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To all the people in the world who never stopped asking "why"
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Preface

After finishing the manuscript of my first book, Developing LDAP and ADSI
Clients for Microsoft Exchange (Schreiber 2000) in October 1999,1 was hon-

estly convinced for some time that I would never write a book again. Well, this phase
didn't last long, as the pages you are reading right now prove. Actually, I was already
starting to think about writing another book as early as November 1999 while I was
playing around with the latest release candidate of Microsoft Windows 2000. Exam-
ining the kernel and its interfaces and data structures, I was very pleased to find that
this operating system—despite its ugly name that reminded me too much of Win-
dows 95 and 98—was still a good old Windows NT.

Poking around in the binary code of operating systems has always been one of
my favorite pastimes. Just a couple of weeks before I had the idea to write this book,
my article "Inside Windows NT System Data" (Schreiber 1999), showing how to
retrieve internal system data by means of the undocumented kernel API function
NtQuerySystemInformation(), had been published in Dr. Dobb's Journal. The
preparatory research to this article left me with a huge amount of unpublished
material that longed for being printed somewhere, and so I yelled: "Hey, how about
a book about Windows 2000 Internals?" Because of the obvious similarities between
Windows NT 4.0 and Windows 2000, plus my pile of interesting undocumented
information too valuable to be buried, this seemed to be a great idea, and I am proud
that this idea took the physical form of the book you are holding in your hands.
While transforming the stuff I had Collected into something that was readable by
other people, I discovered lots of other interesting things, so this book also features a
great deal of brand-new material that I hadn't planned to include beforehand.

Addison-Wesley has a long and glorious tradition of publishing books
of this kind. The list of milestones is long, containing the two-volume printed
version of Brown and Jim Kyle's classic "Interrupt List," PC Interrupts and
Network Interrupts (Brown and Kyle 1991, 1993, 1994, available online at

xv
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http://www.cs.cmu.edu/afs/cs.cmu.edu/user/ralf/pub/WWW/files.html}; two editions of
Undocumented DOS (Schulman et al., 1990, 1993); the Windows 3.1 update thereof,
titled Undocumented Windows (Schulman et al., 1992); Matt Pietrek's Windows Inter-
nals (Pietrek 1993); as well as DOS internals by Geoff Chappell (Chappell 1994) and
Dissecting DOS by Michael Podanoffsky (Podanoffsky 1994). Other authors have con-
tributed invaluable material in other areas such as PC hardware programming (Sargent
III and Shoemaker 1994, van Gilluwe 1994). Andrew Schulman and Matt Pietrek both
have written two more books of this "undocumented" kind about Windows 95, this
time for IDG Books Worldwide (Schulman 1994, Pietrek 1995). However, what has
been painfully missing in the past few years was a similar book for Windows NT sys-
tem programmers. Fortunately, some information has been made available in article
form. For example, Matt Pietrek has filled some parts of this huge gap in his "Under
the Hood" column (e.g., Pietrek 1996a-d) in Microsoft Systems Journal (MS/, mean-
while transformed into MSDN Magazine), and The NT insider journal, published bi-
monthly by Open Systems Resources (OSR), is an indispensable source of know-how
(check out http://www.osr.com/publications_ntinsider.htm for a free subscription). We
should also not forget about the incredible Syslnternals Web site operated by Mark
Russinovich and Bryce Cogswell at http://www.sysinternals.com, who have brought us
numerous powerful utilities—some even including full source code—that really should
have been part of the Microsoft Windows NT Resource Kit.

For a long time, the Microsoft Windows NT Device Driver Kit (DDK) has been
the only comprehensive source of information about Windows NT system internals.
However, the DDK documentation is tough to read—some people even say it's any-
thing but didactic. Moreover, the DDK is documenting just a small part of the avail-
able system interfaces and data structures. The largest part belongs to the category of
the so-called internal features. This has made it next to impossible to write nontrivial
kernel-mode software for Windows NT without searching for additional information
somewhere else. In the past, however, reliable documentation and sample code was
hard. This situation improved somewhat in 1997 when The Windows NT Device
Driver Book by Art Baker and Rajeev Nagar's Windows NT File System
Internals appeared. The year 1998 was marked by the heavily revised update of
Helen Custer's two-volume set Inside Windows NT and Inside the Windows NT File
System (Custer 1993, 1994) by David Solomon (Solomon 1998), who added
a lot of new, previously unpublished material. In early 1999, Windows NT Device
Driver Development, written by NT kernel-mode experts Peter G. Viscarola and W.
Anthony Mason, was published (Viscarola and Mason 1999). Both are consulting
partners of Open Systems Resources (OSR), and the OSR people are well known for
their excellent kernel-mode driver and file system programming courses, so having
their first-hand knowledge in printed form was a real benefit. In the same year,
Edward N. Dekker and Joseph M. Newcomer's Developing Windows NT Device
Drivers (Dekker and Newcomer 1999) appeared. Both books were probably the first
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comprehensive and practically useful NT kernel-mode programming tutorials. If you
want to read thoughtful and accurate reviews about several Windows NT driver pro-
gramming books, including some of those mentioned above, just peek into the Novem-
ber/December 1999 issue of The NT Insider (Open Systems Resources 1999c).

In late 1999, more authors delved into the depths of the Windows NT kernel.
A trio of system programmers and consultants from Puna, India, Prasad Dabak,
Sandeep Phadke, and Milind Borate, brought us the first Undocumented Windows
NT book (Dabak, Phadke, and Borate 1999). Because it was published before the
release of the final version of Windows 2000, it covers Windows NT 3.51 and 4.0
and the latest 2000 beta then available. After this overdue release, another must-have
book for anyone in Windows 2000 system programming appeared in January 2000:
Gary Nebbett's Windows NT/2000 Native API Reference (Nebbett 2000). His work
provides a thorough, comprehensive, and extraordinarily detailed documentation of
all API functions and the structures they involve, providing the first opportunity to
double-check my findings about NtQuerySysteminformation ( ) in Dr. Dobb's Journal
(Schreiber 1999). I was pleased to see that not only did our technical details match
perfectly but so did most of the symbolic names we had chosen independently. This
book should have been published by Microsoft years earlier!

You may think that everything has already been said about the internals of
Windows 2000. Not so! The internal functions and data structures inside the kernel
involve such a vast area of knowledge that they can hardly be covered by just two
books. The book you're reading now is just one of the building blocks required for a
better understanding of the architecture of Windows 2000. Hopefully, the coming
years will bring many more publications of this kind. One recent publication is the
third edition of Inside Windows NT. Because it covers many of the new features
introduced with Windows 2000, it is consequently now called Inside Windows 2000
(Solomon and Russinovich 2000). This third edition is a genuine member of the for-
mer Inside Windows NT series. In this edition, Mark Russinovich is co-author with
David Solomon, which is a reliable indicator that this book can be bought blindly.
There is no significant overlap between the contents of Inside Windows 2000 and
Undocumented Windows 2000 Secrets: A Programmer's Cookbook, so it is
probably a good idea to have both on the shelf.

THE TOPICS DISCUSSED IN THIS BOOK

If I had to compare this book with its predecessors, I'd say it's written in the tradition of
the old Undocumented DOS volumes (Schulman et al., 1990,1993). I treasured these
books back in the days of DOS programming, because they involved an ideal trade-off
between comprehensiveness and an in-depth treatment of an essential subset of topics.
In my opinion, it is nearly impossible to write a comprehensive documentation of the
internals of a complex operating system in a single volume without losing detail. If you
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don't opt for a multitome encyclopedia, you can either write a reference handbook,
such as Nebbett's (Nebbett 2000), or focus on specific topics, as Andrew Schulman and
friends did. Nebbett didn't leave much for other reference authors, but the in-depth
documentation of special Windows NT/2000 topics is still a wide-open field.

Like Undocumented DOS, this book of introduces Windows 2000 program-
ming topics that I have found both interesting and useful. In the "undocumented"
business, there is always a danger of doing "art for art's sake." Unveiling undocu-
mented features of an operating system is usually very exciting and fulfilling for the
person doing the work, but might be quite irrelevant for others. Not everything that
is undocumented is automatically useful as well. Some operating system internals are
just internals in their strictest sense, that is, implementation details. However, many
internals of Microsoft systems are much more than that. Microsoft has a notorious
reputation for intentionally preventing the developer community from knowing too
much about their target operating system. My favorite example is the ingenious and
extremely useful MS-DOS Network Redirector Interface described in Chapter 8 of
the second edition of Undocumented DOS (Schulman et al., 1993). Much time
would have been saved and much trouble avoided if Microsoft had documented this
wonderful interface when they introduced it. Unfortunately, Microsoft has pursued i
this information policy with the follow-up systems Windows 3.x, Windows 9x, Win-
dows NT, and Windows 2000. However, books such as this are being written to pro-
vide further information.

After introducing you to the basic architecture of Windows 2000 and helping
you to set up your workstation for Windows 2000 kernel spelunking, this book leads
you through some very exciting corners inside the world of kernel programming.
Typically, each chapter first discusses the essential theory you need to know about the
topic, and then immediately presents sample code to illustrate the respective features.
The language chosen for the samples is plain C. The probability is high that the
readers of this book are comfortable with C, and this language is well supported by
Microsoft's Windows 2000 development tools.

This book deliberately does not attempt to give a broad overview of the architec-
ture of the Windows 2000 kernel, although it discusses parts of it in some chapters. If
you are looking for such information, see Inside Windows 2000 (Solomon and Russi-
novich 2000) instead, which takes a very general and theoretical approach to the
Windows 2000 internals. Neither Inside Windows 2000 nor the Undocumented
Windows 2000 Secrets: A Programmers Cookbook Windows NT/2000 Native API
Reference (Nebbett 2000) provide practical code examples and full-featured sample
applications that interact live with the system contains reprinted code samples in
abundance, accompanying the Windows 2000 concepts and features under discus-
sion. The companion CD contains all of this code in ready-to-run applications that
you can extend, tear to shreds for use in other applications, or simply use as is.
Basically, you will be led through the following topics:
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• Using t h e Windows 2000 debugging interfaces • . . • • ' .

• Loading, parsing, and using the Windows 2000 symbol files

• Dissecting the Microsoft PDB file format .

• Interfacing to the kernel's Native API -

• Writing simple kernel-mode drivers

• Exploring Windows 2000 system memory .

• Hooking and monitoring calls to the Native API

• Calling kernel functions from user-mode applications

• Calling nonexported kernel functions

• Exploring the world of Windows 2000 kernel objects

You also will learn many more details about the system both in the text and
samples. My foremost intention while writing the manuscript was to share with you
anything I knew about the topics covered.

THE ORGANIZATION OF THIS BOOK

After considering which sequence of chapters would be optimal for all potential read-
ers of this book, I have arranged the seven chapters in the order that I thought would
be best for a novice Windows 2000 system programmer. Therefore, any new con-
cepts or techniques introduced in a chapter are explained at their first appearance.
Consequently, newbies should read the chapters sequentially as they appear in the
book. This approach may bore expert readers who look for more "off-road" infor-
mation. However, it is easier for an expert to skip over familiar details than for a
novice to keep up if the material is presented in a nondidactic sequence.

Here is what awaits you in each chapter: ;

• Chapter 1 begins with a guided tour through setup and use of the
Windows 2000 Kernel Debugger, because this is one of the most helpful
tools for system exploration. Other highlights are the official Windows
2000 debugging interfaces in the form of the psapi. dll, imagehlp. dll,
and dbghelp. dll components. The chapter closes with detailed descrip-
tions of the layouts of Microsoft CodeView and Program Database (PDB)
files, complemented by a sample symbol file parser DLL and an accompa-
nying client application. . ;
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• Chapter 2 introduces the Windows 2000 Native API, discussing the main
system service dispatcher, the various API function groups exported by
ntdll.dll and ntoskrnl.exe, and the data types most frequently used by
these components.

• Chapter 3 is a short and easy introduction to basic kernel-mode driver
development. It is by no means intended as a tutorial for heavy-duty
hardware driver developers. It simply points out essential information
required to understand the sample code in subsequent chapters, including
loading and unloading driver modules at runtime via the Service Control
Manger interface. Probably the most interesting highlight is the descrip-
tion of the customizable driver wizard included with full source code on
the companion CD.

• Chapter 4 is certainly the most challenging chapter for readers suffering
from hardware phobia, because it starts with a detailed description of the
Intel Pentium CPU features used by the Windows 2000 memory manager.
Anyone who survives this section is rewarded by extensive sample code of
a memory spy device that supports the visualization of prohibited memory
regions and internal memory manager data structures. Also included is a
Windows 2000 memory map that outlines how the system makes use of
the vast 4-GB address space offered by the Pentium CPU family.

• Chapter 5 explains in detail how you can hook Native API functions,
mainly focusing on call parameter monitoring and file/registry tracking.
This chapter makes heavy use of inline assembler code and CPU
stack twirling.

• Chapter 6 proposes a general-purpose solution for something that is com-
monly considered impossible in the Windows 2000 programming para-
digm: calling kernel-mode code from user-mode applications. The sample
code in this chapter builds a bridge from the Win32 subsystem to the main
kernel interfaces inside ntoskrnl.exe, hal.dll, and other core components.
The chapter also describes how to call nearly any kernel function as long
as its entry point is provided in the Windows 2000 symbol files.

• Chapter 7 delves deeply into the mysterious Windows 2000 object man-
ager. The internal structure of kernel objects is one of the best-kept secrets,
because Microsoft doesn't give you more information about an object
than an opaque void* pointer. This chapter unveils what this pointer really
points to, and how object structures and handles are maintained and man-
aged by the system. As a special feature, the layout of process and thread
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objects is discussed in detail. The last section of the chapter is a sample
application that displays the hierarchical arrangement of kernel objects by
tracing the relations of various undocumented object structures.

• Appendix A is related to Chapter 1 and contains all commands and com-
mand options of the Windows 2000 Kernel Debugger.

• Appendix B is related to Chapter 2 and summarizes several API functions
exported by the Windows 2000 kernel modules.

• Appendix C provides an extensive collection of Windows 2000 constants
and data types in alphabetical order. This reference list documents several
undocumented kernel structures introduced and used throughout the book.

As you see, this book discusses much information that merits the attribute
"undocumented," and some of the material has never been published before.

THE AUDIENCE OF THIS BOOK

Undocumented Windows 2000 Secrets: A Programmer's Cookbook is intended for
system programmers who want to maximize the features of their target operating
system. First disclaimer: If the target platform of your software is Windows 95, 98,
or Me (Millennium Edition), don't read any further. Because of the architectural dif-
ferences of the Windows 9x/Me and NT/2000 platforms, you won't benefit from
reading this book. Second disclaimer: This book does not contain information on the
Alpha processor or multiprocessor systems—I will target the 32-bit Intel i386 single-
processor platform exclusively. Third disclaimer: Be aware that this text is not writ-
ten for the faint-hearted. You will be faced with programming techniques the average
Win32 programmer has never seen. The Windows 2000 kernel is an entirely different
world, bearing little resemblance to the Win32 subsystem built upon it. Some of the
interfacing techniques introduced toward the end of the book might be new to even
experienced kernel-mode programmers. Let me put it this way: This is the book your
high-school teachers and Microsoft representatives have always warned you about!

If you are still reading on, you are obviously an open-minded, courageous
person who wants to know everything about the things lurking beneath the surface
of the Windows 2000 operating system. That's great! Even if you won't use the
know-how you gain from this book on a daily basis, you will certainly benefit from
it. Knowing what is going on under the surface of an application interface is always
advantageous. It facilitates debugging and optimization, and helps avoid unwanted
side effects caused by misconceptions about the hidden mechanics of the system.



XXII PREFACE

The only expertise I'm expecting from my readers is "talking C" fluently and
basic knowledge of Win32 programming. If you have already written kernel-mode
drivers, you're in an even better position, but that's not a requirement. You will find
an introduction to kernel-mode driver programming in this book, telling you every-
thing you need to know within its scope. However, please note that this is not a
comprehensive kernel-mode tutorial. If you are specifically interested in kernel-
mode driver development, please get one of the good books that deal with this topic
exclusively (e.g., Viscarola and Mason 1999, or Dekker and Newcomer 1999).

Some chapters of this book include heavy use of inline assembly language
(ASM). I don't expect you to have thorough ASM programming experience, but a
basic knowledge of ASM will be certainly helpful. If you have never written a line of
ASM code, you may find these chapters difficult or you may choose to skip them
entirely. However, I encourage you to read at least parts of them, only skipping the
subsections that explain the details of the ASM code. Because the ASM code snippets
used in the samples are always well encapsulated in C function wrappers, you can
usually ignore their internals and still benefit from the remaining material that
surrounds them.

THE CONVENTIONS USED IN THIS BOOK

The target operating system of this book is Windows 2000. However, you will find
that most of the information also applies to Windows NT 4.0, and most of the sam-
ple applications run on this platform as well. Note that I am not covering Windows
NT 3.x. Although it is probably outdated now, NT 3.51 has been my favorite NT so
far because it was relatively small and fast and did not burn up too many CPU MIPS
in its user interface. With respect to Windows NT 4.0,1 have done everything to keep
the software compatible with this version, because it is still in use. Many companies
have designed their corporate networks for the classic Windows NT domain concept,
and they will need time to adopt the new Active Directory paradigm introduced with
Windows 2000. In some cases, it is not possible to provide common code for both
operating system versions because of differences in the layout of some internal data
structures. Therefore, some portions of the sample code contain version checking and
separate execution paths for different versions. . .

Concerning terminology, when I use the term Windows 2000, it usually
includes Windows NT 4.0 as well. Remember that this funny name is just a market-
ing gimmick to propel the sales of a system that should have been named Windows
NT 5.0. In the same way, the term Windows NT without a version specification
refers to the NT platform in general, including Windows 2000 and Windows NT 4.0.
Note again that Windows NT 3.x is not on the list. In discussing version-specific
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features, I will use the terms Windows 2000 and Windows NT 4.0 in a contrasting
fashion, pointing out the respective differences.

