
29
MULTIBODY MODELLING

A vehicle on elastic suspensions may be modelled as a system made by a certain
number of rigid bodies connected with each other by mechanisms of various kinds
and by a set of massless springs and dampers simulating the suspensions. A ve-
hicle with four wheels can be modelled as a system with 10 degrees of freedom,
six for the body and one for each wheel. This holds for any type of suspension,
if the motion of the wheels due to the compliance of the system constraining
the motion of the suspensions (longitudinal and transversal compliance of the
suspensions) is neglected. The wheels of each axle may be suspended separately
(independent suspensions) or together (solid axle suspensions), but the total
number of degrees of freedom is the same (Fig. 29.1). Additional degrees of free-
dom, such as the rotation of the wheels about their axis or about the kingpin,
can be inserted into the model to allow the longitudinal slip or the compliance
of the steering system to be taken into account.

The multibody approach can be pushed much further, by modelling, for
instance, each of the links of the suspensions as a rigid body. To model a short-
long arms (SLA) suspension it is possible to resort to three rigid bodies, sim-
ulating the lower and upper triangles and the strut, plus a further rigid body
simulating the steering bar. While modelling the system in greater detail, the
number of rigid bodies included in the model increases. However, if the compli-
ance of the various elements is neglected (i.e. if these bodies are rigid bodies),
the number of degrees of freedom does not increase along with the number of
bodies: an SLA suspension always has a single degree of freedom, even if it is
made up of a number of rigid bodies simulating its various elements.

The mathematical model of a multibody system is thus made up of the equa-
tions of motion of the various elements, which in tri-dimensional space are 6n, if n
is the number of the rigid bodies, plus a suitable number of constraint equations.

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 511

Mechanical Engineering Series,
c© Springer Science+Business Media B.V. 2009
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FIGURE 29.1. Example of models for the dynamic study of road vehicles. (a), (b) and
(c): Vehicle with two axles, 10 d.o.f.; (d): Articulated truck with 6 axles, 21 d.o.f.; (e):
Vehicle with 3 wheels; 9 d.o.f.

Consider for instance the articulated truck of Fig. 29.1d. The rigid bodies
are 8 (tractor, trailer and 6 rigid axles) and thus the equations of motion are 48
second order differential equations. The constraint equations are 27: 3 equations
for the constraint between tractor and trailer (these state that the coordinates
of the center of the hitch, assumed to be a spherical hinge, are the same if this
point is seen as belonging to the tractor or to the trailer) and 4 equations for each
axle, leaving to each one of them just two, out of its 6 degrees of freedom. The
27 constraint equations are algebraic equations containing only the generalized
coordinates but not the velocities (holonomic constraints).

By using the 27 constraint equations to eliminate 27 of the generalized
coordinates, a set of 21 equations in the 21 independent generalized coordinates
is obtained. It must be emphasized that in the 48 equations of motion originally
written, the forces the various bodies exchange at the constraints are included;
these forces are then eliminated when the constraint equations are introduced.
The 27 equations so eliminated can be used to compute the constraint forces.

This approach is the broadest, and is usually implemented in general purpose
multibody computer codes.

It is possible to resort to a simpler approach in the case of the multibody
models used in motor vehicle dynamics, because the internal constraints are
holonomic and the system is branched. One of the bodies may be chosen as
main body, to which a number of secondary, first level bodies are attached. Other
secondary bodies, considered as second level bodies, are then attached, and so on.
Secondary bodies have only the degrees of freedom allowed by the constraints.
In this way, the minimum number of equations needed for the study are directly
obtained. Such equations are all differential equations, usually of the second
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FIGURE 29.2. Model of the articulated truck with 6 axles shown as a branched model:
the tractor is the main body, the axles of the tractor and the trailer are first level
secondary bodies and the axles of the trailer are second level secondary bodies. The
constraint between tractor and trailer is a spherical hinge constraining 3 degrees of
freedom, while those constraining the axles to the sprung masses lock 4 degrees of
freedom each.

order. The forces exchanged at the constraints between the bodies do not appear
explicitly in the equations and need not be computed in the dynamic study of
the system as a whole. The model of the articulated truck with 6 axles shown in
Fig. 29.1d obtained in this way is sketched in Fig. 29.2: the tractor is considered
as the main body, the axles of the tractor and the trailer are first level secondary
bodies, and the axles of the trailer are second level secondary bodies.

29.1 ISOLATED VEHICLE

The model for an isolated vehicle can thus be easily built through the following
steps:

• choice of the generalized coordinates;

• computation of the expressions for the kinetic and potential energies, the
dissipation function and the virtual work of external forces (road-wheels
forces and aerodynamic forces);

• writing the equations of motion through Lagrange equations.

The basic degrees of freedom of the model are:

• six degrees of freedom for the sprung mass (usually three components of the
displacement define the position of the vehicle and three rotations define
its orientation in space);

• two degrees of freedom for each rigid axle;

• one degree of freedom for each independent suspension.
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The total number of degrees of freedom is then 6 + 2m, where m is the
number of axles.

To these basic degrees of freedom, it is possible to add the following:

• The rotation χ of each wheel, or better its angular velocity χ̇, if the angle of
rotation of each wheel is considered as an independent variable. It is then
possible to compute longitudinal forces at the road-wheel contact from the
longitudinal slip.

As an alternative, it is possible to neglect the longitudinal slip and to
compute the wheel rotations from the space covered by the vehicle or,
better, to compute their velocity from the velocity of the vehicle, but in
this case the wheel rotations are not degrees of freedom of the system.

• The steering angle δ of the steering wheels. It may be considered as:

– a given quantity, or better, an input, if the motion is studied with
locked controls and the compliance of the steering system is neglected;

– a known function of a single variable, the angle at the steering wheel
δv, if the motion is studied with free controls but the compliance of
the steering system is neglected;

– a variable, linked by a an equation expressing the compliance of the
steering system, to the angle at the steering wheel δv that is a given
quantity, or better, an input, if the motion is studied with locked
controls and the compliance of the steering system is accounted for;

– an independent variable, to which a further independent variable, the
angle at the steering wheel δv is added, if the motion is studied with
free controls and the compliance of the steering system is accounted
for.

A motor vehicle with four wheels can then be described by a model with 10
degrees of freedom (Fig. 29.1) in the simplest case (locked controls, neglecting
longitudinal slip and the compliance of the steering system), that become 14
if the slip of the wheels is considered, 15 if the study is performed with free
controls and rigid steering, or 16, 17 or 19 depending on how the steering system
is modelled and, in the latter case, on how many wheels steer.

Once the kinematics of the suspensions has been defined, it is possible to
write the equations of motion. An approach also used in commercial codes is to
introduce the elasto-kinematic characteristics of the suspensions directly (often
the kinematic characteristics alone, because the suspensions are assumed to be
made of rigid bodies) to define the kinematics of the system. The characteristics
of the tires, including the cornering forces, the aligning torques, and the rela-
tionships linking the longitudinal slip with the longitudinal forces (in case the
longitudinal slip is not neglected) can be expressed using the magic formula.
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The ten (or more, depending on the model used) equations can thus be
written. They are quite complicated nonlinear equations, difficult to write in
explicit form. They will not be shown here.

The solution of such a set of equations can be undertaken only by nu-
merically integrating the equations in time starting from a given set of initial
conditions and specifying the time history of the various inputs (steering angle,
if the manoeuvre with locked controls, or the torque acting on the steering wheel
for the motion with free controls). As an alternative, it is possible to use a model
of the driver to simulate the behavior of the vehicle-driver system. Suspensions
are modelled by introducing their elasto-kinematic characteristics directly.

Several commercial computer codes operating in this way exist. One of the
most common is Carsim R©, based on a model with 14 degrees of freedom.

A more complex alternative is the use of one of the standard multibody
general purpose codes to simulate the suspensions in detail, taking into account
the exact kinematics of the system and again simulating the tires using the
magic formula. An example of a commercial code operating along these lines is
ADAMS-Car R©, based on the general purpose code ADAMS R©.

Codes of the latter type draw upon a much larger number of equations,
because they do not use just the minimum number of generalized coordinates,
but are based on the explicit equations of motion of the various parts and on the
relevant constraint equations.

The two approaches are equivalent to the user, because in both cases it is
necessary to resort to the numerical integration of the equations of motion, sim-
ulating the dynamic behavior of the vehicle. The only actual difference for the
user is that in the first case the behavior of the suspensions is introduced in syn-
thetic form, computing their kinematic characteristics separately or measuring
experimentally and then introducing them into the computations, while in the
second case the geometry of the suspensions is directly introduced in analytic
form.

29.2 LINEARIZED MODEL FOR THE ISOLATED
VEHICLE

29.2.1 Basic assumptions

While in the case of the nonlinear model the exact geometry or the elasto-
kinematic characteristics of the suspensions must be introduced, in the case of
linearization it is possible to write a model that is fairly precise and quite general,
while allowing analytical solutions to be obtained. In this case it is worthwhile
to write the equations of motion in explicit form, so that it is possible to obtain
general results and closed form solutions. In particular, it will be possible to
obtain solutions in the frequency domain and to perform stability studies.
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The model is based on the following additional assumptions:

• Reference is made to a certain configuration of the vehicle. It may be the
static equilibrium condition with the vehicle at standstill or travelling at
a constant speed. If the shape of the vehicle is such that it produces little
aerodynamic lift and pitching moment, the first choice may be the best,
because it allows the motion at constant speed to be studied. However,
if aerodynamic forces are important, as in racing cars, the configuration
of the suspensions may change considerably at varying speed, so much
so that linearization is not possible, and reference must then be made to
the equilibrium configuration at the given speed. The linearization of the
model allows us to resort to the superimposition of effects and then to
neglect static forces (weight, aerodynamic lift in the reference conditions,
etc.) in the dynamic study.

• The kinematics of suspensions is linearized around the reference position.

• Pitch and roll angles are small enough to linearize their trigonometric func-
tions. Also, the displacements in Z direction and all linear and angular
velocities, with the exception of the forward speed and the rotation speed
of wheels, are considered as small quantities.

Two other assumptions, needed to further simplify the equations of motion,
are then added:

• The vertical plane xz through the center of mass is a symmetry plane for
the vehicle and its parts.

• Sideslip angles of the wheels are small enough to linearize the cornering
forces and the aligning torque

29.2.2 Sprung mass

Let the reference frame of the sprung mass be xsyszs, with axis xs parallel to the
roll axis and axis zs lying in the plane of symmetry. Axis x∗ coincides with the
projection of the roll axis on the ground. A plane perpendicular to the road and
to axis x∗ containing the centre of mass G of the vehicle in the reference position
is defined (section B-B in Fig. 29.3). The roll axis intersects such a plane in H;
O is the point on the ground vertically under H (it may be located above H, as
the roll axis may lie below the ground in particular cases). Two further reference
frames are defined. They are:
— xyz, fixed to the sprung mass, with origin in point H, x-axis coinciding with
the roll axis, z axis laying in the symmetry plane of the sprung mass;
— x∗y∗z∗ with origin in point O; x∗-axis coincides with the projection on the
ground of the roll axis and z∗ axis is perpendicular to the road.

Instead of using the coordinates of the centre of mass Gs of the sprung mass
to define the generalized coordinates for the translational degrees of freedom, the
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FIGURE 29.3. Reference frames for the sprung mass and definition of points H and O.

coordinates XH , YH and ZH of point H in the inertial frame OXiYiZi will be
used. In the following, to simplify the notation it will be X = XH and Y = YH .
Operating in this way, if the roll and pitch motions are locked, the frame x∗y∗z∗

coincides with frame xyz defined in Fig. 25.15 and the model reduces to that of
a rigid vehicle.

Coordinate ZH can be considered as the sum of a constant value Z0 corre-
sponding to a reference position and a displacement Z:

ZH = Z0 + Z . (29.1)

The generalized coordinates for translations of the sprung mass are then X,
Y and Z, with Z considered as a small displacement with respect to the reference
position.

The generalized coordinates for rotations are three Tait-Bryan angles
(Appendix A, Fig. A.5): the yaw angle ψ, the pitch angle, here considered as
the sum of a constant value θ0 related to the reference position and a pitch gen-
eralized coordinate θ, and the roll angle φ. Angle θ0 is the inclination on the
horizontal direction of the roll axis in the reference position and will be consid-
ered as a small angle. All generalized coordinates and velocities, except vx, are
then small quantities.

Velocity vx may be confused with the velocity V along the vehicle path. This
is made possible by the smallness of the pitch angle θ0 + θ and of the sideslip
angle β.

The rotation matrix allowing us to pass from the frame Gxyz fixed to the
body to the inertial frame XiYiZi is:

R = R1R2R3 , (29.2)

where:

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ , R2 =

⎡
⎣ cos(θ0 + θ) 0 sin(θ0 + θ)

0 1 0
− sin(θ0 + θ) 0 cos(θ0 + θ)

⎤
⎦ ,
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R3 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ .

Its explicit expression is reported in Appendix A (Equation (A.106)), in
which θ0 + θ is substituted for θ).

If the pitch and roll angles are small, i.e. their cosine is approximately equal
to 1 and their sine is equal to the angle, product R2R3 is, approximately:

R2R3 ≈

⎡
⎣ 1 0 θ0 + θ

0 1 −φ
−θ0 − θ φ 1

⎤
⎦ . (29.3)

Because the generalized forces are written in the body-fixed frame, it is
expedient to write the kinetic energy in term of the components vx, vy and vz

of the velocity written in the x∗y∗z∗ frame and the components Ωx, Ωy and Ωz

of the angular velocity in frame Gxyz.
The components of the velocity and angular velocity so obtained are not

the derivatives of true coordinates, but are linked with the derivatives of the
coordinates by the six kinematic equations

V =

⎧⎨
⎩

vx

vy

vz

⎫⎬
⎭ = RT

1

⎧⎨
⎩

Ẋ

Ẏ

Ż

⎫⎬
⎭ , (29.4)

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (29.5)

The third Eq. (A.109) is justified because Z differs from ZH by a constant.
The vector of the generalized coordinates is then

q =
[

X Y Z φ θ ψ
]T . (29.6)

Let the generalized velocities for translational degrees of freedom be the
components of the velocity in the x∗y∗z∗ frame. For the rotational degrees of
freedom, on the other hand, the derivatives φ̇, θ̇ and ψ̇ of coordinates φ, θ and
ψ, which in the following will be indicated as vφ, vθ and vψ, will be used in-
stead of the components Ωx, Ωy and Ωz of the angular velocity, as shown in
Appendix A. This choice is due to the fact that the yawing moments are more
easily expressed when considering an axis perpendicular to the road, and also
because the linearization of the model allows us to proceed in this way without
difficulties.

The generalized velocities are then

w =
[

vx vy vz vφ vθ vψ

]T . (29.7)
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The relationship linking the generalized velocities to the derivatives of the
generalized coordinates may then be written as

w = AT q̇ , (29.8)

where matrix A1 is:

A =
[

R1 03×3

03×3 I3×3

]
. (29.9)

The inverse transformation is Eq. (A.85):

q̇ = Bw ,

where2 B = A−T is the inverse of the transpose of A. In this case, A is a rotation
matrix, and then

A−1 = AT ; B = A . (29.10)

If r1 is the vector defining the position of the center of mass of the sprung
mass GS with respect to point H, the position of the former in the inertial frame
is

(GS−O’) = (H − O’) + Rr1. (29.11)

Assume that the vehicle body has a symmetry plane and that this plane
coincides with plane xz in Fig. 29.3. In the reference position, points G and
GS then belong to the symmetry plane and the second component of vector r1

vanishes. The coordinates of the center of the sprung mass are c, 0 and h in the
xyz frame, and thus the expression of vector r1 is:

r1 =
[

c 0 h
]T

. (29.12)

Because r1 is constant, the velocity of point GS is:

VGS =
[

Ẋ Ẏ Ż
]T

+ Ṙr1 . (29.13)

i.e.,
VGS = R1V + Ṙr1 . (29.14)

and then the translational kinetic energy of the sprung mass is

Tt =
1
2
m

(
VT V + r1T ṘT Ṙr1+2VT RT

1 Ṙr1
)

. (29.15)

Because xz is a symmetry plane for the sprung mass, its inertia tensor is

Js=

⎡
⎣ Jxs

0 −Jxzs

0 Jys
0

−Jxzs
0 Jzs

⎤
⎦ . (29.16)

1Matrix A here defined has nothing to do with the dynamic matrix of the system, which
is also indicated as A.

2Matrix B here used must not be confused with the input gain matrix, which is also usually
indicated as B.
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The rotational kinetic energy of the sprung mass is then

Tw =
1
2
ΩT JsΩ. (29.17)

Performing the relevant computations, expressing the components of the
angular velocity as functions of the derivatives of the coordinates and neglecting
the terms containing powers higher than 2 of small quantities, it follows that

Ts = 1
2
ms

(
vx

2 + vy
2 + vz

2
)

+ 1
2

(
msh

2 + Jxs

)2
φ̇

2
+

+ 1
2

[
ms

(
h2 + c2

)
+ Jys

]
θ̇
2

+ 1
2

(
msc

2 + Jzs

)
ψ̇

2 − (msch + Jxzs) ψ̇ φ̇+

−msvx

[
(cθ0 − h) θ̇ − hψ̇ φ + cθ̇θ

]
− msvy

(
hφ̇ − cψ̇

)
− mscvz θ̇.

