
Appendix A
EQUATIONS OF MOTION
IN THE STATE
AND CONFIGURATION SPACES

A.1 EQUATIONS OF MOTION OF DISCRETE
LINEAR SYSTEMS

A.1.1 Configuration space

Consider a system with a single degree of freedom and assume that the equa-
tion expressing its dynamic equilibrium is a second order ordinary differential
equation (ODE) in the generalized coordinate x. Assume as well that the forces
entering the dynamic equilibrium equation are

• a force depending on acceleration (inertial force),

• a force depending on velocity (damping force),

• a force depending on displacement (restoring force),

• a force, usually applied from outside the system, that depends neither
on coordinate x nor on its derivatives, but is a generic function of time
(external forcing function).

If the dependence of the first three forces on acceleration, velocity and dis-
placement respectively is linear, the system is linear. Moreover, if the constants
of such a linear combination, usually referred to as mass m, damping coefficient
c and stuffiness k do not depend on time, the system is time-invariant. The
dynamic equilibrium equation is then

mẍ + cẋ + kx = f(t) . (A.1)
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If the system has a number n of degrees of freedom, the most general form
for a linear, time invariant set of second order ordinary differential equations is

A1ẍ + A2ẋ + A3x = f(t) , (A.2)

where:

• x is a vector of order n (n is the number of degrees of freedom of the
system) where the generalized coordinates are listed;

• A1, A2 and A3 are matrices, whose order is n× n; they contain the char-
acteristics (independent of time) of the system;

• f is a vector function of time containing the forcing functions acting on the
system.

Matrix A1 is usually symmetrical. The other two matrices in general are
not. They can be written as the sum of a symmetrical and a skew-symmetrical
matrices

Mẍ + (C + G) ẋ + (K + H)x = f(t) , (A.3)

where:

• M, the mass matrix of the system, is a symmetrical matrix of order n× n
(coincides with A1). Usually it is not singular.

• C is the real symmetric viscous damping matrix (the symmetric part of
A2).

• K is the real symmetric stiffness matrix (the symmetric part of A3).

• G is the real skew-symmetric gyroscopic matrix (the skew-symmetric part
of A2).

• H is the real skew-symmetric circulatory matrix (the skew-symmetric part
of A3).

Remark A.1 Actually it is possible to write the set of linear differential Equa-
tions (A.2) in such a way that no matrix is either symmetric or skew symmetric
(it is enough to multiply one of the equations by a constant other than 1). A
better way to say this is that M, C, and K can be reduced to symmetric matrices
by the same linear transformation that reduces G and H into skew-symmetric
matrices.

Remark A.2 The same form of Equation (A.2) may result from mathematical
modeling of physical systems whose equations of motion are obtained by means of
space discretization techniques, such as the well-known finite elements method.
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FIGURE A.1. Sketch of a system with two degrees of freedom (a) made by two masses
and two springs, whose characteristics (b) are linear only in a zone about the equilibrium
position. Three zones can be identified in the configuration space (c): in one the system
behaves linearily, in another the system is nonlinear. The latter zone is surrounded by
a ‘forbidden’ zone.

x is a vector in the sense it is a column matrix. Indeed, any set of n numbers
may be interpreted as a vector in an n-dimensional space. This space contain-
ing vector x is usually referred to as configuration space, because any point in
this space may be associated with a configuration of the system. Actually, not
all points of the configuration space, intended to be an infinite n-dimensional
space, correspond to configurations that are physically possible for the system:
It is then possible to define a subset of possible configurations. Moreover, even
systems that are dealt with using linear equations of motion are linear only for
configurations little displaced from a reference configuration (usually the equilib-
rium configuration) and thus the linear equation (A.2) applies in an even smaller
subset of the configuration space.

A simple system with two degrees of freedom is shown in Fig. A.1a; it consists
of two masses and two springs whose behavior is linear in a zone around the
equilibrium configuration with x1 = x2 = 0, but behave in a nonlinear way to
fail at a certain elongation. In the configuration space, which in the case of a
system with two degrees of freedom has two dimensions and thus is a plane, there
is a linearity zone, surrounded by a zone where the system behaves in nonlinear
way. Around the latter is another zone where the system loses its structural
integrity.

A.1.2 State space

A set of n second order differential equations is a set of order 2n that can be
expressed in the form of a set of 2n first order equations.
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In a way similar to above, a generic linear differential equation with constant
coefficients can be written in the form of a set of first order differential equations

A1ẋ + A2x = f(t) . (A.4)

In system dynamics this set of equations is usually solved in the first deriva-
tives (monic form) and the forcing function is written as the linear combination
of the minimum number of functions expressing the inputs of the system. The
independent variables are said to be state variables and the equation is written
as

ż = Az + Bu , (A.5)

where

• z is a vector of order m, in which the state variables are listed (m is the
number of the state variables);

• A is a matrix of order m × m, independent of time, called the dynamic
matrix ;

• u is a vector function of time, where the inputs acting on the system are
listed (if r is the number of inputs, its size is r × 1);

• B is a matrix independent of time that states how the various inputs act
in the various equations. It is called the input gain matrix and its size is
m × r.

As was seen for vector x, z is also a column matrix that may be considered
as a vector in an m-dimensional space. This space is usually referred to as the
state space, because each point of this space corresponds to a given state of the
system.

Remark A.3 The configuration space is a subspace of the space state.

If Eq. (A.5) derives from Eq. (A.2), a set of n auxiliary variables must be
introduced to transform the system from the configuration to the state space.
Although other choices are possible, the simplest choice is to use the derivatives
of the generalized coordinates (generalized velocities) as auxiliary variables. Half
of the state variables are then the generalized coordinates x, while and the other
half are the generalized velocities ẋ.

If the state variables are ordered with velocities first and then coordinates,
it follows that

z =
{

ẋ
x

}
.

A number n of equations expressing the link between coordinates and ve-
locities must be added to the n equations (A.2). By using symbol v for the
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generalized velocities ẋ, and solving the equations in the derivatives of the state
variables, the set of 2n equations corresponding to Eq. (A.3) is then{

v̇ = −M−1 (C + G)v − M−1 (K + H)x + M−1f(t)
ẋ = v .

(A.6)

Assuming that inputs u coincide with the forcing functions f , matrices A
and B are then linked to M,C, K, G and H by the following relationships

A =
[

−M−1 (C + G) −M−1 (K + H)
I 0

]
, (A.7)

B =
[

M−1

0

]
. (A.8)

The first n out of the m = 2n equations constituting the state equation
(A.5) are the dynamic equilibrium equations. These are usually referred to as
dynamic equations. The other n express the relationship between the position
and the velocity variables. These are usually referred to as kinematic equations.

Often what is more interesting than the state vector z is a given linear
combination of states z and inputs u, usually referred to as the output vector .
The state equation (A.5) is then associated with an output equation

y = Cz + Du , (A.9)

where

• y is a vector where the output variables of the system are listed (if the
number of outputs is s, its size is s × 1);

• C is a matrix of order s × m, independent of time, called the output gain
matrix ;

• D is a matrix independent of time that states how the inputs enter the
linear combination yielding the output of the system. It is called the direct
link matrix and its size is s× r. In many cases the inputs do not enter the
linear combination yielding the outputs, and D is nil.

The four matrices A, B, C and D are usually referred to as the quadruple
of the dynamic system.

Summarizing, the equations that define the dynamic behavior of the system,
from input to output, are {

ż = Az + Bu
y = Cz + Du.

(A.10)

Remark A.4 While the state equations are differential equations, the output
equations are algebraic. The dynamics of the system is then concentrated in the
former.

The input-output relationship described by Eq. (A.10) may be described by
the block diagram shown in Fig. A.2.
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FIGURE A.2. Block diagram corresponding to Eq. (A.10).

A.2 STABILITY OF LINEAR DYNAMIC SYSTEMS

The linearity of a set of equations allows one to state that a solution exists and is
unique. The general solution of the equation of motion is the sum of the general
solution of the homogeneous equation associated with it and a particular solution
of the complete equation. This is true for any differential linear set of equations,
even if it is not time-invariant.

The former is the free response of the system, the latter the response to the
forcing function.

Consider the equation of motion written in the configuration space (A.2).
As already stated, matrix A1 is symmetrical, while the other two may not be.

The homogeneous equation

A1ẍ(t) + A2ẋ(t) + A3x(t) = 0 (A.11)

describes the free motion of the system and allows its stability to be studied.
The solution of Eq. (A.11) may be written as

x(t) = x0 est , (A.12)

where x0 and s are a vector and a scalar, respectively, both complex and constant.
To state the time history of the solution allows the differential equation to be
transformed into an algebraic equation(

A1s
2 + A2s + A3

)
x0 = 0 . (A.13)

This is a set of linear algebraic homogeneous equations, whose coefficients
matrix is a second order lambda matrix 1; it is square and, because the mass
matrix A1 = M is not singular, the lambda matrix is said to be regular.

1The term lambda matrix comes from the habit of using the symbol λ for the coefficient
appearing in the solution q(t) = q0 eλt. Here symbol s has been used instead of λ, following a
more modern habit.
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The equation of motion (A.11) has solutions different from the trivial

x0 = 0 (A.14)

if and only if the determinant of the matrix of the coefficients vanishes:

det
(
A1s

2 + A2s + A3

)
= 0 . (A.15)

Equation (A.15) is the characteristic equation of a generalized eigenproblem.
Its solutions si are the eigenvalues of the system and the corresponding vectors
x0i

are its eigenvectors. The rank of the matrix of the coefficients obtained in
correspondence of each eigenvalue si defines its multiplicity: If the rank is n−αi,
the multiplicity is αi. The eigenvalues are 2n and, correspondingly, there are 2n
eigenvectors.

A.2.1 Conservative natural systems

If the gyroscopic matrix G is not present the system is said to be natural. If the
damping and circulatory matrices C and H also vanish the system is conserva-
tive. A system with G = C = H = 0 (or, as is usually referred to, an MK system)
is then both natural and conservative. The characteristic equation reduces to the
algebraic equation

det
(
Ms2

i + K
)

= 0 . (A.16)

The eigenproblem can be reduced in canonical form

Dxi = μixi, (A.17)

where the dynamic matrix in the configuration space D (not to be confused with
the dynamic matrix in the state space A) is

D = M−1K , (A.18)

and the parameter in which the eigenproblem is written is

μi = −s2
i . (A.19)

Because matrices M and K are positive defined (or, at least, semi-defined), the
n eigenvalues μi are all real and positive (or zero) and then the eigenvalues in
terms of si are 2n imaginary numbers in pairs with opposite sign

(si, si) = ±i
√

μi . (A.20)

The n eigenvectors xi of size n are real vectors.
When the eigenvalue si is imaginary, the solution (A.12) reduces to an un-

damped harmonic oscillation

x(t) = x0 eiωt , (A.21)
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where
ω = is =

√
μ (A.22)

is the (circular) frequency.
The n values of ωi, computed from the eigenvalues μi, are the natural fre-

quencies or eigenfrequencies of the system, usually referred to as ωni
.

If M or K are not positive defined or semidefined, at least one of the eigen-
values μi is negative, making one of the pair of solutions in s real, being made of
a positive and a negative value. As will be seen below, the real negative solution
corresponds to a time history that decays in time in a non-oscillatory way, the
positive solution to a time history that increases in time in an unbounded way.
The system is then unstable.

A.2.2 Natural nonconservative systems

If matrix C does not vanish while G = H = 0, the system is still natural and
non-circulatory, but is no longer conservative.

The characteristic equation (A.15) cannot be reduced to an eigenproblem in
canonical form in the configuration space and the state space formulation must
be used.

The general solution of the homogeneous equation associated with Eq. (A.5)
is of the type

z = z0e
st , (A.23)

where s is generally a complex number. Its real and imaginary parts are usually
indicated with symbols ω and σ

ω = � (s)
σ = 
 (s) (A.24)

and represent the frequency of the free oscillations and the decay rate. Solution
(A.23) can in fact be written in the form

z = z0e
σteiωt , (A.25)

or, because both σ and ω are real numbers,

z = z0e
σt [cos (ωt) + i sin (ωt)] . (A.26)

By introducing solution (A.23) into the homogeneous equation associated
with Eq. (A.5), the latter transforms from a set of differential equations to a
(homogeneous) set of algebraic equations

sz0= Az0 , (A.27)

i.e.
(A−sI) z0 = 0 . (A.28)
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As seen for the equation of motion in the configuration space, the homoge-
neous equations will have solutions other than the trivial solution z0 = 0 only if
the determinant of the coefficients matrix vanishes

det (A−sI) = 0 . (A.29)

Equation (A.29) can be interpreted as an algebraic equation in s, i.e. the
characteristic equation of the dynamic systems. It is an equation of power 2n,
yielding the 2n values of s. The 2n values of s are the eigenvalues of the system
and the corresponding 2n values of z0 are the eigenvectors. In general, both
eigenvalues and eigenvectors are complex.

If matrix A is real, as is usually the case, the solutions are either real or
complex conjugate. The corresponding time histories are (Fig. A.3):

• Real solutions (ω = 0, σ �= 0): Either exponential time histories, with
monotonic decay of the amplitude if the solution is negative (stable, non-
oscillatory behavior), or exponential time histories, with monotonic in-
crease of the amplitude if the solution is positive (unstable, non-oscillatory
behavior).

• Complex conjugate solutions (ω �= 0, σ �= 0): Oscillating time histories,
expressed by Eq. (A.26) with amplitude decay if the real part of the solution

FIGURE A.3. Time history of the free motion for the various types of the eigenvalues
of the system
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is negative (stable, oscillatory behavior) or amplitude increase in time if
the real part of the solution is positive (unstable, oscillatory behavior). If
the system is stable, stability is asymptotic.

To these two cases, that previously seen for conservative systems may be
added:

• Imaginary solutions (ω �= 0, σ = 0): Harmonic time histories (sine or
cosine waves, undamped oscillatory behavior). In this case stability is non-
asymptotic.

The necessary and sufficient condition for stable behavior is thus that the
real part of all eigenvalues is negative.

If any one of the real parts of the eigenvalues is zero, the behavior is still
stable (because the amplitude does not grow uncontrolled in time) but not as-
ymptotically stable.

If at least one of the real parts of the eigenvalues is positive, the system is
unstable.

If the system is little damped, i.e. the eigenvalues are conjugate and the
decay rates σ are small, the values of the natural frequencies ω are close to those
of the corresponding undamped system, i.e. to those of the MK system obtained
by simply neglecting the damping matrix C. In this case the natural frequencies
ωni

are still those of the corresponding undamped systems.
The general solution of the homogeneous equation is a linear combination

of the 2n solutions

z =
2n∑
i=1

Ciz0ie
sit , (A.30)

where the 2n constants Ci must be obtained from the initial conditions, i.e. from
vector z(0).

The equation allowing constants Ci to be computed can be written as

z(0)=
[

z01 z02 ... z02n

]
⎧⎪⎪⎨
⎪⎪⎩

C1

C2

....
C2n

⎫⎪⎪⎬
⎪⎪⎭

= ΦC , (A.31)

where Φ is the matrix of the complex eigenvectors.
A real and negative eigenvalue corresponds to an overdamped behavior,

which is non-oscillatory, of the relevant mode. If the eigenvalue is complex (with
negative real part) the mode has an underdamped behavior, i.e. has a damped
oscillatory time history. A system with all underdamped modes is said to be
underdamped, while if only one of the modes is overdamped, the system is said
to be overdamped. If all modes are overdamped, the system cannot have free
oscillations, but can oscillate if forced to do so.

It must be noted that if all matrices M, K and C are positive defined (or
at least semidefined), as in the case of a structure with viscous damping with
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positive stiffness and damping, there is no eigenvalue with positive real part and
hence the system is stable. If all matrices are strictly positive defined, there is
no eigenvalue with vanishing real part and the system is asymptotically stable.

A.2.3 Systems with singular mass matrix

If matrix M is singular, it is impossible to write the dynamic matrix in the usual
way. This usually occurs because a vanishingly small inertia is associated with
some degrees of freedom, as for instance in the case of the driveline models shown
in Fig. 30.9, where the tire is modelled as a spring and a damper in series, with
no mass between them. Clearly the problem may be circumvented by associating
a very small mass with the relevant degrees of freedom: A new very high natural
frequency that has no physical meaning is thus introduced and, if this is done
carefully, no numerical instability problem results. However, it makes little sense
to resort to tricks of this kind when it is possible to overcome the problem in a
more correct and essentially simple way.

The degrees of freedom can be subdivided into two sets: A vector x1 con-
taining those with which a non-vanishing inertia is associated, and a vector x2,
containing all others. All matrices and forcing functions may be similarly split
. The mass matrix M22 vanishes, and if the mass matrix is diagonal, M12 and
M21 also vanish.

Assuming that M12 and M21 are zero, the equations of motion become{
M11ẍ1 + C11ẋ1 + C12ẋ2 + K11x1 + K12x2 = f1(t)
C21ẋ1 + C22ẋ2 + K21x1 + K22x2 = f2(t) . (A.32)

To simplify the equations of motion neither the gyroscopic nor the circu-
lator matrices are explicitly written, but in what follows no assumption on the
symmetry of the stiffness and damping matrices will be made. The equations
also hold for gyroscopic and circulatory systems.

By introducing the velocities v1 together with generalized coordinates x1

and x2 as state variables, the state equation is

M∗

⎧⎨
⎩

v1

x1

x2

⎫⎬
⎭ = A∗

⎧⎨
⎩

v1

x1

x2

⎫⎬
⎭ +

⎡
⎣ I 0

0 I
0 0

⎤
⎦
{

f1(t)
f2(t)

}
, (A.33)

where

M∗ =

⎡
⎣ M11 0 C12

0 0 C22

0 I 0

⎤
⎦ , A∗ = −

⎡
⎣ C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ . (A.34)

The dynamic matrix and the input gain matrix are

A = M∗−1A∗ , B = M∗−1

⎡
⎣ I 0

0 I
0 0

⎤
⎦ . (A.35)
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Alternatively, the expressions of M∗ and A∗ can be

M∗ =

⎡
⎣ M11 C11 C12

0 C21 C22

0 I 0

⎤
⎦ , A∗ = −

⎡
⎣ 0 K11 K12

0 K21 K22

−I 0 0

⎤
⎦ . (A.36)

If vector x1 contains n1 elements and x2 contains n2 elements, the size of
the dynamic matrix A is 2n1 + n2.

A.2.4 Conservative gyroscopic systems

If matrix G is not zero, while both C and H vanish, the dynamic matrix reduces
to

A =
[

−M−1G −M−1K
I 0

]
. (A.37)

By premultiplying the first n equations by M and the other n by K, it
follows that

M∗ż + G∗z = 0 , (A.38)

where

M∗=
[

M 0
0 K

]
, G∗=

[
G K
−K 0

]
. (A.39)

The first matrix is symmetrical, while the second is skew symmetrical.
By introducing solutions (A.23) into the equation of motion, the following

homogeneous equation
sM∗z0+G∗z0= 0 (A.40)

is obtained.
The corresponding eigenproblem has imaginary solutions like those of an

MK system, even if the structure of the eigenvectors is different. In any case
the time history of the free oscillations is harmonic and undamped, because the
decay rate σ = 
 (s) is zero.

A.2.5 General dynamic systems

The situation is similar to that seen for natural non-conservative systems, in the
sense that the time histories of the free oscillations are those seen in Fig. A.3 and
stability is dominated by the sign of the real part of s.

Remark A.5 In general, the presence of a gyroscopic matrix does not reduce
the stability of the system, while the presence of a circulatory matrix has a desta-
bilizing effect.
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Consider, for instance, a two degrees of freedom system made by two inde-
pendent MK system; each with a single degree of freedom, and assume that the
two masses are equal. The equations for free motion are{

mẍ1 + k1x1 = 0
mẍ2 + k2x2 = 0 . (A.41)

Introduce now a coupling term in both equations, introducing for instance
a spring with stiffness k12 between the two masses. The equations of motion
become {

mẍ1 + (k1 + k12) x1 − k12x2 = 0 ,
mẍ2 − k12x1 + (k1 + k12) x2 = 0 . (A.42)

By introducing parameters

ω2
0 =

k1 + k2 + 2k12

2m
, α =

k2 − k1

2mΩ2
0

, ε =
k12

mΩ2
0

, (A.43)

the equation of motion can be written as{
ẍ
ÿ

}
+ ω2

0

[
1 − α ε

ε 1 + α

]{
x
y

}
= 0 . (A.44)

Note that
−1 ≤ α ≤ 1 . (A.45)

The matrix that multiplies the generalized coordinates is symmetrical and is
thus a true stiffness matrix. The coupling is said in this case to be non-circolatory
or conservative. Because there is no damping matrix and the stiffness matrix is
positive defined (−1 ≤ α ≤ 1), the eigenvalues are imaginary and the system is
stable, even if it is not asymptotically stable as it would be if a positive defined
damping matrix were present.

The natural frequencies of the system, made nondimensional by dividing
them by ω0, depend upon two parameters, α and ε. They are shown in Fig. A.4(a)
as functions of α for some values of ε. The distance between the two curves (one
for ω > ω0 and the other for ω < ω0) increases if the coupling term ε increases.
For this reason this type of coupling is said to be repulsive.

Consider now the case with coupling term ε in the form
{

ẍ
ÿ

}
+ Ω2

0

[
1 − α ε
−ε 1 + α

]{
x
y

}
= 0 . (A.46)

The terms outside the main diagonal of the stiffness matrix now have the
same modulus but opposite sign. The matrix multiplying the displacements is
made up of a symmetrical part (the stiffness matrix) and a skew-symmetrical
part (the circulatory matrix). A coupling of this type is said to be circulatory or
non-conservative.

While in the previous case the effect could be caused by the presence of a
spring between the two masses, it cannot be due to springs or similar elements
here. There are situations of practical interest where circulatory coupling occurs.
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FIGURE A.4. Nondimensional natural frequencies as functions of parameters α and ε
for a system with two degrees of freedom with non-circulatory (a) and circulatory (b)
coupling. Decay rate (c) and roots locus (d) for the system with circulatory coupling.

The natural frequencies of the system in this case also depend on the two
parameters α and ε. These are plotted in nondimensional form, by dividing them
by ω0, in Fig. A.4(b) as functions of α for some values of ε. The two curves now
close on each other. Starting from the condition with α = −1, the two curves
meet for a certain value of α in the interval (−1, 0). There is a range, centered
in the point with α = 0, where the solutions of the eigenproblem are complex.
Beyond this range the two curves separate again.

Because the two curves approach each other and finally meet, this type of
coupling is said to be attractive.

In the range where the values of s are complex, one of the two solutions has
a positive real part: It follows that an unstable solution exists, as can be seen
from the decay rate plot in Fig. A.4(c) and from the roots locus in Fig. A.4(d).

Remark A.6 Instability is linked with the skew-symmetric matrix due to cou-
pling, i.e. because of the fact that a circulatory matrix exists.
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A.3 CLOSED FORM SOLUTION OF THE FORCED
RESPONSE

The particular solution of the complete equation depends on the time history of
the forcing function (input) u (t). In case of harmonic input

u = u0e
iωt , (A.47)

the response is harmonic as well

z = z0e
iωt , (A.48)

and has the same frequency as the forcing function ω. As usual, by introducing
the time history of the forcing function and the response into the equation of
motion, it transforms into an algebraic equation

(A−iωI) z0 + Bu0 = 0, (A.49)

that allows the amplitude of the response to be computed

z0 = − (A−iωI)−1 Bu0 . (A.50)

If the input is periodic, it may be decomposed in Fourier series and the
response to each of its harmonic components computed. The results are then
added. This is possible only because the system is linear.

If the input is not harmonic or at least periodic, it is possible to resort
to Laplace transforms or the Duhamel integral. These techniques apply only to
linear systems.

Remark A.7 Linear models allow closed form solutions to be obtained and sta-
bility, in particular, to be studied. In linear systems, moreover, stability is a
property of the system and not of its peculiar working conditions.

A.4 NONLINEAR DYNAMIC SYSTEMS

The state equations of dynamic systems are often nonlinear. The reasons for the
presence of nonlinearities may differ, owing to the presence of elements behaving
in an intrinsically nonlinear way (e.g. springs producing a force dependent in a
nonlinear way on the displacement), or the presence of trigonometric functions
of some of the generalized coordinates in the dynamic or kinematic equations.
If inertial forces are linear in the accelerations, the equations of motion can be
written in the form

Mẍ + f1(x, ẋ) = f(t) . (A.51)
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Function f1 may often be considered as the sum of a linear and nonlinear
part. The equation of motion can then be written as

Mẍ + (C + G) ẋ + (K + H)x + f2(x, ẋ) = f(t) , (A.52)

where function f2 contains only the nonlinear part of the dynamic system.
The state equations corresponding to Eq. (A.51) and Eq. (A.52) are

ż = f1(z) + Bu , (A.53)

or, by separating the linear from the nonlinear part,

ż = Az + f2(z) + Bu . (A.54)

Another way to express the equation of motion or the state equation of
a nonlinear system is by writing equations (A.3) or (A.10), where the various
matrices are functions of the generalized coordinates and their derivatives, or of
the state variables. In the state space it follows that

{
ż = A(z)z + B(z)u
y = C(z)z + D(z)u .

(A.55)

If the system is not time-invariant, the various matrices may also be explicit
functions of time {

ż = A(z, t)z + B(z, t)u
y = C(z, t)z + D(z, t)u .

(A.56)

Remark A.8 It is not possible to obtain a closed form solution of nonlinear
systems, and concepts like natural frequency or decay rate lose their meaning. It
is not even possible to distinguish between free and forced behavior, in the sense
that the free oscillations depend upon the zone of the state space where the system
operates.

In some zones of the state space the behavior of the system may be stable,
while in others it may be unstable.

In any case it is often possible to linearize the equations of motion about any
given working conditions, i.e. any given point of the state space, and to use the
linearized model so obtained in that area of the space state to study the motion
of the system and above all its stability. In this case the motion and stability are
studied in the small . It is, however, clear that no general result may be obtained
in this way.

If the state equation is written in the form (A.53), its linearization about a
point of coordinates z0 in the state space is

ż =
(

∂f1
∂z

)
z=z0

z + Bu , (A.57)

where
(

∂f1
∂z

)
z=z0

is the Jacobian matrix of function f1 computed in z0.
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If the formulation (A.55) is used, the linearized dynamics of the system
about point z0 may be studied through the linear equation{

ż = A(z0)z + B(z0)u
y = C(z0)z + D(z0)u .

(A.58)

Remark A.9 While the motion and stability in the small can be studied in
closed form, studying the motion in the large requires resorting to the numerical
integration of the equations of motion, that is, resorting to numerical simulation.

A.5 LAGRANGE EQUATIONS IN THE
CONFIGURATION AND STATE SPACE

In relatively simple systems it is possible to write the equations of motion directly
in the form of Eq. (A.3), by writing all forces, internal and external to the system,
acting on its various parts. However, if the system is complex, and in particular if
the number of degrees of freedom is large, it is expedient to resort to the methods
of analytical mechanics.

One of the simplest approaches to writing the equations of motion of multi-
degrees of freedom systems is by resorting to Lagrange equations. Consider a
generic mechanical system with n degrees of freedom, i.e. one whose configuration
may be expressed using n generalized coordinates xi. Its equations of motion can
in general be written in the form

d

dt

(
∂T
∂ẋi

)
− ∂T

∂xi
+

∂U
∂xi

+
∂F
∂ẋi

= Qi (i = 1,...., n), (A.59)

where:

• T is the kinetic energy of the system. This allows inertial forces to be
written in a synthetic way. In general,

T = T (ẋi, xi, t) .

The kinetic energy is basically a quadratic function of the generalized ve-
locities

T = T0 + T1 + T2 , (A.60)

where T0 does not depend on the velocities, T1 is linear and T2 is quadratic.

In linear systems, the kinetic energy must contain terms of the velocities
and coordinates having no powers higher than 2 or products of more than
two of them. As a consequence, T2 cannot contain displacements

T2 =
1
2

n∑
i=1

n∑
j=1

mijxixj =
1
2
ẋT Mẋ , (A.61)

where the terms mij don’t depend on either x or ẋ. If the system is time-
invariant, M is constant.
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T1 is linear in the velocities, and thus, if the system is linear, cannot contain
terms other than constant or linear in the displacements

T1 =
1
2
ẋT (M1x + f1) , (A.62)

where matrix M1 and vector f1 do not contain the generalized coordinates,
even if f1 may be a function of time even in time-invariant systems.

T0 does not contain generalized velocities but, in the case of linear sys-
tems, only contains terms with power not greater than 2 in the generalized
coordinates:

To =
1
2
xT Mgx + xT f2+e , (A.63)

where matrix Mg, vector f2 and scalar e are constant. Constant e does not
enter the equations of motion. As will be seen later, the structure of To is
similar to that of the potential energy. The term

U − T0

is often referred to as dynamic potential .

• U is the potential energy. It allows conservative forces to be expressed in a
synthetic form. In general,

U = U(xi) .

In linear systems, the potential energy is a quadratic form in the general-
ized coordinates and, apart from a constant term that does not enter the
equations of motion and thus has no importance, can be written as

U =
1
2
xT Kx + xT f0 , (A.64)

By definition the potential energy does not depend on the generalized ve-
locities and its derivatives with respect to the generalized velocities ẋi

vanish. Equation (A.59) is often written with reference to the Lagrangian
function

L = T − U
and becomes

d

dt

[
∂L
∂ẋi

]
− ∂L

∂xi
+

∂F
∂ẋi

= Qi . (A.65)

• F is the Raleigh dissipation function. It allows some types of damping
forces to be expressed in a synthetic form. In many cases F = F(ẋi), but
it may also depend upon the generalized coordinates. In linear systems, the
dissipation function is a quadratic form in the generalized velocities and,
apart from terms not depending upon ẋi that do not enter the equation of
motion and thus have no importance, may be written as

F =
1
2
ẋT Cẋ +

1
2
ẋT (C1x + f3) . (A.66)
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• Qi are generalized forces that cannot be expressed using the above men-
tioned functions. In general, Qi = Qi(q̇i, qi, t). In the case of linear systems,
these forces do not depend on the generalized coordinates and velocities,
and then

Qi = Qi(t) . (A.67)

In linear systems, by performing the relevant derivatives

∂(T − U)
∂ẋi

= Mẋ +
1
2

(M1x + f1) , (A.68)

d

dt

[
∂(T − U)

∂ẋi

]
= Mẍ +

1
2
M1ẋ + ḟ1 , (A.69)

∂(T − U)
∂xi

=
1
2
MT

1 ẋ + Mgx − Kx + f2 − f0 , (A.70)

∂F
∂ẋi

= Cẋ + C1x + f3 , (A.71)

the equation of motion becomes

Mẍ+
1
2

(
M1−MT

1

)
ẋ+Cẋ+(K−Mg + C1)x = −ḟ1 + f2−f3−f0+Q . (A.72)

Matrix M1 is normally skew-symmetric. However, even if it is not, it may
be written as the sum of a symmetrical and a skew-symmetrical part

M1 = M1symm + M1skew . (A.73)

By introducing this form into Eq. (A.72), the term

M1−MT
1

becomes

M1symm + M1skew − M1symm + M1skew = 2M1skew .

Only the skew-symmetric part of M1 is included in the equation of motion.
C1 is usually skew-symmetrical.

Writing M1skew as G and C1 (or at least its skew-symmetric part; if a
symmetric part existed, it could be included into matrix K) as H, and including
vectors f0, ḟ1, f2 and f3 into forcing functions Q, the equation of motion becomes

Mẍ + (C + G) ẋ + (K−Mg + H)x = Q . (A.74)

The mass, stiffness, gyroscopic and circulatory matrices M, K, G and H
have already been defined. The symmetric matrix Mg is often defined as a geo-
metric matrix2.

2Here the symbol Mg is used instead of the more common Kg to emphasize that it comes
from the kinetic energy.
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As already stated, a system in which T1 is not present is said to be natural .
Its equation of motion does not contain a gyroscopic matrix. In many cases T0

also is absent and the kinetic energy is expressed by Eq. (A.61).
The linearized equation of motion of a nonlinear system can be written in

two possible ways. The first is by writing the complete expression of the energies,
performing the derivatives obtaining the complete equations of motion and then
cancelling nonlinear terms.

The second is by reducing the expression of the energies to quadratic forms,
developing their expressions in power series and then truncating them after the
quadratic terms. The linearized equations of motion are then directly obtained.

Remark A.10 These two approaches yield the same result, but the first is usu-
ally more computationally intensive. At any rate, a set of n second order equa-
tions are obtained: These are either linear or nonlinear depending on the system
under study.

To write the state equations, a number n of kinematic equations must be
written

ẋi = vi (i = 1,...., n). (A.75)

If the state vector is defined in the usual way

z =
{

v
x

}
,

this procedure is straightforward.

A.6 HAMILTON EQUATIONS AND PHASE SPACE

If the generalized momenta are used as auxiliary variables instead of the gener-
alized velocities, the equations are written with reference to the phase space and
phase vector instead of the state space and vector.

The generalized momenta are defined, starting from the Lagrangian L, as

p =
∂L
∂ẋi

. (A.76)

If the system is a natural linear system, this definition reduces to the usual
one

p = Mẋ . (A.77)

By including the forces coming from the dissipation function in the gener-
alized forces Qi, the Lagrange equation simplifies as

ṗi=
∂L
∂xi

+ Qi . (A.78)
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A function H(ẋi, xi, t), called the Hamiltonian function, is defined as

H = pT ẋ−L . (A.79)

Because H is a function of pi, xi and t (H(pi, xi, t)), the differential δH is

δH =
n∑

i=1

(
∂H
∂pi

δpi +
∂H
∂xi

δxi

)
. (A.80)

On the other hand, Eq. (A.79) yields

δH =
n∑

i=1

(
piδẋi + ẋiδpi −

∂L
∂xi

δxi −
∂L
∂ẋi

δẋi

)
= (A.81)

=
n∑

i=1

(
ẋiδpi −

∂L
∂xi

δxi

)
,

and then

∂H
∂pi

= ẋi ,
∂H
∂xi

= − ∂L
∂xi

. (A.82)

The 2n phase space equations are then
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi =
∂H
∂pi

ṗi= − ∂H
∂xi

+ Qi .