THE SAMPLE CODE ON THE CD

The sample code included on the companion CD and partially reprinted in this
book has been written for Microsoft Visual C/C++ 6.0 with Service Pack 3. If you
want to rebuild or change the samples, you should also install the latest releases of
the Win32 Platform Software Development Kit (SDK) and the Windows 2000
Device Driver Kit (DDK). These development kits contain the latest header file and
import library updates. Be sure to set the compiler's and linker's search paths appro-
priately to guarantee that the SDK and DDK files are found before the header and
library files installed with Visual C/C++. Both kits are distributed on CD or DVD as
part of the Microsoft Developer Network (MSDN) Professional and Universal Sub-
scriptions. If you aren't a subscriber yet, go for it! You will receive all updates of
Microsoft's operating systems and development kits, plus more than 1 gigabyte of
first-hand technical documentation. The subscription is somewhat expensive, but I
think it is worthwhile. More information is available from Microsoft's MSDN Web
site at http://msdn.microsoft.com/subscriptions/prodinfo/overvieiv.asp.

The CD included with this book contains both the C source code of all samples
and compiled and linked binary builds thereof for immediate use. All directories are
set up as Microsoft Visual Studio 6.0 expects them: There is a base directory for each
module containing the source files (C code and header files, resource scripts, defini-
tion files, project and workspace information, etc.) and a subdirectory called release
holding the binaries (executables, object code, import libraries, etc.). Figure P-l out-
lines the overall directory structure of the CD. All source and project files are found
in the \src tree. It contains a subtree for each sample project, plus a common directory
for header and library files shared by them. The \bin directory contains all . exe,
. dll, and . sys files of the samples, allowing you to start all applications directly
from the CD. The \tools tree is a collection of third-party tools that I thought would
be helpful for readers of this kind of book.

To rebuild a sample, simply copy the module's base directory including the
release subdirectory to the folder where you are keeping your own projects. The
base directory contains . dsw and . dsp workspace and project definition files provid-
ing build information for Visual Studio. Rebuilding is easy: Open the . dsw file in
Visual Studio, choose the active configuration (e.g., Release) and select Build \ Build
or Build \ Rebuild All from the main menu. Please note that some header files con-
tain additional linker directives in the form of #pragma statements. This neat trick
allows you to rebuild all samples with default Visual Studio settings—no need to
enter anything into the project setting dialogs.
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FIGURE P-1. Directory Structure of the Sample CD
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Because most of the code is guaranteed to be not Windows 9x compatible, I did
not provide support for ANSI characters. The native character set of Windows 2000
is Unicode, featuring 16-bit characters. Therefore, strings are defined as WORD arrays
or pointers, except for the rare occasions that the system actually expects ANSI
strings. This makes it a lot easier, doesn't it? Good Win32 programmers always try to
support both ANSI and Unicode side by side to give legacy operating systems such as
Windows 95 and 98 a fair chance to execute their code. This problem does not arise
here—the code presented in this book usually goes well below the Win32 layer, so we
can make full use of all native features of Windows 2000. The only notable exception
is the w2k_img. dll library project and its companion application w2k_sym2 . exe,
both discussed toward the end of Chapter 1. The DLL supports both ANSI and
Unicode, and the application is compiled for ANSI. This is the only sample applica-
tion on the CD that runs even on Windows 95.

There are manifold dependencies between the sample projects on the CD. For
example, the kernel-mode driver w2k_spy. sys and the utility library w2k_lib.dll
are referenced by several applications, introduced in different chapters. Figure P-2
outlines these dependencies. The diagram should always be read from left to right. For
example, the w2k_obj. exe application imports API functions from w2k_call. dll and
w2k_lib.dll, andw2k_call.dll in turn relies onw2k_lib.dll andw2k_img.dll,
additionally performing Device I/O Control calls into w2k_spy. sys. This means that
you should always place the dependent files into the same directory with w2k_obj. exe
to be able to run this application reliably. Note that I have added imagehlp. dll and
psapi. dll to the diagram, although they are Microsoft components. This is just to
emphasize that the w2k_dbg. dll library relies on these additional DLLs, whereas the
other sample programs do not.

One of the sample modules should be mentioned explicitly here: It is the
"Windows 2000 Utility Library" found in the w2k_lib directory branch. As well as
hosting large portions of the sample code reprinted in the following chapters, it also
contains lots of Win32 boilerplate code not specifically related to the focus of this
book that you might want to reuse in other projects. It features memory, registry,
object pool, and linked-list management, CRC32 computation, pseudo-random
number generation, operating system and file version checking, and much more.
The huge w2k_iib. c file is a repository of general-purpose code I have written for
myself in the past few years, and it is intended to make the life of Win32 programmers
somewhat easier. Enjoy!
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FIGURE P-2. Dependencies of the Sample Programs

THE THIRD-PARTY TOOLS ON THE CD

Along with the sample code I wrote exclusively for this book, the companion CD
contains valuable tools contributed by others. I am indebted to Jean-Louis Seigne and
Wayne J. Radburn for allowing me to distribute their finest tools on this CD. In the
\tools directory, you will find the following goodies:

• The Multi-Format Visual Disassembler (MFVDasm) is written by
Jean-Louis Seigne, who has been in the Windows software development
business since 1990. Actually, MFVDasm is much more than just a disas-
sembler—it is a Portable Executable (PE) file cruncher, disassembler, hex
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dump utility, and ASM code browser in one. The \tools\MFVDasm direc-
tory on the CD contains a fully functional timed demo version, protected
with the Softlocx software produced by BitArts. You can get an unlimited
version by paying US$100.00 to Jean-Louis Seigne via credit card. The lat-
est version of MFVDasm is available at http://redirect.to/MFVDasm;
inquiries about the software should be emailed to MFVDasm@redirect.to.

• The PE and COFF File Viewer (PEview) is contributed by Wayne J.
Radburn and is given royalty-free as a special bonus for the readers of this
book. Wayne is a die-hard Win32 assembly language programmer like me,
except that he is still doing the job while I have moved to C. Application
programming in ASM is tough, so you can be sure that Wayne is a true
expert. PEview is certainly the most versatile PE file browser I'm aware of,
and it is an essential tool for operating system spelunkers. It provides a
quick and easy way to view the structure and content of 32-bit Portable
Executable (PE) and Component Object File Format (COFF) files, and it
supports the viewing of . exe, . dl 1, . ob j , .lib, . dbg, and other file
types. Meet Wayne on the Web at http://tfww.magma.ca/~wjr/, or send
email to wjr@magma.ca.

Because this is third-party software, included here by special license agreement
with the respective authors, neither Addison-Wesley nor I take any responsibility
for its usage. Please read the licensing information displayed by these programs for
more details.

THE "WITHOUT WHOM" SECTION

Before writing my first book, I wasn't aware that so many people participate in a
book's production process. Writing the manuscript is just one of many steps to be
taken until the first printed copy appears on the shelves of the bookstores. This
section is dedicated to the numerous people who have contributed substantially to
the making of this book.

First, I want to thank Gary Clarke, formerly of Addison-Wesley, for putting this
book project onto the track. Unfortunately, Gary left Addison-Wesley just before the
first manuscript line was written, but fate brought me together again with Karen
Gettman and Mary Hart, who coordinated the manuscript creation phase of my
first book. This was good luck; I can't think of a better team for the birth of a new
book. However, my joy halted abruptly just as I was writing the last paragraphs of
Chapter 7, when I got notice that Mary left Addison-Wesley. Fortunately, Emily Frey
jumped in and saved the day. I'm also indebted to Mamata Reddy, who coordinated
the book's production, Curt Johnson, Jennifer Lawinski, and Chanda D. Leary-Coutu
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of the marketing team, Katie Noyes for doing the cover artwork, and Beth Hayes for
faithfully copyediting my raw manuscript. Several other people at Addison-Wesley
whose names are unknown to me were involved in the production and marketing of
this book, and I thank them all from my heart. Additionally, special thanks go to my
queen of hearts Gerda B. Gradl, my parents Alia and Olaf Schreiber, and my colleague
Rita Spranger for continuous encouragement and support throughout the entire
project—writing a book is sometimes a lonesome job, and it is good to have someone
with whom to talk about it sometimes.

And finally, a big, big "thank you" to Roine Stolt, leader of the Swedish Pro-
gressive-Rock band The Flower Kings (http://www.users.wineasy.se/floiverkings/},
for his unbelievable, indescribable music, which has been an endless source of
inspiration to me during manuscript writing. He always keeps on reminding me
that "Stardust we are."

We believe in the light,
We believe in love,
Every precious little thing.
We believe you can still surrender,
You can serve the Flower King.

NOTE: Excerpt from "The Flower King" by Roine Stolt, 1994. Used by kind permission.
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Windows 2000
Debugging
Support

Because much of the information found in this book is of the so-called undocu-
mented kind, some of it is available only by peeking inside the operating system

code. The Windows 2000 Device Driver Kit (DDK) provides a powerful debugger
that does a great job in this respect. This chapter begins with detailed step-by-step
instructions to set up a full-fledged debugging environment on your machine. While
reading the following chapters, you will frequently go back to the Kernel Debugger
to extract operating system internals of various kinds. If you are becoming bored
with the Kernel Debugger, you might want to tailor your own debugging tools.
Therefore, this chapter also includes information about the documented and undocu-
mented Windows 2000 debugging interfaces, including detailed inside information
about Microsoft symbol files. It features two sample libraries with companion appli-
cations that list processes, process and system modules, and various kinds of symbol
information buried inside the Windows 2000 symbol files. As a special bonus, you
will find the first public documentation of the Microsoft Program Database (PDB)
file format at the end of this chapter.

SETTING UP A DEBUGGING ENVIRONMENT

"Hey, I don't want to debug a Windows 2000 program. First of all, I want to write
one!" you might shout out after reading this headline. "Right!" I say, "That's what
you are going to do!" But why should you start the voyage by setting up a debugging
environment? The answer is simple: The debugger is sort of a backdoor into the
operating system. Of course, this has not been the primary intention of the persons
who wrote this tool. However, every good debugger must be able to tell you some-
thing useful about the system while you are stepping through the execution of your
own code or after your application has died unexpectedly. It is not quite acceptable
to report an eight-digit crash address that points somewhere into the 4GB address
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space, leaving you figuring out alone what really happened. The debugger should at
least tell you which module's code the offending code was executing last, and, ideally,
it should also tell you the name of the function where the application passed away.
Therefore, the debugger usually must know much more about the system than is
printed in the programming manuals, and you can use this knowledge to explore the
internals of the system.

Windows 2000 comes with two native debuggers: winDbg.exe (pronounced like
"WindBag") is a Win32 GUI application, and 1386kd.exe is its console-mode equiva-
lent. I have worked with both versions for some time and finally decided that
1386kd.exe is the better one because it has a more powerful set of options. Recently,
however, it seems that winDbg. exe has improved, causing the people at Open Systems
Resources (OSR) to include an article titled "There's a New WinDBG in Town—And
It Doesn't Suck Anymore" in the May/June 2000 edition of The NT Insider (Open
Systems Resources 2000). Nevertheless, all examples in this book that somehow
involve a Windows 2000 debugger relate to 1386kd. exe. As you might have guessed,
the 1386 portion of the name refers to the target processor platform (Intel 386 family
in this case, including all Pentium versions), and kd is short for Kernel Debugger. The
Windows 2000 Kernel Debugger is a very powerful tool. For example, it knows how
to make use of the symbol files distributed on the Windows 2000 setup CDs, and
therefore can give you invaluable symbolic information about almost any address in
system memory. Moreover, it will disassemble binary code, list hex dumps of memory
contents in various formats, and even show you the layout of some key structures of
the kernel. And it gives away this information for free—the debugger's command
interface is fully documented in its online help. .

PREPARING FOR A CRASH DUMP :

This is the good news. The bad news is that you have to do some preparatory work
before the Kernel Debugger will obey you. The first obstacle is that debugging usu-
ally involves two separate machines connected by a cable—one running the debugger,
the other one hosting the debuggee. However, there is a much easier way, eliminating
the necessity of a second machine, if live debugging is not a requirement. For exam-
ple, if a buggy application throws an unhandled exception causing the infamous NT
"Blue Screen Of Death" (BSOD) to pop up, you can choose to save the memory
image that was in effect right before the crash to a file and examine this crash dump
after rebooting. This technique is usually called post mortem debugging (post mortem
is Latin and means "after death"), and it is one of the preferred methods used
throughout this book. Our primary task here is to explore system memory, and for
most situations, it doesn't matter whether the memory under examination is alive or
a snapshot of the last breath of a dead system. However, some interesting insights can
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be gained by peeking into the innards of a live system using a kernel-mode driver, but
this is a topic to be saved for later chapters.

A crash dump is simply a copy of the current memory contents flushed to a disk
file. Therefore, the size of a complete crash dump file is (almost) the same as the
amount of physical RAM installed on the machine—in fact, it is a bit less than that.
The crash dump is written by a special routine inside the kernel in the course of han-
dling the fatal exception. However, this handler doesn't write the memory contents
immediately to the target file. This is a good idea, because the disk file system might
not be in good health after the crash. Instead, the image is copied to the page file stor-
age, which is part of the system's memory manager. Therefore, you should increase the
total size of your page files to at least twice the size of physical memory. Twice?
Wouldn't the same size be enough? Of course—just enough for the crash dump. How-
ever, the system will attempt to copy the crash dump image to a real disk file during
bootstrap, and this means that the system might run out of virtual memory if it can't
free the page file memory occupied by the image in time. Usually, the system will cope
with this situation, just throwing some annoying "low on virtual memory" warnings
at you while thrashing the disk, but you can save a lot of time by making the page file
large enough whenever you are expecting an increased probability of a Blue Screen.

That said, you should proceed now by starting the Windows 2000 Control
Panel utility and changing the following settings:

• Increase the overall size of your page files to at least twice the amount of
installed RAM. To this end, open the System applet, select the Advanced
tab of the System Properties dialog, and click the Performance Options...
button. In the Virtual memory frame, click the Change... button, and
change the value in the Maximum size (MB) field if it doesn't match your
physical memory configuration. Figure 1-1 is a sample snapshot taken on
the system on which I am currently writing these lines. I have 256 MB of
RAM inside my tower, so 512 MB is just enough. Click Set after changing
the settings, and confirm all open dialogs except the System Properties by
pressing their OK buttons.

• Next, configure the system to write a crash dump file on every Blue Screen.
In the System Properties dialog, click the Startup and Recovery... button,
and examine the Write Debugging Information options. You should select
the Complete Memory Dump option from the drop-down list to get a
faithful copy of the entire memory contents. In the Dump File box, enter
the path and name of the file where the dump will be copied to from the
page file. %systemRoot%\MEMORY.DMP is a commonly used setting
(Figure 1-2). Check or uncheck the Overwrite any existing file option
according to your own preference, and confirm all open dialogs.
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FIGURE 1-1. Setting the Size of the Page File Storage



SETTING UP A DEBUGGING ENVIRONMENT 5

FIGURE 1-2. Choosing Crash Dump Options
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CRASHING THE SYSTEM
After having set up the system for a crash dump, it is time to do the most horrible
thing in the life of a Windows 2000 system programmer: Let's crash the system! Usu-
ally, you will get the dreaded Blue Screen whenever Damocles' sword is hanging
above your head—typically when a production deadline is due in a few hours. Now
that you are willing to crash the system, you are probably unable to find any unstable
piece of software that will do the job. Try David Solomon's neat trick described in the
second edition of Inside Windows NT. This is his proposal:

"How can you reliably generate a crash dump? Just kill the Win32 subsystem
process (csrss.exe) or the Windows NT logon process (winlogon.exe) with the
Windows NT Resource Kit tool kill.exe. (You must have administrator
privileges to do this.)" (Solomon [1998], p. 23.)

Surprise, surprise! This trick doesn't work anymore on Windows 2000! On first
sight, that's bad luck, but on the other hand, it is good news. What do you think
about an operating system that can be trashed so easily by a tiny and simple tool offi-
cially distributed by Microsoft? In fact, it is good that Microsoft has closed this secu-
rity gap. However, we are now in need of an alternative way to tear down the system.
At this point, it is time for an old and simple NT rule: "If anything seems to be
impossible in the Win32 world, just write a kernel-mode driver, and it will work out
all right!" Windows 2000 manages Win32 applications very carefully. It constructs a
wall between the application and the kernel, and anyone trying to cross this border
will be shot without mercy. This is good for the overall stability of the system, but
bad for programmers who need to write code that has to touch hardware. Contrary
to DOS, where any application was allowed to do anything to the hardware, Win-
dows 2000 is very picky in this respect. This doesn't mean that accessing hardware
on Windows 2000 is impossible. Instead, this kind of access is restricted to a special
kind of module called kernel-mode driver.

I can tell you now that I will present a short introduction to kernel-mode driver
programming in Chapter 3. For now, it should suffice to say that crashing the system
is one of the easiest things a kernel-mode driver can do. Windows 2000 doesn't pro-
vide an error recovery mechanism for drivers going berserk—even the faintest
attempt to perform an illegal operation is immediately answered with a Blue Screen.
Of course, the simplest and least dangerous violation of the rules is reading from an
invalid memory address. Because the system explicitly catches all memory accesses
through a NULL pointer, which is probably one of the most common errors in C pro-
gramming, a NULL pointer read is the ideal operation to force a benign system crash.
This is exactly what the w2k_kiii. sys driver on the sample CD does. This very sim-
ple piece of software will also be one of the first kernel-mode driver projects pre-
sented in this book.
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Listing 1-1 is a tiny excerpt from w2k_kill. c, containing nothing but the bad
code that triggers the Blue Screen. When writing senseless code such as this, be aware
that the brilliant optimizer built into Visual C/C++ might counteract your efforts. It
tracks all code and tends to eliminate any instructions that don't have permanent side
effects. In the example below, the optimizer's hands are tied because the DriverEntry ( )
function insists on returning the value found at address zero as its return value. This
means that this value has to be moved to CPU register EAX, and the easiest way to
do this is by means of the MOV EAX, [ 0 ] instruction, which will throw the exception
we have been waiting for.

The w2k_ioad. exe application presented in Chapter 3 can be used to load and
start the w2k_kiii. sys driver. If you are mentally ready to kill your Windows 2000
system, proceed as follows:

• Close all applications.

• Insert the accompanying sample CD.

• Choose Run... from the Start menu.

• Enter d: \bin\w2k_load w2k_kill. sys into the edit box, replacing d:
with the drive letter of your CD-ROM drive, and click OK.

