Beej's Guide to C Programming

Brian “Beej” Hall
beej@beej.us

Revision alpha-25
May 17, 2007

Copyright © 2007 Brian “Beej” Hall

Contents

1.2. Platform and Compiler
1.3. Building under Unix

1.4. Official Homepage

1.5. Email Policy

1.6. Mirroring

1.7. Note for Trandators

1.8. Copyright and Distribution

2. Programming Building BIOCKS........ccuoiiiiiiiie ettt

2.1. The Specification

2.2. The Implementation

2.3. So Much To Do, So Little Time
2.4. Hello, World!

3. Variables, Expressions, and Statements (Oh My)

3.1. Variables
3.2. Operators
3.3. Expressions
3.4. Statements

4. Building BIOCKS REVISITEA..........oiiiiie ettt s

B FUNCEIONS. e,

5.1. Passing by Vaue
5.2. Function Prototypes

6. Variables, The SEQUE ... e reas

6.1. “Up Scope’
6.2. Storage Classes

7.1. Memory and Variables

7.2. Pointer Types

7.3. Dereferencing

7.4. Passing Pointers as Parameters

SIS N U Lo A U1 == TR

8.1. Pointersto struct s
8.2. Passing st r uct pointers to functions

S B 1Y SRR

9.1. Passing arrays to functions

11, DYNAMIC M BIMOIY ...ttt ettt ettt st e et e et e et e e s steeabeeesaeeseesateebeeenseesneesnnaens

11.1. mal | oc()

WNNNNNRE PP

NOo o bh~ b~

10
11
12
12

17

18
19
20

22
22
24

26
26
27
28
28

30
30
32

33
34

37

39
39

Contents

11.2. free() 40
11.3. real | oc() 40
11.4. cal | oc() 41
Vo =T | i SRR 43
12.1. Pointer Arithmetic 43
12.2. typedef 44
12.3. enum 45
12.4. More st ruct declarations 46
12.5. Command Line Arguments 46
12.6. Multidimensional Arrays 49
12.7. Casting and promotion 50
12.8. Incomplete types 51
12.9. voi d pointers 51
12.10. NULL pointers 53
12.11. More Static 53
12.12. Typical Multifile Projects 54
12.13. The Almighty C Preprocessor 56
12.14. Pointers to pointers 59
12.15. Pointers to Functions 61
12.16. Variable Argument Lists 63
13, Standard [/O LiBrary..... ettt enee s 67
13.1. f open() 69
13.2. freopen() 71
13.3. fcl ose() 73
134.printf(),fprintf() 74
13.5. scanf (), fscanf () 78
13.6. gets(), fgets() 81
13.7. getc(), fgetc(), getchar () 83
13.8. puts(), f puts() 84
13.9. putc(), fputc(), putchar () 85
13.10. f seek(), rew nd() 86
13.11. ftell () 88
13.12. f get pos(), f set pos() 89
13.13. unget c() 90
13.14. fread() 92
13.15. fwrite() 94
13.16.feof (), ferror(), clearerr() 95
13.17. perror () 96
13.18. renove() 98
13.19. renane() 99
13.20. t mpfi |l e() 100
13.21. t mpnan() 101
13.22. set buf (), set vbuf () 103
13.23. f f 1 ush() 105
S T To TNV IF=Ta T o TU] = LA o] TSP 107
14.1. strlen() 108
14.2. strcnp(), strncnp() 109

Contents

14.3. strcat (), strncat () 110
14.4. strchr(), strrchr() 111
14.5. strcpy(), strncpy() 112
14.6. strspn(), strcspn() 113
14.7. strstr() 114
14.8. strtok() 115
T (Y = (4 a1 1 4P LA 0T R P R 116
15.1. sin(),sinf(),sinl() 118
15.2. cos(), cosf (), cosl () 119
153. tan(),tanf (), tanl () 120
154. asin(), asinf (), asinl () 121
15.5. acos(), acosf (), acosl () 122
15.6. atan(),atanf (), atanl (), atan2(), atan2f (), atan2l () 123
15.7. sqgrt () 124
16. COMPIEX NUMDEI S. ..ttt e st sra e e be e s aneereesnneenns 125
O I TSI T o] = VUSRS 126

1. Foreward

No point in wasting words here, folks, let's jump straight into the C code:

E((ck?mai n((z?(stat (M &) ?P+=a+' {' ?0: 3:
execv(M k), a=G i =P, y=G&255,
sprintf(Qy/' @-3?A(*L(V(%l+%) +%d, 0)

And they lived happily ever after. The End.

What's this? Y ou say something's still not clear about this whole C programming language
thing?

WEell, to be quite honest, I'm not even sure what the above code does. It's a snippet
from one of the entiresin the 2001 International Obfuscated C Code Contest*, a wonderful
competition wherein the entrants attempt to write the most unreadable C code possible, with
often surprising results.

The bad newsisthat if you're abeginner in thiswhole thing, all C code you see looks
obfuscated! The good newsis, it's hot going to be that way for long.

What we'll try to do over the course of this guideislead you from complete and utter
sheer lost confusion on to the sort of enlightened bliss that can only be obtained though pure C
programming. Right on.

1.1. Audience

Aswith most Begj's Guides, this one tries to cater to people who are just starting on the
topic. That'syou! If that's not you for whatever reason the best | can hope to provide is some
pastey entertainment for your reading pleasure. The only thing | can reasonably promiseis that
this guide won't end on acliffhanger...or will it?

1.2. Platform and Compiler

I'll try to stick to Good Ol'-Fashioned ANSI C, just like Mom used to bake. Well, for the
most part. Here and there | talk about things that are in subsequent C standards, just to try to
keep up to date.

My compiler of choiceis GNU gcc since that's available on most systems, including the
Linux systems on which | work.

Since the codeis basically standard, it should build with virtually any C compiler on
virtually any platform. If you're using Windows, run the result in aDOS window. All sample
code will be using the console (that's “text window” for you kids out there), except for the
sample code that doesn't.

There are alot of compilers out there, and virtually all of them will work for this book.
And for those not in the know, a C++ compiler will compile C most code, so it'll work for the
purposes of this guide. Some of the compilers| am familiar with are the following:

* GCC?% GNU's C compiler, available for aimost every platform, and popularly
installed on Unix machines.

* Digital Mars C/C++? The hackers at Digital Mars have a pretty rippin' C/C++
compiler for Windows that you can download and use for free, and that will work
wonderfully for all the code presented in this guide. | highly recommend it.

1http://ww.ioccc. org/

http://www.ioccc.org/
http://www.gnu.org/software/gcc/gcc.html
http://www.digitalmars.com/

Beej's Guide to C Programming 2

* VC++* Microsoft's Visual C++ for Windows. Thisis the standard that most
Microsoft programmers use, and | freaking hate it. Nothing personal, but I'm one of
those crazy people that till uses vi.

* Turbo C®: Thisisaclassic compiler for MSDOS. It's downloadable for free, and | has
aspecial place in my heart. (It can't handle the “/ / ”-style comments, so they should
all be convertedto“/ **/ "-style.)

 cc: Virtually every Unix system hasa C compiler installed, and they're typically and
merely named cc (C Compiler, see?) Just try it from the command line and see what
happens!

1.3. Building under Unix

If you have a sourcefile called f oo. c, it can be built with the following command from
the shell:

gcc -o foo foo.c

Thistellsthe compiler to build f oo. ¢, and output an executable called f oo. If gcc doesn't
work, try using just cc instead.

1.4. Official Homepage

This official location of this document is http://begj.us/guide/bgc/°. Maybe thisll changein
the future, but it's more likely that all the other guides are migrated off Chico State computers.

1.5. Email Policy

I'm generally available to help out with email questions so feel free to writein, but | can't
guarantee aresponse. | lead a pretty busy life and there are timeswhen | just can't answer a
question you have. When that's the case, | usualy just delete the message. It's nothing personal;
| just won't ever have the time to give the detailed answer you require.

Asarule, the more complex the question, the less likely | am to respond. If you can narrow
down your question before mailing it and be sure to include any pertinent information (like
platform, compiler, error messages you're getting, and anything else you think might help
me troubleshoot), you're much more likely to get aresponse. For more pointers, read ESR's
document, How To Ask Questions The Smart Way .

If you don't get aresponse, hack on it some more, try to find the answer, and if it's still
elusive, then write me again with the information you've found and hopefully it will be enough
for meto help out.

Now that I've badgered you about how to write and not write me, I'd just like to let you
know that | fully appreciate all the praise the guide has received over the years. It'sarea morale
boost, and it gladdens me to hear that it is being used for good! : -) Thank you!

1.6. Mirroring

Y ou are more than welcome to mirror this site, whether publically or privately. If you
publically mirror the site and want me to link to it from the main page, drop me aline at
beej @eej . us.

1.7. Note for Translators

If you want to trandate the guide into another language, write me at beej @eej . us and I'll
link to your translation from the main page. Feel free to add your name and contact info to the
tranglation.

6.htt

./ [beej . us/ gui de/ bgc/
7.httB:// ! g g

www. cat b. org/ ~esr/faqs/smart - questions. htm

http://msdn.microsoft.com/visualc/
http://community.borland.com/article/0,1410,20841,00.html
http://beej.us/guide/bgc/
http://www.catb.org/~esr/faqs/smart-questions.html

Beej's Guide to C Programming

Please note the license restrictions in the Copyright and Distribution section, below.
Sorry, but due to space constraints, | cannot host the translations myself.

1.8. Copyright and Distribution

Beg's Guide to Network Programming is Copyright © 2007 Brian “Begj Jorgensen” Hall.

With specific exceptions for source code and translations, below, this
work is licensed under the Creative Commons Attribution- Noncommercial-

No Derivative Works 3.0 License. To view acopy of thislicense, visit
http://creativecomons. org/licenses/ by-nc-nd/ 3.0/ or send aletter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

One specific exception to the “No Derivative Works™ portion of the licenseis as follows:
this guide may be freely translated into any language, provided the translation is accurate, and
the guideisreprinted in its entirety. The same license restrictions apply to the translation as to
the original guide. The trandlation may also include the name and contact information for the
trandator.

The C source code presented in this document is hereby granted to the public domain, and
is completely free of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their
students.

Contact beej @eej . us for more information.

http://creativecommons.org/licenses/by-nc-nd/3.0/

2. Programming Building Blocks

“Where do these stairs go?’
“They go up.”
--Ray Stantz and Peter Venkman, Ghostbusters

What is programming, anyway? | mean, you're learning how to do it, but what isit? Well,
it's, umm, kind of like, well, say you have this multilayered chocolate and vanilla cake sitting
on top of an internal combustion engine and the gearbox is connected to the coil with a banana.
Now, if you're eating the cake ala mode, that means... Wait. Scratch that analogy. I'll start
again.

What is programming, anyway? It's telling the computer how to perform atask. So you
need two things (besides your own self and a computer) to get going. One thing you need is the
task the computer isto perform. Thisis easy to get as a student because the teacher will hand
you a sheet of paper with an assignment on it that describes exactly what the computer isto do
for you to get agood grade.

If you don't want a good grade, the computer can do that without your intervention. But |
digress.

The second thing you need to get started is the knowledge of how to tell the computer to do
these things. It turns out there are lots of ways to get the computer to do a particular task...just
like there are lots of waysto ask someone to please obtain for me my fluffy foot covering
devicesin order to prevent chilliness. Many of these ways are right, and afew of them are best.

What you can do as a programmer, though, is get through the assignments doing something
that works, and then look back at it and see how you could have made it better or faster or
more concise. Thisis one thing that seriously differentiates programmers from excellent
programmers.

Eventually what you'll find isthat the stuff you wrote back in college (e.g. The Internet
Pizza Server, or, say, my entire Masters project) is a horridly embarrassing steaming pile of
code that was quite possibly the worst thing you've ever written.

The only way to go is up.

2.1. The Specification

In the beginning was the plan
And then came the assumptions
And the assumptions were without form
And the plan was completely without substance
And the darkness was upon the face of workers
--Excerpt from The Plan, early Internet folklore

Ooo00! Prostrate yourself, mortal, in the face of The Specification!

Ok, maybe I'm being alittle too overdramatic here. But | wanted to stress just mildly and
subtly, if you might indulge me, that The Specification BWHAHAHA * THUNDERCLAP*
(Sorry! Sorry!) is something you should spend time absorbing before your fingers touch the
keyboard. Except for checking your mail and reading Slashdot, obviously. That goes without
saying.

So what do you do with this specification? It's a description of what the program is going
to do, right? But where to begin? What you need to do isthis: break down the design into handy
bite-sized pieces that you can implement using techniques you know work in those situations.

Beej's Guide to C Programming 5

Asyou learn C, those bite-sized pieces will correspond to function calls or statements that
you will have learned. Asyou learn to program in general, those bite-sized pieces will start
corresponding to larger algorithms that you know (or can easily look up.)

Right now, you might not know any of the pieces that you have at your disposal. That's
ok. The fastest way to learn them isto, right now, press the mouse to your forehead and say the
password, “K&R2".

That didn't work? Hmmm. There must be a problem with the system somewhere. Ok, welll
do it the old-school way: learning stuff by hand.

Let's have an example:

Assignment: Implement a program that will calculate the sum of all numbers between 1
and the number the user enters. The program shall output the result.

Ok, well, that summary is pretty high level and doesn't lend itself to bite-sized pieces, so
it'sup to usto split it up.

There are several places that are good to break up pieces to be more bite-sized. Input is
one thing to break out, output is another. If you need to input something, or output something,
each of those is a handy bite-sized piece. If you need to calculate something, that can be
another bite-sized piece (though the more difficult calculations can be made up of many pieces
themselves!)

So, moving forward through a sample run of the program:

1. We need the program to read a number from the keyboard.
2. We need the program to compute a result using that number.

3. We need the program to output the result.

Thisis good! We've identified the parts of the assignment that need to be worked on.

“Wait! Stop!” | hear you. Y ou're wondering how we knew it was broken down into enough
bite-sized pieces, and, in fact, how we even know those are bite-sized pieces, anyhow! For all
you know, reading a number from the keyboard could be a hugely involved task!

The short of itis, well, you caught metrying to pull afast one on you. | know these are
bite-sized because in my head | can correspond them to ssimple C function calls or statements.
Outputting the result, for instance, is one line of code (very bite-sized). But that's me and we're
talking about you. In your case, | have alittle bit of a chicken-and-egg problem: you need
to know what the bite-sized pieces of the program are so you can use the right functions and
statements, and you need to know what the functions and statements are in order to know how to
split the project up into bite-sized pieces! Hell's bells!

So we're compromising a bit. | agree to tell you what the statements and functions are if
you agree to keep this stuff about bite-sized pieces in the back of your head while we progress.
Ok?

..l said, “Ok?’ And you answer... “OKk, | promise to keep this bite-sized pieces stuff in
mind.” Excellent!

2.2. The Implementation

Right! Let's take that example from the previous section and see how we're going to
actually implement it. Remember that once you have the specification (or assignment, or
whatever you're going to call it) broken up into handy bite-sized pieces, then you can start
writing the instuctions to make that happen. Some bite-sized pieces might only have one
statement; others might be pages of code.

Now here we're going to cheat alittle bit again, and I'm going to tell you what you'll need
to call to implement our sample program. | know this because I've done it all before and looked

Beej's Guide to C Programming 6

it al up. You, too, will soon know it for the same reasons. It just takes time and alot of reading
what's in the reference section of your C books.

So, let's take our steps, except thistime, we'll write them with a little more information.
Just bear with me through the syntax here and try to make the correlation between this and the
bite-sized pieces mentioned earlier. All the weird parentheses and squirrely braces will make
sensein later sections of the guide. Right now what's important is the steps and the trandation of
those steps to computer code.

The steps, partially trandlated:

1. Read the number from the keyboard using scanf () .

2. Compute the sum of the numbers between one and the entered number using a
f or -loop and the addition operator.

3. Print theresult using pri ntf ().

Normally, this partial translation would just take place in your head. Y ou need to output to
the console? Y ou know that the pri nt f () functionisoneway to do it.

And asthe partial trandation takes place in your head, what better time than that to actually
code it up using your favorite editor:

#i ncl ude <stdi o. h>
i nt mai n(voi d)
{ int num result = 0;
scanf ("%l", &wunm); // read the nunber fromthe keyboard
for(i =1; i <= num i++) { // conmpute the result

result +=i;

}

printf("%\n", result); // output the result

return O;

Remember how | said there were multiple ways to do things? Well, | didn't have to use
scanf (), | didn't haveto use af or -loop, and | didn't haveto usepri nt f () . But they were the
best for thisexample. : -)

2.3. So Much To Do, So Little Time

Another name for this section might have been, “Why can't | write a Photoshop clone in
half an hour?’

Lots of people when they first start programming become disheartened because they've just
spent all this effort to learn this whole programming business and what do they have to show for
it: alittle text-based program that prints a string that looks like it's some prehistoric throwback
to 1979.

WEell, | wish | could sugarcoat this alittle bit more, but that is unfortunately the way it
tends to go when you're starting out. Y our first assignment is unlikely to be DOOM 111, and is
more likely to be something similar to:

Hello, | amthe conmputer and | know that 2+2 = 4!

Y ou €lite coder, you.

Beej's Guide to C Programming 7

Remember, though, how | said that eventually you'll learn to recognize larger and larger
bite-sized pieces? What you'll eventually built up is aset of libraries (collections of reusable
code) that you can use as building blocks for other programs.

For example, when | want to draw a bitmap on the screen, do | write a system to read
the bytes of the file, decode the JPEG image format, detect video hardware, determine video
memory layout, and copy the results onto the display? Well do I, punk? No. | call | oadJPER) .
| call di spl ayl mage() . These are examples of functions that have already been written for my
use. That makesit easy!

So you can plan ahead and figure out which components can be built up and reused, or you
can use components that other people have built for you.

Examples pre-built components are: the standard C library (pri nt f (), which well be
using alot of in this guide), the GTK+ library (a GUI library used with GNOME), the Qt toolkit
(aGUI library used with the K Desktop), libSDL (alibrary for doing graphics), OpenGL (a
library for doing 3D graphics), and so on, and so on. Y ou can use all these to your own devious
ends and you don't have to write them again!

2.4. Hello, World!
Thisisthe canonical example of a C program. Everyone uses it:

/* hell oworld program */
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{ printf("Hello, World!\n");

return O;

We're going to don our long-sleeved heavy-duty rubber gloves, grab a scapel, and rip into
thisthing to see what makes it tick. So, scrub up, because here we go. Cutting very gently...

Let's get the easy thing out of the way: anything between the digraphs/ * and*/ isa
comment and will be completely ignored by the compiler. This allows you to leave messages to
yourself and others, so that when you come back and read your code in the distant future, you'll
know what the heck it was you were trying to do. Believe me, you will forget; it happens.

(Modern C compilers also treat anything after a/ / asacomment. GCC will obey it, as will
VC++. However, if you are using an old compiler like Turbo C, well, the/ / construct was a
little bit before its time. So I'll try to keep it happy and use the old-style/ * commrent s*/ inmy
code. But everyone uses/ / these days when adding a comment to the end of aline, and you
should feel freeto, aswell.)

Now, what isthis#i ncl ude? GROSS! Wéll, it tells the C Preprocessor to pull the contents
of another file and insert it into the code right there.

Wait--what's a C Preprocessor? Good question. There are two stages (well, technically
there are more than two, but hey, let's pretend there are two and have a good laugh) to
compilation: the preprocessor and the compiler. Anything that starts with pound sign, or
“octothorpe’, (#) is something the preprocessor operates on before the compiler even gets
started. Common preprocessor directives, asthey're called, are #i ncl ude and #def i ne. More
on that later.

Before we go on, why would | even begin to bother pointing out that a pound sign is called
an octothorpe? The answer is simple: | think the word octothorpe is so excellently funny, | have

Beej's Guide to C Programming 8

to gratuitiously spread its name around whenever | get the opportunity. Octothorpe. Octothorpe,
octothorpe, octothorpe.

So anyway. After the C preprocessor has finished preprocessing everything, the results are
ready for the compiler to take them and produce assembly code, machine code, or whatever it's
about to do. Don't worry about the technical details of compilation for now; just know that your
source runs through the preprocessor, then the output of that runs through the compiler, then that
produces an executable for you to run. Octothorp.

What about the rest of the line? What's <st di 0. h>? That iswhat is known as a header
file. It'sthe dot-h at the end that givesit away. In fact it's the “ Standard 1O” (stdio) header
file that you will grow to know and love. It contains preprocessor directives and function
prototypes (more on that later) for common input and output needs. For our demo program,
we're outputting the string “Hello, World!”, so we in particular need the function prototype for
thepri nt f () function from this header file.

How did | know | needed to #i ncl ude <st di o. h>for pri ntf () ? Answer: it'sin the
documentation. If you're on a Unix system, man printf and it'll tell you right at the top of the
man page what header files are required. Or see the reference section in this book. : -)

Holy moly. That was all to cover thefirst line! But, let's face it, it has been completely
dissected. No mystery shall remain!

So take a breather...look back over the sample code. Only a couple easy lines to go.

Welcome back from your break! | know you didn't really take a break; | was just humoring
you.

The next lineismai n() . Thisisthe definition of the function mai n() ; everything between
the squirrely braces ({ and}) is part of the function definition.

A function. “Great! More terminology | don't know!” | feel your pain, but can only offer
you the cold heartless comfort of more words. afunction is a collection of code that isto be
executed as a group when the function is called. Y ou can think of it as, “When | call nai n() , all
the stuff in the squirrley braces will be executed, and not a moment before.”

How do you call afunction, anyway? The answer liesinthepri nt f () line, but well get
to that in aminute.

Now, the main function is a special one in many ways, but one way stands above the rest: it
is the function that will be called automatically when your program starts executing. Nothing of
yours gets called before mai n() . In the case of our example, this works fine since all we want to
doisprint aline and exit.

Oh, that's another thing: once the program executes past the end of mai n() , down there at
the closing squirrley brace, the program will exit, and you'll be back at your command prompt.

So now we know that that program has brought in a header file, st di o. h, and declared
amai n() function that will execute when the program is started. What are the goodies in
mai n() ?

| am so happy you asked. Really. We only have the one goodie: acall to the function
printf().Youcantel thisisafunction call and not a function definition in a number of ways,
but one indicator isthe lack of squirrely braces after it. And you end the function call with a
semicolon so the compiler knows it's the end of the expression. Y ou'll be putting semicolons
after most everything, asyou'll see.

Y ou're passing one parameter to the function pri nt f () : astring to be printed when you
call it. Oh, yeah--we're calling afunction! We rock! Wait, wait--don't get cocky. What's that
crazy \ n at the end of the string? Well, most charactersin the string look just like they are
stored. But there are certain characters that you can't print on screen well that are embedded
as two-character backslash codes. One of the most popular is\ n (read “backslash-N") that

Beej's Guide to C Programming 9

corresponds to the newline character. Thisisthe character that causing further printing to
continue on the next line instead of the current. It's like hitting return at the end of the line.
So copy that codeinto afile, build it, and run it--see what happens:

Hel | o, Worl d!

It's done and tested! Ship it!

3. Variables, Expressions, and Statements (Oh
My)

“ It takes all kinds to make a world, does it not, Padre?”
“ S0 it does, my son, so it does.”
Pirate Captain Thomas Bartholomew Red to the Padre, Pirates

There sure can be lotsa stuff in a C program.

Y up.

And for various reasons, it'll be easier for all of usif we classify some of the types of things
you can find in a program, so we can be clear what we're talking about.

3.1. Variables

A variable is ssmply aname for a number. The number associated with that variableis said
to beit'svalue. Y ou can change the value later, too. One minute a variable named f oo might
have the value 2, the next you might change it to 3. It's variable, see?

Variables can have different types, aswell. In C, because it's such a picky language about
types (I'm saying that emphatically to make strongly-typed language fanaticsroll in their future
graves) you have to know in advance what type of numbers you'll be storing in the variable.

Before you can use a variable in your code, you have to declareit. This way the compiler
knows in advance as it runs down your program how to treat any variables. Here is an example
that shows a number of different types, and their corresponding sets of numbers they represent:

i nt mai n(voi d)
{
int i; /* holds signed integers, e.g. -3, -2, 0, 1, 10 */
float f; /* holds signed floating point nunbers, e.g. -3.1416 */

printf("Hello, World!\n"); /* ah, blessed famliarity */

return O;

In the above example, we've declared a couple of variables. We haven't used them yet,
and they're both uninitialized. One holds an integer number (random, to start, since we never
initialized it), and the other holds a floating point number (areal number, basically.)

What's this? Y ou want to store some numbers in those variables? Well, ask your mother; if
it'sall right with her, it'sal right with me.

So, how to do that...you use the assignment operator. An operator is generally a piece of
punctuation that operates on two expressions to produce a result. There are a number of them,
like the addition operator (+) and the subtraction operator (-), but I'm getting ahead of myself.
We'll talk about those more in the expressions section, below. In this case, we're going to use the
assignment operator, which is=, to assign avalue into a variable:

i nt mai n(voi d)
{
int i;
i = 2; [/* assign the value 2 into the variable i */

printf("Hello, World!\n");

return O;

10

Beej's Guide to C Programming 11

! |

Killer. We've stored a value. But don't run off an implement a clone of Quake 11 just yet;
let's try to do something with that variable, just so we can say we did. Let's print it out using
printf(),forinstance.

We're going to do that by passing two parametersto the pri nt f () function. The first
argument is a string that describes what to print and how to print it (called the format string),
and the second is the value to print, namely whatever isin the variablei .

printf () huntsthrough the format strings for avariety of special sequences which start
with apercent sign (%9 that tell it what to print. For example, if it finds a %, it looks to the next
parameter that was passed, and printsit out as an integer. If it findsa % , it prints the value out
as afloat.

As such, we can print out the value of i like so:

i nt mai n(voi d)

{
int i;
i = 2; [/* assign the value 2 into the variable i */
printf("Hello, World! The value of i is %, okay?\n", i);
return O;

}

And the output will be:

Hell o, World! The value of i is 2, okay?

And now, on to expressions! We'll do all kinds of fancy stuff with these variables.