(29.18)

The height of the center of mass of the sprung mass on the road is

ZG = Z0 + Z + eT
3 Rr1 , (29.19)

where:
e3 =

[
0 0 1

]T

is the unit vector of axis Z.
The potential energy of the sprung mass is simply its gravitational potential

energy; its expression is:

Us = msg (Z0 + Z) + msgeT
3 Rr1 , (29.20)

or, performing the relevant computations

Us = msg (Z0 + Z) + msg [−c sin ( θ0 + θ) + h cos ( θ0 + θ) cos (φ)] . (29.21)

Because the model is linearized, the trigonometric functions of small angles
may be substituted by their series, truncated after the quadratic term

sin ( θ0 + θ) ≈ θ0 + θ , cos ( φ) ≈ 1 − φ2

2
,

cos ( θ0 + θ) ≈ 1 − ( θ0 + θ)2

2
= 1 − θ2

0

2
− θ2

2
− θ0θ .

Neglecting the constant term, it follows that

Us = msg

[
Z − (c + hθ0) θ − h

θ2

2
− h

φ2

2

]
. (29.22)

29.2.3 General solid axle suspension

Geometry of the suspension

A solid axle suspension can be modelled as a secondary rigid body having two
degrees of freedom with respect to the main body.
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FIGURE 29.4. Sketch of an idealized solid axle suspension.

The geometry of the suspension may be simplified by assuming that it is
possible to identify a roll center CR in the motion about the reference position.
This is a point belonging to the roll axis x and to a plane perpendicular to
the ground passing through the centers of the wheels. In the heave motion,
point CR belonging to the sprung mass, indicated as CRs, will not coincide
with the corresponding point CRu belonging to the axle. Assume that the latter
moves along a trajectory belonging to the xz plane fixed to the vehicle body.
For small displacements of the body, substitute the trajectory with its tangent
in CRs.(Fig. 29.4).

Let the position of CRs in the frame fixed to the sprung mass be

(CRs−H) =
[

0 0 xu

]T . (29.23)

If the unit vector tangent to the trajectory of CRu in CRs is

s =
[

sx 0 sz

]T (29.24)

and ζ is the distance between these two points, the position of CRu in the frame
fixed to the sprung mass is

(CRu−H) =
[

xu + ζsx 0 ζsz

]T ≈
[

xu + ζsx 0 ζ
]T . (29.25)

The second of the two expressions is justified by the fact that the angle
between vector s and axis z is small.

If the roll rotation of the unsprung mass occurs about an axis parallel to
the roll axis x, its rotation matrix is

Rk = R1R2R3k , (29.26)
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where the rotation matrices for yaw and pitch rotations are the usual ones, while
the roll rotation is

R3k =

⎡
⎣ 1 0 0

0 cos(φk) − sin(φk)
0 sin(φk) cos(φk)

⎤
⎦ .

The axis about which the unsprung mass rotates may be different from the
roll axis of the vehicle. It is then possible to define a unit vector sk (Fig. 29.4)
that defines such a rotation axis. If the components of this vector, all functions
of ζ, are xus, yus and zus, it is possible to define a matrix Rus, that is a function
of ζ too, allowing the reference frame of the unsprung mass to be rotated so that
its longitudinal axis coincides with the rotation axis of the sprung mass

Rus(ζ) = − 1√
x2

us + y2
us

⎡
⎣ xus

√
x2

us + y2
us −yus −zusxus

yus

√
x2

us + y2
us xus −zusyus

zus

√
x2

us + y2
us 0 x2

us + y2
us

⎤
⎦ . (29.27)

If the deviation of the roll axis of the unsprung mass from the longitudinal
direction is small, vector sk is contained in the symmetry plane, and the rotation
matrix reduces to

Rus(ζ) ≈

⎡
⎣ 1 0 −zus

0 1 0
zus 0 1

⎤
⎦ . (29.28)

Translational kinetic energy

The rotation matrix of the unsprung mass is then

Rk = R1R2RusR3k . (29.29)

Once linearized, the product of matrices R2RusR3k is

R2RusR3k ≈

⎡
⎣ 1 0 θ + θ0 − zus

0 1 −φk

−θ − θ0 + zus φk 1

⎤
⎦ . (29.30)

Let the coordinates of the center of mass Gu of the unsprung mass in the
reference position in the reference frame of the vehicle be xGu, yGu and zGu

(yGu = 0 for symmetry reasons). Its position in the inertial frame is

(Gu−O’) = (H − O’) + R1r , (29.31)

where

r = R2

⎡
⎣R3

⎧⎨
⎩

xu + ζsx

0
ζ

⎫⎬
⎭+RusR3N

⎧⎨
⎩

xGu − xu

0
zGu

⎫⎬
⎭
⎤
⎦ , (29.32)
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that is, linearizing,

r =

⎧⎨
⎩

xGu − zuszGu + θ0zGu + θzGu

−φkzGu

ζ + zGu + zus (xGu − xu) − xGu (θ + θ0)

⎫⎬
⎭ . (29.33)

The height of the center of mass of the kth suspension from the ground may
be considered as the sum of a constant value related to the reference position,
plus a displacement of the same order of the other small quantities (like Z):

ZGu
= Z0k + Zk = Z0 + Z + eT

3 R1r . (29.34)

Performing the relevant computations and linearizing the trigonometric
functions of small angles, it follows that

Z0k + Zk = Z0 + Z − xGu (θ0 + θ) + ζ + zGu + zus (xGu − xu) . (29.35)

In the reference position, its value is

Z0k = Z0 − xGuθ0 + zGu + zus (xGu − xu) (29.36)

and then the relationship linking ζ to Zk is simply

ζ = Zk − Z + xGuθ . (29.37)

The component variable in time Zk of the Z coordinate of the center of
mass of the kth suspension will be assumed to be the generalized coordinate for
the vertical displacement of the unsprung mass.

Introducing the linearized value of ζ into the expression for r, it follows that

r =

⎧⎨
⎩

xGu − zuszGu + θ0zGu + θzGu

−φkzGu

zGu + zus (xGu − xu) − xGuθ0 + Zk − Z

⎫⎬
⎭ . (29.38)

Its derivative with respect to time, once linearized, is

ṙ =

⎧⎨
⎩

θ̇zGu

−φ̇kzGu

Żk − Ż

⎫⎬
⎭ . (29.39)

The velocity of the center of mass of the unsprung mass is then

VGu=
[

Ẋ Ẏ Ż
]T

+ R1ṙ + Ṙ1r . (29.40)

The velocity VGu
in the x∗y∗z∗ frame is obtained by premultiplying this

expression by RT
1 . Remembering that

RT
1 R1 = I , RT

1 Ṙ1 = ψ̇S =ψ̇

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ , (29.41)



524 29. MULTIBODY MODELLING

it follows that
VGu

= V + ṙ + ψ̇Sr . (29.42)

The translational kinetic energy of the unsprung mass is then

Tt =
1
2
mu

(
VT V + ṙT ṙ+ψ̇

2
rT ST Sr+2VT ṙ + 2ψ̇VT Sr + 2ψ̇ṙT Sr

)
, (29.43)

that is, by indicating as rx, ry, rz the components of vector r,

Tt = 1
2mu

{
v2

x + v2
y + v2

z + ṙ2
x + ṙ2

y + ṙ2
z + ψ̇

2 (
r2
x + r2

y

)
+

+2 (vxṙx + vy ṙy + vz ṙz) + 2ψ̇ (−vxry + vyrx − ṙxry + ṙyrx)
}

.
(29.44)

Only the constant and linear terms of r are present in all terms, except for
the term in vxṙx. Only the expression of ṙx containing also the quadratic terms

ṙx=β1θ̇ + xGuθ̇θ + β3 (vk − vz) + θ
(
Żk − Ż

)
+ θ̇ (Zk − Z) , (29.45)

where
β1 = zGu + zus (xGu − xu) + xusx , β3 = θ0 + sx (29.46)

and vk = Żk is the velocity of the kth unsprung mass, needs to be written
explicitly.

The following simplified expression is so obtained

Tt = 1
2mu

{
v2

x + v2
y + v2

k + φ̇
2

kz2
Gu +

(
z2

Gu + x2
Gu

)
θ̇
2

+ x2
Guψ̇

2
+

−2Żkθ̇xGu + 2vx

[(
Żk − Ż

)
β3 + θ̇β1 + θ̇ (Zu − Z) +

+θ
(
Żk − Ż

)
+ xGuθθ̇ + ψ̇φkzGu

]
+

+2vy

[
−φ̇kzGu + ψ̇xGu

]
+ 2ψ̇φ̇kzGuxGu

}
.

(29.47)

Angular velocity of the wheels

If the axle did not rotate with respect to the body about its longitudinal axis,
its absolute angular velocity about its longitudinal axis, as expressed in its own
reference frame, is

Ωk = RT
usΩ =

⎧⎨
⎩

Ωx + zusΩz

Ωy

Ωz − zusΩx

⎫⎬
⎭ . (29.48)

In reality, the unsprung mass is free to rotate about that axis and its angular
velocity is

Ωk =

⎧⎨
⎩

φ̇k

Ωy

Ωz − zusΩx

⎫⎬
⎭ . (29.49)
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The rotation and steering motion of each wheel are taken into account inde-
pendently. Let the rotation angles of the wheels be χR and χL and the steering
angles be δR and δL (R and L designate the right and left wheel of the axle).

If the wheel’s rotation axis coincided with axis yu of the unsprung mass,
and both were parallel to the y axis of the axle, the angular velocity of the ith
wheel in the reference frame of the kth unsprung mass would be

Ωwi = Ωk + χ̇ie2 (i = L, R). (29.50)

Generally speaking, the direction of the rotation axis of the wheel may be
different (although usually not by much except for steering) from that of the y
axis, making it possible to define the unit vector of the rotation axis ewi in the
reference frame of the unsprung mass. Such a unit vector does not depend upon
the position of the suspension and thus is a function neither of ζ nor of φk. It
follows that

Ωwi = Ωk + χ̇iewi (i = L, R). (29.51)

The position of the rotation axis may be defined by introducing a rotation
matrix Rwi, allowing us to pass from the reference frame of the unsprung mass
to a frame whose y axis coincides with the rotation axis of the wheel

ewi = Rwie2 . (29.52)

If xw, yw are zw the components of unit vector ewi
3, the value of the rotation

matrix Rw is

Rwi =
1√

x2
w + y2

w

⎡
⎣ yw xw

√
x2

w + y2
w −xwzw

−xw yw

√
x2

w + y2
w −ywzw

0 zw

√
x2

w + y2
w x2

w + y2
w

⎤
⎦ . (29.53)

The rotation axis of the wheel is usually little inclined with respect to the
horizontal direction. The trigonometric functions of the rotation axis included in
matrix Rwi may be linearized. It follows thus

Rwi =

⎡
⎣ 1 xw 0

−xw 1 −zw

0 zw 1

⎤
⎦ , (29.54)

where xw coincides with the steering angle of the wheel (when the axle does
not steer) with its sign changed (this angle is usually due to toe in and is very
small), while zw coincides with the camber angle of the wheel and is also small.
For symmetry reasons, it follows that

xwR
= −xwL

, zwR
= −zwL

. (29.55)

3Obviously
√

x2
w + y2

w + z2
w = 1.
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The angular velocity of the wheel in its reference frame, instead of the frame
of the unsprung mass, is

Ωwi = Rwi
T Ωk+χ̇e2 . (29.56)

If the wheel steers, the reference frame of the ith wheel will no longer be
parallel to the frame xuyuzu of the unsprung mass, but will be rotated by a
steering angle δi. Assume that the kingpin axis of the wheel is parallel to axis
zu and define a further rotation matrix

R4i =

⎡
⎣ cos(δi) − sin(δi) 0

sin(δi) cos(δi) 0
0 0 1

⎤
⎦ . (29.57)

In this case, the kingpin axis is generally not parallel to the z axis of the
axle. If ek is the unit vector of the kingpin axis (its components will be indicated
as xk, yk and zk

4), which in solid axle suspensions may be considered as fixed,
the rotation matrix Rki allowing the reference frame of the unsprung mass to
be rotated so that its zu axis coincides with the kingpin axis of the ith wheel is

Rki =
1√

x2
w + z2

w

⎡
⎣ zw −xwyw xw

√
x2

w + z2
w

0
(
x2

w + z2
w

)
yw

√
x2

w + z2
w

−xw −zwyw zw

√
x2

w + z2
w

⎤
⎦ . (29.58)

Usually the longitudinal inclination angle (the pitch angle of the kingpin
axis) and the transversal inclination angle (the roll angle of the kingpin axis),
are quite small, and the rotation matrix Rk reduces to

Rki ≈

⎡
⎣ 1 0 xk

0 1 yk

−xk −yk 1

⎤
⎦ , (29.59)

where xk and yk coincide respectively with the longitudinal inclination angle
(not larger than about 1◦) and the transversal inclination angle changed in sign
(usually not larger than about 10◦). For symmetry reasons, it follows that

xkR
= xkL

, ykR
= −ykL

. (29.60)

The angular velocity of the wheel in the reference frame of the sprung mass
is then

Ωwi = Ωk+δ̇iRkie3 + χ̇iRkiR4iRT
kiRwie2 . (29.61)

To obtain the angular velocity of the wheel in its own reference frame, Eq.
(29.61) must be premultiplied by (RkiR4iRT

kiRwi)T . Remembering that

R4ie3 = e3 ,

4Obviously
√

x2
k + y2

k + z2
k = 1.
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it follows that
Ωwi = χ̇e2 + δ̇α1 + α2Ωk. (29.62)

where
α1 = RT

wiRkie3 , α2 = RT
wiRkiRT

4iR
T
ki . (29.63)

It must be remembered that in a suspension there are two matrices Rwi and
Rki (i = L, R), one for each wheel.

Rotational kinetic energy

Because the wheel is a gyroscopic body (two of the principal moments of inertia
are equal to each other), with a principal axis of inertia coinciding with the
rotation axis, its inertia tensor has a peculiar form

Jw = diag
([

Jtw Jpw Jtw

])
, (29.64)

where Jpw and Jtw are respectively the polar and transversal moment of inertia
of the wheel.

The rotational kinetic energy of the ith wheel is

Twri = 1
2Ω

T
k αT

2 Jwα2Ωk + 1
2 χ̇2eT

2 Jwe2 + 1
2 δ̇

2
αT

1 Jwα1+
+χ̇δ̇eT

2 Jwα1 + χ̇eT
2 Jwα2Ωk + δ̇αT

1 Jwα2Ωk .
(29.65)

The first term is the rotational kinetic energy due to the angular velocity of
the unsprung mass.

By neglecting the first term, which will later be included in the kinetic energy
of the axle, and by linearizing and introducing the linearized expressions of the
kinematic equations, the rotational kinetic energy of the ith wheel reduces to

Twri =
1
2
χ̇2

i Jpw+
1
2
δ̇
2

i Jtpw + χ̇iδ̇iJpw (yk + zw) + (29.66)

+χ̇iJpw

[
θ̇ + φψ̇ + (xw − δi) φ̇k + zwψ̇

]
+ δ̇Jtwψ̇ . (29.67)

The first term that was neglected above can be inserted into the rotational
kinetic energy of the unsprung mass Tur:

Tur = 1
2Ω

T
k JuΩk, (29.68)

if the inertia tensor Ju also includes the inertia of the wheels, assumed to be
non-rotating and non-steering.

Operating in this way, the variation of the inertia of the unsprung mass at
the changing steering angle is neglected, but this approximation is acceptable.
The inertia tensor of the unsprung mass has a structure similar to that of the
sprung mass, because the suspension also has a symmetry plane coinciding with
the xuzu plane.

Performing the relevant computations, it follows that

Tur = 1
2Jxu

Ω2
xk + 1

2Jyu
Ω2

yk + 1
2Jzu

Ω2
zk − Jxzu

ΩxkΩzk (29.69)
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and, by linearizing and including the linearized kinematic equations, the simple
expression is obtained

Tur = 1
2J2

xu
φ̇k + 1

2Jyu
θ̇
2

+ 1
2Jzu

ψ̇
2

+ Jxzu
φ̇ψ̇ . (29.70)

The total rotation kinetic energy of the axle is then

Turt = Tur + TwrR + TwrL . (29.71)

Total kinetic energy

The kinetic energy of the axle is then

Twri = χ̇iJpw

[
θ̇ + φψ̇ + zwψ̇

]
, (29.72)

Tu = 1
2mu

(
v2

x + v2
y + v2

k

)
+ 1

2β11θ̇
2

+ 1
2β12ψ̇

2
+ 1

2β13φ̇k+
+β14ψ̇φ̇k + 1

2 χ̇2
sJpw+ 1

2 δ̇
2

sJtw + 1
2 χ̇2

RJpw+ 1
2 δ̇

2

RJtw+
+χ̇sδ̇sJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) − β16vkθ̇

+muvx

(
θ̇β1 + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+xGuθθ̇ + β5ψ̇φk

)
+ muvy

(
−β5φ̇k + xGuψ̇

)
+

+β19δ̇Lψ̇ + β19δ̇Rψ̇ + χ̇Lβ20 (xw − δs) φ̇k − χ̇Rβ20 (xw + δR) φ̇k+
+χ̇LJpr

(
θ̇ + φψ̇ + zwψ̇

)
+ χ̇RJpr

(
θ̇ + φψ̇ − zwψ̇

)
,

(29.73)

where

β5 = zGu , β11 = mu

(
z2

Gu + x2
Gu

)
+ Jyu

, β12 = mux2
Gu + Jzu

,
β13 = muz2

Gu + Jxu
, β14 = muzGuxGu − Jxzu

,
β16 = muxGu , β19 = Jtw , β20 = Jpw.