(A.83)

A.7 LAGRANGE EQUATIONS IN TERMS
OF PSEUDO COORDINATES

While in vehicle dynamics Hamilton equations are seldom used, the state equa-
tions are often written with reference to generalized velocities that are not simply
the derivatives of the generalized coordinates. In particular, it is often expedient
to use suitable combinations of the derivatives of the coordinates vi = ẋi as
generalized velocities

{wi} = AT {ẋi} , (A.84)

where the coefficients of the linear combinations included into matrix AT may
be constant, but in general are functions of the generalized coordinates.

Equation (A.84) may be inverted, obtaining

{ẋi} = B {wi} , (A.85)
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where
B = A−T (A.86)

and symbol A−T indicates the inverse of the transpose of matrix A.
In some cases matrix AT is a rotation matrix whose inverse coincides with

its transpose. In such cases
B = A−T = A .

However, this generally does not occur and

B �= A .

While vi are the derivatives of the coordinates xi, it is usually not possible
to express wi as the derivatives of suitable coordinates. Eq. (A.84) can be written
in the infinitesimal displacements dxi

{dθi} = AT {dxi} , (A.87)

obtaining a set of infinitesimal displacements dθi, corresponding to velocities wi.
Equations (A.87) can be integrated, yielding displacements θi corresponding to
the velocities wi, only if

∂ajs

∂xk
=

∂aks

∂xj
.

Otherwise equations (A.87) cannot be integrated and velocities wi cannot
be considered as the derivatives of true coordinates. In such cases they are said
to be the derivatives of pseudo-coordinates.

As a first consequence of the non-existence of coordinates corresponding to
velocities wi, Lagrange equation (A.59) cannot be written directly using veloci-
ties wi (which cannot be considered as derivatives of the new coordinates), but
must be modified to allow the use of velocities and coordinates that are not
direct derivatives of each other.

The use of pseudo-coordinates is fairly common, particularly in vehicle dy-
namics. If, for instance, the generalized velocities in a reference frame following
the body in its motion are used in the dynamics of a rigid body, while the coor-
dinates xi are the displacements in an inertial frame, matrix AT is simply the
rotation matrix allowing passage from one reference frame to the other. Matrix
B then coincides with A, but neither is symmetrical. The velocities in the body-
fixed frame cannot therefore be considered as the derivatives of the displacements
in that frame.

Remark A.11 The body-fixed frame rotates continuously so that it is not possi-
ble to integrate the velocities along the body-fixed axes to obtain the displacements
along the same axes. This fact notwithstanding, it is possible to use the compo-
nents of the velocity along the body-fixed axes to write the equations of motion.

The kinetic energy can be written in general in the form

T = T (wi, xi, t) .
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The derivatives ∂T
∂ẋi

included into the equations of motion are

∂T
∂ẋk

=
n∑

i=1

∂T
∂wi

∂wi

∂ẋk
, (A.88)

i.e., in matrix form, {
∂T
∂ẋ

}
= A

{
∂T
∂w

}
, (A.89)

where {
∂T
∂ẋ

}
=

[
∂T
∂ẋ1

∂T
∂ẋ2

...

]T

,

{
∂T
∂w

}
=

[
∂T
∂w1

∂T
∂w2

...

]T

.

By differentiating with respect to time, it follows that

∂

∂t

({
∂T
∂ẋ

})
= A

∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
, (A.90)

The generic element ȧjk of matrix Ȧ is

ȧjk =
n∑

i=1

∂ajk

∂xi
ẋi = ẋT

{
∂ajk

∂x

}
, (A.91)

and then

ȧjk = wT BT

{
∂ajk

∂x

}
. (A.92)

The various ȧjk so computed can be written in matrix form

Ȧ =
[
wT BT

{
∂ajk

∂x

}]
. (A.93)

The computation of the derivatives of the generalized coordinates
{

∂T
∂x

}
is

usually less straightforward. The generic derivative ∂T
∂xk

is

∂T ∗

∂xk
=

∂T
∂xk

+
n∑

i=1

∂T
∂wi

∂wi

∂xk
=

∂T
∂xk

+
n∑

i=1

∂T
∂wi

n∑
j=1

∂aij

∂xk
ẋj , (A.94)

where T ∗ is the kinetic energy expressed as a function of the generalized coor-
dinates and their derivatives (the expression to be introduced into the Lagrange
equation in its usual form), while T is expressed as a function of the generalized
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coordinates and of the velocities in the body-fixed frame. Equation (A.94) can
be written as

∂T ∗

∂xk
=

∂T
∂xk

+ wT BT ∂A
∂xk

{
∂T
∂w

}
, (A.95)

where product wT BT ∂A
∂xk

yields a row matrix with n elements, which multiplied
by the column matrix

{
∂T
∂w

}
yields the required number.

By combining these row matrices, a square matrix is obtained

[
wT BT ∂A

∂xk

]
, (A.96)

and then the column containing the derivatives with respect to the generalized
coordinates is

{
∂T ∗

∂x

}
=

{
∂T
∂x

}
+

[
wT BT ∂A

∂x

]{
∂T
∂w

}
. (A.97)

By definition, the potential energy does not depend on the generalized ve-
locities. Thus the term ∂U

∂xi
is not influenced by the way the generalized velocities

are written. Finally, the derivatives of the dissipation function are

{
∂F
∂ẋ

}
= A

{
∂F
∂w

}
(A.98)

The equation of motion (A.59) is then

A
∂

∂t

({
∂T
∂w

})
+ Γ

{
∂T
∂w

}
−

{
∂T
∂x

}
+

{
∂U
∂x

}
+ A

{
∂F
∂w

}
= Q , (A.99)

where

Γ =
[
wT BT

{
∂ajk

∂x

}]
−
[
wT BT ∂A

∂xk

]
(A.100)

and Q is a vector containing the n generalized forces Qi.
By premultiplying all terms by matrix BT = A−1 and attaching the kine-

matic equations to the dynamic equations, the final form of the state space
equations is obtained

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂T
∂w

})
+ BTΓ

{
∂T
∂w

}
− BT

{
∂T
∂x

}
+ BT

{
∂U
∂x

}
+

{
∂F
∂w

}
= BT Q

{q̇i} = B {wi} .
(A.101)
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A.8 MOTION OF A RIGID BODY

A.8.1 Generalized coordinates

Consider a rigid body free in tri-dimensional space. Define an inertial reference
frame OXY Z and a frame Gxyz fixed to the body and centred in its center
of mass. The position of the rigid body is defined once the position of frame
Gxyz is defined with respect to OXY Z, that is, once the transformation leading
OXY Z to coincide with Gxyz is defined. It is well known that the motion of the
second frame can be considered as the sum of a displacement plus a rotation.
The parameters to be defined are therefore 6: 3 components of the displacement,
two of the components of the unit vector defining the rotation axis (the third
component need not be defined and may be computed from the condition that
the unit vector has unit length) and the rotation angle. A rigid body thus has
six degrees of freedom in tri-dimensional space.

There is no problem in defining the generalized coordinates for the transla-
tional degrees of freedom, because the coordinates of the center of mass G in any
inertial reference frame (in particular, in frame OXY Z) are usually the simplest,
and the most obvious, choice. For the other generalized coordinates the choice is
much more complicated. It is possible to resort, for instance, to two coordinates
of a second point and to one of the coordinates of a third point (not on a straight
line through the other two), but this choice is far from being the most expedient.

An obvious way to define the rotation of frame Gxyz with respect to OXY Z
is to directly express the rotation matrix linking the two reference frames. It is
a square matrix of size 3× 3 (in tri-dimensional space) and thus has 9 elements.
Three of these are independent, while the other 6 may be obtained from the first
3 using suitable equations.

Alternatively, the position of the body-fixed frame can be defined with a
sequence of three rotations about the axes. Because rotations are not vectors,
the order in which they are performed must be specified.

Start rotating, for instance, the inertial frame about the X-axis. The second
rotation may be performed about axes Y or Z (obviously in the position they
take after the first rotation), but not about X-axis, because in the latter case
the two rotations would simply add to each other and would amount to a single
rotation. Assume, for instance, that the frame is rotated about the Y -axis. The
third rotation may occur about either the X-axis or the Z-axis (in the new
position, taken after the second rotation), but not about the Y -axis.

The possible rotation sequences are 12, but may be subdivided into two
types: Those like X → Y → X or X → Z → X, where the third rotation occurs
about the same axis as the first, and those like X → Y → Z or X → Z → Y ,
where the third rotation is performed about a different axis.

In the first cases the angles are said to be Euler angles, because they are of
the same type as the angles Euler proposed to study the motion of gyroscopes
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(precession φ about the Z-axis, nutation θ about the X-axis and rotation ψ, again
about the Z-axis). In the second case they are said to be Tait-Bryan angles3.

The possible rotation sequences are reported in the following table

First X Y Z
Second Y Z X Z X Y
Third X Z X Y Y Z Y X Z Y Z X

Type E TB E TB E TB E TB E TB E TB

In the case of vehicle dynamics Euler angles have the drawback of being
indeterminate when plane xy of the rigid body is parallel to THE XY -plane of
the inertial frame. They also yield indications that are less intuitively clear.

In the dynamics of vehicles the most common approach is to use Tait-Bryan
angles of the type Z → Y → X so defined (Fig. A.5):

• Rotate frame XY Z (whose XY plane is parallel to the ground) about the
Z-axis until axis X coincides with the projection of the x-axis on plane
XY (Fig. A.5a). Such a position of the X-axis can be indicated as x∗; the
rotation angle between axes X and x∗ is the yaw angle ψ. The rotation
matrix allowing passage from the x∗y∗Z frame, which will be defined as
the intermediate frame, to the inertial frame XY Z is

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ . (A.102)

FIGURE A.5. Definition of angles: yaw ψ (a), pitch θ (b) and roll φ (c).

3Sometimes all sets of three ordered angles are said to be Euler angles. With this wider
definition Tait-Brian angles are also considered as Euler angles.
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• The second rotation is the pitch rotation θ about the y∗-axis, so that axis
x∗ reaches the position of the x-axis (Fig. A.5b). The rotation matrix is

R2 =

⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦ . (A.103)

• The third rotation is the roll rotation φ about the x-axis, so that axes y∗

and z∗ coincide with axes y and z (Fig. A.5c). The rotation matrix is

R3 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ . (A.104)

The rotation matrix allowing any vector in the body-fixed frame xyz to be
rotated to the inertial frame XY Z is clearly the product of the three matrices

R = R1R2R3 . (A.105)

Deriving the product of the rotation matrices, it follows that

R=

⎡
⎣ c(ψ)c(θ) c(ψ)s(θ)s(φ) − s(ψ)c(φ) c(ψ)s(θ)c(φ) + s(ψ)s(φ)

s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ) − c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

⎤
⎦ ,

(A.106)
where symbols cos and sin have been replaced by c and s.

Roll and pitch angles are sometimes small. In this case it is expedient to
keep the last two rotations separate from the first ones, which cannot usually be
linearized.

The product of the rotation matrices related to the last two rotations is

R2R3. =

⎡
⎣ cos(θ) sin(θ) sin(φ) sin(θ) cos(φ)

0 cos(φ) − sin(φ)
− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)

⎤
⎦ , (A.107)

which becomes, in the case of small angles

R2R3 ≈

⎡
⎣ 1 0 θ

0 1 −φ
−θ φ 1

⎤
⎦ . (A.108)

The angular velocities ψ̇, θ̇ and φ̇ are not applied along the x, y and z axes,
and thus are not the components Ωx, Ωy and Ωz of the angular velocity in the
body-fixed reference frame4. Their directions are those of axes Z, y∗ and x, and
then the angular velocity in the body-fixed frame is

4Symbols p, q and r are often used for the components of the angular velocity in the
body-fixed frame.
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⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ = φ̇ex + θ̇RT

3 ey + ψ̇
[
R2R3

]T
ez , (A.109)

where the unit vectors are obviously

ex =

⎧⎨
⎩

1
0
0

⎫⎬
⎭ , ey =

⎧⎨
⎩

0
1
0

⎫⎬
⎭ , ez =

⎧⎨
⎩

0
0
1

⎫⎬
⎭ . (A.110)

By deriving the products, it follows that
⎧⎨
⎩

Ωx = φ̇ − ψ̇ sin(θ)
Ωy = θ̇ cos(φ) + ψ̇ sin(φ) cos(θ)
Ωz = ψ̇ cos(θ) cos(φ) − θ̇ sin(φ) ,

(A.111)

or, in matrix form
⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(φ) cos(θ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (A.112)

If the pitch and roll angles are small enough to linearize the relevant trigono-
metric functions, the components of the angular velocity may be approximated
as ⎧⎨

⎩
Ωx = φ̇ − θψ̇

Ωy = θ̇ + φψ̇

Ωz = ψ̇ − φθ̇ .

(A.113)

Other alternatives sometimes used in vehicle modelling, such as quaternions,
will not be dealt with here.

A.8.2 Equations of motion - Lagrangian approach

Consider a rigid body in tri-dimensional space and chose as generalized coordi-
nates the displacements X, Y and Z of its center of mass and angles ψ, θ and
φ. Assuming that the body axes xyz are principal axes of inertia, the kinetic
energy of the rigid body is

T = 1
2m

(
Ẋ2 + Ẏ 2 + Ż2

)
+ 1

2Jx

[
φ̇ − ψ̇ sin(θ)

]2

+

+ 1
2Jy

[
θ̇ cos(φ) + ψ̇ sin(φ) cos(θ)

]2

+

+ 1
2Jz

[
ψ̇ cos(θ) cos(φ) − θ̇ sin(φ)

]2

.

(A.114)

Introducing the kinetic energy into the Lagrange equations

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi ,
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and performing the relevant derivatives, the six equations of motion are directly
obtained. The three equations for translational motion are⎧⎨

⎩
mẌ = QX

mŸ = QY

mZ̈ = QZ .
(A.115)

The equations for rotational motion are much more complicated

ψ̈
[
Jx sin2(θ) + Jy sin2(φ) cos2(θ) + Jz cos2(φ) cos2(θ)

]
+

−φ̈Jx sin(θ) + θ̈ (Jy − Jz) sin(φ) cos(φ) cos(θ)+
+φ̇θ̇ cos(θ)

{[
1 − 2 sin2(φ)

]
(Jy − Jz) − Jx

}
+

+2φ̇ψ̇ (Jy − Jz) cos(φ) cos2(θ) sin(φ)+
+2θ̇ψ̇ sin(θ) cos(θ)

[
Jx − sin2(φ)Jy − cos2(φ)Jz

]
+

+θ̇
2
(−Jy + Jz) sin(φ) cos(φ) sin(θ) = Qψ,

ψ̈ (Jy − Jz) sin(φ) cos(θ) cos(φ) + θ̈
[
Jy cos2(φ) + Jz sin2(φ)

]
+

+2φ̇θ̇ (Jz − Jy) sin(φ) cos(φ) + φ̇ψ̇ (Jy − Jz) cos(θ)
[
1 − 2 sin2(φ)

]
+

+ψ̇φ̇Jx cos(θ) − ψ̇
2
sin(θ) cos(θ)

[
Jx − Jy sin2(φ) − Jz cos2(φ)

]
= Qθ,

(A.116)

Jxφ̈ − sin(θ)Jxψ̈ − θ̇ψ̇Jz sin2(φ) cos(θ)+
−ψ̇θ̇ cos(θ)

{
Jx + Jy

[
1 − 2 sin2(φ)

]
− Jz cos2(φ)

}
+

+θ̇
2
(Jy − Jz) sin(φ) cos(φ) − ψ̇

2
(Jy − Jz) cos(φ) cos2(θ) sin(φ) = Qφ .

Angle ψ does not appear explicitly in the equations of motion. If the roll
and pitch angles are small all trigonometric functions can be linearized. If the
angular velocities are also small, the equations of motion for rotations reduce to⎧⎨

⎩
Jzψ̈ = Qψ

Jy θ̈ = Qθ

Jxφ̈ = Qφ .
(A.117)

In this case, the kinetic energy may be directly simplified, by developing
the trigonometric functions in Taylor series and neglecting all terms containing
products of three or more small quantities. For instance, the term[

φ̇ − ψ̇ sin(θ)
]2

reduces to [
φ̇ − ψ̇θ + ψ̇θ3/6 + ...

]2

and then to φ̇
2
, because all other terms contain products of at least three small

quantities. The kinetic energy then reduces to

T ≈ 1
2
m

(
Ẋ2 + Ẏ 2 + Ż2

)
+

1
2

(
Jxφ̇

2
+ Jy θ̇

2
+ Jzψ̇

2
)

. (A.118)
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Remark A.12 This approach is simple only if the roll and pitch angles are
small. If they are not, the equations of motion obtained in this way in terms of
angular velocities φ̇, θ̇ and ψ̇ are quite complicated and another approach is more
expedient.

A.8.3 Equations of motion using pseudo-coodinates

Because the forces and moments applied to the rigid body are often written with
reference to the body-fixed frame, the equations of motion are best written with
reference to the same frame. The kinetic energy can then be written in terms of
the components vx, vy and vz (often referred to as u, v and w) of the velocity
and Ωx, Ωx e Ωx (often referred to as p, q and r) of the angular velocity.

If the body fixed frame is a principal frame of inertia, the expression of the
kinetic energy is

T =
1
2
m

(
v2

x + v2
y + vz

2
)

+
1
2
(
JxΩ2

x + JyΩ2
y + JzΩ2

z

)
.

The components of the velocity and the angular velocity in the body fixed
frame are not the derivatives of coordinates, but are linked to the coordinates
by the six kinematic equations

⎧⎨
⎩

vx

vy

vz

⎫⎬
⎭ = RT

⎧⎨
⎩

Ẋ

Ẏ

Ż

⎫⎬
⎭ , (A.119)

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ , (A.120)

that is, in more compact form,

w = AT q̇ , (A.121)

where the vectors of the generalized velocities and of the derivatives of the gen-
eralized coordinates are

w =
[

vx vy vz Ωx Ωy Ωz

]T , (A.122)

q̇ =
[

Ẋ Ẏ Ż φ̇ θ̇ ψ̇
]T

(A.123)

and matrix A is

A =

⎡
⎢⎢⎣

R 0

0

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦

T

⎤
⎥⎥⎦ . (A.124)
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Note that the second submatrix is not a rotation matrix (the first submatrix
is) and then

A−1 �= AT ; B �= A . (A.125)

The inverse transformation is Eq. (A.85)

q̇ = Bw ,

where B = A−T.
None of the velocities included in vector w can be integrated to obtain a set

of generalized coordinates, and must all be considered as derivatives of pseudo-
coordinates.

The state space equation, made up of the six dynamic and the six kinematic
equations, is then equation (A.101), simplified because in the present case neither
the potential energy nor the dissipation function are present

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂T
∂w

})
+ BTΓ

{
∂T
∂w

}
− BT

{
∂T
∂q

}
= BT Q

{q̇i} = B {wi} .

(A.126)

Here BT Q is simply a column matrix containing the three components of
the force and the three components of the moment applied to the body along
the body-fixed axes x, y, z.

The most difficult part of the computation is writing matrix BTΓ. Perform-
ing rather difficult computations it follows that

BTΓ =

[
Ω̃ 0
Ṽ Ω̃

]
. (A.127)

where Ω̃ and Ṽ are skew-symmetric matrices containing the components of the
angular and linear velocities

Ω̃ =

⎡
⎣ 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

⎤
⎦ , Ṽ =

⎡
⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤
⎦ . (A.128)

If the body-fixed axes are principal axes of inertia, the dynamic equations
are simply ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mv̇x = mΩzvy − mΩyvz + Fx

mv̇y = mΩxvz − mΩzvx + Fy

mv̇z = mΩyvx − mΩxvy + Fz

JxΩ̇x = ΩyΩz (Jy − Jz) + Mx

JyΩ̇y = ΩxΩz (Jz − Jx) + My

JzΩ̇z = ΩxΩy (Jx − Jy) + Mx

(A.129)

Remark A.13 The equations so obtained are much simpler than equations
(A.116). The last three equations are nothing other than Euler equations.



Appendix B
DYNAMICS OF MOTOR CYCLES

When studying the handling behavior of a two-wheeled vehicle, rolling motions
and, to a lesser extent, gyroscopic moments must not be neglected. A linearized
model similar in many respects to that seen in Part IV for single-track vehicles
may be built.

Linearization obviously requires that the roll angle be small, severely limit-
ing the applicability of such a model to the study of stability on straight roads
and operating conditions where the lateral acceleration is small compared to
gravitational acceleration.

The mass of the driver, who controls the vehicle not only by acting on the
steering but also displacing his body, can be a substantial fraction of the total
mass. Moreover, a two-wheeled vehicle is intrinsically unstable. The driver thus
has to perform as a stabilizer for the capsize mode.

Finally, the body of the driver, acting as an aerodynamic brake or control
surface, contributes in a substantial way to aerodynamic forces. To model a two-
wheeled vehicle without modelling the driver is merely a first approximation
approach, useful for conditions in which only low performance is required.

In such cases the vehicle can be modelled as a rigid body that also includes
the driver. A sketch of the vehicle model is shown in Fig. B.1. The reference
frame Hxyz is fixed to such a rigid body, with origin at point H defined in the
same way as for the model of the vehicle on elastic suspensions. Its position is
defined by the yaw and roll angles ψ and φ; the first is defined as for a vehicle
with four wheels. The roll angle is defined as the angle between the z axis and the
perpendicular to the ground. The roll axis is assumed to pass through the centers
of the contact areas of the tires, a rough approximation only because motor cycle
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FIGURE B.1. Model for a two wheeled vehicle; reference frames and main geometrical
definitions

tires usually have a considerably rounded transversal profile. In locked control
dynamics the steering angle δ is an input, while in free control dynamics it is
one of the variables of motion.

The main difficulty is linked to the high values, even larger than 45◦, that
the roll angle may take: In these conditions, assumption of small angles does not
hold. The kinematic of the steering system is further complicated by the large
values that the caster angle (η in Fig. B.1) may take. The caster offset, shown in
the figure with symbol e, may be relatively large and is an important parameter
in the study of the behavior of motor cycles.

Since angle η may be not small, the steering angle δs measured on the ground
does not coincide with the steering angle δ at the handlebar. If the roll angle is
small, it follows that

δs ≈ δ cos (η) . (B.1)

The trajectory curvature gain in kinematic conditions is then

(
1

Rδ

)
c

≈ 1
l
δ cos (η) . (B.2)

It follows that the more the steering axis is inclined with respect to the
vertical, the lower the trajectory curvature gain and the less manoeuvrable the
vehicle.



B.1 Basic definitions 699

B.1 BASIC DEFINITIONS

The generalized coordinates are the coordinates X and Y of point H in the
inertial frame XY Z and the yaw ψ and roll φ angles. The steering angle δ may
be considered as a variable of the motion (free controls) or an input (locked
controls).

The components of the velocity in the body-fixed frame u and v are linked
to the derivatives of the generalized coordinates Ẋ, Ẏ in the inertial frame by
the usual relationship

⎧⎨
⎩

u
v
0

⎫⎬
⎭ = RT

1

⎧⎨
⎩

Ẋ

Ẏ
0

⎫⎬
⎭ =

⎡
⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦
⎧⎨
⎩

Ẋ

Ẏ
0

⎫⎬
⎭ , (B.3)

where R1 is the yaw rotation matrix.
The angular velocities Ωx, Ωy and Ωz about the body axes are linked to the

roll velocity p = φ̇ and yaw velocity r = ψ̇ by the relationship

Ω =

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎧⎨
⎩

φ̇
0
0

⎫⎬
⎭ + RT

2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ , (B.4)

where R2 is the roll rotation matrix

R2 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ .

Performing the relevant computations, the relationship linking the angular
velocities about the axes of the body-fixed frame and the derivatives of the
generalized coordinates is

Ω =

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ = AT

{
φ̇

ψ̇

}
=

⎧⎨
⎩

φ̇

ψ̇ sin(φ)
ψ̇ cos(φ)

⎫⎬
⎭ , (B.5)

where

AT =

⎡
⎣ 1 0

0 sin(φ)
0 cos(φ)

⎤
⎦ . (B.6)

The angular velocity of the steering system Ω1 must be explicitly computed
when studying motion in free controls conditions

Ω1=

⎧⎨
⎩

0
0
δ̇

⎫⎬
⎭ + RT

3 RT
η

⎧⎨
⎩

φ̇
0
0

⎫⎬
⎭ + RT

3 RT
η RT

2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ , (B.7)
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i.e.

Ω1=

⎧⎨
⎩

0
0
δ̇

⎫⎬
⎭ + RT

3 RT
η Ω , (B.8)

where matrices R3 (steering rotation) and RT
η (matrix defining the direction of

the steering axis) are

R3 =

⎡
⎣ cos(δ) − sin(δ) 0

sin(δ) cos(δ) 0
0 0 1

⎤
⎦ , Rη =

⎡
⎣ cos(η) 0 − sin(η)

0 1 0
sin(η) 0 cos(η)

⎤
⎦ .

The final expression of the angular velocity of the steering system is

Ω1=

⎧⎨
⎩

φ̇ cos(η) cos(δ) + ψ̇ [cos(φ) sin(η) cos(δ) + sin(φ) sin(δ)]
−φ̇ cos(η) sin(δ) + ψ̇ [− cos(φ) sin(η) sin(δ) + sin(φ) cos(δ)]

δ̇ − φ̇ sin(η) + ψ̇ cos(φ) cos(η)

⎫⎬
⎭ . (B.9)

The position of the mass center G is

(G − O) =

⎧⎨
⎩

X
Y
0

⎫⎬
⎭ + R1R2

⎧⎨
⎩

0
0
h

⎫⎬
⎭ . (B.10)

The velocity of the same point is then

VG =

⎧⎨
⎩

Ẋ

Ẏ
0

⎫⎬
⎭ +

(
Ṙ1R2 + R1Ṙ2

)⎧⎨
⎩

0
0
h

⎫⎬
⎭ , (B.11)

that is

VG =

⎧⎨
⎩

Ẋ + hψ̇ cos(ψ) sin(φ) + hφ̇ sin(ψ) cos(φ)
Ẏ + hψ̇ sin(ψ) sin(φ) − hφ̇ cos(ψ) cos(φ)

−hφ̇ sin(φ)

⎫⎬
⎭ . (B.12)

In the study of free controls dynamics, the position and velocity of the center
of mass will be assumed to be unaffected by the steering angle δ.

The translational and rotational kinetic energies are respectively:

Tt =
1
2
mV 2

G , (B.13)

Tr =
1
2

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭

T ⎡
⎣ Jx 0 Jxz

0 Jy 0
Jxz 0 Jz

⎤
⎦
⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ ,

i.e.

Tr =
1
2

{
φ̇

ψ̇

}T

A

⎡
⎣ Jx 0 Jxz

0 Jy 0
Jxz 0 Jz

⎤
⎦AT

{
φ̇

ψ̇

}
.
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The expression of the kinetic energy of the system is

T =
1
2
m

(
Ẋ2 + Ẏ 2

)
+

1
2
φ̇

2
J∗

x +
1
2
ψ̇2

[
Jz cos2(φ) + J∗

y sin2(φ)
]
+

+ ψ̇φ̇Jxz cos(φ) + mh
[
Ẋψ̇ sin(φ) − Ẏ φ̇ cos(φ)

]
cos(ψ) + (B.14)

+mh
[
Ẋφ̇ cos(φ) + Ẏ ψ̇sin(φ)

]
sin(ψ) ,

where
J∗

x = Jx + mh2, J∗
y = Jy + mh2

are the roll and pitch moments of inertia with respect to a reference frame set
on the ground.

The kinetic energy of the steering system due to steering motion, needed to
study the free controls behavior, is

Tr1 =
1
2
Ω1

T J1Ω1 , (B.15)

where J1 is the inertia tensor of the steering system. The kinetic energy of the
steering system and the front wheel were already partly taken into account in
the expression of the kinetic energy of the vehicle.

Since the steering angle is small in normal vehicle use, the trigonometric
functions of δ will be linearized when computing the kinetic energy Tr1 . It then
follows that

Tr1 = T01 +
1
2
Jz1δ̇

2
+ δ̇ψ̇ [Jz1 cos (η) + Jxz1 sin (η) cos (φ)] + (B.16)

+ δ̇ψ̇ [−Jz1 sin (η) + Jxz1 cos (η)] + A1δψ̇
2

+ A2δφ̇
2

+ A3δψ̇φ̇ ,

where the terms that do not depend on δ, and thus have already been accounted
for in the expression used for locked controls motion, are included in T01 . Terms
Ai are:

A1 =
(
Jx1 − Jy1

)
sin (φ) cos (φ) sin (η) + Jxz1 [sin (φ) cos (φ) cos (η)] ,

A2 = Jxz1 sin (φ) ,
A3 =

(
Jx1 − Jy1

)
cos (η) sin (φ) − Jxz1 sin2 (η) .

(B.17)

These will be neglected in the following equations.
The kinetic energy of the wheels due to rotation about their axis must be

computed to take into account their gyroscopic moments as well.
If χi is the rotation angle of the ith wheel, the angular velocity of the rear

wheel is

Ωw2 =

⎧⎨
⎩

φ̇
χ̇2

0

⎫⎬
⎭ + RT

2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ = Ω +

⎧⎨
⎩

0
χ̇2

0

⎫⎬
⎭ , (B.18)



702 Appendix B. DYNAMICS OF MOTOR CYCLES

i.e.,

Ωw2 =

⎧⎨
⎩

φ̇

ψ̇ sin(φ) + χ̇2

ψ̇ cos(φ)

⎫⎬
⎭ . (B.19)

Things are more complicated for the front wheel, because it can steer:

Ωw1 = Ω1 +

⎧⎨
⎩

0
χ̇1

0

⎫⎬
⎭ . (B.20)

In locked controls motion the kinetic energy of the ith wheel is

Tri
=

1
2
ΩT

wiJwiΩwi , (B.21)

where, because the wheels are gyroscopic solids (two of their moments of inertia
are equal to each other) the inertia matrix Jri

reduces to

Jwi
=

⎡
⎣ Jti

0 0
0 Jpi

0
0 0 Jti

⎤
⎦ .

Stating Ω1 = Ω, and remembering that, at least as a first approximation,
the angular velocity of the wheel is

χ̇i =
V

Rei

, (B.22)

the kinetic energy is

Tri
=

1
2
Jti

φ̇
2

+
1
2
Jti

ψ̇
2
cos2(φ) +

1
2
Jpi

ψ̇
2
sin2 (φ) +

1
2
V 2

J2
pi

R2
ei

+ V ψ̇ sin (φ)
Jpi

Rei

.

(B.23)
The first three terms were already included in the rotational kinetic energy

of the vehicle. It then becomes possible to account for the energy due to wheel
rotation simply by adding the term

ΔT =
1
2
V 2

(
J2

p1

R2
e1

+
J2

p2

R2
e2

)
+ V ψ̇ sin (φ)

(
Jp1

Re1

+
Jp2

Re2

)
, (B.24)

to the already computed value of the kinetic energy.
If the steering control is free, the expression of the kinetic energy is much

more complicated. With somewhat complex computations, assuming that angle
δ is small, a further increase of the kinetic energy is obtained

ΔT1 = −V
Jp1

Re1

δ
[
ψ̇ cos (φ) sin (η) + φ̇ cos (η)

]
. (B.25)

The gravitational potential energy is:

U = mgh cos (φ) . (B.26)
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B.2 LOCKED CONTROLS MODEL

B.2.1 Equations of motion

The locked controls Lagrangian function is

L =
1
2
m

(
Ẋ2 + Ẏ 2

)
+

1
2
φ̇

2
J∗

x +
1
2
ψ̇2

[
Jz cos2(φ) + J∗

y sin2(φ)
]
+

+ ψ̇φ̇Jxz cos(φ) + mh
[
Ẋψ̇ sin(φ) − Ẏ φ̇ cos(φ)

]
cos(ψ)+ (B.27)

+mh
[
Ẋφ̇ cos(φ) + Ẏ ψ̇sin(φ)

]
sin(ψ)+

1
2
V 2

(
J2

p1

R2
e1

+
J2

p2

R2
e2

)
+

+V ψ̇ sin (φ)
(

Jp1

Re1

+
Jp2

Re2

)
− mgh cos (φ) .

First two equations of motion

The derivatives entering the first two equations are

∂L
∂Ẋ

= m
[
Ẋ + hψ̇ sin(φ) cos(ψ) + hφ̇ cos(φ) sin(ψ)

]
,

∂L
∂Ẏ

= m
[
Ẏ + hψ̇ sin(φ) sin(ψ) − hφ̇ cos(φ) cos(ψ)

]
,

∂L
∂X

=
∂L
∂Y

= 0 .

(B.28)

Remembering that
{

Ẋ

Ẏ

}
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
u
v

}
= R1

{
u
v

}
, (B.29)

it follows that

∂T
∂Ẋ

= m
[
u + hψ̇ sin(φ)

]
cos(ψ) − m

[
v − hφ̇ cos(φ)

]
sin(ψ) ,

∂T
∂Ẏ

= m
[
u + hψ̇ sin(φ)

]
sin(ψ) + m

[
v − hφ̇ cos(φ)

]
cos(ψ) .

(B.30)

By performing the derivatives with respect to time, and collecting the terms
in cos(ψ) and sin(ψ), the following equations of motion can be obtained

m

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
× (B.31)
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×
{

u̇ − hψ̇v + hψ̈ sin(φ) + 2hψ̇φ̇ cos(φ)
v̇+uψ̇ − hφ̈cos(φ) + hφ̇

2
sin (φ) + hψ̇

2
sin (φ) .

}
=

{
QX

QY

}
.