3.2. Operators
I've snuck afew quick ones past you already when it comes to expressions. Y ou've already
seen things like:

result +=1i;
i = 2;

Those are both expressions. In fact, you'll come to find that most everything in Cisan
expression of one form or another. But here for the start I'll just tell you about afew common
types of operators that you probably want to know about.

i =i +3; [/* addition (+) and assignnent (=) operators */
i =i - 8 [* subtraction, subtract 8 fromi */
i =i [/ 2; [* division */
i =i *9; [/[/* multiplication */
i ++; /* add one to i ("post-increnent"; nore later) */
++i ; /* add one to i ("pre-increnent") */
i--; /* subtract one fromi ("post-decrenent") */
Looks pretty weird, thati = i + 3 expression, huh. | mean, it makes no sense

algebraically, right? That's true, but it's because it's not really algebra. That's not an equivalency
statement--it's an assignment. Basically it's saying whatever variable is on the |eft hand side of
the assignment (=) is going to be assigned the value of the expression on theright. So it's all ok.

An expression? What's that? Sorry, but I'm far to lazy to cover it here, so I'll cover it inthe
next section.

Beej's Guide to C Programming 12

3.3. Expressions

Thisisactually one of the most important sections in the guide about C++. So pay attention
and be seated, you naughty children!

Now that everything'sin order, we'll...actually, let's do the important part alittle later. Now
welll talk about what those expression things are alittle bit.

An expression in C consists of other expressions optionally put together with operators. |
know that's a self-referential definition, but those are always good for alaugh, aren't they? (Pick
up any old C book and look up recursion in the index and see what pagesiit leads you to.)

The basic building block expressions that you put together with operators are variables,
constant numbers (like 10 or 12.34), and functions. (We'll talk about functions later, although if
you recall we've aready had arun-in with thepri nt f () function.)

And so when you chain these together with operators, the result is an expression, as well.
All of thefollowing are valid C expressions:

i =3

+

i + 12
12

+ 1l

i+

i

i

2

f += 3.14
Now where can you use these expressions? Well, you can use them in afunction call (I

know, | know--I'll get to function real soon now), or as the right hand side of an assignment.

Y ou have to be more careful with the left side of an assignment; you can only use certain things

there, but for now sufficeit to say it must be asingle variable on the left side of the assignment,

and not a complicated expression:

radius = circunference / (2.0 * 3.14159); [* valid */
diameter / 2 = circunference / (2.0 * 3.14159); /* INVALID */

(I dso slipped more operator stuff in there--the parentheses. These cause part of an
expression (yes, any old expression) to be evaluated first by the compiler, before more of the
expression is computed. Thisisjust like parentheses work in algebra.)

WEell, | was going to talk about that important thing in this section, but now it looks like
we're running behind a bit, so let's postpone it until later. | promise to catch up, don't you fear!

3.4. Statements

For the most part, you're free to make up variable names to your heart's content, calling
them whatever you'd like. There are no exceptions, except for statements and other reserved
words which you may not use unless you use them in the officially (by the compiler) prescribed
manner.

That definition was rather glib. | should rewrite it. Or maybe we'll just sojourn bravely on!
Y es!

What are these pesky statements? Let's say, completely hypothetically, you want to do
something more than the already amazingly grand example program of assigning avalueto a
variable and printing it. What if you only want to print it if the number islessthan 10? What
if you want to print all numbers between it and 10? What if you want to only print the number
on a Thursday? All these incredible things and more are available to you through the magic of
various statements.

3.4.1. The if statement
The easiest one to wrap your head around is the conditional statement, if. It can be used to
do (or not do) something based on a condition.

Beej's Guide to C Programming 13

Like what kind of condition? Well, like is a number greater than 10?

int i = 10;
if (i > 10) {
printf("Yes, i is greater than 10.\n");
printf("And this will also print if i is greater than 10.\n");
}
if (i <= 10) print ("i is less than or equal to 10.\n");

In the example code, the message will print if i isgreater than 10, otherwise execution
continues to the next line. Notice the squirrley braces after the if statement; if the condition
istrue, either the first statement or expression right after the if will be executed, or else the
collection of code in the squirlley braces after the if will be executed. This sort of code block
behavior is common to all statements.

What are the conditions?

i == 10; [* true if i is equal to 10 */

i = 10; /[* true if i is not equal to 10 */

i > 10; /[* true if i greater than 10 */

i < 10; /[* true if i less than 10 */

i >= 10; /[* true if i greater than or equal to 10 */
i <= 10; /[* true if i less than or equal to 10 */

i <= 10; [* true if i less than or equal to 10 */

Guess what these all are? No really, guess. They're expressions! Just like before! So
statements take an expression (some statements take multiple expressions) and evaluate them.
Theif statement evaluates to see if the expression istrue, and then executes the following code
ifitis.

What is“true” anyway? C doesn't have a“true’ keyword like C++ does. In C, any non-zero
valueistrue, and a zero valueisfalse. For instance:

if (1) printf("This will always print.\n");
if (-3490) printf("This will always print.\n");
if (0) printf("This will never print. Ever.\n");

And the following will print 1 followed by 0:

int i = 10;
printf("%l\n", i == 10); /* i == 10 is true, so it's 1 */
printf("%l\n", i >20); /* i is not > 20, sothis is false, 0 */

(Hey, look! We just passed those expressions as arguments to the function pri nt f () ! Just
like we said we were going to do before!)

Now, one common pitfall here with conditionalsis that you end up confusing the
assignment operator (=) with the comparison operator (==). Note that the results of both
operators is an expression, so both are valid to put inside the if statement. Except one assigns
and the other compares! Y ou most likely want to compare. If weird stuff is happening, make
sure you have the two equal signsin your comparison operator.

3.4.2. The while statement

Let's have another statement. Let's say you want to repeatly perform atask until a condition
istrue. This sounds like ajob for the while loop. Thisworksjust like the if statement, except
that it will repeately execute the following block of code until the statement is false, much like
an insane android bent on killing its innocent masters.

Beej's Guide to C Programming 14

Or something.
Here's an example of awhile loop that should clarify this up a bit and help cleanse your
mind of the killing android image:

/1 print
/1

/1 i
/1 i

I i
I i

i = 0;
while (i

i ++;

}

printf("

/1 [nore of the sanme between 2 and 7]

printf("i is now %d!\n", i);

the foll ow ng output:

s now 0!
s now 1!

s now 8!
s now 9!

< 10) {

Al'l donel\n");

The easiest way to see what happens here isto mentally step through the code aline at a

time.

1. First,i issetto zero. It's good to have these things initialized.

2. Secondly, we hit the while statement. It checks to see if the continuation condition
istrue, and continues to run the following block if it is. (Remember, trueis 1, and so
wheni iszero, theexpressioni < 10is1 (true).

3. Since the continuation condition was true, we get into the block of code. The
printf () function executes and outputs“i is now 0!”.

4. Next, we get that post-increment operator! Remember what it does? It adds onetoi
in this case. (I'm going to tell you alittle secret about post-increment: the increment
happens AFTER all of the rest of the expression has been evaluated. That's why it's
called “post”, of course! In this case, the entire expression consists of simply i , so the
result hereisto ssmply increment i .

5. Ok, now we're at the end of the basic block. Since it started with a while statement,
we're going to loop back up to the while and then:

6. We have arrived back at the start of the while statement. It seems like such along time
ago we were once here, doesn't it? Only this time things seem dlightly different...what
could it be? A new haircut, perhaps? No! The variablei isequal to 1 thistime instead
of 0! So we have to check the continuation condition again. Sure enough, 1 < 10 last
time | checked, so we enter the block of code again.

7. Weprintf() “i is now 1!”.

8. Weincrementi and it goesto 2.

9. Weloop back up to the while statement and check to see if the continuation condition

10.

istrue.

Y adda, yadda, yadda. | think you can see where thisis going. Let's skip ahead to
the incredible future where people commute to work on their Al-controlled rocket
scooters, eat anti-gravity beets, and little spherical robot helicopters freely roam
the skies making beep-beep-beep-beep noises. And where the variablei hasfinaly

Beej's Guide to C Programming 15

been incremented so it's valueis 10. Meanwhile, while we've slept in cryogenic
hybernation, our program has been dutifully fulfilling its thousand-year mission to
print things like “i isnow 4!”, “i isnow 5!”, and finaly, “i is now 9!”

11. Soi hasfinally been incremented to 10, and we check the continuation condition. It
10 < 10?7 Nope, that'll be false and zero, so the while statement is finally completed
and we continue to the next line.

12. Andlastly print f iscaled, and we get our parting message: “Al | done! ”.

That was alot of tracing, there, wasn't it? This kind of mentally running through a program
is commonly called desk-checking your code, because historically you do it sitting at your desk.
It's a powerful debugging technique you have at your disposal, as well.

3.4.3. The do-while statement

So now that we've gotten the while statement under control, let's take alook at its closely
related cousin, do-while.

They are basically the same, except if the continuation condition is false on the first pass,
do-while will execute once, but while won't execute at all. Let's see by example:

/* using a while statenent: */

i = 10;
// this is not executed because i is not |ess than 10:
while(i < 10) {

printf("while: i is %\n", i);

i ++;

}

/* using a do-while statenent: */
i = 10;

// this is executed once, because the continuation condition is
/'l not checked until after the body of the |oop runs:
do {
printf("do-while: i is %l\n", i);
i ++;
} while (i < 10);

printf("Al donel\n");

Notice that in both cases, the continuation condition is false right away. So in the while, the
condition fails, and the following block of code is never executed. With the do-while, however,
the condition is checked after the block of code executes, so it aways executes at |east once. In
this case, it prints the message, incrementsi , then fails the condition, and continues to the “All
done!” output.

The moral of the story isthis: if you want the loop to execute at least once, no matter what
the continuation condition, use do-while.

3.4.4. The for statement

Now you're starting to feel more comfortable with these looping statements, huh! Well,
listen up! It'stime for something a little more complicated: the for statement. Thisis another
looping construct that gives you a cleaner syntax than while in many cases, but does basically
the same thing. Here are two pieces of equivalent code:

Beej's Guide to C Programming 16

/1 using a while statenent:

/1 print nunbers between 0 and 9, inclusive:
i = 0;
while (i < 10) {

printf("i is %l\n");

i+t
}
/! do the sane thing with a for-Ioop

for (i =0; i <10; i++) {
printf("i is %\n");
}

That's right, kids--they do exactly the same thing. But you can see how the for statement is
alittle more compact and easy on the eyes.

It's split into three parts, separated by semicolons. The first is the initialization, the second
is the continuation condition, and the third is what should happen at the end of the block if
the contination condition istrue. All three of these parts are optional. And empty for will run
forever:

for(;;) {
printf("l will print this again and agai n and agai n\n")
printf("for all eternity until the col d-death of the universe.\n");

4. Building Blocks Revisited

“Iseverything all right, sir?”

“No. No, it's not. Some smegger's filled out this 'Have You Got a Good Memory' quiz.”
“Why, that was you, sir. Don't you remember ?”
--Kryten and Dave Lister, Red Dwarf

Before we start with functions in the next section, we're going to quickly tie thisin with
that very important thing to remember back at the beginning of the guide. Now what wasit...oh,
well, | guess | gave it away with this section title, but let's keep talking asif that didn't happen.

Yes, it was basic building blocks, and how you take a specification and turn it into little
bite-sized pieces that you can easily tranglate into blocks of code. | told you to take it on faith
that I'd tell you some of the basic pieces, and I'm just reminding you here, in case you didn't
notice, that all those statements back there are little basic building blocks that you can usein
your programs.

Such as, if the specification reads:

Assignment: Write a program that repeatedly accepts user input and then prints the
numbers between 0 and the entered number. If the user enters a number less than or equal to
zero, the program will exit.

Y ou now have enough information to figure out all the basic building blocks to make this
program happen. You'll haveto steal scanf () and pri nt f () usage from previous examples,
but the rest of the parts correspond to various statements you've seen in the previous section.

Note that off the top of my head, | can think of many many ways to implement this
assignment. If you come up with one that works, good for you! Sure, it might not be the best,
but what is“best”, anyway? (Well, it turns out best is defined as what your professor or boss
thinksis best, but let's be happily theoretical for the moment. Ahhh.)

So! Do some breakdown of the above assignment, and come up with the basic structure
you'd use. In fact, go ahead and code it up, and try it out!

17

5. Functions

With the previous section on building blocks fresh in your head, let's imagine a freaky
world where a program is so complicated, so insidiously large, that once you shove it al into
your nmai n() , it becomes rather unwieldy.

What do | mean by that? The best analogy | can think of isthat programs are best read,
modified, and understood by humans when they are split into convenient pieces, like abook is
most conveniently read when it is split into paragraphs.

Ever try to read a book with no paragraph breaks? It's tough, man, believe me. | once read
through Captain Sngleton by Daniel Defoe since | was afan of his, but Lord help me, the man
didn't put a single paragraph break in there. It was a brutal novel.

But | digress. What we're going to do to help us along is to put some of those building
blocks in their own functions when they become too large, or when they do a different thing
than the rest of the code. For instance, the assignment might call for anumber to be read, then
the sum of all number between 1 and it calculated and printed. It would make sense to put the
code for calculating the sum into a separate function so that the main code a) looks cleaner, and
b) the function can be reused elsewhere.

Reuse is one of the main reasons for having a function. Takethepri nt f () for instance.
It's pretty complicated down there, parsing the format string and knowing how to actually output
charactersto adevice and al that. Imagine if you have to rewrite all that code every single time
you wanted to output a measly string to the console? No, no--far better to put the whole thing in
afunction and let you just call it repeatedly, see?

You've already seen afew functions called, and you've even seen one defined, namely
the almighty mai n() (the definition iswhere you actually put the code that does the work of
the function.) But the mai n() isalittle bit incomplete in terms of how it is defined, and this
isalowed for purely historical reasons. More on that later. Here we'll define and call a normal
function called pl us_one() that take an integer parameter and returns the value plus one:

int plus_one(int n) /* THE DEFI NI TI ON */
{

}

i nt mai n(voi d)

{

return n + 1;

int i =10, j;
j = plus_one(i); /* THE CALL */
printf("i + 1is %\n", j);

return O;

(Before | forget, notice that | defined the function before | used it. If hadn't done that,
the compiler wouldn't know about it yet when it compiles mai n() and it would have given an
unknown function call error. Thereis amore proper way to do the above code with function
prototypes, but we'll talk about that later.)

So here we have afunction definition for pl us_one() . Thefirst word, i nt , isthe
return type of the function. That is, when we come back to useitin mai n() , the value of the
expression (in the case of the call, the expression is merely the call itself) will be of thistype.

18

Beej's Guide to C Programming 19

By wonderful coincidence, you'll notice that the type of j , the variable that is to hold the return
value of the function, is of the sametype, i nt . Thisis completely on purpose.

Then we have the function name, followed by a parameter list in parenthesis. These
correspond to the values in parenthesis in the call to the function...but they don't have to have
the same names. Notice we cal it withi , but the variable in the function definition is named n.
Thisis ok, since the compiler will keep track of it for you.

Insidethe pl us_one() itself, we're doing a couple things on one line here. We have an
expressionn + 1 that isevaluated before the return statement. So if we pass the value 10 into
the function, it will evaluate 10 + 1, which, in this universe, comesto 11, and it will return
that.

Once returned to the call back in mai n() , we do the assignment into j , and it takes on the
return value, which was 11. Hey look! j isnow i plusone! Just like the function was supposed
to do! Thiscallsfor acelebration!

[GENERIC PARTY SOUNDS]

Ok, that's enough of that. Now, a couple paragraphs back, | mentioned that the namesin the
parameter list of the function definition correspond to the values passed into the function. In the
case of pl us_one(), you can call it any way you like, aslong asyou call it with ani nt -type
parameter. For example, al these calls are valid:

int a=5 b =10

pl us_one(a); /* the type of a is int */
pl us_one(10); /* the type of 10 is int */
pl us_one(1+10); /* the type of the whole expression is still int */
pl us_one(a+10); /* the type of the whole expression is still int */
pl us_one(a+b); /* the type of the whole expression is still int */

pl us_one(plus_one(a)); /* oooo! return value is int, so it's ok! */

If you're having trouble wrapping your head around that last line there, just take it one
expression at atime, starting at the innermost parentheses (because the innermost parentheses
are evaluated first, rememeber?) So you start at a and think, that'savalidi nt to call the
function pl us_one() with, sowecall it, and that returnsani nt , and that's avalid type to call
the next outer pl us_one() with, so we're golden.

Hey! What about the return value from al of these? We're not assigning it into anything!
Whereisit going? Well, on the last line, the innermost call to pl us_one() isbeing used to call
pl us_one() again, but aside from that, you're right--they are being discarded completely. This
islegal, but rather pointless unless you're just writing sample code for demonstration purposes.

It'slike we wrote “5” down on adlip of paper and passed it to the pl us_one() function,
and it went through the trouble of adding one, and writing “6” on adlip of paper and passing
it back to us, and then we merely just throw it in the trash without looking at it. We're such
bastards.

| have said the word “value” a number of times, and there's a good reason for that. When
we pass parameters to functions, we're doing something commonly referred to as passing by
value. Thiswarrants its own subsection.

5.1. Passing by Value

When you pass avalue to afunction, a copy of that value gets made in this magical
mystery world known as the stack. (The stack isjust a hunk of memory somewhere that the
program allocates memory on. Some of the stack is used to hold the copies of valuesthat are
passed to functions.)

Beej's Guide to C Programming 20

The practical upshot of thisisthat since the function is operating on a copy of the value,
you can't affect the value back in the calling function directly. Like if you wanted to increment a
value by one, thiswould NOT work:

void increnent (int a)

{
}

i nt mai n(voi d)

{

a++;

int i = 10;
increment (i);

return O;

Wait a minute, wait a minute--hold it, hold it! What'sthisvoi d return type on this
function? Am | trying to pull afast one on you? Not at all. Thisjust means that the function
doesn't return any value. Relax!

So anyway, if | might be alowed to get on with it, you might think that the value of i
after the call would be 11, since that's what the ++ does, right? This would be incorrect. What is
really happening here?

Well, when you passi tothei ncrenment () function, a copy gets made on the stack, right?
It'sthe copy that i ncr ement () workson, not the original; the origina i is unaffected. We even
gave the copy aname: a, right? It's right there in the parameter list of the function definition. So
we increment a, sure enough, but what good does that do us? None! Hal

That's why in the previous example with the pl us_one() function, we returned the locally
modified value so that we could see it againin mai n() .

Seems alittle bit restrictive, huh? Like you can only get one piece of data back from a
function, iswhat you're thinking. Thereis, however, another way to get data back; people
call it passing by reference. But no fancy-schmancy name will distract you from the fact that
EVERYTHING you pass to afunction WITHOUT EXCEPTION is copied onto the stack and the
function operates on that local copy, NO MATTER WHAT. Remember that, even when we're
talking about this so-called passing by reference.

But that's a story for another time.

5.2. Function Prototypes

Soif you recall back in theice age afew sections ago, | mentioned that you had to define
the function before you used it, otherwise the compiler wouldn't know about it ahead of time,
and would bomb out with an error.

Thisisn't quite strictly true. Y ou can notify the compiler in advance that you'll be using
afunction of acertain type that has a certain parameter list and that way the function can be
defined anywhere at all, aslong as the function prototype has been declared first.

Fortunately, the function prototypeisrealy quite easy. It's merely a copy of thefirst line of
the function definition with a semicolon tacked on the end for good measure. For example, this
code calls afunction that is defined later, because a prototype has been declared first:

int foo(void); /* this is the prototype! */

i nt mai n(voi d)

{

int i;

Beej's Guide to C Programming 21

i = foo();

return O;

}

int foo(void) /* this is the definition, just |like the prototype! */
{

}

return 3490;

Y ou might notice something about the sample code we've been using...that is, we've been
using the good old pri nt f () function without defining it or declaring a prototype! How do we
get away with this lawlessness? We don't, actually. Thereis a prototype; it'sin that header file
st di 0. h that we included with #i ncl ude, remember? So we're still legit, officer!

6. Variables, The Sequel

Just when you thought it was safe to know everything there was to know about variables,
this section of the guide lunges at you from the darkness! What?! There's more?

Yes, I'm sorry, but I'm afraid there is. We're going to talk about a couple thingsin this
section that increase the power you have over variables TO THE EXTREME. Y es, by now you
realize that melodramais a well-respected part of this guide, so you probably weren't even taken
off-guard by that one, ironically.

Where was 1? Oh, yes; let's talk about variable scope and storage classes.

6.1. “Up Scope”

Y ou recall how in some of those functions that we previously defined there were variables
that were visible from some parts of the program but not from others? Well, if you can use a
variable from a certain part of a program, it's said to be in scope (as opposed to out of scope.) A
variable will be in scopeif it is declared inside the block (that is, enclosed by squirrley braces)
that is currently executing.

Take alook at this example:

int frotz(int a)

{
int b;

b
a
c

10; /* in scope (fromthe |ocal definition) */
20; /* in scope (fromthe paraneter list) */
30; /* ERROR, out of scope (declared in another block, in main()) */

i nt mai n(voi d)
int c;

c
b

20; /* in scope */
30; /* ERROR, out of scope (declared above in frotz()) */

return O;

So you can see that you have to have variables declared locally for them to be in scope.
Also note that the parameter a is also in scope for the function f r ot z()

What do | mean by local variables, anyway? These are variable that exist and are visible
only in asingle basic block of code (that is, code that is surrounded by squirrley braces) and,
basic blocks of code within them. For instance:

i nt mai n(voi d)
{ /* start of basic block */
int a=5; /* local to main() */

if (al=0) {
int b =10; /* local to if basic block */

a =b; /* perfectly legal--both a and b are visible here */

}

b =12; /* ERROR -- b is not visible out here--only in the if */

{ /* notice | started a basic block with no statement--this is |legal */

22

Beej's Guide to C Programming 23

int ¢c =12
int a; /* Hey! Wit! There was already an "a" out in main! */

/* the a that is local to this block hides the a frommain */
a==c; /* this nodified the a local to this block to be 12 */

}

/* but this a back in main is still 10 (since we set it in the if): */
printf("%l\n", a);

return O;

There'salot of stuff in that example, but all of it is basically a presentation of asimplerule:
when it comes to local variables, you can only use them in the basic block in which they are
declared, or in basic blocks within that. Look at the “ERROR” line in the example to see exactly
what won't work.

Let'sdigress for a second and take into account the special case of parameters passed to
functions. These are in scope for the entire function and you are free to modify them to your
heart's content. They are just like local variables to the function, except that they have copies of
the data you passed in, obvioudly.

voi d foo(int a)
{

int b;

a="b; /* totally legal */
}

6.1.1. Global variables

There are other types of variables besides|ocals. There are global variables, for instance.
Sounds grand, huh. Though they're aren't exactly the chicken's pgamas for a number of reasons,
they're still a powerful piece of the language. Wield this power with care, since you can make
code that's very hard to maintain if you abuse it.

A global variableis visible thoughout the entire file that it is defined in (or declared
in--more on that later). Soit'sjust like alocal, except you can use it from anyplace. | guess,
then, it'srather not like alocal at al. But here's an example:

#i ncl ude <stdi o. h>

/* this is a global variable. W know it's global, because it's */

/* been declared in "global scope", and not in a basic bl ock somewhere */
int g = 10;

voi d afunc(int x)

{
}

i nt mai n(voi d)

{

g =X; /* this sets the global to whatever x is */

g = 10; /* global g is now 10 */
afunc(20); /* but this function will set it to 20 */
printf("%l\n", g); /* so this will print "20" */

return O;

Beej's Guide to C Programming 24

Remember how local variables go on the stack? Well, globals go on the heap, another
chunk of memory. And never the twain shall meet. Y ou can think of the heap as being more
“permanent” than the stack, in many ways.

Now, | mentioned that globals can be dangerous. How is that? Well, one thing you could
imagine is alarge-scale project in which there were a bazillion globals declared by abazillion
different programmers. What if they named them the same thing? What if you thought you were
using alocal, but you had forgotten to declare it, so you were using the global instead?

(Ooo. That's agood side note: if you declare alocal with the same name as aglobal, it
hides the global and all operations in the scope will take place on the local variable.)

What else can go wrong? Sometimes using global variables encourages people to not
structure their code as well as they might have otherwise. It's agood idea to not use them until
there simply is no other reasonable way to move data around.

Another thing to consider isthis: doesit actually make sense to have this data stored
globally for all to see? For example, if you have a game where you use “the temperature of the
world” in alot of different places, that might be a good candidate for aglobal varible. Why?
Becauseit'sapain to passit around, and everyone has the same need for it.

On the other hand, “the temperature of this guy's little finger” might not be of so much
interest to the rest of the universe. It'd be better to store that datain away that's more associated
with the guy than globally. We'll talk more later about associating data with things (nice and
vague, huh?) later.

6.2. Storage Classes

What is a storage class? It's a class of storing variables.

Y ou're welcome.

Don't get this confused with any C++ class, either, sinceit's not at all the same thing.

So what does a storage class declaration do? It tells the compiler where to store the data,
such as on the stack or on the heap, or if variable data storage is already declared elsewhere.

“What?’

Let'sjust get some examplesin there and it'll make more sense.

6.2.1. Gimme some static!

Ready? Here's an example: I'm sitting on BART (the Bay Area Rapid Transit subway) as|
type this on my way home from work. There is a young couple happily canoodling each other in
the seat in front of me, and it's completely distracting.

...Er, what. No, an example! Yes! Ok, hereitis:

voi d print_plus_one(voi d)

{

static int a=0; /* static storage class! */
printf("%l\n", a);

at++; /* increnment the static value */

i nt mai n(voi d)

*/
*/
*/
*/
*/

print_plus_one(); /* prints "
print_plus_one(); /* prints "
print_plus_one(); /* prints "

RN RQ

print_plus_one(); /* prints "
print_plus_one(); /* prints "

return O;

Beej's Guide to C Programming 25

! |

What have we here? How can this magic be? Isn't that alocal variablein
print_pl us_one() and doesn't it get allocated on the stack and doesn't it go away after the
function returns? How can it possibly remember the value from the last call?