Potential energy

The height of the center of mass of the axle on the ground is

hu = eT
3 (GN−O’) = eT

3 (H − O’) + eT
3 R1r , (29.74)

i.e.,
hu = Z0 + Z + rz , (29.75)

The expression of rz, obtained by approximating vector r with its Taylor
series truncated after the quadratic term in the small quantities and cancelling
the constant terms that do not influence the equations of motion, is

rz = Zk − Z − θβ22 −
1
2
θ2zGu − 1

2
φ2

kzGu, (29.76)

where
β22 = zGu (θ0 − zus) .
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The gravitational potential energy

Ug = mughu (29.77)

is then

Ug = mug

(
Zk − θβ22 −

1
2
θ2zGu − 1

2
φ2

kzGu

)
. (29.78)

On each of the springs of the suspension it is possible to identify two points:
one of these (A) is fixed to the body, while the other (B) is fixed to the axle.
Considering rA and rB as the vectors defining their positions in the frame of the
sprung mass (rA is constant, while rB depends on ζ and φk), it is possible to
compute the shortening of the spring and then its elastic potential energy. In a
similar way, it is possible to compute the potential energy of possible anti-roll
bars applied to the axle.

In a linearized model of the suspension, the spring system linking the two
rigid bodies can be reduced to a spring with stiffness Kζ reacting to linear
displacements, and a torsional spring with stiffness Kφ reacting to the relative
rotation between sprung and unsprung masses φ − φk.

The general expression of the elastic potential energy of the whole suspen-
sion is

Um =
1
2
Kζ (ζ + ζ0)

2 +
1
2
Kφ (φ − φk)2 . (29.79)

Note that for symmetry reasons the stiffness for heave and roll motions are
fully independent from each other.

By introducing the expression for ζ as a function of the generalized coordi-
nates, it follows that

Um = 1
2K11 (Z + Z0)

2 + 1
2K22 (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +
−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ2 + 1

2Kφφ2
k − Kφφφk,

(29.80)

where constants Kij depend on both the elastic and geometric characteristics of
the suspension.

This expression of the potential energy, along with the expression of the
kinetic energy seen above, takes implicitly into account the actual trajectory of
the suspension, or better, because the model is linearized, the tangent to the
trajectory in the reference position. On the other hand, using a model of this
kind makes it impossible to account for the deformation in longitudinal and
lateral directions, and for the yaw and pitch compliance of the suspension.

In a similar way, the general expression of the elastic potential energy due
to the deformation of the tires of the suspension is

Up =
1
2
Kpz (Zk + Zk0)

2 +
1
2
Kpφφ2

k . (29.81)

If Kp is the stiffness of a single tire and t is the track of the axle, for an axle
with two wheels it follows that

Kpz = 2Kp , Kpφ =
1
2
t2Kp . (29.82)
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Dissipation function

Operating with the same method used for the elastic potential energy of the
suspension, the dissipation function due to the shock absorbers is

Fa =
1
2
c11v

2
z +

1
2
c22v

2
k +

1
2
c33θ̇

2
+

1
2
cφφ̇

2
+

1
2
cφφ̇

2

k +

−c12vzvk − c13vz θ̇ + c23vkθ̇ − cφφ̇φ̇k, (29.83)

where constants cij depend both on the characteristics of the dampers and on
the geometry of the suspension.

The dissipation function due to the damping of tires can be computed in
the same way:

Fp =
1
2
cpzv

2
k +

1
2
cpφΩ2

k . (29.84)

29.2.4 General independent suspension

Geometry of the suspension

An axle with independent suspensions will be assumed to be made with two sus-
pensions that are the mirror image of each other. Some parameters are identical
for the two suspensions (for instance the mass mi, some geometrical character-
istics, some angles, etc.); others will be identical in modulus but with opposite
sign (for instance, the product of inertia Jxy, some angles, etc.). In the latter
case, reference will be made to the left suspension (subscript i = L), while the
characteristics of the right suspension (subscript i = R) will have opposite sign.

The simplest case, although only an ideal one, is a suspension in which
the unsprung masses can only move along a straight line in the direction of
the z axis of the sprung mass. The sprung mass is the main body, while the
single suspension (wheel, hub and all parts attached to it) is the secondary body
(Fig. 29.5). The suspension is constrained to the main body by a prismatic guide
whose axis is parallel to the z axis. The reference point C is on the axis of the
guide and the distance ζ between the position C1 of C belonging to the sprung
mass and C2 belonging to the unsprung mass is taken as a generalized coordinate.
Obviously in the reference position with ζ = 0, C1 coincides with C2. Moreover,
assume that the directions of the axes of frame xuyuzu coincide with those of
the axes of frame xyz.

Consider as reference point for translational coordinates the same point H
already used to compute the kinetic energy of the sprung mass. The position of
the center of mass of the suspension Gu in the inertial frame is
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FIGURE 29.5. Sketch of an idealized independent suspension.

(Gu−O’) = (H − O’) + R (rC1 + rGu + ζe3) = (H − O’) + Rr2 , (29.85)

where R is the rotation matrix defining the position of the xyz frame with respect
to the inertial frame XiYiZi, e3 is the unit vector of the z axis and

r2 = rC1 + rC2 + ζe3 . (29.86)

If the steering of the wheel is accounted for, a part of the unsprung mass may
rotate about the kingpin axis, which in the simplified model may be assumed to
be parallel to zu, and thus to the z, axis. The wheel also rotates about its own
axis, which may be assumed to be parallel to the y axis when the steering angle
is zero.

However, this model of independent suspension is too simple. No modern car
has suspensions made by prismatic guides parallel to the z axis of the unsprung
mass, nor is the kingpin axis parallel to the same axis, while the rotation of the
wheels does not occur about an axis parallel to the y axis.

Each suspension has its own specific kinematics (as an example, an SLA sus-
pension is shown in Fig. 29.6), or better, its own elasto-kinematics, because the
various elements of the suspensions are rigid bodies only as a first approximation.
However, while the exact elasto-kinematics is important in assessing the position
of the wheel with respect to the ground and thus the forces they exchange, its
effects on the inertia reactions of the various components of the suspension are
usually very limited. It is then possible to neglect the deformation of the various
links in the computation of the inertial part of the equations of motion and to
introduce them later in the computation of the forces due to the tires.

If the deformation of the linkages is neglected, it is possible to define the
trajectory of all points of the suspension in a reference frame fixed to the sprung
mass. The trajectory of the center of mass, for instance, may be expressed by a
function

r2 = r2(ζ) , (29.87)

where ζ is a generalized coordinate that defines the position of the unsprung
mass, with reference to a given position. In the extremely simplified case seen
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FIGURE 29.6. Sketch of an SLA suspension.

above, coordinate ζ is nothing other than the displacement of the unsprung
mass in the z direction, and function r2(ζ) is the linear function expressed by
Eq. (29.86).

The function expressed by Eq.(29.87) can be developed in McLaurin series
about the reference position and the terms of an order higher than the first
may be neglected. The position of the center of mass Gu of the suspension with
respect to point H is

(Gu−H) = r2 = r20 +
(

dr2

dζ

)
ζ=ζ0

ζ . (29.88)

Equation (29.88) coincides with Eq. (29.86) if vector

s0 =
(

dr2

dζ

)
ζ=ζ0

is substituted for e3, the unit vector of the z axis. The components of vector r20

will be indicated as xGu, yGu and zGu.
As an example, in the case of a trailing arms suspension hinged about an

axis parallel to the y axis (Fig. 29.7) and with point C on the hinge axis in the
oscillation plane of the center of mass, ζ0 is the angle line CGu makes with the
x axis in the reference position, and coordinate ζ ′ is the angle the suspension
rotates with respect to that position. The position of the center of mass may be
thus defined by the function
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FIGURE 29.7. Sketch of a trailing arm suspension.

r2 =

⎧⎨
⎩

x0 + d cos
(
ζ ′ + ζ0

)
y0

z0 − d sin
(
ζ ′ + ζ0

)
⎫⎬
⎭ . (29.89)

If ζ ′ is small, the truncated series yielding the position of Gu is

r2 =

⎧⎨
⎩

x0 + d cos (ζ0)
y0

z0 − d sin (ζ0)

⎫⎬
⎭ +

⎧⎨
⎩

− sin (ζ0)
0

− cos (ζ0)

⎫⎬
⎭ dζ ′ . (29.90)

Or, to give coordinate ζ the meaning of a displacement in the z direction of
the unsprung mass, it is possible to state

ζ = − cos (ζ0) dζ ′ , (29.91)

and then

r2 =

⎧⎨
⎩

x0 + d cos (ζ0)
y0

z0 − d sin (ζ0)

⎫⎬
⎭ + s0ζ , (29.92)

where
s0 =

[
tan (ζ0) 0 1

]T . (29.93)

The generalized coordinate for the ith unsprung mass (right or left) may be
the height on the ground of its center of mass instead of ζ. Such height is simply

c = eT
3

[
(H − O’) + Rr2

]
(i = L, R) . (29.94)

Also, ZGui
may be considered as the sum of a value taken at the reference

position plus a displacement, one that is of the same order as the other small
quantities (like Z):

ZGui
= ZGu0 + Zui

= Z0 + Z + eT
3 R

⎧⎨
⎩

xGu + ζsx

yGu + ζsy

zGu + ζsz

⎫⎬
⎭ . (29.95)
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Note that, owing to symmetry, ZGu0 , xGu, zGu, sx, and sz are equal for the
two suspensions of the same axle, while yGu and sy have opposite signs. In the
following, as already stated, the signs of the left suspension (that with positive
yGu) will be taken as a reference.

In the reference position it follows that

Z0u
= Z0 − xGuθ0 + zGu . (29.96)

By performing the computations, linearizing the trigonometric functions of
the small angles and assuming that sz = 1 and that sx and sy are small, it
follows that

Zui
= Z − xGuθ + yGuφ + ζ (29.97)

and thus the relationship linking ζ to Zu is simply

ζ = Zui
− Z + xGuθ − yGuφ . (29.98)

Rotation of the wheels

Assume that the rotation axis of the wheels is fixed to the unsprung mass. Let χ
be the angle of rotation of the wheel and χ̇ its angular velocity in a frame fixed
to the suspension. The signs of angular velocities have been defined in such a
way that, when χ̇ is positive, the wheel rotates in a direction that is consistent
with a positive velocity vx of the vehicle.

If the direction of the rotation axis of the wheel coincides with that of axis
yu of the unsprung mass, and then is parallel to the y axis of the vehicle (whose
unit vector is e2), the absolute angular velocity of the wheel is, in the reference
frame of the sprung mass,

Ωw = Ω + χ̇e2 =

⎧⎨
⎩

Ωx

Ωy + χ̇
Ωz

⎫⎬
⎭ . (29.99)

However, the rotation axis of the wheel usually has a direction that may be
different (only slightly, when the wheel is not steered) from the y axis, so that
it is possible to define the unit vector of the rotation axis ew in the reference
frame of the sprung mass. Obviously such a vector depends on the position of
the suspension and is then a function of ζ:

ew = ew (ζ) . (29.100)

As an alternative, the position of the rotation axis can be defined by stating
a yaw angle ψw (steering due to the motion of the suspension) and a roll angle
φw of the rotation axis of the wheel. A rotation matrix Rw is then written to pass
from the reference frame of the sprung mass to a frame whose y axis coincides
with the rotation axis of the wheel. Since the two ways of describing the position
of the rotation axis must yield the same results, it follows that

ew = Rwe2 . (29.101)



29.2 Linearized model for the isolated vehicle 535

With xw, yw and zw being the components5 of unit vector ew, the rotation
matrix Rw is still expressed by Eq. (29.53). Because the rotation axis of the
wheel is usually not far from horizontal, the trigonometric functions of ψw and
φw can be linearized. Eq. (29.54), repeated here, still holds

Rw =

⎡
⎣ 1 xw 0

−xw 1 −zw

0 zw 1

⎤
⎦ .

The angular velocity of the wheel in the reference frame of the sprung mass
is

Ωw = Ω + χ̇ew (ζ) . (29.102)

Actually, it is expedient to write the components of the angular velocity of
the wheel in the frame fixed to the wheel instead of that fixed to the sprung
mass.

The angular velocity of the wheel in its own reference frame is

Ωw = Rw
T Ω+χ̇e2 . (29.103)

Steering

If the wheel steers, the reference frame of the wheel will no longer be parallel to
frame xuyuzu of the unsprung mass, but will be rotated by a steering angle δ.
Here two different approaches are possible: δ may be one of the variables of mo-
tion (free controls approach), or a constant or a known variable (locked controls
approach).

Assume that the kingpin axis of the wheel is parallel to the z axis of the
unsprung mass and define a further rotation matrix

R4 =

⎡
⎣ cos(δ) − sin(δ) 0

sin(δ) cos(δ) 0
0 0 1

⎤
⎦ . (29.104)

Assuming that the direction of the rotation axis does not change with the
heave motion and is parallel to the z axis, the rotation velocity of the wheel,
referred to its own reference frame, is

Ωw = χ̇e2 + δ̇e3 + RT
4 Ω . (29.105)

Actually, the kingpin axis moves with changing ζ and in general is not
parallel to the z axis of the unsprung mass, but its direction is defined by the
unit vector ek, which is a function of ζ:

ek = ek (ζ) . (29.106)

5Obviously, they are functions of ζ and
√

x2
w + y2

w + z2
w = 1.
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The rotation matrix Rk to rotate the reference frame of the unsprung mass
so that its z axis coincides with the kingpin axis

ek = Rke3 , (29.107)

can also be written.
By defining a pitch angle θk of the kingpin axis (coinciding with the lon-

gitudinal inclination angle) and a roll angle φk (coinciding with the transversal
inclination angle), and by indicating with xk, yk and zk the components6 of the
unit vector ek, the rotation matrix Rk is still expressed by Eq. (31.67). If θk and
φk are small angles, matrix Rk reduces to:

Rk ≈

⎡
⎣ 1 0 xk

0 1 yk

−xk −yk 1

⎤
⎦ . (29.108)

The velocity of the wheel in the reference frame of the sprung mass is then

Ωw = Ω+δ̇ek + χ̇RkR4RT
k ew . (29.109)

To write it in the principal reference frame of the wheel, the expression of
the angular velocity must be multiplied by

(
RkR4RT

k Rw

)T :

Ωwi = χ̇e2 + δ̇α1 + α2Ω, (29.110)

where
α1 = RT

wiRkiRT
4 e3 , α2 = RT

wiRkiRT
4iR

T
ki . (29.111)

The steering angle so defined does not coincide exactly with the steering
angle defined in the preceding chapters, because it also has components along
axes x and y.

Translational kinetic energy

The position of the center of mass of the unsprung mass in the inertial reference
frame is

(Gu−O’) = (H − O’) + R1r , (29.112)

where

r = R2R3

⎧⎨
⎩

xGu + ζs
x

yGu + ζs
y

zGu + ζ

⎫⎬
⎭ . (29.113)

By linearizing the expression for r and substituting its value for ζ, it follows
that

r =

⎧⎨
⎩

xGu + θ0zGu + θzGu

yGu − φzGu

zGu − θ0xGu + Zu − Z

⎫⎬
⎭ . (29.114)

6Obviously, they are functions of ζ and
√

x2
k + y2

k + z2
k = 1.
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Its derivative, again approximated to the first-order term in the small quan-
tities, is

ṙ =

⎧⎨
⎩

θ̇zGu

−φ̇zGu

Żu − Ż

⎫⎬
⎭ . (29.115)

The speed of the center of mass of the unsprung mass, written in the inertial
frame, is still expressed by Eq. (29.40) while the expression of the translational
kinetic energy of the unsprung mass is identical to that seen for the rigid axle
suspension (Eq. (29.44), where rx, ry, rz are the components of vector r). The
equation is repeated here:

Tt = 1
2mui

{
v2

x + v2
y + v2

z + ṙ2
x + ṙ2

y + ṙ2
z + ψ̇

2 (
r2
x + r2

y

)
+

+2 (vxṙx + vy ṙy + vz ṙz) + 2ψ̇ (−vxry + vyrx − ṙxry + ṙyrx)
}

.

To obtain an expression containing all terms up to the quadratic in small
quantities, the linearized expression of the components of r and their derivatives
may be used, except for the term in vxṙx, where the quadratic terms must also
be used

ṙx=β1θ̇ + xGuθ̇θ + β3 (vu − vz) + θ (vu − vz) + θ̇ (Zu − Z) − yGusxφ̇ (29.116)

where
β1 = xGusx + zGu , β3 = θ0 + sx . (29.117)

By linearizing the kinematic equations (A.111) and indicating with vui the
derivative of Zui, the following expression of the translational kinetic energy of
a single independent suspension is obtained:

Tti = 1
2mui

(
v2

x + v2
y + v2

ui + φ̇
2
z2

Gu + θ̇
2
z2

Gu

)
+

+muivx

[
β1θ̇ + xGuθ̇θ + β3 (vui − vz) +

+θ (vui − vz) + θ̇ (Zui − Z) − yGusxφ̇ − ψ̇yGu + zGuφψ̇
]
+

+muivy

(
ψ̇xGu − φ̇zGu

)
− muiψ̇θ̇zGuyGu + muiψ̇φ̇zGuxGu .