After this click, w2k_load. exe will attempt to load the w2k_kill. sys file located
in the CD's \bin directory. As soon as the DriverEntry ( ) routine is executed, the Blue
Screen will appear, with a message similar to the one shown in Figure 1-3, and you
will see a counter on the screen being incremented from 0 to 100 (or so) while the
memory contents are dumped to the page file storage. If you have checked the Auto-
matically reboot option in the Startup and Recovery dialog (see Figure 1-2), the sys-
tem will reboot immediately after the crash dump is finished. When the system is
ready for logon, wait for some time until the disk LED is no longer flashing. It takes
some time to copy the crash dump image from the page file storage to the target disk
file defined in the Startup and Recovery options (see Figure 1-2), especially if you have
plenty of physical memory. Disturbing the system in this phase, for example, by shut-
ting it down too early, might yield an invalid crash dump file that will be refused by
the Kernel Debugger.

NTSTATUS DriverEntry ( PDRIVER_OBJECT pDriverObject ,

PUNICODE_STRING puRegistryPath)

(
return *( (NTSTATUS *) 0); // read through NULL pointer

}

LISTING 1-1. A NULL Pointer Read Operation in Kernel-Mode Crashes the System
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FIGURE 1-3. Execution o/w2k_kiii. sys Yields a Nice Blue Screen

In Figure 1-3, the system displays the name of the module that contains the
offending code (w2k_kill. sys), as well as the address of the instruction that caused
the exception (OxBECCSOOO) . This address will probably be different on your system,
because it varies with the hardware configuration. Driver load addresses generally are
not deterministic, similar to DLL load addresses. Please write down the indicated
address—you will need it later after installing and configuring the Kernel Debugger.

A short note of caution is appropriate here: Crashing the system intentionally
is not something you should do every day. Although the offending w2k_kiil. sys
code itself is benign, the time of its execution might be unfortunate. If the NULL
pointer read occurs while another thread is in the course of doing something
important, the system might shut down before this thread has a chance to clean
up. For example, the active desktop tends to complain after the reboot that some-
thing horrible has happened and that it needs to be restored. Therefore, carefully
check that the machine isn't working on precious data and that all cached data has
been flushed to disk before you crash the system. The best time is when the disk
has calmed down after a bootstrap. Note that neither the author nor the publisher
of this book shall be liable for any damages resulting from system crashes forced
by the w2k_kill. sys driver.

INSTALLING THE SYMBOL FILES

After rebooting, you have a snapshot of a Windows 2000 system, including a bad
kernel-mode driver, caught in the course of a NULL pointer read. Peeking into this
file is as good as examining the memory of a live system. Of course, this snapshot is
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like a dead animal body—it can't react anymore to external stimuli, but that shouldn't
worry you now. What comes next is the setup of the symbol files that shall be used by
the Kernel Debugger while you are dissecting the crash dump.

MSDN subscribers have to look for the symbol files on the CD named
Windows 2000 Customer Support—Diagnostic Tools, which is part of the dark
green Development Platform (English) CD set. Inserting the CD into the drive will
start the Windows 2000 Internet Explorer with a file named \DBG.HTM. Here you can
click on various setup options. If you are running the free build of Windows 2000,
Install retail symbols is the correct choice. For the checked build, choose Install
debug symbols instead. You can also use the classic symbol file setup by opening
the Explorer and double-clicking the files \SYMBOLS\i386\RETAiL\SYMBOLSX.EXE
(Figure 1-4) or \SYMBOLS\i386\DEBUG\SYMBOLSx.EXE, which are exactly the actions
attached to the setup hyperlinks embedded in the \DBG.HTM file. The setup utility will
copy several . dbg and . pdb files from the SYMBOLS . CAB archive to various subdirecto-
ries of the system's symbol root, which is named %systemroot% \Symbols by default.
The %systemroot% token symbolizes the value of the environment variable systemroot,
indicating the installation directory of the Windows 2000 system. In the example
below, it is the D : \WINNT directory.

On startup, the Windows 2000 Kernel Debugger will try to locate the symbol
files by evaluating the environment variable _NT_SYMBOL_PATH (note the leading
underscore), so it is a good idea to define this variable right now. Again, you have to
start the System applet from the Control Panel and select the Advanced tab, this time
clicking the Environment Variables... button. Next, click the New... button in the
System variables frame, and enter the Variable Name: and Variable Value: as shown
in Figure 1-5, replacing D : \WINWT by the %systemroot% path of your system. After
confirming all dialogs, symbol setup is complete.

FIGURE 1-4. Installing the Windows 2000 Retail Symbols
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FIGURE 1-5. Defining the Environment Variable __NT_SYMBOL_PATH

The Microsoft documentation is somewhat unclear about which directory path
must be assigned to the _NT_SYMBOL_PATH variable. The kernel-mode debugging
chapters of the DDK say that the symbols subdirectory has to be included, yielding a
value of d: \winnt\symbols or equivalent. In the Platform Software Development Kit
(SDK) documentation of the dbghelp.dll library, the symbol path setup is described
a bit differently:

"The library uses the symbol search path to locate debug symbols ( . dbg f lie)
for . dll, . exe, and . sys files by appending re\symbols" and "\dll" or "\exe"
or "\sys " to the path. For example, the typical location of symbol files for
. dll files is c •. \mysymbols\symbols\dll. For .exe files, the location is
c:\mysymbols\symbols\exe/'

[...] "Ifyousetthe_WF_SYMBOL_PATH or _NT_ALT_SYMBOL_PATH environment
variable, the symbol handler searches for symbol files in the following order:
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1. The current working directory of the application.
2. The _NT_SYMBOL_PATH environment variable.
3. The _NT_ALT_SYMBOL_PATH environment variable.
4. The SYSTEMROOT environment variable."
(MSDN Library - April 2000 \ Platform SDK \ Base Services \

Debugging and Error Handling \ Debug Help Library \ About DbgHelp \

Symbol Handling \ Symbol Paths)

This sounds more like setting _NT_SYMBOL_PATH to d: \winnt rather than d: \winnt
\symbols. To find out which point of view is correct, I tried both variants and was glad
to see that it doesn't matter which one you choose. The Kernel Debugger finds the sym-
bol files one way or another. If you suspect now that the _NT_SYMBOL_PATH value doesn't
matter at all, try to set it to an invalid path—the debugger will refuse to run.

SETTING UP THE KERNEL DEBUGGER

The last step in the debugging environment setup is the installation and configuration
of the Kernel Debugger. If you have already installed the Windows 2000 DDK, you
can use the debuggers found in the \NTDDK\bin directory. The Kernel Debugger exe-
cutable is named i386kd. exe. An alternative way is to install the debugging tools
from the MSDN CD Windows 2000 Customer Support—Diagnostic Tools, from
which you have already taken the symbol files. Just click on the Install Debugging
Tools link on the setup page \DBG.HTM, or start the setup in the classic way by dou-
ble-clicking \TOOLS\i386\DBGPLUS.EXE in the Explorer panel. This setup utility will
copy the tools to a directory named \Program Files\Debuggers\bin.

After installing the Kernel Debugger, it is a good idea to create a shortcut that
invokes i386kd.exe with the parameters you need. If you want to examine the crash
dump file generated after the w2k_kiii. sys Blue Screen, you can use the -z com-
mand line switch to specify the path of this file, directing the debugger to load this
memory image at startup. Figure 1-6 illustrates typical shortcut properties.

Now everything is set up for the first debugging session. If you double-click the
debugger's shortcut, you should see a console window like the one shown in Figure 1-7.
The kd> prompt in front of the flashing cursor indicates that the Kernel Debugger is
ready to accept commands. Before doing anything else, please check that the symbol
search path displayed below the copyright banner is set to the correct location. If not,
there is probably a typo in the environment variable specifying this path (see Figure 1-5).
The start message also shows that the debugger has loaded three extension DLLs.
i386kd. exe features a powerful extension mechanism that allows the basic command
set to be augmented by custom commands implemented in a separate DLL. Because
these additional commands have to be preceded by the "bang" character "!" to distin-
guish them from the built-in set, they usually are called bang commands. Some of them
are extremely useful, as you will see later.
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FIGURE 1-6. Creating a Kernel Debugger Shortcut

In Figure 1-7,1 have entered one of the built-in commands: u becc3000. The u
mnemonic means, of course, "unassemble," and becc3000 is the hexadecimal start
address where disassembly begins. By default, the number radix is 16, but you can
change this setting with the n command, for example, n 10 if you prefer decimal nota-
tion. You can always force a number to be interpreted as a hexadecimal by using the
Ox prefix borrowed from the C language. The address becc3000 is the memory loca-
tion where the w2k_kiii. sys crash dump occurred (see Figure 1-3). Please try the u
command with the address reported by your system after crashing. You should get a
mov eax, [ 0 0 0 0 0 0 0 0 ] instruction, too, as shown in Figure 1-7, although the address is
probably different. Otherwise, you are probably peeking into the wrong crash dump
file—please check your Kernel Debugger shortcut in this case (see Figure 1-6). The
mov eax, [ 0 0 0 0 0 0 0 0 ] instruction, loads a 32-bit value from the virtual address
0x00000000 to CPU register EAX, so it is obviously the implementation of the C
expression return * ( (NTSTATUS *) o) in Listing 1-1, and constitutes a NULL-pointer
read operation. There is no special exception handler installed for this type of error,
therefore, the system reports a KMODE_EXCEPTION_NOT_HANDLED error on the Blue
Screen, as demonstrated by Figure 1-3. If you want, you can learn more about this
common error code in The NT Insider (Open Systems Resources 1999b).
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FIGURE 1-7. Initiating a Kernel Debugger Session

KERNEL DEBUGGER COMMANDS

Although the debugger commands are intended to be mnemonic, it is sometimes hard
to recall them at the right time. Therefore, I have collected them in Appendix A,
Table A-l, as a quick reference. This table is an edited version of the debugger's help
output generated by the ? command. The various types of arguments required for the
commands are compiled in Table A-2.

As already mentioned, the Kernel Debugger can execute external commands
known as bang commands that are implemented in one or more associated extension
DLLs. Whenever a command name is prefixed by an exclamation mark (the so-called
bang character), this name is looked up in the export lists of the loaded extension
DLLs. If a match is found, the command is handed over to the DLL. Figure 1-7 shows
that the Kernel Debugger loads the extensions kdextxS 6.dll, userkdx. dll, and



14 WINDOWS 2000 DEBUGGING SUPPORT

dbghelp. dil, in this order. The latter is located in the same directory as the
1386kd. exe application; the former pair is available in four versions: free versus
checked build for Windows NT 4.0 (subdirectories nt4f re and nt4chk), and free
versus checked build for Windows 2000 (subdirectories w2kfre and w2kchk), respec-
tively. Normally, the debugger will use a default search order when locating the han-
dler of a bang command. However, you can override the default by specifying a
module name before the command name, separated by a dot. For example, both the
kdextx86.dll and userkdx.dll extensions export a help command. Typing Ihelp
will yield the help screen of the kdextx86. dll module by default. To execute the help
commandofuserkdx.dll, you have to type luserkdx.help(or luserkdx.help -v
if you need more verbose help). By the way, you can write your own debugger exten-
sions if you know the rules. An excellent how-to article can be found in The NT
Insider (Open Systems Resources 1999a). It is targeting winDbg. exe rather than
138 6kd. exe, but because both debuggers use the same extension DLLs, most of the
information is applicable to 1386kd. exe as well.

Tables A-3 and A-4 in Appendix A show the output generated by the help com-
mands of kdextx86. dll and userkdx. dll, respectively, slightly corrected and heav-
ily edited for better readability. You will notice that these tables list far more
commands than documented in the Microsoft DDK, and some commands obviously
have additional optional parameters not mentioned in the DDK documentation.

THE TOP TEN DEBUGGING COMMANDS
Tables A-1 to A-4 demonstrate in an impressive way that the Kernel Debugger and its
standard extensions offer a large number of commands. Therefore, I will discuss in
detail some of the commands that are most useful for the exploration of Windows
2000 internals.

u: Unassemble Machine Code
You have already used the u command after starting the Kernel Debugger to check
whether the loaded crash dump file is OK. The u command has three forms:

1. u <from> disassembles eight machine instructions, starting at
address <from>.

2. u <from> <to> starts disassembly at address <from>, and continues until
reaching or transcending address <to>. The instruction at this address, if
any, is not included in the listing.

3. u (without arguments) restarts disassembly from the address where a
previous u command stopped (no matter whether it had arguments
or not).
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Of course, disassembling large code portions with this command is quite annoy-
ing, but it comes in handy if you just need to know what is occurring at a specific
address. Perhaps the most interesting feature of the u command is its ability to
resolve symbols referenced by the code—even internal symbols not exported by the
target module. However, in disassembling complete Windows 2000 executables,
using the Multi-Format visual Disassembler on the companion CD is much more
fun. More on this product will follow later in this chapter.

db, dw, anddd: Dump Memory BYTEs, WORDs, and DWORDs
If the memory contents you are currently interested in are binary data rather than
machine code, the debugger's hex dump commands do a great job. Depending on the
data types you are expecting at the source address, one of the variants db (for BYTES),
dw (for WORDS), or dd (for DWORDS) applies.

• db dumps a memory range in two panels. On the left-hand side, the
contents are displayed as two-digit 8-bit hexadecimal quantities; the right-
hand panel shows the same data in ASCII format.

• dw displays the contents of a memory range as four-digit 16-bit
hexadecimal quantities. An ASCII panel is not included.

• dd displays the contents of a memory range as eight-digit 32-bit
hexadecimal quantities. An ASCII panel is not included.

For this command set, the same arguments as for the u command can be used.
Note, however, that the data located at the <to> address are always included in the
hex dump listing. If no arguments are specified, the next 128-byte block is displayed.

x: Examine Symbols
The x command is very important. It can create lists of symbols compiled from the
installed symbol files. It is typically used in one of the following three forms:

1. x * ! * displays a list of all modules for which symbols can be browsed. After
startup, only the ntoskrnl. exe symbols are available by default. The symbols
of other modules can be added by issuing the . reload command.

2. x <module>! <f ilter> displays a list of symbols found in the symbol file
of <module>, applying a <f ilter> that may contain the wildcards ? and
* . The <module> name must be one of the list yielded by the x * i *
command. For example, x nt! * lists all symbols found in the kernel's
symbol file ntoskrnl. dbg, and x win32k! * lists the symbols provided by
win32k.dbg. If the debugger reports "Couldn't resolve 'x ...'", try the
command again after reloading all symbols by means of the . reload
command.
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3. x <f ilter> displays a subset of all available symbols, matched against a
<f i l te r> expression. Essentially, this is a variant of the x
<module>! <f ilter> command, in which the <module>! part has
been omitted.

Along with the symbol names, the associated virtual addresses are shown. For
function names, this is the function's entry point. For variables, it is a pointer to the base
address of the variable. The most notable thing about this command is that its output
includes many internal symbols, not just those found in the executable's export table.

In: List Nearest Symbols
The In command is certainly my favorite, because it gives quick and easy access to
the installed symbol files. It is the ideal complement to the x command. Whereas the
latter is great if you need an address listing of various operating system symbols, the
in command is used to look up individual symbols by address or name.

• in <address> displays the name of the symbol found at or preceding
the given <address>, as well as the next known symbol following
this address.

• in <symbol> resolves the given <symbol> name to its virtual address and
then proceeds like the in <address> command.

Like with the x command, the debugger is aware of all exported and several
nonexported internal symbols. Therefore, it is an important aid for anyone who tries
to make sense of unknown pointers occurring somewhere in a disassembly listing or
hex dump. Note that the u, db, dw, and dd commands also accept symbols where
addresses are expected.

Iprocessfields: ListEPROCESS Members
As the bang character preceding the name imples, this is a command from a debugger
extension module—kdextx86. dll, in this case. This command displays the names
and offsets of all members of the—formally undocumented—EPROCESS structure
used by the kernel to represent processes, as shown in Example 1-1.

kd> Iprocessfields

Iprocessfields

EPROCESS structure offsets:

Pcb: 0x0

ExitStatus: Ox6c

LockEvent: 0x70 LockCount : 0x80

CreateTime: 0x88

ExitTime: 0x90
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EXAMPLE 1-1. Cracking the EPROCESS Structure

LockOwner: 0x98

UniqueProcessId: Ox9c

ActiveProcessLinks : OxaO

QuotaPeakPoolUsagefO] : Oxa8

QuotaPoolUsagelO] : OxbO

PagefileUsage: Oxb8

CommitCharge: Oxbc

PeakPagefileUsage: OxcO

PeakVirtualSize : Oxc4

VirtualSize: Oxc8

Vm: OxdO

DebugPort: 0x120

ExceptionPort : 0x124

ObjectTable: 0x128

Token: Oxl2c

WorkingSetLock: 0x130

WorkingSetPage: 0x150

ProcessOutswapEnabled: 0x154

ProcessOutswapped: 0x155

AddressSpacelnitialized: 0x156

AddressSpaceDeleted: 0x157

AddressCreationLock: 0x158

ForklnProgress: OxlVc

VmOperation: 0x180

VmOperationEvent : 0x184

PageDirectoryPte: OxlfO

LastPaultCount: OxlSc

VadRoot: 0x194

VadHint: 0x198

CloneRoot: Oxl9c

NumberOf PrivatePages : OxlaO

NumberOf LockedPages : Oxla4

ForkWasSuccessful: 0x182

ExitProcessCalled: Oxlaa

CreateProcessReported: Oxlab

SectionHandle: Oxlac

Peb: OxlbO

SectionBaseAddress : Oxlb4

QuotaBlock: OxlbS

LastThreadExitStatus : Oxlbc

WorkingSetWatch: OxlcO

InheritedFromUniqueProcessId: OxlcS

GrantedAccess : * Oxlcc

Def aultHardErrorProcessing OxldO

Ldtlnformation: Oxld4

VadFreeHint: OxldS

VdmObjects: Oxide

DeviceMap: OxleO

ImageFileNameCO] : Oxlfc

VmTrimFaultValue: 0x2 Oc

Win32Process: 0x214

Win32WindowStation: Oxlc4
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Although this command shows the members' offsets only, you can easily guess
the corresponding types. For example, the LockEvent member is located at offset
0x70, and the next member follows at offset 0x80, so this member requires 16 bytes,
which looks rather like a KEVENT structure. Don't worry if you don't know what a
KEVENT is—I will discuss kernel object structures in Chapter 7.