Remembering that
{

QX

QY

}
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
Qx

Qy

}
= R1

{
Qx

Qy

}
, (B.32)

the first two equations reduce to
⎧⎪⎨
⎪⎩

m
[
u̇ − hψ̇v + hψ̈ sin(φ) + 2hψ̇φ̇ cos(φ)

]
= Qx ,

m
[
v̇ + uψ̇ − hφ̈cos(φ) + hφ̇

2
sin (φ) + hψ̇

2
sin (φ)

]
= Qy .

(B.33)

Third equation of motion

The third equation, describing the yaw angle ψ, can be obtained in the same
way. The derivatives are

∂L
∂ψ̇

= ψ̇
[
Jz cos2(φ) + J∗

y sin2(φ)
]

+ φ̇Jxz cos(φ) +

+ mhsin(φ)
[
Ẋ cos(ψ) + Ẏ sin(ψ)

]
+V sin (φ)

(
Jp1
Re1

+ Jp2
Re2

)
,

∂L
∂ψ

= −mh
[
Ẋψ̇ sin(φ) − Ẏ φ̇ cos(φ)

]
sin (ψ) +

+mh
[
Ẋφ̇ cos(φ) + Ẏ ψ̇sin(φ)

]
cos (ψ) ,

(B.34)

and then

d

dt

(
∂L
∂ψ̇

)
= ψ̈

[
Jz cos2(φ) + J∗

y sin2(φ)
]
+ 2ψ̇φ̇

(
−Jz + J∗

y

)
sin(φ) cos(φ)

+ φ̈Jxz cos(φ) − φ̇
2
Jxzsin(φ) +mhφ̇ cos (φ)

[
Ẋ cos(ψ) + Ẏ sin(ψ)

]
+

+ mhsin(φ)
[
Ẍ cos(ψ) + Ÿ sin(ψ)

]
+ +V φ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
+

+ mhψ̇sin(φ)
[
−Ẋ sin(ψ) + Ẏ cos(ψ)

]
+ V̇ sin (φ)

(
Jp1
Re1

+ Jp2
Re2

)
.
(B.35)

The third equation is then

ψ̈
[
Jz cos2(φ) + J∗

y sin2(φ)
]
+ 2ψ̇φ̇

(
−Jz + J∗

y

)
sin(φ) cos(φ)+

+ φ̈Jxz cos(φ) − φ̇
2
Jxzsin(φ)+ + mhsin(φ)

[
Ẍ cos(ψ) + Ÿ sin(ψ)

]
+

+ V̇ sin (φ)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ .

(B.36)

Because
Ẍ cos(ψ) + Ÿ sin(ψ) = u̇ − vψ̇, (B.37)
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its final form is

ψ̈
[
Jz cos2(φ) + J∗

y sin2(φ)
]
+ 2ψ̇φ̇

(
−Jz + J∗

y

)
sin(φ) cos(φ)+

+ φ̈Jxz cos(φ) − φ̇
2
Jxzsin(φ) +mhsin(φ)

(
u̇ − vψ̇

)
+

+ V̇ sin (φ)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ .

(B.38)

Fourth equation of motion

The fourth equation, describing the roll angle φ, may be obtained in the same
way. The derivatives are

∂L
∂φ̇

= φ̇J∗
x + ψ̇Jxz cos(φ)+ mh cos(φ)

[
−Ẏ cos(ψ) + Ẋ sin(ψ)

]
,

∂L
∂φ

= ψ̇2
[
−Jz + J∗

y

]
cos(φ)sin(φ) − ψ̇φ̇Jxzsin(φ)+

+mh
[
Ẋψ̇ cos(φ) + Ẏ φ̇ sin(φ)

]
cos(ψ)+ mgh sin (φ) +

+ mh
[
−Ẋφ̇ sin(φ) + Ẏ ψ̇ cos (φ)

]
sin(ψ)+ V ψ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
,

(B.39)
and then

d

dt

(
∂L
∂φ̇

)
= φ̈J∗

x + ψ̈Jxz cos(φ) − ψ̇φ̇Jxz sin(φ)+

− mhφ̇ sin(φ)
[
−Ẏ cos(ψ) + Ẋ sin(ψ)

]
+ mh cos(φ)

[
−Ÿ cos(ψ)+

+Ẍ sin(ψ)
]

+ +mhψ̇ cos(φ)
[
Ẏ sin(ψ) + Ẋ cos(ψ)

]
.

(B.40)
The fourth equation is

φ̈J∗
x + ψ̈Jxz cos(φ) − ψ̇2

[
−Jz + J∗

y

]
cos(φ)sin(φ)+

+mh cos(φ)
[
−Ÿ cos(ψ) + Ẍ sin(ψ)

]
+

−V ψ̇ cos (φ)
(

Jp1
Re1

+ Jp2
Re2

)
−mgh sin (φ) = Qφ .

(B.41)

Because

Ÿ cos(ψ) + Ẍ sin(ψ) = v̇ + uψ̇, (B.42)

it may be written in the form

φ̈J∗
x + ψ̈Jxz cos(φ) − ψ̇2

[
−Jz + J∗

y

]
cos(φ)sin(φ)+

−mh cos(φ)
(
v̇ + uψ̇

)
−V ψ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
−mgh sin (φ) = Qφ .

(B.43)
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B.2.2 Linearization of the equations of motion

If the values of φ and v are small, it is possible to linearize the equations of
motion. As usual in linearized models, V and u are interchangeable and the
terms containing the products of small quantities may be neglected. It then
follows that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mV̇ = Qx ,

mv̇ + mV ψ̇ − mhφ̈ = Qy ,

Jzψ̈ + Jxzφ̈ + mφhV̇ + V φ̇
(

Jp1
Re1

+ Jp2
Re2

)
+V̇ φ

(
Jp1
Re1

+ Jp2
Re2

)
= Qψ ,

Jxφ̈ +Jxzψ̈−mhv̇ − mhV ψ̇ − V ψ̇
(

Jp1
Re1

+ Jp2
Re2

)
− mghφ = Qφ .

(B.44)

B.2.3 Generalized forces

The forces at the wheel-ground contact may be computed in a way similar to
that for the vehicle with two axles, with the monotrack model being no longer a
simplification but a realistic model.

The sideslip angle of the ith wheel is

αi = arctan

(
v + ψ̇xi

u

)
− δi . (B.45)

The rear wheel usually does not steer, while the front wheel steers about an
axis that is inclined with respect to the vertical. If the inclination angle is γ, it
follows that

δ1 = δ cos (γ) , δ2 = 0 . (B.46)

The linearized expression of the sideslip angle is then identical to that of
two-axles vehicles ⎧⎪⎨

⎪⎩
α1 = β +

a

V
r − δ cos (η) ,

α2 = β − b

V
r .

(B.47)

The virtual displacement of the center of the contact zone of the ith wheel
in the reference frame of the vehicle is

δui =
{

δx
δy + δψxi

}
. (B.48)

The virtual work of forces Fxi
and Fyi

and of the moment Mzi
exchanged

between wheel and ground is

δL = Fxi
δx + Fyi

(δy + δψxi) + Mzi
δψ . (B.49)

The aerodynamic forces are applied at the center of mass of the vehicle.
Assuming that the force components Fxa, Fya and Fza and the components of
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the moment Mza and Mxa are referred to the x and y axes laying on the ground
and to a vertical z axis, the virtual displacement of the center of mass of the
vehicle is

δuG =

⎧⎨
⎩

δx + hδψ sin (φ)
δy − hδφ cos (φ)
−hδφ sin (φ)

⎫⎬
⎭ . (B.50)

The virtual work of the aerodynamic forces and moments is then

δL = Fxa [δx + hδψ sin (φ)] + Fya [δy − hδφ cos (φ)] +
+Fza [−hδφ sin (φ)] + Mzaδψ + Mxaδφ . (B.51)

The generalized forces that must be introduced into the equations are then
⎧⎪⎪⎨
⎪⎪⎩

Qx = Fx1 + Fx2 + Fxa ,
Qy = Fy1 + Fy2 + Fya ,
Qψ = Fy1a − Fy2b + Mz1 + Mz2 − Fxah sin (φ) + Mza ,
Qφ = −hFya cos (φ) − Fzah sin (φ) + Mxa .

(B.52)

Side forces depend in this case not only on the slip angle but also on the
camber angle, which is here equal to the roll angle.

B.2.4 Linearized expression of the generalized forces

As in the case of four-wheeled vehicles, the generalized forces may be linearized.
Remembering that for small angles

β =
v

V
, (B.53)

and proceeding as seen in the previous models, it follows that

Qy = Yvv + Yrψ̇ + Yφφ + Yδδ + Fye
, (B.54)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yv = 1
V

[
−C1 − C2 + 1

2ρV 2
r S(Cy),β

]
,

Yr = − 1
V (aC1 − bC2) ,

Yφ = (Fy1),γ + (Fy2),γ ,

Yδ = C1 cos (η) ,

(B.55)

and where (Fyi
),γ is the camber stiffness. Moreover,

Qψ = Nvv + Nrr + Nφφ + Nδδ + Mze
, (B.56)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nv = −aC1 + bC2 + (Mz1),α + (Mz1),α + 1
2ρV 2

r S(CMz
),β ,

Nr = 1
V

[
−a2C1 − b2C2 + (Mz1),αa − (Mz2),αb

]
,

Nφ = a(Fy1),γ − b(Fy2),γ − 1
2ρV 2

r ShCx ,

Nδ = [C1a − (Mz1),α] cos (γ) .

(B.57)

At last
Qφ = Lvv + Lφφ , (B.58)

where ⎧⎨
⎩

Lv = 1
2ρVrS [l(CMx

),β − h(Cy),β ] ,

Lφ = − 1
2ρV 2

r ShCz .
(B.59)

B.2.5 Final expression of the linearized equations of motion

The linearized equations may be uncoupled, as in the case of four wheeled vehi-
cles, by assuming that the forward velocity V is a known function of time instead
of being a variable of motion. The first equation is the usual one

mV̇ = Fx1 + Fx2 + Fxa . (B.60)

It allows the driving (or braking) force needed to follow a given law V (t) to be
computed.

The other three equations may be written as
⎡
⎣ m 0 −mh

0 Jz Jxz

−mh Jxz Jx

⎤
⎦
⎧⎨
⎩

v̇

ψ̈

φ̈

⎫⎬
⎭ +

⎡
⎣ −Yv mV − Yr 0

−Nv −Nr Ng

−Lv −mhV − V Ng 0

⎤
⎦
⎧⎨
⎩

v

ψ̇

φ̇

⎫⎬
⎭+

(B.61)

+

⎡
⎢⎣

0 0 −Yφ

0 0 mhV̇ + V̇
(

Jp1
Re1

+ Jp2
Re2

)
− Nφ

0 0 −mgh − Lφ

⎤
⎥⎦
⎧⎨
⎩

y
ψ
φ

⎫⎬
⎭ =

⎧⎨
⎩

Yδδ + Fye

Nδδ + Mze

0

⎫⎬
⎭ ,

where

Ng = V

(
Jp1

Re1

+
Jp2

Re2

)
. (B.62)

The three matrices included in the equation of motion in the configuration
space are normally defined as mass, stiffness and damping matrices (M, C and
K). The first is symmetrical, while the other two are not. As usual in vehicle dy-
namics, the first two columns of the stiffness matrix vanish, because coordinates
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y1 and ψ do not appear directly in the equations. The order of the linearized
set of equations is then 4 and not 6, and the state space model is made by four
first-order differential equations.

The state space open loop model is the usual one

ż = Az + Bcuc + Beue , (B.63)

where
z =

[
v r p vδ

]T
,

r and p are the derivatives of ψ and φ with respect to time;

A =
[

−M−1C −M−1K∗

0 0 1 0

]
,

where K∗ has been obtained by cancelling the first two columns of K, and

Bc =
[

M−1
[

Yδ Nδ 0
]T

0

]
, Be =

[
M−1

0

]
,

uc = δ , ue =

⎧⎨
⎩

Fye

Mze

0

⎫⎬
⎭ .

B.3 LOCKED CONTROLS STABILITY

Stability with locked controls may be studied simply by searching the eigenvalues
of the dynamic matrix A. The eigenproblem usually yields two real eigenvalues
and one complex conjugated pair. Of the real solutions, one is negative and
has little importance in the behavior of the system, while the other is positive
and hence unstable. The latter corresponds to the capsize mode and must be
stabilized by the driver or by some control device. This eigenvalue decreases
with increasing speed, as gyroscopic moments of the wheels reduce the velocity
at which the motorcycle leans to the side.

The two complex conjugate pairs are related to the so-called weave mode;
this mode is primarily a yaw oscillation of the whole vehicle but it also involves
the roll and steering degrees of freedom. Weave oscillation is usually damped, at
least in locked control motion. At low speed it may not involve a true oscillation
(the imaginary part of the eigenvalue may be equal to zero, but in any case the
real part is negative).

Remark B.1 Weave motion usually becomes less stable with increasing speed,
i.e. the modulus of its real part decreases while the frequency increases. At high
speed it may be difficult for the driver to control the motion, because its frequency
is high enough to produce instability.

1v is the derivative of a pseudo-coordinate here and thus y has no physical meaning.
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B.3.1 Capsize motion

An extremely simplified model for capsize motion is an inverted pendulum
(Fig. B.2a). The linearized equation of a pendulum with length h and baricentric
moment of inertia Jx is the usual one

(
Jx + mh2

)
φ̈ − mghφ = 0 , (B.64)

where a (-) sign has been introduced in the gravitational term to take into account
the fact that the pendulum is inverted (the suspension point is below the center
of mass).

The characteristic equation may be obtained by introducing expression

φ = φ0e
st ,

into the equation of motion. It is

s2
(
Jx + mh2

)
− mgh = 0 , (B.65)

which yields

s = ±
√

mgh

Jx + mh2
. (B.66)

The positive solution shows that the capsize motion is unstable. Its time
constant is

τ =
1
s

= ±
√

Jx + mh2

mgh
. (B.67)

Actually the motorcycle does not behave as an inverted pendulum and the
time constant increases (that is, s decreases) with increasing speed. This is due
both to gyroscopic effect and the camber thrust of the tires caused by roll.

A way to factor in the latter effect is to build a simple model made by an in-
verted pendulum whose supporting point is free to move horizontally (Fig. B.2b).
The position of point P is

FIGURE B.2. Simplified models for capsize motion. a) Inverted pendulum; b) inverted
pendulum with moving supporting point



B.3 Locked controls stability 711

(
P − O

)
=

⎧⎨
⎩

0
h cos (φ)
y − h sin (φ)

⎫⎬
⎭ (B.68)

and its velocity is

VP =

⎧⎨
⎩

0
−hφ̇ sin (φ)
ẏ − hφ̇ cos (φ)

⎫⎬
⎭ . (B.69)

The kinetic energy of the system is then

T =
1
2
m

[
ẏ2 − 2hẏφ̇ cos (φ) + h2φ̇

2
]

+
1
2
Jxφ̇

2
. (B.70)

The gravitational potential energy is

U = mgh cos (φ) . (B.71)

The equations of motion obtained through Lagrange equations by perform-
ing the relevant derivatives of the Lagrangian function T − U and linearizing
are {

mÿ − mhφ̈ = Qy ,
−mhÿ +

(
mh2 + Jx

)
φ̈ − mghφ = Qφ .

(B.72)

The side force acting on point Q is due to the tires, which work with both
a sideslip and camber angle. If the virtual displacement of point Q is δy and the
usual linearized expression is used for the side force Fy

Fy = −Cα + (Fy),γ φ , (B.73)

where the cornering stiffness C and the camber stiffness (Fy),γ are those of the
whole vehicle (the sum of the stiffness referred to the two tires), the virtual
work is

δL = δy
[
−Cα + (Fy),γ φ

]
. (B.74)

Assuming that the system moves along the x axis at a speed V , the velocity
of point Q is

VQ =
[

V ẏ 0
]T . (B.75)

The sideslip angle of the wheels is then

α = artg
(

ẏ

V

)
≈ ẏ

V
. (B.76)

By differentiating the virtual work with respect to the virtual displacement
the generalized forces are immediately obtained,

Qy = −C
ẏ

V
+ (Fy),γ φ , Qφ = 0 . (B.77)
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The equation of motion is then[
m −mh

−mh mh2 + Jx

]{
ÿ

φ̈

}
+

1
V

[
C 0
0 0

]{
ẏ

φ̇

}
+

+
[

0 − (Fy),γ

0 −mgh

]{
y
φ

}
= 0 . (B.78)

This equation coincides with Eq. (B.61), where the second row and column
have been cancelled in all matrices and aerodynamic terms have been neglected.

The characteristic equation allowing the natural frequencies to be com-
puted is

det
[

ms2 + C
V s −mhs2 − (Fy),γ

−mhs2
(
mh2 + Jx

)
s2 − mgh

]
= 0 , (B.79)

and then

s
{

mJxV s3 + C
(
mh2 + Jx

)
s2 + mhV

[
− (Fy),γ − mg

]
s − Cmgh

}
= 0 .

(B.80)
One solution is obviously s = 0; out of the other three, one is real and

positive (capsize motion) while the other two are complex with a negative real
part. The latter represent a kind of weave motion, but because the model does
not take yaw rotation into account, an important factor in weave motion, these
solutions have no physical meaning. In this way the time constant of capsize
motion becomes a function of speed.

B.3.2 Weave motion

It is possible to build a much simplified model for weave motion as well. Because
weave motion primarily involves the vehicle body and not the steering system, a
model based on an almost horizontal pendulum hinged on the steering axis (axis
H1H2 in Fig. B.3) can be built. The length of such a pendulum is GH1,

GH1 = l1 = [a + e − h tan (η)] cos (η) . (B.81)

The distance of the point where the side force of the rear tire is applied from
the hinge axis is P2H2:

P2H2 = l2 = (l + e) cos (η) . (B.82)

If the rotation angle of the pendulum about the steering axis is θ, the steering
angle with respect to the xz plane of the rear wheel is

θ cos (η)

and its lateral velocity is θ̇l2. The sideslip angle of the rear wheel is then

α2 = θ cos (η) + θ̇
l2
V

. (B.83)
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FIGURE B.3. Simplified model for weave motion

Because the roll angle has been assumed to be zero, the side force on the
tire is

Fy2 = −C2α2 = −C2

[
θ cos (η) + θ̇

l2
V

]
. (B.84)

The equation of motion of the vehicle body about the steering axis is

Jθ̈ +
C2l

2
2

V
θ̇ + l2C2θ cos (η) = 0 , (B.85)

where J is its moment of inertia about the same axis.
A rough approximation is

J = Jz + ml21

where Jz is the moment of inertia of the whole vehicle about the z axis and m
refers to the whole vehicle.

The pole for weave motion is

s =
−C2l

2
2 ±

√
C2

2 l42 − 4V 2Jl2C2 cos (η)
2V J

. (B.86)

At low speed the two solutions are both real and negative, so that weave
is stable and not oscillatory (weave is a misnomer in this case). Starting from a
speed

V =
l2
2

√
C2l2

J cos (η)
(B.87)
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the roots become complex conjugate and the motion is oscillatory. At low speed
the motion is damped, but at high speed the real part may become positive and
weave motion may become unstable.

Example B.1 Study the locked controls stability of the motorcycle of Appendix E.10.

Plot the eigenvalues as functions of the speed and the roots locus.

To correctly compute the roots locus the cornering stiffness of the tires must be

computed correctly. The forces on the ground Fzi
were then computed, factoring in

aerodynamic forces and rolling resistance. The effect of driving forces can also be ac-

counted for, at least using the elliptical approximation.

The values of the cornering and camber stiffness at standstill, at 100 and at 200

km/h are

V Fz1 Fz2 C1 C2 (Fy1)γ (Fy2)γ

km/h N N N/rad N/rad N/rad N/rad

0 1,451 1,394 39,600 41,400 −1, 708 −1, 905
100 1,384 1,414 37,700 38,600 −1, 630 −1, 933
200 1,183 1,473 32,300 32,300 −1, 392 −2, 013

The roots locus and the plot of the eigenvalues versus the speed are reported in

Fig. B.4.

Weave is oscillatory from about 100 km/h and becomes unstable slightly above 240

km/h, while capsize is, as is normal for motorcycles, unstable.

FIGURE B.4. Locked controls stability of a motor cycle. Roots locus and plot of the
eigenvalues versus the forward speed
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The values of the natural frequencies and of the time constant of capsize motion

at three values of speed are

V scap τ cap sweave τ∗
cap τ∗∗

cap s∗weave

km/h 1/s s 1/s s s 1/s

0 4.20 0.24 − 0.33 0.33 −
100 3.44 0.29 –8.76 0.33 0.37 –10.8±17.6i
200 2.00 0.50 –3.45±18.0 i 0.33 0.41 –4.26±17.8i

The values of the capsize time constants and of the eigenvalue for weave computed

using the simplified models (values with * and **), are also reported. The latter model

largely underestimates the speed at which weave becomes oscillatory (52 km/h against

about 100 in the model with three degrees of freedom), but once motion is oscillatory,

allows its frequency to be computed in a way that is surprisingly consistent with the

value obtained from the more complex model.

B.4 STEADY-STATE MOTION

Equation (B.61) may be used to compute the steady-state response by simply
assuming that v, r, φ, δ, and the speed V are constant. A simple way to compute
the steady-state response is to fix a certain value of either r or δ and then solve
the equations for v, φ, δ or r. Perhaps the most immediate approach is the first,
because in steady-state conditions, to state r means to state a value of the radius
of the path R. The problem is then stated in this form: Given a certain circular
path, a value of the speed and perhaps also of external forces, compute sideslip,
roll and steering angles (β = v/V , φ and δ). The relevant equation is

⎡
⎣ C11 K13 −Yδ

C21 K23 −Nδ

C31 K33 0

⎤
⎦
⎧⎨
⎩

V β
φ
δ

⎫⎬
⎭ = r

⎧⎨
⎩

−C12

−C22

−C32

⎫⎬
⎭ +

⎧⎨
⎩

Fye

Mze

0

⎫⎬
⎭ . (B.88)

By solving Eq. (B.88) it is possible to compute

• the path curvature gain:
1

Rδ
=

r

V δ
;

• the sideslip angle gain
β

δ
=

v

V δ
;

• the roll angle gain
φ

δ
.
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Owing to the linearity of the model, if the external forces are assumed to
be equal to zero, the mentioned gains are a function of the velocity only; i.e.,
they do not depend on the radius of the trajectory. Equation (B.88) can thus
be assumed to hold for very high speeds as well, if a large enough radius R is
considered.

Once the trajectory curvature gain has been obtained, the usual definitions
of understeer, neutral steer and oversteer can be applied.

The present model is linearized and hence holds only if the relevant angles
are small enough to allow the linearization of their trigonometric functions. The
limit in this case is primarily due to the roll angle φ which can easily exceed the
value of about 20◦ that can be considered a limit for linearization.

The computation of the steady-state response assumes that the motion is
possible, implying that the driver stabilizes the capsize mode, which is unstable
in open-loop operation.

Example B.2 Compute the steady-state steering response of the motorcycle of

Appendix E.10, assuming that no external force is present. Compute the values of β, δ,

and φ on a curve with a radius of 200 m at a speed of 80 km/h.

The various gains are plotted versus the speed in Fig. B.5. The nondimensional

curves hold for any value of the radius R: They are plotted for speeds up to 240 km/h,

although on a curve with a radius of 200 m the limit for linearization occurs at speeds

slightly in excess of 80 km/h.

At 80 km/h their values are 1/Rδ = 0.56 1/m; β/δ = 0.77, and φ/δ = −28.5. On

a curve of 200 m radius the steering angle is δ = 0.0090 rad = 0.52 ◦. Because the

FIGURE B.5. Values of the path curvature gain 1/Rδ = r/V δ, the sideslip angle gain
β/δ = v/V δ and the roll angle gain φ/δ for the motorcycle of Appendix E.10 versus
the speed V
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wheelbase is 1.316 m, the kinematic value of the trajectory curvature gain is 0.70 and

the steering angle is then δc = 0.0071 rad = 0.41◦. The vehicle is then understeer.

The other values are β = 0.0069 rad = 0.40◦, and φ = −0.257 rad = −14.7◦. The

value of the roll angle is quite close to the limit for linearization.

B.5 FREE CONTROLS MODEL

The Lagrangian function for a system with free controls is that already seen for
the locked controls model, with some additional terms

ΔL =
1
2
Jz1δ̇

2
+ δ̇ψ̇ [Jz1 cos (η) + Jxz1 sin (η) cos (φ)] +

+ δ̇φ̇ [−Jz1 sin (η) + Jxz1 cos (η)] + A1δψ̇
2

+ A2δφ̇
2

+

+A3δψ̇φ̇ − V
Jp1

Re1

δ
[
ψ̇ cos (φ) sin (η) + φ̇ cos (η)

]
.

First two equations of motion
ΔL Does not contain either X or Y or their derivatives. The first two equa-

tions are not changed by the free controls assumptions.
Third equation of motion
When linearizing the equation, terms in Ai disappear. The derivatives in-

cluded in the third equation are

∂ΔL
∂ψ̇

= δ̇ [Jz1 cos (η) + Jxz1 sin (η)] − V
Jp1

Re1

δ sin (η) ,

∂ΔL
∂ψ

= 0

(B.89)

and then

d

dt

(
∂ΔL
∂ψ̇

)
= δ̈ [Jz1 cos (η) + Jxz1 sin (η)] − V̇

Jp1

Re1

δ sin (η) − V
Jp1

Re1

δ̇ sin (η) .

(B.90)
The third equation is then

Jzψ̈ + Jxzφ̈ + δ̈ [Jz1 cos (η) + Jxz1 sin (η)] + mφhV̇ + V φ̇
(

Jp1
Re1

+ Jp2
Re2

)
+

−V
Jp1
Re1

δ̇ sin (η) + V̇ φ
(

Jp1
Re1

+ Jp2
Re2

)
− V̇

Jp1
Re1

δ sin (η) = Qψ .
(B.91)
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Fourth equation of motion
The fourth equation, dealing with the roll angle φ, may be obtained in the

same way. The derivatives are

∂ΔL
∂φ̇

= δ̇ [−Jz1 sin (η) + Jxz1 cos (η)] − V
Jp1

Re1

δ cos (η) ,

∂ΔL
∂φ

= 0

(B.92)

and then

d

dt

(
∂ΔL
∂φ̇

)
= δ̈ [−Jz1 sin (η) + Jxz1 cos (η)] − V

Jp1

Re1

δ̇ cos (η) − V̇
Jp1

Re1

δ cos (η) .

(B.93)
The fourth equation is then

Jxφ̈+Jxzψ̈ + δ̈ [−Jz1 sin (η) + Jxz1 cos (η)]−mhv̇ − mhV ψ̇ +

−V ψ̇
(

Jp1
Re1

+ Jp2
Re2

)
− V

Jp1
Re1

δ̇ cos (η) − V̇
Jp1
Re1

δ cos (η) − mghφ = Qφ .
(B.94)

Fifth equation of motion
A further equation describing the motion of the steering system must be

added to the first four equations. The relevant derivatives are

∂ΔL
∂δ̇

= Jz1δ̇ + ψ̇ [Jz1 cos (η) + Jxz1 sin (η)] + φ̇ [−Jz1 sin (η) + Jxz1 cos (η)] ,

∂ΔL
∂δ

= −V
Jp1

Re1

[
ψ̇ sin (η) + φ̇ cos (η)

]
,

(B.95)
and then

d

dt

(
∂ΔL
∂δ̇

)
= Jz1δ̈ + ψ̈ [Jz1 cos (η) + Jxz1 sin (η)] +

+φ̈ [−Jz1 sin (η) + Jxz1 cos (η)] . (B.96)

The fifth equation is

Jz1δ̈ + ψ̈ [Jz1 cos (η) + Jxz1 sin (η)] + φ̈ [−Jz1 sin (η) + Jxz1 cos (η)] +

+V
Jp1

Re1

[
ψ̇ sin (η) + φ̇ cos (η)

]
= Qδ . (B.97)

B.5.1 Generalized forces

The virtual displacement of the center of the contact zone of the rear wheel is
the same as seen for the case of locked controls motion. The sideslip angle of the
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front wheel, assuming that the steering angle is small, is

α1 = arctan

(
v + ψ̇a − δ̇e

u

)
− δ cos (η) . (B.98)

Its linearized expression is then

α1 = β +
a

V
r − e

V
δ̇ − δ cos (η) . (B.99)

The virtual displacement of the center of the contact area of the front
wheel is

δu1 =
{

δx
δy + δψa − eδδ

}
. (B.100)

The virtual work of forces Fxi
and Fyi

and of the moment Mzi
acting be-

tween wheel and ground is

δL1 = Fx1δx + Fy1 [δy + δψxi − eδδ] + Mzi
[δψ + δδ cos (η)] . (B.101)

The generalized forces to be introduced into the first equations of motion
are those already seen in the previous model. The force included in the fifth
equation is

Qδ = −eFy1 + Mzi
cos (η) . (B.102)

Proceeding as in the previous models, it follows that

Qy = Yvv + Yrψ̇ + Yδ̇ δ̇ + Yφφ + Yδδ + Fye
, (B.103)

Qψ = Nvv + Nrψ̇ + Nδ̇ δ̇ + Nφφ + Nδδ + Mze
, (B.104)

where the already defined derivatives of stability are not changed,

Yδ̇ = C1
e

V
, (B.105)

Nδ̇ = [C1a − (Mz1),α]
e

V
. (B.106)

The expression of Qφ is the same as seen for the locked controls model

Qφ = Mvv + Mrψ̇ + Mδ̇ δ̇ + Mφφ + Mδδ , (B.107)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mv = 1
V [C1e + (Mz1),α cos (η)] ,

Mr = a
V C1 [C1e + (Mz1),α cos (η)] ,

Mδ̇ = − e
V [C1e + (Mz1),α cos (η)] ,

Mφ = −e(Fy1),γ ,

Mδ = − [C1e + (Mz1),α cos (η)] cos (η) .

(B.108)
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B.5.2 Final expression of the linearized, free controls equations

The four equations describing the lateral free controls motions are
⎡
⎢⎢⎣

m 0 −mh 0
Jz Jxz Jz1 cos (η) + Jxz1 sin (η)

Jx −Jz1 sin (η) + Jxz1 cos (η)
symm. Jz1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

v̇

ψ̈

φ̈

δ̈

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎢⎣

−Yv mV − Yr 0 −Yδ̇

−Nv −Nr Ng −Nδ̇ − S∗

−Lv −mhV − V Ng 0 −V C∗

−Mv −Mr + V S∗ +V C∗ −Mδ̇ + cδ

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

v

ψ̇

φ̇

δ̇

⎫⎪⎪⎬
⎪⎪⎭

+ (B.109)

+

⎡
⎢⎢⎢⎣

0 0 −Yφ −Yδ

0 0 mhV̇ + V̇
(

Jp1
Re1

+ Jp2
Re2

)
− Nφ −Nδ − V̇ S∗

0 0 −mgh − Lφ −V̇ C∗

0 0 −Mφ −Mδ

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

y
ψ
φ
δ

⎫⎪⎪⎬
⎪⎪⎭

=

=

⎧⎪⎪⎨
⎪⎪⎩

Yδδ + Fye

Nδδ + Mze

0
Mg

⎫⎪⎪⎬
⎪⎪⎭

,

where
S∗ =

Jp1

Re1

sin (η) , C∗ =
Jp1

Re1

cos (η) .

From matrices M, C and K, defined in the configurations space, it is im-
mediately possible to obtain the dynamic matrix in the state space. In this case
the first two equations are first- order differential equations, while the others
are second-order equations. The order of the set of equations is then 6 and the
dynamic matrix has 6 rows and columns.

B.5.3 Free controls stability

The stability with free controls may be studied simply by searching the eigenval-
ues of the dynamic matrix A. The eigenproblem usually yields two real eigen-
values and two complex conjugated pairs.

Out of the real solutions, one is negative and has practically no importance
in the behavior of the system, while the other is positive and hence unstable. As
in the locked control model, the latter corresponds to the capsize mode and must
be stabilized by the driver or by some control device. This eigenvalue decreases
with increasing speed, as gyroscopic moments of the wheels reduce the velocity
at which the motorcycle falls on its side.

The two complex conjugate pairs are related to the so-called weave and
wobble modes: The first, already seen in the locked control study, is primarily a
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yaw oscillation of the whole vehicle but involves the roll and steering degrees of
freedom as well, while the other is primarily an oscillation of the steering system
about its axis. The weave frequency is lower than the wobble frequency, and is
usually more dependent on speed.

While the first mode is usually damped, the latter can become unstable,
particularly at high speed. To stabilize wobble motion it is possible to introduce
a steering damper, which has been included in the present mathematical model.
The damper has the effect of reducing wobble instability, but may affect weave
negatively. Too large a damping can trigger weave instability: The value of co-
efficient cδ must be chosen with care and the present mathematical model can
supply useful guidelines.

Wobble motion

A simplified model may also be built for wobble motion. If the steering system
is considered separately from the vehicle using a model similar to that seen in
Fig. B.3 for the vehicle body, the following equation of motion is obtained,

Jδ̈ +
C1e

2 cos2 (η)
V

δ̇ + eC1δ cos2 (η) = 0, (B.110)

where J is the moment of inertia of the steering system about the steering axis.
If a steering damper is present, its damping coefficient must be added to the
term

C1e
2 cos2 (η)

V

multiplying δ̇. Note that the damping of the steering damper must also be added
in the equation related to weave.

The pole for wobble motion is

s = cos (η)
−C1e

2 cos (η) ±
√

C2
1e4 cos2 (η) − 4V 2JeC1

2V J
. (B.111)

At low speed there are two negative real poles, so that wobble motion is
stable. Starting from the speed

V =
e cos (η)

2

√
C1e

J
, (B.112)

the roots become complex and the motion is oscillatory. It is initially damped, but
with increasing speed the real part may become positive, producing an unstable
motion.