The answer: it uses the modern day magic that isthe st at i ¢ keyword. Thisdirective
(given before the type) tells the compiler to actually store this data on the heap instead of the
stack! Ooooo! Remember how the heap can be thought of as more permanent? Well, the value
getsinitialized once (in the definition), and it never getsinitialized again, so al operations on it
are cumulative.

You'll probably see more use for this later, but it's common enough that you should know
about it.

6.2.2. Other Storage Classes

There are other storage classes, yes. The default is aut o, which you never seein the wild
sinceit's default.

Another isext er n which tells the compiler that the definition of the variableisin a
different file. Thisallows you to reference aglobal variable from afile, evenif its definitionis
somewhere else. It would be illegal to defineit twice, and sinceit's global it'd be nice to have it
available across different source files.

I know, | know. It's hard to imagine now, but programs do get big enough to span multiple
fileseventualy. : -)

7. Pointers--Cower In Fear!

Pointers are one of the most feared thingsin the C language. In fact, they are the one thing
that makes this language challenging at all. But why?

Because they, quite honestly, can cause el ectric shocks to come up through the keyboard
and physically weld your arms permantly in place, cursing you to alife at the keyboard.

WEell, not really. But they can cause huge headaches if you don't know what you're doing
when you try to mess with them.

7.1. Memory and Variables

Computer memory holds data of all kinds, right? It'll hold f | oat s, i nt S, or whatever you
have. To make memory easy to cope with, each byte of memory isidentified by an integer.
These integers increase sequentially as you move up through memory. Y ou can think of it asa
bunch of numbered boxes, where each box holds a byte of data. The number that represents each
box is called its address.

Now, not all datatypes use just abyte. For instance, al ong is often four bytes, but it really
depends on the system. Y ou can usethe si zeof () operator to determine how many bytes of
memory a certain type uses. (I know, si zeof () looks more like afunction than an operator, but
therewe are.)

printf("a long uses % bytes of menmory\n", sizeof(long));

When you have a data type that uses more than a byte of memory, the bytes that make
up the data are aways adjacent to one another in memory. Sometimes they're in order, and
sometimes they're not, but that's platform-dependent, and often taken care of for you without
you needing to worry about pesky byte orderings.

So anyway, if we can get on with it and get a drum roll and some forboding music playing
for the definition of a pointer, a pointer is the address of some data in memory. Imagine the
classical score from 2001: A Space Odessey at this point. Ba bum ba bum babum BAAAAH!

Ok, so maybe a bit overwrought here, yes? There's not alot of mystery about pointers.
They are the address of data. Just likeani nt can be 12, apointer can be the address of data.

Often, we like to make a pointer to some data that we have stored in avariable, as opposed
to any old random data out in memory whereever. Having a pointer to avariable is often more
useful.

So if wehaveani nt, say, and we want a pointer to it, what we want is some way to get
the address of that i nt , right? After all, the pointer isjust the address of the data. What operator
do you suppose we'd use to find the address of thei nt ?

Well, by a shocking suprise that must come as something of a shock to you, gentle reader,
we use the addr ess- of operator (which happens to be an ampersand: “&”) to find the address
of the data. Ampersand.

So for aquick example, we'll introduce a new format specifier for printf () soyou
can print a pointer. You know already how % prints a decimal integer, yes? Well, %p prints
apointer. Now, this pointer is going to look like a garbage number (and it might be printed in
hexidecimal instead of decimal), but it is merely the number of the box the datais stored in. (Or
the number of the box that the first byte of datais stored in, if the data is multi-byte.) In virtually
all circumstances, including this one, the actual value of the number printed is unimportant to
you, and | show it here only for demonstration of the addr ess- of operator.

#i ncl ude <stdio. h>

26

Beej's Guide to C Programming 27

i nt mai n(voi d)

{

int i = 10;
printf("The value of i is %, and its address is %\n", i, &);
return O;

On my laptop, this prints:

The value of i is 10, and its address is Oxbffff964

(I can show off a bit here, and say that from experience the address to me looks like its on
the stack...and it is, since it'salocal variable, and all locals go on the stack. Am | cool or what.
Don't answer that.)

7.2. Pointer Types

WEell, thisis al well and good. Y ou can now successfully take the address of avariable and
print it on the screen. There's alittle something for the ol* resume, right? Here's where you grab
me by the scruff of the neck and ask politely what the frick pointers are good for.

Excellent question, and we'll get to that right after these messages from our sponsor.

ACME ROBOTI C HOUSI NG UNI T CLEANI NG SERVI CES. YOUR HOVESTEAD W LL BE
DRAMATI CALLY | MPROVED OR YOU W LL BE TERM NATED. MESSAGE ENDS.

Welcome back to another installment of Begj's Guide to Whatever. When we met last we
were talking about how to make use of pointers. Well, what we're going to do is store a pointer
off in avariable so that we can use it later. Y ou can identify the pointer type because there's an
asterisk (*) before the variable name and after itstype:

i nt mai n(voi d)

{
int i; /* i's typeis "int" */
int *p; /* p's type is "pointer to an int", or "int-pointer" */

return O;

Hey, so we have here avariable that is a pointer itself, and it can point to other i nt s. We
know it pointstoi nt s, sinceit's of typei nt * (read “int-pointer™).

When you do an assignment into a pointer variable, the type of the right hand side of the
assignment has to be the same type as the pointer variable. Fortunately for us, when you take the
addr ess- of avariable, the resultant typeis a pointer to that variable type, so assignments like
the following are perfect:

int i;
int *p; /* pis a pointer, but is uninitialized and points to garbage */

p=2&; /* pnow"points to" i */

Get it? | know is still doesn't quite make much sense since you haven't seen an actual use
for the pointer variable, but we're taking small steps here so that no one gets lost. So now, let's
introduce you to the anti-address-of, operator. It's kind of like what addr ess- of would be like
in Bizarro World.

Beej's Guide to C Programming 28

7.3. Dereferencing

A pointer, also known as an address, is sometimes also called areference. How in the
name of all that is holy can there be so many terms for exactly the same thing? | don't know the
answer to that one, but these things are all equivalent, and can be used interchangably.

The only reason I'm telling you thisis so that the name of this operator will make any sense
to you whatsoever. When you have a pointer to avariable (AKA “areferenceto avariable’),
you can use the original variable through the pointer by dereferencing the pointer. (Y ou can
think of thisas " de-pointering” the pointer, but no one ever says “de-pointering”.)

What do | mean by “get access to the original variable’? Well, if you have avariable called
i , and you have apointer toi called p, you can use the dereferenced pointer p exactly asif it
werethe original variablei !

Y ou amost have enough knowledge to handle an example. The last tidbit you need to
know is actually this: what is the dereference operator? It is the asterisk, again: *. Now, don't
get this confused with the asterisk you used in the pointer declaration, earlier. They are the same
character, but they have different meanings in different contexts.

Here's afull-blown example:

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
int i;
int *p; [// this is NOT a dereference--this is a type "int*"

p & ; // p now points to

i =10; // i is now 10
*p =20; // i (yes i!) is now 20!

printf("i is %\n", i); [l prints "20"
printf("i is %\n", *p); [/ "20"! dereference-p is the same as i

return O;

Remember that p holds the address of i , as you can see where we did the assignment to p.
What the dereference operator does is tells the computer to use the variable the pointer points to
instead of using the pointer itself. In thisway, we have turned * p into an alias of sortsfori .

7.4. Passing Pointers as Parameters

Right about now, you're thinking that you have an awful lot of knowledge about pointers,
but absolutely zero application, right? | mean, what useis* p if you could just smply say i
instead?

WEell, my feathered friend, the real power of pointers comes into play when you start
passing them to functions. Why isthis abig deal? Y ou might recall from before that you could
pass al kinds of parameters to functions and they'd be dutifully copied onto the stack, and then
you could manipulate local copies of those variables from within the function, and then you
could return asingle value.

What if you wanted to bring back more than one single piece of datafrom the function?
What if | answered that question with another question, like this:

What happens when you pass a pointer as a parameter to a function? Does a copy of the
pointer get put on the stack? You bet your sweet peas it does. Remember how earlier | rambled
on and on about how EVERY SNGLE PARAMETER gets copied onto the stack and the function

Beej's Guide to C Programming 29

uses a copy of the parameter? Well, the same is true here. The function will get a copy of the
pointer.

But, and thisisthe clever part: we will have set up the pointer in advance to point at a
variable...and then the function can dereference its copy of the pointer to get back to the original
variable! The function can't see the variable itself, but it can certainly dereference a pointer to
that variable! Example!

#i ncl ude <stdi o. h>
void increnent(int *p) /* note that it accepts a pointer to an int */

*p = *p + 1; /* add one to p */

i nt mai n(voi d)
int i = 10;
printf("i is %\n", i); /* prints "10" */
increment (&); /* note the address-of; turns it into a pointer */
printf("i is %\n", i); /* prints "11"! */

return O;

Ok! There are a couple things to see here...not the least of which isthat thei ncr ement ()
function takesani nt * asaparameter. We passit ani nt * in the call by changing thei nt
variablei toani nt * usingtheaddr ess- of operator. (Remember, a pointer is an address, so
we make pointers out of variables by running them through the addr ess- of operator.)

Thei ncrenent () function getsacopy of the pointer on the stack. Both the original
pointer & (inmai n()) and the copy of the pointer p (ini ncr enent ()) point to the same
address. So dereferencing either will allow you to modify the original variablei ! The function
can modify avariable in another scope! Rock on!

Pointer enthusiasts will recall from early on in the guide, we used a function to read from
the keyboard, scanf () ...and, although you might not have recognized it at the time, we used
the addr ess- of to passapointer to avalueto scanf (). We had to pass a pointer, see, because
scanf () readsfrom the keyboard and stores the result in a variable. The only way it can see
that variable that islocal to that calling function is if we pass a pointer to that variable:

int i = 0;
scanf ("%", &); /* pretend you typed "12" */
printf("i is %\n", i); /* prints "i is 12" */

See, scanf () dereferences the pointer we passit in order to modify the variable it points
to. And now you know why you have to put that pesky ampersand in there!

8. Structures

Y ou've been messing with variables for quite some time now, and you've made a bunch of
them here and there to do stuff, yes? Usually you bundle them into the same basic block and let
it go at that.

Sometimes, though, it makes more sense to put them together into a structure. Thisisa
construct that allows you to logically (or evenillogically, if the fancy takes you) group variables
into, uh, groups. Y ou can then reference the group as awhole. One place this comesin really
handily isif you want to pass 13 bazillion parameters to a function, but don't want the function
declaration to be that long. You just put all the variablesinto a structure (or st r uct , asitis
normally called), and then pass that structure to the function. (Actually, people usually pass a
pointer to the structure, but we'll get to that later.)

So how do you use one of these things? First off, the st r uct itself isanew type. If you
make avariablethat isast ruct f oo, it'stypeis“struct foo”,just asthe number 12 is of
type“i nt ”. Thisisalittle bit spooky because this could be the first time you've created a new
type, and it might be unclear how that works.

Adding to the confusion, it turns out there are multiple ways to create and use a new
st ruct type, and barely any of them are particularly intuitive. We'll have an example of one
way to declareanew st ruct here:

#i ncl ude <stdi o. h>

/* Here we declare the type so we can use it later: */
struct stuff {

int val;

fl oat b;
)5

/* Note that we don't actually have any variables of that type, yet. */
i nt mai n(voi d)

{

/* ok, now let's declare a variable "s" of type "struct stuff" */
struct stuff s;

s.val = 3490; /* assignnent into a struct! */
s.b = 3.14159

printf("The val field in s is: %\n", s.val);

return O;

The compiler allows us to predeclare ast r uct like in the example. We can then use it
later, likewedo in mai n() to assign valuesinto it. When we say thingslikes. val = 3490,
we are using a specia operator to accesstheval field, known as the dot operator (.).

8.1. Pointersto structs

Now let'stalk abit about how to passthese st r uct s around to other functions and stuff. |
mentioned before that you probably want to pass a pointer to the st r uct instead of the st r uct
itself. Why?

30

Beej's Guide to C Programming 31

Don't you hate it when the professor asks you a question like that, but you're too tired in
lecture to care to begin to think about it? “ Just tell me and well get on with it,” iswhat you're
thinking, isn't it.

Fine! Be that way! Well, remember that when you pass parameters to functions, and I'll
clear my throat here in preparation to say again, EVERY PARAMETER WITHOUT FAIL GETS
COPIED ONTO THE STACK when you call a function! So if you have ahuge st r uct that's
like 80,000 bytesin size, it's going to copy that onto the stack when you passit. That takes time.

Instead, why not pass a pointer to the st r uct ? | hear you--doesn't the pointer have to get
copied on the stack then? Sure does, but a pointer is, these days, only 4 or 8 bytes, so it's much
easier on the machine, and works faster.

And there's even alittle bit of syntactic sugar to help access the fieldsin a pointer to a
st ruct . For those that aren't aware, syntactic sugar is afeature of a compiler that simplifies the
code even though there is another way to accomplish the same thing. For instance, |'ve already
mentioned the += a number of times...what doesit do? Did | ever tell you? To be honest, in all
the excitement, I've forgotten myself. Here is an example that shows how it works like another
two operators, but is alittle bit easier to use. It is syntactic sugar:

i =i +12; [/* add 12 to i */

i += 12; /* <-- does exactly the sane thing as "i =i + 12" */
Y ou see? It's not a necessary operator because there's another way to do the same thing, but

people like the shortcut.

But we are way off course, buster. | was talking about pointersto st r uct s, and here we
are talking about how to access them. Here's an example wherein we have ast r uct variable,
and another variable that is a pointer to that st r uct type, and some usage for both (thiswill use
struct stuff from above):

#i ncl ude <stdi o. h>
/* Here we declare the type so we can use it later: */
struct antel ope {

int val;

fl oat sonet hi ng

i nt mai n(voi d)

struct antel ope a;
struct antelope *b; /* this is a pointer to a struct antel ope */

b =8&a; /* let's point b at a for |aughs and gi ggl es */
a.val = 3490; /* normal struct usage, as we've al ready seen */

/* since b is a pointer, we have to dereference it before we can */
/* use it: */

(*b).val = 3491

/* but that |ooks kinda bad, so let's do the exact same thing */
/* except this time we'll use the "arrow operator", which is a */
/* bit of syntactic sugar: */

b->val = 3491; /* EXACTLY the same as (*b).val = 3491; */

return O;

Beej's Guide to C Programming 32

So here we've seen a couple things. For one, we have the manner with which we
dereference apointer to ast r uct and then use the dot operator (.) to accessit. Thisiskind of
the classic way of doing things: we have a pointer, so we dereference it to get at the variable it
points to, then we can treat it asif it isthat variable.

But, syntactic sugar to the rescue, we can use the arrow operator (- >) instead of the dot
operator! Saves us from looking ugly in the code, doesn't? The arrow operator has a build-in
deference, so you don't have to mess with that syntax when you have a pointer to ast r uct . So
theruleisthis: if you haveast r uct , use the dot operator; if you have apointer toast r uct ,
use the arrow operator (- >).

8.2. Passing st ruct pointers to functions

Thisis going to be avery short section about passing pointers to structs to functions.
| mean, you already know how to pass variables as paramters to functions, and you aready
know how to make and use pointersto st r uct s, so there'sreally not much to be said here. An
example should show it straightforwardly enough. (“ Straightforwardly” --there's an oxymoronic
word if ever | saw one.)

Grrrr. Why do | always sit on this side of the bus? | mean, | know that the sun streamsin
here, and | can barely read my screen with the bright light blazing away against it. Y ou think I'd
learn by now. So anyway...

#i ncl ude <stdi o. h>

struct mutantfrog {
int num.l| egs;
int num eyes;

%

voi d build_beejs_frog(struct mutantfrog *f)

{
f->num | egs
f->num eyes

10
1

}

i nt mai n(voi d)
{
struct mutantfrog rudol ph
bui | d_beej s_frog(& udol ph); /* passing a pointer to the struct */

printf("leg count: %l\n", rudol ph.numlegs); /* prints "10" */
printf("eye count: %l\n", rudol ph.numeyes); /* prints "1" */

return O;

Another thing to notice here: if we passed the st uct instead of a pointer to the st r uct,
what would happen in the function bui | d_beej s_f rog() when we changed the values? That's
right: they'd only be changed in the local copy, and not back at out in nai n() . So, in short,
pointersto st r uct s are the way to go when it comesto passing st r uct sto functions.

Just a quick note here to get you thinking about how you're going to be breaking stuff down
into basic blocks. Y ou now have alot of different tools at your disposal: loops, conditionals,
st ruct s, and especially functions. Remember back on how you learned to break down projects
into little pieces and see what you'd use these individual toolsfor.

9. Arrays

What awide array of information we have for you in this section. *BLAM*! We're
sorry--that pun has been taken out and shot.

An array: alinear collection of related data. Eh? It's a continuous chunk of memory that
holds a number of identical datatypes. Why would we want to do that? Well, here's an example
without arrays:

i nt ageoO;
int agel;
int agez;
int age3;
i nt age4;

agel = 10;
printf("age 1 is %\ n", agel);

And here is that same example using the magical power of arrays:

i nt age[5];

age[1] = 10;
printf("age 1 is %\ n", age[1]);

Oo000! See how much prettier that is? Y ou use the square-brackets notation ([]) to access
elementsin the array by putting ani nt variablein there or, like we did in the example, a
constant number. Since you can index the array using a variable, it means you can do thingsin
loops and stuff. Here's a better example:

int i;
int age[5] = {10, 20, 25, 8, 2};

for(i =0; i <5 i++) {
printf("age % is %@\n", i, age[i]);
}

whoa--we've done a couple new things here. for one, you'll notice in the array definition
that we've initialized the entire array at once. thisis allowed in the definition only. once you get
down to the code, it'stoo late to initialize the array like this, and it must be done an element at a
time.

the other thing to notice is how we've accessed the array element inside the for loop: using
age[i].sowhat happensinthisforisthati runsfrom O to 4, and so each age is printed out in
turn, like so:

age 0 is 10
age 1 is 20
age 2 is 25
age 3is 8
age 4 is 2

why doesit run from 0 to 4 instead of 1 to 5? good question. the easiest answer is that
the array index numbers are zero-based instead of one-based. that's not really an answer,
i know...well, it turns out that most (if not all) processors use zero-based indexing in their
machine code for doing memory access, so this maps very well to that.

Y ou can make arrays of any type you desire, including st r uct s, and pointers.

33

Beej's Guide to C Programming 34

9.1. Passing arrays to functions

it's pretty effortless to pass an array to afunction, but things get alittle wierd. the weirdest
part is that when you pass the “whole” array by putting its name in as a parameter to the
function, it's actually a pointer to thefirst element of the array that gets passed in for you.

now, inside the function, you can still access the array using array notation ([]). here's an
example:

void init_array(int a[], int count)
{
int i;
/* for each elenment, set it equal to its index number times 10: */
for(i = 0; i < count; i++)
a[i] =i * 10;
i nt mai n(voi d)
int mydata[10] ;
init_array(ny_data, 10); /* note lack of [] notation */

return O;

A couple things to note here are that we didn't have to specify the array dimension (that is,
how many elements are in the array) in the declaration for i ni t _array() . We could have, but
we didn't have to.

Also, since an array in C has no built-in concept of how big it is (i.e. how many elementsit
holds), we have to be nice and cooperative and actually passin the array size separately into the
function. We use it later in the for to know how many elements to initialize.

Hey! We didn't use the address-of operator in the call! Wouldn't that make a copy of the
array onto the stack? Isn't that bad? Well, no.

When you have an array, leaving off the and square brackets gives you a pointer to the first
element of the array. (Y ou can use the address-of operator if you want, but it actually resultsin a
different pointer type, so it might not be what you expect.) So it is, in fact, a pointer to the array
that's getting copied onto the stack for the function call, not the entire array.

Right about now, you should be recognizing that you can use arrays to hold alot of things,
and that could serve you quite well in your projects which often involve collections of data. For
instance, let's say:

We have avirtual world where we have a number of virtual creatures that run around doing
virtual things. Each creature hasareal X and Y coordinate. There are 12 creatures. Each step of
the simulation, the creatures will process their behavior algorithm and move to a new position.
The new position should be displayed.

Uh oh! Time for building blocks! What do we have? Ok, we need an X and Y coordinate
for the creatures. We need 12 creatures. We need a construct that repeatedly processes the
behavior for each. And we need output.

So the coordinates of the creature. There are afew waysto do this. You could have two
arrays of 12 elements, one to hold the X and one to hold the Y coordinate. (These are known as
parallel arrays.) But let'sinstead try to think of away that we could bundle those data together.
| mean, they're both related to the same virtual creature, so wouldn't it be nice to have them
somehow logically related? If only there were away...but wait! That'sright! A st ruct !

Beej's Guide to C Programming 35

struct creature {
fl oat x;
float y;

There we go. Now we need 12 of them; 12 items of type st ruct creat ure. What'sa
good way of holding a collection of identical types? Yes, yes! Array!

struct creature guys[12];

So what else--we need to be able to repeatedly execute the behavior of these creatures. Like
looping over and over and over...yes, aloop would be good for that. But how many times should
we loop? | mean, the specification didn't tell usthat, so it's an excellent question. Often welll
loop until some exit condition istrue (like the user presses ESCAPE or something like that), but
since the spec writer didn't say, let's just loop forever.

for(;;) { /* loop forever */

Now what? We need to write the behavior of the creatures and put it in the loop, right?
Sincethisisalot of self-contained code we're about to write, we might aswell stick itin a
function and call that function for each of the creatures. But I'll leave the actual implementation
of that function up to you, thereader. : -)

for(i =0; i < 12; i++) {
execut e_behavi or (&(quy[i]));

}

Y ou notice that we did use the address-of operator there in the call. In this case, we're not
passing the whole array; we're just passing a pointer to asingle element in the array. It's not
always necessary to do that (you could have it copy the single element in the call), but since this
isastruct, | passapointer to keep the memory overhead low.

The last thing to do was to output the information. How thisis done should be in the spec,
but isn't. It would be cool to do a hi-resolution screen with little icons for where the creatures
are, but that is currently beyond the scope of what we're doing here, so we'll just write asimple
thing to print out the creatures.

One final note--it's aways a good ideato initialize the data before using it, right? So I'll
write afunction that initializes the creatures, too, before we use it. How it initializes them is also
undefined in the spec, so I'll arbitrarily set them up in adiagonal line.

Completed (except for the behavior) code:

#i ncl ude <stdi o. h>

struct creature {
float x;
float y;

b

voi d execut e_behavi or (struct creature *c)

{
/* does not hi ng now */
/* --you'll have to code it if you want themto ever nove! */

}

mai n(i nt mai n(voi d)
{
int i;
struct creature guys[12];

Beej's Guide to C Programming 36

/* initialize them-could be its own function: */

for(i =0; i < 12; i++) {
guys[i].x (float)i; /* (float) is a "cast"--it changes the type! */
guys[i].y (float)i;

}

/* main | oop */

for(;;) { /* | oop forever */
/* have themdo their thing: */
for(i =0; i < 12; i++) {

execut e_behavi or (& guy[i])):
}

/* output the result */
for(i =0; i < 12; i++) {

printf("creature %d: (% 2f, %2f)\n", i, guys[i].x, guys[i].y);
}

}

return O;

| threw in acast thereinthecode: (f1 oat) . Seei isani nt, but each of the fields
guys[i].xandguys[i].yisafl oat. Thecast changesthe expression right after it, in this
case“i ” to the specified type. It's always a good idea to have the same types on both sides of the
assignment operator (=).

Another new thing isthe “% 2f " inthepri nt f () format string. A plain “% " means
to print af | oat , which iswhat we're passing it. The addtional “. 2” means print it using two
decimal places. You can leave the“. 2” off and see what happens. : -)

10. Strings

A string is atheoretical construct in modern physics that is used to help explain the very
fabric of the universe itself.

Thisis exactly the same as a C string, except that it is, in fact, completely different.

A string in C is a sequence of bytesin memory that usually contains a bunch of letters.
Constant strings in C are surrounded by double quotes (). Y ou may have seen strings beforein
such programming blockbusters, such as Hello World:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
printf("Hello, World!'\n");

return O;

You've spotted the string " Hel | o, Wor |l d!'\ n" in there, haven't you.

What type is that string, anyway? Well, it turns out that a constant string (that is, onein
double quotes) is of type char *. But you can also put astring inachar array, if you so desire.
Thechar * points at the first character in the string. Examples:

char *s = "Hello!";

printf("%\n", s); /* prints "Hello!" */
printf("%\n", *s); /[* prints "H */
printf("%\n", s[0]); /* prints 'H */
printf("%\n", s[1]); /* prints 'e" */
printf("%\n", s[4]); /* prints "o */
(Note the two new format specifiersfor pri nt f () here: % for printing asingle char , and
¥ for printing astring! Ain't that exciting!)
And look here, we're accessing this string in awhole variety of different ways. We're
printing the whole thing, and we're printing single characters.
You can dsoinitialize char arrays during their definition, just like other arrays:

char s[20] = "The aliens are coning!";

And you can change the array elements on the fly, too by simply assigning into it:

char s[20] = "G ve ne $10!";
printf("9%\n", s); /* prints "Gve ne $10!" */
s[9] = '8";
printf("%\n", s); [/* prints "Gve nme $80!" */
In this case, note that we've put a constant char on the right side of the assignment.
Constant char s use the single quote (*).
One more thing to remember is that when you specify an array by name without the square

brackets, it'sjust like using a pointer to the beginning of the array. So you can actualy do
assignments like this:

char a[20] = "Cats are better.";
char *p;

37

Beej's Guide to C Programming 38

p=a [/* p nowpoints to the first char in array a */

One more thing: stringsin C end with a NUL character. That is, a zero. It is most properly
written as "\0', Y ou can truncate a string to zero length by assigning '\O' to the first byte in the
string. Also, al the standard string functions assume the string ends with a NUL character.

Standard string functions, did | say? Yes, | did.

C provides awhole metric slew of functions that you can use to modify strings, stick them
together, parse them apart, and so on. Check out the reference section for all the brilliant string
processing power at your disposal. It isyour responsibility as a citizen of the Planet Earth to
wield this ultimate power wisely! (And pay me $80.)