! threadf ields : List ETHREAD Members
This command is another great option offered by the kdextx86. dll debugger exten-
sion. Like the [processf ields command, it displays the member names and offsets
of yet another formally undocumented structure named ETHREAD, which represents
threads. Example 1-2 shows a sample output.

i drivers : List Loaded Drivers
The kdextx86. dll goodie .' drivers shows detailed information about all currently
running kernel and file system modules. If a crash dump image is examined, this list
reflects the system state at the time of the crash. Example 1-3 is an excerpt of a sam-
ple run on my machine. Note that the last line before the summary shows our bad
Windows 2000 killer device at base address OxBECC2000, which is obviously one of
the hexadecimal numbers reported on the Blue Screen after the w2k_kill. sys crash
(see Figure 1-3).

kd> ! threadf ields

.' threadf ields
ETHREAD structure offsets:

Tcb:
CreateTime:
ExitTime:
ExitStatus:
PostBlockList :
TerminationPortList :
Act iveTimerListLock :
ActiveTimerListHead:
Cid:

LpcReplySemaphore :

LpcReplyMessage :
LpcReplyMessageld :
Impersonationlnf o :
IrpList :
TopLevellrp :
ReadClusterSize:

0x0

OxlbO
OxlbS
OxlcO

Oxlc4
Oxlcc
Oxld4
OxldS
OxleO
OxleS
Oxlfc
0x200
0x208
Ox20c
0x214
Ox21c
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EXAMPLE 1-2. Cracking the ETHREAD Structure

kd> ! drivers

! drivers

Loaded System Driver Summary

Base

80400000

80062000

£0810000

f0400000

£0410000

£09c8000

£0680000

£0688000

bffe3000

£0900000

[...]
b£255000

£0670000

f094cOOO

£0958000

bfOddOOO

b£191000

bed9aOOO

beaaf 000

be9ebOOO

becc2000

TOTAL :

Code

142dcO

13c40

1760

bdcO

99cO

760

42eO

64aO

192cO

12eO

fc40

9520

d40

aOO

35520

d820

11£20

0

16£60

200
79c660

Size

(1291
( 79

( 5
( 47

( 38

( 1

( 16
( 25
( 100

( 4

( 63
( 37

( 3

( 2
( 213

( 54

( 71

( 0

( 91

( 0
(7793

kb)
k 1 , i
k t . i

k > . 1
k b i
k ! . i
kb)
kb)
kb)
kb)

kb)
k 1 ) i
k 1 ; i

kb)

kb)

kb)
kb)

kb)

kb)

kb)

kb)

Data

4d680

34eO

1000

22aO

18eO

520

e80

a20

2bOO

640

2120
1£40

860

480

59eO

1280
2acO

0

cccO

aOO

15cl60

Size

(309

( 13

( 4

( 8
( 6

( 1
( 3

( 2
( 10

( 1

( 8
( 7

( 2

( 1
( 22

( 4

( 10

( 0
( 51

( 2
(1392

Driver Name

kb)

kb)

kb)

kb)
kb)

kb)

kb)

kb)

kb)

kb)

k 1 1 )
i-. i . i

kb)

kb)
kb)
k i ; i
kb)

kb)

kb)

kb)

kb)

ntoskrnl

hal

BOOTVID

pci
isapnp

intelide

PCIIDEX

MountMgr

ftdisk

Diskperf

wdmaud

sysaudio

ParVdm

PfModNT

rv

Cdfs

ipsec

ATMFD

kmixer

w2k_kill

<

. exe

.dll

.DLL

. sys

.sys

.sys

.SYS

.sys

.sys

.sys

. sys

.sys

.SYS

.sys

.sys

.SYS

.sys

.DLL

.sys

.sys

0 kb

Creation Time

Wed

Sun
; l hu

Thu

Sat
Fri

Thu

Sal
Mon

Fri

Wed
Mon

Tue

Thu

Tue
Mon

Tue

Dec 08

Oct 31

Nov 04

Oct 28

Oct 02

Oct 29

Oct 28

Oct 23
Nov 22

Oct 01

Oct 27

Oct 25

Sep 28

Dec 16
Nov 30

Oct 25

Nov 30

00:41

00:48

02:24

01:11

22:00

01:20

01:02

00:48

20:36

02:30

20:40

21:28

05:28

05:14

08:38

21:23

08:08

:11 1999

14 1999

33 1999

08 1999
35 1999
03 1999

19 1999

06 1999

23 1999

40 1999

45 1999

14 1999
16 1999

08 1999
21 1999

52 1999

54 1999

Header Paged Out

Wed

Sun

0

Nov 10

Feb 06

k b )

07:52

19:10

30 1999

29 2000

EXAMPLE 1-3. Displaying Information about System Modules

ForwardClusterOnly: 0x220

DisablePageFaultClustering : 0x22 1

DeadThread: 0x222

HasTerminated: 0x224

GrantedAccess : 0x228

ThreadsProcess: Ox22c

StartAddress : 0x230

Win32StartAddress: 0x234

LpcExitThreadCalled: 0x238

HardErrorsAreDisabled: 0x239
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! sel: Examine Selector Values
If issued without arguments, the ! sel command implemented by kdextx86. dll
dumps the parameters of 16 consecutive memory selectors in ascending order. You
can issue this command repeatedly until "Selector is invalid" is reported to get a list
of all valid selectors (Example 1-4). Memory selector handling will be covered exten-
sively in Chapter 4, and I will present sample code there that demonstrates how you
can crack selectors in your own applications.

kd>

!sel
0000

0008

0010

0018

0020

0028

0030

0038

0040

0048

0050

0058

0060

0068

0070

0078

kd>
!sel

0080

0088

0090

0098

OOaO

00a8

OObO

00b8

OOcO

00c8

OOdO

00d8

OOeO

00e8

OOfO

00f8

sel

Bas=00000000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=80244000

Bas=ffdffOOO

Bas=00000000

Bas=00000400

Bas=00000000

Bas=80470040

Bas=804700a8

Bas=00022abO

Bas=000b8000

Bas=ffff7000

Bas=80400000

sel

Bas=80400000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=814985a8

Bas=00000000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=00000000

Bas=f0430000

Bas=00000000

Bas=8042dce8

Bas=00000000

Lim=00000000

Lim=000fffff

Lim=000fffff

Lim=000fffff

Lim=000fffff

Lim=000020ab

Lim=00000001

Lim=00000fff

Lim=0000ffff

Lim=00000000

Llm=00000068

Lim=00000068

Lim=0000ffff

Lim=00003fff

Lim=000003ff

Lim=0000ffff

Lim=0000f£ff

Lim=00000000

Lim=00000000

Lim=00000000

Lim=00000068

Lim=00000000

Lim=00000000

Lim=00000000

Lim=00000000

Lim=00000000

Lim=00000000

Lirn=00000000

Lim=0000ffff

Lim=0000ffff

Lim=000003b7

Lim=0000ffff

Bytes

Pages

Pages

Pages

Pages

Bytes

Pages

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

Bytes

DPL=0

DPL=0

DPL=0

DPL=3

DPL=3

DPL=0

DPL=0

DPL=3

DPL=3

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

DPL=0

r
1

!

P

P

1'

<'

P

:n

:

I

,'

1

P

j

M i '

HP

P
UP

UP

N I '

Ml

in

HP
(IP
P
i

I
1

Code

Data

Code

Data

TSS32

Data

Data

Data

TSS32

TSS32

Data

Data

Data

Code

Data

Data

TSS32

Code

Data

Code

Data

;, E

RW

RE
RW

r W

RW

RW

RW

1-",='

RW

RE

RW

RW

h

RW

EO

Rl

A

A

A

A

B

A

A

A

A

A

A

A

EXAMPLE 1-4. Displaying Selector Parameters
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SHUTTING DOWN THE DEBUGGER

You can kick the Kernel Debugger out of the system by simply closing the console
window it is running in. However, the clean way to shut it down is using its q com-
mand, where "q" stands for—you guessed it—"quit."

MORE DEBUGGING TOOLS

On the book's companion CD, you will find another pair of valuable debugging tools
contributed by two "e-friends" of mine. I am very glad that they allowed me to put
fully functional versions of their great tools onto the CD. Wayne J. Radburn's PE and
COFF File Viewer (PEview) is a special FreeWare edition for the readers of this book.
Jean-Louis Seigne's Multi-Format Visual Disassembler (MFVDasm) comes in an
uncrippled but timed demo version. This section is a short introduction to both tools.

MFVDASM: THE MULTI-FORMAT VISUAL DISASSEMBLER

MFVDasm is not just a simple assembly listing generator. In fact, it is more an assem-
bly code browser with several nice navigation features. Figure 1-8 shows a snapshot
of an MFVDasm session in which I examined the Windows 2000 I/O Manager func-
tion loDetachDevice ( ) . Figure 1-8 does not show the color you would see on the
screen. For example, all function labels, as well as jumps and calls to named destina-
tions, are displayed red. Jumps and calls to anonymous addresses (i.e., addresses that
are not associated with an exported symbol) are blue, and references to symbols
dynamically imported from other modules are violet. All reachable destinations are
underlined, indicating that you can click on them to scroll the code pane to the
address. Using the Back and Forward buttons on the toolbar, you can navigate
through the history of branches, much like flipping through the visited pages in an
Internet browser.

In the right-hand pane, you can randomly select a symbol or target address to
which you can jump. Of course, this list can be sorted by clicking on the column
header buttons. On the lower edge of this pane, MFVDasm has tabs that allow
switching between Symbols, HexDump, and Relocations. The hex dump view can be
quite useful if you are disassembling a code section that contains embedded strings.
MFVDasm doesn't choke on very large files such as ntoskrnl. exe, as some other
popular disassemblers do, and, of course, the assembly code can be saved to a text
file. Many more options are accessible via the main menu and the context menus that
appear if you right-click on one of the window panes. If you need more information,
visit Jean-Louis Seigne's MFVDasm home site at http://redirect.to/MFVDasm.
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FIGURE 1-8. MFVDasm Disassembling ntoskrnl. io DetachDevice()

PEviEw—THE PE AND COFF FILE VIEWER

Although MFVDasm shows lots of details about the internal structure of a Portable
Executable (PE) file, its strength is code browsing. On the other hand, PEview doesn't
show you more than a hex dump of a code file section, but is considerably more
detailed about the file structure. Figure 1-9 is a snapshot of PEview displaying the
various parts of ntoskrnl. exe in tree form. If you click on a leaf node in the left-hand
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pane, the right-hand pane displays everything there is to know about the binary con-
tents of this item. In Figure 1-9,1 have selected the IMAGE_OPTIONAL_HEADER structure,
which is a member of the IMAGE_NT_HEADERS structure located near the beginning of
the executable.

If you take a closer look to the PEview toolbar, you see navigation arrows that
allow scrolling through the file structure (vertical arrows) and the navigation history
(horizontal arrows). The main menu and the toolbar offer many more display
options that make using this tool a pleasure. Besides applications and DLLs, PEview
can dissect several other file formats commonly encountered in debugging situations,
such as object files, import libraries, and symbol files. More information is available
at Wayne J. Radburn's Web site at http://www.magma.ca/~wjr/.

FIGURE 1-9. PEview Dissecting the PE File Structure o/ntoskrni. exe
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As mentioned in the Preface, Wayne writes his Win32 software in assembly lan-
guage (ASM). Yes, this is not only possible but also quite easy if you have the neces-
sary tools. In fact, ASM programming is much easier on the Win32 platform than it
was in the old DOS and Windows 3.x days, because you can take full advantage of
the CPU's 32-bit instruction set. Wayne actively supports Win32 ASM by providing
extensive sample code on his Web site. I have been a die-hard ASM programmer
myself, but I retired from it after discovering that the Microsoft Visual C optimizer
does a much better job than a human ASM coder, because it can use all sorts of tricks
that an ASM programmer should never use—the code would be unreadable and
almost impossible to maintain. The results of my ASM efforts are publicly available
in the form of a Free Ware package for the Microsoft Macro Assembler (MASM). It is
called Win32 Assembly Language Kit (WALK32) and can be downloaded from my
Web site. Just go to http://www.orgon.com/pub/asm/ and get all files that contain the
letters "walk" in the file name. However, be aware that I have abandoned WALK32,
and will not support or update it anymore.

WINDOWS 2000 DEBUGGING INTERFACES

The Kernel Debugger is a powerful tool for everyone interested in exploring the
internals of the system. However, its user interface is somewhat poor, and sometimes
you might wish to have even more powerful commands. Fortunately, Windows 2000
offers two fully documented debugging interfaces that enable you to add debugging
functionality to your applications. These interfaces are far from luxurious, but they
have the blessing of official documentation by Microsoft. In this section, I will take
you on a short tour of these debugging interfaces, showing what they can do for you
and how you can get the most out of them.

psapi.dll, imagehlp.dll, and dbghelp.dll

For a long time, Windows NT had been criticized for its lack of support for the
Windows 95 ToolHelp32 interface. Some of the critics were possibly not aware that
Windows NT 4.0 came with an alternative debugging interface of its own, buried
inside a system component named psapi. dli, distributed with the Win32 SDK.
This DLL, together with imagehlp. dll and dbghelp. dll, comprise the officially
documented debugging interfaces of Windows NT and 2000. The five letters PSAPI
are the acronym of Process Status Application Programming Interface, and this
interface comprises a set of 14 functions providing system information about device
drivers, processes, memory usage and modules of a process, working sets, and mem-
ory-mapped files, psapi . dll supports both ANSI and Unicode strings.

The other pair of debugging DLLs, imagehlp. dll and dgbhelp. dll, cover a
different range of tasks. Both export a similar set of functions, with the major differ-
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ence that imagehlp.dll offers more functions, whereas dbghelp.dll is a redistrib-
utable component. This means that Microsoft allows you to put dbghelp. dll into
the setup package of your applications if it relies on that DLL. If you choose to use
imagehlp. dll instead, you must take the one that is currently installed on the target
system. Both DLLs provide a rich set of functions for parsing and manipulating PE
files. However, their most outstanding feature probably is their ability to extract sym-
bols from the symbol files you have installed for use with the Kernel Debugger. To
guide your decision as to which DLL you should choose, I have compiled all func-
tions exported by imagehlp.dll and dgbhelp.dll in Table 1-1, where the middle
and right-hand columns show which functions are not supported by which compo-
nent. An entry of N/A means "not available."

TABLE 1-1. Comparison ofimagehlp.dll and dbghelp.dll

NAME imagehlp.dll dbghelp.dll

Bindlmage N/A

BindlmageEx N/A

CheckSumMappedFile N/A

EnumerateLoadedModules

EnumerateLoadedModules64

ExtensionApiVersion N/A

FindDebuglnfoFile

FindDebuglnfoFileEx

FindExecutablelmage

FindExecutablelmageEx

FindFilelnSearchPath

GetlmageConfiglnformation N/A

GetlmageUnusedHeaderBytes N/A

GetTimestampForLoadedLibrary

ImageAddCertificate N/A

ImageDirectoryEntryToData

ImageDirectoryEntryToDataEx

ImageEnumerateCertificates N/A

ImageGetCertificateData N/A

ImageGetCertificateHeader N/A

ImageGetDigestStream N/A

ImagehlpApiVersion

ImagehlpApiVersionEx

(continued)
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TABLE 1-1. (continued)

NAME imagehlp.dll dbghelp.dll

ImageLoad N/A

ImageNtHeader

ImageRemoveCertificate N/A

ImageRvaToSection

ImageRvaToVa

ImageUnload N/A

MakeSureDirectoryPathExists

MapAndLoad N/A

MapDebuglnformation

MapFileAndCheckSumA N/A

MapFileAndCheckSumW N/A

ReBaselmage N/A

ReBaseImage64 N/A

RemovePrivateCvSymbolic N/A

RemovePrivateCvSymbolicEx N/A

RemoveRelocations N/A

SearchTreeForFile

SetlmageConfiglnformation N/A

SplitSymbols N/A

StackWalk

StackWalk64

sym N/A

SymCleanup

SymEnumerateModules

SymEnumerateModules64

SymEnumerateSymbols

SymEnumerateSymbols64

SymEnumerateSymbolsW

SymFunctionTableAccess

SymFunctionTa ble Access64

SymGetLineFromAddr

SymGetLineFromAddr64

SymGetLineFromName

SymGetLineFromName64



WINDOWS 2000 DEBUGGING INTERFACES 27

TABLE 1-1. (continued)

NAME imagehlp.dll dbghelp.dll

SymGetLineNext

SymGetLineNext64

SymGetLinePrev

SymGetLinePrev64

SymGetModuleBase

SymGetModuleBase64

SymGetModulelnfo

SymGetModuleInfo64

SymGetModulelnfo Ex

SymGetModulelnfo Ex64

SymGetModulelnfoW

SymGetModulelnfo W64

SymGetOptions

SymGetSearchPath

SymGetSymbolInfo

SymGetSymbolInfo64

SymGetSymFromAddr

SymGetSymFromAddr64

SymGetSymFromName

SymGetSymFromName64

SymGetSymNext

SymGetSymNext64

SymGetSymPrev

SymGetSymPrev64

Symlnitialize

SymLoadModule

SymLoadModule64

SymMatchFileName

SymEnumerateSymbolsW64

SymRegisterCallback

SymRegisterCallback64

SymRegisterFunctionEntryCallback

SymRegisterFunctionEntryCallback64

SymSetOptions

(continued)
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TABLE 1-1. (continued)

In the sample source code following in this section, I will demonstrate how
psapi. dll and imagehlp. dll are used for the following programming tasks:

• Enumeration of all kernel components and drivers

• Enumeration of all processes currently managed by the system

• Enumeration of all modules loaded inside a process' virtual address space

• Enumeration of all symbols of a given component, if available

The psapi .dll interface is not particularly well designed. It provides a mini-
mum of functionality, although it would have been easy to add a bit more conve-
nience. Also, this DLL queries quite a bit of information from the kernel and then
throws away most of it, leaving only tiny bits and pieces.