(29.118)

Note that operating in this way the translational kinetic energy linked with
steering has been neglected. This would be correct if the center of mass of the
steering part of the suspension lies on the kingpin axis; however, the small error
so introduced may be at least partially compensated for by introducing the
moment of inertia of the steering parts about the kingpin axis instead of about
a baricentric axis.

Rotational kinetic energy

The rotational kinetic energy of the wheel is

Twr = 1
2Ω

T αT
2 Jwα2Ω+1

2 δ̇2αT
1 Jwα1+δ̇αT

1 Jwα2Ω+
+χ̇δ̇eT

2 Jwα1 + 1
2 χ̇2eT

2 Jwe2 + χ̇eT
2 Jwα2Ω .

(29.119)
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Because the wheel is a gyroscopic body (two of its principal moments of
inertia are equal to each other), with one of its principal axes of inertia coinciding
with the rotation axis, its inertia matrix is diagonal and has a particular form

Jw = diag
([

Jtw Jpw Jtw

])
, (29.120)

where Jpw and Jtw are the polar and transversal moments of inertia, respectively.
The rotational kinetic energy of the non-rotating parts of the suspensions is

Tnr =
1
2
δ̇
2
αT

1 Jmα1 +
1
2
ΩT αT

2 Jmα2Ω+δ̇αT
1 Jmα2Ω .

where Jm is the inertia tensor of the non-rotating parts of the unsprung mass.
The first three terms of Eq. (29.119) may be directly included in the expres-

sion of Tnr if the inertia of the wheels is included in tensor Jm.
Remembering that all angular velocities except for χ̇ are small quantities,

the expression of the kinetic energy truncated to the second-order terms is fairly
simplified.

Stating that Jm is the inertia tensor of the unsprung mass, which in general
has no symmetry property, and remembering the peculiar structure of the inertia
tensor of the wheel, the rotational kinetic energy of the unsprung mass (i.e., of
one of the two unsprung masses of the axle) is

Tur = 1
2Jpwχ̇2 + 1

2 δ̇
2
Jmz + 1

2 φ̇
2
Jmx + 1

2 θ̇
2
Jmy+

+ 1
2 ψ̇

2
Jmz − φ̇θ̇Jmxy − φ̇ψ̇Jmxz − θ̇ψ̇Jmyz+

−δ̇φ̇Jmxz − δ̇θ̇Jmyz + δ̇ψ̇Jmz + χ̇δ̇Jpw (yk + zw) +
+χ̇φ̇Jpw (xw − δ) + χ̇Jpw

[
θ̇ + ψ̇ (zw + φ)

]
.

(29.121)

As already stated, this expression is approximated for various reasons, and
also because the parts of the suspension that do not steer have been neglected.

Total kinetic energy of the axle

Because different types of suspensions may be used on the same vehicle for
front and rear axles, the equations of motion are best written with reference to
coordinates that may be used for both rigid axle and independent suspensions.
Consider the general kth axle made of two independent suspensions and assume

⎧⎪⎨
⎪⎩

Zk =
ZuL + ZuR

2
,

φk =
ZuL − ZuR

d0
,

(29.122)

where as usual subscripts L and R designate the left and right suspension and
d0 is an arbitrary length, for instance the distance between the centers of mass
of the two suspensions. Coordinate Zk coincides with the vertical displacement
of the center of mass of the system made by the two suspensions of the axle, and
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φk is the roll rotation of a line passing through the two centers of mass (if d0 is
their distance). The coordinates are then the same used for rigid axles.

Taking into account the symmetry of the two suspensions, some terms in
the kinetic energy are equal in modulus but have opposite signs (for instance
β2yGuφ̇) and then cancel each other. Remembering that mu = 2mui, substituting
the coordinates Zk and φk to Zui, the total kinetic energy of the system made
by the two suspensions is

Tu = 1
2mu

(
v2

x + v2
y + v2

k

)
+ 1

2β10φ̇
2

+ 1
2β11θ̇

2
+ 1

2β12ψ̇
2
+

1
2β13φ̇

2

k + β15φ̇ψ̇ + 1
2Jpwχ̇2

L + 1
2Jpwχ̇2

R + 1
2 δ̇

2

LJmz + 1
2 δ̇

2

RJmz+
+χ̇Lδ̇LJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) +

+muvx

(
β1θ̇ + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+β4ψ̇φ + xGuθ̇θ
)

+ muvy

(
xGuψ̇ − β4φ̇

)
− β17δ̇Lφ̇ − β17δ̇Rφ̇+

−β18δ̇Lθ̇ + β18δ̇Rθ̇ + β19δ̇Lψ̇ + β19δ̇Rψ̇ + χ̇Lφ̇β21 (xw − δL) +
−χ̇Rφ̇β21 (xw + δR) + χ̇LJpw

[
θ̇ + ψ̇ (zw + φ)

]
+ χ̇RJpw

[
θ̇ + ψ̇ (−zw + φ)

]
,

(29.123)
where

β4 = zGu , β10 = muz2
Gu + 2Jmx , β11 = muz2

Gu + 2Jmy ,
β12 = 2Jmz , β13 = 1

2mud2
0 , β15 = muzuGxGu − 2Jmxz ,

β17 = Jmxz , β18 = Jmyz , β19 = Jmz , β21 = Jpw .

Potential energy

The height on the ground of the center of mass of one of the two suspensions is
still expressed by Eq. (29.75):

hu = Z0 + Z + rz .

The expression of rz, obtained by approximating vector r with its series
truncated after quadratic terms in the small quantities and eliminating the con-
stant terms that do not affect the equations of motion, is

rz = zGu − 1
2
θ0zGu + Zui − Z − θθ0zGu − 1

2
θ2zGu − 1

2
φ2zGu. (29.124)

Neglecting constant terms, the gravitational potential energy of one of the
two independent suspensions is

Ugi = muig

(
−θθ0zGu + Zui −

1
2
θ2zGu − 1

2
φ2zGu

)
. (29.125)

The potential energy of the system made by the two suspensions is then

Ug = mug

(
Zk − θβ22 −

1
2
θ2zGu − 1

2
φ2zGu

)
(29.126)
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where

β22 = θ0zGu .

The expressions for the linearized elastic potential energy of the axle and the
tires, as well as those of the dissipation functions, are those already seen for
rigid axles. Obviously, the expressions of the coefficients describing the various
stiffnesses and damping coefficients are different and must be computed in each
case from the mechanical and geometrical characteristics of the suspensions, but
in the linearized approach they are at any rate constant.

29.2.5 Comparison between independent and rigid axle suspensions

As already stated, the generalized coordinates here chosen may be used for both
types of suspensions. The general expression of the kinetic energy of the axle is

Tu = 1
2mu

(
v2

x + v2
y + v2

k

)
+ 1

2β10φ̇
2

+ 1
2β11θ̇

2
+ 1

2β12ψ̇
2

+ 1
2β13φ̇

2

k+

+β14ψ̇φ̇k + β15ψ̇φ̇ + 1
2 χ̇2

LJpw+ 1
2 δ̇

2

LJtw + 1
2 χ̇2

RJpw+ 1
2 δ̇

2

RJtw+

+χ̇Lδ̇LJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) − β16Żkθ̇+

+muvx

(
θ̇β1 + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+β4φψ̇ + xGuθ̇θ + β5φkψ̇
)

+ muvy

(
−β5φ̇k + xGuψ̇ − β4φ̇

)
+

−β17δ̇Lφ̇ − β17δ̇Rφ̇ − β18δ̇Lθ̇ + β18δ̇Rθ̇ + β19δ̇Lψ̇ + β19δ̇Rψ̇+

+χ̇Lβ20 (xw − δL) φ̇k − χ̇Rβ20 (xw + δR) φ̇k + χ̇Lφ̇β21 (xw − δL) +

−χ̇Rφ̇β21 (xw + δR) + χ̇LJpw

(
θ̇ + φψ̇ + zwψ̇

)
+ χ̇RJpw

(
θ̇ + φψ̇ − zwψ̇

)
.

(29.127)
Some coefficients βi vanish in the case of rigid axles (for instance β10 or

β15), while others vanish in independent suspensions (for instance β14 or β16).
In a similar way, the gravitational potential energy can be written in the

form

Ug = mug

(
Zu − θβ22 −

1
2
θ2zGu − 1

2
φ2β24 −

1
2
φ2

uβ23

)
(29.128)

where

β23 = zGu , β24 = 0 (29.129)

in the case of rigid axles, and

β23 = 0 , β24 = zGu (29.130)

for independent suspensions.
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29.2.6 Lagrangian function of the whole vehicle

The Lagrangian function L = T − U of the whole vehicle can thus be computed
without any difficulty:

L = 1
2m

(
v2

x + v2
y

)
+ 1

2msv
2
z + 1

2Jxφ̇
2

+ 1
2Jy θ̇

2
+ 1

2Jzψ̇
2
+

−Jxzψ̇φ̇ − mscvz θ̇ + vxθ̇Js1 − Js3vyφ̇ + Js3vxφψ̇+

+
∑

∀k

[
1
2muv2

k + 1
2β13φ̇

2

k + β14ψ̇φ̇k + 1
2 χ̇2

LJpw+ 1
2 δ̇

2

LJtw + 1
2 χ̇2

RJpw+

+ 1
2 δ̇

2

RJtw + χ̇Lδ̇LJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) − β16vkθ̇+

+muvx

(
θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz + β5φkψ̇

)
+

−muvyβ5φ̇k − β17δ̇Lφ̇ − β17δ̇Rφ̇ − β18δ̇Lθ̇ + β18δ̇Rθ̇+

+β19δ̇Lψ̇ + β19δ̇Rψ̇ + χ̇Lβ20 (xw − δL) φ̇k − χ̇Rβ20 (xw + δR) φ̇k+

+χ̇Lφ̇β21 (xw − δL) − χ̇Rφ̇β21 (xw + δR) + χ̇LJpw

(
θ̇ + φψ̇ + zwψ̇

)
+

+χ̇RJpw

(
θ̇ + φψ̇ − zwψ̇

)]
− msgZ + Mg1θ + 1

2Mg2θ
2 + 1

2Mg3φ
2+

−g
∑

∀k mu

(
Zu − 1

2β23φ
2
k

)
−

∑
∀k

(
1
2K11 (Z + Z0)

2 +

+ 1
2 (K22 + Kpz) (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +

−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ2 + 1

2 (Kφ + Kpφ) φ2
k − Kφφφk

)
,

(29.131)
where

m = ms +
∑

∀k mk , Jx = JxL
+ msh

2 +
∑

∀k β10

Jy = JyL
+ ms

(
h2 + c2

)
+

∑
∀k β11 , Jz = JzL

+ msc
2 +

∑
∀k β12

Jxz = JxzL
− msch −

∑
∀k β15 , Js1 = −ms (cθ0 − h) +

∑
∀k mkβ1

Js3 = msh +
∑

∀k mkβ4 , Mg1 = msg (c + hθ0) + g
∑

∀k mkβ22 ,

Mg2 = msgh + g
∑

∀k mkzGu , Mg3 = msgh + g
∑

∀k mkβ24 .
(29.132)

29.3 MODEL WITH 10 DEGREES OF FREEDOM
WITH LOCKED CONTROLS

Consider a vehicle moving at a stated speed with a stated steering angle and
neglect the longitudinal slip of the wheels. The forward speed V , which in the
linearized approach (small value of the sideslip angle β) coincides with vx, and
its derivative V̇ are imposed, and so are the steering angles of the wheels and
their derivatives. The angular velocity of the wheels is simply
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χ̇i =
V

Rei

(29.133)

where Rei
is the effective rolling radius. This expression is approximated even

if the rolling radius corresponding with the actual longitudinal slip was used,
because the speed of the centers of the wheels does not coincide with the ve-
locity V of the center of mass of the vehicle. Nonetheless, if motion takes place
in conditions allowing the equations to be linearized, such assumptions can be
accepted.

Moreover, assume that the derivatives δ̇i of the steering angles are vanish-
ingly small, either because the steering angles are actually locked at a constant
value or because the dynamic effects of their variation are negligible

29.3.1 Expression of the Lagrangian function and its derivatives

The expression of the Lagrangian function is much simplified and may be writ-
ten as

L = 1
2mev

2
x + 1

2mv2
y + 1

2msv
2
z + 1

2Jxφ̇
2

+ 1
2Jy θ̇

2
+ 1

2Jzψ̇
2
+

−Jxzψ̇φ̇ − mscvz θ̇ + vxθ̇Js2 − Js3vyφ̇ + Js3vxφψ̇+

+
∑

∀k

{
1
2mkv2

k + 1
2β13φ̇

2

k + β14ψ̇φ̇k − β16vkθ̇ − mkvyβ5φ̇k+

+mkvx

(
θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz + β5φkψ̇

)
+

+2 vx

Re

[
−β20δφ̇k − β21δφ̇ + Jprφψ̇

]}
− msgZ + Mg1θ + 1

2Mg2θ
2+

+ 1
2Mg3φ

2 − g
∑

∀k mk

(
Zk − 1

2β23φ
2
k

)
−

∑
∀k

(
1
2K11 (Z + Z0)

2 +

+ 1
2 (K22 + Kpz) (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +

−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ2 + 1

2 (Kφ + Kpφ) φ2
k − Kφφφk

)
,

(29.134)
where the equivalent mass and Js2 are

me = m + 2
∑
∀k

Jpw
1

R2
e

, Js2 = Js1 + 2
∑
∀k

Jpw

Re
(29.135)

(coefficients 2 come from the assumption that each axle has two wheels) and δ
is the average steering angle of the axle

δ =
δL + δR

2
. (29.136)

The derivatives of the Lagrangian function with respect to the generalized
velocities and coordinates are

∂L
∂vx

= mevx + θ̇Js2 . (29.137)
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Note that the expression of this derivative has been further linearized by
cancelling the terms of the same order of the squares of small quantities. For
instance, the term in β3vk was cancelled because both β3 and vk are small quan-
tities. Moreover, the use of the equivalent mass, which includes only the contri-
bution to inertia due to the wheels, may be criticized because the transmission
has not been modelled. Physically, this corresponds to considering the vehicle
as pushed forward by an external force in the x direction, as in jet propelled
record vehicles, instead of propelled by the driving torque applied to the wheels
(or slowed by the braking torque).

∂L
∂vy

= mvy − Js3φ̇ −
∑
∀k

mkβ5φ̇k, (29.138)

∂L
∂vz

= msŻ − mscθ̇ − vx

∑
∀k

mk (θ + β3) , (29.139)

∂L
∂φ̇

= Jxφ̇ − Jxzψ̇ − Js3vy − 2
∑
∀k

vx

Re
β21δ, (29.140)

∂L
∂θ̇

= Jy θ̇ − mscŻ + vxJs2 +
∑
∀k

[
−β16Żk + mkvx (Zk − Z)

]
, (29.141)

∂L
∂ψ̇

= Jzψ̇ − Jxzφ̇ + Js3vxφ +
∑
∀k

(
β14φ̇k + mkvxβ5φk + 2

vx

Re
Jpwφ

)
, (29.142)

∂L
∂Żk

= mkŻk − β16kθ̇ + mkvx (θ + β3k) for k = 1, 2, (29.143)

∂L
∂φ̇k

= β13kφ̇k + β14kψ̇ − mkvyβ5k − 2
vx

Rek
β20kδk for k = 1, 2, (29.144)

∂L
∂X

=
∂L
∂Y

=
∂L
∂ψ

= 0, (29.145)

∂L
∂Z

= −msg −
∑
∀k

[
mkvxθ̇ + K11 (Z + Z0) +

−K12 (Zk + Z0k) − K13 (θ + θ0)] ,

(29.146)

∂L
∂θ

= Mg1 + Mg2θ +
∑
∀k

[
muvx

(
Żk − Ż

)
+

−K33 (θ + θ0) + K13 (Z + Z0) − K23 (Zk + Zk0)] ,

(29.147)

∂L
∂φ

= Js3vxψ̇ + Mg3φ +
∑
∀k

(
2

vx

Re
Jpwψ̇ − Kφφ + Kφφk

)
, (29.148)



544 29. MULTIBODY MODELLING

∂L
∂Zk

= −gmk + mkvxθ̇ − (K22k + Kpzk) (Zk + Zk0) +

+K12k (Z + Z0) − K23k (θ + θ0) ,

(29.149)

∂L
∂φk

= +mkvxβ5kψ̇ + gmkβ23kφk − (Kφk + Kpφk) φk + Kφkφ . (29.150)

The last two derivatives must be computed for the various axles (k = 1, 2
for a two-axles vehicle).

29.3.2 Kinematic equations

Even if velocity V is stated, all 10 equations of motion must be written, because
the generalized coordinates are 10. When all equations of motion have been
obtained, it will be possible to state that the forward velocity is known and one
of the equations can be eliminated.

The generalized coordinates for a two-axles vehicle are then

q =
[

X Y Z φ θ ψ z1 φ1 z2 φ2

]T . (29.151)

The vector containing the generalized velocities w is

w =
[

vx vy vz vφ vθ vψ v1 vφ1 v2 vφ2

]T . (29.152)

Remark 29.1 Velocities w are referred neither to a body-fixed frame nor to an
inertial frame. Linear velocities are referred to the intermediate frame x∗y∗z,
while the generalized velocities related to angular coordinates are the derivatives
of Tait-Bryan angles. This may make the analysis more complicated, but only to
a point.