Example B.3 Study the free controls stability of the motorcycle studied in the previ-

ous example and plot the eigenvalues as functions of the speed and the roots locus.
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FIGURE B.6. Free controls stability study for the motorcycle of Appendix E.10. Roots
locus and plot of the eigenvalues versus the speed

Operating as seen in the previous examples, the plots shown in Fig. B.6 are ob-

tained.

Wobble motion becomes unstable starting from about 200 km/h.

The values of the natural frequencies and the time constant for capsize at three

values of the speed are

V scap τ cap sweave swob

km/h 1/s s 1/s 1/s

0 4.37 0.228 − −
100 3.07 0.326 –6.74±20.29 i –19.04±34.46 i
200 1.40 0.711 –6.11±29.95 i +0.43±42.35 i

V τ∗
cap τ∗∗

cap s∗weave s∗wob

km/h s s 1/s 1/s

0 0.33 0.33 − −
100 0.33 0.37 –10.8±17.6i –2.60±38.89 i
200 0.33 0.41 –4.26±17.8 i –1.11±36.03 i

Wobble motion becomes unstable at about 200 km/h. The values obtained using

the simplified models (values with *) are reported together with those obtained using the

present model.

The computation was repeated assuming that a steering damper with cδ = 25

Nms/rad is present. The relevant results are plotted in Fig. B.7. The damper stabilizes

wobble motion up to more than 250 km/h, but reduces weave stability.
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FIGURE B.7. Free controls stability study for the motor cycle of Appendix E.10. Roots
locus and plot of the eigenvalus versus the speed. Steering damper with cδ = 25 Nms/rad

B.5.4 Steady-state response

The steady-state response may be obtained directly from Eq. (B.109) by intro-
ducing the steering moment Ms as an unknown. The equation is

⎡
⎢⎢⎣

C11 K13 K14 0
C21 K23 K24 0
C31 K33 K34 0
C41 K43 K44 −1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

V β
φ
δ

Ms

⎫⎪⎪⎬
⎪⎪⎭

= r

⎧⎪⎪⎨
⎪⎪⎩

−C12

−C22

−C32

−C42

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

Fye

Mze

−hFye

eFye1

⎫⎪⎪⎬
⎪⎪⎭

. (B.113)

It is then possible to obtain, together with the path curvature gain, the
sideslip angle gain and the roll angle gain, as well as the steering moment gain
Ms/δ.

B.6 STABILITY AT LARGE ROLL ANGLES

B.6.1 Locked controls motion

In fast driving the roll angle of a motorcycle may become even larger than 45◦.
In these conditions the linearized model seen in the previous sections cannot be
used. However, even when managing a curve at high speed, the sideslip angles
and the steering angle are not large, and the only source of nonlinearity is the roll
angle. In these conditions stability may be studied by linearizing the equations
about a static equilibrium condition, characterized by a value φ0 of the roll angle,
that may be computed for example using Eq. (25.45).
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Assuming that the displacement from the equilibrium condition is small,
the roll angle is

φ = φ0 + φ1 , (B.114)

where angle φ1 is small and then

sin (φ) = sin (φ0) + φ1 cos (φ0) , (B.115)

cos (φ) = cos (φ0) − φ1 sin (φ0) . (B.116)

Remembering that φ0 is constant and its derivatives vanish, the locked con-
trols equations reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
[
V̇ + hψ̈ sin(φ0)

]
= Qx

m
[
v̇+V ψ̇ − hφ̈1cos(φ0)

]
= Qy

ψ̈
[
Jz cos2(φ0) + J∗

y sin2(φ0)
]
+ φ̈1Jxz cos(φ0)+mhV̇ sin(φ0)+

+mhV̇ φ1 cos (φ0) + V̇ sin (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+

+ V̇ φ1 cos (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇1 cos (φ0)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ

φ̈J∗
x + ψ̈Jxz cos(φ0) − mh cos(φ0)v̇−V ψ̇ cos (φ0)

(
mh + Jp1

Re1
+ Jp2

Re2

)
+

−mgh sin (φ0) − mghφ1 cos (φ0) =Qφ .
(B.117)

The generalized forces are⎧⎪⎪⎨
⎪⎪⎩

Qx = Fx1 + Fx2 + Fxa ,
Qy = Fy1 + Fy2 + Fya ,
Qψ = Fy1a − Fy2b + Mz1 + Mz2 − Fxah sin (φ0) − Fxahφ1 cos (φ0) + Mza ,
Qφ = −hFya cos (φ0) − Fzah sin (φ0) − Fzahφ1 cos (φ0) + Mxa .

(B.118)
Assuming that the expression for the sideslip angles of the wheels is that

seen for small roll angles(an assumption that may be justly criticized at least for
the front wheel), the expression for Qy and for the derivatives of stability Yv, Yr,
Yφ and Yδ are those already seen.

Qψ and the derivatives of stability Nv, Nr and Nδ are not changed, but
derivative Nφ becomes

Nφ = a(Fy1),γ − b(Fy2),γ − 1
2
ρV 2

r ShCx cos (φ0) (B.119)

and a moment
N0 = −1

2
ρV 2

r SCxh sin (φ0) , (B.120)

due to aerodynamic drag, must be added to the external moment Mze
.

As far as Qφ is concerned, derivatives Lv and Lφ become⎧⎨
⎩

Lv = 1
2ρVrS [l(CMx

),β − h(Cy),β cos (φ0)] ,

Lφ = − 1
2ρV 2

r ShCz cos (φ0) ,
(B.121)
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and a term
L0 = −1

2
ρV 2

r SCzh sin (φ0) (B.122)

must be added.

B.6.2 Equilibrium condition

The computation of the steady-state equilibrium condition at constant speed
reduces to the computation of either v, ψ̇ and φ0 (in this condition φ1 is equal
to zero) at a given value of δ or v, δ and φ0 for a given value of ψ̇. As usual
the linearized equations may be uncoupled and longitudinal dynamics does not
affect handling.

The other three equations may be written as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yvv + (Yr − mV ) ψ̇ + Yφφ0 + Yδδ + Fye
= 0 ,

Nvv + Nrr + Nφφ0 + Nδδ + N0 + Mze
=0 ,

V ψ̇ cos (φ0)
(
mh + Jp1

Re1
+ Jp2

Re2

)
+ Lφφ0+

+ Lvv + L0 + mgh sin (φ0) = 0 .

(B.123)

Because unknown φ0 is present in an explicit way in the trigonometric func-
tions and also in an implicit way in Nφ, N0, Lv, Lφ and L0, it may be expedient
to choose a value of φ0 and then solve the equations in v, ψ̇ and δ, i.e., choose a
value of the roll angle and then compute the parameters of the resulting path,
obviously after also choosing a value for the speed. If the steady-state values are
v0 and ψ̇0, the equation becomes

⎡
⎢⎣

−Yv mV − Yr −Yδ

−Nv −Nr −Nδ

−Lv −V cos (φ0)
(
mh + Jp1

Re1
+ Jp2

Re2

)
0

⎤
⎥⎦
⎧⎨
⎩

v0

ψ̇0

δ0

⎫⎬
⎭ = (B.124)

=

⎧⎨
⎩

Yφφ1 + Fye

Nφφ1 + Nδδ + N0 + Mze

Lφφ0 + L0 + mgh sin (φ0)

⎫⎬
⎭ .

It is immediately clear that, if the aerodynamic terms are neglected, the last
equation uncouples and becomes

tan (φ0) = − V ψ̇

mgh

(
mh +

Jp1

Re1

+
Jp2

Re2

)
, (B.125)

which coincides with Eq. (25.45)2.

2The (−) sign comes from the fact that if the curve is toward the left (positive ψ̇) the
vehicle tilts to the left (negative φ).
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B.6.3 Stability at constant speed

The term ψ̈ present in the first equation of motion weekly couples this equation
to the others. If this term is neglected, and stating that

v = v0 + v1 , ψ̇ = ψ̇0 + ψ̇1

(because motion occurs with locked controls δ = δ0), it follows that

⎡
⎣ m 0 −mhcos(φ0)

0 Jz cos2(φ0) + J∗
y sin2(φ0) Jxz cos(φ0)

−mh cos(φ0) ψ̈Jxz cos(φ0) J∗
x

⎤
⎦
⎧⎨
⎩

v̇1

ψ̈1

φ̈1

⎫⎬
⎭+

(B.126)

+

⎡
⎣ −Yv mV − Yr 0

−Nv −Nr Ng cos (φ0)
−Lv − (mhV +Ng) cos (φ0) 0

⎤
⎦
⎧⎨
⎩

v1

ψ̇1

φ̇1

⎫⎬
⎭+ (B.127)

+

⎡
⎣ 0 0 −Yφ

0 0 −Nφ

0 0 −mgh cos (φ0) − Lφ

⎤
⎦
⎧⎨
⎩

y
ψ
φ1

⎫⎬
⎭ = 0.

Locked controls stability in the small for a motorcycle managing a curve in
steady-state condition with an arbitrarily large roll angle can thus be studied.

B.6.4 Free controls model

Operating as seen in previous models, the following equations may be written

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
[
V̇ + hψ̈ sin(φ0)

]
= Qx ,

m
[
v̇+V ψ̇ − hφ̈1cos(φ0)

]
= Qy ,

ψ̈
[
Jz cos2(φ0) + J∗

y sin2(φ0)
]
+δ̈ [Jz1 cos (η) + Jxz1 sin (η) cos(φ0)]+

+ φ̈1Jxz cos(φ0) − V
Jp1
Re1

δ̇ sin (η) cos(φ0) − V̇
Jp1
Re1

δ sin (η) cos(φ0)+

+mhV̇ φ1 cos (φ0) + V̇ sin (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+ mhV̇ sin(φ0)+

+ V̇ φ1 cos (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇1 cos (φ0)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ ,

(B.128)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̈J∗
x + ψ̈Jxz cos(φ0) + δ̈ [−Jz1 sin (η) + Jxz1 cos (η)] − mhv̇ cos(φ0)+

−V ψ̇ cos (φ0)
(
mh + Jp1

Re1
+ Jp2

Re2

)
− V

Jp1
Re1

δ̇ cos (η) +

− V̇
Jp1
Re1

δ cos (η)−mgh sin (φ0) − mghφ1 cos (φ0) =Qφ ,

Jz1δ̈ + ψ̈ [Jz1 cos (η) + Jxz1 sin (η) cos(φ0)] + φ̈ [−Jz1 sin (η) +

+Jxz1 cos (η)] + V
Jp1
Re1

[
ψ̇ sin (η) cos(φ0) + φ̇ cos (η)

]
= Qδ .

The four equations describing the lateral free controls motion about a posi-
tion defined by the values v0, ψ̇0, φ0 and δ0 (in this case δ is a variable and may
be written as δ0 + δ1) and thus allowing free controls stability to be studied, are

⎡
⎢⎢⎣

m 0 −mhcos(φ0) 0
J∗∗

z Jxzcos(φ0) Jz1 cos (η) + Jxz1 sin (η) cos(φ0)
J∗

x −Jz1 sin (η) + Jxz1 cos (η)
symm. Jz1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

v̇1

ψ̈1

φ̈1

δ̈1

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎢⎣

−Yv mV − Yr 0 −Yδ̇

−Nv −Nr Ng cos (φ0) −N∗

−Lv − (mhV + Ng) cos (φ0) 0 −V C∗

−Mv −Mr + V S∗ V C∗ −Mδ̇ + cδ

⎤
⎥⎥⎦

⎧⎪⎪⎨
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Appendix C
WHEELED VEHICLES
FOR EXTRATERRESTRIAL
ENVIRONMENTS

Humankind has been exploring space surrounding its home planet, the Earth,
and the nearest celestial bodies since the late 1950s. Such exploration is not an
occasional enterprise, but the beginning of a trend that will see our species build
a true spacefaring civilization, one based on many worlds, initially in our solar
system and then beyond it.

There is no doubt that the great difficulties now being encountered and those
that will emerge in the future will make this expansion a slow one, requiring
decades or more likely centuries to yield important results. Owing to the size
of the Universe, it is an expansion that will never end. Certainly it will require
technological advancements that today cannot even be imagined. But it is also
true that such difficulties are only partially technological. Economical, social and
political factors will play an even more significant role.

Beginning with the first experiences of robotic and human exploration of
other celestial bodies, a need was felt for vehicles able to carry instruments,
objects of various kinds and finally the explorers themselves.

The vehicles for planetary exploration used up to now have all been robotic
vehicles operating on wheels, designed and built using technologies that have
little in common with standard automotive technologies. This is due in part to
their small size and above all to their low speed, which ranges from a maximum
of 1,5 km/h, for the Lunokhod, to some tens of m/h, for the automatic vehicles
used for Mars exploration.

At these speeds suspensions based on spring and damper systems are not
necessary, although articulated systems to suitably distribute the load on the
ground were needed, because all these vehicles have more than 3 wheels.

Kinematic steering is more than adequate to control the trajectory.
The only exception is the vehicle used in the last Apollo missions to grant

the needed mobility to the astronauts. Even if more than 30 years have passed
since this vehicle was used, it remains an interesting case.
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C.1 THE LUNAR ROVING VEHICLE (LRV)
OF THE APOLLO MISSIONS

The LRV is an electric four wheel drive and steering (4WDS) vehicle able to
carry two people in space suits at a speed of 18 km/h for a maximum distance
of 120 km (Fig. C.1).

The main characteristics of the LRV were1

• Mass: 210 kg,

• Payload: 450 kg,

• Length (overall): 3,099 mm,

• Wheelbase: 2,286 mm,

• Track: 1,829 mm,

• Maximum speed: 18 km/h,

• Maximum manageable slope: 25◦,

FIGURE C.1. The Lunar Roving Vehicle (LRV) of the last three Apollo missions on
the Lunar surface (NASA image)

1A. Ellery, An Introduction to Space Robotics, Springer Praxis, Chichester, 2000,
− − −, Lunar Roving Vehicle Operations Handbook, ttp://www.hq.nasa.gov/office
/pao/History/alsj/lrvhand.html.
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• Maximum manageable obstacle: 300 mm height,

• Maximum manageable crevasse: 700 mm length,

• Range: 120 km in four traverses,

• Operating life: 78 h.

At the time it was designed the LRV was a concentrate of high automotive
technology adapted to the peculiar operating conditions that could be found
on the Lunar surface. It marked the first time a vehicle with four steering and
driving wheels was built, with each wheel having its own motor in the hub.
Steering was by wire.

The project was deeply conditioned by the mass and size constraints driven
by the need to be carried to the Moon along with the astronauts by the Lunar
Excursion Module (LEM). Apart from the need to minimize its structural mass,
these constraints forced designers to use a foldable architecture; it is likely that
these considerations were determinant in the use of a by-wire configuration, in
that era a completely immature technology.

A short analysis of the various subsystems and some considerations on what
is still viable today and what, on the contrary, has been out-paced by techno-
logical advances, is reported in the following sections.

C.1.1 Wheels and tires

Pneumatic or solid rubber tires were discarded primarily to reduce the vehicle
mass. In their place tires made with an open steel wire mesh, with a number
of titanium alloy plates acting as treads in the ground contact zone, were built.
Inside the tire a smaller, more rigid frame acted as a stop to avoid excessive
deformation under high impact loads. The outer diameter of the tire was 818 mm.

Although the possibility of using standard pneumatic tires on a planet with-
out an atmosphere may be raised, the lack of air is not the point. The short
duration of use predicted (a single mission and few working hours) allowed such
an innovative technology to be chosen without the need to perform long duration
tests. In future missions aimed at building permanent outposts, things will be
different and more traditional solutions may be needed. It must be noted that
the version of the vehicle used to train the astronauts on Earth had standard
pneumatic tires.

C.1.2 Drive and brake system

The LRV had 4 independent, series wound DC brush electric motors mounted
in the wheel hubs together with harmonic drive reduction gears2. Each motor

2Harmonic drives are reduction gears based on a compliant gear wheel that meshes inside
an internal gear having one tooth more than the former wheel. An eccentric (wave generator)
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was rated 180 W, with a maximum speed of 17,000 rpm. The gear ratio of the
harmonic drives was 80:1. The nominal input voltage was 36 V, controlled by
PWM from the Electronic Control Unit. The drive unit was sealed, maintaining
an internal pressure of about 0.5 bar for proper lubrication and brush operation.

The energy needed for motion was supplied by two silver-zinc primary bat-
teries with a nominal voltage of 36 V and a capacity of 115 Ah (4,14 kWh) each.
The use of primary batteries derives from the fact that each vehicle had to be
used for a single mission, and for a limited time.

The LRV had four cable actuated drum brakes directly mounted on the
wheels. As will be seen later, braking torques are low in vehicles operating in
low gravity conditions and drum brakes are a reasonable solution. They are also
preferable because of dust, which may create problems for disc brakes because
they are more exposed to external contamination. Even if the braking power is
much smaller than that typical of vehicles used on Earth, the lack of air may
cause overheating problems.

The driver interface for longitudinal control was the same T handle that ac-
tuated the steering. Advancing the joystick actuated the motors forward. Pulling
it back actuated reverse, but only if the reverse switch were engaged. Actuating
the brakes required the handle to be pivoted backward about the brake pivot
point.

The wheels could be disengaged from the drive-brake system into a free-
wheeling condition.

C.1.3 Suspensions

Suspensions were fairly standard SLA suspensions, with the upper and lower
arms almost parallel. No anti-dive or anti-squat provisions seem to have been in-
cluded. Springs were torsion bars applied to the two arms, while a conventional
shock absorber was located as a diagonal of the quadrilateral. The ground clear-
ance varied from full load and unloaded conditions by 76 mm (between 356 and
432 mm). These values yield a vertical stiffness of the suspension-tire assembly
of 2.40 kN/m, a very low value. Assuming that the tire was much harder than
the suspension, the natural frequency in bounce was just 0.6 Hz for the fully
loaded vehicle or 1.1 Hz in empty conditions.

C.1.4 Steering

Steering controlled all wheels and was electrically actuated (steer by wire). The
geometry was designed with kinematic steering in mind: Ackermann steering
on each axle and opposite steering of the rear axle with equal angles at front

deforms the first wheel so that for each revolution of the eccentric the flexible wheel moves
by one pitch. Very high gear ratios can thus be obtained while maintaing good efficiency and
little backlash, but the high cost of such devices allows their use only in selected applications,
primarily in robotics.
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and rear wheels. The kinematic wall-to-wall steering radius was 3.1 m. Each
steering mechanism was actuated by an electric motor through a reduction gear
and a spur gear sector; in case of malfunction of one of the two steering devices,
the relevant steering could be centered and blocked and the vehicle driven with
steering on one axle only.

The same T handle controlling the motors and brakes operated the steering
by lateral displacement. A feedback loop insured that the wheels were steered by
an angle proportional to the lateral displacement of the handle, but there was no
force feedback except for a restoring force increasing linearly with the steering
angle up to a 9◦ handle angle, then increasing with a step and finally increasing
again linearly with greater stiffness.

Steering control may be the most outdated part of the LRV, although in a
way it was a forerunner of the 4WS and steer by wire systems currently available.
The 4WS logic was based strictly on kinematic steering. The low top speed
justifies this choice, but only to a point: The low gravitational acceleration of
the Moon implies that sideslip angles are much higher, for a given trajectory
and a given speed, than on Earth. The very concept of kinematic steering is
thus applicable only at speeds much lower than on Earth. Because centrifugal
acceleration is proportional to the square of the speed, the top speed Vmax = 18
km/h is equivalent, from this viewpoint, to the speed at which dynamic effect
starts to appear. No modern 4WS vehicle has such prominent rear axle steering.
Today a much more sophisticated rear steering strategy is present in even the
simplest vehicle with all-wheel steering.

A second difference is that today steer by wire systems are reversible and
the driver interface is haptic, i.e. there is an actuator supplying a feedback that
allows the driver to feel the wheel reaction, as in conventional mechanical steering
systems. The fact that it is possible to drive without a feedback is proven by
the fact that vehicles in videogames and radio controlled model cars can be
operated (the control of the LRV has surprising similarities with that of R/C
model cars) but it is considered unsafe and difficult to operate a full size car in
this way. Because Apollo astronauts needed much training to operate the LRV,
a purposely designed trainer simulating its performance had to be built, it being
impossible to operate the lunar vehicle on Earth.

C.2 TYPES OF MISSIONS

The types of missions requiring the use of vehicles on celestial bodies can be
tentatively subdivided into the following classes3.

1. Robotic exploration missions

2. Robotic exploitation missions

3G. Genta, M. A. Perino, Teleoperation Support for Early Human Planetary Missions,
New Trends in Astrodynamics and Applications II, Princeton, June 2005.
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3. Human exploration missions with robotic rovers to help humans in explo-
ration duties

4. Human exploration missions with vehicles to enhance human mobility

5. Human exploration-exploitation missions requiring construction-
excavation devices.

Vehicle for unmanned missions (1 and 2) are usually very small and slow,
more similar to moving robots than to vehicles, while those for missions 2 and 5
are more similar to earth moving and construction machinery. Even if a good
knowledge of vehicle dynamics is needed to design them properly, these are ma-
chines having little in common with automotive technology. Missions of type 3
require small machines, more similar to robots than to vehicles.

Missions of type 4 require true vehicles that may differ from those used
on our planet due to the different environmental conditions in which they must
operate. But because the goal is essentially the same, namely to transport per-
sonnel and goods from one place to the other, with the required velocity and
safety and in an economical and energetically efficient way, there will be many
points in common.

The first essential difference is that of operating in an environment in which
human life is impossible without suitable protection. The designer has to chose
between two alternatives: A simple mobility device, without any life-support
capability, whose task is to carry humans protected by their own space suit, and
a vehicle providing a true shirt-sleeve environment.

The first solution, like the LRV, allows the us of small and very light vehi-
cles, the minimum size being that of a city car. Vehicles of the second type, which
are true mobile habitats, are larger and more complex machines. A modular ap-
proach may be followed, with a chassis containing all devices offering the required
mobility, on which a habitat may be mounted. Current vehicles similar to this
solution are military vehicles in which the inner space is completely insulated
from the outside to provide some protection from chemical or bacteriological
attacks. The smallest size for vehicles of this type is that of a small van.

C.3 ENVIRONMENTAL CONDITIONS

The first difference between Earth and other celestial bodies is gravitational ac-
celeration. All celestial bodies to be explored (with the exception of Venus, where
g = 8, 87 m/s2, but whose environment is so difficult in terms of temperature,
atmospheric density and pressure that no operation on its surface is planned in
the foreseeable future) are characterized by a gravitational acceleration much
lower than that of Earth. (Table C.1).

All asteroids except the largest have a very low gravitational acceleration,
and their irregular form causes the gravitational acceleration to be variable from
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TABLE C.1. Values of the gravitational acceleration, in m/s2, on the surface of the
Moon, some rocky planets, satellites of giant planets and asteroids.

Planets Mars 3,77 Mercury 3,59

Satellites Moon 1,62
Io 1,80 Europa 1,32
Ganimedes 1,43 Callisto 1,24
Titan 1,35 Triton 0,78

Asteroids Pallas 0,31 Vesta 0,28
Ceres 0,26 Juno 0,09

place to place and not perpendicular to the ground. For instance, the gravita-
tional acceleration on Eros varies between 0.0023 and 0.0055 m/s2.

A low gravitational acceleration g has some advantages, from the possibility
of human explorers carrying very bulky life support equipment to reduced struc-
tural stresses and to reduced power requirements for motion. Another important
advantage is that the weight the vehicle-ground contact must carry is low, mak-
ing floating possible. But performance of vehicles whose mobility is produced by
friction forces is drastically reduced.

Although this does not limit mobility in a strict sense, i.e. the possibility
for the vehicle to move, it does lower the longitudinal and lateral acceleration
of the vehicle and the top speed it can travel. The maximum longitudinal and
lateral accelerations of the vehicle can be assumed to be proportional to the
gravitational acceleration, if the ideal braking and steering approach is used.

The second point is the thin atmosphere. On the Moon there is no at-
mosphere at all, as is true of all asteroids, comets and most satellites of the
outer planets. The atmosphere on Mars is so thin that it can be neglected when
dealing with ground locomotion, although thick enough to support aerodynamic
vehicles or balloons. The only body among those mentioned in Table C.1 having
an atmosphere comparable in density to Earth is Titan.

The lack of an atmosphere with a non-negligible density means no aero-
dynamic drag and thus no constraint to the outer shape of the vehicle. This
may, however, be a negligible advantage if the speed of the vehicle is low due to
poor traction. Moreover, the lack of an atmosphere makes it impossible to use
aerodynamic forces to increase the forces on the ground and thus traction.

A third point is the absence of humidity. The Moon, Mars and asteroid
surfaces are completely of from water. Because the presence of mud produces the
most difficult mobility for wheeled vehicles, this is without any doubt a positive
feature. The surfaces of comets and outer planets’ satellites are rich in ice but
conditions are such that the ice is far from its melting point and the pressure of
the vehicle on the ground is low. The surface of the ice does not melt under the
wheels, offering good traction in these conditions. The soil of Titan may contain
liquid hydrocarbons, but it is unknown whether these produce conditions similar
to muddy ground on Earth.
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A final point is the absence of products of biological origin, important in
giving the peculiar characteristics to the wide variety of soils that can be found
on Earth. Celestial bodies likely to be explored first are covered with regolith,
pulverized rock and gravel, with characteristics that are less variable than those
of soils encountered on Earth.

The Moon, for instance, is covered with a layer of regolith about 2 or 3 m
thick on the so-called maria and 3 to 16 m thick on the highlands. The mean size
of grains varies between 40 and 270 μm, with a preponderance of the smallest
size. The porosity of the soil is high at the surface (40 ÷ 43%), leading to a
density as low as about 1000 kg/m3. Porosity reduces with depth and only 200
mm below the surface the density doubles to about 2000 kg/m3.

The most important parameter for locomotion is the cohesive bearing
strength, which is about 300 Pa on the surface, increasing about ten fold at
200 mm depth4.

Maria are fairly flat, offering few obstacles and a good mobility, as demon-
strated by the last Apollo missions. On the highlands, on the other hand, there
are many craters and mountains with high slopes and obstacles. To travel through
them expeditiously it will be necessary to prepare tracks as soon as the first out-
posts are built.

The surface of Mars is also covered with regolith, with even thinner grains
owing to a more complex geological history, with erosion due to water (present
in very ancient times) and wind. The types of obstacles are much more varied
than on the Moon, and mobility may be quite difficult above all in the zones that
are more scientifically interesting, owing to ravines, canyons, cliffs and boulders
of all sizes.

C.4 MOBILITY

The low value of the pressure on the ground and the lack of water, and thus of
mud, make the use of tracks less convenient than on Earth. The choice of wheeled
vehicles is also suggested by their lower mass (until it is possible to build vehicles
there, vehicles will be carried from Earth), complexity and energy consumption,
along with their greater reliability. Other solutions, such as legged vehicles, were
often considered for robots, but never for transportation vehicles.

The experience gained with the LRV confirms these considerations: That
vehicle never experienced mobility problems and showed no tendency to sink
into the regolith. All the pictures taken on the Moon show that the wheels of
the vehicle, even when fully loaded, ride lightly on the surface (Fig. C.2a).

The sinking of a wheel with a contact area 100 mm in width is plotted
versus the pressure on the ground for 3 different values of the friction angle in
Fig. C.2b. The ratio between tractive and normal force Ft/Fn, in conditions of

4A. Ellery, An Introduction to Space Robotics, Springer Praxis, Chichester, 2000.
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FIGURE C.2. a) Image of the Lunar Rover (LRV) with astronaut Eugene Cernan on
board taken during the third extra-vehicular activity (EVA) in the Apollo 17 mission
(NASA image). b): Sinking z and ratio between tractive and normal force Ft/Fn as
functions of the normal pressure on the ground for 3 different values of the friction
angle for a wheel 100 mm wide

no sinking5 is also reported versus pressure in the same figure. The values of the
friction angle here considered are reasonable, owing to the lack of humidity.

The carrying capacity of the ground seems to be low, but it is more than
enough to support quite a massive vehicle owing to low gravity. Moreover, the
density and the cohesive strength of regolith increase with depth. Thus the car-
rying capacity increases quickly with small values of sinking, much more than
that shown in the figure. The figure was plotted assuming that the properties of
the ground are constant, equal to those characterizing the surface layer.

Finally, rolling resistance is expected to be quite low, owing to the limited
sinking. Its order of magnitude should be similar to that found on roads with a
natural surface on Earth and thus, for a pneumatic wheel, f0 should be about
0,05.

Similar considerations should also hold for Mars, where the soil is also com-
posed of dry regolith.

In terms of obstacle management, wheels can manage at low speed obstacles
whose height is on the order of magnitude of their radius or more if particular
types of suspensions are used, and can traverse ditches whose width is no more
than 70% of their diameter, unless the vehicle layout allows operation with some
wheels off the ground.

5G. Genta, Design of Planetary Exploration Vehicles, ESDA 2006, Torino, Luglio 2006.
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C.5 BEHAVIOR OF VEHICLES IN LOW GRAVITY

As previously stated, the primary difference between operating a ground vehicle
on Earth and on the Moon or Mars or the other bodies to be explored is low
gravity. In vehicles using friction forces to propel and brake the vehicle or control
its trajectory, performance depends upon the forces exerted on the ground and,
if no aerodynamic force is present, on weight. In the following sections only ideal
conditions will be considered; i.e. it is assumed that all wheels work with the
same longitudinal or side force coefficient.

C.5.1 Longitudinal performance

The deceleration that a vehicle may develop in ideal braking conditions is

dV

dt
= μxg . (C.1)

It follows that if the longitudinal force coefficient μx is equal to 0.5, a rea-
sonable value on non-prepared ground, the maximum deceleration that may be
obtained on the Moon (g = 1, 62 m/s2) is 0,8 m/s2. Obviously the deceleration
the vehicle may actually reach is lower, and may be computed in the usual way.

Load transfer does not depend upon the gravitational acceleration, but only
upon the longitudinal force coefficient: If a vehicle brakes with a certain value
of μx, it has the same load shift (obviously in a relative sense) on Earth and on
the Moon. The curve ηf (μx) is then the same, for a given braking system. Note
that the variability of μx may be lower on the Moon than on Earth, because
it is influenced by the presence of water or ice on the ground (possible only on
Earth). A good knowledge of the lunar ground thus makes it possible to design
braking system operating at higher efficiency than usual.

The distance needed to stop the vehicle, computed assuming uniformly de-
celerated motion for values of the deceleration included between 0,2 and 1 m/s2,
is shown in Fig. C.3.

The same holds for acceleration: On Earth the limitations in acceleration
are set primarily by the available power, except for very powerful vehicles or
extremely poor road conditions; on the Moon it is likely that the limitations
come from the power that can be transferred to the ground. A layout with all
wheel drive is advisable to ensure reasonable performance in acceleration.

The low traction available and the simultaneous presence of longitudinal
load transfer makes the use of ABS and traction control devices necessary, even
more so than on Earth, although the lessened variability of ground characteristics
make these systems less useful.

Reduced gravitational acceleration has no effect on the ability to manage
slopes, but does reduce the required power. The steepest slope that can be man-
aged by a 4WD vehicle, assuming ideal driving conditions (i.e. that all wheels
work with the same longitudinal force coefficient) is given by the usual formula

tan(αmax) = imax = μxp
. (C.2)
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FIGURE C.3. Distance needed to stop the vehicle at constant deceleration versus the
speed for values of the deceleration included between 0,2 and 1 m/s2.

Assuming a value of the force coefficients μx = 0.5, a maximum slope
αmax = 27◦, i.e. a 46% grade, is obtained. This can, however, be obtained only
in ideal conditions, and only when using accurate slip control of the wheels.

Taking the difference of the force coefficient at the front and rear wheels
into account, if the height of the center of mass on the ground is hG = a/2,
the values αmax = 22◦, corresponding to imax = 38%, are obtained for a 4WD
vehicle. These values are fairly good, particularly if the low value of the force
coefficient used is considered.

The specific power in W/kg (kW/ton) needed to travel on a slope on the
Moon is reported in Fig. C.4 as a function of the slope. A power of just 2 kW
allows a 1 ton vehicle to travel on level road at more than 50 km/h and to
overcome a 40 % grade at 10 km/h.

C.5.2 Handling

Referring to the concept of ideal steering, if there are no aerodynamic forces and
the road is level, the maximum centrifugal acceleration is

V 2

R
= gμy , (C.3)

where the value of μy is that of the whole vehicle. The relationship between the
minimum radius of the trajectory and the speed in the lunar environment for
various values of μy is shown in Fig. C.5. It has been assumed in plotting the
figure that the value of μy for the vehicle is 70% of that referred to the tires.

Again, in spite of the poor performance, the transversal load transfer is not
less than on Earth, with higher centrifugal accelerations but the same value of



740 Appendix C. VEHICLES FOR EXTRATERRESTRIAL ENVIRONMENTS

FIGURE C.4. Specific power in W/kg (kW/ton) needed to travel on a slope on the
Moon at various speeds, with f0 = 0, 05 and ηt = 0, 9.

FIGURE C.5. Relationship between the radius of the trajectory and the maximum
speed for a vehicle on the Moon with different values of the cornering force coefficient
μy. The sliding factor is assumed to be 70% of the cornering force coefficient of the
wheel

the force coefficient μy. The only point is that the tires are likely to be oversized
owing to the low load (see below), and may work in the part of the C (Fz)
(cornering stiffness-load) curve where load transfer is less important, at least
using linearized models.

In spite of the low speed, the very low cornering forces available may make
the use of modern stability enhancement (ESP, VDC, etc.) systems worthwhile.
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C.5.3 Comfort

Comfort is little influenced by the gravitational acceleration of the planet on
which the vehicle moves: The criteria for bounce and pitch motions, suspension
damping and other suspension characteristics developed for vehicles on Earth
hold on other worlds. There is even an advantage: One limitation to spring
softness in vehicular suspensions comes from the need to limit suspension travel
with changing load. In low gravity, if the springs are designed with dynamic
considerations in mind, the static deflection under load is small presenting no
constraints upon suspension softness. The only limit in this area is the need to
avoid bounce and pitch frequencies that are too low. These may cause motion
sickness.

