such 
as optical coatings, paint, and hard coatings on machine tools. However, due to 
the small scale of the impressions, measurements of the radius of the circle of 
contact are extremely difficult, often requiring the use of expensive electron 
microscopes. For this reason, much attention has been paid to the estimation of 
the radius of circle of contact from the depths of the fully loaded or unloaded 
impressions, which are more easily measured.  

The included angle of the Berkovich indenter (65.3o) gives the same pro-
jected area for the same depth of penetration as the Vickers indenter (angle 68o). 
If d is the length of one side of the triangular impression, then the projected area 
of contact is given by: 

2
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43301.0
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=  (12.6.2a)  

The depth of the impression beneath the contact is: 

d

dh

132776.0
3.65tan32

=

=
 (12.6.2b)  

which gives a projected area in terms of the depth of: 
256.24 hAp =  (12.6.2c)  

which is comparable with Eq. 12.6.1c. 
Note that the hardness number associated with all these indenters refers  

to the area of contact of the impression measured at the point at which the in-
denter meets the surface of the specimen in the fully loaded condition. However, 
the vast majority of such measurements are made using the size of the residual 
impression (i.e., fully unloaded condition). Experiments show that while the 
depth of penetration beneath the contact may vary appreciably due to elastic 
recovery of the specimen when load is removed, there is little difference bet-
ween the size of the radius or diagonal measurements of the contact area. 

It is useful to note, for the purposes of positioning indentations, that the size 
of the residual impression is about 7 times the depth of penetration for both 
Berkovich and Vickers indenters.  
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12.7 Depth-sensing (nano) Indentation 

12.7.1 Nanoindentation instruments  

Modern advances in instrumentation now permit the routine measurements of 
very small displacements and forces with great precision. Depth sensing inden-
tation on the nanometer scale is most conveniently carried out using commer-
cially available nanoindentation test instruments. In these instruments, usually a 
capacitive or inductive displacement transducer is used to measure the absolute 
displacement of the indenter shaft with respect to the instrument load frame, or 
the sample surface, and the deflection of the support springs is measured as an 
indication of the force applied to the indenter. Typical specifications of such an 
instrument are given below: 

 
Maximum load 50 mN  

Minimum contact force 2 µN 

Force resolution 500 nN 

Force noise floor 750 nN 

Maximum depth 2 µm  

Depth resolution 0.03 nm 

Depth noise floor 0.05 nm 

Sample positioning ±0.1 µm  

Field of testing 50 mm × 50 mm 

Load frame compliance 0.1 nm/mN 

 

The depth resolution is the most striking feature. This type of instrument is 
so sensitive that it can detect thermal expansion of the indenter of a few nano-
metres if the operator’s hand is placed near the specimen during a test. The noise 
floor is typically governed by the operating environment (temperature fluctua-
tions and mechanical vibrations) rather than intrinsically from the electronics. 

 
12.7.2 Nanoindentation test techniques  

One of the largest influences on the validity or quality of nanoindentation test 
data is the condition of the surface of the specimen and the way in which it is 
mounted for testing. Cleaning and polishing will of course influence the final 
value of the surface roughness of the specimen. A typical indentation into a  
bulk material is usually of the order of 200-500 nm. The theoretical basis of the 
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contact equations assumes a perfectly flat surface so any irregularity in the sur-
face profile will cause scatter in the readings.  

Nanoindentation testing requires a judicial choice of indenter geometry and 
load as well as many other test variables such as number of data points, % 
unloading, maximum load, and the way in which the load is applied. Typical 
input parameters are: initial contact force, number of load increments, time pe-
riod for hold at maximum load (to measure creep), number of unload incre-
ments, time to wait at last unload (to measure thermal drift), load rate or depth 
rate control, etc.  

A very good test of the bona-fides of your test method and the instrument be-
ing used is to test three known samples of different values of E and H. Fused 
silica, silicon and sapphire are commonly used. Consistent results for both E and 
H should be obtained an all three specimens before quoting results for tests on 
specimens of unknown material properties. Reasonable values of these quanti-
ties are given below 

Table 12.1 Representative values of E, H and Poisson’s ratio for validating the 
performance of a nanoindentation test instrument.  