The relationship linking the velocities to the derivatives of the coordinates
is, as usual

w = AT q̇ ,

where

A =

⎡
⎣ cos(ψ) − sin(ψ)

sin(ψ) cos(ψ) 0

0 I

⎤
⎦ (29.153)

and I is an identity matrix of size 8 × 8.
The kinematic equations are the inverse transformation

q̇ = A−Tw = Bw . (29.154)

A is in this case a rotation matrix, so that

A−1 = AT , B = A . (29.155)
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The equation of motion in the state space is made by the 10 equations of
motion, plus the 10 kinematic equations and is then Eq. (A.101):

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂L
∂w

})
+ BTΓ

{
∂L
∂w

}
− BT

{
∂L
∂q

}
+

{
∂F
∂w

}
= BT Q ,

{q̇i} = B {wi} .

(29.156)

The column matrix BT Q containing the 10 components of the vector of the
generalized forces will be computed later by writing the virtual work of the forces
acting on the system. In the following equations its elements will be indicated
with Qx, Qy, Qz, Qφ, Qθ, Qψ, Qzk, Qφk.

The most complicated part of the computation is writing matrix BTΓ. By
performing fairly intricate computations, following the procedure described in
Appendix A, it follows that

BTΓ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −ψ̇

ψ̇ 0
0 0
0 0
0 0

−vy vx

⎤
⎥⎥⎥⎥⎥⎥⎦

06×8

04×2 04×8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By using the expressions of the derivatives with respect to the generalized
velocities seen above, and differentiating again with respect to time, it follows
that

∂

∂t

({
∂L
∂w

})
=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mev̇x + θ̈Js2

mv̇y − Js3φ̈ −
∑

∀k mβ5kφ̈k

msZ̈ − mscθ̈ − v̇x

∑
∀k mk (θ + β3k) − vxθ̇

∑
∀k mk

Jxφ̈ − Jxzψ̈ − Js3v̇y − 2v̇x

∑
∀k

1
Rek

β21kδk

Jy θ̈ − mscZ̈ + v̇xJs2+
∑

∀k

[
−β16kZ̈k + mkv̇x (Zk − Z) +

+mkvx

(
Żk − Ż

)]
Jzψ̈ − Jxzφ̈ + Js3v̇xφ + Js3vxφ̇ +

∑
∀k

[
β14kφ̈k + mkv̇xβ5kφk+

+mkvxβ5kφ̇k + 2v̇x
1

Rek
Jpwkφ + 2vx

1
Rek

Jpwkφ̇
]

mkZ̈k − β16kθ̈ + mkv̇x (θ + β3k) + mkvxθ̇

β13kφ̈k + β14kψ̈ − mkv̇yβ5k − 2v̇x
1

Rek
β20kδk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29.157)
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The last two equations refer to the coordinates of the axles, and then must
be repeated for k = 1, 2.

BTΓ
{

∂L
∂w

}
=

[
−ψ̇ ∂L

∂vy
ψ̇ ∂L

∂vx
0 0 0 −vy

∂L
∂vx

+ vx
∂L
∂vy

0 0 0 0
]T

.

(29.158)
By introducing the values of the derivatives and linearizing, it follows that

BT Γ
{

∂L
∂w

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
0
mevxψ̇

}

03×1

vx

[
−Js3φ̇ −

∑
∀k

(
2vyJpwk

1
R2

e
+ mkβ5φ̇k

)]
04×1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (29.159)

Finally:

BT

{
∂L
∂q

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
−msg −

∑
∀k

[
mkvxθ̇ + K11 (Z + Z0) +

−K12 (Zk + Zk0) − K13 (θ + θ0)]
Js3vxψ̇ + Mg3φ +

∑
∀k

(
2vx

1
Re

Jpwkψ̇ − Kφφ + Kφφk

)
Mg1 + Mg2θ +

∑
∀k

[
muvx

(
Żk − Ż

)
− K33 (θ + θ0) +

+K13 (Z + Z0) − K23 (Zk + Zk0)]
0
−gmk + mkvxθ̇ − (K22k + Kpzk) (Zk + Zk0) +

+ K12k (Z + Z0) − K23k (Z + Z0)
−mkvxβ5kψ̇ − gmukβ23kφk − Kφkφk + Kφkφ − Kpφkφk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29.160)
The last two equations refer to the axles and must be repeated for k = 1,

2.
The derivatives of the dissipation function are

{
∂F
∂w

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0∑

∀k

(
c11kŻ − c12kŻk − c13kθ̇

)
∑

∀k

(
cφkφ̇ − cφkφ̇k

)
∑

∀k

(
c33kθ̇ − c13kŻ + c23kŻk

)
0
(c22k + cpzk) Żk − c12kŻ + c23kθ̇

(cφk + cpφk) φ̇k − cφkφ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (29.161)
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29.3.3 Equations of motion

First equation: longitudinal translation

By introducing the forward velocity of the vehicle V instead of vx, the first
equation becomes

meV̇ + θ̈Js2 = Qx . (29.162)

Second equation: lateral translation

mv̇y + meV ψ̇ − Js3φ̈ −
∑
∀k

muβ5φ̈k = Qy . (29.163)

Third equation: vertical translation

msZ̈ − mscθ̈ +
∑

∀k [K11 (Z + Z0) − K12 (Zk + Zk0) +
−K13 (θ + θ0) + c11kŻ − c12kŻk+

−c13kθ̇ − V̇ mk (θ + β3k)
]

= −msg + Qz .
(29.164)

Fourth equation: roll rotation

Jxφ̈ − Jxzψ̈ − Js3v̇y − Js3V ψ̇ − Mg3φ +
∑

∀k

(
−2V̇ 1

Rek
β21kδk+

−2vx
1

Re
Jpwkψ̇ + Kφφ − Kφφk + cφkφ̇ − cφkφ̇k

)
= Qφ .

(29.165)

Fifth equation: pitch rotation

Jy θ̈ − mscZ̈ + V̇ Js2 − Mg2θ+
∑

∀k

[
−β16Z̈k+

+mkV̇ (Zk − Z) + K33 (θ + θ0) − K13 (Z + Z0) +
+K23 (Zk + Zk0) + c33kθ̇ − c13kŻ + c23kŻk

]
= Mg1 + Qθ .

(29.166)

Sixth equation: yaw rotation

Jzψ̈ − Jxzφ̈ + Js3V̇ φ +
∑

∀k

[
β14kφ̈k + mkV̇ β5kφk+

+2V̇ 1
Re

Jpwkφ + 2V 1
Rek

Jpwkφ̇ − 2V vyJpwk
1

R2
ek

]
= Qψ .

(29.167)

Seventh and ninth equations: translation of axles

mkZ̈k − β16kθ̈ + mkV̇ (θ + β3k)+
+ (K22k + Kpzk) (Zk + Zk0) − K12k (Z + Z0) +

+K23k (θ + θ0) + (c22k + cpzk) Żk − c12kŻ + c23kθ̇ = −gmk + Qzk .
(29.168)
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Eighth and tenth equations: rotation of axles

β13kφ̈k + β14kψ̈ − mkv̇yβ5k − 2V̇ 1
Rek

β20kδk − mkvxβ5kψ̇ − gmkβ23kφk+
+ (Kφk + Kpφk) φk − Kφkφ + (cφk + cpφk) φ̇k − cφkφ̇ = Qφk .

(29.169)

29.3.4 Sideslip angles of the wheels.

The sideslip angles of the wheels can be computed directly from the components
of the speed of the centers of the wheel-ground contact zone in the x∗y∗z frame.
In the case of a solid axle suspension, the position of the center of the contact
zone may be computed with the methods used for the center of mass of the axle,
by substituting the coordinates of the center of the contact area xCn, yCn, zCn

for those of the center of mass xGu, 0, zGu in Eq. (29.32):

(Cu−O’) = (H − O’) + R1r , (29.170)

where

r = R2

⎡
⎣R3

⎧⎨
⎩

xu + ζs
x

0
ζ

⎫⎬
⎭+RusR3k

⎧⎨
⎩

xCu

yCu

zCu

⎫⎬
⎭
⎤
⎦ . (29.171)

Obviously, vector xCu, yCu, zCu must be expressed in the same reference
frame in which the coordinates of the center of mass xGu, 0, zGu were expressed.
This procedure is approximate, because the deformations of the tire are ne-
glected, but the approximation is not greater than those already introduced in
the linearized model.

By introducing the linearized expression for ζ, it follows that

r =

⎧⎨
⎩

xCt + θzCu

yCu − φkzCu

zCt + Zk − Z − xCuθ

⎫⎬
⎭ , (29.172)

where

xCt = xu + xCu − zusxCu + θ0zCu ,
zCt = zCu + zusxCu − θ0xCu. (29.173)

In the case of independent suspensions, it follows (Eq. 29.113) that:

r = R2R3

⎧⎨
⎩

xCu + ζs
x

yCu + ζsy

zCu + ζ

⎫⎬
⎭ . (29.174)

By linearizing the expression for r and introducing the value of ζ, it follows
that

r =

⎧⎨
⎩

xCt + θzCu

yCu − φzCu

zCt + Zk − Z

⎫⎬
⎭ , (29.175)



29.3 Model with 10 degrees of freedom with locked controls 549

where
xCt = xCu + θ0zCu , zCt = zCu − θ0xCu. (29.176)

Note that the meaning of symbols xCu, yCu, zCu is different for the two
suspension types.

To express r with a single equation, that holds in all cases, it is possible to
write

r =

⎧⎨
⎩

xCt + θzCu

yCu − φz1 − φkz2

zCt + Zk − Z

⎫⎬
⎭ , (29.177)

where
z1 = 0 , z2 = zCu, (29.178)

in the case of solid axles, and

z1 = zCn , z2 = 0, (29.179)

in the case of independent suspensions
The velocity of the center of the contact area, expressed in the inertial frame,

is
VCN=

[
Ẋ Ẏ Ż

]T
+ R1ṙ + Ṙ1r . (29.180)

By premultiplying the velocity by RT
1 it is possible to obtain its value in

the x∗y∗z∗ frame. Remembering Eq. (29.41), it follows that

VCu= V + ṙ + ψ̇Sr , (29.181)

where the linearized expression for the derivative of r with respect to time is

ṙ =

⎧⎨
⎩

θ̇zCu

−φ̇z1 − φ̇kz2

Żk − Ż − xCuθ̇

⎫⎬
⎭ . (29.182)

As a first approximation, it is possible to assume that the position of the
center of the contact area of the ith tire Pi coincides with the projection on the
ground of the center of the wheel. The velocity of the center of the contact area
is then

VPi=VCu

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ =

⎧⎨
⎩

vx + ṙx − ψ̇ry

vy + ṙy + ψ̇rx

0

⎫⎬
⎭ . (29.183)

By performing the relevant computations and linearizing, it follows that

VPi=

⎧⎨
⎩

vx + θ̇zCu − ψ̇yCu

vy − φ̇z1 − φ̇kz2 + ψ̇xt

0

⎫⎬
⎭ . (29.184)
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Because the mid-plane of the wheel is rotated by the steering angle δk (pos-
sibly increased by (δk),φ (φ − φk) to account for roll steer) with respect to the
x∗z plane, the usual linearizations allow writing

αk =
vy

V
+ ψ̇

xtk

V
− φ̇

z1k

V
− φ̇k

z2k

V
− δk − (δk),φ (φ − φk) , (29.185)

where subscript k refers to the axle.
The two wheels of the same axle are then at the same sideslip angle, as was

the case for the rigid vehicle. Linearization again allows us to work in terms of
axles instead of single wheels. The terms in φ̇ and φ̇k are usually small and will
be neglected in the following equations.

The sideslip angles are then

αk =
vy

V
+ ψ̇

xtk

V
− δk − (δk),φ (φ − φk) . (29.186)

This expression coincides with that obtained for the rigid vehicle, to which
roll steer has been added.

29.3.5 Generalized forces

The generalized forces Qk to be introduced into the equations of motion include
only the forces due to tires, aerodynamic forces and possible forces that may be
applied to the vehicle.

The virtual displacement of the left (right) wheel of the kth axle has an
expression similar to Eq. (29.184):

{δsPkL(R)}x∗y∗z =

⎧⎨
⎩

δx∗ + δθzCu − δψyCu

δy∗ − δφz1 − δφkz2 + δψxt

0

⎫⎬
⎭ . (29.187)

If coupling between vertical and horizontal displacements of the suspension
must be accounted for, a term(

∂x

∂z

)
k

(δZ − xtδθ) = (xk),z(δZ − xtδθ)

must be added to the x∗ component of the virtual displacement.
If the forces exerted by the tire in the direction of the x∗ and y∗ axes are

Fx
∗ = Fxp cos [δi − (δi),φφ] − Fyp sin [δi − (δi),φφ] ,

Fy
∗ = Fxp sin [δi − (δi),φφ] + Fyp cos [δi − (δi),φφ] ,

and assuming that the longitudinal forces acting on the wheels of any axle are
equal (if they are not, it is not difficult to add a yawing torque about the z axis),
the expression of the virtual work is

δLk = δx∗Fx
∗ + δZ(xk),zFx

∗ + δθFx
∗ (zCu − (xk),zxt)+

+δy∗Fy
∗ − δφFy

∗z1k − δφkFy
∗z2k + δψ {Fy

∗xtk + Mz} .
(29.188)
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The generalized forces may be obtained by differentiating the virtual work
with respect to the virtual displacements δx∗, δy∗, δθ, etc. The first two general-
ized forces are true forces directed along axes x∗ and y∗ and a suitable rotation
matrix can be used to obtain the forces along the axes of the inertial frame.

Force Fypi
on the ith tire may be expressed as a linear function of the

sideslip and camber angles αk and

γ0k + (γk),φφ + (γk),φk
φk + (γk),z(Z − Zk) .

Terms γ0k and (γk),z(Z − Zk) for the two wheels of any axle cancel each
other in the linearized model, because they produce equal and opposite forces.
The side forces applied on each axle are then

Fypk = −Ckαk + Cγk [(γk),φφ + (γk),φkφk] , (29.189)

where both Ck and Cγk are referred to the whole axle.
Assume that aerodynamic forces are applied to the center of mass of the

sprung mass. The virtual displacement of such a point in the x∗y∗z frame is

{δsGs
}x∗y∗z =

⎧⎨
⎩

δx∗ + hδθ + hφδψ
δy∗ − hδφ + (c + hθ0 + hθ) δψ

δZ − cδθ

⎫⎬
⎭ . (29.190)

The virtual work of aerodynamic forces and moments is

δLa = Fxaδx∗ + Fyaδy∗ + FzaδZ+
+
(
M ′

xa − Fyah
)
δφ +

(
Fxah − Fzac + M ′

ya + M ′
zaφ

)
δθ+

+
[
Fxahφ + Fya (c + hθ0 + hθ) − M ′

ya(θ0 + θ − φ) + M ′
za

]
δψ .

(29.191)

It is also possible to directly obtain the generalized forces by differentiating
the virtual work with respect to the virtual displacements.

Because the aerodynamic forces are applied in the center of mass of the
sprung mass instead of the center of mass of the vehicle, the aerodynamic mo-
ments referred to the former must be substituted for those defined in the usual
way, that is, with reference to the center of mass of the vehicle:⎧⎨

⎩
Mxa = M ′

xa − Fyah ,
Mya = M ′

ya + Fxah ,
Mza = M ′

za − Fya (c + hθ0) .
(29.192)

Due to the linearization of the vehicle, force Fxa may be considered as a
constant, while Fya, Mxa and Mza may be considered as linear with angle βa (if
there is no side wind, with angle β), while Fza and Mya may be considered as
linear with angle θ. Neglecting small terms, it follows that

δLaer = Fxaδx∗ + ∂Fya

∂β βδy∗ + ∂Fza

∂θ θδZ+ (29.193)

+
(

∂Mxa

∂β − ∂Fya

∂β βh
)

δφ + ∂Mya

∂θ δθ +
(
Fxahφ + ∂Mza

∂β β
)

δψ .
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The vector of the generalized forces may be obtained by differentiating the
virtual work with respect to the virtual displacements, and eliminating the terms
containing generalized forces multiplied by variables of motion, which would lead
to nonlinear terms once the generalized forces are expressed as functions of the
same variables

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx1 + Fx2 + Fxa

∑
∀k {−Ckαk + Cγk [(γk),φφ + (γk),φkφk]} + ∂Fya

∂β β

−(xi1),zFx1 − (xi2),zFx2 + ∂Fza

∂θ θ + (Fza)θ=0

∑
∀k z1,k {−Ckαk + Cγk [(γk),φφ + (γk),φkφk]} − ∂Mxa

∂β − ∂Fya

∂β βh

Fx1 (zCn1 − (xi1),zxt1) + Fx2 (zCn2 − (xi2),zxt2) + ∂Mya

∂θ θ+
+

(
Mya

)
θ=0

∑
∀k

(
∂Mz1

∂α α1 + xwiA
{−Ckαk + Cγk [(γk),φφ + (γk),φkφk]}

)
+

+ Fxahφ + ∂Mza

∂β β

0

z2,1 {−C1α1 + Cγ1 [(γ1),φφ + (γ1),φ1φ1]}

0

z2,2 {−C2α2 + Cγ2 [(γ2),φφ + (γk),φ2φ2]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29.194)
The term

Fx1 [δ1 − (δ1),φ (φ − φ1)] + Fx2 [δ2 − (δ2),φφ (φ − φ2)]

should be included in the generalized force Qy. It results from the component
of the longitudinal force of the tire in the direction of the y axis of the vehicle
due to the steering angle. It is a small term, owing to the small size of the
longitudinal force Fx when compared to the cornering stiffness, and is usually
neglected. A similar term should also be included in Qψ, but is usually neglected
as well.