The human side is another matter. We know little about how a human body
accustomed to no gravity after a few days of space travel will react to vibration
under low gravity conditions. The usual guidelines may not apply as they do on
Earth. The LRV, for example, had a bounce frequency in full loaded conditions
that was too low for comfort, but it is not known that any astronaut suffered
from motion sickness while driving on the Moon. Further studies are needed,
but they must be conducted on site, because low gravity cannot be properly
simulated on Earth.

However, low gravity does cause an unwanted effect on bounce and pitch
motion: The wheels tend to lift from the ground, as is apparent in the movies
taken in the Apollo missions6. It is obvious that at reduced gravitational acceler-
ation, inertia forces become more important with respect to weight, causing the
difficulty in maintaining a good wheel-ground contact when travelling on uneven
ground to increase. This effect can be evidenced by plotting the ratio between
the minimum vertical force (static value minus amplitude of the dynamic force)
and the static force as a function of the frequency when driving on a road with
a harmonic profile of a given amplitude.

A plot of this type for a quarter car with two degrees of freedom with
a sprung mass of 240 kg, unsprung mass of 38 kg, tire stiffness 135 kN/m,
suspension stiffness 15,7 kN/m and optimum damping (1,52 kNs/m) is shown in
Fig. C.6. The results for the lunar environment are compared with those obtained
for Earth.

From the figure it is clear that while on Earth the suspension maintains
contact with the ground even at an amplitude of 10 mm, on the Moon an ampli-
tude as small as 2 mm causes the wheel to bounce at a frequency of about 9 Hz.
For larger amplitudes, the contact of the wheel on the ground is quite uncertain,
with ensuing reduction of the already poor traction and cornering forces. This
problem may be lessened by increasing the damping of the shock absorber or
decreasing the stiffness of the spring, but this would in turn lessen comfort.

6If a further clue were needed, those moves demonstrate that the astronauts were actu-
ally on the Moon. At the speed reached by the LRV, the dynamic behavior of the vehicle is
inconsistent with conditions on Earth.
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FIGURE C.6. Ratio between the minimum vertical force on the ground and the static
force for a quarter car model as a function of the frequency when driving on Earth
(dashed lines) and on the Moon (full lines) on a road with harmonic profile at a given
amplitude h0.

The ground contact problem could suggest the use of at least semi-active
suspensions, or even fully active ones. An interesting possibility is the use of
electromagnetic damping because of the difficulties of cooling standard shock
absorbers in the vacuum of space (Moon) or in a very thin atmosphere (Mars).

C.6 POWER SYSTEM

Travelling in low gravity conditions requires much less power than on our planet:
Rolling resistance is much lower, aerodynamic drag is absent (and at low speeds
like those that can be reached in these conditions it would be negligible even
in an Earth-like atmosphere). Low traction prevents accelerations requiring high
power from being obtained.

The low top speed, linked to the difficulties in acceleration, braking and
cornering, reduces the power requirements in unstationary conditions. In these
conditions electric drive powered by batteries seems to be a good solution, es-
pecially because the cost problems that prevent the use of high performance
batteries on normal vehicles are much less important. If the vehicle must be
used for prolonged periods of time, rechargeable batteries will be used instead
of the primary batteries used on the LRV. They will be charged by the solar (or
better nuclear) power system of the outpost.

An alternative may be fuel cells, using locally produced oxidizer and fuel.
Other more conventional solutions, such as internal combustion engines of

a more or less traditional type fed by locally produced fuel are also viable. On
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Mars, for instance, production of oxygen and methane from ice, surely present in
many places on the planet, and from the abundant atmospheric carbon dioxide
seems a good choice.

Radioisotope thermoelectric generators (RTG) may be a good choice for
small vehicles, while larger ones may use, at least in principle, a small nuclear
reactor directly, even if the use of batteries recharged from a stationary reactor
seems more convenient.

Some power is also needed for thermal control. On the Moon, for instance,
thermal excursions are extreme and the vehicle, even if not operating, must be
protected from the cold during a night that lasts 14 days. The thermal control
systems are not different from those used on space vehicles, and will not be dealt
with here. The same is true of life support systems, although these may not be
a part of the vehicle, but may be a part of the habitat carried on board.

C.7 CONCLUSIONS

The examples above dealt mostly with the Moon, the body where the most likely
need for ground transportation will first arise. On Mars the effects will be less
severe, but the situation will be more or less similar.

When vehicles for the exploration and the exploitation of asteroids are de-
signed, significantly different problems will be encountered, because of the low
gravitational acceleration and the small size of these bodies. The first feature
makes it necessary to proceed with extreme caution to ensure that inertial forces
do not make the vehicle lift off and become lost in space. The second makes it
useless to move at speeds above a low value. It is likely that vehicles used on
asteroids and comets will have little in common with automotive technology and
will be small space vehicles.

On the other hand, the vehicles that will carry explorers and then colonists
on the surface of the Moon and then on Mars will be essentially similar to motor
vehicles and their designers will need a good knowledge of automotive technology.
Unlike of what was feared in 1960, lunar and martian soil is not at all difficult
and, at least in the flatter zones, offers good carrying capacity and fair traction
because of the lack of humidity. There is no problem in moving at moderate
speed, even without building permanent infrastructures.

It will be harder to reach places in more difficult areas, which on Mars are
the most interesting from a scientific viewpoint, and it is likely that it will be
necessary to build, at the least, dirt roads or tracks.

Worse problems will be encountered when mobility at higher speed is neces-
sary. Here the worst problems will come from the low gravitational acceleration.
Roads with a good surface and large radii may be a partial solution, but it is
likely that other approaches will be followed, such as hopping vehicles (perform-
ing parabolic flights is not energetically infeasible, owing to low gravity), and
above all guided vehicles on rails or, more likely, maglev vehicles. The latter may
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be particularly suitable to low gravity conditions, but these are solutions for a
more distant future, when traffic density will justify building costly infrastruc-
tures.

In the short and medium term robotic and manned vehicles will be based on
more or less standard automotive technology, benefiting from the recent advances
of the latter. Drive and brake by wire may allow performance satisfying the needs
of planetary exploration with the required safety, while semi-active and active
suspensions will increase comfort to acceptable levels.



Appendix D
PROBLEMS RELATED TO ROAD
ACCIDENTS

As discussed in Part III, the cost of accidents due to the use of motor vehicles,
both in terms of human lives and economic losses, is quite high. the goal of
increasing the safety of motor vehicles is generally considered a technical and
social priority.

The actions taken to reduce both the number and severity of accidents are
both technical and legal and involve many disciplines. Automotive engineers are
involved both in the design of the vehicle and, as a consultant of courts or law
makers, in the reconstruction of accidents. Their aim is to ascertain responsi-
bilities and introduce into the standards and rules those provisions necessary to
prevent accidents or reduce their consequences.

It must be noted that the reconstruction of an accident is often a difficult
task. The expert, who usually acts as a consultant of the court or of one of the
persons involved, may have only a partial knowledge of the situation. The only
known data are in many cases the positions of the vehicles after the accident
plus any marks that may remain on the road, and sometimes even these are
uncertain and affected by large errors. A road accident, occurring in a very short
time and usually in an unexpected way, can have a large psychological impact on
witnesses and protagonists. This, together with the limited technical knowledge
of the persons involved and the economic interests at stake, may make the reports
of witnesses difficult to interpret and weigh correctly, particularly when they lead
to conflicting reconstructions.

The traditional methods used in the reconstruction of accidents are based
on rough approximations, which are, however, justified by the uncertainties and
sometimes the quick variations of the parameters of the problem. Only the use
of more elaborated numerical models, implemented on computers, can produce
higher accuracy.
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D.1 VEHICLE COLLISION: IMPULSIVE MODEL

A frequent scenario in the reconstruction of accidents is a collision between ve-
hicles or between a vehicle and an obstacle. The simplest model deals with the
collision as an impulsive phenomenon, i.e., it assumes that the time during which
the vehicles remain in contact (typically on the order of 0.1 s) is vanishingly short
and that the forces they exchange are infinitely large. Mathematically the forces
may be represented by a Dirac impulse function. Their study is based on the
momentum theorem, stating that the variation of the momenta of the vehicles
is equal to the impulse of the forces they exchange.

Because the forces the vehicles exchange during the collision are larger by
orders of magnitude than the other forces acting on them, this approach is quite
correct, even if it has the disadvantage of not allowing us to study what happens
during the impact but only how the motion changes between instant t1 preceding
the collision and instant t2 following it.

Remark D.1 It is meaningless to ask what happens during a phenomenon whose
duration is zero by definition.

D.1.1 Central head-on collision

The simplest case is that of a head-on collision in which the velocities of the cen-
tres of mass of the vehicles lie along the same straight line (Fig. D.1a). Actually,
if the velocities ẋA and ẋB have the same sign a rear collision occurs while a
head-on collision is characterized by opposite signs of the velocities.

The relative velocity
VR = ẋB − ẋA (D.1)

must be negative; otherwise the vehicles do not approach each other.
During the collision the absolute value of the relative velocity decreases

between times t1 and time ti, when the centres of mass are at their minimum
distance. In the rebound phase, between times ti and t2, the relative velocity

FIGURE D.1. Central head-on collision. (a) Situations before the collision and at time
t1; (b) relative velocity and distance between the centres of gravity as functions of time.
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becomes positive (Fig. D.1b). The distance between the centres of mass is plotted
in the same figure. The final crush s of the vehicles is the difference between d1

and d2.
As already said, however, the impulsive model does not show what happens

between t1 and t2. The conservation of momentum allows the relationship to be
written as

mAẋA1 + mBẋB1 = mAẋA2 + mBẋB2 . (D.2)

Because the collision is generally inelastic, the kinetic energy is not conserved

1
2
mAẋ2

A1
+

1
2
mBẋ2

B1
≥ 1

2
mAẋ2

A2
+

1
2
mBẋ2

B2
; (D.3)

the two sides being equal in the case of a perfect elastic collision.
The position and the velocity of the centre of mass of the system made by

the two vehicles are simply

xG =
mAxA + mBxB

mA + mB
, (D.4)

ẋG =
mAẋA + mBẋB

mA + mB
. (D.5)

A consequence of the conservation of the momentum is the conservation of
the velocity of the centre of mass of the system:

ẋG1 = ẋG2 .

The velocities of the vehicles can thus be expressed as functions of the
velocity of the centre of mass, which remains constant, and of the relative velocity,
a function of time

ẋA = ẋG − VR
mB

mA + mB
, ẋB = ẋG + VR

mA

mA + mB
. (D.6)

The kinetic energy of the system can thus be written in the form

T =
1
2

[
ẋ2

G(mA + mB) + V 2
R

mAmB

mA + mB

]
. (D.7)

As the velocity of the centre of mass is constant, the maximum energy
dissipation occurs when the relative velocity vanishes. It is therefore possible to
state a lower and an upper bound to the kinetic energy after the collision

1
2
ẋ2

G(mA + mB) ≤ T2 ≤ 1
2

[
ẋ2

G(mA + mB) + V 2
R1

mAmB

mA + mB

]
. (D.8)

The minimum kinetic energy (expression on the left) occurs when the col-
lision is perfectly inelastic and the two vehicles remain attached to each other.
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In the case of a perfectly elastic collision, the absolute value of the relative ve-
locity after the impact is equal to that at time t1:

VR2 = −VR1 .

A restitution coefficient e∗ is usually defined as1

e∗ = −VR2

VR1

. (D.9)

In case of a perfectly elastic collision e∗ = 1, while e∗ = 0 for inelastic
impacts. In all actual impacts 0 < e∗ < 1.

The energy dissipated during the collision is then

T2 − T1 =
1
2

mAmB

mA + mB

(
V 2

R1
− V 2

R2

)
=

1
2

mAmB

mA + mB
V 2

R1

(
1 − e∗

2
)

. (D.10)

In the first part of the collision, from time t1 to time ti, the relative velocity
decreases to zero and the kinetic energy reduces to a minimum, given by the
expression on the left side of Eq. (D.8). The energy related to velocity VR1

transforms partly into elastic deformation energy, with part of it dissipated as
heat. In the second part of the collision, from time ti to time t2, a fraction of
this energy is transformed back to kinetic energy. The ratio between the energy
restituted in the second phase and that subtracted from the kinetic energy in
the first is e∗2.

In motor vehicle collisions the value of e∗ is low, typically in the range of
0.05 ÷ 0.2 for impacts with large permanent deformations. It depends, however,
on the relative velocity and may be higher in low speed collisions, tending to
unity when no permanent deformations are left.

The velocities of the vehicles after the impact are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋA2 = ẋA1 + mBVR1

1 + e∗

mA + mB

ẋB2 = ẋB1 − mAVR1

1 + e∗

mA + mB
.

(D.11)

D.1.2 Oblique collision

Seldom is the situation as described in Fig. D.1; usually the velocity vectors of
each of the two vehicles do not pass through the centre of mass of the other
as in Fig. D.2. If the collision is considered as an impulsive phenomenon, the
conservation of momentum still holds⎧⎨

⎩
mAẋA1 + mBẋB1 = mAẋA2 + mBẋB2

mAẏA1 + mB ẏB1 = mAẏA2 + mB ẏB2 ,
(D.12)

1Symbol e∗ will be used for the restitution coefficient instead of e to avoid confusion with
the base of natural logarithms.



D.1 Vehicle collision: Impulsive model 749

FIGURE D.2. Oblique collision.

but does not allow us to solve the problem of projecting the situation after
the collision from that preceding it. Nor does the assessment of a coefficient of
restitution allow us to obtain a solution, because the conditions to be stated are
two and not one (Eq. (D.12) contains two conditions and 4 unknowns).

Assume that the contact surface at the moment of maximum deformation
is flat and state a reference frame Oxy centred at point O in which the resultant
of the contact forces is applied, with the x-axis perpendicular to the contact
area. Note that the components of velocities Vi of the vehicles are plotted in the
figure in the direction of the positive axes: Practically speaking, some of them
are negative. The vehicles may also have an angular velocity Ω; if not at time
t1, then surely at time t2.

The impulsive model implies that the duration of the impact is zero: It may
thus be thought of as the collision between two rigid bodies, predeformed as
shown in the figure.

The velocity of point O, considered as belonging alternatively to vehicle A
and vehicle B, is

�VAO
=

⎧⎨
⎩

ẋGA
− ΩAyA

ẏGA
+ ΩAxA

⎫⎬
⎭ , �VBO

=

⎧⎨
⎩

ẋGB
− ΩByB

ẏGB
+ ΩBxB

⎫⎬
⎭ , (D.13)

where xA, yA, etc. are the coordinates of the centres of mass in the Oxy frame.
Note that both xA and yA are negative in the figure.

The relative velocity of vehicle B with respect to vehicle A at point O is

�VR = �VBO
− �VAO

=

⎧⎨
⎩

ẋGB
− ẋGA

− ΩByB + ΩAyA

ẏGB
− ẏGA

+ ΩBxB − ΩAxA

⎫⎬
⎭ . (D.14)

The x component of the relative velocity, hereafter written as VR⊥ is the
velocity at which the two surfaces approach each other, or better, move away
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from each other, as a positive value means that the distance between the surfaces
increases. The y component VR‖ is the velocity at which the surfaces slide over
each other and can be either positive or negative.

As in the case of the central impact, it is possible to define a restitution
coefficient

e∗ = −
VR⊥2

VR⊥1

.

Each vehicle receives an impulse from the other that is equal to its change
of momentum. Indicating with �I the impulse received by vehicle A from vehicle
B (the impulse received by vehicle B from vehicle A is then −�I), the momentum
theorem applied to the two vehicles may be written in the form

{
Ix = mA (ẋA2 − ẋA1)
Iy = mA (ẏA2 − ẏA1)

{
−Ix = mB (ẋB2 − ẋB1)
−Iy = mB (ẏB2 − ẏB1) .

(D.15)

Similarly the conservation of the angular momentum can be written in the
form ⎧⎨

⎩
IxyA − IyxA = JA (ΩA2 − ΩA1)

IxyB − IyxB = −JB (ΩB2 − ΩB1) .
(D.16)

A single relationship is still needed. It is possible to relate the components of
the impulse in a direction perpendicular to the impact surface Ix to the tangential
component Iy using a simple relationship

Iy = λIx , (D.17)

where λ is a kind of friction coefficient in the zone where the two vehicles are
in contact. Because the vehicles usually interlock with each other, its value may
be far higher than that of an actual coefficient of friction. Moreover, its value
changes in time and only an average value is required. Its sign is the same as
that of ratio VR⊥/VR‖ .

By introducing equations (D.15) and (D.16) into Eq. (D.14), it follows that

VR⊥2
= VR⊥1

− Ix (a − λb) , (D.18)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a =
1

mA
+

1
mB

+
y2

A

JA
+

y2
B

JB

b =
xAyA

JA
+

xByB

JB
.

The value of the x component of the impulse is then

Ix = VR⊥1

1 + e∗

a − λb
. (D.19)
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The direct problem, i.e. that of finding the conditions after the collision
(time t2) from those at time t1 is now easily solved. Once the components VR⊥1

and VR‖1
are computed, the sign of λ is known and the impulse can be computed

from equations (D.19) and (D.17). The velocities after the collision are thus
computed through equations (D.15) and (D.16).

For the inverse problem, i.e. that of finding the conditions before the collision
(time t1) from those at time t2, Eq. (D.19) can be modified as

Ix = −VR⊥2

1 + e∗

e∗ (a − λb)
(D.20)

and a procedure similar to the previous one can be followed.
The problem is the assessment of the values of coefficients λ and e∗ and

of the positions of the centres of mass of the vehicles with respect to point O,
because the position of the latter cannot usually be evaluated with precision.
It is possible to repeat the computation with different values of the uncertain
parameters in order to define zones in the parameter space where the solutions
must lie and to rule out possible reconstructions of the accident. Some solutions
can be ruled out by remembering that a − λb must be positive, as both Ix and
Vi1 are negative, if vehicle A is in the half plane with negative x.

D.1.3 Collision against a fixed obstacle

A particular case is that of the collision against a fixed obstacle (Fig. D.3). The
equations seen above still apply, provided that

1
mB

=
1

JB
= ẋB = ẏB = 0 ,

i.e. the fixed obstacle is considered as a vehicle with infinite mass travelling at
zero speed.

FIGURE D.3. Collision against a fixed obstacle.



752 Appendix D. PROBLEMS RELATED TO ROAD ACCIDENTS

It then follows that

�VR =

⎧⎨
⎩

−V cos(α) − ΩyG

−V sin(α) + ΩxG

⎫⎬
⎭ , (D.21)

I =
mr2(1 + e∗)[−V1 cos(α) − Ω1yG]

r2 + yG(yG − λxG)
, (D.22)

where

r =

√
J

m

is the radius of gyration of the vehicle.
If the angular velocity Ω1 is negligible, the expressions for the velocity after

the impact are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2 = ẋ1
yG(yG − λxG) − r2e∗

yG(yG − λxG) + r2

ẏ2 = ẏ1 − ẋ1
λr2(1 + e∗)

yG(yG − λxG) + r2

Ω2 = ẋ1
(yG − λxG)(1 + e∗)
yG(yG − λxG) + r2

.

(D.23)

If ẋ2 > 0 or Ω2 > 0 the vehicle has a second collision with the obstacle
with the rear part of the body or, in practice, it undergoes a deformation that
displaces the point of contact rearward, with a change in the values of xG and
yG: It is impossible that ẋ2 > 0 after a collision. In case of a perfectly inelastic
impact the vehicle finally slides along the obstacle. The deformations are such
that

yG − λxG ≈ 0 , ẋ2 = Ω2 = 0 , ẏ2 = ẏ1 − λẋ1.

If the obstacle is a flat surface, λ is the coefficient of friction.

D.1.4 Non-central head-on collision

Consider a head-on collision in which the velocities of the centres of mass of the
vehicles do not lie along the same straight line (Fig. D.4).

If the vehicles have no angular velocity before the collision, it follows that

ẏA1 = ẏB1 = ΩA = ΩB = 0 , ẋA1 = VA , ẋB1 = VB .

The components of the relative velocity are then

VR⊥1
= VB − VA , VR‖1

= 0

and, because the slip velocity is nil, λ can be assumed to vanish.
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FIGURE D.4. Non-central head-on collision.

FIGURE D.5. Lateral collision.

The expressions for the velocities after the impact are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋA2 = VA + (VB − VA)
1 + e∗

amA

ẋB2 = VB − (VB − VA)
1 + e∗

amB

ΩA2 = (VB − VA)
yA(1 + e∗)

aJA

ΩB2 = − (VB − VA)
yB(1 + e∗)

aJB
.

(D.24)

D.1.5 Lateral collision

Consider a lateral collision in which the velocities of the centres of mass of the
vehicles are perpendicular to each other (Fig. D.5).

If the angular velocities of the vehicles are vanishingly small before the
collision

ẏA1 = ẋB1 = ΩA = ΩB = 0 , ẋA1 = VA , ẏB1 = VB ,
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it follows that
VR⊥1

= −VA , VR‖1
= VB

and then
Ix = −VA

1 + e∗

a − λb
, (D.25)

where λ is negative if both VA and VB are positive.
The expressions for the velocities after the impact are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋA2 = VA

[
1 − 1 + e∗

mA(a − λb)

]

ẏA2 = −VAλ
1 + e∗

mA(a − λb)

ΩA2 = − (yA − λxA)
(1 + e∗)

JA(a − λb)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋB2 = VA
1 + e∗

mB(a − λb)

ẏB2 = VB + VAλ
1 + e∗

mA(a − λb)

ΩB2 = (yB − λxB)
(1 + e∗)

JA(a − λb)
.

(D.26)

D.1.6 Simplified approach

The problem is often simpler. If the directions of the velocity vectors of the
vehicles before and after the impact can be estimated independently, there is no
need to assume the values of e∗ and λ. With reference to Fig. D.6, Eq. (D.12)
can be written as⎧⎨
⎩

mAVA1 cos(θA1) + mBVB1 cos(θB1) = mAVA2 cos(θA2) + mBVB2 cos(θB2)

mAVA1 sin(θA1) + mBVB1 sin(θB1) = mAVA2 sin(θA2) + mBVB2 sin(θB2) .
(D.27)

If all angles θi at times t1 and t2 are known or can be assumed, both the
direct or the inverse problem are easily solved. Once the velocities have been
computed it is possible to obtain the angular velocities, the components of the
impulse, e∗ and λ.

In the inverse problem, the velocity after the impact is usually obtained
from the distance travelled by the two vehicles between time t2 and the instant
t3 in which all motion ceases. The wheels are often assumed to be blocked, which
is correct only if the deformations due to the collision are sufficiently large, or if
the sideslip angles are sizeable enough to cause the wheels to slide on the ground.
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FIGURE D.6. Simplified approach: velocities at times t1 and t2.

If the vehicle slides for a distance d before coming to a stop without hitting any
other obstacle, the velocity V2 can be computed by equating the kinetic energy
of the vehicle after the collision with the energy dissipated by friction, that is
the product of the friction force mgf by the distance travelled d:

V2 =
√

2gdf , (D.28)

where f is the coefficient of friction between the tires and the road.
If at time t3 the vehicle hits an obstacle with a speed V3 after sliding for a

distance d, it follows that

V2 =
√

2gdf + V 2
3 . (D.29)

Velocity V3 may be assessed only from the damage suffered by the vehicle
during the secondary collision, a difficult and process that is affected by large
uncertainties and errors.

Remark D.2 The larger the value of the friction coefficient f or the distance
d, the less significant are the errors in the estimate of V3.

Another source of uncertainties is the evaluation of f , which is affected not
only by road conditions and the possibility that some of the wheels are rolling
instead of slipping but also by the actual motion of the vehicle.

The motion of the vehicle on the road after the collision is actually not
a simple translational motion but a combination of translation and rotation.
As already seen, the angular velocity of the vehicle after the collision may be
computed even if only approximately for the position of the point of application
of the shock load can only be guessed. At first glance it would seem that the
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rotation ψ3 −ψ2 of the vehicle during the time from t2 to t3 could be computed
the same way as the translational motion

ψ3 − ψ2 =
JzΩ2

2

2mgdf
, (D.30)

where d is the average distance between the centre of mass and the centres of
the contact areas of the wheels.

This is, however, incorrect as the coefficient of friction cannot be applied
to translational and rotational motions separately. But as it will be shown in
Section D.3.1, it is possible to approximate the correct results by studying the
two motions separately with two “equivalent” friction coefficients, both of which
are smaller in magnitude than the actual coefficient f .

Example D.1 Two cars collided at the intersection of two urban three-lanes streets.

Evaluate the speed of the vehicles at the instant of the collision, knowing only the final

positions at which they stopped and their directions at time t1. Vehicle A stopped without

any secondary collision while vehicle B ended up against a wall. From the deformations

caused by the secondary impact, a value V3 ≈ 11 m/s ≈ 40 km/h is assumed.

With reference to the xy frame shown in Fig. D.7, the coordinates of the centres

of mass of the vehicles at time t3 are xA3 = 9.2 m, yA3 = 12.8 m, xB3 = 13.2 m and

yB3 = 12.0 m. The masses of the vehicles are mA = 850 kg and mB = 870 kg.

Because the exact position of the vehicles at time t1 is unknown, each of them will

be assumed to have traveled in the centre of the right, centre and left lane. As a result,

nine possible positions of the impact point will be considered. With simple geometrical

computations, the values of yA1 and yB1 as functions of the position of vehicle A and

those of xA1 and xB1 as functions of the position of vehicle B are

Vehicle A Vehicle B

Lane yA1 yB1 xA1 xB1

Right −9.8 10.2 6.0 8.6
centre −6.3 −6.7 2.6 5.2
Left −2.8 −3.2 −0.8 1.8

It is straightforward to compute the distances dA and dB for the nine cases under

study. Vehicle A stops without hitting any obstacle. As its velocity was almost perpen-

dicular to its longitudinal axis and some rotation occurred, owing to the fact that the

front wheels were blocked as a consequence of the impact, a fairly high value of the

friction coefficient can be assumed, namely fA = 0, 45.
Vehicle B had only one wheel locked and moved in a direction less inclined with

respect to its longitudinal axis; an average value of the friction coefficient, fB = 0, 30
is then assumed. In all nine cases the values of VA2 and VB2 can be easily obtained

VA2 =
√

2gdAfA , VB2 =
√

2gdBfB + V 2
B3

.
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FIGURE D.7. Example D.1; positions of the vehicles.

Angles θA1 and θB1 are respectively θA1 = 0 and θB1 = 90◦. Angles θA2 and θB2

can be computed as

θA2 = arcsin

(
yA3 − yA1

dA

)
, θB2 = arcsin

(
yB3 − yB1

dB

)
.

By solving Eq. (D.27) in VA1 and VB1 , the following values of the velocities are

obtained:

Velocity VA1 (in km/h)

Vehicle A

Lane Right centre Left

Left 49.3 53.3 59.0

Vehicle B centre 34.9 38.5 42.8

Left 19.1 21.2 24.1
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Velocity VB1 (in km/h)

Vehicle A

Lane Right centre Left

Left 99.7 91.4 81.7
Vehicle B centre 103.3 95.7 86.8

Left 105.5 98.6 90.7

It is very unlikely that vehicle B was in the left lane, as this would yield too low

a value for the velocity of vehicle A. However, its position has little effect on the value

of the velocity of vehicle B, which, in this case, is the most important parameter to be

determined. Some uncertainty in this result remains, because values between 81.7 and

105.5 km/h are possible.

This approach, which may be defined as traditional, still carries a wide uncertainty

margin, primarily linked to the evaluation of the friction coefficients and the velocities

after the impact, in case a vehicle stops by hitting an obstacle. Its simplicity allows

one to perform the computations several times and to obtain upper and lower bounds of

the results. The values of the initial velocities can then be used to perform more accurate

numerical simulations.

Example D.2 Two cars collided at the intersection of two urban streets (Fig. D.8).

Both the collision point and the final positions at which they stopped (both vehicles

stopped without hitting any obstacle) are known. Compute the speeds at which the two

vehicles reached the intersection and the positions taken by the vehicles after the impact.

The inertial properties of the vehicles, the coordinates of their centre of mass and

their yaw angles at times t2 and t3 with reference to the frame xy shown in the figure

are mA = 1130 kg, mB = 890 kg, JA = 1780 kg m2, JB = 1400 kg m2, xA1 = 0.3 m,

yA1 = 0.6 m, xB1 = 0.7 m, yB1 = 1.4 m, xA3 = −4.4 m, yA3 = 8.5 m, xB3 = 1.7 m,

yB3 = 4.9 m, ψA1
= 90◦, ψB1

= 180◦, ψA3
= 120◦ and ψB3

= 20◦.

The positions of the centres of mass of the vehicle with reference to frame x′y′

centred on the impact zone are x′
GA

= −0.825 m, y′
GA

= −0.80 m, x′
GB

= 1.575 m and

y′
GB

= 0.

For the computation of the velocities after the impact a value fA = 0.15 was

assumed for the first vehicle (after the impact it travelled with little sideslip) and fB =

0.50 was assumed for the second. As the distances travelled after the collision are dA =

9.123 m and dB = 3.640 m, the velocities at time t2, computed through Eq. (D.28), are

VA2 = 18.7 m/s = 67.3 km/h and VB2 = 5.98 m/s = 21.5 km/h.
The velocity vectors are then

�VA2 =

{
−9.65
16.22

}
m/s , �VB2 =

{
−1.64

5.75

}
m/s .

The velocities before the collision are easily obtained from Eq. (D.27)

�VA1 =

{
0

20.75

}
m/s , �VB1 =

{
−13.89

0

}
m/s .



D.1 Vehicle collision: Impulsive model 759

FIGURE D.8. Example D.2; positions of the vehicles at times t1 and t3 and reconstruc-
tion of the accident; computed positions at times 0.05, 0.1, 0.15, 0.2, 0.3 and 0.5 s from
time t2.

The two cars were then travelling at 74.7 km/h and 50.0 km/h.
This result was obtained using a much simplified model. A more detailed approach

can be used to confirm the results, using equations (D.25) and following, the only dif-
ference being that in this case vehicle B hits vehicle A. Because VR⊥1

= VB1 = 13.89
m/s and VR‖1

= −VA1 = −20.75 m/s, it follows that

Ix = VB
1 + e∗

a − λb
= −13, 890(1 + e∗)

2.368 − 0.371λ
.

The components of the impulse can be easily computed from the velocities before

and after the impact: Ix = −10, 905 Ns and Iy = −5, 119 Ns. The value λ = 0.469 is

easily obtained, a high but realistic value owing to the possibility of the vehicles becoming

interlocked.

By equating the two values of Ix the value e∗ = 0.723 for the restitution coeffi-

cient is obtained. It is also quite high, but is again justified by the small permanent

deformations found on the vehicles.



760 Appendix D. PROBLEMS RELATED TO ROAD ACCIDENTS

The angular velocities after the impact are then obtained

ΩA2 =
Ixy′

A − Iyx′
A

JA
= 2.52 rad/s ,

ΩB2 =
−Ixy′

B + Iyx′
B

JB
= −5.75 rad/s .

To compute the rotations of the vehicles during the accident Eq. (D.30) can be used. The

value f = 0.7 can be used for both vehicles (see Sec. D.3.1). The geometrical parameters

are dA = 1.45 m and dB = 1.35 m. The results are

|ψA3
−ψA2

| = 0, 502 rad= 29◦ ,

|ψB3
−ψB2

| = 2, 813 rad= 161◦ .

which are close to those measured on the road. The positions of the vehicle at times

between t2 and t3 are reported in Fig. D.8.

D.2 VEHICLE COLLISION: SECOND
APPROXIMATION MODEL

D.2.1 Head on collision against a fixed obstacle

The model studied in the previous sections was based on the assumption that
the collision is an impulsive phenomenon. Consequently, it was impossible to
assess what might happen during the impact. The shock, however, has a short
but finite duration, making it possible to study how the displacement, velocity
and acceleration change between t1 and t2.

Consider first a head-on collision against a fixed obstacle, like that occur-
ring during a crash test (Fig. D.9). The force that the vehicle receives from the
obstacle has a time history of the type shown in Fig. D.10a. The curve is not
smooth because the compliance of the front of the vehicle changes strongly as
it is crushed, owing to geometric nonlinearities, buckling and other phenomena.
The experimental law may, however, be approximated by a smooth curve F (t)
while retaining the most important features of the actual behavior of the vehicle
(dashed curve in the figure).

The linkage of force and acceleration is complex, as the vehicle’s configura-
tion changes in time, with each point of the vehicle having its own acceleration.
However, with the exception of the front part, which is crushed, the vehicle may
be considered as a rigid body.

The position of the centre of mass may be considered as fixed to the un-
deformed part of the vehicle. The acceleration can thus be obtained directly
from the force F (t); in an actual crash test the acceleration is usually measured
by accelerometers located on the vehicle and the force is obtained from these
readings.
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FIGURE D.9. Numerical simulation of a crash test against a rigid barrier: Deformation
of the vehicle at various instants (fuinite element method).

FIGURE D.10. (a) Force the vehicle receives from the obstacle during a crash test
as a function of time. Experimental curve and mathematical empirical law. (b) Time
histories V (t), a(t) and s(t) obtained from the empirical law F (t).

From the acceleration it is straightforward to compute the velocity and the
deformation of the vehicle.
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A law approximating the acceleration is2

a = τ(1 − τ)β cV1

t2
, (D.31)

where t2 is the duration of the impact,

τ =
t

t2
(0 ≤ τ ≤ 1)

is the nondimensional time and c and β are nondimensional constants.
Such a law has a vanishing derivative (jerk equal to zero) at the end of the

collision (t = t2) while the jerk at the beginning of the collision (t = 0) is other
than zero; both these features comply with the intuitive physical interpretation
of the phenomenon.