 Fused silica Silicon Sapphire 
E (GPa) 72.5 170 – 180  420 – 550  
ν 0.17 0.28 0.25 
H (GPa) 8 – 10  10 – 12  30 

 
For fused silica, the results should be very repeatable and fairly independent 

of depth although some rise in H may be observed at low loads due to partially 
developed plastic zone. For silicon, the results should be very repeatable and 
fairly independent of depth. Results for E and H can depend on presence of sur-
face layer (e.g., some samples are coated with SiN. For sapphire, the results for 
H may increase at low loads with increasing penetration depth due to partially 
developed plastic zone. This may be offset by surface hardening from polishing. 
Values for H should be quite repeatable. Values for E can vary quite a lot due to 
anisotropy in crystalline properties 

The selection of initial contact and maximum loads is perhaps the most im-
portant parameters for testing, especially when the nature of the specimen is 
unknown. Most nanoindentation testing is carried out using a 3-sided Berkovich 
indenter, but the radius of the tip of the indenter can influence the choice of ini-
tial contact and maximum loads applied. This is especially important in thin film 
testing where it is usually desired to measure the properties of the film inde-
pendent (as much as is possible) from the substrate. The trade-off is to select a 
load that will result in a reasonable penetraton depth in relation to the tip radius 
(so as to create a fully formed plastic zone) while at the same time not going to 
deeply into the specimen in order to avoide influence from the substrate mate-
rial. Such decisions are usually the result of significant experience in the tech-
nique.  
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12.7.3 Nanoindentation data analysis 

There are several ways to analyse the load-displacement data taken during a 
nanoindentation test. The most popular method involves fitting an equation to 
the unloading data, and then finding the slope of the tangent to this equation at 
maximum load, and extrapolating this down to the depth axis to find the contact 
depth. Details of the theory behind this method are given in Chapter 11. What is 
of importance here, however, is to recognize that there are several choices avail-
able for determining the correct fitting procedure for a given set of data. The 
first choice is to decide which equation to use for the fitting procedure. Theo-
retically, the load-displacement data during unload follows a power-law function 
of the form: 

( )m
re hhCP −=  (12.7.3a) 

where Ce, hr and m are unknowns. Determining these unknowns from the data 
requires an iterative procedure. Convergence may be difficult to achieve and 
may depend on how much of the unload data is used for the fitting procedure. 
Difficulties with this non-linear iterative procedure may be avoided by using a 
polynomial fitting to the data of the form: 

( ) ( )22 2 reree hChhChCP +−=  (12.7.3b) 

where Ce and hr are the unnknowns whose values are obtained from the fitting 
procedure. This often provides a very good fit to the data at a minimum of 
mathematical effort. If either of the above two methods do not provide a good 
fit, then at last resort, a linear fit to the unloading data (or at least the initial por-
tion of the unloading data) bmay sometimes be used: 

( )re hhCP −=  (12.7.3c) 

Some depth-sensing instruments routinely use a linear fit to the data as a 
matter of course since they were designed for use on metallic materials in which 
the unloading data is very steep, and nearly linear. In this case, the factor ε in the 
equations in Chapter 11 should be set to 1 and not 0.75 as is usually the case for 
highly elastic materials.  

 
12.7.4 Nanoindentation test standards  

The popularity of nanoindentation testing has resulted in the formulation of an 
international standard that attempts to standardize the technique. International 
Standard ISO 14577 was prepared by Technical Committee ISO/TC 164, Me-
chanical testing of metals, sub-committee SC 3. ISO 14577 describes the 
method by which indentation hardness of a material is measured using depth-
sensing indentation where both the force and displacement during plastic and  
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elastic deformation are measured. ISO 14577 consists of four parts. Part 1 of the 
standard contains a description of the method and principles of the indentation 
test. Part 2 of the standard specifies the method of verification and calibration of 
the test instruments. Part 3 of ISO 14577 specifies the method of calibration of 
reference blocks that are to be used for verification of indentation testing instru-
ments. Part 4 of the standard provides recommended procedures for the indenta-
tion testing of thin films. It is highly recommended reading for those wishing to 
undertake this type of testing.  
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