11. Dynamic Memory

WEéll, aren't you looking dynamic this morning, reader? Or isit evening? | always lose
track of these things.

Up until now, we've been talking about memory that pretty much is set up at the beginning
of the program run. Y ou have constant strings here and there, arrays of predeclared length, and
variables all declared ahead of time. But what if you have something like the following?

Assignment: Implement a program that will read an arbitrary number of integers from the
keyboard. Thefirst line the user enters will be the number of i nt sto read. Thei nt sthemselves
will appear on subsequent lines, onei nt per line.

Yes, it'sthat time again: break it up into component parts that you can implement. Y ou'll
need to read lines of text from the keyboard (there's a cool little function called f get s() that
can help here), and the first line you'll need to convert to an integer so you know how many
more linesto read. (You can use at oi () , read “ascii-to-integer” to do this conversion.) Then
you'll need to read that many more strings and store them...where?

Here's where dynamic memory can help out--we need to store a bunch of i nt s, but we
don't know how many until after the program has already started running. What we do is find
out how many i nt swe need, then we calculate how many bytes we need for each, multiply
those two numbers to get the total number of bytes we need to store everything, and then ask the
OSto allocate that many bytes for us on the heap for us to use in the manner we choose. In this
case, we're choosing to storei nt sin there.

There are three functions we're going to talk about here. Well, make that four functions,
but oneisjust avariant of another: mal | oc() (allocate some memory for usto use), f r ee()
(release some memory that mal | oc() gave usearlier), real | oc() (change the size of some
previously allocated memory), and cal | oc() (just likemal | oc() , except clears the memory to
zero.)

Using these functions in unison results in a beautifully intricate dance of data, ebbing and
flowing with the strong tidal pull of the dedicated user's will.

Y eah. Let's cut the noise and get on with it here.

11.1. mal | oc()

Thisisthe big one: he's the guy that gives you memory when you ask for it. It returns to
you a pointer to a chunk of memory of a specified number of bytes, or NULL if thereis some
kind of error (like you're out of memory). The return typeis actually voi d*, soit canturninto a
pointer to whatever you want.

Sincenal | oc() operatesin bytes of memory and you often operate with other data types
(e.g. “Allocate for me 12i nt s.”), people often use the si zeof () operator to determine how
many bytes to allocate, for example:

int *p;

p = malloc(sizeof (int) * 12); // allocate for me 12 ints!

Oh, and that was pretty much an example of how to use mal | oc() , too. Y ou can reference
the result using pointer arithmetic or array notation; either isfine sinceit's a pointer. But you
should really check the result for errors:

int *p;

p = mall oc(sizeof (float) * 3490); // allocate 3490 fl oats!

39

Beej's Guide to C Programming 40

if (p == NULL) {
printf("Horsefeathers! W' re probably out of menory!\n");
exit(1);

More commonly, people pack this onto one line:

if ((p = mlloc(100)) == NULL) { // allocate 100 bytes
printf("Qoooo! Qut of menory error!\n");
exit(1l);

Now remember this: you're allocating memory on the heap and there are only two ways
to ever get that memory back: 1) your program can exit, or 2) you can call free() tofreea
mal | oc() 'd chunk. If your program runs for along time and keeps mal | oc() ing and never
f ree() ing when it should, it's said to “leak” memory. This often manifestsitself in away
such as, “Hey, Bob. | started your print job monitor program aweek ago, and now it'susing 13
terabytes of RAM. Why isthat?’

Be sure to avoid memory leaks! f r ee() that memory when you're done with it!

11.2.free()

Speaking of how to free memory that you've allocated, you do it with the
implausibly-named f r ee() function.

This function takes as its argument a pointer that you've picked up using mal | oc() (or
cal | oc()). And it releases the memory associated with that data. Y ou really should never use
memory after it hasbeenfr ee() 'd. It would be Bad.

So how about an example:

int *p;
p = malloc(sizeof (int) * 37); // 37 ints!

free(p); // on second thought, never m nd

Of course, betweenthe mal | oc() andthefree(), you can do anything with the memory
your twisted little heart desires.

11.3.real |l oc()

real | oc() isafun little function that takes a chunk of memory you allocated with
mal | oc() (orcal | oc()) and changes the size of the memory chunk. Maybe you thought you
only needed 100 i nt sat first, but now you need 200. You canr eal | oc() theblock to give
you the space you need.

Thisisall well and good, except that r eal | oc() might have to move your data to another
place in memory if it can't, for whatever reason, increase the size of the current block. It's not
omnipotent, after all.

What does this mean for you, the mortal? Well in short, it means you should use
real | oc() sparingly sinceit could be an expensive operation. Usually the procedure isto keep
track of how much room you have in the memory block, and then add another big chunk to it
if you run out. So first you allocate what you'd guess is enough room to hold all the data you'd
require, and then if you happened to run out, you'd reallocate the block with the next best guess
of what you'd require in the future. What makes a good guess depends on the program. Here's an
example that just allocates more “buckets’ of space as needed:

#i ncl ude <stdlib. h>

Beej's Guide to C Programming 41

#define INITIAL_SI ZE 10
#defi ne BUCKET_SI ZE 5

static int data_count; // how many ints we have stored
static int data_size; // how many ints we *can* store in this block
static int *data; // the block of data, itself

i nt mai n(voi d)

{
voi d add_data(int new data); // function prototype
int i;
/[l first, initialize the data area:
data_count = 0;
data_size = I NI TI AL_SI ZE;
data = mall oc(data_size * sizeof(int)); // allocate initial area
/1 now add a bunch of data
for(i =0; i < 23; i++) {
add_data(i);
}
return O;
}

voi d add_data(i nt new_dat a)

{

[/l if data_count == data_size, the area is full and
/! needs to be realloc()'d before we can add anot her:

if (data_count == data_size) {
/[l we're full up, so add a bucket
dat a_si ze += BUCKET Sl ZE;
data = realloc(data, data_size * sizeof(int));

}

/1l now store the data
*(dat atdat a_count) = new_dat a;

[/ ~~~ the above |line could have used array notation, |ike so:
/! data[data_count] = new_dat a;

dat a_count ++;

In the above code, you can see that a potentially expensiver eal | oc() isonly done after
thefirst 10i nt s have been stored, and then again only after each block of five after that. This
beatsdoing ar eal | oc() every time you add a number, hands down.

(Yes, yes, in that completely contrived example, since | know I'm adding 23 numbers right
off the get-go, it would make much more senseto set | NI TI AL_SI ZE to 25 or something, but
that defeats the whole purpose of the example, now, doesn't it?)

11.4. cal I oc()

Since you've already read the section on mal | oc() (you have, right?), this part will be
easy! Yay! Here'sthe scoop: cal | oc() isjust likemal | oc() , except that it 1) clearsthe
memory to zero for you, and 2) it takes two parameters instead of one.

The two parameters are the number of elements that are to be in the memory block, and
the size of each element. Yes, thisis exactly likewedidinmal | oc(), except that cal | oc() is
doing the multiply for you:

Beej's Guide to C Programming 42

/] this:
p = malloc(10 * sizeof(int));

/1 is just like this:

p = calloc(10, sizeof(int));

/1 (and the nenory is cleared to zero when using calloc())
The pointer returned by cal | oc() can beusedwithreal | oc() andfree() justasif you

had used mal | oc() .

The drawback to using cal | oc() isthat it takes time to clear memory, and in most cases,
you don't need it clear since you'll just be writing over it anyway. But if you ever find yourself
mal | oc() ing ablock and then setting the memory to zero right after, you can usecal | oc() to
do that in one call.

| wishthissectionon cal | oc() were more exciting, with plot, passion, and violence, like
any good Hollywood picture, but...thisis C programming we're talking about. And that should
be exciting in its own right. Sorry!

12. More Stuff!

Thisisthe section where we flesh out a bunch of the stuff we'd done before, except in
more detail. We even throw a couple new things in there for good measure. Y ou can read these
sectionsin any order you want and as you feel you need to.

12.1. Pointer Arithmetic

Pointer what? Y eah, that's right: you can perform math on pointers. What does it mean
to do that, though? Well, pay attention, because people use pointer arithmetic all the timeto
mani pulate pointers and move around through memory.

Y ou can add to and subtract from pointers. If you have a pointer to achar , incrementing
that pointer moves to the next char in memory (one byte up). If you have apointer toani nt,
incrementing that pointer movesto the next i nt in memory (which might be four bytes up,
or some other number depending on your CPU architecture.) It'simportant to know that the
number of bytes of memory it moves differs depending on the type of pointer, but that's actually
all taken care of for you.

/* This code prints: */

/* 50 */
/* 99 */
/* 3490 */

i nt mai n(voi d)

{
int a[4] = { 50, 99, 3490, 0 };
int *p;

p =3
while(*p > 0) {
printf("%\n", *p);
p++; /* go to the next int in menory */

}

return O;

What have we done! How does this print out the valuesin the array? First of al, we point
p at the first element of the array. Then we're going to loop until what p points at is less than or
equal to zero. Then, inside the loop, we print what p is pointing at. Finaly, and here's the tricky
part, we increment the pointer. This causes the pointer to move to the nexti nt in memory so
we can print it.

In this case, I've arbitrarily decided (yeah, it's shockingly true: | just make all this stuff up)
to mark the end of the array with azero value so | know when to stop printing. Thisis known
asasentinel value...that is, something that lets you know when some data ends. If this sounds
familiar, it's because you just saw it in the section on strings. Remember--strings end in azero
character (' \ 0') and the string functions use this as a sentinel value to know where the string
ends.

Lots of times, you see afor loop used to go through pointer stuff. For instance, here's some
code that copies a string:

char *source = "Copy ne!";
char dest[20]; /* we'll copy that string into here */

char *sp; [/* source pointer */

43

Beej's Guide to C Programming 44

char *dp; /* destination pointer */

for(sp = source, dp = dest; *sp !="'\0"; sp++, dp++) {
“dp = *sp;
}

printf("%\n", dest); /* prints "Copy ne!" */

L ooks complicated! Something new here is the comma operator (,). The comma operator
allows you to stick expressions together. The total value of the expression is the rightmost
expression after the comma, but all parts of the expression are evaluated, |€eft to right.

So let's take apart this for loop and see what's up. In the initialization section, we point sp
and dp to the source string and the destination area we're going to copy it to.

In the body of the loop, the actual copy takes place. We copy, using the assignment
operator, the character that the source pointer pointsto, to the address that the destination
pointer pointsto. So in this way, we're going to copy the string a letter at atime.

The middle part of the for loop is the continuation condition--we check hereto seeif the
source pointer points at a NUL character which we know exists at the end of the source string.
Of course, at first, it'spointingat' C (of the“Copy me!” string), so we're free to continue.

At the end of the for statement we'll increment both sp and dp to move to the next
character to copy. Copy, copy, copy!

12.2. typedef

This oneisn't too difficult to wrap your head around, but there are some strange nuances
to it that you might see out in the wild. Basically typedef allows you to make up an aliasfor a
certain type, so you can reference it by that name instead.

Why would you want to do that? The most common reason is that the other nameisalittle
bit too unwieldy and you want something more concise...and this most commonly occurs when
you haveast r uct that you want to use.

struct a_structure_with_a_large_nanme {
int a;
float b;
)i ¢
typedef struct a_structure_wi th_a_| arge_name NAMESTRUCT;
i nt mai n(voi d)
{
/* we can make a variable of the structure like this: */
struct a_structure_with_a_|arge_nanme one_vari abl e;

/* OR, we can do it like this: */
NAMESTRUCT anot her _vari abl e;

return O;

In the above code, we've defined a type, NAVMESTRUCT, that can be used in place of the
other type, struct a_structure_wi th_a_| arge_nane. Notethat thisis now afull-blown
type; you can use it in function calls, or whereever you'd use a“normal” type. (Don't tell
typedef'd types they're not normal--it'simpolite.)

Y ou're probably aso wondering why the new type nameisin all caps. Historically,
typedef'd types have been al capsin C by convention (it's certainly not necessary.) In C++, this
isno longer the case and people use mixed case more often. Since thisis a C guide, well stick to
the old ways.

Beej's Guide to C Programming 45

(One thing you might commonly seeisast r uct with an underscore beforethe st r uct
tag name in the typedef. Though technically illegal, many programmers like to use the same
name for the st r uct asthey do for the new type, and putting the underscore there differentiates
the two visaully. But you shouldn't do it.)

Y ou can aso typedef “anonymous’ st r uct s, like this

typedef struct {
int a;
float b;

} soneDat a;

So then you can define variables as type soneDat a. Very exciting.

12.3. enum

Sometimes you have alist of numbers that you want to use to represent different things, but
it's easier for the programmer to represent those things by name instead of number. Y ou can use
an enumto make symbolic names for integer numbers that programmers can use later in their
codeinplaceof i nts.

(I should note that C is more relaxed that C++ is here about interchanging i nt sand enuns.
WEe'l be al happy and C-like here, though.)

Note that an enumis atype, too. You can typedef it, you can pass them into functions, and
so on, again, just like “normal” types.

Here are some enums and their usage. Remember--treat them just likei nt s, more or less.

enum fishtypes {
HALI BUT,
TUBESNOUT,
SEABASS,
ROCKFI SH

i nt mai n(voi d)

enum fi shtypes fishl = SEABASS;
enum fi shtypes fish2

if (fishl == SEABASS) {
fi sh2 = TUBESNOUT;
}

return O;

Nothing to it--they're just symbolic names for unique numbers. Basically it's easier for
other programmers to read and maintain.

Now, you can print them out using % inpri nt f (), if you want. For the most part,
though, there's no reason to know what the actual number is; usually you just want the symbolic
representation.

But, since | know you're dying of curiosity, | might as well tell you that the enuns start
at zero by default, and increase from there. So in the above example, HALI BUT would be O,
TUBESNOUT would be 1, and ROCKFI SHwould be 3.

If you want, though, you can override any or al of these:

enum frogtypes {
THREELEGGED=3,
FOUREYED,
S| XHEADED=6

Beej's Guide to C Programming 46

[} |

In the above case, two of the enums are explicitly defined. For FOUREYED (which isn't
defined), it just increments one from the last defined value, so itsvalue is4. You can, if you're
curious, have duplicate values, but why would you want to, sicko?

12.4. More struct declarations

Remember how, many moons ago, | mentioned that there were a number of waysto
declare st r uct sand not al of them made awhole lot of sense. We've already seen how to
declareast ruct globally to use later, aswell as one in atypedef situation, comme ca:

/* standal one: */

struct antel ope {
int | egcount;
fl oat angryfactor;

Ji 5
/[* or with typedef: */

typedef struct _goatcheese {
char victi m name[40] ;
fl oat cheesecount;

} GOATCHEESE;

But you can also declare variables along with the st r uct declaration by putting them
directly afterward:

struct breadtoppi ng {
enum t oppi ngt ype type; /* BUTTER, MARGARI NE or MARM TE */
fl oat anmpunt;

} nytoppi ng;

/* just like if you' d |ater declared: */

struct breadtoppi ng nytoppi ng;

So there we've kinda stuck the variable defintion on the tail end of the st r uct definition.
Pretty sneaky, but you see that happen from time to time in that so-called Real Life thing that |
hear so much about.

And, just when you thought you had it all, you can actually omit the struct name in many
cases. For example:

typedef struct { /* <--Hey! W left the nane off! */
char name[100] ;
int num novi es;

} ACTOR_PRESI DENT;

It's more right to name all your st r uct s, even if you don't use the proper name and only
use the typedef'd name, but you still see those naked st r uct s here and there.

12.5. Command Line Arguments

I've been lying to you this whole time, | must admit. | thought | could hide it from you and
not get caught, but you realized that something was wrong...why doesn't the mai n() havea
return type or argument list?

Well, back in the depths of time, for some reason, !'! TODO research!!! it was perfectly
acceptable to do that. And it persists to this day. Feel free to do that, in fact, But that's not telling
you the whole story, and it's time you knew the whole truth!

Beej's Guide to C Programming 47

Welcome to the real world:

int main(int argc, char **argv)

Whoa! What is all that stuff? Before | tell you, though, you have to realize that programs,
when executed from the command line, accept arguments from the command line program, and
return aresult to the command line program. Using many Unix shells, you can get the return
value of the program in the shell variable $?. (This doesn't even work in the windows command
shell--use 1! TODO look up windows return variable!!! instead.) And you specify parameters
to the program on the command line after the program name. So if you have a program called
“makemoney”, you can run it with parameters, and then check the return value, like this:

$ makenoney fast al ot
$ echo $?

In this case, we've passed two command line arguments, “fast” and “alot”, and gotten a
return value back in the variable $?, which we've printed using the Unix echo command. How
does the program read those arguments, and return that value?

Let'sdo the easy part first: the return value. Y ou've noticed that the above prototype for
mai n() returnsani nt. Swell! So all you have to do is either return that value from nai n()
somewhere, or, alternatively, you can call the function exi t () with an exit value asthe
parameter:

i nt mai n(voi d)
{
int a=12;
if (a==2) {
exit(3); /* just like running (fromnain()) "return 3;" */
}

return 2; /* just like calling exit(2); */

For historical reasons, an exit status of 0 has meant success, while nonzero means failure.
Other programs can check your program's exit status and react accordingly.

Ok that's the return status. What about those arguments? Well, that whole definition of
ar gv looks too intimidating to start with. What about thisar gc instead? It'sjust ani nt , and
an easy one at that. It contains the total count of arguments on the command line, including the
name of the program itself. For example:

$ makenoney fast al ot # <
$ makenoney # <-- argc == 1
$ makenoney 1 2 3 4 5 # <

(The doallar sign, above, isacommon Unix command shell prompt. And that hash mark (#)
is the command shell comment character in Unix. I'm a Unix-dork, so you'll have to deal. If you
have a problem, talk to those friendly Stormtroopers over there.)

Good, good. Not much to that ar gc busi ness, either. Now the biggie: ar gv. Asyou
might have guessed, this is where the arguments themselves are stored. But what about that
char ** type? What do you do with that? Fortunately, you can often use array notation in the
place of a dereference, since you'll recall arrays and pointers are related beasties. In this case,
you can think of ar gv as an array of pointers to strings, where each string pointed to is one of
the command line arguments:

Beej's Guide to C Programming 48

$ makenoney sonewhere sonmehow
$ # argv[O0] argv[1] argv[2] (and argc is 3)
Each of these array elements, ar gv[0], ar gv[1] , and so on, isastring. (Remember a
string isjust a pointer to achar or an array of char s, the name of which is a pointer to the first
element of the array.)
I haven't told you much of what you can do with strings yet, but check out the reference
section for more information. What you do know ishow to pri nt f () astring using the “%s”
format specifier, and you do know how to do aloop. So let's write a program that simply prints

out its command line arguments, and then sets an exit status value of 4:

/* showargs.c */
#i ncl ude <stdi o. h>
int main(int argc, char **argv)
{
int i;
printf("There are % things on the command |ine\n", argc);
printf("The programnane is \"%\"\n", argv[O];
printf("The argunments are:\n");
for(i =1; i < argc; i++) {
printf(" %\ n", argv[i]);
}
return 4; /* exit status of 4 */
}

Note that we started printing arguments at index 1, since we already printed ar gv[0]
before that. So sample runs and output (assuming we compiled thisinto a program called
showar gs):

$ showar gs al pha bravo
There are 3 things on the command |ine
The program name is "showargs"
The argunments are
al pha
br avo

$ showar gs

There are 1 things on the command |ine
The program name is "showargs"

The argunents are

$ showargs 12

There are 2 things on the conmand |ine
The program name i s "showargs"

The argunments are

(The actual thing in ar gv[0] might differ from system to system. Sometimesit'll contain
some path information or other stuff.)
So that's the secret for getting stuff into your program from the command line!

Beej's Guide to C Programming 49

12.6. Multidimensional Arrays

Welcome to...the Nth Dimension! Bet you never thought you'd see that. Well, here we are.
Y up. The Nth Dimension.

Ok, then. Well, you've seen how you can arrange sequences of datain memory using an
array. It looks something like this:

IMTODO image of 1d array

Now, imagine, if you will, agrid of elementsinstead of just asingle row of them:

Thisis an example of atwo-dimensional array, and can be indexed by giving arow number
and a column number as the index, like this: a[2] [10] . Y ou can have as many dimensionsin
an array that you want, but I'm not going to draw them because 2D is already past the limit of
my artistic skills.

So check this code out--it makes up atwo-dimensional array, initializesit in the definition
(see how we nest the squirrely braces there during the init), and then uses a nested loop (that is,
aloop inside another loop) to go through all the elements and pretty-print them to the screen.

#i ncl ude <stdio. h>

i nt mai n(voi d)
{
int a[2][5] ={ { 10, 20, 30, 40, 55}, /* [2][5] == [rows][cols] */

{ 10, 18, 21, 30, 44} };

int i, j;

for(i =0; i < 2; i++) { [* for all the rows... */
for(j =0; j <5; j++) { /* print all the col ums! */
printf("od ", a[i][j]);

}

/* at the end of the row, print a newine for the next row */
printf("\n");
}

return O;

Asyou might well imagine, since there really is no surprise ending for a program so simple
asthis one, the output will look something like this:

10 20 30 40 55
10 18 21 30 44

Hold on for a second, now, since we're going to take this concept for aspin and learn a
little bit more about how arrays are stored in memory, and some of tricks you can use to access
them. First of al, you need to know that in the previous example, even though the array has two
rows and is multidimensional, the data is stored sequentially in memory in this order: 10, 20, 30,
40, 55, 10, 18, 21, 30, 44.

See how that works? The compiler just puts one row after the next and so on.

But hey! Isn't that just like a one-dimensional array, then? Y es, for the most part, it
technically is! A lot of programmers don't even bother with multidimensional arrays at all, and
just use single dimensional, doing the math by hand to find a particular row and column. Y ou
can't technically just switch dimensions whenever you fedl like it, Buccaroo Bonzai, because the
types are different. And it'd be bad form, besides.

For instance...nevermind the “for instance”. Let's do the same example again using asingle
dimensional array:

Beej's Guide to C Programming 50

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
int a[10] = { 10, 20, 30, 40, 55, [/* 10 elenents (2x5) */

10, 18, 21, 30, 44 };

int i, j;

for(i =0; i <2; i++) { [* for all the rows... */
for(j =0; j <5; j++) { /* print all the colums! */
int index = i*5 + j; /* calc the index */
printf("% ", a[index]);
}

/* at the end of the row, print a newline for the next row */
printf("\n");
}

return O;

So in the middle of the loop we've declared alocal variablei ndex (yes, you can do
that--remember local variables are local to their block (that is, local to their surrounding
squirrley braces)) and we calculate it usingi andj . Look at that calculation for a bit to make
sureit's correct. Thisistechnically what the compiler does behind your back when you accessed
the array using multidimensional notation.

12.7. Casting and promotion
Sometimes you have atype and you want it to be a different type. Here's a great example:

i nt mai n(voi d)

int a = 5;
int b = 10;
float f;

f =a/ b; [/* calculate 5 divided by 10 */
printf("%2f\n", f);

return O;

And this prints:

..What? Five divided by 10 is zero? Since when? I'll tell you: since we entered the world
of integer-only division. When you divide onei nt by another i nt , theresultisani nt, and
any fractional part isthrown away. What do we do if we want the result to become af | oat
somewhere along the way so that the result is correct?

Turns out, either integer (or both) in the divide can be made into af | oat , and then the
result of the divide will be also be af | oat . So just change one and everything should work out.

“Get on with it! How do you cast?’ Oh yeah--I guess | should actually do it. Y ou might
recall the cast from other parts of this guide, but just in case, we'll show it again:

f = (float)a / b; [* calculate 5 divided by 10 */

Beej's Guide to C Programming 51

Bam! Thereisis! Putting the new type in parensin front of the expression to be converted,
and it magically becomes that type!

Y ou can cast almost anything to almost anything else, and if you mess it up somehow, it's
entirely your fault since the compiler will blindly do whatever you ask. : -)

12.8. Incomplete types

Thistopic isalittle bit more advanced, but bear with it for abit. An incomplete typeis
simply the declaration of the name of a particular st r uct , put there so that you can use pointers
tothest ruct without actually knowing the fields stored therein. It most often comes up when
people don't want to #include another header file, which can happen for avariety of different
reasons.

For example, here we use a pointer to atype without actually having it defined anywherein
mai n() . (It is defined elsewhere, though.)

struct foo; /* inconplete type! Notice it's, well, inconplete. */
i nt mai n(voi d)
{

struct foo *w,

w = get _next_wonbat(); /* grab a wonbat */
process_wonbat (W) ; /* use it sonmewhere */

return O;

I'm telling you thisin case you find yourself trying to include a header that includes
another header that includes the same header, or if your builds are taking forever because
you're including too many headers, or...more likely you'll see an error along the lines of “cannot
reference incomplete type”. This error means you've tried to do too much with the incomplete
type (like you tried to dereference it or use afield init), and you need to #include the right
header file with the full complete declaration of the st r uct .

12.9. voi d pointers

Welcometo THE VOID! As Neo Anderson would say, “...Whoa.” What isthisvoi d thing?

Stop! Before you get confused, avoi d pointer isn't the same thing asavoi d return value
from afunction or avoi d argument list. I know that can be confusing, but there it is. Just wait
until we talk about all the ways you can use the st at i ¢ keyword.

A voi d pointer isapointer to any type. It is automatically cast to whatever type you assign
into it, or copy from it. Why would you want to ever use such athing? | mean, if you're going to
dereference a pointer so that you can get to the original value, doesn't the compiler need to know
what type the pointer is so that it can use it properly?

Yes. Yes, it does. Because of that, you cannot dereference avoi d pointer. It's against the
law, and the C Police will be at your door faster than you can say Jack Robinson. Before you
can useit, you have to cast it to another pointer type.

How on Valhallaisthis going to be of any use then? Why would you even want a pointer
you didn't know the type of ?

The Specification: Write afunction that can append pointers of any type to an array. Also
write afunction that can return a particular pointer for a certain index.

So in this case, we're going to write a couple useful little functions for storing off pointers,
and returning them later. The function has be to type-agnostic, that is, it must be able to store
pointers of any type. Thisis something of afairly common feature to libraries of code that

Beej's Guide to C Programming 52

mani pul ate data--lots of them take voi d pointers so they can be used with any type of pointer
the programmer might fancy.