The velocity may be obtained by integrating Eq. (D.31):

V = −cV1

[
(1 − τ)β+1

β + 1
− (1 − τ)β+2

β + 2

]
+ K . (D.32)

The constant of integration K can be computed because at time t = 0 the
speed is V = V1

K = V1

[
1 +

c

(β + 1)(β + 2)

]
. (D.33)

By remembering the definition of the restitution coefficient

e∗ = −V2

V1
,

it is possible to compute the value of constant c. By computing the velocities
at times t2 and t1, i.e. for τ = 0 and τ = 1, and equating their ratio to −e∗, it
follows that

c = −(1 + e∗)(β + 1)(β + 2) . (D.34)

The final expression of the velocity is thus

V = V1

{
(1 + e∗) [1 + τ(β + 1)] (1 − τ)β+1 − e∗

}
. (D.35)

A further integration gives the distance travelled s

s = V1t2

{
−(1 + e∗)

[
(1 − τ)β+2 − β + 1

β + 3
(1 − τ)β+3

]
− e∗τ + K1

}
. (D.36)

If at time t = 0 the distance is assumed to be nil, s describes the crushing of
the front part of the vehicle. This statement allows the value of the integration
constant K1 to be computed

K1 =
2(1 + e∗)

β + 3
. (D.37)

2R.H. Macmillan, Dynamic of Vehicle Collisions, Inderscience Enterprises, Jersey 1983.
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The final expression of the displacement is thus

s = V1t2

(
1 + e∗

β + 3
{
2 − (1 − τ)β+2 [2 + (β + 1)τ ]

}
− e∗τ

)
. (D.38)

At time τ = 1, the displacement directly yields the residual crushing of the
vehicle s2

s2 = V1t2

[
2(1 + e∗)

β + 3
− e∗

]
. (D.39)

In case of an elastic collision, the residual crushing must vanish: If e∗ = 1
then s2 = 0. From this statement a first relationship between β and e∗ can be
stated: β = 1 if e∗ = 1.

Parameters β and e∗ characterizing the impact depend on many factors,
beginning with the structural characteristics of the vehicle and including the
type of impact and, in the case of head-on collision against a fixed obstacle, the
impact velocity V1 and time t2.

A primary characteristic of the vehicle is its stiffness at the instant it enters
into contact with the obstacle, namely its crushing modulus (Fig. D.11). With
simple kinematic considerations it follows that

K = m

(
da

ds

)
τ=0

= m

(
da

dt

)
τ=0

(
ds

dt

)−1

τ=0

=
m

V1

(
da

dt

)
τ=0

. (D.40)

By introducing the expression (D.31) of the acceleration into Eq. (D.40), it
follows that

K = m
(1 + e∗)(β + 1)(β + 2)

t22
. (D.41)

FIGURE D.11. Force received by the vehicle during a head-on collision against the
obstacle as a function of the crushing s.
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The value of K can be obtained from crash tests. Values between 1 and 2
MN/m are found in the literature.

The crushing process is far from linear. A qualitative plot of force F against
the displacement s is reported in Fig. D.11: The inelastic behavior of the vehicle
and the hysteresis cycle are clearly shown. The area below the line from point A
to point B is the energy absorbed by the vehicle from time t1 to the instant ti
at which the maximum displacement is reached. In the case of collision against
a fixed rigid obstacle it is equal to the kinetic energy of the vehicle.

The area below the line from point B to point C is the energy that is
transformed back into kinetic energy during the rebound phase from time ti
to t2. If e∗ = 0 such an area vanishes and s2 = smax. If, on the contrary
e∗ = 1 line BC is superimposed to line AB and the area of the hysteresis cycle
vanishes.

The plot is usually obtained from a crash test, either performed on an ac-
tual vehicle or simulated by computer. The numerical simulation is a complex
task, owing to the complex geometry of the front part of the vehicle and the
nonlinearities of all types involved. A large and fast computer is thus required.
Some results obtained through the finite element method, which at present is the
only method allowing problems of this complexity to be tackled, are reported in
Fig. D.9. The computation has been performed through step by step integration
in time of the equations of motion; the deformed mesh at four different time
values has been reported in the figure.

The law F (s), obtained through the empirical law F (t) defined above, is
often assumed to be independent of the deformation rate ds/dt. Such an assump-
tion has no theoretical background but is justified by the fact that it is substan-
tiated by experimental evidence, at least when the deformation rate is low.

The mean value of the force received by the vehicle

F =
1
t2

∫ t2

0

Fdt (D.42)

can be easily computed by remembering that the total impulse received by the
vehicle is equal to the change of the momentum

F = m
V2 − V1

t2
= −m

V1

t2
(1 + e∗) . (D.43)

If the mean value of force F is small, the permanent deformations are usually
negligible and the impact is close to being elastic, i.e. e∗ ≈ 1. With increasing F
the collision becomes more and more inelastic, i.e. e∗ decreases with increasing
F . It is possible to approximate the dependence of the restitution coefficient e∗

on the average force F with an exponential law (Fig. D.12)

e∗ = e−F/Kr , (D.44)
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FIGURE D.12. Law e∗(F ) approximated by Eq. (D.44).

where Kr, usually referred to as the impact resistance modulus, is the value of
−F at which the coefficient of restitution takes the value

e∗ =
1
e

= 0.368 .

Kr can also be obtained from a crash test. From Equations. (D.41) and
(D.44), it follows that

Kr = m
V1(1 + e∗)
t2 ln(1/e∗)

, (D.45)

which allows Kr to be calculated from quantities that can be measured or com-
puted. Values between 40 and 100 kN have been reported for Kr in the literature.

As seen above, constant β depends on e∗: It takes a unit value when e∗ = 1
and increases when e∗ decreases. Assume that, at least in the case of strongly
inelastic impacts, i.e. near the condition e∗ = 0, the law β(e∗) may be approxi-
mated as

β = β0 − (β0 − 1)e∗ , (D.46)

which, although assumed for e∗ ≈ 0, gives the correct result also for e∗ = 1.
Because β > 1, β0 is always larger than unity. Also β0, which is nondimen-

sional, may be considered as a characteristic of the vehicle, and will be referred
to as the structural index . A large value of β0 characterizes vehicles with a very
stiff front section, while a compliant front section is typical of vehicles with low
β0. Its values are usually close to 2.

Parameters K, Kr and β0 completely characterize a vehicle in terms of
head-on collision against a rigid obstacle. Once they have been measured, it is
possible to compute the laws F (t), a(t) and s(t) from the collision conditions,
namely the velocity V1 and the mass of the vehicle m.



766 Appendix D. PROBLEMS RELATED TO ROAD ACCIDENTS

TABLE D.1. Parameters obtained from crash tests on some European passenger
vehicles.

BMC BMC Ford BMC
Mini 1100 Anglia 1800

m [kg] 720 950 1000 1250
V1[m/s] 14 11,5 14 14

e∗ 0,10 0,08 0,5 0,11
t2[ms] 92 102 103 97

β0 2,35 2,79 2,89 2,16
K [MN/m] 1,27 1,67 1,81 1,80

Kr [kN] 52,3 45,8 47,6 90,7

TABLE D.2. Parameters obtained from crash tests on some American passenger
vehicles.

Sub Compact Interm. Standard Standard
compact 71/72 73/74

m [kg] 1135 1545 1820 2045 2045
V1[m/s] 12 12 10,5 10 10,3

e∗ 0,01 0,01 0,20 0,20 0,20
t2[ms] 102 102 151 147 143

β0 2,50 2,50 2,00 2,00 2,00
K [MN/m] 1,60 2,17 1,03 1,09 1,16

Kr [kN] 28,6 38,8 96,7 93,6 108,8

The values reported in Tables D.1 and D.2 have been obtained from crash
tests published by manufacturers3. The values in the first table are not exactly
comparable with the others because they have been computed from well docu-
mented tests, while not all the parameters were known for the others and the
values of β0 and s2 had to be assumed.

To solve the direct problem, i.e. to obtain the conditions after the collision,
mainly s2 and V2, from V1, it is possible to compute t2 from Eq. (D.45) and to
introduce it into Eq. (D.41), obtaining

KmV 2
1 = K2

r

[
ln

(
1
e∗

)]
(β + 1)(β + 2)

1 + e∗
. (D.47)

Substituting Eq. (D.46) into Eq. (D.47) the latter yields

KmV 2
1

K2
r

=
[
ln

(
1
e∗

)]
(β0 + 1)(β0 + 2) − e∗(β0 − 1)(2β0 + 3) + e∗

2
(β0 − 1)2

1 + e∗
,

(D.48)
which can be solved numerically in e∗ and then allows the direct problem to be
solved.

3R.H. Macmillan, Dynamic of Vehicle Collisions, Inderscience Enterprises, Jersey 1983.
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The inverse problem, i.e. obtaining the conditions before the collision, pri-
marily V1, from the crushing s2, is also easily solved. From Equations. (D.37),
(D.41) and (D.45) it follows that

s2
K

Kr
= ln

(
1
e∗

)
(β + 1)(β + 2) [2(1 + e∗) − (β + 3)e∗]

β + 3
. (D.49)

Substituting Eq. (D.46) into Eq. (D.49) the latter yields

s2
K

Kr
= ln

(
1
e∗

)[
e∗

2
(β0 − 1)2 − e∗(2β2

0 + β0 − 3) + 3β0 + β0 + 2
]

×e∗(e∗ − 1)(β0 − 1) + 2
−e∗(β0 − 1) + β0 + 3

, (D.50)

which may be solved numerically in e∗ and allowing the inverse problem to be
solved.

Example D.3 Consider a car with β0 = 2, K = 1.2 MN/m, Kr = 65 kN and m =

1000 kg impacting an obstacle at 20 m/s. Compute the parameters of the impact and

laws F (t), a(t) V (t) and s(t).

The numerical solution of Eq. (D.48) yields e∗ = 0.0416 and then β = 1.958, t2
= 0.1 s. The laws F (t), a(t) V (t) and s(t) for this case are plotted in Fig. D.13; the

residual crush is s2 = 757 mm.

D.2.2 Head-on collision between vehicles

The head-on collision between vehicles may be studied using the same model seen
in the previous section, provided the contact surface is assumed to remain planar

FIGURE D.13. Laws F (t), a(t), V (t) and s(t) for Example D.3.
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and the characteristics of the impact, and particularly law F (s), are independent
of the deformation rate. Each vehicle can thus be assumed to impact against a
moving massless obstacle (Fig. D.13a). Each vehicle is modelled as a point mass,
provided with a nonlinear spring, whose characteristics (K, Kr and β0) are those
seen for the collision against a fixed obstacle.

The deformation rates
⎧⎨
⎩

ṡA = ẋb − ẋA

ṡB = −ẋb + ẋB

(D.51)

are positive when the springs are compressed.
The relative velocity VR is then

VR = ẋB − ẋA = −(ṡA + ṡB) . (D.52)

If the curves F (s) for the two vehicles are known, a plot of the type shown
in Fig. D.14b can be drawn. As the total force acting on the virtual obstacle
must vanish,

|FA| = |FB |

for each value of time. The intersections of the curves |FA(sA)| and |FB(sB)|
with any line F = constant thus yield the deformations sA and sB in the same
instant. A third curve in which the force is plotted as a function of the total
deformation s = sA + sB , i.e. of the change of distance between the centres of
mass, can be plotted.

FIGURE D.14. Head-on collision between vehicles. (a) model; (b) forces as functions
of the crush of the vehicles.
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The maximum values of the deformations need not be reached at the same
time: In the figure the maximum deformation is reached at time tA and tB for the
two vehicles, while the distance between the centres of mass is at its minimum
at time tC .

Because the forces acting on the vehicles are simply

FA = mAẍA , FB = mBẍB,

it follows that
FA = −FB = V̇R

mAmB

mA + mB
. (D.53)

If the derivative of the relative velocity has a time history which is of the
same type as that assumed for the acceleration in Eq. (D.31),

V̇R = −cVR1

t2
τ(1 − τ)β , (D.54)

where, as usual,

τ =
t

t2
,

the same model used for the collision against an obstacle is sufficient for the
present case as well.

Instead of m, K, V and s, the relevant equations now contain

mC =
mAmB

mA + mB
, KC =

KAKB

KA + KB
, VR , sC = sA + sB .

Assume that the characteristics of the vehicles and the residual deformation
of one of them, say sA2 , are known. Because curve F (s) has been assumed to
be the same as that characterizing the impact against the barrier, from sA2 it is
possible to compute e∗A directly from Eq. (D.50) and then velocity V ′

A1
4 which

causes the same residual deformation sA2 in an impact with a rigid obstacle.
The maximum value FmaxA

of the force received by the first vehicle is

FmaxA
= KrA

β
βA

A ln
(

1
e∗A

)
(βA + 1)(βA + 2)

(βA + 1)βA+1
. (D.55)

The absolute value of such force is equal to the maximum force acting on
vehicle B. It is thus possible to write an equation identical to Eq. (D.55) with
the characteristics of the second vehicle. Because

βB = β0B
− (β0B

− 1)e∗B ,

it is possible to obtain e∗B and then tB2 , VB1 and sB2 .

4V ′ is the velocity in the equivalent collision against a rigid obstacle.
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The two equivalent collisions against a rigid obstacle are thus completely
characterized. As the curves F (s) are the same in the actual collision and its
equivalents, the energy dissipated in the former is equal to that dissipated in the
latter

ΔE = ΔEA + ΔEB =
1
2
mAV 2

A1

(
1 − e∗

2

A

)
+

1
2
mBV 2

B1

(
1 − e∗

2

B

)
. (D.56)

It is thus possible to consider the actual collision, described by curve C in
Fig. D.14b, by using the same equations seen in the previous chapter with the
mentioned substitutions. The maximum force, already expressed by Eq. (D.55),
and the energy dissipated take the values

Fmax =
sC2KCβ

βC

C (βC + 3)
(βC + 1)βC+1 [2 − e∗C(βC + 1)]

, (D.57)

ΔE =
1
2
mCV 2

C1

(
1 − e∗

2

C

)
. (D.58)

Equations (D.57) and (D.58) contain 3 unknowns βC , e∗C and VR (or VC1 ,
which is the same). A third equation may be obtained considering that force
Fmax can also be expressed as

Fmax = KCVRt2
β

βC

C

(βC + 1)βC+1
. (D.59)

Because
t22 =

mC

KC
(1 + e∗C)(βC + 1)(βC + 2) , (D.60)

computing VR from Eq. (D.58) and substituting the value so obtained into
Equations. (D.59) and (D.60), it follows that

F 2
max = KC

2ΔEβ2β(β + 2)
(1 − e∗)(β + 1)2β+1

. (D.61)

The last equation can be solved in e∗, obtaining

e∗ = 1 − KC
2ΔEβ2β(β + 2)
F 2

max(β + 1)2β+1
. (D.62)

Finally, introducing Eq. (D.62) into Eq. (D.57), the equation

Fmax = sCKC
ββ(β + 3)
(β + 1)β+1

[
1 − β +

2ΔEKC

F 2
max

(β + 2)
(

β

β + 1

)2β
]−1

, (D.63)

is obtained, which may be easily solved numerically in β. It is thus possible to
obtain the values of e∗ and VR, solving the problem.
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The inverse problem, consisting in obtaining the parameters characterizing
the collision once the relative velocity VR is known, is more difficult as it must
be solved in an iterative way. A value of the final crushing s∗2 of one of the two
vehicles is assumed and from it the relative velocity V ∗

R can be computed as seen
above. A new value of the residual crushing, for example obtained as

s∗∗2 = s∗2
VR

V ∗
R

,

can then be computed and a new relative velocity, which is closer to the correct
one, is obtained. The procedure should converge quickly to the required result.
The velocities of the vehicle after the collisions can then be obtained without
further problems.

Example D.4 Consider the head-on collision between two cars whose characteris-

tics are known from crash tests, e.g. the vehicles of the first and fourth columns of

Table D.1.

The characteristics are then mA = 720 kg, mB = 1250 kg, β0A
= 2.35, β0B

= 2.16,

KA = 1.27 MN/m, KB = 1.80 MN/m, KrA = 52.3 kN and KrB = 90.7 kN. The

residual crush of the first vehicle is sA2 = 400 mm. Compute the parameters of the

impact and the relative velocity at time t1.

The parameters characterizing the collision are mC = 456.85 kg and KC = 0.745

MN/m. The coefficient of restitution for the first vehicle is easily computed from the

residual crush by numerically solving Eq. (D.50): e∗A = 0.105. The values of βA, tA2

and VA1 are then βA = 2.208, tA2 = 0.092 s and VA1 = 13.63 m/s.

Equations (D.55), (D.46), (D.41) and (D.45) yield Fmax = 218 kN, e∗B = 0.252,

βB = 1.87, tB2 = 0.098 s, VB1 = 7.85 m/s and sB2 = 202 mm.

The energy dissipated and the total crush are then ΔE = 102 kJ and sC =

602 mm.

Solving Eq. (D.63) in β and using Equations (D.58) and (D.62), the final results

are obtained:

β = 2, 037 , e∗= 0, 159 , VR= 21, 43 m/s .

Example D.5 Consider the vehicles of the previous examples colliding head-on with

velocities VA1 = 26.7 m/s = 96 km/h and VB1 = −13.1 m/s = −47 km/h. Compute

the velocities after the impact.

The relative velocity is VR = 39.8 m/s. By assuming a residual crush of the first

vehicle sA2 = 400 mm in the previous example a relative velocity VR = 21.43 m/s has

been obtained.

Correcting the assumed residual crush linearly, a new trial value sA2 = 743 mm

is obtained, which yields a relative velocity VR = 36.16 m/s that is already close to the

correct values.

With two further iterations a crush sA2 = 823 mm is obtained, together with

e∗ = 0.048, Fmax = 378 kN and ΔE = 360 kJ.
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FIGURE D.15. Polar diagram K(θ) approximated by two arcs of ellipse.

As final results, the velocities after the collision are obtained:

VA2 = 0, 234 m/s = 0, 84 km/h ,

VB2 = 2, 144 m/s = 7, 72 km/h .

D.2.3 Oblique collision between vehicles

The first issue in the study of oblique collisions is the evaluation of the character-
istics of the vehicle: If it is already difficult to obtain the values of K, Kr and β0

for head-on collisions, it is almost impossible to obtain them for a generic impact
direction. If it is possible to find the relevant values for side or rear impacts, the
dependence of the characteristics upon angle θ (Fig. D.15) may be approximated
by two arcs of ellipse, one for the front and one for the rear.

Following the notation of the figure, function K(θ) may be expressed as

KfKl√
K2

f sin2 (θ) + K2
l cos2 (θ)

for 0 ≤ θ ≤ 90◦,

KpKl√
K2

p sin2 (θ) + K2
l cos2 (θ)

for 90◦ ≤ θ ≤ 180◦ .

(D.64)

Similar relationships may be written to approximate the other characteris-
tics of the vehicle.

If the collision, albeit oblique, were central, i.e. the two velocities were
aligned, and the two angular velocities were equal to zero (Fig. D.16a), the
procedure seen above for the head-on collision would still hold, provided that
the correct characteristics of the vehicles were used.

In case of non-central oblique collisions the vehicles are subject also to an-
gular accelerations about the yaw axis z. An approximated but simple way to
take this into account is to substitute the mass of the vehicle against which each
vehicle collides with an effective mass, lower than the actual one. It is question-
able whether it is worthwhile to attempt to refine this model further, because
the assumptions on which the present models are based and the uncertainties in
the data do not allow high precision to be obtained.
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FIGURE D.16. (a) Central oblique collision. (b) Oblique collision in which vehicle A
hits the front part of vehicle B.

Consider the situation of Fig. D.16b: Vehicle A hits the front part of vehicle
B. Neglecting the friction in the contact area (λ = 0), the x component of the
momentum of the second vehicle does not change and the impulse reduces to
its y component. Vehicle B undergoes an acceleration in the y direction and an
angular acceleration

ÿGB
=

F

mB
, θ̈B =

Fd

JzB

. (D.65)

The acceleration of point P, seen as belonging to vehicle B, is then

ÿPB
= ÿGB

+ dθ̈B =
F

mB

(
1 − d2

r2
B

)
, (D.66)

where rB is the radius of gyration. The acceleration of the contact point is thus
equal to the acceleration of the centre of mass of a vehicle having a reduced mass

mrB
= mB

r2
B

r2
B + d2

.

If neither vehicle collides head-on with the other, reference must be made
to the surface in collision, as seen in Section D.1.2. If no allowance is taken for
the friction between the vehicles, the reduced masses of the two vehicles can be
computed with reference to the perpendicular to these surfaces (Fig. D.17a). If
friction is taken into account, reference must be made to a direction inclined
at an angle arctan(λ) with respect to the perpendicular to the collision surface
(Fig. D.17b).
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FIGURE D.17. Oblique collision; definition of distances dA and dB for the computation
of the reduced mass. (a) No friction (λ = 0) and (b) λ 	= 0.

D.3 MOTION AFTER THE COLLISION

D.3.1 Vehicle with locked wheels

If, after the collision, the motion of the vehicle is simply translational, the dis-
tance travelled may be easily computed as seen in Section D.1.6. This, however,
is seldom the case: After the impact a certain yaw velocity Ω = ψ̇ is usually
present. It is thus incorrect to take translational and rotational motion into ac-
count independently.

Consider a vehicle that, after the collision, moves with the wheels completely
locked, as if the brakes were fully applied or the deformations of the body were
sufficient to prevent the wheels from rotating. With reference to Fig. D.18a, the
components of the velocity of the centre of contact Pi of the ith wheel ui and vi

in the directions of axes x and y fixed to the vehicle are

⎧⎨
⎩

ui = V cos(β) − Ωri sin(χi)

vi = V sin(β) + Ωri cos(χi) ,
(D.67)

where ri and χi are linked to the coordinates xi and yi of point Pi by the obvious
relationships

ri =
√

x2
i + y2

i , χi = arctan
(

yi

xi

)
.

The absolute value of force Fi exchanged by the ith locked wheel is simply

|Fi| = fZi
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FIGURE D.18. (a) Velocity of the centre of contact of the i-th wheel; (b) inertial
reference frame and variables of motion.

and its direction is equal to that of the velocity Vi, with opposite sign. The
components of force Fi are then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fxi
= −fZi

ui

|Vi|
= fZi

−V cos(β) + Ωri sin(χi)
|Vi|

Fyi
= −fZi

vi

|Vi|
= −fZi

V sin(β) + Ωri cos(χi)
|Vi|

,

(D.68)

where

|Vi| =
√

V 2 + Ω2r2
i + 2V Ωri sin(β − χi) . (D.69)

The moment of force Fi about the yaw axis z is

Mi = Fyi
ri cos(χi) − FXi

ri sin(χi) = fZiri
Ωri + V sin(β − χi)

|Vi|
. (D.70)

The trajectory can thus be easily computed by numerical integration of the
equations of motion. No linearization is possible in this case, because the slip
angle of the vehicle β may be quite large. The equations of motion are Eq. (25.65),
where the forces acting on the wheels are those expressed by Eq. (D.68) rotated
in the inertial reference frame by multiplying them by a suitable rotation matrix.
The model here used is essentially a three-degrees of freedom, rigid body model
in which all forces except those due to tire-road interaction have been neglected.
It would in any case be difficult to take aerodynamic forces into account when
angle βa is large and rapidly varying.
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At time t = 0, coinciding with time t2 immediately after the collision, the
position and the velocity of the vehicle and also angle

β = arctan
(

ẋ′

ẏ′ − ψ

)

are known and the numerical integration can be started.
Owing to the impossibility of linearizing the equations of motion, it is im-

possible to work in terms of axles. The wheels must therefore be considered one
by one; in particular velocity Vi is different for the wheels of the same axle. It is
difficult to take load transfer between the wheels of the same axle into account
with a model based on the assumption of a rigid body. The load transfer can be
strongly influenced in these conditions by roll rotations so that a more complete
model is required if this effect is to be included. Forces Fxi

and Fyi
and moment

Mi change continuously during motion. The total forces and moments acting on
the vehicle also change, but to a lesser extent.

A simple approach that can be used to study the motion of the vehicle
without having to perform a numerical simulation is to substitute the actual
contact area between the vehicle and the ground with a circle having a radius
r equal to the average distance of the centres of the contact areas of the wheels
and the centre of mass (Fig. D.19a).

The force and the moment exerted on an arc of amplitude dθ of such a
circumference may be expressed by equations of the same type as equations
(D.68) and (D.70). Assuming that the vertical load mg exerted on the contact
area is evenly distributed on the circumference, the components of the force and
the yawing momentare

FIGURE D.19. (a) Simplified model for the study of the trajectory of a vehicle moving
with locked wheels. Circular contact area that is substituted for the actual contact
area. (b) Functions F (a) and F (1/a) for a spanning between 0 and 3.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dFx = f
mg

2π

−V cos(β) + Ωr sin(θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ

dFy = −f
mg

2π

V sin(β) + Ωr cos(θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ

dM = −f
mgr

2π

V sin(β − θ) + Ωr√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ .

(D.71)

Force dF may be decomposed along directions parallel and perpendicular
to the velocity V . The first component, which is tangential to the trajectory, is

dF‖ = dFx cos(β) + dFy sin(β) = −f
mg

2π

V + Ωr sin(β − θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ .

(D.72)
Its effect is to reduce the speed of the vehicle. The second component, acting

in a direction perpendicular to the trajectory and thus bending the path of the
vehicle, is

dF⊥ = −dFx sin(β) + dFy cos(β) = −f
mg

2π

Ωr cos(β − θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ .

(D.73)
By integrating the expression of the forces and moments, it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F‖ = −f
mg

2π

∫ 2π

0

1 + a sin(ζ)√
1 + a2 + 2a sin(ζ)

dζ

F⊥ = −f
mg

2π

∫ 2π

0

a cos(ζ)√
1 + a2 + 2a sin(ζ)

dζ = 0

M = −f
mgr

2π

∫ 2π

0

1 + 1
a sin(ζ)√

1 +
(

1
a

)2 + 2
a sin(ζ)

dζ ,

(D.74)

where
ζ = β − θ

(because β does not depend on θ, dζ = dθ) and the nondimensional parameter a
is the ratio between the component of the velocity due to rotation and velocity V

a =
Ωr

V
.

The component of force F perpendicular to the trajectory is equal to zero:
This means that the trajectory is straight, at least within the assumptions used
in the present model. If a more accurate model were used the trajectory would
bend, although only slightly.
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TABLE D.3. Values of functions F (a) and F (1/a) for some values of a.

a F (a) F (1/a) a F (a) F (1/a)

0 1 0 1,4 0,3860 0,8566
0,2 0,9899 0,1005 1,6 0,3306 0,8936
0,4 0,9587 0,2043 1,8 0,2900 0,9177
0,6 0,9028 0,3158 2,0 0,2587 0,9342
0,8 0,8125 0,4441 2,5 0,2043 0,9587
1,0 0,6366 0,6366 3,0 0,1691 0,9716
1,2 0,4685 0,7926 ∞ 0 1

The integrals which appear in the expressions of the forces and the moments
are functions of parameter a only. By introducing the function F (a) defined as

F (a) =
1
2π

∫ 2π

0

1 + a sin(ζ)√
1 + a2 + 2a sin(ζ)

dζ , (D.75)

the expressions of F‖ and M are simply
⎧⎨
⎩

F‖ = −fmgF (a)

M = −fmgrF
(

1
a

)
.

(D.76)

Function F (a) must be obtained numerically. Its plot is reported in Fig.
D.19b and some values are reported in Table D.3.

The equations governing the motion of the vehicle are two differential
equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dV

dt
= −fgF

(
rΩ
V

)

dΩ
dt

= −fgr
m

Jz
F

(
V

rΩ

)
.

(D.77)

These must be integrated numerically, because parameter a changes con-
tinuously during motion and function F (V/rΩ) cannot be expressed in closed
form. Once laws V (t) and Ω(t) are known, the yaw angle and the position on
the trajectory can be obtained by further integration

ψ =
∫ t

0

Ω(u)du , s =
∫ t

0

V (u)du . (D.78)

Example D.6 Consider a vehicle with m = 1000 kg, Jz = 2000 kg m2, a = 1.4 m,

b = 1.4 m and t = 1.08 m. After the collision, the vehicle moves with a speed V =

7.36 m/s, angular velocity Ω = −5.19 rad/s and angle β equal to 53◦. Compute the

trajectory and the positions taken by the vehicle until it stops.

The results obtained by numerically integrating the equations of motion are re-

ported in Fig. D.20a, curves A. A value of 0.7 for the friction coefficient has been
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FIGURE D.20. Motion of a vehicle with locked wheels after a collision. (a) Time histo-
ries V (t) and Ω(t) computed through numerical integration of the equations of motion
(curves A), numerical integration of Eq. (D.77) (B) and by considering translations and
rotations (C) separately. (b) Trajectory corresponding to curve (A).

assumed. The integration was performed using a time step Δt = 0.01 s. The trajectory

is reported in Fig. D.20b. The vehicle stops in a time of 1.70 s, after a displacement of

6.33 m and a rotation of 4.19 rad (240◦).

Similar results are obtained by integrating Eq. (D.77) (curves B). The values of

function F (a) used for the integration were taken from Table D.3 and interpolated

linearly. The time needed to extinguish the motion, the displacement and the rotation

are respectively 1.62 s, 6.11 m and 4.06 rad (233◦).

Incorrect results would have been obtained by considering translational and rota-

tional motion (curves C) separately. The time needed to extinguish the motion, the

displacement and the rotation would have been respectively 1.01 s, 3.94 m and 2.62

rad (150◦).

Laws V (t) and Ω(t) are almost linear. If they were exactly linear the value of

a would remain constant during the motion and no numerical integration would be

required: A constant rate deceleration with the values of dV/dt and dΩ/dt given by Eq.

(D.77) would occur. Note that this is equivalent to studying the motion as a translation

and a rotation occurring separately, with “reduced” coefficients of friction equal to fF (a)

and fF (1/a) respectively. In the example, immediately after the collision the value of

a is 1.05, F (a) = 0.62 and F (1/a) = 0.66. By multiplying the friction coefficient by

these values and considering the two motions separately, a time of 1.7 s for coming to a

standstill is obtained. This value is close to that obtained through more complex models.

D.3.2 Vehicle with free wheels

In most cases the wheels of the vehicle, or at least some of them, remain free
to rotate after the collision. There is little difficulty in numerically integrating
the equations of motion, obviously written without any linearization. Equation
(25.65) can be used, together with Eq. (25.94) yielding the sideslip angles of the
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FIGURE D.21. Cornering force of the tire as a function of the sideslip angle. Simplified
model in which the curve Fy(α) is approximated by two straight lines.

wheels. A model of the tire which can be used for all values of α from 0 to 360◦

is needed. The “magic formula” is at present probably the best and most precise
choice.

The only difference from the nonlinear model is that some of the wheels
may be locked. However, if the angular velocity of the vehicle is high, the sideslip
angles remain at high values for a long time and the importance of accurately
modelling the behavior of the tires at low sideslip angle is not great. In this
situation a simple model for the cornering force of the tire as the one shown in
Fig. D.21 may be used. With reference to the figure, the force the tire receives
from the road is⎧⎪⎪⎨

⎪⎪⎩

Fxi
= Fzi

μi

|μi|
[−fr cos (δi) − f sin (δi)]

if α > α1

Fyi
= Fzi

μi

|μi|
[−fr sin (δi) + f cos (δi)]

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fxi
= Fzi

μi

|μi|

[
−fr cos (δi) −

αi

Ci
f sin (δi)

]

if α ≤ α1

Fyi
= Fzi

μi

|μi|

[
−fr sin (δi) +

αi

Ci
f cos (δi)

] ,

(D.79)

where fr is the rolling coefficient.
The moment about the z-axis is expressed by the first part of Eq. (D.70).

The rolling drag is usually small compared to the other forces and might be
neglected but, because the equation must in any case be integrated numerically,
there is no need to do so.

Example D.7 Repeat the study of Example D.6 assuming that the wheels are free

and all steer angles δi are equal to zero.

By assuming a law Fy(α) of the type shown in Fig. D.21 with α1 = 8◦ and fr

= 0.02 the results shown in Fig. D.22 are obtained through numerical integration. The
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FIGURE D.22. Motion of a vehicle with free wheels after a collision. (a) Time histories
V (t) and Ω(t) computed through numerical integration of the equations of motion and
(b) trajectories of the centre of mass and of the points of contact of the wheels.

computations were repeated with different values of angle α1, obtaining practically the

same results in all cases. With α1 = 0 the laws V (t) and Ω(t) do not change, except

for some oscillations due to numerical problems.

The vehicle at the end of the simulation is aligned with its velocity and rolls forward

freely. In other cases the simulation may end with the vehicle rolling away in reverse.

D.4 ROLLOVER

D.4.1 Quasi-static rollover

As discussed in Part IV, rollover of a rigid vehicle in static or quasi-static condi-
tions is usually impossible, except in the case of vehicles with particularly narrow
track or high centre of mass: The conditions for slipping are reached well before
those needed for rollover.

Rollover on a flat surface is controlled by parameter

t

2hG
,

which is sometimes referred to as the rollover threshold: This constitutes the limit
to the ratio between the lateral acceleration and the gravitational acceleration
ay/g. If the road has a transversal slope

it = tan(αt)

the threshold becomes
t

2hG
− it .

The threshold increases linearly with the slope if the external part of the
curve is raised and decreases otherwise.
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FIGURE D.23. Quasi-static rollover of a vehicle on elastic suspensions.

FIGURE D.24. Roll inertia torques causing rollover: In B the conditions for rollover
are reached.

If
it =

t

2hG

the vehicle overturns naturally without the application of external forces, but
this can occur only in case of off-road motion, because the adverse slope must
be quite large.

To release the assumption of a rigid vehicle, the roll of the vehicle body must
be accounted for. With reference to Fig. D.24, the forces acting in the direction
parallel and perpendicular to the road surface are⎧⎪⎪⎪⎨

⎪⎪⎪⎩

F‖ =
mV 2

R
cos(αt) − mg sin(αt)

F⊥ =
mV 2

R
sin(αt) + mg cos(αt) − Zaer .