The vector of the generalized forces so obtained may be used directly in the
equation of motion, because it is referred to the pseudo-coordinates x∗, y∗ and
to coordinates Z, φ, θ, ψ, etc.
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29.3.6 Final form of the equations of motion

Remembering that the steering angles are small, it is easy to pass from the forces
expressed in a frame fixed to the vehicle to one fixed to the tires. The equations
of motion then take their form.

First equation: longitudinal translation

meV̇ + θ̈Js2 = Fx1 + Fx2 −
1
2
ρV 2SCx . (29.195)

Second equation: lateral translation

The sideslip angles, and then the cornering forces, may be easily expressed as
functions of the variables of motion. Assuming that the steering angles of the
axles are proportional to a reference value δ through constants K ′

k:

δk = K ′
kδ (29.196)

and adding a side force Fye applied to the vehicle, it follows that

Qy = Yvvy + Ywψ̇ + Yφφ + Yφ1φ1 + Yφ2φ2 + Yδδ + Fye , (29.197)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck + 1

2ρVaS(Cy),β ,
Yw = − 1

V

∑
∀k xwkCk ,

Yφ =
∑

∀k Ci(δk),φ +
∑

∀k Cγk(γk),φ ,
Yφk = Cγk(γk),φ ,
Yδ =

∑
∀k K ′

kCk .

(29.198)

The second equation then becomes

mv̇y − Js3φ̈ −
∑

∀k mkβ5kφ̈k = Yvvy + Yψ̇ψ̇+

+Yφφ +
∑

∀k Yφk
φk + Yδδ + Fye ,

(29.199)

where
Yψ̇ = Yw − meV . (29.200)

Third equation: vertical translation

By introducing the generalized forces into the third equation, it follows that

msZ̈ − mscθ̈ + ZżŻ + Zθ̇ θ̇ + Zż1Ż1 + Zż2Ż2 + ZzZ + Zθθ+

+Zz1Z1 + Zz2Z2 +
∑

∀k (K11kZ0 − K12kZ0k − K13θ0) = −msg+

+V̇
∑

∀k mkβ3k + 1
2ρV 2S(CZ)θ=0 − (xi1),zFx1 − (xi2),zFx2 ,

(29.201)
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where⎧⎪⎪⎨
⎪⎪⎩

Zż =
∑

∀k c11k , Zθ̇ = −
∑

∀k c13k ,
Zżk = −c12k , Zz =

∑
∀k K11k ,

Zθ = −
∑

∀k K13k − 1
2ρV 2S(Cz),θ − V̇

∑
∀k mk ,

Zzk = −K12k .

(29.202)

Fourth equation: roll rotation

Operating with the same methods used for the second equation, and linearizing
the kinematic equations, the generalized forces may be written as functions of the
variables of motion. The final form of the fourth equation can thus be obtained,

Jxφ̈ − Jxzψ̈ − Js3v̇y = Lvvy + Lψ̇ψ̇ + Lφ̇φ̇ + Lφφ+

+
∑

∀k L /φk
φ̇k +

∑
∀k Lφkφk + Lδδ ,

(29.203)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv = − 1
2ρVaS [h(Cy),β + t(CMx

),β ] − 1
V

∑
∀k Ckz1k ,

Lψ̇ = − 1
V

∑
∀k xwkz1kCk +

∑
∀k 2V 1

Rek
Jpwk + Js3V ,

Lφ̇ = −
∑

∀k cφk ,
Lφ = Mg3 −

∑
∀k [Kφk + Ck(δk),φz1k + Cγk(γk),φz1k] ,

Lφ̇k = cφk ,
Lφk = Kφk − Cγk(γk),φkz1k + Ck(δk),φz1k ,
Lδ =

∑
∀k

(
K ′

kCkz1k + 2 V̇
Re

β21

)
.

(29.204)

Fifth equation: pitch rotation

Jy θ̈ − mscZ̈ + V̇ Js2 −
∑

∀k β16kZ̈k + MżŻ + Mθ̇ θ̇ +
∑

∀k MżkŻk+

+MzZ + Mθθ +
∑

∀k MzkZu + K33kθ0 − K13kZ0 + K23kZk0 = Mg1+

+
(
Myaer

)
θ=0

−
∑

∀k Fx1 (zCu1 − (xi1),zxt1) + Fx2 (zCu2 − (xi2),zxt2) ,
(29.205)

where⎧⎪⎪⎨
⎪⎪⎩

Mż = Zθ̇ = −
∑

∀k c13k , Mθ̇ =
∑

∀k c33k ,
Mżk = c23k , Mz = −

∑
∀k K13k − mkV̇ ,

Mθ = − 1
2ρV 2

a S(C ′
My

),θ − Mg2 +
∑

∀k K33k ,
Mzk = K23k + mkV̇ .

(29.206)

Sixth equation: yaw rotation

Jzψ̈ − Jxzφ̈ +
∑

∀k β14kφ̈k = Nvvy + Nψ̇ψ̇ + Nφ̇φ̇+

+Nφφ +
∑

∀k Nφkφk + Nδδ + Mze ,
(29.207)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = + 1
2ρVaSl(C ′

Mz
),β + 1

V

∑
∀k

[
−xwkCk + (Mzk),α + 2Jpwk

(
V
Re

)2
]

,

Nψ̇ = 1
V

∑
∀k

[
x2

wkCk + xwk(Mzk
),α

]
,

Nφ̇ = −2V
∑

∀k
1

Re
Jpwk ,

Nφ = −Js3V̇ − 1
2ρV 2ShCx +

∑
∀k [xwkCk(δk),φ + xwkCγk(γk),φ

−(Mzk),α(δk),φ − 2V̇ 1
Re

Jpwk

]
,

Nφk = xwkCγk(γk),φ − mkV̇ β5k − xwkCk(δk),φ + (Mzk
),α(δk),φ ,

Nδ =
∑

∀k [xwkK ′
kCk − (Mzk),α] .

(29.208)

Seventh and ninth equations: translations of axles

mkZ̈k − β16kθ̈ + ZkzkZk + ZzkZ + Mzkθ+

+ZkżkŻk + ZżkŻ + Mżkθ̇ + (K22k + Kpzk) Zk0+

−K12kZ0 + K23kθ0 = −mkV̇ β3k − gmk ,

(29.209)

where

Zkżk = c22k + cpzk , Zkzk = K22k + Kpzk (29.210)

and the other coefficients have already been defined.

Eighth and tenth equation: rotation of axles

β13kφ̈k + β14kψ̈ − mukv̇yβ5k =

= Lkββ + Lkψ̇ψ̇ + Lkφφ + Lkφ̇φ̇ + Lkφkφi + Lkφ̇kφ̇i + Lkδδ ,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lkv = − 1
V z2kCk ,

Lkψ̇ = +mkV β5k − 1
V xwkz2kCk ,

Lkφ̇ = Lφ̇k ,
Lkφ̇k = − (cφk + cpφk) ,
Lkφ = +Kφk − z2k [Ck(δk),φ + Cγk(γk),φ] ,
Lkφk = +gmkβ23k − (Kφk + Kpφk) − z2k [Cγk(γk),φ − Ck(δk),φ] ,
Lkδ = 2K ′

kV̇ 1
Rek

β20k .

(29.211)



556 29. MULTIBODY MODELLING

29.3.7 Handling-comfort uncoupling

The 10 equations of motion (6 + 2n equations in the generic case of a vehicle
with n axles) obtained in the previous section constitute a set of linear second-
order differential equations, even if the order of such a set is only 17 (9 + 4n)
because three of the unknowns, namely x∗, y∗ and ψ, are present only with their
derivatives V , vy and ψ̇.

However, a detailed examination of such equations shows clearly that, if the
speed V of the vehicle (which in the linearized model may be confused with its
component vx along the x∗ axis) is a known function of time, the equations form
two completely uncoupled sets of 5 (3 + n) equations each.

The first set contains only the generalized coordinates y∗, ψ, φ and φk (y∗ is
not a true but a pseudo-coordinate): as a consequence, it deals with the lateral
behavior of the vehicle, or, as is usually said, its handling.

The second set contains the generalized coordinates x∗, Z, θ and Zk, dealing
with the “suspension motion” of the vehicle − its ride behavior. This set can be
further uncoupled by separating the first equation, that regarding x∗ coordinate
(i.e. dealing with the longitudinal dynamics of the vehicle), and the following
(2 + n) equations containing coordinates Z, θ and Zk which allow ride comfort
in a proper sense to be studied.

This uncoupling is an interesting result, even if it is strictly linked with a
number of assumptions and, as a consequence, becomes inapplicable if one of
them is dropped. The first assumption is the existence of a plane of symmetry,
the xz plane. Usually the lack of inertial symmetry of the structure and the
differences between the characteristics of the individual springs and shock ab-
sorbers located at opposite sides of the vehicle are small enough to be neglected.
However, it can happen that the payload of the vehicle is placed asymmetrically,
leading to a position of the centre of mass outside the symmetry plane and to
non-vanishing moments of inertia Jxy and Jyz.

A second assumption is that of a perfect linearity of the behavior of the
springs and shock absorbers. The linearity of the elastic behavior of springs and
tires is an acceptable assumption in the motion about any equilibrium position,
provided that its amplitude is small. The nonlinearity of the shock absorbers,
on the other hand, cannot in principle be neglected even in the motion “in
the small” if their force-velocity characteristic is unsymmetrical, because in the
jounce and rebound movements they act with different damping coefficients even
if the amplitude of the motion tends to zero. This issue has already been dealt
with in detail in Part IV.

A third assumption regards angles β, αk, θ0, θ, φ and φk, which must be
small enough to allow the linearization of their trigonometric functions. This
assumption holds only for small displacements from the equilibrium position and
also depends on the characteristics of the vehicle: The harder the suspensions,
the more extended the range in which this assumption holds. In general, the
mentioned angles are small enough in all normal driving conditions, except for
vehicles with two wheels that may operate with large roll angles.
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The linearization of the tire behavior in terms of the generation of lon-
gitudinal and cornering forces and aligning torques is not strictly required for
uncoupling: Even if nonlinear laws Fy(α), Fy(γ), Mz(α), etc. are introduced into
the equations of motion, the two sets of equations for handling and ride would
remain uncoupled, although nonlinear. This last statement is important, because
the linear model for the behavior of the tires holds only for values of angles α and
γ far smaller than those allowing the trigonometric functions to be linearized.

The kinetic energy linked with wheel rotation was taken into account in
the model, with gyroscopic torques due to the wheels included in the equations.
If their plane of rotation is close to the xz plane, this effect does not prevent
uncoupling.

Some assumptions have been made on the modelling of the suspensions
that are better suited for solid axles than for independent suspensions. While
unavoidable kinematic errors cannot be accounted for in this way, it will be
shown that this does not affect uncoupling.

The interaction between cornering forces and loads in the x and z direction
on the tires should actually couple all equations. If the same approximated ap-
proach used for rigid vehicles is also adopted in the present case, however, it is
possible to resort to uncoupled equations.

The uncoupled model, even if it represents only a first approximation, is
important for two reasons. First, it sheds light on the actual behavior of road
vehicles and gives a theoretical foundation to the practice of using separate
approximate models for the study of handling and ride characteristics. Second,
simple linearized models, allowing closed form solutions to be obtained, are well
suited for optimization and parametric studies.

Clearly, there is no need to uncouple the equations. Comprehensive, detailed
nonlinear models can be used if numerical simulations are performed. The limit
in this case may well be the unavailability of good estimates of the numerical
values of many parameters that must be entered into the equations.

29.3.8 Handling of a vehicle on elastic suspensions

The explicit formulation of the mathematical model for the handling of a vehicle
with two axles is then

M1q̈1 + C1q̇1 + K1q1 = F1 , (29.212)

where
q1 =

[
y∗ ψ φ φ1 φ2

]T
,

M1 =

⎡
⎢⎢⎢⎢⎣

m 0 −Js3 −m1β5,1 −m2β5,2

Jz −Jxz β14,1 β14,2

Jx 0 0
β13,1 0

symm. β13,2

⎤
⎥⎥⎥⎥⎦ ,
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C1 =

⎡
⎢⎢⎢⎢⎢⎣

−Yv −Yψ̇ 0 0 0
−Nv −Nψ̇ −Nφ̇ 0 0
−Lv −Lψ̇ −Lφ̇ −Lφ̇1

−Lφ̇2

−L1v −L1ψ̇ −Lφ̇1
−L1φ̇1 0

−L2v −L2ψ̇ −Lφ̇2
0 −L2φ̇2

⎤
⎥⎥⎥⎥⎥⎦

,

K1 =

⎡
⎢⎢⎢⎢⎣

0 0 −Yφ −Yφ1
−Yφ2

0 0 −Nφ −Nφ1
−Nφ2

0 0 −Lφ −Lφ1
−Lφ2

0 0 −L1φ −L1φ1 0
0 0 −L2φ 0 −L1φ2

⎤
⎥⎥⎥⎥⎦ ,

F1 = δ
[

Yδ Nδ Lδ L1δ L2δ

]T +
[

Fye
Mze

0 0 0
]T

.

As already stated, coordinates y∗ and ψ are present only with their deriva-
tives7: The order of the set of differential equations is then 8 instead of 10.

The mass matrix is symmetrical, as can be readily predicted. The other
two matrices are not symmetrical; for instance, the damping matrix C1 contains
symmetrical terms, like Lφ̇1

and Lφ̇2
that are linked with the roll damping of

the axles, and skew symmetric terms, like

2V
1

Rek
Jpwk ,

due to the gyroscopic moment of the wheels of each axle, contained in Lψ̇ and,
with opposite sign, in Nφ̇. The other terms in Jpwk are not due to gyroscopic
effects but wheel acceleration (terms in Lδ and Lkδ) or the equivalent mass (term
in Nv), and thus have no particular symmetry properties. Other terms due to
generalized forces, such as the terms present in the stiffness matrix, are neither
symmetrical nor skew symmetrical.

Even if it is possible to separate the symmetrical and the skew-symmetrical
parts of the various matrices (so defining a gyroscopic and a circulatory matrix),
the advantages so obtained do not justify the work.

If a state-space approach is used (Eq. (A.5)), by introducing the state vari-
ables p = φ̇, p1 = φ̇1, p2 = φ̇2 and r = ψ̇, the relevant vectors and matrices
are:
– State vector

z =
[

v r p p1 p2 φ φ1 φ2

]T
, (29.213)

– Dynamic matrix

A =

⎡
⎢⎢⎣

−M−1
1 C1 −M−1

1 K∗
1⎡

⎣ 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎦

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

⎤
⎥⎥⎦ , (29.214)

7They have no physical meaning.
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where K∗
1 is matrix K1 with the first two columns cancelled.

– input gain matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−M−1
1

⎡
⎢⎢⎢⎢⎣

Yδ 1 0
Nδ 0 1
Lδ 0 0
L1δ

0 0
L2δ

0 0

⎤
⎥⎥⎥⎥⎦

[0]3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (29.215)

– input vector

u =
[

δ Fye
Mze

]T
. (29.216)

This approach may be used for the study of the stability of the vehicle or for
computing its response to the various inputs, as previously seen for rigid vehicle
models. This model is only marginally more complex if numerical solutions are
searched.

Even if the complexity of the model is not a factor, it is interesting to
perform a simplification allowing one to reduce its size without sacrificing its ap-
plicability to actual problems. Because the stiffness of the tires in the z direction
is much higher than that of the suspensions, their compliance becomes impor-
tant only in high frequency motions, much higher than the frequencies involved
in the handling of the vehicle. As a consequence, if the compliance of the tires
is neglected, which amounts to stating that φ1 and φ2 and their derivatives are
vanishingly small, the model reduces to a set of three equations (four first-order
equations in the state-space approach) that retains most of the features of the
complete, five equation set.

Because yawing moments due to load shift were not included in the present
model, the three equations of motion may be obtained directly from those of the
previous model by stating

φ1 = φ2 = 0 .

The sideslip angle β is often used in handling models instead of the lat-
eral velocity vy as a variable of motion, and the yaw velocity is indicated as r.
Remembering that

vy = V β , ψ̇ = r ,

it follows that
⎧⎪⎪⎨
⎪⎪⎩

mV β̇ − Js3φ̈ =
(
V Yv − mV̇

)
β + Yψ̇r + Yφφ + Yδδ + Fye

,

Jz ṙ − Jxzφ̈ = NvV β + Nψ̇r + Nφ̇φ̇ + Nφφ + Nδδ + Mze ,

Jxφ̈ − Jxz ṙ − Js3V β̇ =
(
LvV + Js3V̇

)
β + Lψ̇r + Lφ̇φ̇ + Lφφ + Lδδ ,

(29.217)
where terms YvV , NvV and LvV are often written as Yβ , Nβ and Lβ .
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If the terms in V̇ are dropped, the same set of equations frequently de-
scribed in the literature8 is obtained. There is, however, a difference: The model
described here is obtained from the complete model of the vehicle with elastic
suspensions through uncoupling and controlled simplifications, while that model
is obtained through a number of more or less arbitrary assumptions. Moreover,
this model accounts for the rotation of the wheels.