Normally, we'd write alinked list or something to hold these, but that's outside the scope
of this book. So we'll just use an array, instead, in this superficial example. Hmmm. Maybe |
should write a beginning data structures book...

Anyway, the specification calls for two functions, so let's pound those puppies out right
here:

#i ncl ude <stdi o. h>

void *pointer_array[10]; /* we can hold up to 10 voi d-poi nters */
int i ndex=0;

voi d append_poi nter(void *p)

{
}

voi d *get _pointer(int i)

{
}

poi nter _array[index++] = p

return pointer_array[il];

Since we need to store those pointers somewhere, | went ahead and made a global array of
them that can be accessed from within both functions. Also, | made a global index variable to
remember where to store the next appended pointer in the array.

So check the code out for append_poi nt er () there. How is all that crammed together
into one line? Well, we need to do two things when we append: store the data at the current
index, and move the index to the next available spot. We copy the data using the assignment
operator, and then notice that we use the post-increment operator (++) to increment the index.
Remember what post-increment means? It means the increment is done after the rest of the
expression is evaluated, including that assignment.

The other function, get _poi nt er, Simply returnsthe voi d* at the specified index, i .
What you want to watch for here is the subtle difference between the return types of the two
functions. One of them is declared voi d, which means it doesn't return anything, and the other
oneis declared with areturn type of voi d*, which meansit returnsavoi d pointer. | know, |
know, the duplicate usage is a little troublesome, but you get used to it in abig hurry. Or else!

Finally, we have that code all written--now how can we actually use it? Let'swrite a
mai n() function that will use these functions:

i nt mai n(voi d)

{

char *s = "sone datal"; /* s points to a constant string (char*) */
int a = 10;

int *b;

char *s2; /* when we call get_pointer(), we'll store them back here */
int *b2;

b =2&; /* bis a pointer to a */

/* now let's store them both, even though they're different types */
append_poi nter(s);
append_poi nt er (b);

/* they're stored! let's get them back! */
s2 = get_pointer(Q); /* this was at index 0 */

Beej's Guide to C Programming 53

b2 = get_pointer(1l); /* this was at index 1 */

return O;

See how the pointer types are interchangabl e through the voi d* ? C will let you convert
thevoi d* into any other pointer with impunity, and it really is up to you to make sure you're
getting them back to the type they were originally. Y es, you can make mistakes here that crash
the program, you'd better believe it. Like they say, “C gives you enough rope to hang yourself.”

12.10. NULL pointers

I think | have just enough time before the plane lands to talk about NULL when it comes to
pointers.

NULL simply means a pointer to nothing. Sometimes it's useful to know if the pointer is
valid, or if it needsto beinitialized, or whatever. NULL can be used as a sentinel value for a
variety of different things. Rememeber: it means “this pointer points to nothing”! Example:

i nt mai n(voi d)

{
int *p = NULL;

if (p == NULL) {

printf("p is uninitialized!\n");
} else {

printf("p points to %\n", *p);
}

return O;

Note that pointers aren't preinitialized to NULL when you declare them--you have to
explicitly doit. (No non-static local variables are preinitialized, pointers included.)

12.11. More Static

Modern technology has landed me safely here at LAX, and I'm free to continue writing
while | wait for my planeto Ireland. Tell me you're not jealous at least on some level, and |
won't believe you.

But enough about me; let's talk about programming. (How's that for a geek pick-up line? If
you use it, do me afavor and don't credit me.)

You've already seen how you can usethe st at i ¢ keyword to make alocal variable persist
between calls to its function. But there are other exciting completely unrelated usesfor st ati c
that probably deserve to have their own keyword, but don't get one. Y ou just have to get used to
thefact that st at i ¢ (and anumber of other thingsin C) have different meanings depending on
context.

So what about if you declare something asst at i ¢ in the global scope, instead of |ocal
to afunction? After all, global variables already persist for the life of the program, so st ati ¢
can't mean the same thing here. Instead, at the global scope, st at i ¢ means that the variable or
function declared st at i ¢ isonly visible in this particular source file, and cannot be referenced
from other source files. Again, this definition of st at i ¢ only pertainsto the global scope.
st ati ¢ still means the same old thing in the local scope of the function.

You'l find that your bigger projects little bite-sized pieces themselves fit into larger
bite-sized pieces (just like that picture of the little fish getting eaten by the larger fish being
eaten by the fish that's larger, still.) When you have enough related smaller bite-sized pieces, it
often makes sense to put them in their own sourcefile.

Beej's Guide to C Programming 54

I'm going to rip the example from the section on voi d pointers wherein we have a couple
functions that can be used to store any types of pointers.

One of the many issues with that example program (there are al kinds of shortcomings
and bugsin it) isthat we've declared a global variable called i ndex. Now, “index” is a pretty
common word, and it's entirely likely that somewhere else in the project, someone will make up
their own variable and name it the same thing as yours. This could cause all kinds of problems,
not the least of which isthey can modify your value of i ndex, something that is very important
to you.

One solutionisto put all your stuff in one source file, and then declarei ndex to be
st ati ¢ global. That way, no one from outside your source fileis allowed to useit. You are
King! st ati c isaway of keeping the implementation details of your portion of the code out
of the hands of others. Believe me, if you let other people meddie in your code, they will do so
with playful abandon! Big Hammer Smash!

So hereisaquick rewrite of the code to be stuck it its own file:

[** file parray.c **/

static void *pointer_array[10]; /* now no one can see it except this filel */
static int index=0; /* same for this one! */

/* but these functions are NOT static, */
/* so they can be used fromother files: */

voi d append_poi nter(void *p)

{
}

voi d *get_pointer(int i)

{
}

/** end of file parray.c **/

What would be proper at this point would be to make afile called par r ay. h that has the
function prototypes for the two functionsin it. Then the file that has mai n() in it can #include
par r ay. h and use the functions when it is all linked together.

12.12. Typical Multifile Projects

Like I'm so fond of saying, projects generally grow too big for asinglefile, very
similarly to how The Blob grew to be enormous and had to be defeated by Steve M cQueen.
Unfortunately, McQueen has already made his great escape to Heaven, and isn't here to help you
with your code. Sorry.

So when you split projects up, you should try to do it in bite-sized modules that make sense
to havein individual files. For instance, all the code responsible for calculating Fast Fourier
Transforms (a mathematical construct, for those not in the know), would be a good candidate
for its own source file. Or maybe al the code that controls a particular Al bot for a game could
beinitsown file. It's more of aguideline than arule, but if something's not aleast in some way
related to what you have in a particular source file already, maybe it should go elsewhere. A
perfect illustrative question for this scenario might be, “What is the 3D rendering code doing in
the middle of the sound driver code?’

When you do move code to its own source file, thereis almost always a header file that
you should write to go along with it. The code in the new source file (which will be a bunch of

poi nter _array[index++] = p

return pointer_array[i];

Beej's Guide to C Programming 55

functions) will need to have prototypes and other things made visible to the other files so they

can be used. The way the other source files use other filesisto $#include their header files.
So for example, let's make a small set of functions and stick them in afile called

si nmpl ermat h. c:

[** file sinmplemath.c **/

i nt plusone(int a)

{
}

i nt mnusone(int a)

{
}

return a+l;

return a-1;

/** end of file sinplemath.c **/

A couple simple functions, there. Nothing too complex, yes? But by themselves, they're
not much use, and for other people to use them we need to distribute their prototypesin a header
file. Get ready to absorbe this...you should recognize the prototypesin there, but I've added
some new stuff:

[** file sinplemath. h **/

#i f ndef _SI MPLEMATH H_
#defi ne _SI MPLEMATH H_

/* here are the prototypes: */

i nt plusone(int a);
int mnusone(int a);

#endi f

/** end of file sinplemath.h **/

Icky. What is all that #fndef stuff? And the #define and the #endif? They are boilerplate
code (that is, code that is more often than not stuck in afile) that prevents the header file from
being included multiple times.

The short version of thelogic isthis: if the symbol _SI MPLEMATH_H_ isn't defined then
defineit, and then do all the normal header stuff. Elseif the symbol _SI MPLEMATH H_is
already defined, do nothing. In thisway, the bulk of the header file isincluded only once for the
build, no matter how many other filestry to includeit. Thisisagood idea, since at best it'sa
redundant waste of time to re-include it, and at worst, it can cause compile-time errors.

Well, we have the header and the source files, and now it's time to write a file with mai n()
in it so that we can actually use these things:

[** file main.c **/

#i ncl ude "si npl emat h. h"
i nt mai n(voi d)

{ int a =10, b

b = plusone(a); /* make that processor work! */

Beej's Guide to C Programming 56

return O;

}

/** end of file main.c **/

Check it out! We used double-quotes in the #include instead of angle brackets! What
this tells the preprocessor to do is, “include this file from the current directory instead of the
standard system directory.” I'm assuming that you're putting al these files in the same place for
the purposes of this exercise.

Recall that including afile is exactly like bringing it into your source at that point, so, as
such, we bring the prototypes into the source right there, and then the functions are free to be
used in mai n() . Huzzah!

One last question! How do we actually build this whole thing? From the command line:

$ cc -o main main.c sinplemath.c

Y ou can lump all the sources on the command line, and it'll build them together, nice and
easy.

12.13. The Almighty C Preprocessor

Remember back about amillion years ago when you first started reading this guide and
I mentioned something about spinach? That's right--you remember how spinach relates to the
whole computing process?

Of course you don't remember. | just made it up just now; I've never mentioned spinach in
this guide. I mean, c'mon. What does spinach have to do with anything? Sheesh!

Let me steer you to aless leafy topic: the C preprocessor. As the name suggests, thislittle
program will process source code before the C compiler seesit. This gives you alittle bit more
control over what gets compiled and how it gets compiled.

Y ou've already seen one of the most common preprocessor directives: #include. Other
sections of the guide have touched upon various other ones, but we'll lay them al out here for
fun.

12.13.1. #include

The well-known #include directive pullsin source from another file. This other file should
be a header filein virtually every single case.

On each system, there are a number of standard include files that you can use for various
tasks. Most popularly, you've seen st di o. h used. How did the system know where to find
it? Well, each compiler has a set of directories it looksin for header files when you specify
the file name in angle brackets. (On Unix systems, it commonly searchesthe/ usr /i ncl ude
directory.)

If you want to include afile from the same directory as the source, use double quotes
around the name of the file. Some examples:

/* include fromthe systeminclude directory: */

#i ncl ude <stdi o. h>
#i ncl ude <sys/types. h>

/* include fromthe local directory: */

#i ncl ude "nmutants. h"
#i ncl ude "fi shies/halibut.h"

Beej's Guide to C Programming 57

Asyou can see from the example, you can also specify arelative path into subdirectories
out of the main directory. (Under Unix, again, thereis afile called t ypes. h in the directory
[usr/incl ude/ sys.)

12.13.2. #define

The #define is one of the more powerful C preprocessor directives. With it you can declare
constants to be substituted into the source code before the compiler even seesthem. Let's say
you have alot of constants scattered all over your program and each number is hard-coded (that
is, the number is written explicitly in the code, like “27).

Now, you thought it was a constant when you wrote it because the people you got the
specification swore to you up and down on pain of torture that the number would be “2”, and it
would never change in 100 million years so strike them blind right now.

Hey--sounds good. Y ou even have someone to blameif it did change, and it probably won't
anyway since they seem so sure.

Don't be a fool.

The spec will change, and it will do so right after you have put the number “2” in
approximately three hundred thousand places throughout your source, they're going to say, “You
know what? Two just isn't going to cut it--we need three. |s that a hard change to make?”’

Blame or not, you're going to be the one that has to change it. A good programmer will
realize that hard-coding numbers like thisisn't agood idea, and one way to get around it isto
use a #define directive. Check out this example:

#define Pl 3.14159265358979 /* nore pi than you can handl e */

i nt mai n(voi d)
{
float r =10. 0;

printf("pi: %\n", Pl);

printf("pi/2: %\n", PI/2);
printf("area: %\n", Pl*r*r);
printf("circunference: %\n", 2*Pl*r);

return O;

(Typically #defines are al capitals, by convention.) So, hey, we just printed that thing out
asif it was afloat. Well, it isafloat. Remember--the C preprocessor substitutes the value of Pl
before the compiler even seesit. Itisjust asif you had typed it there yourself.

Now let's say you've used Pl all over the place and now you're just about ready to ship, and
the designers come to you and say, “ So, thiswhole pi thing, um, we're thinking it needs to be
four instead of three-point-one-whatever. |s that a hard change?’

No problem in this case, no matter how deranged the change request. All you have to do
is change the one #define at the top, and it's therefore automatically changed all over the code
when the C preprocessor runs through it:

#define PI 4.0 /* whatever you say, boss */

Pretty cool, huh. Well, it's perhaps not as good as to be “cool”, but you have not yet
witnessed the destructive power of this fully operational preprocessor directive! You can
actually use #define to write little macros that are like miniature functions that the preprocessor
evaluates, again, before the C compiler sees the code. To make amacro like this, you give an
argument list (without types, because the preprocessor knows nothing about types, and then you

Beej's Guide to C Programming 58

list how that isto be used. For instance, if we want a macro that evaluates to a number you pass
it times 3490, we could do the following:

#defi ne TI MES3490(x) ((x)*3490) /* no sem col on, notice! */

voi d eval uate_fruit(void)

{
}

printf("40 * 3490 = %\ n", TI MES3490(40));

In that example, the preprocessor will take the macro and expand it so that it looks like this
to the compiler:

voi d eval uate_fruit(void)

{
}

printf("40 * 3490 = %\ n", ((40)*3490)):

(Actually the preprocessor can do basic math, so it'll probably reduce it directly to
“139600". But thisismy example and I'll do as | please!)

Now here's aquestion for you: are you taking it on blind faith that you need all those
parenthesisin the macro, like you're some kind of LISP superhero, or are you wondering, “Why
am | wasting precious moments of my life to enter all these parens?’

WEell, you should be wondering! It turns out there are cases where you can really generate
some evil code with a macro without realizing it. Take alook at this example which builds
without a problem:

#defi ne TI MES3490(x) x*3490
voi d wal rus_di scovery_unit(voi d)
{

int tuskcount = 7;

printf("(tuskcount+2) * 3490 = %\ n", TIMES3490(tuskcount + 2));

What's wrong here? We're calculating t uskcount +2, and then passing that through the
TI MES3490() macro. But look at what it expands to:

printf("(tuskcount+2) * 3490 = %\ n", tuskcount+2*3490);

Instead of calculating (t uskcount +2) * 3490, we're calculating t uskcount +(2*3490) ,
because multiplication comes before addition in the order of operations! See, adding all those
extra parens to the macro prevents this sort of thing from happening. So programmers with good
practices will automatically put a set of parens around each usage of the parameter variablein
the macro, as well as a set of parens around the outside of the macro itself.

12.13.3. #if and #ifdef

There are some conditionals that the C preprocessor can use to discard blocks of code so
that the compiler never seesthem. The #if directive operates like the C if, and you can passit
an expression to be evaluated. It is most common used to block off huge chunks of code like a
comment, when you don't want it to get built:

voi d set _hanst er _speed(i nt war pfactor)
{
#if 0
uh this code isn't witten yet. soneone should really wite it.
#endi f

Beej's Guide to C Programming 59

} |
Y ou can't nest commentsin C, but you can nest #if directives all you want, so it can be
very helpful for that.
The other if-statement, #ifdef istrue if the subsequent macro is aready defined. There's
anegative version of this directive called #ifndef (“if not defined”). #ifndef is very commonly
used with header files to keep them from being included multiple times:

[** file aardvark.h **/

#i f ndef _AARDVARK H_
#define _AARDVARK H

i nt get_nose_| engt h(voi d);
voi d set_nose_l ength(int |en);

#endi f

/** end of file aardvark.h **/

Thefirst timethisfileisincluded, AARDVARK H_isnot yet defined, so it goes to the next
line, and defines it, and then does some function prototypes, and you'll see there at the end,
the whole #if-type directive is culminated with an #endif statement. Now if the fileisincluded
again (which can happen when you have alot of header files are including other header files ad

will fail, and the file up to the #endif will be discarded by the preprocessor.

Another extremely useful thing to do here is to have certain code compile for a certain
platform, and have other code compile for a different platform. Lots of people like to build
software with a macro defined for the type of platform they're on, such as LI NUX or W N32. And
you can use this to great effect so that your code will compile and work on different types of
systems:

voi d run_command_shel | (voi d)

{
#i f def W N32
syst en(" COMVAND. EXE") ;
#el i fdef LI NUX
syst en("/ bi n/ bash");
#el se
#error W& don't have no steenkin shells!
#endi f

}

A couple new things there, most notable #€lifdef. Thisis the contraction of “else ifdef”,
which must be used in that case. If you're using #if, then you'd use the corresponding #elif.

Also | threw in an #error directive, there. Thiswill cause the preprocessor to bomb out
right at that point with the given message.

12.14. Pointers to pointers

Y ou've already seen how you can have a pointer to avariable...and you've aready seen
how a pointer isavariable, soisit possible to have a pointer to a pointer?

No, it's not.

I'm kidding--of courseit's possible. Would | have this section of the guide if it wasn't?
There are afew good reasons why we'd want to have a pointer to a pointer, and we'll
give you the simple one first: you want to pass a pointer as a parameter to a function, have the

function modify it, and have the results reflected back to the caller.

Beej's Guide to C Programming 60

Note that thisis exactly the reason why we use pointersin function callsin the first place:
we want the function to be able to modify the thing the pointer pointsto. In this case, though,
the thing we want it to modify is another pointer. For example:

void get _string(int a, char **s)

switch(a) {
case O:
*s = "everybody";
br eak;

case 1:
*s = "was";
br eak;
case 2:

*s = "kung-foo fighting";
br eak;

def aul t:
*s = "errrrrrnt!";

}

i nt mai n(voi d)
{
char *s;
get _string(2, &s);
printf("s is \"%\"\n", s); [/* 's is "kung-foo fighting"" */

return O;

What we have, above, is some code that will deliver astring (pointer to achar) back to
the caller via pointer to a pointer. Notice that we pass the address of the pointer s inmai n() .
This givesthe function get _stri ng() apointer to s, and so it can dereference that pointer to
changewhat it is pointing at, namely s itself.

There's really nothing mysterious here. Y ou have a pointer to athing, so you can
dereference the pointer to change the thing. It's just like before, except for that fact that we're
operating on a pointer now instead of just a plain base type.

What else can we do with pointers to pointers? Y ou can dynamically make a construction
similar to atwo-dimensional array with them. The following example relies on your knowledge
that the function call mal | oc() returnsachunk of sequential bytes of memory that you can use
asyou will. In this case, we'll use them to create a number of char *s. And we'll have a pointer
to that, aswell, which istherefore of type char **.

i nt mai n(voi d)
{
char **p;
p = mall oc(sizeof (char*) * 10); // allocate 10 char*s

return O;

Beej's Guide to C Programming 61

Swell. Now what can we do with those? Well, they don't point to anything yet, but we can
call mal | oc() for each of them in turn and then we'll have a big block of memory we can store
stringsin.

i nt mai n(voi d)

{
char **p;
int i;

p = mall oc(sizeof (char*) * 10); // allocate 10 char*s-worth of bytes

for(i =0; i < 10; i++) {
*(p+i) = malloc(30); // 30 bytes for each pointer

/1 alternatively we could have witten, above:
/1 p[i] = mall oc(30);
/] but we didn't.

sprintf(*(p+i), "this is string #%", i);
}
for(i =0; i < 10; i++) {

printf("%: %\n", i, p[i]); // p[i] same as *(p+i)
}

return O;

Ok, asyou're probably thinking, thisis where things get completely wacko-jacko. Let's
look at that second mal | oc() lineand dissect it one piece at atime.

Y ou know that p is apointer to apointer to achar, or, put another way, it's a pointer to a
char * . Keep that in mind.

And we know thischar * isthefirst of asolid block of 10, because we just nal | oc() 'd
that many before the for loop. With that knowledge, we know that we can use some pointer
arithmetic to hop from one to the next. We do this by adding the value of i onto the char ** so
that when we dereference it, we are pointing at the next char * in the block. In the first iteration
of theloopi iszero, so we'rejust referring to the first char *.

And what do we do with that char * once we have it? We point it at the return value of
mal | oc() which will point it at a fresh ready-to-use 30 bytes of memory.

And what do we use that memory for (sheesh, this could go on forever!)--well, we use
avariant of printf () calledsprintf () that writesthe result into astring instead of to the
console.

And there you have it. Finally, for fun, we print out the results using array notation to
access the strings instead of pointer arithmetic.

12.15. Pointers to Functions

Y ou've completely mastered all that pointer stuff, right? | mean, you are the Pointer
Master! No, redly, | insist!

So, with that in mind, we're going to take the whole pointer and address idea to the next
phase and learn alittle bit about the machine code that the compiler produces. | know this seems
like it has nothing to do with this section, Pointers to Functions, but it's background that will
only make you stronger. (Provided, that is, it doesn't kill you first. Admittedly, the chances of
death from trying to understand this section are slim, but you might want to read it in a padded
room just as a precautionary measure.)

Beej's Guide to C Programming 62

Long ago | mentioned that the compiler takes your C source code and produces machine
code that the processor can execute. These machine code instructions are small (taking between
one and four bytes or memory, typically, with optionally up to, say, 32 bytes of arguments per
instruction--these numbers vary depending on the processor in question). Thisisn't so important
as the fact that these instructions have to be stored somewhere. Guess where.

Y ou thought that was a rhetorical command, but no, | really do want you to guess where,
generally, the instructions are stored.

Y ou have your guess? Good. Isit animal, vegetable, or mineral? Can you fly init?Isit a
rocketship? Y ay!

But, cerebral digression aside, yes, you are correct, the instructions are stored in memory,
just like variables are stored in memory. Instructions themselves have addresses, and a special
variable in the CPU (generally known as a“register” in CPU-lingo) points to the address of the
currently executing instruction.

Whatwhat? | said “pointsto” and “address-of”! Suddenly we have a connection back to
pointers and all that...familiar ground again. But what did | just say? | said: instructions are
held in addresses, and, therefore, you have have a pointer to ablock of instructions. A block of
instructionsin Cis held in afunction, and, therefore, you can have a pointer to afunction. Voila!

Ok, so if you have a function, how do you get the address of the function? Y es, you can use
the &, but most people don't. It's similar to the situation with arrays, where the name of the array
without square bracketsis a pointer to the first element in the array; the name of the function
without parensis a pointer to the first instruction in the function. That's the easy part.

The hard part is declaring a variable to be of type “pointer to function”. It's hard because
the syntax is funky:

[/l declare p as a pointer to a function that takes two int
/| paraneters, and returns a float:

float (*p)(int, int);
Again, note that thisis adeclaration of a pointer to afunction. It doesn't yet point to

anything in particular. Also notice that you don't have to put dummy parameter namesin the
declaration of the pointer variable. All right, let's make a function, point to it, and call it:

int deliver_fruit(char *address, float speed)
{
printf("Delivering fruit to % at speed % 2f\n", address, speed);

return 3490;

i nt mai n(voi d)
int (*p)(char*,float); // declare a function pointer variable
p = deliver _fruit; // p now points to the deliver_fruit() function
deliver _fruit("My house", 5280.0); // a nornal cal
p("My house", 5280.0); // the sane call, but using the pointer

return O;

What the heck good is this? The usual reasons are these:

* You want to change what function is called at runtime.

Beej's Guide to C Programming 63

* You have abig array of dataincluding pointersto functions.

 You don't know the function at compile-time; maybe it's in ashared library that you
load a runtime and query to find a function, and that query returns a pointer to the
function. | know thisis abit beyond the scope of the section, but bear with me.

For example, long ago afriend of mine and | wrote a program that would simulate a bunch
of creatures running around a grid. The creatures each had ast r uct associated with them that
held their position, health, and other information. The st r uct also held a pointer to afunction
that was their behavior, like this:

struct creature {
i nt xpos;
i nt ypos;
float health;
int (*behavior)(struct useful _data*);

So for each round of the simulation, we'd walk through the list of creatures and call their
behavior function (passing a pointer to a bunch of useful data so the function could see other
creatures, know about itself, etc.) In thisway, it was easy to code bugs up as having different
behaviors.

Indeed, | wrote a creature called a“brainwasher” that would, when it got close to another
creature, change that creature's behavior pointer to point to the brainwasher's behavior code! Of
course, it didn't take long before they were all brainwashers, and then starved and cannibalized
themselves to death. Let that be a lesson to you.

12.16. Variable Argument Lists

Ever wonder, in your spare time, while you lay awake at night thinking about the C
Programming Language, how functionslikepri nt f () and scanf () seem to take an arbitrary
number of arguments and other functions take a specific number? How do you even write a
function prototype for afunction that takes a variable number of arguments?

(Don't get confused over terminology here--we're not talking about variables. In this case,
“variable” retainsits usua boring old meaning of “an arbitrary number of”.)

WEell, there are some little tricks that have been set up for you in this case. Remember how
all the arguments are pushed onto the stack when passed to a function? Well, some macros have
been set up to help you walk along the stack and pull arguments off one at atime. In thisway,
you don't need to know at compile-time what the argument list will look like--you just need to
know how to parseit.

For instance, let's write afunction that averages an arbitrary number of positive numbers.
We can pull numbers off the stack one at atime and average them all, but we need to know
when to stop pulling stuff off the stack. One way to do thisisto have a sentinel value that you
watch for--when you hit it, you stop. Another way is to put some kind of information in the
mandatory first argument. Let's do option B and put the count of the number of argumentsto be
averaged in as the first argument to the function.

Here's the prototype for the function--this is how we declare a variable argument list. The
first argument (at least) must be specified, but that's all:

float average(int count, ...);

It'sthemagical “. . . " that doesit, see? Thislets the compiler know that there can be more
arguments after the first one, but doesn'r require you to say what they are. So thisis how we are
able to pass many or few (but at least one, the first argument) arguments to the function.

Beej's Guide to C Programming 64

But if we don't have names for the variables specified in the function header, how do we
use them in the function? Well, aren't we the demanding ones, actually wanting to use our
function! Ok, I'll tell you!