(D.80)
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If the inertia of the unsprung masses and the compliance of the tires are
neglected and the roll angle is small enough, its value is

φ ≈
F‖h

Kt
, (D.81)

where h is the height of the centre of mass over the roll axis and KT is the
torsional stiffness of the vehicle.

The vehicle rolls over if

F‖
F⊥

>
t − 2hφ

2hG
. (D.82)

Neglecting aerodynamic lift and assuming that the road surface is flat, the
above equations may be solved in the lateral acceleration, yielding

V 2

Rg
>

t

2hG

1

1 +
mgh2

KthG

. (D.83)

The fraction on the right hand side is a factor smaller than one expressing the
reduction of resistance to rollover due to the presence of suspensions. The rollover
threshold decreases with increasing roll compliance 1/Kt of the suspensions and
distance h between the centre of mass and the roll centre. A stiff suspension with
high roll centre can substantially reduce rollover danger and bring the rollover
conditions close to those characterizing the rigid vehicle.

The rollover threshold can be reduced, owing to roll compliance, by a few
percent (typically 5%) in passenger vehicles, with lower reductions in sports cars
and greater in large luxury saloon cars.

The compliance of the tires increases this effect slightly, and some effects
may be due to the exact geometry of the suspensions, particularly in terms of
their lateral deflection, the lateral deflection of the tires and the inclination of the
roll axis due to the differences between front and rear suspensions. To account
for all these factors, a detailed mathematical model of the vehicle must be built
and analyzed on a computer.

Alternatively, the whole vehicle can be put on a “tilt-table”, i.e. on a plat-
form that can be inclined laterally, and the lateral slope can be increased until
the load on the less loaded wheels reduces almost to zero, denoting that the
threshold of rollover has been reached. Note that the tilt-table arrangement ex-
actly simulates rollover due to the lateral slope of the road, as may occur in
off-road driving, but does not exactly reproduce conditions on flat road. The
difference may be small if the vehicle rolls over on a lateral slope that is not
too steep, i.e. about 20◦ ÷ 25◦, while the errors build up when the lateral slope
reaches values as high as 45◦, where errors of about 30% may be present. To
avoid this problem, a “cable-pull” test can be devised, in which the lateral forces
are applied by cables directly to the vehicle at the location of the centre of mass.
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In spite of these effects, static rollover remains a rare occurrence for all
vehicles but those with very high centre of mass and narrow track, because the
available lateral forces on the tires are not high enough to prevent lateral slipping
before rollover.

D.4.2 Dynamic rollover

Dynamic conditions linked to roll oscillations, on the other hand, can lead to
rollover if the external rolling moment adds to an inertia torque due to roll
accelerations.

If a step roll input is applied to the vehicle, the response is a damped roll
oscillation about the static equilibrium position that would have been reached if
the same input had been applied slowly. Note that an input is applied slowly if
its characteristic times are larger than the period of the lowest natural frequency
involved; because the roll period is usually on the order of one second, most roll
inputs, being faster than that, have the characteristics of a dynamic load.

Remark D.3 If the vehicle were critically damped in roll no oscillations would
take place. The roll angle would increase monotonically, reaching the static value
asymptotically.

Because all vehicles are underdamped in roll, the roll angle overshoots and
then oscillates; the lower the damping ratio of the system the higher the over-
shoot and thus the danger of rollover. The presence of anti-roll bars makes things
worse from this viewpoint. When anti-roll bars are added to an existing suspen-
sion the roll stiffness is increased but roll damping is usually unchanged, because
the damping of shock absorbers is optimized for bounce and pitch behavior. The
effect is an increase of the natural frequency and the underdamped behavior of
the system. While the static roll angle is decreased by the added stiffness, both
the overshoot and the natural frequency of roll oscillations are increased, the
latter effect increasing roll inertia torques.

Consider a vehicle undergoing roll oscillations (Fig. D.24). The inertia torque
Jxφ̈ due to roll oscillations is sketched as a function of time in the figure. It is
always lower than mgt/2, the restoring moment due to weight on level road, and
hence no danger of rollover is present. However, if an external force causing the
rolling moment Mxe

is applied, the conditions for incipient rollover occur in B.
From this point on the wheels at one side lose contact with the ground.

The weight stabilizes, until a large enough roll rotation to bring the weight force
outside point A in Fig. D.24 is completed, but the vehicle continues the roll over
motion. Note that this simple model is inadequate to predict what happens when
some of the wheels are no longer in contact with the ground and the roll angle
is magnified.

A fast-reacting driver may prevent rollover even in these conditions by giving
appropriate steering inputs, as testified by stunt drivers who can proceed with
the car on two wheels, without either rolling over or rolling back onto four wheels,
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but it is most unlikely that a normal driver in normal conditions would perform
stunts of this type. In most cases, once rollover starts it proceeds to its inevitable
consequences.

Roll dynamics is closely coupled with yaw dynamics and rollover is no excep-
tion. During a sinusoidal steering input the lateral tire forces on the rear wheels
are delayed with respect to those on the front wheels; this delay is larger in longer
vehicles and the effect is even more pronounced in articulated vehicles. The com-
bined roll-yaw dynamics with its resonances may facilitate rollover, particularly
when selected frequencies are present in the excitation.

Tractor-trailer combinations are particularly subject to rollover due to sud-
den steering inputs: The roll of the trailer is delayed with respect to that of the
tractor and can be large enough to cause the former to rollover. A hitch provid-
ing roll coupling between trailer and tractor helps in this case, because the latter
collaborates in resisting the tendency of the former to overturn.

D.4.3 Lateral collision with the curb

Consider a vehicle modelled as a rigid body and assume that its velocity V is not
contained in the plane of symmetry (Fig. D.25). Both wheels on one side enter
into contact at time t1 with the curb. At time t1 the components of the velocity
are5

u = u1 , v = v1 , w = p = q = r = 0 ,

i.e. the velocity of the vehicle is contained in a plane parallel to the road and the
angular velocity is nil.

FIGURE D.25. Side impact against the curb. (a) Sketch; (b) determination of the
centre of rotation at time t2.

5The components Ωx, Ωy and Ωz of the angular velocity are here indicated as p, q and r,
and the component Vz of the velocity is indicated with w.
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If friction between the vehicle and the curb is neglected, the component u
of the velocity along the x-axis remains constant and the components q and r of
the angular velocity along the y and z axes remain vanishingly small. The other
components of the velocity after the impact, i.e. at time t2, are

v = v2 , w = w2 , p = p2 .

The component of the velocity in a direction perpendicular to the impact
surface in P at time t1 is

V⊥1 = v1 .

Assuming a partially inelastic impact with coefficient of restitution e∗, at time
t2 the same velocity is

V⊥2 = −e∗v1 .

If the condition that the motion of point P between time t1 and t2 occurs
in a plane parallel to the ground is added, the position of the centre of rotation
at time t2 can be easily found and a relationship linking w2 and p2 to v1 can be
obtained.

With reference to Fig. D.25b it follows that

⎧⎪⎪⎨
⎪⎪⎩

p2 = −v2 + e∗v1

h

w2 = −p2
t

2
= (v2 + e∗v1)

t

2h
,

(D.84)

The components of the impulse the vehicle receives during the impact can
be related to the variations of the momentum and the angular momentum

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Iy = m(v1 − v2)

Iz = −mw2

Iyh − Iz
t

2
= −Jxp2 .

(D.85)

By introducing Eq. (D.84) into Eq. (D.85) it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v2 = −v1
A2 − e∗(1 + B2)

1 + A2 + B2

p2 = −v1
A2(1 + e∗)

h(1 + A2 + B2)
,

(D.86)

where

A =
2h

t
, B =

2
t

√
Jx

m
.
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Rollover motion starts at time t2. If the component of the velocity of point
P in the y direction vanishes rapidly owing to the friction of the road, rollover
actually occurs if the centre of mass crosses a line perpendicular to the road in
P. This means that the vehicle rolls over only if its centre of mass moves above
a distance Δh equal to

Δh =

√
t2

4
+ h2 − h = h

(√
1 +

1
A2

− 1

)
. (D.87)

This can occur only if the kinetic energy associated with velocities v2, w2

and p2 is at least equal to the potential energy mgΔh. With simple computations
it can be shown that the condition for completing rollover is

v2
2 + w2

2 +
Jx

m
p2
2 ≥ 2hg

(√
1 +

1
A2

− 1

)
. (D.88)

Because

v2
2 + w2

2 = p2
2

(
t2

4
+ h2

)
,

the condition for rollover becomes

v2
1

A2(1 + e∗)2

1 + A2 + B2
≥ 2hg

(√
1 +

1
A2

− 1

)
. (D.89)

Consider for instance a vehicle with A = 0.6 and B = 0.7 hitting a curb in a
perfectly elastic way (e∗ =1), which is the most dangerous condition. From Eq.
(D.89) the rollover condition is

v2
1 ≥ 2.42gh .

Equation (D.89) may be written explicitly in terms of forward velocity V
and impact angle θ

V 2 sin2(θ) ≥ 2hg
1 + A2 + B2

A2(1 + e∗)2

(√
1 +

1
A2

− 1

)
. (D.90)

If h = 0.36 m and the impact angle is θ = 15◦, the vehicle in question will
roll over for forward velocities greater than 11 m/s (40 km/h). Note that this
result depends strongly on the value of e∗: The ratio between the velocities V
needed for rollover when e∗ = 0 and e∗ = 1 is equal to

√
2. It makes sense that

in this case the restitution coefficient e∗ is greater than in the case of impacts
between vehicles, but in general it depends upon the impact conditions.

It must also be noted that if the height of the curb is low, and consequently
the value of h is large, the vehicle tends not to engage against the curb but
to drive over it, making the whole study inapplicable. The assumption of a
rigid body is also questionable: The impact usually occurs between the curb and
the unsprung mass and the latter can undergo plastic and elastic deformations,
accompanied by deformations of the tires.
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D.4.4 Effect of the transversal slope and the curvature of the road

The above model is based upon the assumptions that the road is flat and that
the curb is straight. To account for the transversal slope of the road it is sufficient
to assume that the y-axis is inclined. The only difference is that of changing the
expression of the potential energy due to the vertical displacement of the centre
of mass of the vehicle, because a vertical line passing through point P is no longer
perpendicular to the road.

If the curb is not straight the motion is more complex and it is not possible
to study the motion in the yz plane independently of that in the x direction.
However, if the curb follows a circular path with a radius far greater than the
length of the vehicle and of the displacements in the y direction involved in the
rollover motions, it is possible to simplify the problem.

Consider the situation shown in Fig. D.26a. The motion in the yz plane can
be studied with reference to the non-inertial xyz frame, rotating about line CC′

with angular velocity

FIGURE D.26. Side impact against a curb following a circular path. (a) Sketch at time
t2; (b) accelerations broken into vertical and horizontal directions and (c) in directions
parallel and perpendicular to the road.
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V cos(θ)
R

.

Both centrifugal and Coriolis acceleration must be introduced in the study
of the motion starting from time t2.

Centrifugal acceleration is directed radially while Coriolis acceleration acts
in the x direction. Their values are, respectively,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ac =
u2

R′ =
V 2

R′ cos2(θ)

acor = −2
V

R′ cos(θ) [v2 cos(αt) + w2 sin(αt)] .

(D.91)

Only centrifugal acceleration needs to be considered in the study of the mo-
tion in the yz plane. It can be considered constant, neglecting the fact that R′

and u change during the rollover motion. The method used in the previous case
may be repeated by simply introducing the resultant of centrifugal and gravi-
tational accelerations (here broken into directions parallel and perpendicular to
the road surface) ⎧⎨

⎩
a⊥ = g cos(αt) − ac sin(αt)

a‖ = g sin(αt) + ac cos(αt) .
(D.92)

for the gravitational acceleration (Fig. D.26a,b). The vehicle will roll over if its
centre of mass goes beyond line PQ, whose direction is that of the resultant of
the two accelerations. The coordinates of point Q are then linked to each other
by the relationship

y∗

z∗
=

a‖
a⊥

.

Point Q lies on a circle centred in P passing through point G. It then follows
that

y∗2
+ z∗

2
= h2 +

t2

4
. (D.93)

By intersecting the circle with line PQ it follows that

y∗ = h

√
1 + 1

A2√
1 +

(
a⊥
a‖

)2
, z∗ = h

√
1 + 1

A2√
1 +

(
a‖
a⊥

)2
, (D.94)

where
A =

2h

t
.

The total increase of potential energy in the motion from G to Q to be
substituted for mgΔh in the rollover condition is

ΔU = mha⊥

⎧⎨
⎩
√√√√(

1 +
1

A2

)[
1 +

(
a⊥
a‖

)2
]
− 1 −

a‖
Aa⊥

⎫⎬
⎭ , (D.95)
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The final form of the rollover condition is thus

v2
1

A2(1 + e∗)2

1 + A2 + B2
≥ 2ha⊥

⎧⎨
⎩
√√√√(

1 +
1

A2

)[
1 +

(
a⊥
a‖

)2
]
− 1 −

a‖
Aa⊥

⎫⎬
⎭ . (D.96)

Clearly if

a⊥
a‖

= A,

the vehicle rolls over even for v1 = 0: Points G and Q coincide and the system
is statically on the verge of instability. If the curb is along a straight line ratio
a‖/a⊥ is equal to tan(αt) = it, transversal slope of the road.

If on the contrary the road is flat but curved,

a‖
a⊥

=
ac

g
= V 2 cos2(θ)

Rg
.

The nondimensional velocity v1/
√

a⊥h needed for rollover is plotted against
ratio a‖/a⊥ for various values of e∗ in Fig. D.27. The plot has been obtained for
A = 0.6 and B = 0.7.

FIGURE D.27. Nondimensional velocity v1/
√

a⊥h needed for rollover as a function of
a‖/a⊥ for various values of e∗. Vehicle with A = 0.6 and B = 0.7.
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D.5 MOTION OF TRANSPORTED OBJECTS
DURING THE IMPACT

D.5.1 Free objects

The study of the motion of objects onboard vehicles during a collision is impor-
tant both for understanding their effects on passengers and for devising suitable
restraint systems for people and packaging for objects.

If the object is simply supported on a surface parallel to the road, when
the vehicle stops abruptly because of a collision (which in the following will be
considered as a central impact against a fixed object) it will continue its motion
until it collides with the front wall of the load compartment. This first part of
the collision process is easily studied under the assumption that the mass of the
object is negligible with respect to that of the vehicle. The motion of the former
does not influence that of the latter.

Consider the situation sketched in Fig. D.28, in which the elastic and damp-
ing properties of the transported object are modelled by a spring-damper system.
The motion of the vehicle is assumed to follow the model described in Section
D.2.1 and the motion of the object will be studied with reference to the xz frame
centred in the position of point P, belonging to the front part of the object, at
time t1, when the vehicle hits the obstacle.

Neglecting friction, the motion of point P immediately after the collision is
described by the law

xP = V1t = V1t2τ , (D.97)

where V1 is the velocity of the vehicle before the collision and the nondimensional
time

τ =
t

t2

is defined with respect to the duration of the collision t2.

FIGURE D.28. Motion of the object O free to move on a vehicle hitting a rigid barrier.
The elastic and damping properties of the object are modelled by a spring-damper
system. (a) Situation at time t1. (b) Situation at time t∗, when the object hits the
front wall of the load compartment.
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Assuming the model of Section D.2.1 to describe the motion of the vehicle,
the x coordinate of point Q is

xQ = d + V1t2

(
1 + e∗

β + 3
{
2 − [2 + (β + 1)τ ] (1 − τ)β+2

}
− e∗τ

)
. (D.98)

The object hits the front wall of the load compartment at time t∗, when the
distance between points P and Q vanishes, i.e. when

τ∗ − 2 − [2 + (β + 1)τ∗] (1 − τ∗)β+2

β + 3
=

d

V1t2(1 + e∗)
. (D.99)

Equation (D.99) can be easily solved in τ∗; however this solution holds only
if τ∗ ≤ 1, i.e. if the object collides before time t2. If this condition does not hold
the secondary collision inside the vehicle occurs when the latter has started its
motion backward after rebounding from the obstacle and Eq. (D.98) does not
apply. The condition for which Eq. (D.99) holds, i.e. for which τ∗ ≤ 1, is simply

d ≤ V1t2(1 + e∗)
β + 1
β + 3

. (D.100)

If condition (D.100) is satisfied, the relative velocity is easily computed by
considering that at time τ∗ the velocities of the object and the vehicle are both
known

VR = V1(1 + e∗)
{
1 − [1 + (β + 1)τ∗] (1 − τ∗)β+1

}
. (D.101)

If, on the contrary, condition (D.100) is not satisfied, the computation is
even simpler. If the rebound velocity is considered constant,

V2 = −e∗V1 ,

after time t2, the relative velocity is simply

VR = V1(1 + e∗) .

The time at which the secondary collision takes place can be assumed to be

t∗ = t2 + t3 ,

where t3 is the time needed to travel at the velocity VR defined above for a
distance d2 that still separates the object and the vehicle at time t2. d2 can be
computed stating τ = 1 into Eq. (D.98), i.e. by Eq. (D.100) with ‘=’. Operating
in this way, it follows that

t3 =
d

V1(1 + e∗)
− t2

β + 1
β + 3

. (D.102)

The motion of the object after it hits the wall of the load compartment may
be analyzed in different ways.
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It is possible to resort to a semi-empirical time history, as was done for the
vehicle colliding against an obstacle, or to model the mechanical properties of
the object and to use that model to obtain the equation of motion.

By assuming that the object and the wall are rigid bodies with an interposed
linear spring-damper system, as sketched in Fig. D.28, the equation of motion
of point O for t > t∗ is

mẍO + c(ẋO − ẋQ) + k(xO + l − xQ) = 0 , (D.103)

with the initial conditions

xO = xQ − l and ẋO = V1 for t = t∗ . (D.104)

By introducing the nondimensional coordinate

χ =
xO + l − xQ

V1t2

and the nondimensional time τ , the equation of motion reduces to

d2χ

dτ2
+

ct2
m

dχ

dτ
+

kt22
m

χ =
d2χQ

dτ2
, (D.105)

with the initial conditions

χ = 0 and
dχ

dτ
= 1 −

(
dχQ

dτ

)
τ=τ∗

for t = t∗.

The expressions of d2χQ/dτ2 and of dχQ/dτ can be easily computed from
t∗ to t2 (0 ≤ τ ≤ 1) from Equations. (D.31) and (D.35) while for t > t2 (τ > 1)
they are simply

d2χQ

dτ2
= 0 ,

dχQ

dτ
= −e∗ .

If the secondary collision occurs before time t2 the equation of motion of
the object is

d2χ

dτ2
+

ct2
m

dχ

dτ
+

kt22
m

χ = (β + 1) (β + 2) (1 + e∗) τ (1 − τ)β for τ∗ < τ < 1,

d2χ

dτ2
+

ct2
m

dχ

dτ
+

kt22
m

χ = 0 for τ > 1,

(D.106)
with the initial conditions χ = 0 and

dχ

dτ
= (1 + e∗)

{
1 − [1 + (β + 1)τ∗] (1 − τ)β+1

}

for t = t∗.
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If the secondary shock occurs during the rebound phase, after the vehicle has
lost contact with the obstacle, the equation of motion is the second of Equations.
(D.106) and the initial condition on dχ/dτ reduces to

dχ

dτ
= (1 + e∗) .

These equations of motion hold only up to the time in which the object
rebounds, losing contact with the wall of the load compartment. This instant
can be easily computed by looking for the time at which the acceleration of the
object vanishes, because the force acting between points P and Q reduces to zero.

The acceleration may can be computed as

d2χ0

dτ2
=

V1

t2

[
d2χ

dτ2
− (β + 1) (β + 2) (1 + e∗) τ (1 − τ)β

]
if τ∗ < τ < 1,

d2χ0

dτ2
=

V1

t2

d2χ

dτ2
if τ > 1.

(D.107)
This expression of the acceleration is one of the most interesting results of

this study, because the aim of the elastic system with stiffness k and damping c
is to allow the object to survive the shock of the collision, which means reducing
its acceleration within allowable limits.

Another important result is the value of the maximum displacement χ, i.e.
the maximum compression of the spring. This value cannot be higher than a
given allowable limit, beyond which the elastic system is crushed or, at least,
shows nonlinear characteristics with increasing stiffness. In practice, to limit the
acceleration the spring must be soft but the decrease of the value of k is limited
by the available space because it causes the maximum travel to increase.

The whole process is governed by five nondimensional parameters: β and
e∗, linked to the way the vehicle collides with the obstacle, ratio

d

V1t2
,

linked to the clearance between the object and the wall, and

kt22
m

and
ct2
m

,

related to the elastic and damping characteristics of the object.
Parameter kt22/m can be written in the form

kt22
m

= (ωnt2)2 = 4π2

(
t2
Tn

)2

, (D.108)

where ωn and Tn are the circular frequency and the period of the undamped
free oscillations of a spring-mass system with mass m and stiffness k. If this
parameter has a value equal to π2 the half-period of the undamped oscillations
is equal to t2.



D.5 Motion of transported objects during the impact 795

FIGURE D.29. Time history of the acceleration for the vehicle studied in Fig. D.13
hitting a fixed obstacle at 20 m/s and for an object carried by it.

Parameter ct2/m is linked to kt22/m and to the damping ratio ζ by the
relationship

ct2
m

= ζ
√

2

√
kt22
m

. (D.109)

The absolute value of the acceleration of an object onboard the vehicle
studied in Fig. D.13 hitting a fixed obstacle at 20 m/s is plotted against time in
Fig. D.29. The value of kt22/m has been assumed to be equal to π2; the various
curves correspond to different values of ct2/m. In the case studied, the lowest
maximum acceleration is obtained for

ct2
m

= π/
√

2 ,

i.e. for ζ = 0.5.
This value of the damping ratio coincides with the “optimum value” defined

in Section 6.8.1 for the quarter car model with a single degree of freedom. As the
two models are different, such instances cannot be generalized and the values of
ζ minimizing the acceleration must be obtained for each case, as can be verified
by plotting the same figure with different values of the parameters.

The maximum values of the acceleration and the displacement are plotted
versus parameter kt22/m in Fig. D.30. The plot has been obtained with the same
values of β and e∗ used for Fig. D.29, with the added assumption of a damping
ratio equal to 0.5. From the figure it is clear that the distance d must be kept
to a minimum to provide low values for the acceleration. From the maximum
allowable value of the displacement χ it is possible to obtain the minimum value
of k and then the value of the peak acceleration occurring during the impact.
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FIGURE D.30. Peak values of the acceleration and of the displacement as a function
of the stiffness of the spring for various values of the clearance d. Same vehicle as in
Fig.D.29; damping equal to half of the critical damping (ζ =0.5).

The results shown in Figs. D.29 and D.30 were obtained by numerical integration
of the equation of motion in time.

The simple models here shown allow basic and straightforward qualitative
assessments, with a limited number of parameters involved. There is, however,
no difficulty in building more complete models that result in good quantitative
predictions of the actual behavior of the system.

D.5.2 Constrained objects

The behavior of an object constrained onboard a vehicle is not qualitatively
different from that seen for free objects. In the case of constrained objects the
distance d, i.e. the clearance of the restraining device, is smaller and may even
be equal to zero.

The motion of a constrained object can be studied in four distinct phases
(Fig. D.31).

1. The first phase begins in the instant the vehicle encounters the obstacle
starting its deceleration and ends at time t∗ when the object contacts the
restraining system. Usually, if the clearance is not too large, time t∗ occurs
before time t2.

2. The second phase extends between time t∗ and time t2. The collision of
the vehicle against the obstacle is completed and the object is retained by
the constraining device. At the end the vehicle rebounds freely.
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FIGURE D.31. Time history of velocity of the motion of the vehicle and of an object
constrained on board.

FIGURE D.32. Force exerted by the restraining system as a function of the defor-
mation x; the energy dissipated is the area under the curve. (a) Perfectly plastic, (b)
elasto-plastic and (c) actual behaviour.

3. The third phase is between time t2 and time t3. The object rebounds
backward and, at the end, loses contact with the restraining system. The
vehicle moves backward, with a speed that is low if the collision is strongly
inelastic.

4. The fourth phase goes from time t3 to time t4 when the object, moving
backward at a speed higher than that of the vehicle, hits the back wall of
the load compartment.

The study may then continue, because at this point there may be a further
rebound, which can be particularly dangerous.

A case of particular importance that can be studied, at least as a first
approximation, with the present technique, is that of the motion of a person
wearing a seat belt. The collision with the seat at time t4 can be the most
dangerous event under these circumstances.
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To increase the adequacy of the model to supply quantitative information
as well it is possible to factor in the nonlinearities that are always present in
actual cases. A nonlinear law stating the dependence of the force provided by
the restraint as a function of the displacement x and of the velocity ẋ may be
introduced without adding greatly to the complexity of the numerical simulation.

The restraining system should have a perfectly plastic behavior to reduce
the acceleration peak to a minimum, as in this case the energy dissipation is
maximum for a given value of applied force and displacement (Fig. D.32a).

A more realistic behavior is an elasto-plastic law (Fig. D.32b) while actual
systems show a more complex force-displacement characteristic (Fig. D.32c).



Appendix E
DATA ON VARIOUS VEHICLES

This appendix contains fairly complete data on different vehicles: The small cars
of the A, B, C and D sections, two sports cars, a van, an articulated truck and
a racing motorcycle

Some of the data here reported were used throughout the text in the ex-
amples and may be used by the reader to repeat the computations shown for
different kinds of motor vehicles.

Although not an exact description of any actual vehicle, the characteristics
shown here are typical.

E.1 Small car (a)

The vehicle is a typical late model small car with five seats and a 1.2 liter spark
ignition engine.

The primarygeometrical data and inertial properties of the vehicle are:

length = 3,540 mm width = 1,580 mm height = 1,540 mm
a = 923 mm b = 1, 376 mm l = 2, 299 mm
m = 860÷1,0201 kg t1 = 1,370 mm t2 = 1,360 mm
Jx = 500 kg m2 Jy = 1,000 kg m2 Jz = 1,225 kg m2

hG = 600 mm
Jr(each) = 0.59 kg m2 Jm = 0.088 kg m2 Jt = 0.05 kg m2

1The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia the height of the center of mass.
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FIGURE E.1. Maximum power and torque curves of the engine.
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FIGURE E.2. Map of the specific fuel consumption of the engine; the consumption at
idle (700 rpm) is 340 g/h.

The maximum engine power and torque are
Pmax = 43 kW at 5000 rpm; Tmax = 103 Nm at 3000 rpm.
The performance curves of the engine are reported in Fig. E.1; the map of

specific fuel consumption is shown in Fig. E.2.
The data for the computation of rolling resistance and for the computation of

longitudinal and lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 155/70
R 13 tires used on this car are reported in the following table:
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Re = 279 mm
f0 = 0.011 K = 2.6 · 10−8 s2/m2

pCx1 = 1.62 pCy1 = 1.711
pDx1 = 0.941 pDy1 = 0.900
pDx2 = 5.84 · 10−2 pDy2 = −0.273
pDx3 = −2.45 · 10−5 pDy3 = 5.45 · 10−4

pEx1 = 0.804 pEy1 = 5.84 · 10−2

pEx2 = −0.312 pEy2 = −0.616
pEx3 = −0.416 pEy3 = −1.49 · 10−5

pEx4 = −3.79 · 10−6 pEy4 = 2.59 · 10−5

pKx1 = 41.3 pKy1 = −12.4
pKx2 = 15.5 pKy2 = 1.08
pKx3 = −5.44 · 10−3 pKy3 = 0.767
pHx1 = −5.27 · 10−8 pHy1 = −2.26 · 10−8

pHx2 = 5.60 · 10−8 pHy2 = 2.07 · 10−7

pHx3 = −5.36 · 10−7

pV x1 = −8.54 · 10−8 pV y1 = 6.37 · 10−8

pV x2 = 3.48 · 10−7 pV y2 = 8.13 · 10−7

pV y3 = −1.40 · 10−6

pV y4 = 7.80 · 10−7

Aerodynamic data:

S = 2.04 m2 Cx = 0.33

Gear ratios (front wheel drive):

τ I = 3.909 τ II = 2.157 τ III = 1.48 ηt = 0.93
τ IV = 1.121 τV = 0.897 τf = 3.438

E.2 Small car (b)

The vehicle is a typical 1990s small car with five seats and a 1 liter spark ignition
engine of the 1990s. The performance curves of the engine and map of specific
fuel consumption are shown in Fig. E.3.

The primary geometrical data and the inertial properties of the vehicle,
wheels and driveline are:

length = 3,640 mm width = 1,560 mm height = 1,410 mm
a = 870 mm b = 1, 290 mm l = 2, 160 mm
m = 830 kg t1 = 1,284 mm t2 = 1,277 mm
Jx = 290 kg m2 Jy = 1,094 kg m2 Jz = 1,210 kg m2

Jxz = −84 kg m2

Jr(each) = 0.4 kg m2 Jm = 0.085 kg m2 Jt = 0.05 kg m2
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FIGURE E.3. Maximum torque and power curves and map of the specific fuel con-
sumption of the engine; the consumption at idle (700 rpm) is 27 g/h.

The maximum engine power and torque are
Pmax = 38.3 kW at 5200 rpm; Tmax = 87 Nm at 3,000 rpm.
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.23, 2.28, 2.29)) for the 145 R 13 tires used on this
car are reported in the following table:

f0 = 0.013 K = 6.5 · 10−6 s2/m2 Re = 257 mm
a0 = 1.30 a1 = −53.3 a2 = 1, 190
a3 = 588 a4 = 2.52 a5 = 0
a6 = −0.519 a7 = 1.00 a8 = 0
a9 = 0 a10 = 0 a111 = 0
a112 = 0 a12 = 0 a13 = 0
c0 = 2.40 c1 = −4.40 c2 = −1.36
c3 = −4.10 c4 = −3.28 c5 = 0.245
c6 = 0 c7 = −0.0792 c8 = 0
c9 = 1.00 c10 = 0 c11 = 0
c12 = 0 c13 = 0 c14 = 0
c15 = 0 c16 = 0 c17 = 0

A = 1.12 C = 0.625 D = 1
n = 0.6 k = 46 d = 5

Aerodynamic data:

S = 1.7 m2 Cx = 0.32 Cz = −0.21
CMy

= −0.09 (Cy),β = −2.2 1/rad (CMz
),β = −0.6 1/rad
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Driveline (front wheels drive):

τ I = 4.64 τ II = 2.74 τ III = 1.62
τ IV = 1.05 τf = 3.47 ηt = 0.91

E.3 Small car (c)

The vehicle is a typical late-model small car with five seats and a 1.3 liter direct
injection diesel engine.

The main geometrical data and inertial properties of the vehicle, wheels and
engine are:

length = 4,030 mm width = 1,690 mm height = 1,490 mm
a = 958 mm b = 1, 552 mm l = 2, 510 mm
m = 1,090÷1,2502 kg t1 = 1,440 mm t2 = 1,420 mm
Jx = 960 kg m2 Jy = 2,058 kg m2 Jz = 2,663 kg m2

hG = 550 mm
Jr(each) = 0.77 kg m2 Jm = 0.16 kg m2 Jt = 0.06 kg m2

The maximum engine power and torque are
Pmax = 51 kW at 4,000 rpm; Tmax = 180 Nm at 1,800 rpm.
The performance curves of the engine are reported in Fig. E.4; the map of

specific fuel consumption is shown in Fig. E.5.
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 175/65 R 15 tires used
on this car are reported in the following table:

FIGURE E.4. Maximum power and torque curves of the engine.

2The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia and height of the center of mass.
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FIGURE E.5. Map of the specific fuel consumption of the engine; the consumption at
idle (800 rpm) is 300 g/h.

Re = 296 mm
f0 = 0.0096 K = 2.7 · 10−8 s2/m2

pCx1 = 1.45 pCy1 = 1.11
pDx1 = 1.00 pDy1 = 0.982
pDx2 = 0.0 pDy2 = −0.16
pDx3 = 0.0 pDy3 = −2.47
pEx1 = 8.58 · 10−7 pEy1 = 0.571
pEx2 = −7.60 · 10−6 pEy2 = −0.261
pEx3 = −2.24 · 10−5 pEy3 = −0.323
pEx4 = −202 pEy4 = −22.66
pKx1 = 25.1 pKy1 = −20.22
pKx2 = −5.11 · 10−6 pKy2 = 2.72
pKx3 = 0.399 pKy3 = 0.0811
pHx1 = −8.71 · 10−6 pHy1 = 3.39 · 10−3

pHx2 = −1.0 · 10−5 pHy2 = 1.58 · 10−3

pHy3 = 9.83 · 10−2

pV x1 = 1.42 · 10−5 pV y1 = 4.51 · 10−4

pV x2 = 8.62 · 10−5 pV y2 = 0.0161
pV y3 = 0.438
pV y4 = −0.378

Aerodynamic data:

S = 2.14 m2 Cx = 0.35
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Driveline (front wheels drive):

τ I = 3.909 τ II = 2.238 τ III = 1.444 ηt = 0.93
τ IV = 1.029 τV = 0.767 τf = 3.563

E.4 Medium size saloon car (a)

The vehicle is a typical late-model saloon car with five seats and a 1.9 liter direct
injection diesel engine.

The main geometrical data and inertial properties of the vehicle, wheels and
engine are:

length = 4,250 mm width = 1,760 mm height = 1,530 mm
a = 1, 108 mm b = 1, 492 mm l = 2, 600 mm
m = 1,320÷1,4003 kg t1 = 1,506 mm t2 = 1,498 mm
Jx = 545 kg m2 Jy = 1,936 kg m2 Jz = 2,038 kg m2

hG = 565 mm
Jr(each) = 0.86 kg m2 Jm = 0.27 kg m2 Jt = 0.08 kg m2

The maximum engine power and torque are
Pmax = 85 kW at 4,000 rpm; Tmax = 280 Nm at 2,000 rpm.
The performance curves of the engine are reported in Fig. E.6; the map of

specific fuel consumption is shown in Fig. E.7.
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 195/65 R 15 tires used
on this car are reported in the following table:

FIGURE E.6. Maximum power and torque curves of the engine.