Because the psapi. dll and imagehlp. dll functions are not part of the stan-
dard Win32 API, their header files and import libraries are not automatically
included in your Visual C/C++ projects. Therefore, the four directives in Listing 1-2
should show up somewhere in your source files. The first pair pulls in the required
header files, and the latter pair establishes the dynamic links to the API functions
exported by both DLLs.

NAME imagehlp.dll dbghelp.dll

SymSetSearchPath

SymUnDName

SymUnDName64

SymUnloadModule

SymUnloadModule64

TouchFileTimes N/A

UnDecorateSymbolName

UnMapAndLoad N/A

UnmapDebuglnformation

UpdateDebuglnfoFile N/A

UpdateDebuglnfoFileEx N/A

WinDbgExtensionDllInit N/A
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LISTING 1-2. Adding psapi.dii and imagehlp.an to a Visual C/C++ Project

SAMPLE CODE ON THE CD

On the CD accompanying this book, two sample projects are included that are built
onpsapi.dll and imagehlp.dll. Oneofthemisw2k_sym.exe—a Windows 2000
symbol browser that extracts symbol names from an arbitrary symbol file, provided
you have installed it (see Setting Up a Debugging Environment). The symbol table
can be sorted by name, address, and data size, and a wildcard filter can be applied as
well. As an additional bonus, w2k_sym. exe also lists active system module/driver
names, running processes, and modules loaded inside any process. The other sample
project is the debugging support library w2k_dbg. dll, which contains several conve-
nient wrappers around psapi.dll and imagehlp.dll functions. w2k_sym. exe relies
entirely on this DLL. The source code of these projects is located in the CD directo-
ries \src\w2k_dbgand \src\w2k_sym, respectively.

Table 1-2 lists the functions that are used by w2k_dbg.dll. The column A/W
indicates for all functions involving strings whether ANSI (A) or 16-bit wide Unicode
characters (W) are supported. As noted earlier, psapi. dll supports both ANSI and
Unicode. Unfortunately, imagehlp. dll and dbghelp. dll aren't that clever and
require 8-bit ANSI strings for several functions. This is somewhat annoying because
a Windows 2000 debugging application usually will not run on Windows 9x and
therefore could use Unicode characters without reservation. With imagehlp.dll
included in your project, you will either have to use ANSI or occasionally convert
Unicode strings back and forth. Because I definitely hate to work with 8-bit strings
on a system capable of handling 16-bit characters, I have opted for the latter
approach. All functions exported by w2k_dbg. dll that involve strings expect Uni-
code characters, so you don't need to be concerned about character size issues if you
are reusing this DLL in your own Windows 2000 projects.

On the other hand, imagehlp. dll and dbghelp. dll have an interesting feature
that psapi. dll lacks: They are already fit for Win64—the 64-bit Windows every
developer is frightened of, because nobody really knows how difficult it will be to
port Win32 applications to Win64. These DLLs export Win64 API functions, and
that's OK—maybe we will be able to use them someday.

#include <imagehlp.h>

^include <psapi . h>

ttpragma comment ( linker, " /default lib: imagehlp. lib" )

#pragma comment { linker, " /def aultlibtpsapi . lib" )
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TABLE 1-2. Debugging Functions

NAME

EnumDeviceDrivers

EnumProcesses

EnumProcessModules

GetDeviceDriverFileName

GetModuleFileNameEx

GetModulelnformation

ImageLoad

ImageUnload

SymCleanup

SymEnumerateSymbols

Symlnitialize

SymLoadModule

SymUnloadModule

Used by w2k_dbg.dll

A/W

A/W

A/W

A

A/W

A

A

LIBRARY

psapi.dll

psapi.dll

psapi.dll

psapi.dll

psapi.dll

psapi.dll

imagehlp.dll

imagehlp.dll

imagehlp.dll

imagehlp.dll

imagehlp.dll

imagehlp.dll

imagehlp.dll

I don't go into psapi. dll and imagehlp. dll in depth. This book focuses on
undocumented interfaces, and the interfaces of both DLLs are satisfactorily docu-
mented in the Platform SDK. However, I don't want to bypass them completely because
they are closely related to the Windows 2000 Native API, discussed in Chapter 2.
Moreover, psapi .dll is a good example of why an undocumented interface might be
preferable to a documented one. Its interface is not only spartan and clumsy—it might
even return inconsistent data in certain situations. If I had to write and sell a profes-
sional debugging tool, I would not build it on this DLL. The Windows 2000 kernel
offers powerful, versatile, and much better-suited debugging API functions. However,
they are almost completely undocumented. Fortunately, many system utilities provided
by Microsoft make extensive use of this API, so it has undergone only slight changes
across Windows NT versions. Yes, you have to revise and carefully test your software
on every new NT release if you are using this API, but its benefits more than outweigh
this drawback.

Most of the following code samples are taken from the source code of
w2k_dbg. dll, found in the CD accompanying this book in the file \src\w2k_dbg\
w2k_dbg. c. This library encapsulates several steps that you would have to take sepa-
rately in convenient opaque functions that return rich information sets. The data is
returned in properly sized, linked lists, with optional indexes imposed on them for sort-
ing and other such functions. Table 1-3 lists the API functions exported by this DLL.
It is a long list, and discussing each function is beyond the scope of this chapter, so you
are encouraged to consult the source code of the companion application w2k_sym. exe
for details about the typical usage (see \src\w2k_sym\w2k_sym. c on the CD).
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TABLE 1-3. w2k_dbg.dll API Function Set

FUNCTION NAME DESCRIPTION

dbgBaseDriver Return the base address and size of a driver, given its path

dbgBaseModule Return the base address and size of a DLL module

dbgCrc32Block Compute the CRC32 of a memory block

dbgCrc32Byte Bytewise computation of a CRC32

dbgCrc32Start CRC32 preconditioning

dbgCrc32Stop CRC32 postconditioning

dbgDriverAdd Add a driver entry to a list of drivers

dbgDriverAddresses Return an array of driver addresses (EnumDeviceDrivers ( ) wrapper)

dbgDriverlndex Create an indexed (and optionally sorted) driver list

dbgDriverList Create a flat driver list

dbgFileClose Close a disk file

dbgFileLoad Load the contents of a disk file to a memory block

dbgFileNew Create a new disk file

dbgFileOpen Open an existing disk file

dbgFileRoot Get the offset of the root token in a file path

dbgFileSave Save a memory block to a disk file

dbgFileUnload Free a memory block created by dbgFileLoad ( )

dbglndexCompare Compare two entries referenced by an index (used by dbgindexsort ( ) )

dbglndexCreate Create a pointer index on an object list

dbglndexCreateEx Create a sorted pointer index on an object list

dbglndexDestroy Free the memory used by an index and its associated list

dbglndexDestroyEx Free the memory used by a two-dimensional index and its associated
lists

dbglndexList Create a flat copy of a list from its index

dbglndexListEx Create a flat copy of a two-dimensional list from its index

dbglndexReverse Reverse the order of the list entries referenced by an index

dbglndexSave Save the memory image of an indexed list to a disk file

dbglndexSaveEx Save the memory image of a two-dimensional indexed list to a disk file

dbglndexSort Sort the list entries referenced by an index by address, size, ID, or name

dbgListCreate Create an empty list

dbgListCreateEx Create an empty list with reserved space

dbgListDestroy Free the memory used by a list

dbgListFinish Terminate a sequentially built list and trim any unused memory

dbgListlndex Create a pointer index on an object list

(continued)
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TABLE 1-3. (continued)

FUNCTION NAME DESCRIPTION

dbgListLoad Create a list from a disk file image

dbgListNext Update the list header after adding an entry

dbgListResize Reserve memory for additional list entries

dbgListSave Save the memory image of a list to a disk file

dbgMemory Align Round up a byte count to the next 64-bit boundary

dbgMemoryAlignEx Round up a string character count to the next 64-bit boundary

dbgMemoryBase Query the internal base address of a heap memory block

dbgMemoryBaseEx Query the internal base address of an individually tagged heap
memory block

dbgMemoryCreate Allocate a memory block from the heap

dbgMemoryCreateEx Allocate an individually tagged memory block from the heap

dbgMemoryDestroy Return a memory block to the heap

dbgMemoryDestroyEx Return an individually tagged memory block to the heap

dbgMemoryReset Reset the memory usage statistics

dbgMemoryResize Change the allocated size of a heap memory block

dbgMemoryResizeEx Change the allocated size of an individually tagged heap memory block

dbgMemoryStatus Query the memory usage statistics

dbgMemory Track Update the memory usage statistics

dbgModulelndex Create an indexed (and optionally sorted) process module sub-list

dbgModuleList Create a flat process module sub-list

dbgPathDriver Build a default driver path specification

dbgPathFile Get the offset of the file name token in a file path

dbgPrivilegeDebug Request the debug privilege for the calling process

dbgPrivilegeSet Request the specified privilege for the calling process

dbgProcessAdd Add a process entry to a list of processes

dbgProcessGuess Guess the default display name of an anonymous system process

dbgProcessIds Return an array of process IDs (EnumProcesses ( ) wrapper)

dbgProcessIndex Create an indexed (and optionally sorted) process list

dbgProcessIndexEx Create a two-dimensional indexed (and optionally sorted)
process/module list

dbgProcessList Create a flat process list

dbgProcessModules Return a list of process module handles (EnumProcessModules ( )
wrapper)

dbgSizeDivide Divide a byte count by a power of two, optionally rounding up
or down
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TABLE 1-3. (continued)

FUNCTION NAME DESCRIPTION

ENUMERATING SYSTEM MODULES AND DRIVERS
psapi. dll can be instructed to return a list of active kernel modules currently residing
in memory. This is a fairly simple task. The psapi. dll function EnumDeviceDrivers ( )
receives an array of PVOID slots, which it fills with the image base addresses of the
active kernel-mode drivers, including the basic kernel modules ntdll. dll,
ntoskrnl.exe, win32k.sys, hal.dll, and bootvid.dll. The reported values
are the virtual memory addresses where the contents of the respective executable
files have been mapped. If you examine the first few bytes at these addresses with the
Kernel Debugger or some other debugging tool, you will clearly recognize the good
old DOS stub program, starting with Mark Zbikowski's famous initials "MZ," and
containing the message text, "This program cannot be run in DOS mode" or some-
thing similar. Listing 1-3 shows a sample invocation of EnumDeviceDrivers ( ) ,
including this function's prototype at the top for your convenience.

EnumDeviceDrivers ( ) expects three arguments: an array pointer, an input size
value, and a pointer to an output size variable of type DWORD . The second argument
specifies the size of the supplied image address array in bytes (!), and the third argu-
ment receives the number of bytes copied to the array. Therefore, you have to divide
the resulting size by sizeof ( PVOID) to obtain the number of addresses copied to the
array. Unfortunately, this function doesn't help you to find out how large the output
array should be, although it actually knows how many drivers are running. It just tells
you how many bytes were returned, and, if the buffer is too small, it conceals the num-
ber of bytes that didn't fit in. Therefore, you have to employ a dull trial-and-error loop
to determine the correct size, as demonstrated in Listing 1-3, assuming that the

dbgSizeKB Convert bytes to KB, optionally rounding up or down

dbgSizeMB Convert bytes to MB, optionally rounding up or down

dbgStringAnsi Convert a Unicode string to ANSI

dbgStringDay Get the name of a day given a day-of-week number

dbgStringMatch Apply a wildcard filter to a string

dbgSymbolCallback Add a symbol entry to a list of symbols (called by
SymEnumerateSymbols ( ) )

dbgSymbolIndex Create an indexed (and optionally sorted) symbol list

dbgSymbolList Create a flat symbol list

dbgSymbolLoad Load a module's symbol table

dbgSymbolLookup Look up a symbol name and optional offset given a memory address

dbgSymbolUnload Unload a module's symbol table
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LISTING 1-3. Enumerating System Module Addresses

data are incomplete whenever the returned size is equal to the size of the array. The
code starts out with a reasonable minimum size of 256 entries, represented by the
constant SIZE_MINIMUM. This is usually enough, but, if not, the buffer size is doubled
on every new trial until all pointers are retrieved or the maximum size of 65,536
entries (SIZE_MAXIMUM) would be exceeded. The memory buffer is allocated and freed
by the helper functions dbgMemoryCreate ( ) and dbgMemoryDestroy ( ) , which are
just fancy wrappers around the standard Win32 functions LocalAiloc ( ) and
LocalFree ( ) , and therefore aren't reprinted here.

Listing 1-4 shows a possible implementation of EnumDeviceDrivers ( ) . Note
that this is not the original source code from psapi .All. It is a random sequence of
characters that happens to yield equivalent binary code if fed to a C compiler. To
keep things clear and simple, I have omitted some distracting details found in the
original code, such as Structured Exception Handling (SEH) clauses, for example. At

BOOL WINAPI EnumDeviceDrivers (PVOID *lp!mageBase,

DWORD cb,

PDWORD IpcbNeeded) ;

PPVOID WINAPI dbgDriverAddresses (PDWORD pdCount)

{
DWORD dSize;

DWORD dCount = 0;

PPVOID ppList = NULL;

dSize = SIZE_MINIMUM * sizeof (PVOID) ;

while ( (ppList = dbgMemoryCreate (dSize) ) != NULL)

{
if (EnumDeviceDrivers (ppList, dSize, kdcount) &&

(dCount < dSize) )

{
dCount /= sizeof (PVOID) ;

break;

}
dCount = 0;

ppList = dbgMemoryDestroy (ppList) ;

if ( (dSize «= 1) > (SIZE_MAXIMUM * sizeof (PVOID))) break;

}
if (pdCount != NULL) *pdCount = dCount;

return ppList;

}
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LISTING 1-4. Sample Implementation of EnumDeviceDrivers ( )

BOOL WINAPI EnumDeviceDrivers (PVOID *lp!mageBase,

DWORD cb,

DWORD *lpcbNeeded)

{

SYSTEM_MODULE_INFORMATION_N ( 1 ) smi ;

PSYSTEM_MODULE_INFORMATION psmi ;

DWORD dSize, i;

NTSTATUS ns ;

BOOL fOk = FALSE;

ns = NtQuerySystemlnf ormation (SystemModulelnf ormation,

&smi, sizeof (smi), NULL);

if ( (ns == STATUS_SUCCESS) |

(ns == STATUS_INFO_LENGTH_MISMATCH) )

{

dSize = sizeof (SYSTEM_MODULE_INFORMATION) +

(smi.dCount * sizeof ( S YSTEM_MODULE ) ) ;

if ((psmi = LocalAlloc (LMEM_FIXED, dSize) ) != NULL)

{

ns - NtQuerySystemlnf ormation ( SystemModulelnf ormation,

psmi, dSize, NULL) ;

if (ns == STATDS_SUCCESS)

{

for (i = 0; (i < psmi->dCount) &&

(i < cb / sizeof (DWORD)); i++)

{

IpImageBase [i] = psmi->aModules [i] .plmageBase;

}

*lpcbNeeded = i * sizeof (DWORD) ;

fOk = TRUE;

}
LocalFree (psmi);

if (!fOk) SetLastError (RtlNtStatusToDosError (ns));

}

}
else

{
SetLastError (RtlNtStatusToDosError (ns) ) ;

}
return fOk;

}
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the heart of Listing 1-4, you can see the NtQuerysystemlnf ormation ( ) call that does
the hard work. This is one of my favorite Windows 2000 functions, because it gives
access to various kinds of important data structures, such as driver, process, thread,
handle, and LPC port lists, plus many more. The internals of this powerful function
and its friend NtSetSysteminf ormation ( ) have been documented for the first time
in my article "Inside Windows NT System Data," published in the November 1999
issue of Dr. Dobb's Journal (Schreiber 1999). Another comprehensive description of
these functions can be looked up in Gary Nebbett's indispensable Windows NT/2000
Native API Reference (Nebbett 2000).

Don't worry too much about the various implementation details of the
EnumDeviceDrivers ( ) function in Listing 1-4.1 have added this code snippet
just to illustrate an interesting aspect of this function that runs like a red thread
through psapi. dll. After obtaining the complete list of drivers in the second
NtQuerysystemlnf ormation ( ) call by specifying the information class
SystemModuleinformation, the code loops through the driver module array and
copies all plmageBase members to the caller's pointer array named IpimageBase [ ] .
This might seem OK, as long as you aren't aware of the other data contained in the
module array supplied by NtQuerysystemlnf ormation ( ) . This data structure is
undocumented, but I can tell you right now that it also specifies the sizes of the mod-
ules in memory, their paths and names, load counts, and some flags. Even the offset
of the file name token inside the path is readily available! EnumDeviceDrivers ( ) is
mercilessly throwing away all of this valuable information, retaining nothing but the
bare image base addresses.

This drama gets even weirder if you try to obtain more information about the
modules referenced by the returned pointers. Guess what psapi. dll does if you are
calling its API function GetDeviceDriverFileName ( ) to obtain the image file path
corresponding to an image base address. It runs through a code sequence similar to
the one in Listing 1-4, again requesting the complete driver list, and again looping
through its entries in search of the given address. If it finds a matching entry, it copies
the path stored there to the caller's buffer. That's very efficient, isn't it? Why didn't
EnumDeviceDrivers ( ) copy the paths while it was scanning the driver list for the
first time? It wouldn't have been very difficult to implement the function in this way.
Besides the efficiency consideration, this design has another potential problem:
What if the module in question has been unloaded right before the invocation of
GetDeviceDriverFileName ( ) ? This entry would be missing from the second driver
list, and GetDeviceDriverFileName ( ) would fail. I don't understand why Microsoft
has released a DLL that cripples the data returned by a powerful API function until it
is almost useless.
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ENUMERATING ACTIVE PROCESSES
Another typical task for psapi . dll is the enumeration of processes currently run-
ning in the system. To this end, the Enumprocesses ( } function is provided. It works
quite similar to EnumDeviceDrivers ( ) , but returns process IDs instead of virtual
addresses. Again, there is no indication of the required buffer size if the output
buffer is too small, so the usual trial-and-error loop must be used, as demonstrated
in Listing 1-5. Actually, this code is nearly identical to Listing 1-3, except for slightly
different symbol and type names.