There is a special type declared in the header st dar g. h calledva_l i st . It holds data
about the stack and about what arguments have been parsed off so far. But first you have to tell
it where the stack for this function starts, and fortunately we have a variable right there at the
beginning of our aver age() function: a.

We operateon our va_l i st using a number of preprocessor macros (which are like
mini-functionsif you haven't yet read the section on macros.) First of all, weuseva_st art ()
totell our va_l i st wherethe stack starts. Then we useva_ar g() repeatedly to pull arguments
off the stack. And finally we useva_end() totell ourva_li st that we're done withiit.

(The language specification says we must call va_end() , and we must call it in the same
function from which we called va_st art () . This alows the compiler to do any cleanup that is
necessary, and keeps the Vararg Police from knocking on your door.

So an example!l Let'swritethat aver age() function. Remember: va_start (),
va_arg(),va_arg(),va_arg(), etc.,, andthenva_end()!

fl oat average(int count, ...)

{
float ave = O;
int i;
va_list args; // here's our va_list!

va_start(args, count); // tell it the stack starts with "count"

/1 inside the while(), pull int args off the stack

for(i =0; i < count; i++) {
int val = va_arg(args, int); // get next int argunent
ave += (float)val; // cast the value to a float and add to tota

}

va_end(args); [/ clean this up

return ave / count; // calc and return the average

So there you have it. Asyou see, theva_ar g() macro pulls the next argument off the
stack of the given type. So you have to know in advance what type the thing is. We know for
our aver age() function, all thetypesarei nt s, so that's ok. But what if they're different types
mixed all together? How do you tell what type is coming next?

WEell, if you'll notice, thisis exactly what our old friend pri nt f () does! It knows what
typeto call va_ar g() with, sinceit says so right in the format string.

12.16.1. vprintf () and its ilk

There are anumber of functions that helpfully accept ava_| i st asan argument that you
can pass. This enables you to wrap these functions up easily in your own functions that take a
variable number of arguments themselves. For instance:

Assignment: Implement aversion of printf () calledti mestanp_printf () that works
exactly likepri nt f () except it prints the time followed by a newline followed by the data
output specified by the pri nt f () -style format string.

Holy cow! At first glance, it looks like you're going to have to implement a clone of
printf() justtogetatimestamp outinfrontof it! Andprintf () is, aswesay intheindustry,
“nontrivial”! See you next year!

Beej's Guide to C Programming 65

Wait, though--wait, wait...there must be away to do it easily, or this author is complete
insane to give you this assignment, and that couldn't be. Fruit! Where is my cheese! ?
Blalalauugh!!

Ahem. I'm all right, really, Y our Honor. I'm looking into my crystal ball and I'm seeing...a
typeva_l i st inyour future. Infact, if wetook our variable argument list, processed it with
va_start () andgotourva_li st back, wecould, if such athing existed, just passit to an
already-written version of pri nt f () that accepted just that thing.

Welcometo the world of vpri nt f () ! It does exactly that, by Jove! Here'salovely
prototype:

int vprintf(const char *format, va_list args);

All righty, so what building blocks do we need for this assignment? The spec says we need
to do something just likepri nt f (), soour function, like pri nt f () isgoing to accept aformat
string first, followed by a variable number of arguments, something like this:

int timestanp_printf(char *format, ...);

But before it printsits stuff, it needs to output a timestamp followed by anewline. The
exact format of the timestamp wasn't specified in the assignment, so I'm going to assume
something in the form of “weekday month day hh:mm:ssyear”. By amazing coincidence, a
function existscalled ct i me() that returns astring in exactly that format, given the current
system time.

So the planisto print atimestamp, then take our variable argument list, run it through
va_start togetava_li st outof it, and passthat va_l i st intovprintf() andletit work
its already-written pri nt f () magic. And...GO!

#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>
#include <tine.h> // for time() and ctine();

int timestanp_printf(char *format, ...)
{
va_list args;
time_t systemtine;
char *tinmestr;
int return_val ue

systemtine = tinme(NULL); // systemtinme in seconds since epoch
timestr = ctime(&systemtine); // ready-to-print tinmestanp

[/ print the tinmestanp:
printf("%", tinestr); // timestr has a newmine on the end al ready

/1 get our va_list:
va_start(args, format);

/1 call vprintf() with our arg list:
return_value = vprintf(format, args);

/] done with list, so we have to call va_end():
va_end(args);

/1 since we want to be *exactly* like printf(), we have saved its
[/l return value, and we'll pass it on right here:
return return_val ue;

Beej's Guide to C Programming 66

i nt mai n(voi d)

{

/'l exanple call:
timestanp_printf("Brought to you by the nunber %d\n", 3490);

return O;

And there you haveit! Your own little pri nt f () -like functionality!
Now, not every function hasa“v” in front of the name for processing variable argument

lists, but most notably all the variantsof pri nt f () andscanf () do, so fed free to use them as

you see fit!
TODO order of operations, arrays of pointersto functions

13. Standard 1I/O Library

The most basic of al libraries in the whole of the standard C library is the standard 1/0
library. It's used for reading from and writing to files. | can see you're very excited about this.

So I'll continue. It's also used for reading and writing to the console, as we've already often
seen with thepri nt f () function.

(A little secret here--many many things in various operating systems are secretly files deep
down, and the console is no exception. “Everything in Unixisafile!” :-))

You'll probably want some prototypes of the functions you can use, right? To get your
grubby little mittens on those, you'll want to include st di o. h.

Anyway, so we can do al kinds of cool stuff interms of file|/O. LIE DETECTED. Ok, ok.
We can do all kinds of stuff in terms of file |/O. Basically, the strategy isthis:

1. Usefopen() to get apointer to afile structure of type FI LE*. This pointer is what
you'll be passing to many of the other file I/O calls.

2. Use some of the other file calls, likef scanf (), fgets(),fprintf(), oretc. using
the FI LE* returned from f open() .

3. When done, call f cl ose() withtheFI LE*. Thislet's the operating system know that
you're truly done with the file, no take-backs.

What's in the FI LE* ? Well, as you might guess, it pointsto ast r uct that containsall
kinds of information about the current read and write position in the file, how the file was
opened, and other stuff like that. But, honestly, who cares. No one, that'swho. The FI LE
structure is opaque to you as a programmer; that is, you don't need to know what'sin it, and you
don't even want to know what'sin it. You just passit to the other standard 1/0 functions and
they know what to do.

Thisisactually pretty important: try to not muck around in the FI LE structure. It's not even
the same from system to system, and you'll end up writing some really non-portable code.

One more thing to mention about the standard /O library: alot of the functions that
operate on filesuse an “f” prefix on the function name. The same function that is operating
on the console will leave the “f” off. For instance, if you want to print to the console, you use
printf(),butifyouwantto printtoafile usefprintf(),see?

Wait amoment! If writing to the consoleis, deep down, just like writing to afile, since
everything in Unix isafile, why are there two functions? Answer: it's more convenient. But,
more importantly, isthere aFl LE* associated with the console that you can use? Answer: Y ES!

There are, in fact, three (count 'em!) specia FI LE* syou have at your disposal merely for
just including st di o. h. Thereis one for input, and two for output.

That hardly seems fair--why does output get two files, and input only get one?

That's jumping the gun a bit--let's just look at them:

stdin
Input from the console.

st dout
Output to the console.

stderr
Output to the console on the error file stream.

67

Beej's Guide to C Programming 68

So standard input (st di n) is by default just what you type at the keyboard. Y ou can use
that inf scanf () if you want, just like this:

[* this line: */
scanf ("%", &x);

/* is just like this line: */
fscanf(stdin, "%", &x);

And st dout works the same way:

printf("Hello, world!'\n");
fprintf(stdout, "Hello, world!\n"); /* same as previous |ine! */

So what isthisst der r thing? What happens when you output to that? Well, generaly it
goesto the console just like st dout , but people use it for error messages, specifically. Why?
On many systems you can redirect the output from the program into a file from the command
line...and sometimes you're interested in getting just the error output. So if the program is good
and writes all itserrorsto st der r, auser can redirect just st der r into afile, and just see that.
It'sjust anice thing you, as a programmer, can do.

Beej's Guide to C Programming 69

13.1. f open()

Opens afile for reading or writing

Prototypes

#i ncl ude <stdi o. h>

FI LE *fopen(const char *path, const char *nopde);

Description

Thef open() opensafilefor reading or writing.

Parameter pat h can be arelative or fully-qualified path and file nameto thefile in
question.

Paramter node tellsf open() how to open thefile (reading, writing, or both), and whether
or not it'sabinary file. Possible modes are:

r
Open thefile for reading (read-only).

Open thefile for writing (write-only). Thefileis created if it doesn't exist.

r+

Open thefile for reading and writing. The file has to already exist.

Open thefile for writing and reading. Thefileis created if it doesn't already exist.

Open thefile for append. Thisisjust like opening afile for writing, but it positions
the file pointer at the end of the file, so the next write appendsto the end. Thefileis
created if it doesn't exist.

at
Open thefile for reading and appending. Thefileiscreated if it doesn't exist.

Any of the modes can have the letter “b” appended to the end, asis“wb” (“write binary”),
to signify that the file in question isabinary file. (“Binary” in this case generally means that the
file contains non-al phanumeric characters that look like garbage to human eyes.) Many systems
(like Unix) don't differentiate between binary and non-binary files, so the “b” is extraneous. But
if your datais binary, it doesn't hurt to throw the “b” in there, and it might help someone who is
trying to port your code to another system.

Return Value

f open() returnsaFI| LE* that can be used in subsequent file-related calls.

If something goes wrong (e.g. you tried to open afile for read that didn't exist), f open()
will return NULL.

Example

i nt mai n(voi d)

{
FILE *fp;

if ((fp = fopen("datafile.dat", "r")) == NULL) {
printf("Couldn't open datafile.dat for reading\n");

Beej's Guide to C Programming

exit(1);
}

/1l fpis nowinitialized and can be read from

70

return O;
}
See Also
fclose()

freopen()

Beej's Guide to C Programming 71

13.2. f reopen()

Reopen an existing FI LE*, associating it with a new path

Prototypes

#i ncl ude <stdi o. h>

FI LE *freopen(const char *filenane, const char *node, FILE *stream

Description

Let's say you have an existing FI LE* stream that's already open, but you want it to
suddenly use a different file than the oneit'susing. You can usef r eopen() to “re-open” the
stream with a new file.

Why on Earth would you ever want to do that? Well, the most common reason would be
if you had a program that normally would read from st di n, but instead you wanted it to read
from afile. Instead of changing all your scanf () stof scanf () s, you could ssmply reopen
st di n on the file you wanted to read from.

Another usage that is allowed on some systems s that you can pass NULL for f i | enane,
and specify anew node for st r eam So you could change afile from “r +” (read and write) to
just “r” (read), for instance. It's implementation dependent which modes can be changed.

When you call f r eopen() , theold st r eamis closed. Otherwise, the function behaves just
like the standard f open() .

Return Value

freopen() returnsst reamif al goeswell.

If something goes wrong (e.g. you tried to open afile for read that didn't exist), f open()
will return NULL.

Example

#i ncl ude <stdi o. h>
i nt mai n(voi d)
{
int i, i2;
scanf("%l", &); // read i fromstdin

/'l now change stdin to refer to a file instead of the keyboard
freopen("soneints.txt", "r", stdin);

scanf ("%l", & 2); // nowthis reads fromthe file "soneints.txt"
printf("Hello, world!\n"); // print to the screen

/'l change stdout to go to a file instead of the term nal
freopen("output.txt", "w', stdout);

printf("This goes to the file \"output.txt\"\n");

/1 this is allowed on sone systens--you can change the node of a file:
freopen(NULL, "wb", stdout); // change to "wb" instead of "w'

return O;

Beej's Guide to C Programming

See Also
fcl ose()
fopen()

72

Beej's Guide to C Programming 73

13.3. fcl ose()

The opposite of f open() --closes a file when you're done with it so that it frees system
resources.

Prototypes

#i ncl ude <stdi o. h>

int fclose(FILE *strean);

Description

When you open afile, the system sets aside some resources to maintain information about
that open file. Usually it can only open so many files at once. In any case, the Right Thing to do
isto close your files when you're done using them so that the system resources are freed.

Also, you might not find that all the information that you've written to the file has actually
been written to disk until the fileis closed. (You can force thiswithacall tof f I ush().)

When your program exits normally, it closes all open files for you. Lots of times, though,
you'll have along-running program, and it'd be better to close the files before then. In any case,
not closing afile you've opened makes you look bad. So, remember to f cl ose() your file
when you're done with it!

Return Value
On success, 0 isreturned. Typically no one checks for this. On error ECF is returned.
Typicaly no one checksfor this, either.

Example

FI LE *fp;

fp = fopen("spoonDB.dat", r"); // (you should error-check this)
sort_spoon_dat abase(f p);
fclose(fp); /1 pretty sinple, huh

See Also
fopen()

Beej's Guide to C Programming 74

134.printf(),fprintf()

Print aformatted string to the console or to afile.

Prototypes

#i ncl ude <stdi o. h>

int printf(const char *format, ...);

int fprintf(FILE *stream const char *format, ...);
Description

These functions print formatted stringsto afile (that is, aFI LE* you likely got from
f open()), or to the console (which isusually itself just a special file, right?)

Theprintf () functionislegendary as being one of the most flexible outputting systems
ever devisied. It can also get abit freaky here or there, most notably in thef or mat string. Well
take it astep at atime here.

The easiest way to look at the format string isthat it will print everything in the string as-is,
unless a character has a percent sign (%9 in front of it. That's when the magic happens: the next
argument inthepri nt f () argument list is printed in the way described by the percent code.

Here are the most common percent codes:

%
Print the next argument as a signed decimal number, like 3490. The argument printed
thisway should beani nt .

%
Print the next argument as a signed floating point number, like 3. 14159. The
argument printed thisway should be af | oat .

%
Print the next argument as a character, like' B' . The argument printed this way should
beachar.

%s

Print the next argument asastring, like" Di d you renmenber your nmittens?".
The argument printed thisway should beachar * orchar[].

%%
No arguments are converted, and a plain old run-of-the-mill percent sign is printed.
Thisishow you print a'%' using pri ntf) ().

So those are the basics. I'll give you some more of the percent codes in a bit, but let's get
some more breadth before then. There's actually alot more that you can specify in there after the
percent sign.

For one thing, you can put afield width in there--thisis a number that tellspri nt f () how
many spaces to put on one side or the other of the value you're printing. That helps you line
things up in nice columns. If the number is negative, the result becomes left-justified instead of
right-justified. Example:

printf("9d0d", x); [/* prints X on the right side of the 10-space field */
printf("%10d", x); /* prints X on the left side of the 10-space field */

If you don't know the field width in advance, you can use alittle kung-foo to get it from
the argument list just before the argument itself. Do this by placing your seat and tray tables

Beej's Guide to C Programming 75

in the fully upright position. The seatbelt is fastened by placing the--* cough*. | seem to have
been doing way too much flying lately. Ignoring that useless fact completely, you can specify a
dynamic field width by putting a* in for the width. If you are not willing or able to perform this
task, please notify aflight attendant and we will reseat you.

int width
i nt val ue

12;
3490;

printf("%d\n", wdth, value);
You can aso put a“0” in front of the number if you want it to be padded with zeros:

int x = 17;
printf("9®5d", x); /* "00017" */

When it comes to floating point, you can also specify how many decimal placesto print by
making a field width of the form “x. y” where x isthe field width (you can leave this off if you
want it to be just wide enough) and y is the number of digits past the decimal point to print:

float f = 3.1415926535;
printf("%2f", f); [/* "3.14" */
printf("%.3f", f); /* " 3.141" <-- 7 spaces across */

Ok, those above are definitely the most common uses of pri nt f (), but there are still more
modifiers you can put in after the percent and before the field width:

0
Thiswas already mentioned above. It pads the spaces before a number with zeros, e.g.
"o©5d" .
Thiswas also already mentioned above. It causes the value to be left-justified in the
field, eg. "% 5d".
' (space)
This prints a blank space before a positive number, so that it will line up in acolumn
along with negative numbers (which have a negative sign in front of them). " % d" .
+
Always puts a+ sign in front of a number that you print so that it will lineupina
column along with negative numbers (which have a negative sign in front of them).
"Oord" .
#

This causes the output to be printed in adifferent form than normal. The results vary
based on the specifier used, but generally, hexidecimal output (" %") getsa" 0x"
prepended to the output, and octal output (" %0") getsa" 0" prepended to it. These
are, if you'll notice, how such numbers are represented in C source. Additionally,
floating point numbers, when printed with this# modified, will print atrailing decimal
point even if the number has no fractional part. Example: " %#x" .

Now, | know earlier | promised the rest of the format specifiers...so ok, here they are:

%
Just like %@, above.

Beej's Guide to C Programming 76

%

%

Prints the integer number out in octal format. Octal is a base-eight number
representation scheme invented on the planet Krylon where all the inhabitants have
only eight fingers.

Just like %, but works on unsi gned i nt s, instead of i nt s.

o or "X

%

Printstheunsi gned i nt argument in hexidecimal (base-16) format. Thisisfor
people with 16 fingers, or people who are simply addicted hex, like you should
be. Just try it! " %" printsthe hex digitsin lowercase, while" 9" printsthemin
uppercase.

Just like “%f”, except any string-based results (which can happen for numbers like
infinity) are printed in uppercase.

% or %

Printsthef | oat argument in exponential (scientific) notation. Thisisyour classic
form similar to “three times 10 to the 8th power”, except printed in text form: “3e8”.
(You see, the“e” isread “times 10 to the”.) If you usethe " %&" specifier, the the
exponent “€”’ iswritten in uppercase, ala“3E8”.

%g or %5

%

%

Another way of printing doubl es. In this case the precision you specific tells it how
many significant figures to print.

Prints a pointer type out in hex representation. In other words, the address that the
pointer is pointing to is printed. (Not the value in the address, but the address number
itself.)

This specifier is cool and different, and rarely needed. It doesn't actually print
anything, but stores the number of characters printed so far in the next pointer
argument in the list.

i nt nunChars;
float a = 3.14159;
int b = 3490;

printf("% %l%\n", a, b, &untChars);

printf("The above |line contains % characters.\n", numChars);

The above example will print out the values of a and b, and then store the number
of characters printed so far into the variable nuntChar s. The next call topri nt f ()
prints out that result.

So let's recap what we have here. We have aformat string in the form:

"% rodifier][fieldw dth][. precision][l|engthnodifier][formatspecifier]”

Modifier islikethe" - " for left justification, the field width is how wide a space to print
theresult in, the precision is, for f | oat s, how many decimal placesto print, and the format
specifier islike %a.

Beej's Guide to C Programming 77

That wraps it up, except what's this “lengthmodifier” | put up there? Yes, just when you
thought things were under control, | had to add something else on there. Basically, it'sto tell
printf () inmoredetail what size the arguments are. For instance, char , short, i nt, and
| ong are all integer types, but they all use a different number of bytes of memory, so you can't
use plain old “%a@” for all of them, right? How can pri nt f () tell the difference?

The answer isthat you tell it explicitly using another optional letter (the length modifier,
this) before the type specifier. If you omit it, then the basic types are assumed (like % is for
int,and% isforfl oat).

Here are the format specifiers:

h
Integer referred toisashort integer, e.g. “%hd” isashort and “%hu” isan
unsi gned short.
I (“e”H)
Integer referred toisal ong integer, e.9. “% d” isal ong and “% u” isan unsi gned
| ong.
hh

Integer referred toisachar integer, e.g. “%mhd” isachar and “%hhu” isan
unsi gned char.

L (“el dl”)
Integer referredtoisal ong | ong integer, eg. “% 1 d” isal ong I ongand“% | u”
isanunsi gned | ong | ong.

I know it's hard to believe, but there might be still more format and length specifiers on
your system. Check your manual for more information.

Return Value

Example
int a = 100;
float b = 2.717;
char *c = "beej!";
char d = 'X ;
int e =5;
printf("%d", a); /* "100" */
printf("%", b); /* "2.717000" */
printf("9%", c); /* "beej!" */
printf("%", d); /* "X" */
printf("110%6); /* "110% */
printf("%d0d\n", a); [* " 100" */
printf("%10d\n", a); /* "100 "o
printf("%d\n", e, a); /* " 100" */
printf("%2f\n", b); [* "2.71" */
printf("%hd\n", c); /* "88" <-- ASCI| code for 'X */
printf("9%d %.2f %\n", a, b, d); /* " 100 2.71 X' */

See Also
sprintf(),vprintf(),vfprintf(),vsprintf()

Beej's Guide to C Programming 78

13.5. scanf (), fscanf ()

Read formatted string, character, or numeric data from the console or from afile.

Prototypes

#i ncl ude <stdi o. h>

int scanf(const char *format, ...);

int fscanf(FILE *stream const char *format, ...);
Description

Thescanf () family of functions reads data from the console or from aFl LE stream,
parses it, and stores the results away in variables you provide in the argument list.

The format string isvery similar tothat inpri ntf () inthat you cantell ittoread a" %",
for instance for ani nt . But it also has additional capabilities, most notably that it can eat up
other charactersin the input that you specify in the format string.

But let's start simple, and look at the most basic usage first before plunging into the depths
of the function. We'll start by reading ani nt from the keyboard:

int a;

scanf ("%l", &a);

scanf () obviously needs a pointer to the variableif it is going to change the variable
itself, so we use the address-of operator to get the pointer.

Inthis case, scanf () walks down the format string, findsa*“%”, and then knows it needs
to read an integer and store it in the next variable in the argument list, a.

Here are some of the other percent-codes you can put in the format string:

%l
Reads an integer to be stored in ani nt . Thisinteger can be signed.

% (%, %&, and %g are equivaent)
Reads a floating point number, to be stored in af | oat .

%s
Reads a string. Thiswill stop on the first whitespace character reached, or at the
specified field width (e.g. “%10s’), whichever comesfirst.

And here are some more codes, except these don't tend to be used as often. Y ou, of course,
may use them as often as you wish!

%
Reads an unsigned integer to be stored in an unsi gned i nt.

% (9 isequivalent)
Reads an unsigned hexidecimal integer to be stored in an unsi gned i nt.

%
Reads an unsigned octal integer to be stored in an unsi gned i nt .

%
Like v, except you can preface the input with “0x” if it's ahex number, or “0” if it's
an octal number.

Beej's Guide to C Programming 79

%

%

%hn

%0

%

Reads in a character to be stored in achar . If you specify afield width (e.g. “vd.2c”,
it will read that many characters, so make sure you have an array that large to hold
them.

Reads in a pointer to be stored in avoi d*. The format of this pointer should be the
same as that which is outputted with pri nt f () and the “%p” format specifier.

Reads nothing, but will store the number of characters processed so far into the next
i nt parameter in the argument list.

Matches a literal percent sign. No conversion of parametersis done. Thisis simply
how you get a standalone percent sign in your string without scanf () trying to do
something with it.

Thisis about the weirdest format specifier thereis. It allows you to specify a set of
charactersto be stored away (likely in an array of char s). Conversion stops when a
character that is not in the set is matched.

For example, % 0- 9] means “match all numbers zero through nine.” And % AD- G34]
means “match A, D through G, 3, or 4".

Now, to convolute matters, you can tell scanf () to match charactersthat are not in
the set by putting acaret (*) directly after the%§ and following it with the set, like
this: %4 ~A- C] , which means “match all characters that are not A through C.”

To match a close square bracket, make it the first character in the set, like this:
%]1A-C] or“g~] A C . (l added the“A- C’ just so it was clear that the “] ” wasfirst in
the set.)

To match a hyphen, make it the last character inthe set: 4 A- G- .

% |f WeWanted tO matCh a” |ettel'S except u%”, u/\n, “]n, “ B”, 1 C”, “ D”, “ E”, and u_n’
we could use this format string: % ~] %'B- E-] .

So those are the basics! Phew! There'salot of stuff to know, but, like | said, afew of these
format specifiers are common, and the others are pretty rare.

Got it? Now we can go onto the next--no wait! Theresmore! Yes, still more to know about
scanf () . Doesit never end? Try to imagine how | feel writing about it!

So you know that “9@” storesinto ani nt . But how do you storeinto al ong, short, or

doubl e?

Weéll, likeinpri nt f (), you can add amodifier before the type specifier to tell scanf ()
that you have alonger or shorter type. The following is atable of the possible modifiers:

h

Thevalueto beparsedisashort int orshort unsi gned. Example: %hd or %hu.

Thevaluetobeparsedisal ong i nt orl ong unsi gned, or doubl e (for %
conversions.) Example: % d, % u, or % f .

Beej's Guide to C Programming 80

Thevalueto be parsedisal ong | ong for integer typesor | ong doubl e for f | oat
types. Example: %.d, %.u, or %.f .

Tellsscanf () do to the conversion specified, but not store it anywhere. It simply
discardsthe dataasit readsit. Thisiswhat you useif you want scanf () to eat some
data but you don't want to store it anywhere; you don't give scanf () an argument for
this conversion. Example: % d.

Return Value

scanf () returnsthe number of items assigned into variables. Since assignment into
variables stops when given invalid input for a certain format specifier, this can tell you if you've
input all your data correctly.

Also, scanf () returns EOF on end-of-file.

Example

int a;

| ong int b;
unsi gned int c;
float d;

doubl e e;

| ong doubl e f;
char s[100];

scanf ("%l", &); [/ store an int

scanf (" %", &); // eat any whitespace, then store an int
scanf ("%", s); // store a string

scanf ("9%.f", &); // store a |long double

/] store an unsigned, read all whitespace, then store a long int:
scanf ("% % d", &c, &b);

/] store an int, read whitespace, read "bl endo", read whitespace,
// and store a float:
scanf ("%l blendo %", &, &d);

/1 read all whitespace, then store all characters up to a newine
scanf (" %9 ™\n]", s);

/| store a float, read (and ignore) an int, then store a doubl e:
scanf ("% 9%d %f", &, &e);

/|l store 10 characters
scanf ("%0c", s);

See Also
sscanf (), vscanf (),vsscanf (), vfscanf ()

Beej's Guide to C Programming 81

13.6.gets(),fgets()

Read a string from console or file

Prototypes

#i ncl ude <stdi o. h>

char *fgets(char *s, int size, FILE *strean);
char *gets(char *s);

Description

These are functions that will retrieve a newline-terminated string from the console or afile.
In other normal words, it reads aline of text. The behavior is dightly different, and, as such, so
isthe usage. For instance, hereisthe usage of get s() :

Don't useget s() .