The study of either the stability or the response to a steering input or
external force or moment is straightforward and follows the same lines seen for
the rigid vehicle. Here the presence of an equation containing the first and second
derivative of a generalized coordinate φ together with the coordinate itself may
induce an oscillatory behavior. If roll oscillations are strongly coupled with those
of the other variables of the motion (namely β and r), as may be caused by roll
steer, the overall behavior may become strongly oscillatory and dynamic stability
may be decreased.

The steady-state response of the vehicle is easily obtained from the following
set of algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m
V 2

R
= Yββ + Yψ̇

V

R
+ Yφφ + Yδδ + Fye

,

0 = Nββ + Nψ̇
V
R + Nφφ + Nδδ + Mze

,

−Js3
V 2

R
= Lββ + Lψ̇

V

R
+ Lφφ + Lδδ ,

(29.218)

where the steady-state curvature of the trajectory

1
R

=
r

V

has been explicitly introduced.
By solving equations (29.218) in 1/R and neglecting external forces, the

path curvature gain 1/Rδ is readily obtained,

1
Rδ

=
DC − AE

V (BC − AF )
, (29.219)

where

A = NβLφ − NφLβ , B = Js3V Nφ − Nψ̇Lφ + NφLψ̇,

C = YβNφ − YφNβ , D = NδLφ − NφLδ,
E = YδNφ − YφNδ, F = mV Nφ − Yψ̇Nφ + YφNψ̇ .

8See for example W. Steeds, Mechanics of Road Vehicles, ILIFFE & Sons, London, 1960.
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29.3.9 Ride comfort

The explicit formulation of the mathematical model for ride comfort of a vehicle
with two axles is

M2q̈2 + C2q̇2 + K2q2 + K2stq2st = F2 + F2st , (29.220)

where
q2 =

[
x∗ Z θ Z1 Z2

]T
,

q2st =
[

0 Z0 θ0 Z10 Z20

]T
,

M2 =

⎡
⎢⎢⎢⎢⎣

mat 0 Js2 0 0
ms −msc 0 0

Jy −β16,1 −β16,2

m1 0
symm. m2

⎤
⎥⎥⎥⎥⎦ ,

C2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 Zż Zθ̇ Zż1 Zż2

0 Mθ̇ Mż1 Mż2

0 Z1ż1 0
0 symm. Z2ż2

⎤
⎥⎥⎥⎥⎦ ,

K2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 Zz Zθ Zz1 Zz2

0 Mz Mθ Mz1 Mz2

0 Zz1 Mz1 Z1z1 0
0 Zz2 Mz3 0 Z2z2

⎤
⎥⎥⎥⎥⎦

Kst =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 K11 K13 −K12,1 −K12,2

0 K33 K23,1 K23,2

0 K22,1 0
0 symm. K22,2

⎤
⎥⎥⎥⎥⎦ ,

F2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fx1 + Fx2 − 1
2ρV 2SCx

1
2ρV 2S(CZ)θ=0 + V̇

∑
∀k [mkβ3k − (xik),zFxk](

Myaer

)
θ=0

−
∑

∀k Fxk (zCuk − (xik),zxtk)
−m1V̇ β3,1

−m2V̇ β3,2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

F2st =
[

0 −msg Mg1 −gm1 −gm2

]T
.

In the reference condition, all variables of motion included in vector q2

vanish. It then follows that

K2stq2st = F2st . (29.221)
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Equation (29.221) allows the values of Z0, θ0, etc., − the static equilibrium
condition − to be computed. Although it is arbitrary to use the linearized equa-
tion for computing the static equilibrium condition, because Z0 and Zk0 are not,
generally, small quantities, this approximation influences the reference condition
so obtained but is immaterial for the study of the small oscillations about that
condition and thus does not detract from the dynamic study in the small here
shown.

By introducing Eq. (29.221) into Eq. (29.220), it follows that

M2q̈2 + C2q̇2 + K2q2 = F2 . (29.222)

The mass and damping matrices are symmetrical. The stiffness matrix is
symmetrical except for the terms in position 23 and 32: in Zθ a term of aerody-
namic origin is present, due to changes to aerodynamic lift caused by the pitch
angle that is absent from Mz. A similar term in Mz would denote a change in
the pitching moment due to vertical displacements that does not exist.

The first equation of the second set of five differential equations, that related
to the longitudinal dynamics, is weakly coupled with the others and may be
written in the form

V̇ =
Jsθ̈ +

∑
∀i Fxi + 1

2ρV 2
a SCx

m
. (29.223)

By introducing Eq. (29.223) into the other equations, the following set of
four equations describing the suspension motions of a vehicle with two axles is
obtained,

M3q̈3 + C3q̇3 + K3q3 = F3 , (29.224)

where
q3 =

[
Z θ Z1 Z2

]T
,

M3 =

⎡
⎢⎢⎢⎢⎣

ms −msc 0 0

Jy − J2
s2

mat
0 0

m1 0
symm. m2

⎤
⎥⎥⎥⎥⎦ ,

matrices C3 and K3 coincide with matrices C2 and K2 without the first row
and column, and

F3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ρV 2S(CZ)θ=0 + V̇

∑
∀k [mkβ3k − (xik),zFxk]

1
2ρV 2

a S
[
− Js2

mat
Cx + l(CMy

)θ0

]
−

∑
∀k Fxk

(
zCuk − (xik),zxtk + Js2

mat

)
−m1V̇ β3,1

−m2V̇ β3,2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The expression for the generalized forces F3 was obtained assuming that the
reference configuration corresponds to the static equilibrium position with the
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vehicle at standstill and with no force Fxi. In such a condition, all generalized
coordinates are equal to zero, because they were defined as displacements from
the same condition.

The equations were written with reference to coordinate Z, i.e., to the
changes of the vertical displacement of point H in Fig. 29.3, which results in
an inertial coupling. To study ride comfort it is better to refer to the vertical dis-
placements of point H′, so that the equations of motion have no inertial coupling,
i.e. the mass matrix is diagonal. By introducing the coordinate

zs = Z − c(θ + θ0)

of point H′, the mass matrix becomes

M3 =

⎡
⎢⎢⎣

ms 0 0 0
J∗

y 0 0
m1 0

symm. m2

⎤
⎥⎥⎦ , (29.225)

where

J∗
y = Jy − c2ms −

J2
s2

me
.

The damping and stiffness matrices are unchanged, provided that the dis-
tances xi of wheels, springs and dampers are substituted by xi − c. All matrices,
except the stiffness matrix, remain symmetrical.

If the aerodynamic term causing the lack of symmetry of the stiffness matrix
is neglected, which introduces only a small error because of the small size of the
term, the system may be sketched as in Fig. 29.8a. The vehicle is modelled as a
beam with elastic and damped supports, connected to the ground through the
unsprung masses.

The quasi-static equilibrium attitude of the vehicle, which is different from
the reference position because it takes into account both longitudinal forces on
the tires and aerodynamic forces, can be immediately obtained from the steady-
state solution of Eq. (29.224). Even if the acceleration of the vehicle does not
appear explicitly in the equations, it is accounted for through forces Fxi.

The dynamic response of the vehicle to motion on uneven road is easily
computed by assuming that points A and B move in a vertical direction with
laws

hA(t) = h(V t) and hB(t) = h(V t + l) ,

where h(x) is a function expressing the road profile. This amounts to exciting
the two masses m1 and m2 with two forces equal to

Kpz1hA(t) + cpz1 ḣA(t) and Kpz2hB(t + τ) + cpz2ḣB(t + τ)

respectively, where τ = V/l is the delay due to the wheelbase.
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FIGURE 29.8. (a) Model with four degrees of freedom for the study of ride comfort;
(b) model in which the sprung mass is simulated by two separate masses. Lengths
a and b are the same as for the rigid vehicle, a = x1 and b = −x2. Note that the
longitudinal positions of the springs and shock absorbers are assumed to be coincident
(xi = xmi = xai)..

29.3.10 Conclusions

The linearized model with 10 degrees of freedom for a vehicle with two axles, or
more generally the model with 6 + 2n degrees of freedom for a vehicle with n
axles, splits into three separate models, namely

• Model for longitudinal behavior, or performance model. The model includes
a single degree of freedom, coordinate x∗ (or better the forward speed V ,
because on a curved trajectory x∗ is not a true coordinate), and allows
the relationship between the longitudinal forces at the wheel-road contact
and the vehicle speed to be computed, along with acceleration and braking
performance. A detailed model of the tires may be introduced if their lon-
gitudinal slip is accounted for, as well as a model of the transmission and
possibly of the engine. A model of the driver, intended as controller of the
longitudinal motion through the accelerator and brake pedals, may also be
introduced. Note that, owing to linearization, the longitudinal behavior on
a curved trajectory coincides with that on straight road and thus with that
studied in Chapter 23.

• Model for lateral behavior, or handling model. This model includes the
degrees of freedom of lateral displacement (or better, lateral velocity, for
the reasons cited above) and the yaw angle, which are the same degrees of
freedom seen for the study of the handling of a rigid vehicle, plus the degrees
of freedom related to the rolling of the vehicle body and of the axles. In
such a model the input is the steering angle, but this can be easily modified
to study the motion with free controls, possibly introducing a driver model
as a steering controller as well. It has been assumed that the variations of
the steering angle are slow enough to neglect its derivative δ̇. The presence
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of gyroscopic torques has no effect on the uncoupling between handling
and comfort models, because a mass rotating about the y axis couples yaw
and roll motions, both belonging to this model.

• Model for suspension motions, or ride comfort model. This model includes
the degrees of freedom for vertical motion of the body (heave motion)
and the axles, plus the pitch angle. Uncoupling between the longitudinal
and comfort model is not complete, as shown by the pitching motions due
to braking (dive) or driving (lift or squat). In the present chapter, the
changes of longitudinal acceleration have been assumed to occur slowly.
The changes of pitch angle may therefore be considered as a quasi static
phenomenon, introduced into the equations by the longitudinal tire-road
contact forces. In cases where longitudinal forces change quickly, ride com-
fort and longitudinal behavior (as well as transmission behavior) must be
studied jointly.

29.4 MODELS OF DEFORMABLE VEHICLES

The assumption that the vehicle body can be considered as a rigid body is clearly
an approximation that may be, in some cases, quite rough. This is particularly
true of industrial vehicles and some passenger vehicles, such as open cars, whose
stiffness is lower than usual.

If the body of the vehicle is not stiff, the position of any point P in the same
inertial reference frame OXiYiZi shown in Fig. 29.3 and already used to study
the model based on rigid bodies, may be written in the form

(P−O’) = (Pu−O’) + sP , (29.226)

where (Pu−O’) is the position of point P obtained by neglecting the deformation
of the body and

sP = [ux, uy, uz]TP , (29.227)

is the displacement function of time, due to compliance.
The position of P in undeflected conditions may be expressed by an equation

similar to Eq. (31.55), and then

(P−O’) = (H−O’) + R (rP + sP) , (29.228)

where vector
rP = [x, y, z]TP , (29.229)

is the vector, independent from time, leading from point H to point P, expressed
in the reference frame of the sprung mass.

The velocity of point P is then

VP =
[

Ẋ Ẏ Ż
]T

+ Ṙ (rP + sP) + RṡP (29.230)
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or, by introducing the velocity V in the reference frame x∗y∗z:

VP = R1V + Ṙ (rP + sP) + RṡP . (29.231)

By remembering that pitch and roll angles are small, and introducing matrix

R23 = R2R3 ≈

⎡
⎣ 1 0 θ0 + θ

0 1 −φ
−θ0 − θ φ 1

⎤
⎦ ,

it is possible to write

VP = R1

[
V +

(
Ṙ23 + ψ̇SR23

)
(rP + sP) + R23ṡP

]
, (29.232)

where

S ≈

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ .

The kinetic energy of the infinitesimal element of mass at coordinates x, y, z
is

dT = 1
2dm

[
VT V + rT

P

(
Ṙ23 + ψ̇SR23

)T (
Ṙ23 + ψ̇SR23

)
rP+

+2VT
(
Ṙ23 + ψ̇SR23

)
rP + sT

P

(
Ṙ23 + ψ̇SR23

)T (
Ṙ23 + ψ̇SR23

)
sP+

+2VT
(
Ṙ23 + ψ̇SR23

)
sP + ṡT

PRT
23R23ṡP + 2VT R23ṡP+

+2ṡT
PRT

23

(
Ṙ23 + ψ̇SR23

)
(rP + sP)

]
.

(29.233)
The sum of the first three terms (those not containing the deformation

sP or its derivatives) is the kinetic energy dTR of the same mass element in a
rigid motion. The other terms may be greatly simplified if the products of more
than two small quantities are neglected. Because the deformations sP and their
derivatives are small quantities, it follows that

dT = dTR + 1
2dm

(
u̇2

x + u̇2
y + u̇2

z

)
+ dm vx

[
θ̇uz − ψ̇uy+

+u̇x + (θ + θo) u̇z] + dm u̇x

(
θ̇z−ψ̇y

)
+

+dm u̇y

(
vy − φ̇z + ψ̇x

)
+ dm u̇z

(
vz − θ̇x + φ̇y

)
.

(29.234)

The deformation of the sprung mass can be expressed in terms of its modal
coordinates, i.e., as a linear combination of the eigenfunctions of the undamped
system. Note that this remains true even if the sprung mass is damped and even
for nonlinear systems. Because the sprung mass has a plane of symmetry (in
the present case the xz plane), its modes may be subdivided into symmetrical
and skew-symmetrical modes, designated by subscripts s and a in the following
equations.
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The displacements sP = [ux, uy, uz]T of point P(x, y, z) can thus be ex-
pressed as ⎧⎨

⎩
ux

uy

uz

⎫⎬
⎭ = Qs(x, y, z)ηs(t) + Qa(x, y, z)ηa(t) , (29.235)

where Qi(x, y, z) are matrices containing the eigenfunctions while ηi(t) are vec-
tors containing the modal coordinates. Equation (29.235) is exact only if an
infinity of eigenfunctions and modal coordinates are considered; however, a very
good approximation is usually obtained by taking into account a small number
of modes, particularly if the system is linear and lightly damped. The modes
considered in the equation are those of the free structure; the rigid-body modes
need not be considered because they have already been included in the rigid-body
analysis already performed.

Instead of using the eigenfunctions, a set of arbitrary functions of the space
coordinates may be used, as is common in the assumed modes methods for
structural analysis; in this case, however, the number of coordinates needed to
obtain a good approximation is higher and depends on the choice of the arbitrary
functions: Moreover, the mass and stiffness matrices are not diagonal, as they
are when using the eigenfunctions.

Let A and B be two points located in symmetrical positions with respect to
the xz plane. It follows that

uxA
= uxB

, uyA
= −uyB

, uzA
= uzB

for symmetrical modes and

uxA
= −uxB

, uyA
= uyB

, uzA
= −uzB

for skew-symmetrical ones. As a consequence of symmetry, some relevant inte-
grals extended to the whole unsprung mass may be written in a much simplified
form ∫

m

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

A
0
C

⎫⎬
⎭ηs +

⎧⎨
⎩

0
B
0

⎫⎬
⎭ηa ,

∫
m

x

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

N
0
F

⎫⎬
⎭ηs +

⎧⎨
⎩

0
D
0

⎫⎬
⎭ηa ,

∫
m

y

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

0
H
0

⎫⎬
⎭ηs +

⎧⎨
⎩

E
0
G

⎫⎬
⎭ηa ,

∫
m

z

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

I
0
L

⎫⎬
⎭ηs +

⎧⎨
⎩

0
M
0

⎫⎬
⎭ηa ,

∫
m

(
u2

x + u2
y + u2

z

)
dm = ηT

s Msηs + ηT
a Maηa ,

(29.236)
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where the diagonal matrices Ms and Ma are the modal mass matrices for sym-
metrical and skew-symmetrical modes, and where matrices from A to N are row
matrices whose size is 1×n, where n is the number of modal coordinates (either
symmetrical or skew-symmetrical) that are considered.

By integrating Eq. (29.234), the kinetic energy of the sprung mass reduces
to

T = TR + 1
2 η̇T

s Msη̇s + 1
2 η̇T

a Maη̇a + ψ̇ (D − E) η̇a + θ̇ (I − F) η̇s+

+φ̇ (G −M) η̇a + V
[
Aη̇s + θ̇Cηs + (θ + θ0) Cη̇s − ψ̇Bηa

]
+vyBη̇a+vzCη̇s .

(29.237)
The gravitational potential energy of the sprung mass may be expressed in

the form

UgS = g

∫
m

Zpdm = g

∫
m

eT
3

[
(H−O’) + R (rP + sP)

]
dm . (29.238)

It then follows that

UgS = g (Z + Z0) ms + g

∫
m

eT
3 R23rPdm + g

∫
m

eT
3 R23sPdm . (29.239)

The first two terms are the potential energy UgR of the rigid body computed
above. By introducing the linearized expression of matrix R23 it follows that

UgS = UgR + g

∫
m

[− (θ + θ0) ux + φuy + uz] dm , (29.240)

or, by introducing the modal coordinates to express the deformation of the vehicle
body,

UgS = UgR + g [− (θ + θ0)Aηs + φBηa + Cηs] .

The deformation potential energy of the springs of the kth suspension is still
expressed by Eq. (29.79), to which the terms linked with the deformation modes
are added. Assuming that the points of attachment of the springs of the left
(right) kth suspension are xi, ±yi and zi, it follows that

Umk =
1
2
Kζ (ζ + ζ0 − Qzskηs)

2 +
1
2
Kφ (φ − φk − Qzakηa)2 , (29.241)

where Qzsk and Qzak are the parts of the matrices of the eigenfunctions for
symmetrical and skew-symmetrical modes linked to uz computed at the point of
coordinates xi, yi, zi.