A process ID is a global numeric tag that uniquely identifies a process within
the entire system. Process and thread IDs are drawn from the same pool of numbers,
starting at zero with the so-called Idle process. None of the running processes and
threads have the same IDs at the same time. However, after a process terminates, it is
possible that another process reuses some of the IDs previously assigned to the ceased

LISTING 1-5. Enumerating Process IDs

BOOL WINAPI EnumProcesses (DWORD *lpidProcess,

DWORD cb ,

DWORD *lpcbNeeded) ;

PDWORD WINAPI dbgProcessIds (PDWORD pdCount)

{

DWORD dSize;

DWORD dCount = 0;

PDWORD pdList = NULL;

dSize - SIZE_MINIMDM * sizeof (DWORD) ;

while ((pdList = dbgMemoryCreate (dSize) ) != NULL)

f

if (EnumProcesses (pdList, dSize, sdCount) &&

(dCount < dSize) )

{

dCount /= sizeof (DWORD) ;

break;

}

dCount = 0 ;

pdList = dbgMemoryDestroy (pdList);

if ( (dSize «= 1) > (SIZE_MAXIMUM * sizeof (DWORD))) break;

}

if (pdCount != NULL) *pdCount = dCount;

return pdList;

}
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process and its threads. Therefore, a process ID obtained at time X might refer to a
completely different process at time Y. It also might be undefined at the time it is
used, or it might be assigned to a thread. Thus, a plain list of process IDs as returned
by Enumprocesses ( ) does not represent a faithful snapshot of the process activity
in the system. This design flaw is even less pardonable if the implementation of this
function is considered. Listing 1-6 is another psapi. dll function clone, outlining
the basic actions taken by EnumProcesses ( ) . Like EnumDeviceDrivers ( ) , it relies
on NtQuerySystemlnf ormation ( ) , but specifies the information class SystemPro-
cesslnformation instead of SystemModuleinf ormation. Please note the loop in
the middle of Listing 1-6, where the ipidProcess [ ] array is filled with data from
a SYSTEM_PROCESS_INFORMATION structure. It is not surprising that this structure is
undocumented.

After having seen how wasteful EnumDeviceDrivers ( ) is with the data it
receives from NtQuerySystemlnf ormation ( ) , odds are that EnumProcesses ( ) is
of a similar kind. In fact, it is even worse! The available process information is much
more exhaustive than the driver module information, because along with process
data it also includes details about every thread in the system. While I am writing this
text, my system runs 37 processes, and calling NtQuerySystemlnf ormation ( ) yields
a data block of no less than 24,488 bytes! All that is left after EnumProcesses ( ) has
finished processing the data are 148 bytes, required for the 37 process IDs.

BOOL WINAPI EnumProcesses (PDWORD IpidProcess,

DWORD cb,

PDWORD IpcbNeeded)

{

PSYSTEM_PROCESS_INFORMATION pspi , pspiNext;

DWORD dSize, i;

NTSTATUS ns ;

BOOL fOk = FALSE;

for (dSize = 0x8000;

((pspi = LocalAllOC (LMEM_FIXED, dSize)) != NULL);

dSize += 0x8000)

{

ns = NtQuerySystemlnformation (SystemProcessInformation,

pspi, dSize, NULL) ;

if (ns == STATOS_SUCCESS)

{

pspiNext - pspi ;

for (i = 0 ; i < cb / sizeof (DWORD); i++)

{
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LISTING 1-6. Sample Implementation o^EnumProcesses()

Although EnumDeviceDrivers ( ) makes me somewhat sad, EnumProcesses ( )
really breaks my heart. If you need justification for using undocumented API functions,
these two functions are the best arguments. Why use less efficient functions such as these
if the real thing is just one step away? Why not call NtQuerySysteminf ormation ( ) your-
self and get all that interesting system information for free? Many system administration
utilities supplied by Microsoft rely on NtQuerySysteminf ormation (} rather than
psapi. dli functions, so why settle for less?

ENUMERATING PROCESS MODULES

Once you have found a process ID of interest in the process list returned by
EnumProcesses ( ) , you might want to know which modules are currently loaded
into its virtual address space, psapi. dll provides yet another API function for this
purpose, called EnumProcessModules ( ) . Unlike EnumDeviceDrivers ( ) and
EnumProcesses ( ) , this function requires four arguments (see top of Listing 1-7).
Whereas these two functions return global system lists, EnumProcessModules ( )
retrieves a process-specific list, so the process must be uniquely identified by an
additional argument. However, instead of a process ID, this function requires a
process HANDLE. To obtain a process handle given an ID, the openProcess ( ) func-
tion must be called.

IpidProcess [i] = pspiNext->dUniqueProcess!d;

pSpiNext = (PSYSTEM_PROCESS_INFORMATION)

( (PBYTE) pspiNext + pspiNext->dNext) ;

}
*lpcbNeeded = i * sizeof (DWORD) ;

fOk = TRUE;

}
LocalFree (pspi) ;

if (fOk || (ns != STATUS_INFO_LENGTH_MISMATCH) )

{
if (IfOk) SetLastError (RtlNtStatusToDosError (ns) ) ;

break;

}

return fOk;

}
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LISTING 1-7. Enumerating Process Modules

EnumProcessModules ( ) returns references to the modules of a process by speci-
fying their module handles. On Windows 2000, an HMODULE is simply the image base
address of a module. In the Platform SDK header file windef. h, it is defined as an
alias for HINSTANCE, which in turn is a HANDLE type. Microsoft has probably chosen
this type assignment to point out that a module handle is an opaque quantity, and no
assumptions should be made about its value. However, an HMODULE is not a handle
in the strict sense. Usually, handles are indexes into a table managed by the system,
where properties of objects are looked up. Each handle returned by the system

BOOL WINAPI EnumProcessModules (HANDLE hProcess,

HMODULE *lphModule,

DWORD cb,

DWORD *lpcbNeeded) ;

PHMODULE WINAPI dbgProcessModules (HANDLE hProcess,

PDWORD pdCount)

{

DWORD dSize;

DWORD dCount = 0;

PHMODULE phList = NULL;

if (hProcess != NULL)

{

dSize = SIZE_MINIMUM * sizeof (HMODULE) ;

while ((phList = dbgMemoryCreate (dSize) ) != NULL)

{

if (EnumProcessModules (hProcess, phList, dSize,

SdCount ) )

{

if (dCount <= dSize)

{
dCount /= sizeof (HMODULE) ;

break ;

)
}

else

{

dCount = 0;

}

phList = dbgMemoryDestroy (phList);

if ( ! (dSize = dCount)) break;

}

}

if (pdCount != NULL) *pdCount = dCount;

return phList;

)
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increments an object-specific handle count, and an object instance cannot be removed
from memory until all handles have been returned to the system. The Win32 API pro-
vides the closeHandle ( ) function for the latter purpose. Its equivalent in the context
of the Native API is called Ntciose ( ) . The important thing about HMODULES is that
these "handles" need not be closed.

Another confusing thing is the fact that module handles are not generally guar-
anteed to remain valid. The remarks on the GetModuleHandle ( ) function in the
Platform SDK documentation state clearly that special care must be taken in multi-
threaded applications, because one thread might invalidate an HMODULE used by
another thread by unloading the module to which this handle refers. The same is
true in a multitasking environment in which an application (e.g., a debugger) wants
to use a module handle of another application. This makes HMODULES appear fairly
useless, doesn't it? However, there are two situations in which an HMODULE remains
valid long enough:

1. A HMODULE returned by LoadLibrary ( ) or LoadLibraryEx ( ) remains valid
until the process calls FreeLibrary ( ) , because these functions involve a
module reference count. This prevents the module from being unloaded
unexpectedly even in a multithreaded application design.

2. An HMODULE from a different process remains valid if it refers to a module that
is permanently loaded. For example, all Windows 2000 kernel components
(not including kernel-mode device drivers) are mapped to the same fixed
addresses in each process and remain there for the lifetime of the process.

Unfortunately, neither of these situations applies to the module handles
returned by the psapi. dll function EnumProcessModules ( ) , at least not generally.
The HMODULE values copied to the caller's buffer reflect the image base addresses that
were in effect at the time the process snapshot was taken. A second later, the process
might have called FreeLibrary ( ) for one of the modules, removing it from memory
and invalidating its handle. It is even possible that the process calls LoadLibrary ( )
for a different DLL immediately afterward, and the new module is mapped to the
address that has just been freed. If this looks familiar, you are right. This is the same
problem encountered with the EnumDeviceDrivers ( ) pointer array and the
EnumProcesses ( ) ID array. However, this problem is not inevitable. The undocu-
mented API functions called by psapi. dll to collect the data work around these data
integrity issues by returning a complete snapshot of the requested objects, including
all properties of interest. It is not necessary to call other functions at a later time to
obtain additional information. In my opinion, the design of psapi. dll is poor
because of its ignorance of data integrity, which is why I would not use this DLL as a
basis for a professional debugging application.
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The EnumProcessModules ( ) function is a better citizen than EnumDeviceDrivers ( )
and EnumProcesses ( ) , because it indicates exactly how many bytes are missing
if the output data doesn't fit into the caller's array. Note that Listing 1-7 doesn't
contain a loop where the buffer size is increased until it is large enough. However,
a trial-and error loop is still required because the required size reported by
EnumProcessModules ( ) might be invalid at the next call if the process in question
has loaded another module in the meantime. Therefore, the code in Listing 1-7
keeps on enumerating modules until EnumProcessModules ( ) reports that the
required buffer size is less than or equal to the available size or an error occurs.

I won't describe an equivalent implementation of EnumProcessModules ( ) ,
because this function is slightly more complex than EnumDeviceDrivers ( ) and
EnumProcesses ( ) and involves several undocumented data structures. Basically,
it calls NtQueryinf ormationProcess ( ) (it is undocumented, of course) to get the
address of the target Process Environment Block (PEB), where it retrieves a pointer
to a module information list. Because neither the PEB nor this list are "visible"
in the caller's address space, EnumProcessModules ( ) calls the Win32 API function
ReadProcessMemory ( ) (this one is documented) to take a peek at the target address
space. By the way, the layout of the PEB structure is discussed later in Chapter 7, and
also appears in the structure definition section of Appendix C.

ADJUSTING PROCESS PRIVILEGES

Recall the earlier discussion about the process handle required by EnumProcess
Modules ( ) . Usually, you will begin with a process ID—probably one of those
returned by EnumProcesses ( ) . The Win32 API provides the OpenProcess ( ) func-
tion to get a handle to a process if its ID is known. This function expects an access
flag mask as its first argument. Assuming that the process ID is stored in the DWORD
variable did, and you are calling OpenProcess (PROCESS_ALL_ACCESS, FALSE,
did) to obtain a handle with maximum access rights, you will get an error code for
several processes with low ID numbers. This is not a bug—it is a security feature!
These processes are system services that keep the system alive. A normal user
process is not allowed to execute all possible operations on system services. For
example, it is not a good idea to allow all processes to kill any other process in the
system. If an application accidentally terminates a system service, the entire system
crashes. Therefore, certain access rights can only be used by a process that has the
appropriate privileges.

You can always bump up the privilege level of an application by claiming that it
is a debugger. For obvious reasons, a debugger must have a large number of access
rights to do its job. Changing the privileges of a process is essentially a straightfor-
ward sequence of three steps:
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1. First, the so-called access token of the process must be opened, using the
Win32 advapi32 . dll function OpenProcessToken ( ) .

2. If this call succeeds, the next step is to prepare a TOKEN_PRIVILEGES
structure that contains information about the requested privilege.
This task is facilitated by another advapi32 . dll function named
Lookupprivilegevalue ( ) . The privilege is specified by name. The
Platform SDK file winnt .h defines 27 privilege names and assigns symbols
to them. For example, the debugging privilege has the symbol
SE_DEBUG_NAME, which evaluates to the string "SeDebugPrivilege".

3. If this call succeeds as well, AdjustTokenPrivileges ( ) can be called with
the token handle of the process and the initialized TOKEN_PRIVILEGES
structure. Again, this function is exported by advapi32 . dll.

Remember to close the token handle afterward if OpenProcessToken ( ) succeeds.
w2k_dbg. dll contains the API function dbgprivilegeset ( ) that combines these steps,
as shown in Listing 1-8. At the bottom of this listing, another w2k_dbg. dll function is
included. dbgprivilegeDebug ( } is a simple but convenient dbgPrivilegeSet ( ) wrap-
per that specifically requests the debugging privilege. By the way, this trick is also
employed by the wonderful kill. exe utility contained in Microsoft's Windows NT
Server Resource Kit. kill. exe needs the debugging privilege to be able to kick starved
services from memory. This is an indispensable tool for NT server administrators who
want to restart a dead system service that doesn't respond to service control calls any-
more, circumventing a full reboot. Anyone who runs Microsoft Internet Information
Server (IIS) on the Web or in an intranet or extranet probably has this nifty tool in the
emergency toolbox and issues a kill inetinf o. exe command every now and then.

BOOL WINAPI dbgPrivilegeSet (PWORD pwName)

{
HANDLE Moken;

TOKEN_PRIVILEGES tp;
BOOL fOk = FALSE;

if ( (pwName != NULL)
&&
OpenProcessToken (GetCurrentProcess (),

TOKEN_ADJUST_PRIVILEGES ,
ShToken) )

{
if (LookupPrivilegeValue {NULL, pwName,

&tp.Privileges->Luid) )

{
tp.Privileges->Attributes = SE_PRIVILEGE_ENABLED;
tp.PrivilegeCount = 1;

(continued)
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LISTING 1-8. Requesting a Privilege for a Process

ENUMERATING SYMBOLS
After having bashed psapi. dll without mercy, it's time for a few more positive
words, psapi.dll might be a flop, but on the other hand, imagehlp. dll is a true
pearl! I came across this fine piece of software while searching for more information
about the internal structure of Windows 2000 symbol files. Finally, a 3-year-old
article of the world's best Windows surgeon Matt Pietrek (Pietrek 1997b) convinced
me—at least for now—that it is absolutely unnecessary to know the layout of sym-
bol files, because imagehlp. dll readily dissects them for me. This magic is done by
its API function SymEnumerateSymbols ( ) , whose prototype is shown in the upper
half of Listing 1-9. Meanwhile, I have learned a lot about the most essential inter-
nals of the Windows NT 4.0 and Windows 2000 symbol files, so I no longer depend
on imagehlp. dll. I will cover this information in the next section of this chapter.

The hProcess argument is usually a handle to the calling process, so it can be
set to the result of GetCurrentProcess ( ) . Note that GetCurrentProcess ( ) doesn't
return a real process handle. Instead, it returns a constant value of OXFFFFFFFF called
a pseudo handle, which is accepted by all API functions that expect a process handle.
OXFFFFFFFE is another pseudo handle that is interpreted as a handle to the current
thread and is analogously returned by the API function GetcurrentThread() .

Baseof oil is defined as a DWORD, although it is actually sort of a HMODULE or
HINSTANCE . I guess Microsoft has chosen this data type to express that this value
need not be a valid HMODULE, although it frequently is. SymEnumerateSymbols ( ) cal-
culates the base addresses of all enumerated symbols relative to this value. It is
absolutely OK to query the symbols of a DLL that isn't currently loaded into any
process address space, so BaseOfoll can be chosen arbitrarily.

fOk = AdjustTokenPrivileges (hToken, FALSE, &tp,
0, NULL, NULL)

Sc&

(GetLastError () == ERROR_SUCCESS) ;

}
CloseHandle (hToken) ;

}
return fOk;

)

//

BOOL WINAPI dbgPrivilegeDebug (void)

{
return dbgPrivilegeSet (SE_DEBUG_NAME) ;

}
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LISTING 1-9. SymEnumerateSymbols() and its Callback Function

The Callback argument is a pointer to a user-defined callback function that
is invoked for every symbol. The lower half of Listing 1-9 provides information
about its arguments. The callback function receives a zero-terminated symbol name
string, the base address of the symbol with respect to the Baseof oil argument of
SymEnumerateSymbols ( ) and the estimated size of the item tagged by the symbol.
SymbolName is defined as a PTSTR, which means that its actual type depends on
whether the ANSI or Unicode version of SymEnumerateSymbols ( ) has been called.
The Platform SDK documentation explicitly states that SymbolSize is a "best-guess
value," and can be zero. I have found that SymbolAddress might be zero as well,
and that SymbolSize can assume the two's complement of SymbolAddress, that is,
adding both values yields zero. It is a good idea to filter out these special cases if you
are only interested in symbols that refer to real code or data.

UserContext is an arbitrary pointer that can be used by the caller to keep
track of the enumeration sequence. For example, it might point to a memory block
where the symbol information has accumulated. This pointer is identical to the
UserContext argument passed to the Callback function. The callback function
can cancel the enumeration any time by returning the value FALSE . This action is
typically taken when an unrecoverable error occurs or the caller has received the
information for which it was waiting.

Listing 1-10 demonstrates a typical application of SymEnumerateSymbols ( ) ,
again taken from the source code of w2k_dbg. dll. To enumerate the symbols of a
specified module, the following steps have to be taken:

1. Before anything else, syminitialize ( ) must be called to initialize the
symbol handler. Listing 1-11 shows the prototypes of this and other
functions discussed here. The hProcess argument can be a handle to any
active process in the system. Debuggers that maintain symbolic
information for several processes use this parameter to identify the target
process. Applications that simply wish to enumerate symbols offline may

BOOL IMAGEAPISymEnumerateSymbols

(HANDLE hProcess,

DWORD BaseOfDll,

PSYM_ENUMSYMBOLS_CALLBACK Callback,

PVOID UserContext) ;

typedef BOOL (CALLBACK *PSYM_ENUMSYMBOLS_CALLBACK)

(PTSTR SymbolName,

DWORD SymbolAddress,

DWORD SymbolSize,

PVOID UserContext ) ;
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LISTING 1-10. Creating a Symbol List

pass in the value of GetCurrentProcess ( ) . The resources allocated by
Symlnitialize ( ) must be freed later by calling SymCleanup ( ) .

2. To obtain accurate information about the module for which symbols will
be enumerated, it is advisable to call imageLoad ( ) now. Note that this
function is specific to imagehlp. dll—it is not exported by the
redistributable component dbghelp. dll. ImageLoad ( ) returns a pointer
to a LOADED_IMAGE structure containing very detailed information about
the loaded module (see Listing 1-11). This structure must be deallocated
later using imageUnload ( ) .