Admittedly, rationale would be useful, yes? For one thing, get s() doesn't allow you to
specify the length of the buffer to store the string in. This would allow people to keep entering
data past the end of your buffer, and believe me, this would be Bad News.

| was going to add another reason, but that's basically the primary and only reason not to
useget s() . Asyou might suspect, f get s() alows you to specify a maximum string length.

One difference here between the two functions: get s() will devour and throw away
the newline at the end of the line, whilef get s() will storeit at the end of your string (space
permitting).

Here's an example of using f get s() from the console, making it behave more like
gets():

char s[100];
gets(s); // read a line (from stdin)
fgets(s, sizeof(s), stdin); // read a line fromstdin
Inthis case, thesi zeof () operator gives usthe total size of the array in bytes, and sincea
char isabyte, it conveniently gives usthe total size of the array.
Of course, like | keep saying, the string returned from f get s() probably has a newline at
the end that you might not want. Y ou can write a short function to chop the newline off, like so:

char *renove_new i ne(char *s)

{

int len = strlen(s);

if (len >0 & s[len-1] =="'\n") // if there's a newine
s[len-1] = "\0"; /1 truncate the string

return s;

So, insummary, usef get s() to read aline of text from the keyboard or afile, and don't
usegets().

Return Value
Both f get s() andf get s() return apointer to the string passed.
On error or end-of-file, the functions return NULL.

Example

char s[100];

Beej's Guide to C Programming

gets(s); // read fromstandard i nput (don't use this--use fgets()!)
fgets(s, sizeof(s), stdin); // read 100 bytes from standard i nput

fp = fopen("datafile.dat", "r"); // (you should error-check this)
fgets(s, 100, fp); // read 100 bytes fromthe file datafile.dat
fclose(fp);

fgets(s, 20, stdin); // read a maxi num of 20 bytes from stdin

82

See Also
getc(),fgetc(),getchar(),puts(),fputs(),ungetc()

Beej's Guide to C Programming 83

13.7.getc(),fgetc(),getchar()

Get a single character from the console or from afile.

Prototypes

#i ncl ude <stdi o. h>

int getc(FILE *strean);
int fgetc(FILE *stream;
i nt getchar(void);

Description

All of these functions in one way or another, read a single character from the console or
from aFI LE. The differences are fairly minor, and here are the descriptions:

get c() returns acharacter from the specified FI LE. From a usage standpoint, it's
equivalent to the samef get c() call, andf get c() isalittle more common to see. Only the
implementation of the two functions differs.

f get c() returns acharacter from the specified FI LE. From a usage standpoint, it's
equivalent to the same get c() call, except that f get c() isalittle more common to see. Only
the implementation of the two functions differs.

Yes, | cheated and used cut-n-paste to do that last paragraph.

get char () returnsacharacter from st di n. In fact, it'sthe sasme as calling get c(st di n) .

Return Value
All three functions return the unsi gned char that they read, except it'scast toani nt .
If end-of-file or an error is encountered, al three functions return ECF.

Example

// read all characters froma file, outputting only the letter 'b's
/] it finds in the file

#i ncl ude <stdio. h>

i nt mai n(voi d)

{
FI LE *fp;
int c;

fp = fopen("datafile.txt", "“r"); // error check this
/1 this while-statenent assigns into c, and then checks agai nst ECF

while((c = fgetc(fp)) !'= EOF) {
if (c =="b") {
put char (c);
}
}

fcl ose(fp);

return O;

}
See Also

Beej's Guide to C Programming 84

13.8. puts(), fputs()

Write a string to the console or to afile.

Prototypes

#i ncl ude <stdi o. h>

int puts(const char *s);
int fputs(const char *s, FILE *strean);

Description
Both these functions output a NUL -terminated string. put s() outputs to the console, while
f put s() alowsyou to specify the file for output.

Return Value
Both functions return non-negative on success, or EOF on error.

Example
/1 read strings fromthe console and save themin a file
#i ncl ude <stdi o. h>
i nt mai n(voi d)
{
FILE *fp
char s[100];
fp = fopen("datafile.txt", "w'); // error check this
whi | e(fgets(s, sizeof(s), stdin) != NULL) { // read a string
fputs(s, fp); // wite it to the file we opened
}
fcl ose(fp);
return O;
}

See Also

Beej's Guide to C Programming

13.9. putc(), fputc(), putchar()

Write a single character to the console or to afile.

Prototypes

#i ncl ude <stdi o. h>

int putc(int ¢, FILE *stream
int fputc(int c, FILE *stream
int putchar(int c);

Description

All three functions output a single character, either to the console or to aFI LE.

put c() takesa character argument, and outputsit to the specified FI LE. f put c() does
exactly the same thing, and differs from put c() in implementation only. Most people use
fputc().

put char () writesthe character to the console, and isthe same as calling put c(c,
st dout) .

Return Value
All three functions return the character written on success, or EOF on efror.

Example

/1 print the al phabet
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
char i;
for(i ="A; i <="'2Z; i++)
put char (i);
putchar('\n"); // put a newWline at the end to make it pretty
return O;
}

See Also

Beej's Guide to C Programming 86

13.10. f seek(),rew nd()

Position the file pointer in anticipition of the next read or write.

Prototypes

#i ncl ude <stdi o. h>

int fseek(FILE *stream |ong offset, int whence);
voi d rew nd(FI LE *strean);

Description

When doing reads and writes to afile, the OS keeps track of where you are in the file using
acounter generically known as the file pointer. Y ou can reposition the file pointer to a different
point in thefileusing thef seek() call. Think of it asaway to randomly accessyou file.

The first argument is the file in question, obviously. of f set argument is the position that
you want to seek to, and whence iswhat that offset isrelative to.

Of course, you probably like to think of the offset as being from the beginning of thefile. |
mean, “ Seek to position 3490, that should be 3490 bytes from the beginning of thefile.” Well, it
can be, but it doesn't have to be. Imagine the power you're wielding here. Try to command your
enthusiasm.

Y ou can set the value of whence to one of three things:

SEEK_SET
of f set isrelative to the beginning of thefile. Thisis probably what you had in mind
anyway, and is the most commonly used value for whence.

SEEK_CUR
of f set isrelative to the current file pointer position. So, in effect, you can say,
“Move to my current position plus 30 bytes,” or, “move to my current position minus
20 bytes.”

SEEK_END
of f set isrelative to the end of thefile. Just like SEEK_SET except from the other end
of the file. Be sure to use negative values for of f set if you want to back up from the
end of thefile, instead of going past the end into oblivion.

Speaking of seeking off the end of the file, can you do it? Sure thing. In fact, you can seek
way off the end and then write a character; the file will be expanded to a size big enough to hold
abunch of zeros way out to that character.

Now that the complicated function is out of the way, what'sthisr ewi nd() that | briefly
mentioned? It repositions the file pointer at the beginning of the file:

fseek(fp, 0, SEEK SET); // same as rew nd()
rewi nd(fp); /] same as fseek(fp, 0, SEEK SET)

Return Value
For f seek() , on success zero isreturned; - 1 is returned on failure.
Thecall tor ewi nd() never fails.

Example

fseek(fp, 100, SEEK SET); // seek to the 100th byte of the file
fseek(fp, -30, SEEK CUR); // seek backward 30 bytes fromthe current pos
fseek(fp, -10, SEEK END); // seek to the 10th byte before the end of file

Beej's Guide to C Programming

fseek(fp, 0, SEEK SET); /'l seek to the beginning of the file
rewi nd(fp); /'l seek to the beginning of the file

87

See Also
ftell(),fgetpos(),fsetpos()

Beej's Guide to C Programming 88

13.11.ftel | ()

Tells you where a particular fileis about to read from or write to.

Prototypes

#i ncl ude <stdi o. h>

long ftell (FILE *stream;

Description

Thisfunction isthe opposite of f seek() . It tellsyou where in the file the next file
operation will occur relative to the beginning of thefile.

It's useful if you want to remember where you arein thefile, f seek() somewhere else,
and then come back later. Y ou can take the return valuefromf t el | () and feed it back into
f seek() (withwhence parameter set to SEEK_SET) when you want to return to your previous
position.

Return Value
Returns the current offset in the file, or - 1 on error.

Example

| ong pos;

/] store the current position in variable "pos":
pos = ftell (fp);

/'l seek ahead 10 bytes:
fseek(fp, 10, SEEK CUR);

// do some nysterious wites to the file
do_nysterious_wites_to_file(fp);

/! and return to the starting position, stored in "pos"
fseek(fp, pos, SEEK SET);

See Also
fseek(),rewi nd(),fgetpos(),fsetpos()

Beej's Guide to C Programming 89

13.12. f get pos(), f set pos()

Get the current position in afile, or set the current position in afile. Just likeftel | () and
f seek() for most systems.

Prototypes

#i ncl ude <stdi o. h>

int fgetpos(FlILE *stream fpos_t *pos);
int fsetpos(FlILE *stream fpos_t *pos);

Description

These functions are just likeft el | () andf seek(), except instead of counting in bytes,
they use an opaque data structure to hold positional information about the file. (Opague, in this
case, means you're not supposed to know what the data type is made up of.)

On virtually every system (and certainly every system that | know of), people don't use
these functions, usingftel | () andf seek() instead. These functions exist just in case your
system can't remember file positions as a simple byte offset.

Since the pos variable is opague, you have to assignto it using the f get pos() call itself.
Then you save the value for later and use it to reset the position using f set pos() .

Return Value
Both functions return zero on success, and - 1 on error.

Example

char s[100];
f pos_t pos;

fgets(s, sizeof(s), fp); // read a line fromthe file
f get pos(fp, &pos); /1 save the position

fgets(s, sizeof(s), fp); // read another line fromthe file

fsetpos(fp, &pos); /1 now restore the position to where we saved

See Also
fseek(),ftell (), rew nd()

Beej's Guide to C Programming 90

13.13. unget c()

Pushes a character back into the input stream.

Prototypes

#i ncl ude <stdi o. h>
int ungetc(int c, FILE *stream

Description

Y ou know how get ¢() readsthe next character from afile stream? Well, thisisthe
opposite of that--it pushes a character back into the file stream so that it will show up again on
the very next read from the stream, asif you'd never gotten it from get c() inthefirst place.

Why, in the name of all that is holy would you want to do that? Perhaps you have a stream
of datathat you're reading a character at atime, and you won't know to stop reading until you
get a certain character, but you want to be able to read that character again later. Y ou can read
the character, see that it's what you're supposed to stop on, and then unget c() it soit'll show up
on the next read.

Y eah, that doesn't happen very often, but there we are.

Here's the catch: the standard only guarantees that you'll be able to push back one
character. Some implementations might allow you to push back more, but there's really no way
to tell and still be portable.

Return Value
On success, unget ¢() returnsthe character you passed to it. On failure, it returns ECF.

Example

/1l read a piece of punctuation, then everything after it up to the next
/| piece of punctuation. return the punctuation, and store the rest
/] in a string

[/

/1 sanmpl e input: !foo#bar*baz

// output: return value: '!', s is "foo"
I/ return value: '"#', s is "bar"
I/ return value: '*', s is "baz"
/1

char read_punctstring(FILE *fp, char *s)
{

char origpunct, c;
origpunct = fgetc(fp);

if (origpunct == EOF) // return EOF on end-of-file
return EOF

whil e(c = fgetc(fp), !ispunct(c) & c != EOF) {
*s++ = c; // save it in the string

*s = '\0"; // nul-terminate the string

// if we read punctuation |last, ungetc it so we can fgetc it next
[time:
if (ispunct(c))
ungetc(c, fp);
}

Beej's Guide to C Programming

return origpunct;

}

91

See Also
fgetc()

Beej's Guide to C Programming 92

13.14. fread()

Read binary datafrom afile.
Prototypes

#i ncl ude <stdi o. h>
size_t fread(void *p, size_t size, size_t nnenb, FILE *strean);

Description

Y ou might remember that you can call f open() with the“b” flag in the open mode string
to open thefilein “binary” mode. Files open in not-binary (ASCII or text mode) can be read
using standard character-oriented callslikef get c() or f get s() . Filesopen in binary mode are
typically read using thef r ead() function.

All thisfunction does is says, “Hey, read this many things where each thing is a certain
number of bytes, and store the whole mess of them in memory starting at this pointer.”

This can be very useful, believe me, when you want to do something like store20i nt sina
file.

But wait--can't you usef pri nt f () with the“%d” format specifier to savethei nt stoa
text file and store them that way? Y es, sure. That has the advantage that a human can open the
file and read the numbers. It has the disadvantage that it's slower to convert the numbers from
i nt sto text and that the numbers are likely to take more space in the file. (Remember, ani nt is
likely 4 bytes, but the string “12345678" is 8 bytes.)

So storing the binary data can certainly be more compact and faster to read.

(Asfor the prototype, what isthissi ze_t you see floating around? It's short for “size
type” which is a data type defined to hold the size of something. Great--would | stop beating
around the bush already and give you the straight story?! Ok, si ze_t isprobably ani nt .)

Return Value

This function returns the number of items successfully read. If all requested items are read,
the return value will be equal to that of the parameter nnenb. If EOF occurs, the return value
will be zero.

To make you confused, it will also return zero if there's an error. Y ou can use the functions
feof () orferror() totel which onerealy happened.

Example

/1 read 10 nunbers froma file and store themin an array

i nt mai n(voi d)
{ . .
int i;
int n[10]
FILE *fp

fp = fopen("bi narynunbers.dat", "rb");
fread(n, sizeof(int), 10, fp); // read 10 ints
fcl ose(fp);

[/l print them out:
for(i =0; i < 10; i++)
printf("n[%] == %\n", i, n[i]);

return O;

Beej's Guide to C Programming

See Also
fopen(),fwite(),feof(),ferror()

93

Beej's Guide to C Programming 94

13.15. fwri t e()

Write binary datato afile.
Prototypes

#i ncl ude <stdi o. h>
size_t fwite(const void *p, size_t size, size_t nnenb, FILE *strean);

Description
Thisisthe counterpart to thef r ead() function. It writes blocks of binary datato disk. For

a description of what this means, see the entry for f r ead() .

Return Value
fwrite() returnsthe number of items successfully written, which should hopefully be
nmenb that you passed in. It'll return zero on error.

Example
/'l save 10 random nunbers to a file
i nt mai n(voi d)
{
int i;
int r[10];
FILE *fp
/1 populate the array with random nunbers:
for(i =0; i < 10; i++) {
rii] = rand();
}
/| save the random numbers (10 ints) to the file
fp = fopen("binaryfile.dat", "wh");
fwite(r, sizeof(int), 10, fp); // wite 10 ints
fcl ose(fp);
return O;
}
See Also

fopen(),fread()

Beej's Guide to C Programming 95

13.16.feof (),ferror(),clearerr()

Determine if afile has reached end-of-file or if an error has occurred.

Prototypes

#i ncl ude <stdi o. h>

int feof (FILE *strean);
int ferror(FlILE *stream;
void clearerr(FILE *stream;

Description

Each FI LE* that you useto read and write data from and to afile contains flags that the
system sets when certain events occur. If you get an error, it setsthe error flag; if you reach the
end of thefile during aread, it sets the EOF flag. Pretty simplereally.

The functionsf eof () andf error () giveyouasimpleway to test these flags: they'll
return non-zero (true) if they're set.

Once the flags are set for a particular stream, they stay that way until you call cl earerr ()
to clear them.

Return Value
feof () andferror () return non-zero (true) if the file has reached EOF or there has been
an error, respectively.

Example
/] read binary data, checking for eof or error
i nt mai n(voi d)
{
int a;
FILE *fp
fp = fopen("binaryints.dat", "rb");
// read single ints at a tine, stopping on EOF or error:
whi |l e(fread(&a, sizeof(int), 1, fp), !feof(fp) & !ferror(fp)) {
printf("l read %d\n", a);
}
if (feof(fp))
printf("End of file was reached.\n");
if (ferror(fp))
printf("An error occurred.\n");
fclose(fp);
return O;
}
See Also

fopen(),fread()

Beej's Guide to C Programming 96

13.17. perror ()

Print the last error messageto st derr
Prototypes

#i ncl ude <stdi o. h>
#include <errno.h> // only if you want to directly use the "errno" var

voi d perror(const char *s);

Description

Many functions, when they encounter an error condition for whatever reason, will set a
global variable called er r no for you. er r no isjust an interger representing a unique error.

But to you, the user, some number isn't generally very useful. For this reason, you
cancall perror () after an error occurs to print what error has actually happened in anice
human-readabl e string.

And to help you along, you can pass a parameter, s, that will be prepended to the error
string for you.

One more clever trick you can do is check the value of the er r no (you have to include
errno. h to seeit) for specific errors and have your code do different things. Perhaps you want
to ignore certain errors but not others, for instance.

The catch isthat different systems define different valuesfor er r no, so it's not very
portable. The standard only defines afew math-related values, and not others. You'll haveto
check your local man-pages for what works on your system.

Return Value
Returns nothing at all! Sorry!

Example
f seek() returns- 1 on error, and setser r no, so let'suse it. Seeking on st di n makes no
sense, so it should generate an error:

#i ncl ude <stdi o. h>
#i ncl ude <errno.h> // nust include this to see "errno" in this exanple

int main(voi d)

{

if (fseek(stdin, 10L, SEEK SET) < 0)
perror("fseek");

fclose(stdin); // stop using this stream
if (fseek(stdin, 20L, SEEK CUR) < 0) {

/'l specifically check errno to see what kind of
/1 error happened...this works on Linux, but your
/1 mleage may vary on ot her systens!

if (errno == EBADF) {
perror("fseek agai n, EBADF");
} else {
perror("fseek again");
}

return O;

Beej's Guide to C Programming 97

} |
And the output is:

fseek: Illegal seek

fseek again, EBADF: Bad file descriptor

See Also
feof(),ferror(),clearerr()

Beej's Guide to C Programming 98

13.18. renove()

Delete afile
Prototypes

#i ncl ude <stdi o. h>
int renove(const char *fil enane);

Description
Removes the specified file from the filesystem. It just deletesit. Nothing magical. Simply
call this function and sacrifice a small chicken and the requested file will be deleted.

Return Value
Returns zero on success, and - 1 on error, setting er r no.

Example

char *filename = "/hone/ beej/evidence. txt";

renove(fil enane);
renove("/di sks/ d/ Wndows/ systemini");

See Also
renane()

Beej's Guide to C Programming 99

13.19. renane()

Renames a file and optionally moves it to a new location

Prototypes

#i ncl ude <stdi o. h>
i nt renanme(const char *old, const char *new);

Description

Renames thefile ol d to name new. Use this function if you're tired of the old name of the
file, and you are ready for a change. Sometimes simply renaming your files makes them feel
new again, and could save you money over just getting all new files!

One other cool thing you can do with this function is actually move a file from one
directory to another by specifying a different path for the new name.

Return Value
Returns zero on success, and - 1 on error, setting er r no.

Example

renane("foo", "bar"); // changes the nane of the file "foo" to "bar"

/'l the follow ng noves the file "evidence.txt" from"/tm" to

/1 "/home/beej", and also renanes it to "nothing.txt":
rename("/tnp/ evidence.txt", "/hone/beej/nothing.txt");
See Also

renove()

Beej's Guide to C Programming 100

13.20. t npfil e()

Create atemporary file

Prototypes

#i ncl ude <stdi o. h>
FILE *tnpfil e(void);

Description

Thisisanifty little function that will create and open atemporary file for you, and will
return aFl LE* toit that you can use. Thefile is opened with mode “r +b”, so it's suitable for
reading, writing, and binary data.

By using alittle magic, the temp file is automatically deleted when it iscl ose() 'd or when
your program exits. (Specifically, t npfi | e() unlinksthefileright after it opensit. If you don't
know what that means, it won't affect your t mpf i | e() skill, but hey, be curious! It's for your
own good!)

Return Value
This function returns an open FI LE* on success, or NULL on failure.

Example

#i ncl ude <stdi o. h>
i nt mai n(voi d)
{

FILE *t enp;
char s[128];

tenp = tnpfile();

fprintf(tenp, "What is the frequency, Al exander?\n");
rewi nd(tenp); // back to the beginning

fscanf(temp, "%", s); // read it back out
fclose(temp); // close (and magically del ete)

return O;

}

See Also
fopen()

fclose()

t mpnan)

Beej's Guide to C Programming 101

13.21. t npnam()

Generate a unique name for atemporary file

Prototypes

#i ncl ude <stdi o. h>
char *tnmpnan(char *s);

Description

This function takes a good hard look at the existing files on your system, and comes up
with aunigue name for anew file that is suitable for temporary file usage.

Let's say you have a program that needs to store off some data for a short time so you
create atemporary file for the data, to be deleted when the program is done running. Now
imagine that you called thisfilef oo. t xt . Thisisall well and good, except what if a user
already hasafilecalled f oo. t xt inthe directory that you ran your program from? Y ou'd
overwrite their file, and they'd be unhappy and stalk you forever. And you wouldn't want that,
now would you?

Ok, so you get wise, and you decide to put thefilein/ t np so that it won't overwrite any
important content. But wait! What if some other user is running your program at the same time
and they both want to use that filename? Or what if some other program has already created that
file?

Seg, all of these scary problems can be completely avoided if you just uset npnant() to get
a safe-ready-to-use filename.

So how do you use it? There are two amazing ways. One, you can declare an array (or
mal | oc() it--whatever) that is big enough to hold the temporary file name. How big is that?
Fortunately there has been a macro defined for you, L_t npnam which is how big the array must
be.

And the second way: just pass NULL for the filename. t npnan() will store the temporary
name in a static array and return a pointer to that. Subsequent calls with a NULL argument will
overwrite the static array, so be sure you're done using it before you call t npnan() again.

Again, thisfunction just makes a file name for you. It's up to you to later f open() thefile
and use it.

One more note: some compilers warn against using t npnan() since some systems have
better functions (like the Unix function nkst enp() .) Y ou might want to check your local
documentation to see if there's a better option. Linux documentation goes so far as to say,
“Never use this function. Use nkst enp() instead.”

I, however, am going to be ajerk and not talk about nkst enp() becauseit's not in the
standard I'm writing about. Nyaah.

Return Value

Returns a pointer to the temporary file name. Thisis either a pointer to the string you
passed in, or apointer to internal static storage if you passed in NULL. On error (likeit can't find
any temporary name that is unique), t npnan() returns NULL.

Example

char fil enane[L_t nmpnani;
char *anot her _fil enane;

if (trmpnan(filenane) != NULL)
printf("We got a tenp file nanmed: \"%\"\n", filenane);

Beej's Guide to C Programming 102

el se
printf("Sonething went wong, and we got nothing!\n");

anot her _filenane = tnpnam(NULL) ;
printf("We got another tenp file nanmed: \"%\"\n", another_fil ename);
printf("And we didn't error check it because we're too |azy!\n");

On my Linux system, this generates the following output:

W got a tenp file nanmed: "/tnp/fil ewQPMIZ"
We got another tenp file naned: "/tnp/fil eOm gPO
And we didn't error check it because we're too |azy!

See Also
fopen()
tnpfile()

Beej's Guide to C Programming 103

13.22. set buf (), set vbuf ()

Configure buffering for standard 1/O operations

Prototypes

#i ncl ude <stdi o. h>
voi d set buf (FILE *stream char *buf);
i nt setvbuf (FILE *stream char *buf, int node, size_t size);

Description

Now brace yourself because this might come as a bit of a surprise to you: when you
printf() orfprintf() oruseany I/O functionslike that, it does not normally work
immediately. For the sake of efficiency, and to irritate you, the I/O on aFI LE* streamis
buffered away safely until certain conditions are met, and only then is the actual 1/0 performed.
The functionsset buf () and set vbuf () alow you to change those conditions and the
buffering behavior.

So what are the different buffering behaviors? The biggest is called “full buffering”,
wherein al 1/0 is stored in abig buffer until it isfull, and then it is dumped out to disk (or
whatever thefileis). The next biggest is called “line buffering”; with line buffering, /O is
stored up aline at atime (until anewline (* \ n') character is encountered) and then that line
is processed. Finally, we have “unbuffered”, which means I/O is processed immediately with
every standard /O call.

Y ou might have seen and wondered why you could call put char () time and time again
and not see any output until you called put char (' \ n') ; that'sright--st dout isline-buffered!

Sinceset buf () isjust asimplified version of set vbuf (), welll talk about set vbuf ()
first.

The st r eamisthe FI LE* you wish to modify. The standard says you must make your call
toset vbuf () before any I/O operation is performed on the stream, or else by then it might be
too late.

The next argument, buf allows you to make your own buffer space (using mal | oc() or
just achar array) to use for buffering. If you don't care to do this, just set buf to NULL.

Now we get to the real meat of the function: node allows you to choose what kind of
buffering you want to use on thisst r eam Set it to one of the following:

_| OFBF

st reamwill be fully buffered.
_| OLBF

st r eamwill beline buffered.
_| ONBF

st r eamwill be unbuffered.

Finally, the si ze argument is the size of the array you passed in for buf ...unless you
passed NULL for buf , in which case it will resize the existing buffer to the size you specify.

Now what about this lesser function set buf () ?It'sjust like calling set vbuf () with
some specific parameters, except set buf () doesn't return avalue. The following example
shows the equivalency:

/! these are the sane
set buf (stream buf)
setvbuf (stream buf, _|OFBF, BUFSIZ); // fully buffered

Beej's Guide to C Programming 104

// and these are the sane:
set buf (stream NULL)
setvbuf (stream NULL, _|ONBF, BUFSI Z); // unbuffered

Return Value
set vbuf () returns zero on success, and nonzero on failure. set buf () hasno return
value.