3The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia and height of the center of mass.
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FIGURE E.7. Map of the specific fuel consumption of the engine; the consumption at
idle (850 rpm) is 520 g/h

Re = 307 mm
f0 = 0.0124 K = 0.23 · 10−8 s2/m2

pCx1 = 1.53 pCy1 = 0.0486
pDx1 = 1.20 pDy1 = 18.1
pDx2 = −0.129 pDy2 = −2.21
pDx3 = 0.0 pDy3 = 1.71
pEx1 = 0.456 pEy1 = 0.106
pEx2 = 0.420 pEy2 = 0.0767
pEx3 = 0.024 pEy3 = −1.57
pEx4 = 0.174 pEy4 = 28.9
pKx1 = 60.9 pKy1 = −24.03
pKx2 = 0.0807 pKy2 = 1.70
pKx3 = 0.567 pKy3 = 0.388
pHx1 = −5.99 · 10−5 pHy1 = 3.07 · 10−3

pHx2 = 5.76 · 10−4 pHy2 = −3.55 · 10−3

pHx3 = 0.0796
pV x1 = 0.0347 pV y1 = −0.0153
pV x2 = 0.0221 pV y2 = −0.0468

pV y3 = −0.0522
pV y4 = 0.217

Aerodynamic data:

S = 2.15 m2 Cx = 0.34
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Driveline (front wheels drive):

τ I = 3.58 τ II = 1.89 τ III = 1.19 ηt = 0.93
τ IV = 0.85 τV = 0.69 τf = 3.63

E.5 Medium size saloon car (b)

The vehicle is a typical saloon car with a 2 liter spark ignition supercharged
engine from the late 1980s.

The performance curves of the engine are reported in Fig. E.8.
The main geometrical data and inertial properties of the vehicle, wheels and

driveline are:

length = 4,690 mm width = 1,830 mm height = 1,450 mm
a = 1, 064 mm b = 1, 596 mm l = 2, 660 mm
m = 1,150 kg t1 = 1,490 mm t2 = 1,482 mm
Jx = 530 kg m2 Jy = 1,630 kg m2 Jz = 1,850 kg m2

hG = 570 mm
Jxz = −120 kg m2

Jr(each) = 0.6 kg m2 Jm = 0.19 kg m2 Jt = 0.07 kg m2

The maximum engine power and torque are
Pmax = 122 kW at 5,500 rpm; Tmax = 255 Nm at 2,500 rpm, with the

possibility of short surges up to 284 Nm at 2,750 rpm (overboost ).
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.23, 2.28, 2.29)) for the 195 R 14 tires used on this
car are reported in the following table:

FIGURE E.8. Maximum power and torque curves of the engine
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f0 = 0.013 K = 6.5 × 10−6 s2/m2 Re = 287 mm
a0 = 1.69 a1 = −55.2 a2 = 1, 270
a3 = 1.600 a4 = 6.49 a5 = 4.80 · 10−3

a6 = −0.388 a7 = 1.00 a8 = −4.54 · 10−2

a9 = 4.28 · 10−3 a10 = 8.65 · 10−2 a111 = −7.97
a112 = −0.223 a12 = 7.61 a13 = 45.9
b0 = 1.65 b1 = −7.61 b2 = 1, 122
b3 = −7.36 · 10−3 b4 = 145 b5 = −7.66 · 10−2

b6 = −3.86 · 10−3 b7 = 8.50 · 10−2 b8 = 7.57 · 10−2

b9 = 2.36 · 10−2 b10 = 2.36 · 10−2

c0 = 2.22 c1 = −3.04 c2 = −9.23
c3 = 0.500 c4 = −5.57 c5 = −0.260

c6 = −1.30 · 10−3 c7 = −0.358 c8 = 3.74
c9 = −15.2 c10 = 2.11 · 10−3 c11 = 3.46 · 10−4

c12 = 9.14 · 10−3 c13 = −0.244 c14 = 0.101
c15 = −1.40 c16 = 0.444 c17 = −0.999

Aerodynamic data:

S = 2.06 m2 Cx = 0.36 Cz = −0.12
CMy

= −0.05 (Cy),β = −1.8 1/rad (CMz
),β = −0.5 1/rad

Driveline (front wheel drive)

τ I = 3.750 τ II = 2.235 τ III = 1.518 ηt = 0.91
τ IV = 1.132 τV = 0.82 τf = 2.95

E.6 Sports car (a)

The vehicle is a recent two-seater sports car with a 4.2 liter spark ignition engine.
The main geometrical data and inertial properties of the vehicle, wheels,

engine and transmission are
length = 4,510 mm width = 1,920 mm height = 1,210 mm
a = 1, 461 mm b = 1, 199 mm l = 2, 660 mm
m = 1,590÷1,6904 kg t1 = 1,670 mm t2 = 1,600 mm
Jx = 626 kg m2 Jy = 2,165 kg m2 Jz = 2,220 kg m2

hG = 470 mm
Jr (total) = 2.2 kg m2 Jm = 0.28 kg m2 Jt = 0.07 kg m2

The maximum engine power and torque are
Pmax = 290 kW at 7,000 rpm; Tmax = 460 Nm at 4,400 rpm.
The performance curves of the engine are reported in Fig. E.9; the map of

specific fuel consumption is shown in Fig. E.10.

4The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia and height of the center of mass.
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FIGURE E.9. Maximum power and torque curves of the engine.

FIGURE E.10. Map of the specific fuel consumption of the engine; the consumption at
idle (850 rpm) is 520 g/h

The data for the computation of rolling resistance and longitudinal and
lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the front 245/40 R 18 and
rear 285/40 R 18 tires used on this car are reported in the following table:
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f0 = 0.014 K = 0.5 · 10−7 s2/m2

pCx1 = 1.44 pCy1 = 1.84
pDx1 = 1.27 pDy1 = 1.19
pDx2 = −0.0824 pDy2 = −0.181
pDx3 = 0.0 pDy3 = 3.85
pEx1 = −2.37 · 10−5 pEy1 = −1.89 · 10−4

pEx2 = −3.93 · 10−5 pEy2 = 5.17 · 10−5

pEx3 = 8.57 · 10−6 pEy3 = 1060
pEx4 = −201 pEy4 = 1490
pKx1 = 35.8 pKy1 = −3050
pKx2 = 4.73 · 10−4 pKy2 = 299
pKx3 = 0.143 pKy3 = 0.224
pHx1 = −7.69 · 10−5 pHy1 = −4.70 · 10−4

pHx2 = 1.35 · 10−4 pHy2 = −1.24 · 10−4

pHy3 = −8.04 · 10−3

pV x1 = 3.32 · 10−4 pV y1 = −0.0153
pV x2 = 5.72 · 10−4 pV y2 = −0.00210

pV y3 = −0.857
pV y4 = −0.380

Re = 333 mm
f0 = 0.0124 K = 0.23 · 10−8 s2/m2

pCx1 = 1.52 pCy1 = 1.41
pDx1 = 1.49 pDy1 = 1.18
pDx2 = −0.102 pDy2 = −0.158
pDx3 = 0.0 pDy3 = 1.87
pEx1 = −0.277 pEy1 = 0.358
pEx2 = −0.422 pEy2 = −0.691
pEx3 = 0.251 pEy3 = 0.196
pEx4 = −1.04 pEy4 = −6.03
pKx1 = 27.6 pKy1 = −60.1
pKx2 = −10.1 pKy2 = 3.51
pKx3 = 0.432 pKy3 = 0.271
pHx1 = −6.34 · 10−4 pHy1 = 2.74 · 10−3

pHx2 = −3.87 · 10−4 pHy2 = −2.29 · 10−4

pHy3 = 0.0197
pV x1 = 0.0127 pV y1 = 0.0369
pV x2 = 0.0214 pV y2 = −0.0262

pV y3 = −0.47
pV y4 = −0.565

Aerodynamic data:

S = 2.21 m2 Cx = 0.35
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Driveline (rear wheel drive):

τ I = 3.29 τ II = 2.16 τ III = 1.61 τ IV = 1.27 ηt = 0.91
τV = 1.04 τV I = 0.88 τf = 4.19

E.7 Sports car (b)

The vehicle is a mid-engine two-seater sports car with a 3.5 liter spark ignition
supercharged engine.

The performance curves of the engine and the map of specific fuel consump-
tion are shown in Fig. E.11.

The main geometrical data and inertial properties of the vehicle, wheels,
engine and transmission are

length = 4,250 mm width = 1,900 mm height = 1,160 mm
m = 1,480 kg t1 = 1,502 mm t2 = 1,578 mm
Jx = 590 kg m2 Jy = 1,730 kg m2 Jz = 1,950 kg m2

Jxz = −50 kg m2 Jr1 (each) = 7 kg m2 Jr2 (each) = 7 kg m2

Jm = 0.7 kg m2 Jt = 0.08 kg m2

Pmax = 235 kW at 7,200 rpm; Tmax = 324 Nm at 5,000 rpm.
Data for rolling coefficient and for the “magic formula” for lateral forces,

longitudinal forces and aligning torque of tires:

FIGURE E.11. Maximum torque and power curves and map of the specific fuel con-
sumption of the engine.
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f0 = 0.013 K = 6.5 × 10−6 s2/m2 Re1 = 310 mm
Re2= 315 mm
a0 = 1.7990 a1 = 0 a2 = 1688.0000
a3 = 4140.0000 a4 = 6.0260 a5 = 0
a6 = −0.3589 a7 = 1.0000 a8 = 0
a9 = −6.1110 × 10−3 a10 = −3.2240 × 10−2 a111 = 0
a112 = 0 a12 = 0 a13 = 0
b0 = 1.65 b1 = 0 b2 = 1688
b3 = 0 b4 = 229 b5 = 0
b6 = 0 b7 = 0 b8 = −10
b9 = 0 b10 = 0
c0 = 2.0680 c1 = −6.4900 c2 = −21.850
c3 = 0.4160 c4 = −21.3100 c5 = 2.9420 × 10−2

c6 = 0 c7 = −1.1970 c8 = 5.2280
c9 = −14.8400 c10 = 0 c11 = 0
c12 = −3.7360 × 10−3 c13 = 3.8910 × 10−2 c14 = 0
c15 = 0 c16 = 0.6390 c17 = 1.6930

Aerodynamic data:

S = 1.824 m2 Cx = 0.335 Cz = −0.34
CMy

= 0 (Cy),β = −2.3 1/rad (CN ),β = −0.3 1/rad

Transmission (rear wheel drive) (the value of τf is inclusive of the reduction
gears located between engine and gearbox):

τ I = 1/3.214 τ II = 1/2.105 τ III = 1/1.458
τ IV = 1/1.094 τV = 1/0.861 τf = 1/4.051
ηt = 0.87

E.8 Van

The vehicle is a van with a carrying capacity of 1.4 t (fully loaded mass 3,500
kg) with a 2.3 l direct injection diesel engine.

The main geometrical data and inertial properties of the vehicle, wheels,
engine and transmission are

length = 5,400 mm width = 2,050 mm height = 2,500 mm
a = 1, 204 mm b = 2, 246 mm l = 3, 450 mm
m = 2,020÷2,1005 kg t1 = 1,810 mm t2 = 1,790 mm
Jx = 1,400 kg m2 Jy = 6,000 kg m2 Jz = 6,230 kg m2

hG = 679 mm
Jr(each) = 1.07 kg m2 Jm = 0.335 kg m2 Jt = 0.32 kg m2

5The first value is the mass of the empty vehicle; the second includes one passenger and
luggage and is consistent with the values of the moments of inertia and height of the center of
mass. The effect of the payload must then be added.
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FIGURE E.12. Maximum power and torque curves of the engine.

FIGURE E.13. Map of the specific fuel consumption of the engine; the consumption at
idle (800 rpm) is 500 g/h.

The maximum engine power and torque are
Pmax = 103 kW at 3,750 rpm; Tmax = 330 Nm at 2,500 rpm.
The performance curves of the engine are reported in Fig. E.12; the map of

specific fuel consumption is shown in Fig. E.13.
Aerodynamic data:

S = 4.4 m2 Cx = 0.37
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Driveline (rear wheels drive):

τ I = 4.99 τ II = 2.6 τ III = 1.52 ηt = 0.93
τ IV = 1.00 τV = 0.777 τf = 3.72

The data for the computation of rolling resistance and longitudinal and
lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 225/65 R 16 tires used
on this vehicle are reported in the following table:

Re = 339 mm
f0 = 0.0094 K = 0.43 · 10−8 s2/m2

pCx1 = 1.76 pCy1 = 1.3
pDx1 = 1.09 pDy1 = −0.857
pDx2 = −0.0312 pDy2 = −0.0702
pDx3 = 0.0 pDy3 = 0.0
pEx1 = 0.552 pEy1 = 0.00117
pEx2 = 0.370 pEy2 = −0.0106
pEx3 = −0.170 pEy3 = −8.68 · 10−5

pEx4 = 0.0 pEy4 = 0.0
pKx1 = 19.1 pKy1 = −15.3
pKx2 = −0.466 pKy2 = 2.93
pKx3 = 0.483 pKy3 = 0.0
pHx1 = −5.45 · 10−4 pHy1 = 0.00571
pHx2 = 2.09 · 10−4 pHy2 = 0.00283

pHy3 = 0.0
pV x1 = 0.0 pV y1 = 0.0207
pV x2 = 0.0 pV y2 = 0.00421

pV y3 = 0.0
pV y4 = 0.0

E.9 Heavy articulated truck

The vehicle is an articulated truck with a two-axle tractor and a three-axle
trailer. The geometrical data regarding the positions of the axles and centers of
mass in the xz plane are reported in Fig. E.14.

E.9.1 Tractor

The main geometrical data and inertial properties of the vehicle, wheels, engine
and transmission are:

m = 7,150 kg t1 = 2,100 mm t2 = 1,835 mm
Jx = 4,500 kg m2 Jy = 25,800 kg m2 Jz = 27,000 kg m2

Jxz = −3, 800 kg m2 Jr = 2.5 kg m2 (each)
Jm = 2.55 kg m2 Jt = 1.1 kg m2
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FIGURE E.14. Sketch of an articulated truck with 5 axles.

FIGURE E.15. Maximum torque and power curves and map of the specific fuel con-
sumption of the engine.

The vertical and torsional stiffnesses of the suspensions are:

K1 = 2,100 N/m K2 = 2,800 N/m Kt1 = 3,790 Nm/rad
Kt2 = 3,790 Nm/rad

Aerodynamic data:

S = 5.14 m2 Cx = 0.45 (tractor) Cx = 0.65 (whole vehicle)
Cz = 0 (Cy),β = −2.2 1/rad (CMz

),β = −1.5 1/rad

The curves of the maximum power and torque of the engine are reported in
Fig. E.15 together with the map of the specific fuel consumption
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Driveline (rear wheels drive):

τ I = 12.5 τ II = 8.35 τ III = 6.12
τ IV = 4.56 τV = 3.38 τV I = 2.47
τV II = 2.14 τV III = 1.81 τ IX = 1.57
τX = 1.35 τXI = 1.17 τXII = 1.00
τXIII = 0.87 τf = 4.263 ηtI = 0.81

ηtII = 0.84 ηtIII = 0.84 ηtIV = 0.84
ηtV = 0.89 ηtV I = 0.87 ηtV II = 0.84
ηtV III = 0.87 ηtIX = 0.84 ηtX = 0.87
ηtXI = 0.84 ηtXII = 0.93 ηtXIII = 0.89

E.9.2 Trailer

Inertial properties of the trailer:

m = 32,0006 kg t3 = 1,835 mm t4 = 1,835 mm
t5 = 2,100 mm Jx = 30,000 kg m2 Jy = 285,000 kg m2

Jz = 285,000 kg m2

Vertical and torsional stiffnesses of the suspensions:
K3 = 2,150 N/m K4 = 2,150 N/m K5 = 1,380 N/m
Kt3 = 3,200 Nm/rad Kt4 = 3,200 Nm/rad Kt5 = 2,800 Nm/rad

Aerodynamic data:

S = 7.5 m2 Cx = 0.25 Cz = 0
(Cy),β = −2.35 1/rad (CMz

),β = −0.6 1/rad (referred a l5)

E.9.3 Tires

Axles 1 and 5 have single tires, axles 2, 3 and 4 have twin tires. Data for rolling
coefficient and basic data for cornering forces and aligning torque using a sim-
plified magic formula (equations (2.23, 2.28, 2.29)):

f0 = 0.008 K = 0 Re = 460 mm
a3 = 5019.3 a4 = 65.515
c3 = −0.6100 c4 = −2.3400 c5 = 0.02727

E.10 Racing motorcycle

The vehicle is a racing motorcycle. The geometrical sketch of the vehicle and the
torque and power curves of the engine are reported in Fig. E.16.

6Fully loaded mass.
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FIGURE E.16. Geometrical sketch of the vehicle and torque and power curves of the
engine.

The main geometrical data and inertial properties of the vehicle (moment
of inertia Jx is referred to an axis lying on the ground), wheels, engine, trans-
mission are:

m1 = 20 kg m2 = 200 kg md = 70 kg (driver)
Jx = 80 kg m2 Jy = 110 kg m2 Jz = 40 kg m2

Jxz = 0 J1z
= 2 kg m2 J1xz

= 1 kg m2

Jp1 = 0.4 Jp2 = 0.4 kg m2 Je = 0.08 kg m2

l = 1320 mm a = 642 mm b = 678 mm
c1 = 561.5 mm c2 = 54.2 mm e = 50 mm
e1 = 95 mm h = 495.6 mm h1 = 432 mm
h2 = 500 mm η = 23◦ cδ = 8 Nms/rad

Pmax = 88 kW a 11.900 rpm; Tmax = 76 Nm a 9.750 rpm.
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Wheels and tires, geometrical and linearized data:

Re1 = 300 mm Re2 = 300 mm rt1 = 70 mm
rt2 = 110 mm rt (average) = 90 mm
f0 = 0.01 K = 4 · 10−6 s2/m2 μxmax

= 1.1
(C1),Z = 27.27 1/rad (C2),Z = 30.0 1/rad
(Mz2),α,Z = 0.228 m/rad (Fy1),γ,Z = −1.177 1/rad
(Mz1),α,Z = 0.210 m/rad (Fy2),γ,Z = −1.367 1/rad

Data for the “magic formula” for lateral forces, longitudinal forces and align-
ing torque, front tire (Equations (2.23, 2.28, 2.29)):

a0 = 1.50 a1 = −27.9 a2 = 1, 280
a3 = −1000 a4 = 4.00 a5 = 0.015
a6 = −0.35 a7 = −1.99 a8 = 0.058
a9 = 0 a10 = 0 a11 = 5
a12 = 0 a13 = 0
b3 = 49.6 b4 = 226 b5 = 0.069
c0 = 2.40 c1 = −2.72 c2 = −2.28
c3 = 1.86 c4 = 2.73 c5 = 0.11
c6 = 0.030 c7 = −0.07 c8 = 0.643
c9 = −4.04 c10 = −0.07 c11 = −0.015
c12 = 0 c13 = 0 c14 = −0.066
c15 = 0.945 c16 = 0 c17 = 0

Data for the “magic formula” for lateral forces, longitudinal forces and align-
ing torque, rear tire (Equations (2.23, 2.28, 2.29)):

a0 = 1.50 a1 = −27.9 a2 = 1, 275
a3 = −1.100 a4 = 4.00 a5 = 0.010
a6 = −0.35 a7 = −1.99 a8 = 0.058
a9 = 0 a10 = 0 a11 = 5
a12 = 0 a13 = 0
b3 = 49.6 b4 = 226 b5 = 0.069
c0 = 2.40 c1 = −2.72 c2 = −2.28
c3 = 1.86 c4 = 2.73 c5 = 0.11
c6 = 0.03 c7 = −0.070 c8 = 0.643
c9 = −4.04 c10 = −0.07 c11 = −0.015
c12 = 0 c13 = 0 c14 = −0.066
c15 = 0.945 c16 = 0 c17 = 0

Aerodynamic data:

S = 1 m2 Cx = 0.23 Cz = 0.10
CMy

= 0 (Cy),β = 0.026 1/rad (CMz
),d = 0.065 1/rad
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Transmission (the values of τ i are inclusive of the reduction gear located
between engine and gearbox):

τ I = 4.91 τ II = 3.84 τ III = 3.22
τ IV = 2.81 τV = 2.5 τV I = 2.29
τf = 3.00 ηt = 0.88
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4WS, 248, 319

ABS, 433, 451, 494
AC motors, 177
acceleration, 220

time, 44
accelerator

by wire, 594
pedal release, 47

ACEA, 8, 17, 22, 27, 28
active suspensions, 434, 469
adjustable braking, 90
aerodynamic

angle of attack, 118
drag, 193
efficiency, 134
forces, 123
lift, 148, 259
moments, 123
simulation, 161

aligning torque, 306
ambient wind velocity, 108
analytical models, 506
ANFIA, 7, 9–11, 14, 20
anti

-collision systems, 447
-dive, 241, 401
-lift, 401
-lock devices, 240
-roll bars, 298, 784
-squat, 401

ARC, 470, 494
articulated vehicles, 191, 249, 322,

572
aspect ratio (wings), 137
ASR, 433, 455
asymptotical stability, 674
Auto-Oil II, 8, 29
automatic braking, 90
available power (at the wheels), 198
average speed, 45

Bernoulli equation, 120
bimodal vehicles, 166
black box models, 506
bound vortices, 138
boundary

elements method, 161
layer, 122
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brake by wire, 434, 456
braking, 231

efficiency, 91, 238
in a turn, 48
in actual conditions, 236
level, 94
power, 242
time, 233

branched systems, 512
brushless motor, 177

camber angle, 525
capsize (motor cycles), 709, 720
carbon

dioxide equivalent, 29
monoxide, 27

caster angle, 306
center of mass, 108

height, 109
certificate

of conformity, 71
of homologation, 71

characteristic
power, 196
speed, 196, 268

choice of the transmission ratios, 210
circulatory

coupling, 677
matrix, 666

closed loop, 46
clutch damper springs, 614
collision

advanced model, 760
head on (central), 746
head on (non central), 752
impulsive model, 746
lateral, 753
oblique, 748
simplified model, 754
with a fixed obstacle, 751
with the curb, 785

comfort model
(5 d.o.f.), 561
deformable vehicle, 570

compliance
of the vehicle body, 300
of tires, 409
on the frame, 427

concept, 3
configuration space, 665
continuous

braking, 90
models, 507

control
delay, 437
gains, 650

corner, 359
cornering

force, 279
force coefficient, 262
stiffness, 279, 295

corrosion, 64
crank mechanism, 581, 589
crash test, 760, 764
critical

damping, 363
speed

of the vehicle, 269, 302
of transmission, 351

crosswind response, 292
crushing modulus, 763

D’Alembert Paradox, 120
damping

matrix, 666
reciprocating engines, 589

DC motors, 177
deformable vehicles, 565
degree of undergearing, 208
degrees of freedom, 512
derivatives of stability, 281, 306, 331
detail optimization method, 142
direct link matrix, 669
directive, 72
discretization, 508
dissipation function, 530, 540, 546,

569, 628, 656, 682
drag (aerodynamic), 134
drive by wire, 432
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driveability, 45
driveline, 577
driver model, 429, 435
driving

quality index, 58
torque, 584

dry friction, 425
dynamic

index, 395
matrix, 558, 668
models of the engine, 580
potential, 682
steering, 255, 265, 271
vibration absorber, 380, 428

EBD, 455
efficiency

of braking, 238
of the brakes, 236
of the clutch, 219
of the driveline, 198
of wind tunnels, 156

elastic accumulators, 178
elastokinematics characteristics of

suspensions, 300
electric

brake, 89
motors, 167, 169
vehicles, 174

electrochemical accumulators, 169
electromagnetic compatibility, 493
elementary maneuvers, 46
emergency brake, 90
endurance, 63
energy

at constant speed, 210
efficiency, 14
storage, 166

engine
brake, 89
control, 594
efficiency, 172, 211
power, 165, 169
suspension, 351, 594

EPS, 434, 493

equations of motion, 547, 553
equivalent

damping, 597
inertia, 597, 599
mass, 221, 542
moment of inertia, 225, 584
stiffness, 588, 597
system, 581, 596

Euler
angles, 689
equations, 695

Euro NCAP, 98
Eurostat, 8, 13, 24, 26, 30

fatigue, 63
feasibility study, 33
finite

differences method, 161
elements method, 111, 161, 509

firing order, 586
flexural

critical speeds, 598
vibration (driveline), 598

flow separation, 123
fluid brake, 89
force on the ground (variable com-

ponent), 371
free controls

dynamics, 304
stability, 309

friction
brake, 89
clutch, 215
drag (aerodynamic), 135

fuel
cells, 168
consumption, 45, 211

function, 36, 41

gas turbine, 167
gear ratios, 198, 207
generalized

force, 552, 638
gas pressure, 585

geometric matrix, 683
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global driving quality index, 58
goods traffic volume, 9
grade force, 194
gradeability, 45
greenhouse

effect, 168
gases, 29

ground simulation, 157
groundhook, 483
gyroscopic

matrix, 666
moments, 263, 264, 308, 573,

701
systems, 676

Hamilton equations, 685
Hamiltonian function, 685
handling

-comfort uncoupling, 556
model (3 dof), 271
model (5 d.o.f.), 557
model (deformable vehicle), 570
tilting vehicles, 644

haptic systems, 432, 494
harshness, 350
head on collision

central, 746
non central, 752

heave motion, 394
heel point, 52
homologation form, 76
horseshoe vortices, 138
hybrid vehicles, 166, 179

ideal
braking, 231, 232
driving, 200
steering, 257

imbalance of rotating machines, 350
impact resistance modulus, 765
inclination

angle, 526, 536
lateral, 306

independent suspension, 530

induced drag (aerodynamic), 135,
137

industrial vehicles (aerodynamics),
145

inertia
brake, 89
tensor, 111

information form, 73
input

gain matrix, 559, 668
vector, 559, 668

internal flows, 133
International Roughness Index, 376
ISO, 46

lane change manoeuvre, 440
standards on vibration, 357

isolated vehicles, 513
ISTAT, 7, 10, 22

J-shape, 140
jerk, 363
jury test, 55

K-shape, 140
kinematic steering, 247
kinetic energy, 273, 324, 343, 519,

524, 527, 537, 540, 566,
582, 632, 635, 655, 681,
692, 694, 700

kingpin axis, 306, 526, 531, 535, 638

Lagrange equations, 273, 681
Lagrangian function, 541, 635, 656,

682
laminar flow, 135
lane change, 49
lateral

acceleration gain, 267, 286, 320
collision, 753
offset, 306
transient, 47

leaf springs - hysteresis, 425
linearization of nonlinear systems,

680
linearized model (isolated vehicles),

515
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load
block, 65
distribution on the ground, 185
transfer

longitudinal, 148
transversal, 204

locked controls
stability, 301, 336
state-space equations, 283

longitudinal
dynamics, 185, 556
force

coefficient, 450
effect on handling, 294

interconnection (suspensions),
411

load shift, 233
offset, 306
slip, 599
traction, 201

low-speed steering, 247, 319
Lunar Roving Vehicle (LRV), 730

Mach number, 124, 160
magic formula, 780
Magnus effect, 130
mass matrix, 666
mass-spring-damper analogy, 284,

290
mathematical models, 504
maximum

acceleration, 222
grade, 201
slope, 208
speed, 44, 201, 206, 260

on a bend, 258
mean effective pressure, 171
MK systems, 671
mobility (extraterrestrial environ-

ments), 736
modal coordinates, 566
model with 10 d.o.f., 541
moments of inertia, 111
monotrack vehicle model, 265, 278,

328

motion
after a collision, 774
in the small, 680

motor cycles, 263
mu-split, 454
multibody

models, 111
models, 511, 615
vehicles, 341

multicylinder machines, 586
multifilar pendulum, 114

natural
frequency, 672
nonconservative systems, 672
system, 684

neural networks, 506
neutral steer, 268, 334, 437, 716

point, 288
nitrogen oxides, 27
noise, 350
non-asymptotical stability, 674
non-circulatory coupling, 677
non-methane hydrocarbons, 28
non-minimum phase systems, 314
nonlinear

springs, 425
systems, 679

numerical
aerodynamics, 117, 161
simulation, 681

objective
requirement, 43
tests, 54

oblique collision, 748
occupation factor, 23
off-tracking distance, 248, 319
onboard objects (motion of), 791
open loop, 46
operating fleet, 17
optimum

damping, 363
torsional dampers, 592

shape method, 144
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output
gain matrix, 669
vector, 669

overgearing, 207
oversteer, 269, 334, 716

panels method, 161
parameter identification, 506
parking brake, 90
particulate, 28
passenger traffic volume, 9
path curvature, 645

gain, 247, 267, 286, 320, 560,
715

performance in longitudinal motion,
185

phase
angle diagrams, 586
space, 684

pick-up time, 44
PID control, 650
pitch

angle, 517, 653, 691
center, 399
motion, 394

pitching moment (aer.), 148
planetary gears, 597
pollution, 168
potential energy, 520, 539, 540, 568,

625, 633, 656, 682, 702
elastic, 529
gravitational, 528

power
of the airstream, 156
required for motion, 195

logarithmic plot, 196
pressure

coefficient, 126
proportioning valve, 240

products of inertia, 111
pseudo-coordinates, 276, 686, 694

quadruple, 669
quarter car model, 359

with 2 degrees of freedom, 357,
369

with 3 d.o.f., 378
with a single d.o.f., 361
with compliant tire, 382
with dynamic vibration ab-

sorber, 381
with guiding elements, 387

radius of the trajectory, 644
rain flow, 65
Raleigh dissipation function, 323,

344
rattle, 580
reciprocating

internal combustion engine,
167, 169

steam engine, 167
reduced

comfort boundary, 358
efficiency boundary, 358

reference
frame (inertial), 106
frame (vehicle), 106
model, 459
surface (aerodynamics), 124
weight, 78

regenerative braking, 166
requirements, 36
response to harmonic excitation, 679
restitution coefficient, 748
resultant wind velocity, 108
retarder brake, 90
Reye hypothesis, 64
Reynolds number, 123, 136, 156, 160
ride, 349, 556

comfort, 561
road

excitation, 354
load, 194, 599

roll
angle, 517, 631, 653, 691, 697

gain, 715
axis, 516, 618, 653
center, 521
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motions, 413
steer, 304, 638

rolling
moment (aerodynamic), 152
resistance, 193

rollover, 781
factor, 261
threshold, 781

rotary engine, 168

self-steering device, 87
semi-active suspensions, 469
semi-continuous braking, 90
separation bubble, 127
service brake, 90
shake, 349
shape drag (aer.), 135, 138
shimmy, 309
shock absorbers, 417
side force (aerodynamic), 152
sideslip

angle, 108, 271, 277, 346, 429,
517, 548, 644, 706, 719

gain, 248, 268, 286, 320, 715
skyhook, 476
slender body, 139
sliding factor, 260
slip

longitudinal, 450
steering, 293
velocity, 450

solid axle suspension, 520
specific

fuel consumption, 171
traction force, 16

spoiler, 150
spring-mass-damper analogy, 302
sprung mass, 516
stability, 301, 560

factor, 267, 288, 334
in the small, 680
locked controls, 301, 336
tilting vehicles, 647

stagnation point, 121, 126, 146
standard atmosphere (ICAO), 121

starting manoeuvre, 215
state

space, 509, 668
vector, 509, 558, 668

static margin, 288
steady-state

motion, 641
response, 285, 560

steering
angle, 526, 535, 541, 553, 634,

644, 699
dampers, 309
of trailers, 250
pad test, 46, 262
response (non-steady-state),

312
wheel

release, 48
torque, 308

stiffness matrix, 666
stopping distance, 50
structural index, 765
subjective

requirement, 43
tests, 54

suburban cycle, 79
symmetry plane, 105
synthetic models, 505
system design, 33, 35

Tait-Bryan angles, 517, 690
take-off, 577
target

deployment, 42
setting, 42

TCS, 295, 455, 494
technical specification, 33, 39
TEP, 12
tilting

body vehicles, 472, 617
control, 622

time
to market, 503
to speed, 223

tip-in, tip-out, 578
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toe in, 299
torque

converter, 215
of the engine, 170

torsional vibration
absorbers, 592
dampers, 351, 589

total pressure, 121
traction limited performances, 200
trailer

angle gain, 334
damper, 337
with steering axles, 250, 337

trailing
arms suspension, 532, 619
vortices, 138

transfer functions, 312
transversal

load shift, 204, 297
quadrilaterals suspension, 531,

620
turbulent flow, 135
two-wheeled vehicles, 263

uncoupling of the equations of mo-
tion, 556, 571

undergearing, 207
understeer, 268, 334, 716

coefficient, 267
factor, 288
gradient, 267

urban cycle, 79

VDC, 434, 461, 494
vehicle

control, 429

for low gravity, 738
with trailer, 249, 341
with two wheels, 617, 697

vibration effects, 357
vibro-acoustic comfort, 349
virtual prototypes, 505
viscosity, 122
vortex

drag (aer.), 138
wake, 137

vorticity, 137

Wöhler, 64
wake, 123, 129, 138
wear, 64
weave (motor cycles), 709, 720
wheel

aerodynamic drag, 130
wells, 82

wheelbase filtering, 405
wind

axes, 117
tunnel, 116, 154

wobble (motor cycles), 720

X by wire, 432

yaw
angle, 107, 517, 631, 653, 690,

697
damping, 281
velocity, 272, 429

gain, 286, 320
yawing moment (aerodynamic), 152

zero-emission vehicle, 180