3. The last step before SymEnumerateSymbols ( ) can be called is to load
the symbol table of the target module by invoking SymLoadModule ( ) .
If imageLoad ( ) has been called before, the hFile and sizeof image
members of the returned LOADED_IMAGE structure can be passed in as the
respective arguments. Otherwise, you have to set hFile to NULL and
sizeof image to zero. In this case, SymLoadModule ( ) attempts to obtain the
image size from the symbol file, which is not guaranteed to be accurate.
The symbol table must be unloaded later by calling symUnloadModule ( ) .

PDBG_LIST WINAPI dbgSymbolList (PWORD pwPath,
PVOID pBase)

{
PLOADED_IMAGE pli;

HANDLE hProcess = GetCurrentProcess ( ) ;
PDBG_LIST pdl = NULL;

if ( (pwPath != NULL) &&
Symlnitialize (hProcess, NULL, FALSE))

{
if ((pli = dbgSymbolLoad (pwPath, pBase, hProcess)) != NULL)

{
if ((pdl = dbgListCreate ()) != NULL)

{
SymEnumerateSymbols (hProcess, (DWORD_PTR) pBase,

dbgSymbolCallback, fcpdl);

)
dbgSymbolUnload (pli, pBase, hProcess};

}
SymCleanup (hProcess) ;

}
return dbgListFinish (pdl);
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LISTING 1-11. Various imagehip. an API Prototypes

In Listing 1-10, the Symlnitialize ( ) , SymEnumerateSymbols ( ) , and
SymCleanup ( } calls are clearly discernible. Please ignore the dbgListCreate ( )
and dbgListFinish ( ) calls—they refer to w2k_dbg. dii API functions that help
build object lists in memory. The other imagehlp.dll function references mentioned
above are hidden inside the w2k_dbg. dll API functions dbgSymbolLoad ( ) and
dbgsymboiunload() , shown in Listing 1-12. Note that dbgSymbolLoad() uses
dbgstringAnsi ( ) to convert the module path string from Unicode to ANSI,
because imagehip. dll doesn't export a Unicode variant of ImageLoad ( ) .

BOOL IMAGEAPI Symlnitialize (HANDLE hProcess,

PSTR UserSearchPath,

BOOL flnvadeProcess) ;

BOOL IMAGEAPI SymCleanup (HANDLE hProcess) ;

DWORD IMAGEAPI SymLoadModule (HANDLE hProcess,

HANDLE hFile,

PSTR ImageName ,

PSTR ModuleName,

DWORD BaseOfDll,

DWORD SizeOfDll) ;

BOOL IMAGEAPI SymUnloadModule (HANDLE hProcess,

DWORD BaseOfDll) ;

PLOADED_IMAGE IMAGEAPI ImageLoad (PSTR DllName,

PSTR DllPath) ;

BOOL IMAGEAPI ImageUnload ( PLOADED_IMAGE Loadedlmage) ;

typedef struct _LOADED_IMAGE

{
PSTR ModuleName;

HANDLE hFile;

PUCHAR MappedAddress;

PIMAGE_NT_HEADERS FileHeader;

PIMAGE_SECTION_HEADER LastRvaSection;

ULONG NumberOf Sections;

PIMAGE_SECTION_HEADER Sections;

ULONG Characteristics;

BOOLEAN fSystemlmage;

BOOLEAN fDOSImage;

LIST_ENTRY Links;

ULONG SizeOflmage;

}
LOADED_IMAGE , * PLOADED_IMAGE ;
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]
PLOADED_IMAGE WINAPI dbgSymbolLoad (PWORD pwPath,

PVOID pBase,

HANDLE hProcess)

{
WORD awPath [MAX_PATH] ;

PBYTE pbPath;

DWORD dPath;

PLOADED_IMAGE pli = NULL;

if ( (pbPath = dbgStringAnsi (pwPath, NULL)) != NULL)

{
if ( ( (pli = ImageLoad (pbPath, NULL) ) == NULL) &&

(dPath = dbgPathDriver (pwPath, awPath, MAX_PATH) ) &&

(dPath < MAX_PATH) )

{
dbgMemoryDestroy (pbPath) ;

if ((pbPath = dbgStringAnsi (awPath, NULL)) != NULL)

{
pli = ImageLoad (pbPath, NULL) ;

}

}
if ( (pli != NULL)

&&

( ISymLoadModule (hProcess, pli->hFile, pbPath, NULL,

(DWORD_PTR) pBase, pli->SizeOf Image) ) )

{
ImageUnload (pli);

pli = NULL;

}
dbgMemoryDestroy (pbPath) ;

)
return pli;

}

//

PLOADED_IMAGE WINAPI dbgSymbolUnload ( PLOADED_IMAGE pli,

PVOID pBase,

HANDLE hProcess)

{

if (pli != NULL)

{
SymUnloadModule (hProcess, (DWORD_PTR) pBase) ;

ImageUnload (pli);

}
return NULL;

}

/ / -
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LISTING 1-12. Loading and Unloading Symbol Information

imageLoad ( ) does a very good job locating the specified module, even if only its
name is given, without any path information. However, it fails on kernel-mode drivers
residing in the \winnt\system32\drivers directory, because it is usually not part of
the system's search path list. In this case, dbgSymbolLoad() asks the dbgPathDriver ( )
function for help and retries the Loadimage ( ) call. dbgPathDriver ( ) simply prefixes
the specified path with the string "driverV if the path consists of a bare file name
only. If either of the imageLoad ( ) calls returns a valid LOADED_IMAGE pointer,
dbgSymbolLoad ( ) fulfills its mission by loading the module's symbol table via
SymLoadModule ( ) and returns the LOADED_IMAGE structure if successful. Its counter-
part dbgSymbolUnload ( ) is almost trivial—it unloads the symbol table and then
destroys the LOADED_IMAGE structure.

In Listing 1-10, SymEnumerateSymbols ( ) is instructed to use the w2k_dbg.dll
function dbgSymbolcallback ( ) for the callbacks. I am not including its source code
here because it isn't relevant to imagehlp. dll. It just uses the symbol information it
receives (see the definition of PSYM_ENUMSYMBOLS_CALLBACK in Listing 1-9) and adds
it to a memory block passed in as its userContext pointer. Although the list, index,
and sorting functions featured by w2k_dbg.dll are interesting in their own right,
they are beyond the scope of this book. Please consult the source files of
w2k_dbg.dll andw2k_sym.exe on the CD if you need more information.

PDBG_LIST WINAPI dbgSymbolList (PWORD pwPath,

PVOID pBase)

{
PLOADED IMAGE pli;

HANDLE hProcess = GetCurrentProcess ( ) ;

PDBG_LIST pdl = NULL;

if ( (pwPath != NULL) &;&

Symlnitialize (hProcess, NULL, FALSE) )

{

if ((pli = dbgSymbolLoad (pwPath, pBase, hProcess)) != NULL)

{

if ((pdl = dbgListCreate ()) != NULL)

{

SymEnumerateSymbols (hProcess, (DWORD_PTR) pBase,

dbgSynibolCallback, &pdl);

}

dbgSymbolUnload (pli, pBase, hProcess);

}

SymCleanup (hProcess) ;

}

return dbgListFinish (pdl) ;

}
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A WINDOWS 2000 SYMBOL BROWSER

w2k_sym.exe is a sample client application ofw2k_dbg.dll running in Win32 console
mode. If you invoke it without arguments, it identifies itself as the Windows 2000
Symbol Browser and displays the help screen shown in Example 1-5. The program
recognizes several command line switches that determine the actions it should take.
The four basic options are /p (list processes), /m (list process modules), /d (list drivers
and system modules), or the path of a module for which symbol information is
requested. The default behavior can be altered by adding various display mode, sort-
ing, and filtering switches. For example, if you want to see a list of all ntoskrni. exe

EXAMPLE 1-5. The Command Help o/'w2k_sym. exe

// w2k_sym.exe

// SBS Windows 2000 Symbol Browser VI. 00

// 08-27-2000 Sven B. Schreiber

/ / sbs@orgon. com

Usage : w2k_sym { <mode> [ /f | /F <f liter > ] <operation> )

<mode> is a series of options for the next <operation>:

/a : sort by address

/s : sort by size

/i : sort by ID (process/module lists only)

/n : sort by name

/c : sort by name (case-sensitive)

/r : reverse order

/I : load checkpoint file (see below)

/w : write checkpoint file (see below)

/e : display end address instead of size

/v : verbose mode

/f <filter> applies a case-insensitive search pattern.

/F <filter> works analogous, but case-sensitive.

In <filter>, the wildcards * and ? are allowed.

<operation> is one of the following:

/p : display processes - checkpoint : processes . dbgl

/m : display modules - checkpoint : modules .dbgl

/d : display drivers - checkpoint : drivers . dbgl

<file> : display <file> symbols - checkpoint: symbols. dbgl

<file> is a file name, a relative path, or a fully qualified path.

Checkpoint files are loaded from and written to the current directory.

A checkpoint is an on-disk image of a DBG__LIST structure (see w2k_dbg.h) .
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symbols sorted by name, issue the command w2k_sym /n/v ntoskrnl. exe. The /n
switch selects sort-by-name mode, and /v tells the program to be verbose, displaying
the complete symbol list—otherwise, only summary information would be visible.

As an additional option, w2k_sym. exe allows reading and writing checkpoint
files. A checkpoint is simply a one-to-one copy of an object list written to a disk file.
You can use checkpoints to save the state of your system for later comparison. A
checkpoint file contains a CRC32 field that is used to validate the contents of the file
when it is loaded. w2k_sym. exe maintains four checkpoints in the current directory,
corresponding to the four basic program options mentioned earlier, that is, process,
module, driver, and symbol lists.

MICROSOFT SYMBOL FILE INTERNALS

It is great that Microsoft provides a standard interface to access the Windows 2000
symbol files, no matter what internal format they are using. Sometimes, however, you
may wish to have direct access to their internals, just to gain more control of the
data. This section shows you how the data in symbol files of type . dbg and . pdb are
structured, and presents a DLL with a sample client application that allows you to
look up and browse symbolic information buried inside them. Yes, this is going to be
another symbol browser application, but don't worry—I won't bore you with a sim-
ple rehash of familiar code. The alternative symbol browser is quite different from
the one discussed in the previous section.

SYMBOL DECORATION

Microsoft symbol files store the names of symbols in their so-called decorated form,
which means that the symbol name might be prefixed and postfixed by additional
character sequences that carry information about the type and usage of the symbol.
Table 1-4 lists the most common forms of decorations. Symbols generated by C code
usually have a leading underscore or @ character, depending on the calling conven-
tion. An @ character indicates a f astcall function, and an underscore indicates

stdcall and cdecl functions. Because the fastcall and stdcall conven-
tions leave the task of cleaning up the argument stack to the called function, the sym-
bols assigned to functions of this type also include the number of argument bytes put
on the stack by the caller. This information is appended to the symbol name in deci-
mal notation, separated by an @ character. In this scenario, global variables are
treated like cdecl functions—that is, their symbols start with an underscore and
have no trailing argument stack information.
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TABLE 1-4. Symbol Decoration Categories

Some symbol names have a prefix of imp or imp_@. These symbols are
assigned to import thunks, which are pointers to functions or variables in other mod-
ules. Import thunks facilitate dynamic linking to symbols exported by other compo-
nents at runtime, regardless of the actual load address of the target module. When a
module is loaded, the loader mechanism fixes up the thunk pointers to refer to the
actual entry point addresses. The benefit of import thunks is that the fixup for each
imported function or variable has to be done only once per symbol—all references to
this external symbol are routed through its thunk. It should be noted that import
thunks are not a requirement. It is up to the compiler to decide whether it wants to
minimize fixups by adding thunks or minimize memory usage by saving the space
required for the thunks. As Table 1-4 shows, the same prefix/postfix rules apply to
local and imported symbols, except that import thunks have an additional imp_
prefix (with two leading underscores!).

The undecoration problems of imagehlp. dll can easily be demonstrated
with the help of the w2k_sym. exe sample application from the previous section,
because it ultimately relies on the imagehlp. dll API via the w2k_dbg. dll library. If
you issue the command w2k_sym /v/n/f * ntoskrnl.exe, instructingw2k_sym.exe
to display a sorted list of names starting with two underscore characters, you will see
something that should look like the list in Example 1-6. What's strange is the pile of
symbols at the top of the table. Entering a command such as in 8047F798 in the Ker-
nel Debugger yields the result ntoskrnl! , which isn't any better. The original deco-
rated name of the symbol at address Ox8047F798 is actually @<a_pchsym_<ioo@
UmgUkirezgvUmglhUlyUfkUlyqUrDIGUlyk01yq@ob, SO it seems that imagehlp.dll
simply has stripped all characters except for two of the three leading underscores.

EXAMPLE DESCRIPTION

symbol Undecorated symbol (might have been declared in an
ASM module)

_symbol cdecl function or global variable

_symbol@N stdcall function with N argument bytes

@symbol@N fastcall function with N argument bytes

imp symbol import thunk of a cdecl function or variable

imp symbol@N import thunk of a stdcall function with N argument bytes

imp_@symbol@N import thunk of a fastcall function with N argument bytes

^symbol C++ symbol with embedded argument type information

@@_Pch$ym_symbol PCH symbol
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#

6870

6871

6872

6873

6874

6875

6876

6877

6878

6879-

6880

6881

6882-

6883

6884

ADDRESS

8047F798

80480B8C

8047E724

80471FEO

804733B8

804721DO

804759A4

80480004

8047DA8C

8047238C

8047E6D4

804755D4

80471700

80471704

80471FCO

SIZE NAME

4

14

4

4

28

20

4

1C

14 _

4

4

4

4 decimal_point

4 decimal_point_length

8 fastflag

EXAMPLE 1-6. Results of the Command w2k_sym /v /n/ f * ntoskrnl.exe

An even better example is the command w2k_sym /v/n/ f _imp_*
ntoskrnl. exe that displays all symbols starting with the character sequence
_imp_. The resulting list, excerpted in Example 1-7, comprises the import thunks
of ntoskrnl. exe. Again, the list starts with a long sequence of ambiguous names,
and again the Kernel Debugger isn't helpful, because it reports the same names for
these addresses. If I tell you now that the original name of the symbol at address
Ox804005A4 is imp_@ExReleaseFastMutex@4, what do you think? Obviously,
one leading underscore has gotten lost, and the entire tail string starting at the first
@ character is missing. It seems that the undecoration algorithm inside
imagehlp.dll has a problem with @ characters. The reason for this strange behav-
ior is that @ is not only the prefix of f astcall function names but also the sepa-
rator for the argument stack size trailer of f astcall and stdcall functions.
Obviously, the applied undecoration algorithm is satisfied to find a leading under-
score and an @ character, erroneously assuming that the remaining trailer specifies
the number of bytes on the caller's argument stack. Therefore, the lengthy PCH
symbols are stripped down to two underscores, and the fastcall import thunks
are reduced to _imp_. In both cases, the first leading underscore is removed and
the first @ plus all characters following it are discarded as well.
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EXAMPLE 1-7. Results of the Command v2k_sym /v /n / f _imp_* ntoskrnl.exe

The above examples are two potential reasons why you might lose patience and
say: "Hey, I'm going to do it my own way!" The problem is that the internals of the
Microsoft symbol file format are only scarcely documented, and some parts of the
symbolic information—most notably the structure of Program Database (PDB)
files—are completely undocumented. The Microsoft Knowledge Base even contains
an article that clearly states:

"The Program Database File Format also known as PDB file format is not
documented. This information is Microsoft proprietary." (Microsoft 2000d.)

This sounds as if any attempts to roll your own symbol information parser
must fail. However, you can bet that I'd never dare to add a section to this book that
would end with the words "... but unfortunately, I can't tell you more because the
internals of PDB files are unknown to me." Of course, I will tell you how PDB files
are structured. But first, we will have to examine to the internals of . dbg files,
because this is where the entire story starts.

THE INTERNAL STRUCTURE OF .dbg FILES

The symbolic information of the Windows NT 4.0 components is packed into files
whose names end with a . dbg extension. The file names and the subdirectories hosting
these files can be immediately derived from the component {vie name. Assuming that tVie

# ADDRESS SIZE NAME

6761: 804005A4 4 _ mp_
6762: 80400584 4 _ mp_
6763: 80400594 4 _ mp_
6764: 80400524 4 _ mp_
6765: 8040059C 4 _ mp_
6766: 80400534 4 _ mp_
6767: 80400590 4 _ mp_

6768: 804004EC 4 _ mp_
6769: 80400554 4 _ mp_
6770: 80400598 4 _ mp_

6771: 80400520 4 _ mp HalAllocateAdapterChannel
6772: 804004CO 4 _ mp HalAllocateCommonBuf f er

6773: 804004E8 4 _ mp HalAllProcessorsStarted
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symbol root directory of a system is d: \winnt\symbols, the full path of the symbol file
of the component filename, ext is d: \winnt\syiribols\ext\filename.dbg. For exam-
ple, the kernel symbols can be found in the file d: \winnt\symbols\exe\ntoskrnl .dbg.
Windows 2000 comes with . dbg files, too. However, the symbolic information has been
moved to separate . pdb files. Therefore, each Windows 2000 component has an associ-
ated ext\filename. dbg and an additional ext\f ilename .pdb file in the symbol root
directory. Aside from this difference, the contents of the Windows NT 4.0 and 2000
. dbg files are quite similar.

Fortunately, the internals of . dbg files are at least partially documented. The
Win32 Platform SDK header file winnt. h provides important constant and type
definitions of the core parts, and the Microsoft Developer Network (MSDN)
Library contains some very helpful articles about this file format. Certainly the
most enlightening article is Matt Pietrek's March 1999 edition of his "Under the
Hood" column in Microsoft Systems Journal (MSJ), renamed MSDN Magazine
(Pietrek 1999). Basically, a .dbg file consists of a header and a data section. Both
sections have variable size and are further subdivided. The header part comprises
four major subsections:

1. An IMAGE_SEPARATE_DEBUG_HEADER structure, starting with the two-letter
signature "DI" (top section of Listing 1-13).

2. An array of IMAGE_SECTION_HEADER structures, one for each section in the
component's PE file (middle section of Listing 1-13). The number of
entries is specified by the NumberOf sections member of the
IMAGE_SEPARATE_DEBUG_HEADER.