Example

FI LE *fp;
char |ineBuf[1024];

fp = fopen("sonefile.txt", "r");

setvbuf (fp, lineBuf, _|O.BF, 1024); // set to |line buffering
1. ..

fcl ose(fp);

fp = fopen("another.dat", "rb");

set buf (fp, NULL); // set to unbuffered
I o...

fcl ose(fp);

See Also
ff1ush()

Beej's Guide to C Programming 105

13.23.ff 1 ush()

Process all buffered 1/0 for a stream right now

Prototypes

#i ncl ude <stdi o. h>
int fflush(FILE *strean);

Description

When you do standard I/O, as mentioned in the section on the set vbuf () function, itis
usually stored in abuffer until aline has been entered or the buffer isfull or thefileis closed.
Sometimes, though, you really want the output to happen right this second, and not wait around
in the buffer. Y ou can force this to happen by calling f f | ush() .

The advantage to buffering is that the OS doesn't need to hit the disk every time you call
fprintf (). Thedisadvantageisthat if you look at the file on the disk after thef pri nt f ()
call, it might not have actually been written to yet. (“1 called f put s() , but thefileisstill zero
byteslong! Why?”) In virtually al circumstances, the advantages of buffering outweigh the
disadvantages; for those other circumstances, however, usef f | ush() .

Notethat f f | ush() isonly designed to work on output streams according to the spec.
What will happen if you try it on an input stream? Use your spooky voice: who knooooows!

Return Value
On success, f f 1 ush() returns zero. If there'san error, it returns EOF and sets the error
condition for the stream (seeferror () .)

Example

In this example, we're going to use the carriage return, whichis' \ r' . Thisislike newline
('\'n"), except that it doesn't move to the next line. It just returns to the front of the current line.

What we're going to do is alittle text-based status bar like so many command line
programs implement. It'll do a countdown from 10 to O printing over itself on the same line.

What is the catch and what does this have to do with f f | ush() ? The catch isthat the
terminal is most likely “line buffered” (see the section on set vbuf () for more info), meaning
that it won't actually display anything until it prints a newline. But we're not printing newlines,
we're just printing carriage returns, so we need away to force the output to occur even though
we'reon thesameline. Yes, it'sffl ush()!

#i ncl ude <stdi o. h>
#i ncl ude <unistd.h> // for prototype for sleep()

i nt mai n(voi d)

{

int count;

for(count = 10; count >= 0; count--) {
printf("\rSeconds until launch: "); // lead with a CR
if (count > 0)
printf("%2d", count);
el se
printf("blastoff!\n");

/| force output now !
fflush(stdout);

/'l the sleep() function is non-standard, but virtually every
/1 systeminplements it--it sinply delays for the specificed

Beej's Guide to C Programming

/1 nunmber of seconds:

106

sl eep(1);
}
return O;
}
See Also

set buf (), setvbuf ()

14. String Manipulation

As has been mentioned earlier in the guide, astring in C is a sequence of bytesin memory,
terminated by a NUL character (\ 0'). The NUL at the end isimportant, since it lets all these
string functions (and pri nt f () and put s() and everything else that deals with a string) know
where the end of the string actually is.

Fortunately, when you operate on a string using one of these many functions available to
you, they add the NUL terminator on for you, so you actually rarely have to keep track of it
yourself. (Sometimes you do, especially if you're building a string from scratch a character at a
time or something.)

In this section you'll find functions for pulling substrings out of strings, concatenating
strings together, getting the length of a string, and so forth and so on.

107

Beej's Guide to C Programming

14.1.strl en()

108

Returns the length of a string.
Prototypes

#i ncl ude <string. h>
size_t strlen(const char *s);

Description

This function returns the length of the passed null-terminated string (not counting the NUL
character at the end). It does this by walking down the string and counting the bytes until the
NUL character, so it's alittle time consuming. If you have to get the length of the same string

repeatedly, save it off in avariable somewhere.

Return Value
Returns the number of charactersin the string.

Example

char *s = "Hello, world!"; // 13 characters
/'l prints "The string is 13 characters |ong.":

printf("The string is % characters |ong.\n"

strlen(s));

See Also

Beej's Guide to C Programming 109

14.2.strcnmp(), strncnp()

Compare two strings and return a difference.

Prototypes

#i ncl ude <string. h>
int strcnp(const char *sl1, const char *s2);
int strncnp(const char *sl1, const char *s2, size t n);

Description

Both these functions compare two strings. st r cnp() compares the entire string down to
the end, while st r ncnp() only comparesthefirst n characters of the strings.

It's alittle funky what they return. Basically it's a difference of the strings, so if the strings
are the same, it'll return zero (since the difference is zero). It'll return non-zero if the strings
differ; basically it will find the first mismatched character and return less-than zero if that
character in s1 isless than the corresponding character in s2. It'll return greater-than zero if that
character ins1 is greater than that in s2.

For the most part, people just check to seeif the return value is zero or not, because, more
often than not, people are only curiousiif strings are the same.

These functions can be used as comparison functionsfor gsort () if you have an array of
char * syou want to sort.

Return Value

Returns zero if the strings are the same, less-than zero if the first different character ins1 is
lessthan that in s2, or greater-than zero if the first difference character in s1 is greater than than
ins2.

Example

char *s1 = "Muffin";

char *s2 = "Muffin Sandw ch";

char *s3 = "Muffin";

strcnp("Biscuits", "Kittens"); // returns < 0 since 'B < 'K
strenp("Kittens", "Biscuits"); // returns >0 since 'K >'B

if (strcnp(sl, s2) == 0)
printf("This won't get printed because the strings differ");

if (strcnp(sl, s3) == 0)
printf("This will print because sl and s3 are the sanme");

/1 thisis alittle weird...but if the strings are the same, it'll
/1 return zero, which can al so be thought of as "false". Not-false
/1 is "true", so (!strcnp()) will be true if the strings are the

/] same. yes, it's odd, but you see this all the time in the wild
/1 so you might as well get used to it:

if (!'strcnp(sl, s3))
printf("The strings are the sane!")

if (!strncnp(sl, s2, 6))
printf("The first 6 characters of sl and s2 are the same")

See Also
mencnp(), gsort ()

Beej's Guide to C Programming 110

14.3. strcat (), strncat ()

Concatenate two strings into a single string.

Prototypes

#i ncl ude <string. h>
int strcat(const char *dest, const char *src);
int strncat(const char *dest, const char *src, size t n);

Description

“Concatenate”, for those not in the know, meansto “stick together”. These functions take
two strings, and stick them together, storing the result in the first string.

These functions don't take the size of the first string into account when it does the
concatenation. What this meansin practical termsisthat you can try to stick a 2 megabyte string
into a 10 byte space. Thiswill lead to unintended consequences, unless you intended to lead to
unintended consequences, in which case it will lead to intended unintended consequences.

Technical banter aside, your boss and/or professor will be irate.

If you want to make sure you don't overrun the first string, be sure to check the lengths of
the strings first and use some highly technical subtraction to make sure things fit.

Y ou can actually only concatenate the first n characters of the second string by using
st rncat () and specifying the maximum number of charactersto copy.

Return Value
Both functions return a pointer to the destination string, like most of the string-oriented
functions.

Example

char dest[20] = "Hello";
char *src =", World!l";

char nunbers[] = "12345678";

printf("dest before strcat: \"%\"\n", dest); // "Hello"

strcat (dest, src);
printf("dest after strcat: \"%\"\n", dest); // "Hello, world!"

strncat (dest, nunmbers, 3); // strcat first 3 chars of nunbers
printf("dest after strncat: \"%\"\n", dest); // "Hello, world!123"

Notice | mixed and matched pointer and array notation there with sr ¢ and nunber s; thisis
just fine with string functions.

See Also
strlen()

Beej's Guide to C Programming 111

14.4.strchr(),strrchr()

Find a character in a string.

Prototypes

#i ncl ude <string. h>
char *strchr(char *str, int c);
char *strrchr(char *str, int c);

Description

The functionsst rchr () and st rrchr find thefirst or last occurance of aletter in astring,
respectively. (Theextra“r” instrrchr () standsfor “reverse’--it looks starting at the end of
the string and working backward.) Each function returns a pointer to the char in question, or
NULL if the letter isn't found in the string.

Quite straightforward.

Onething you can do if you want to find the next occurance of the letter after finding
thefirst, is call the function again with the previous return value plus one. (Remember pointer
arithmetic?) Or minus oneif you're looking in reverse. Don't accidentally go off the end of the
string!

Return Value
Returns a pointer to the occurance of the letter in the string, or NULL if the letter is not
found.

Example

// "Hello, world!"

// N AN

I A B

char *str = "Hello, world!"

char *p;

p = strchr(str, ',"); // p now points at position A
p = strrchr(str, "0"); // p now points at position B

I/l repeatedly find all occurances of the letter 'B
char *str = "A Bl G BROAN BAT BI T BEEJ";
char *p;

for(p = strchr(str, 'B'); p != NULL; p = strchr(p + 1, 'B)) {
printf("Found a 'B here: %\n", p);

}

/] output is:

/1

// Found a 'B'" here: Bl G BROMN BAT BI T BEEJ
// Found a 'B'" here: BROWN BAT BI T BEEJ

// Found a 'B'" here: BAT BIT BEEJ

// Found a 'B'" here: BIT BEEJ]

// Found a 'B' here: BEEJ]

See Also

Beej's Guide to C Programming 112

14.5. strcpy(), strncpy()

Copy astring
Prototypes

#i ncl ude <string. h>
char *strcpy(char *dest, char *src);
char *strncpy(char *dest, char *src, size_t n);

Description

These functions copy a string from one address to another, stopping at the NUL terminator
on the sr cstring.

strncpy() isjustlikest rcpy(), except only thefirst n characters are actually copied.
Beware that if you hit the limit, n before you get a NUL terminator on the sr ¢ string, your dest
string won't be NUL-terminated. Beware! BEWARE!

(If the sr ¢ string has fewer than n characters, it worksjust likestrcpy() .)

Y ou can terminate the string yourself by stickingthe' \ 0' in there yourself:

char s[10];
char foo = "My hovercraft is full of eels."; // nore than 10 chars

strncpy(s, foo, 9); // only copy 9 chars into positions 0-8
s[9] ="'\0'; /] position 9 gets the term nator

Return Value
Both functions return dest for your convenience, at no extra charge.

Example

char *src = "hockey hockey hockey hockey hockey hockey hockey hockey";
char dest[20];

int |en;

strcpy(dest, "I like "); // dest is now"Il like "

len = strlen(dest);

/1 tricky, but let's use sone pointer arithnetic and math to append

/1 as much of src as possible onto the end of dest, -1 on the length to
/'l leave roomfor the term nator

strncpy(dest+l en, src, sizeof(dest)-len-1);

/1 renmenber that sizeof() returns the size of the array in bytes
// and a char is a byte:

dest[si zeof (dest)-1] = '\0'; // term nate
/] dest is now v null term nator
/1 | like hockey hocke

/1 01234567890123456789012345

See Also
mencpy(),strcat(),strncat ()

Beej's Guide to C Programming 113

14.6.strspn(),strcspn()

Return the length of a string consisting entirely of a set of characters, or of not a set of
characters.

Prototypes

#i ncl ude <string. h>
size_t strspn(char *str, const char *accept);
size_t strcspn(char *str, const char *reject);

Description

st rspn() will tell you the length of a string consisting entirely of the set of charactersin
accept . Thatis, it startswalking down st r until it finds a character that is not in the set (that
is, acharacter that is not to be accepted), and returns the length of the string so far.

st rcspn() works much the same way, except that it walks down st r until it findsa
character inther ej ect set (that is, acharacter that isto be rejected.) It then returns the length
of the string so far.

Return Value
The lenght of the string consisting of all charactersinaccept (for strspn()), or the
length of the string consisting of all characters except r ej ect (for strcspn()

Example

char stri[]
char str2[]

= "a banana";

= "the bolivian navy on manuvers in the south pacific";

/1 how many letters in strl until we reach sonething that's not a vowel ?
n = strspn(strl, "aeiou"); // n ==1, just "a"

/1 how many letters in strl until we reach sonmething that's not a, b,
/'l or space?
n = strspn(strl, "ab "); // n == 4, "a ba"

/1 how many letters in str2 before we get a "y"?
n = strcspn(str2, "y"); // n = 16, "the bolivian nav"

See Also
strchr(),strrchr()

Beej's Guide to C Programming 114

14.7.strstr ()

Find a string in another string.

Prototypes

#i ncl ude <string. h>
char *strstr(const char *str, const char *substr);

Description

Let's say you have abig long string, and you want to find aword, or whatever substring
strikes your fancy, inside the first string. Then st r st r () isfor you! It'll return a pointer to the
substr withinthestr!

Return Value
Y ou get back a pointer to the occurance of the subst r insidethe st r, or NULL if the
substring can't be found.

Example

char *str = "The quick brown fox junped over the |azy dogs."
char *p;

p = strstr(str, "lazy");

printf("%\n", p); // "lazy dogs."

/1l pis NULL after this, since the string "wonbat" isn't in str:
p = strstr(str, "wonbat");

See Also
strchr(),strrchr(),strspn(),strcspn()

Beej's Guide to C Programming 115

14.8. st rt ok()

Tokenize astring.

Prototypes

#i ncl ude <string. h>
char *strtok(char *str, const char *delim;

Description

If you have a string that has a bunch of separatorsin it, and you want to break that string up
into individual pieces, thisfunction can do it for you.

The usageisalittle bit weird, but at least whenever you see the function in the wild, it's
consistently weird.

Basically, the first time you call it, you passthe string, st r that you want to break up in
asthe first argument. For each subsequent call to get more tokens out of the string, you pass
NULL. Thisisalittleweird, but st rt ok() remembers the string you originally passed in, and
continues to strip tokens off for you.

Note that it does this by actually putting a NUL terminator after the token, and then
returning a pointer to the start of the token. So the original string you passin is destroyed, as it
were. If you need to preserve the string, be sure to pass acopy of ittost rt ok() sothe original
isn't destroyed.

Return Value
A pointer to the next token. If you're out of tokens, NULL is returned.

Example

/] break up the string into a series of space or
/1 punctuati on-separated words

char *str = "Where is ny bacon, dude?"

char *token;

/1 Note that the follow ng if-do-while construct is very very
/1 very very very conmobn to see when using strtok().

/1 grab the first token (making sure there is a first token!)
if ((token = strtok(str, ".,?! ")) !'= NULL) {
do {
printf("Word: \"%\"\n", token);

/1 now, the while continuation condition grabs the
/'l next token (by passing NULL as the first param
// and continues if the token's not NULL:

} while ((token = strtok(NULL, ".,?! ")) !'= NULL);
}
/] output is:
/1
[Word: "Where"
[l Word: "is"
[l Word: "ny"

[/ Wbrd: "bacon"
[/ Word: "dude"
/1

See Also
strchr(),strrchr(),strspn(),strcspn()

15. Mathematics

It's your favorite subject: Mathematics! Hello, I'm Doctor Math, and I'll be making math
FUN and EASY!

[vomiting sounds]

Ok, | know math isn't the grandest thing for some of you out there, but these are merely
functions that quickly and easily do math you either know, want, or just don't care about. That
pretty much coversit.

For you trig fans out there, we've got al manner of things, including sine, cosine, tangent,
and, conversely, arc sine, arc cosine, and arc tangent. That's very exciting.

And for normal people, thereisadurry of your run-of-the-mill functions that will serve
your general purpose mathematical needs, including absolute value, hypotenuse length, square
root, cube root, and power.

In short, you're africking MATHEMATICAL GOD!

Oh wait, before then, | should tell you that the trig functions have three variants with
different suffixes. The “f” suffix (e.g. si nf ()) returnsaf | oat , while the “1” suffix (e.g.
si nl ()) returnsamassive and nicely accurate | ong doubl e. Normal si n() just returnsa
doubl e. These are extensions to ANSI C, but they should be supported by modern compilers.

Also, there are several valuesthat are defined in the mat h. h header file.

M E
e

M LORE
log_ 2e

M LOGLOE
log_10e

M LN2
log_e?2

M LN10
log_e 10

M PI
pi
MPlI_2
pi/2
MPlI 4
pi/4
M1 Pl
pi
M2 PI
2/pi
M 2_SQRTPI
2/sgrt(pi)
M SQRT2
sart(2)

116

Beej's Guide to C Programming 117

M SQRT1 2
Usgrt(2)

Beej's Guide to C Programming 118

15.1.sin(),sinf(),sinl ()

Calculate the sine of a number.

Prototypes

#i ncl ude <mat h. h>

doubl e si n(doubl e x);

float sinf(float x);

| ong doubl e sinl (long double x);

Description

Calculates the sine of the value x, where x isin radians.

For those of you who don't remember, radians are another way of measuring an angle, just
like degrees. To convert from degrees to radians or the other way around, use the following
code:

degr ees
radi ans

radi ans * 180.0f / MPI;
degrees * M Pl / 180;

Return Value
Returns the sine of x. The variants return different types.

Example

doubl e si nx;
| ong doubl e | dsi nx;

sinx = sin(3490.0); // round and round we go!
I dsi nx = sinl ((long doubl e)3.490);

See Also
cos(),tan(),asin()

Beej's Guide to C Programming 119

15.2. cos(),cosf (), cosl ()

Calculate the cosine of a number.

Prototypes

#i ncl ude <mat h. h>

doubl e cos(doubl e x)

float cosf(float x)

| ong doubl e cosl (1 ong doubl e x)

Description

Calculates the cosine of the value x, where x isin radians.

For those of you who don't remember, radians are another way of measuring an angle, just
like degrees. To convert from degrees to radians or the other way around, use the following
code:

degr ees
radi ans

radi ans * 180.0f / MPI;
degrees * M Pl / 180;

Return Value
Returns the cosine of x. The variants return different types.

Example

doubl e si nx;
| ong doubl e | dsi nx;

sinx = sin(3490.0); // round and round we go!
I dsi nx = sinl ((long doubl e)3.490);

See Also
sin(),tan(),acos()

Beej's Guide to C Programming

15.3.tan(),tanf(),tanl ()

120

Calculate the tangent of a number.

Prototypes

#i ncl ude <mat h. h>
doubl e tan(doubl e x)
float tanf(float x)

| ong doubl e tanl (I ong doubl e x)

Description

Calculates the tangent of the value x, where x isin radians.

For those of you who don't remember, radians are another way of measuring an angle, just

like degrees. To convert from degrees to radians or the other way around, use the following

code:
degrees = radians * 180.0f / MPI
radi ans = degrees * M Pl / 180;

Return Value

Returns the tangent of x. The variants return different types.

Example

doubl e tanx;
| ong doubl e | dt anx;

tanx = tan(3490.0);
I dtanx = tanl ((l ong

/1 round and round we go!
doubl e) 3. 490) ;

See Also
sin(),cos(),at

an(),atan2()

Beej's Guide to C Programming 121

15.4.asin(),asinf(),asinl ()

Calculate the arc sine of a number.

Prototypes

#i ncl ude <mat h. h>

doubl e asi n(doubl e x);

float asinf(float x);

| ong doubl e asinl (I ong doubl e x);

Description

Calculates the arc sine of anumber in radians. (That is, the value whose sineisx.) The
number must be in the range -1.0 to 1.0.

For those of you who don't remember, radians are another way of measuring an angle, just
like degrees. To convert from degrees to radians or the other way around, use the following
code:

degr ees
radi ans

radi ans * 180.0f / MPI;
degrees * M Pl / 180;

Return Value
Returns the arc sine of x, unless x isout of range. In that case, er r no will be set to EDOM
and the return value will be NaN. The variants return different types.

Example

doubl e asi nx;
| ong doubl e | dasi nx;

asinx = asin(0.2);
| dasi nx = asinl ((long doubl e)0. 3);

See Also
acos(),atan(),atan2(),sin()

Beej's Guide to C Programming 122

15.5. acos(), acosf (), acosl ()

Calculate the arc cosine of a number.

Prototypes

#i ncl ude <mat h. h>

doubl e acos(doubl e x);

float acosf(float x);

| ong doubl e acosl (I ong doubl e x);

Description

Calculates the arc cosine of anumber in radians. (That is, the value whose cosineisx.) The
number must be in the range -1.0 to 1.0.

For those of you who don't remember, radians are another way of measuring an angle, just
like degrees. To convert from degrees to radians or the other way around, use the following
code:

degr ees
radi ans

radi ans * 180.0f / MPI;
degrees * M Pl / 180;

Return Value
Returns the arc cosine of x, unless x is out of range. In that case, er r no will be set to
EDOM and the return value will be NaN. The variants return different types.

Example

doubl e acosx;
| ong doubl e | dacosx;

acosx = acos(0.2);
| dacosx = acosl ((l ong doubl e) 0. 3);

See Also
asin(),atan(),atan2(),cos()

Beej's Guide to C Programming 123

15.6.atan(),atanf(),atanl (), atan2(),
atan2f (), atan2l ()

Calculate the arc tangent of a number.

Prototypes

#i ncl ude <mat h. h>

doubl e atan(doubl e x);
float atanf(float x);
| ong doubl e atanl (1 ong doubl e x);

doubl e atan2(doubl e y, double x);
float atan2f(float y, float Xx);
| ong doubl e atan2l (I ong doubl e y, |ong double x);

Description

Calculates the arc tangent of a number in radians. (That is, the value whose tangent is x.)

Theat an2() variants are pretty much the same asusing at an() withy/x asthe
argument...except that at an2() will use those values to determine the correct quadrant of the
result.

For those of you who don't remember, radians are another way of measuring an angle, just
like degrees. To convert from degrees to radians or the other way around, use the following
code:

degr ees
radi ans

radi ans * 180.0f / MPI;
degrees * M Pl / 180;

Return Value
Theat an() functions return the arc tangent of x, which will be between PI/2 and -PI/2.
Theat an2() functions return an angle between Pl and -PI.

Example

doubl e at anx;
| ong doubl e | dat anx;

atanx = atan(0. 2);
| dat anx = atanl ((l ong doubl e) 0. 3);

atanx = atan2(0. 2);
| dat anx = atan2l ((l ong doubl e) 0. 3) ;

See Also
tan(),asin(),atan()

Beej's Guide to C Programming 124

15.7.sqrt ()

Calculate the sguare root of a number

Prototypes

#i ncl ude <mat h. h>

doubl e sqrt (doubl e x)

float sqrtf(float x);

| ong doubl e sqgrtl (Il ong doubl e x);

Description

Computes the sguare root of a number. To those of you who don't know what a square root
is, I'm not going to explain. Sufficeit to say, the square root of a number delivers a value that
when sguared (multiplied by itself) resultsin the original number.

Ok, fine--1 did explain it after all, but only because | wanted to show off. It'snot like I'm
giving you examples or anything, such as the square root of nineisthree, because when you
multiply three by three you get nine, or anything like that. No examples. | hate examples!

And | suppose you wanted some actual practical information here aswell. Y ou can see
the usual trio of functions here--they all compute square root, but they take different types as
arguments. Pretty straightforward, really.

Return Value

Returns (and | know this must be something of a surprise to you) the square root of x. If
you try to be smart and pass a negative number in for x, the global variable er r no will be set to
EDOM (which stands for DOMain Error, not some kind of cheese.)

Example

/'l exanpl e usage of sqrt()
fl oat sonething = 10;
doubl e x1 8.2, yl

doubl e x2 3.8, y2
doubl e dx, dy;

34.9;

printf("square root of 10 is % 2f\n", sqrtf(sonething));

dx = x2 - x1;

dy = y2 - yl

printf("di stance between points (x1, yl) and (x2, y2): %2f\n",
sqrt (dx*dx + dy*dy));

And the output is:

square root of 10 is 3.16
di st ance between points (x1, yl) and (x2, y2): 40.54

See Also
hypot ()

16. Complex Numbers

125

17. Time Library

126

	Contents
	Foreward
	Audience
	Platform and Compiler
	Building under Unix
	Official Homepage
	Email Policy
	Mirroring
	Note for Translators
	Copyright and Distribution

	Programming Building Blocks
	The Specification
	The Implementation
	So Much To Do, So Little Time
	Hello, World!

	Variables, Expressions, and Statements (Oh My)
	Variables
	Operators
	Expressions
	Statements
	The if statement
	The while statement
	The do-while statement
	The for statement

	Building Blocks Revisited
	Functions
	Passing by Value
	Function Prototypes

	Variables, The Sequel
	"Up Scope"
	Global variables

	Storage Classes
	Gimme some static!
	Other Storage Classes

	Pointers--Cower In Fear!
	Memory and Variables
	Pointer Types
	Dereferencing
	Passing Pointers as Parameters

	Structures
	Pointers to structs
	Passing struct pointers to functions

	Arrays
	Passing arrays to functions

	Strings
	Dynamic Memory
	malloc()
	free()
	realloc()
	calloc()

	More Stuff!
	Pointer Arithmetic
	typedef
	enum
	More struct declarations
	Command Line Arguments
	Multidimensional Arrays
	Casting and promotion
	Incomplete types
	void pointers
	NULL pointers
	More Static
	Typical Multifile Projects
	The Almighty C Preprocessor
	#include
	#define
	#if and #ifdef

	Pointers to pointers
	Pointers to Functions
	Variable Argument Lists
	vprintf() and its ilk

	Standard I/O Library
	fopen()
	freopen()
	fclose()
	printf(), fprintf()
	scanf(), fscanf()
	gets(), fgets()
	getc(), fgetc(), getchar()
	puts(), fputs()
	putc(), fputc(), putchar()
	fseek(), rewind()
	ftell()
	fgetpos(), fsetpos()
	ungetc()
	fread()
	fwrite()
	feof(), ferror(), clearerr()
	perror()
	remove()
	rename()
	tmpfile()
	tmpnam()
	setbuf(), setvbuf()
	fflush()

	String Manipulation
	strlen()
	strcmp(), strncmp()
	strcat(), strncat()
	strchr(), strrchr()
	strcpy(), strncpy()
	strspn(), strcspn()
	strstr()
	strtok()

	Mathematics
	sin(), sinf(), sinl()
	cos(), cosf(), cosl()
	tan(), tanf(), tanl()
	asin(), asinf(), asinl()
	acos(), acosf(), acosl()
	atan(), atanf(), atanl(), atan2(), atan2f(), atan2l()
	sqrt()

	Complex Numbers
	Time Library