The potential energy of the kth suspension is then

Umk = UmR + 1
2ηT

s K44ηs + K14 (Z + Z0) ηs + K24 (Zk + Zk0) ηs+

+K34 (θ + θ0) ηs + 1
2KφηT

a QT
zakQzakηa − KφφQzakηa + KφφkQzakηa ,

(29.242)



29.4 Models of deformable vehicles 569

where K44 is a square matrix of size ns × ns (where ns is the number of sym-
metrical modes considered), while K14, K24 and K34 are row matrices of size
1 × ns.

The deformation potential energy of the tires of the kth suspension is ex-
pressed by Eq. (29.81) without any change. The potential energy due to the
deformation of the sprung mass is obviously

UR =
1
2
ηT

s Ksηs +
1
2
ηT

a Kaηa , (29.243)

where Ks and Ka are the modal stiffness matrices.
In a similar way, the Raleigh dissipation function of the shock absorbers of

the kth suspension is

Fak = FakR + 1
2 η̇T

s c44η̇s + c14Żη̇s + c24Żkη̇s + c34θ̇η̇s+

+ 1
2cφη̇T

a QT
zakaQzakη̇a − cφφ̇Qzakaη̇a + cφφ̇kQzakaη̇a ,

(29.244)

where FakR is the function seen before for the rigid vehicle, matrices cij are
similar to matrices Kij seen above and Qzaka is similar to Qzak, but referred to
the points where the shock absorbers are attached.

The Raleigh dissipation function for the tires (Eq. 29.84) is unchanged, while
that linked with deformation modes of the sprung mass is

FR =
1
2
η̇T

s Csη̇s +
1
2
η̇T

a Caη̇a , (29.245)

where Cs and Ca are the modal damping matrices. Note that the last expression
is just an approximation, because modal damping matrices are not diagonal and
may couple the various modes. Other approximations are linked to the way the
presence of suspensions has been accounted for, but such approximations are
similar to those already seen for the other linearized models.

If the virtual work of the external forces is computed neglecting displace-
ments due to deformation modes, the expressions of the generalized forces are
the same as those used for models based on rigid bodies. Such an assumption
is well suited to the present linearized model, where the exact kinematics of
suspensions has not been taken into account.

A detailed inspection of the expressions of the kinetic and potential energies
and of the dissipation function shows that, if the forward velocity V is assumed
to be a known function, the equations of motion divide into two separate sets,
exactly as they do when the compliance of the sprung mass is neglected.

29.4.1 Handling model

A first set of equations contains generalized coordinates y∗, ψ, φ, φi and ηa.
If the vehicle has n axles and na skew-symmetrical modes are considered, their
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number is 3+n+na. The differential equations modelling the lateral behavior are

[
M1 MT

a1

Ma1 Ma

]{
q̈1

η̈a

}
+

[
C1 CT

a1

Ca1 Caa

]{
q̇1

η̇a

}
+

+
[

K1 K1a

Ka1 Kaa

]{
q1

ηa

}
=

{
F1

0

}
,

(29.246)

where q1, M1, C1, K1 and F1 are the same vectors and matrices seen in Eq.
(31.124), and

Ma1 =
[
BT DT − ET GT −MT 0 0

]
,

Ca1 =
[

0 −V BT −
∑

∀k cφkQT
zaka cφ1QT

za1a cφ2QT
za2a

]
,

Caa = Ca +
∑
∀k

ckQT
zakaQzaka ,

K1a =
[

0 −V̇ B gB −
∑

∀k kφkQzak kφ1Qza1 kφ2Qza2

]T
,

Ka1 =
[

0 0 gBT −
∑

∀k kφkQT
zak kφ1QT

za1 kφ2QT
za2

]
,

Kaa = Ka +
∑
∀k

kφkQT
zakQzak .

The expressions of the various matrices refer to a two-axle vehicle, but they
may be easily generalized.

As in the previous models, coordinates y∗ and ψ are present only with their
derivatives: the order of the differential set of equations is then 4 + 2n + 2na.

29.4.2 Ride comfort model

The second set of equations contains generalized coordinates x∗, Z, θ, Zi and
ηs. If ns symmetrical modes are included in the model, they are 3 + n + ns.

In this case the first equation, that describing longitudinal dynamics, is
weakly coupled with the others, and may be studied separately. Its expression is
still Eq. (29.223), with the term Aη̈s added to the left side.

Neglecting the deformation corresponding to the static equilibrium condi-
tion (which may be computed using an equation of the type of Eq. (29.221), in
which the modal coordinates corresponding to the static deformation and terms
like gC are included), the set of 2 + n + ns equations, remaining after separating
the first equation, describes the suspension motions of the vehicle:

[
M3 MT

s3

Ms3 Ms

]{
q̈3

η̈s

}
+

[
C3 CT

s3

Cs3 Css

]{
q̇3

η̇s

}
+

+
[

K3 KT
s3

Ks3 Kss

]{
q3

ηs

}
=

{
F3

Fs

}
,

(29.247)
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where q3, M3, C3, K3 and F3 are the same matrices and vectors seen in Eq.
(29.224), and

Ms3 =
[
CT IT −FT 0 0

]
,

Cs3 =
[ ∑

∀k cT
14k

∑
∀k cT

34k cT
24,1 cT

24,2

]T
,

Css = Cs +
∑
∀i

c44k ,

Ks3 =
[ ∑

∀k KT
14k V̇ CT − gAT +

∑
∀i K

T
34k KT

24,1 KT
24,2

]T
,

Kss = Ks +
∑
∀i

K44k ,

Fs = −V̇ Cθ0 .

All matrices are symmetrical, except for the stiffness matrix resulting from
the usual aerodynamic term included in K3. All aerodynamic forces have been
assumed to be independent from the deformation modes: if this assumption were
abandoned, the equations would change, but uncoupling would still hold.

29.4.3 Uncoupling of the equations of motion

Symmetrical and skew-symmetrical deformation modes thus play a very different
role in the dynamic behavior of the vehicle. The first, like bending modes in the
xz plane, affect riding comfort but have no importance in the study of handling.
The most important skew-symmetrical modes are those related to torsional de-
formations. The significance of their influence on handling, particularly in sport
cars and above all in Formula 1 racers, is well known. Transversal bending can
have a similar effect.

Modal matrices Ms, Ma, Ks and Ka are diagonal, and describe the dynamic
behavior of the vehicle body as a free compliant body. Usually the damping linked
to the deformation modes of the body is not large, and it may be considered as
an undamped, or at most a lightly damped, system. Neglecting damping, the
natural frequencies of the symmetrical and skew-symmetrical modes are

Ωsj =

√
Ksj

Msj

, Ωaj =

√
Kaj

Maj

. (29.248)

If the coupling matrices Ms3, Ma1, Cs3, Ca1, etc. were negligible, the dy-
namic behavior of the vehicle could be studied by separating the dynamic behav-
ior of the rigid vehicle on elastic suspensions (studied in the proceeding sections)
from the dynamic behavior of the vehicle body, considered as a compliant body
free in space.

In the case of passenger cars, the natural frequencies of deformation modes
are much higher than those typical of a vehicle on elastic suspensions (as already
stated, the typical frequencies of the sprung mass are slightly above 1 Hz while
those linked to the unsprung masses are at most 8 − 10 Hz). Coupling between
the dynamic behavior of the vehicle as made of rigid bodies and of the compliant
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vehicle body is weak, and the vibration of the latter influences acoustic comfort
more than handling or ride comfort.

Open cars and vans are often an exception: the stiffness of their bodies is
lower, particularly in torsion and bending in the symmetry plane, and the related
natural frequencies are little different than those linked with the behavior of the
vehicle as a whole. The torsional deformation of the chassis and the body may
have a strong effect on handling, usually making it worse. Bending of the body in
its plane may have some effect on comfort, even if it is impossible to determine
in general whether it improves or worsens it.

In the case of industrial vehicles, particularly trucks, some natural frequen-
cies of deformation modes are usually low and the related modes may strongly
interfere with handling modes (if skew-symmetrical) or with comfort modes (if
symmetrical).

29.5 ARTICULATED VEHICLES

Consider an articulated vehicle, such as a tractor and a trailer or a semi-trailer.
As already stated, it is possible to study its behavior using a multibody model,
if its parts may be considered rigid. The number of degrees of freedom is six for
each part constituting the body of the vehicle, plus a further degree of freedom
for each independent suspension and two degrees of freedom for each solid axle
suspension, minus the number of degrees of freedom constrained by the links
connecting the various parts constituting the body.

As an example, the articulated truck in Fig. 29.1d has 21 degrees of freedom
if the hitch connecting tractor and trailer may be modelled as a spherical hinge
(24 degrees of freedom for the two rigid bodies and the 6 solid axles, minus 3
degrees of freedom constrained by the hinge). If the hitch were modelled as a
cylindrical hinge with its axis in the vertical direction, the number of degrees
of freedom would reduce to 19 (the hinge would constrain 5 of them instead of
3), but to constrain pitch and roll rotations of the trailer with respect to the
tractor, the moments about the x and y axes the hinge would experience (and
with negligible deformations, otherwise some deformation degrees of freedom
would be needed) would be extremely high, creating a non-viable solution.

In normal operation the pitch, roll and yaw angles of the trailer with respect
to the tractor are small and, as in the case of articulated vehicles it is possible
to use linearized models. An articulated vehicle made by two rigid bodies plus
compliant suspensions may be thought of as a single compliant system, whose
deformation consists in the relative motion of the two bodies about the hinge.
The rigid body modes of this compliant body may be considered similar to the
deformation modes seen above, the only difference being that the relevant natural
frequencies are zero, because the modal stiffness vanishes. This is obvious because
there are no elastic systems applying restoring moments at the hitch.
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The rigid body modes may also be subdivided into symmetrical and skew-
symmetrical modes. In the case of an articulated truck the yaw rotation of the
trailer (like angle θ in the model seen in Section 25.15) and the rolling motion
of the trailer are skew-symmetric modes and thus couple with handling, while
pitching rotations of the trailer couple with ride comfort. In the case of the truck
and trailer system in Fig. 25.41a, it is possible to assume that the connection
of the draw bar to the trailer and that between the dolly and the trailer are
spherical hinges, even if the roll rotation between the trailer and the dolly may
in some cases be considered locked. The pitch rotation of the dolly and the trailer
thus enter the comfort model, while all yaw and roll rotations enter the handling
model.

29.6 GYROSCOPIC MOMENTS AND OTHER
SECOND ORDER EFFECTS

Gyroscopic moments due to wheel rotation were examined in the 10 degrees of
freedom model for isolated vehicles with two axles. Within the frame of a lin-
earized model, they have no effect on handling-comfort uncoupling and they en-
ter only into the handling model. Gyroscopic moments are automatically present
when the equations of motion are obtained through Lagrange equations, provided
that the angular velocity of all rotating parts of the model is considered.

To evaluate the impact of gyroscopic moments caused by the wheels on
handling, it is possible to assume, at least in the case of solid axle suspensions,
that the angular velocity of the ith wheel χ̇i lies on axis yk of the kth unsprung
mass. Any angular velocity of the vehicle about the xk and zk axes will produce
a gyroscopic moment due to the ith wheel that may be expressed in the xk, yk, zk

frame as

Mg = χ̇iJpi

⎧⎨
⎩

ψ̇
0

−φ̇k

⎫⎬
⎭ = Jpi

V

Rei

⎧⎨
⎩

ψ̇
0

−φ̇i

⎫⎬
⎭ , (29.249)

where the angular velocity of the wheel has been assumed to be linked with the
forward velocity by the usual relationship

χ̇i =
V

Rei
. (29.250)

As previously stated, the terms due to the gyroscopic moment are present in
Lψ̇ and, with opposite sign, in Lφ̇k. In steady state motion, gyroscopic moments
are usually quite small. Neglecting the camber angle, ψ̇ = V/R (where R is the
radius of the trajectory) and φ̇i = 0. The component Mgz

of the gyroscopic
moment vanishes, while

Mgx
=

V 2

R

∑
∀i

Jpi

Rei
, (29.251)
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where the sum extends to all wheels. Gyroscopic moment is thus proportional
to the centrifugal acceleration V 2/R, which is limited. If the sum of the polar
moments of inertia of the wheels of an axle and Re are equal, for instance, to
6 kg m2 and 0.5 m respectively, values related to an industrial vehicle, and the
centrifugal acceleration is 5 m/s2, a gyroscopic moment of 60 Nm is obtained. If
the track of the axle is 1.4 m, the load transfer due to the gyroscopic moment of
the two wheels is roughly 43 N.

Gyroscopic wheel moments may, however, be more important in non-statio-
nary conditions and, above all, can affect to a large extent the dynamics of the
steering system: Their effect on free-control dynamics may thus be important.
In solid axle suspensions of steering axles, strong reactions on the steering wheel
due to gyroscopic wheel moments may be caused by travelling on uneven road.
They can cause severe discomfort and make driving difficult.

Gyroscopic moments due to the engine or other rotating elements of the
vehicle are usually less important, except in particular cases (usually not related
with road vehicles), such as that of electric railway engines, in which they can
cause an increase of wear of the wheel rims. As a last consideration, a mass ro-
tating about an axis parallel to the z axis couples roll and pitch motions, making
uncoupling between handling and comfort impossible even if the assumptions of
small displacements, linearity and symmetry hold. This effect may even be ex-
ploited, as in the case of flywheel stabilizers in ships, where coupling allows the
larger pitch moment of inertia to be used to limit roll oscillations. Also, a mass
rotating about the x-axis has a coupling effect between pitch and yaw, while
a mass rotating about the y-axis couples roll and yaw, already coupled in the
handling behavior.

Other second-order dynamic effects may be of some importance. In non-
stationary motion, for example, the angular acceleration of rotating masses may
produce inertia torques of non-negligible size. Some of these effects have been
included in the model seen above and are included in the terms containing V̇
(because of the relationship assumed between the forward velocity V and the
wheel velocity χ̇, the acceleration χ̈ is proportional to V̇ ).

In the previous models some second order effects have been neglected. For
instance, the transmission of the driving torque to the wheels may cause a reac-
tion torque that, being exerted between the parts constituting the vehicle, has no
effect on its global dynamics, at least as a first approximation. This torque may,
however, modify the configuration of the vehicle and affect the forces the vehicle
exchanges with the ground or, although to a much lesser extent, with the air. In
a vehicle with longitudinal engine and rear wheel drive with the differential on a
solid axle, the driving torque causes a small roll angular displacement between
the vehicle body and the solid axle. The small roll angle may induce roll steer
that may affect handling. These effects are usually neglected, because they are
small, but there is no difficulty in introducing them into the model.

A larger effect may be caused by the reaction torque exerted on suspensions
when not directly transferred to the body by the suspension linkages. Instead it
loads the suspension springs, causing lifting or sinking of the attachment points,
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as seen in antidive, antilift or antisquat configurations. For this effect to be
present, the torque must be applied to the unsprung mass. For driving torques
this occurs only in the case of live axles, while in braking torques the brakes
are almost always located on the unsprung masses, the only exceptions being
the little used layout in which they are placed close to the differential gear in
De Dion axles, or when driving wheel suspension is independent. In such cases
the suspension layout must allow a vertical movement when a torque is applied
to it, i.e. the derivative ∂z/∂My must be other than zero, an example being that
of trailing arm suspensions.

Similarly it is possible to take into account the deformation of unsprung
masses without changing the general conclusion: This is important because con-
figurations based on the compliance of the unsprung masses are increasingly
common. With solid axles it is easy to evaluate which deformation modes of
the unsprung masses are symmetrical, and thus are to be included in comfort
dynamics, and which are skew-symmetrical and affect handling. In a suspen-
sion in which leaf springs are used as guiding elements, for instance, the lateral
compliance of the springs gives way to skew symmetrical modes and influences
handling, while their S deformation about the y axis is a symmetrical deforma-
tion and thus couples with comfort dynamics, or better longitudinal dynamics.
The longitudinal compliance of the suspension may strongly affect comfort.

In the case of independent suspensions, the suspension of the whole axle,
with its two rigid-body degrees of freedom, must be considered. The whole axle
must be studied as well for deformation modes, as was done in Eq. (29.122).
In this way it is again possible to distinguish between symmetrical and skew-
symmetrical modes.

But uncoupling is a more general feature still. The above considerations may
be applied to vehicles with two wheels, the only exceptions being that the roll
angle can easily take values beyond the range in which linearization of trigono-
metric functions applies, while the lateral movements of the driver, aimed at
displacing the centre of mass and producing unsymmetrical aerodynamic forces,
can destroy the symmetry on which uncoupling is based.

No particular assumption about the nature of the forces supporting the
vehicle has been made. The same uncoupling also holds for vehicles supported by
hydrostatic, aerostatic or aerodynamic forces. In the first case, the assumption of
the existence of a roll axis of the suspension is replaced by the assumption of a roll
axis fixed to the hull in its undeflected configuration. The small roll oscillations
are thus demonstrated to be uncoupled with pitch and bounce motions, which are
coupled with each other. In the case of aircraft, roll and yaw oscillations are
known to be coupled (dutch roll) while bounce and pitch oscillations are also
coupled with each other. Even the presence of aerodynamic forces due to the
deformations of the structure does not change the overall picture, provided that
they can be assumed to depend linearly on the modal coordinates ηs and ηa.