3. A sequence of zero-terminated 8-bit ANSI strings, comprising all exported
symbols in undecorated form. The size of this subsection is specified by the
ExportedNamesSize member of the IMAGE_SEPARATE_DEBUG_HEADER . If the
module doesn't export any symbols, the ExportedNamesSize is zero, and
the subsection is not present.

4. An array of IMAGE_DEBUG_DIRECTORY structures, describing the locations
and formats of the subsequent data in the file (bottom
section of Listing 1-13). The size of this subsection is specified by the
DebugDirectorysize member of the IMAGE_SEPARATE_DEBUG_HEADER.
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#define IMAGE_SEPARATE_DEBUG_SIGNATURE 0x4944 // "DI"

typedef struct _IMAGE_SEPARATE_DEBUG_HEADER

{

WORD Signature;

WORD Flags ;

WORD Machine;

WORD Characteristics;

DWORD TimeDateStamp;

DWORD Checksum;

DWORD ImageBase;

DWORD SizeOf Image;

DWORD NurnberOf Sections ;

DWORD ExportedNamesSize ;

DWORD DebugDirectorySize;

DWORD SectionAlignment;

DWORD Reserved [2 ],-

}

IMAGE_SEPARATE_DEBUG_HEADER, *PIMAGE_SEPARATE_DEBUG_HEADER;

//

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _IMAGE_SECTION_HEADER

BYTE Name[IMAGE_SIZEOF_SHORT_NAME] ;

union

(
DWORD PhysicalAddress;

DWORD VirtualSize;

} Misc;

DWORD VirtualAddress;

DWORD SizeOf RawData;

DWORD PointerToRawData;

DWORD PointerToRelocations;

DWORD PointerToLinenumbers ;

WORD NumberOf Relocations;

WORD NumberOf Linenumbers ;

DWORD Characteristics;

}

IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

(tdefine IMAGE_DEBUG_TYPE_UNKNOWN 0

#define IMAGE_DEBUG_TYPE_COFF 1

#define IMAGE_DEBUG_TYPE_CODEVIEW 2

#define IMAGE_DEBUG_TYPE_FPO 3

#define IMAGE_DEBUG_TYPE_MISC 4

#define IMAGE_DEBUG_TYPE_EXCEPTION 5

#define IMAGE_DEBUG_TYPE_FIXUP 6
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LISTING 1-13. Header Structures of a . dbg File

Because of the variable size of the header subsections, their absolute positions
within the . dbg file must be computed from the size of the preceding subsections,
respectively. A . dbg file parser usually applies the following algorithm:

• The IMAGE_SEPARATE_DEBUG_HEADER is always located at the beginning of
the file.

• The first IMAGE_SECTION_HEADER immediately follows the
IMAGE_SEPARATE_DEBUG_HEADER, so it is always found at file offset 0x30.

• The offset of the first exported name is determined by multiplying the size
of the IMAGE_SECTION_HEADER structure by the number of sections and
adding it to the offset of the first section header. Thus, the first string is
located at offset 0x30 + (NumberOfSections * 0x28) .

• The location of the first IMAGE_DEBUG_DIRECTORY entry is determined by
adding the ExportedNamessize to the offset of the exported-names
subsection.

• The offsets of the remaining data items in the . dbg file are determined by
the IMAGE_DEBUG_DIRECTORY entries. The offsets and sizes of the
associated data blocks are specified by the PointerToRawData and
SizeOfData members, respectively.

#define IMAGE_DEBUG_TYPE_OMAP_TO_SRC 7

#define IMAGE_DEBUG_TYPE_OMAP_FROM_SRC 8

tfdefine IMAGE_DEBUG_TYPE_BORLAND 9

#define IMAGE_DEBUG_TYPE_RESERVED10 10

tfdefine IMAGE_DEBUG_TYPE_CLSID 11

typedef struct _IMAGE_DEBUG_DIRECTORY

{

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Type;

DWORD SizeOfData;

DWORD AddressOfRawData;

DWORD PointerToRawData;

IMAGE_DEBUG_DIRECTORY , * PIMAGE_DEBUG_DIRECTORY ;
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The IMAGE_DEBUG_TYPE_* definitions in Listing 1-13 reflect the various data
formats a . dbg file can comprise. However, the Windows NT 4.0 symbol files typically
contain only four of them: IMAGE_DEBUG_TYPE_COFF , IMAGE_DEBUG_TYPE_CODEVIEW,
IMAGE_DEBUG_TYPE_FPO, and IMAGE_DEBUG_TYPE_MISC . The Windows 2000 .dbg

files usually add IMAGE_DEBUG_TYPE_OMAP_TO_SRC , IMAGE_DEBUG_TYPE_OMAP_FROM
_SRC , and an undocumented type with ID Oxi o 0 0 to this list. If you are interested
only in resolving or browsing symbols, the only required directory entries are IMAGE_
DEBUG_TYPE_CODEVIEW, IMAGE_DEBUG_TYPE__OMAP_TO_SRC, and IMAGE_DEBUG_

TYPE_OMAP_FROM_SRC.

The companion CD of this book contains a sample DLL named w2k_img. dll
that parses . dbg and . pdb files and exports several interesting functions for developers
of debugging tools. The source code of this DLL is found in the \src\w2k_img tree of
the CD. One important property of w2k_img. dll is that it is designed to run on all
Win32 platforms. This not only includes Windows 2000 and Windows NT 4.0 but
also Windows 95 and 98. Like all good citizens in the Win32 world, this DLL comes
with separate entry points for ANSI and Unicode strings. By default, a client applica-
tion uses the ANSI functions. If the application includes the line #def ine UNICODE in
its source code, the Unicode entry points are selected transparently. Client applications
that run on Win32 platforms should use ANSI exclusively. Applications specific to
Windows 2000/NT can switch to Unicode for better performance.

The sample CD also contains an example application called SBS Windows 2000
CodeView Decompiler, whose Microsoft Visual C/C++ project files are found in the
\src\w2k_cv tree. It is a very simple application that dissects .dbg and .pdb files and
dumps the contents of their sections to a console window. You can use it while read-
ing this section to see live examples of the data structures discussed here, w2k_cv.exe
makes heavy use of several w2k_img. dll API functions.

Listing 1-14 shows one of the basic data structures defined in w2k_img.h. The
IMG_DBG structure is essentially a concatenation of the first two . dbg file header sec-
tions, that is, the fixed-size basic header and the array of PE section headers. The
actual size of the structure, given the number of sections, is computed by the macro
IMG_DBG ( ) . Its result specifies the file offset of the exported-names subsection.

Several w2k_img. dll API functions expect a pointer to an initialized IMG_DBG
structure. The imgDbgLoad ( ) function (not reprinted here) allocates and returns a
properly initialized IMG_DBG structure containing the data of the specified . dbg file.
imgDbgLoad ( ) performs very strict sanity checks on the data to verify that the file is
valid and complete. The returned IMG_DBG structure can be passed to several parsing
functions that return the linear addresses of the most frequently used . dbg file compo-
nents. For example, the imgDbgExports ( ) function in Listing 1-15 computes the linear
address of the sequence of exported names following the IMAGE_SECTION_HEADER
array. It also counts the number of available names by scanning the string sequence up
to the end of the subsection and optionally writes this value to the variable pointed to
by the pdcount argument.
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LISTING 1-14. The IMG_DBG Structure and Related Macros

LISTING 1-15. The imgDbgExports ( ) API Function

typedef struct _IMG_DBG

{
IMAGE_SEPARATE_DEBUG_HEADER Header ;

IMAGE_SECTION_HEADER aSections [ ] ;

}

IMG_DBG, *PIMG_DBG, * * PPIMG_DBG ;

(define IMG_DBG_ sizeof (IMG_DBG)
(define IMG_DBG (_n) (IMG_DBG_ + ( (_n) * IMAGE_SECTION_HEADER_) )

(define IMG_DBG_DATA(_p,_d) \

( (PVOID) ( (PBYTE) (_p) + (_d)->PointerToRawData) )

PBYTE WINAPI imgDbgExports (PIMG_DBG pid,

PDWORD pdCount)

t

DWORD i , j ;

DWORD dCount = 0 ;

PBYTE pbExports = NULL;

if (pid != NULL)

{
pbExports = (PBYTE) pid->aSections

+ (pid->Header .NumberOf Sections

* IMAGE_SECTION_HEADER_) ;

for (i = 0; i < pid->Header .ExportedNamesSize; i = j )

{
if (IpbExports [j = i]) break;

while ((j < pid->Header .ExportedNamesSize) &&

pbExports [j++]);

if ((j > i) && (IpbExports [j-1])) dCount++;

}

}
if (pdCount != NULL) *pdCount = dCount;

return pbExports ;
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Listing 1-16 defines two more API functions that locate debug directory
entries by their IMAGE_DEBUG_TYPE_* IDs. imgDbgDirectories ( ) returns the base
address of the IMAGE_DEBUG_DIRECTORY array, whereas imgDbgDirectory ( ) returns
a pointer to the first directory entry with the specified type ID or returns NULL if no
such entry exists.

LISTING 1-16. The imgDbgDirectories ( ) and imgDbgDirectory ( ) API Functions

PIMAGE_DEBUG_DIRECTORY WINAPI imgDbgDirectories (PIMG_DBG pid,

PDWORD pdCount)

{
DWORD dCount = 0;

PIMAGE_DEBUG_DIRECTORY pidd = NULL;

if (pid != NULL)

{
pidd = (PIMAGE_DEBUG_DIRECTORY)

((PBYTE) pid

+ IMG_DBG (pid->Header .NumberOf Sections)

+ pid->Header .ExportedNamesSize) ;

dCount = pid->Header .DebugDirectorySize

/ IMAGE_DEBUG_DIRECTORY_;

}
if (pdCount != NULL) *pdCount = dCount;

return pidd;

)

/ / ~ ~

PIMAGE_DEBUG_DIRECTORY WINAPI imgDbgDirectory (PIMG_DBG pid,

DWORD dType )

{

DWORD dCount , i ;

PIMAGE_DEBUG_DIRECTORY pidd = NULL;

if ((pidd = imgDbgDirectories (pid, &dCount) ) != NULL)

{
for (i = 0; i < dCount; i++, pidd++)

t
if (pidd->Type == dType) break;

}
if (i == dCount) pidd = NULL;

}
return pidd;

}
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The imgDbgDirectory ( ) function can be used to look up the CodeView data in
the . dbg file. This is done by the imgDbgCv ( ) function in Listing 1-17. It calls
imgDbgDirectory ( ) with the IMAGE_DEBUG_TYPE_CODEVIEW type ID, and invokes the
IMG_DBG_DATA ( ) macro shown in Listing 1-14 to convert the data offset supplied by
the IMAGE_DEBUG_DIRECTORY entry to an absolute linear address. This macro simply
adds the offset to the base address of the IMG_DBG structure and typecasts it to a PVOID
pointer. imgDbgCv ( ) copies the size of the CodeView subsection to *pdsize if the
pdsize argument is not NULL . The internals of the CodeView data are discussed below.

The API functions for the other data subsections look quite similar. Listing 1-18
shows the imgDbgOmapToSrc ( ) and imgDbgOmapFromSrc ( ) functions along with the
OMAP_TO_SRC and OMAP_FROM_SRC structures on which they operate. Later, we will
need these structures to compute the linear addresses of a symbol from its CodeView
data. Because the OMAP data are an array of fixed-length structures, both API func-
tions don't return the plain subsection size, but compute the number of entries in the
array by simply dividing the overall size by the size of an entry. The result is copied to
*pdcount if the pdcount argument is not NULL .

LISTING 1-17. The imgDbgCv ( ) API Function

PCV_DATA WINAPI imgDbgCv (PIMG_DBG pid,

PDWORD pdSize)

{

PIMAGE_DEBUG_DIRECTORY pidd;

DWORD dSize = 0;

PCV_DATA pcd = NULL;

if ( (pidd = imgDbgDirectory (pid, IMAGE_DEBUG_TYPE_CODEVIEW) )

!= NULL)

{

pcd = IMG_DBG_DATA (pid, pidd) ;

dSize = pidd->SizeOfData;

)

if (pdSize != NULL) *pdSize = dSize;

return pcd;

}

typedef struct _OMAP_TO_SRC

{

DWORD dTarget;

DWORD dSource;

}

OMAP_TO_SRC, *POMAP_TO_SRC, * * PPOMAP_TO_SRC ;

tdefine OMAP_TO_SRC_ sizeof ( OMAP_TO_SRC )

(continued)
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LISTING 1-18. The imgDbgomapTosrc ( ) and imgDbgOmapFromSrc() API Function

//

typedef struct _OMAP_FROM_SRC

{

DWORD dSource;

DWORD dTarget;

OMAP_FROM_SRC, * POHAP_FROM_SRC , **PPOMAP_FROM_SRC;

#define OMAP_FROM_SRC_ sizeof ( OMAP_FROM_SRC )

/ / _. _ ,-. _ _ _ _ _ _

POMAP_TO_SRC WINAPI ImgDbgOmapToSrc (PIMG_DBG pid,

PDWORD pdCount )

PIMAGE_DEBUG_DIRECTORY pidd;

DWORD dCount = 0;

POMAP_TO_SRC pots = NULL;

if ( (pidd = imgDbgDirectory (pid,

IMAGE_DEBUG_TYPE_OMAP_TO_SRC) )

!= NULL)

{

pots = IMG_DBG_DATA (pid, pidd) ;

dCount = pidd->SizeOfData / OMAP_TO_SRC_ ;

}

if (pdCount != NULL) *pdCount = dCount;

return pots;

}

//

POMAP_FROM_SRC WINAPI imgDbgOmapFromSrc (PIMG_DBG pid,

PDWORD pdCount )

{

PIMAGE_DEBUG_DIRECTORY pidd;

DWORD dCount = 0;

POMAP_FROM_SRC pofs = NULL;

if ( (pidd = imgDbgDirectory (pid,

IMAGE_DEBUG_TYPE_OMAP_FROM_SRC) )

!= NULL)

{

pofs = IMG_DBG_DATA (pid, pidd) ;

dCount = pidd->SizeOfData / OMAP_FROM_SRC_ ;

}

if (pdCount != NULL) *pdCount = dCount;

return pofs;

}
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CODEVIEW SUBSECTIONS
CodeView is Microsoft's own debugging information format. It has undergone vari-
ous metamorphoses through the years of the evolution of the Microsoft C/C++ com-
piler and linker. The internals of some CodeView versions differ radically from each
other. However, all CodeView versions share a 32-bit signature at the beginning of
the data that uniquely identifies the data format. The Windows NT 4.0 symbol files
use the NB09 format, which has been introduced by CodeView 4.10. The Windows
2000 files contain NBIO CodeView data, which is merely a referral to a separate .pdb
file, as I will demonstrate later.

NB09 CodeView data is subdivided into a directory and subordinate entries. As
Matt Pietrek points out in his MS] article about . dbg files, most of the basic Code-
View structures are defined in a set of sample header files coming with the Platform
SDK. If you have installed the SDK samples, you will find a group of highly interest-
ing files in the directory \Program FilesXMicrosoft Platform SDK\Samples\
sdkToois\image\include. The files you need for CodeView parsing are named
cvexefmt.h and cvinfo.h. Unfortunately, these files haven't been updated for a long
time, as their file date 09-07-1994 indicates. It is striking that all structure names
defined in cvexef mt. h start with the letters OMF, which is the acronym for Object
Module Format. OMF is the standard file format used by 16-bit DOS and Windows
. obj and .lib files. Starting with the Win32 versions of Microsoft's development
tools, this format has been superseded by the Common Object File Format (COFF,
see Gircys 1988 for details).

Although the original OMF format is obsolete today, it must be acknowledged
that it was a clever file format. One of its objectives is to waste as little memory and
disk space as possible. Another important property is that this format can be success-
fully parsed by applications even if they do not fully understand all parts of the file.
The basic OMF data structure is the tagged record, starting with a tag byte identifying
the type of data contained in the record, and a 16-bit length word specifying the num-
ber of subsequent bytes. This design makes it possible for an OMF reader to skip from
record to record, picking out the record types in which it is interested. Microsoft has
adopted this paradigm for its CodeView format, which explains the OMF prefix of
the CodeView structure names in cvexef mt .h. Although the CodeView records have
very few things in common with the original OMF records, the basic property that the
format can be read without understanding all contents still remains.

Listing 1-19 comprises the definitions of various basic CodeView structures,
taken from w2k_img. h. Some of them loosely correspond to structures found in
cvexefmt. h and cvinf o. h, but are tweaked to the requirements of the w2k_img. dll
API functions. The CV_HEADER structure is present in all CodeView data, regardless of
the format version. The signature is a 32-bit format version ID, like CV_SIGNA-
TURE_NB09 or cv_siGNATURE_NBlo. The lof f set member specifies the offset of the
CodeView directory relative to the header address. In NB09-formatted Windows NT
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4.0 symbol files, its value seems to be always equal to eight, indicating that the direc-
tory follows immediately after the header. The Windows 2000 symbol files contain
NBIO data with lof fset set to zero. This data format will be discussed in detail later
in this chapter.

tfdefine CV_SIGNATURE_NB 'BN'

#define CV_SIGNATURE_NB09 '90BN'

#define CV_SIGNATURE_NB10 '01BN'

typedef union _CV_SIGNATURE

{

WORD wMagic; // 'BN'

DWORD dVersion; // 'xxBN'

BYTE abText [4]; // "NBxx"

}

CV_SIGNATURE, *PCV_SIGNATURE, **PPCV_SIGNATURE;

#define CV_SIGNATURE_ sizeof (CV_SIGNATURE)

/ /

typedef struct _CV_HEADER

{

CV_SIGNATURE Signature;

LONG lOffset;

}

CV_HEADER, *PCV_HEADER, **PPCV_HEADER;

#define CV_HEADER_ sizeof (CV_HEADER)

/ /

typedef struct _CV_DIRECTORY

{
WORD wSize; // in bytes, including this member

WORD wEntrySize; // in bytes

DWORD dEntries;

LONG lOffset;

DWORD dFlags;

}
CV_DIRECTORY , * PCV_DIRECTORY , * * PPCV_DIRECTORY ;

#define CV_DIRECTORY_ sizeof (CV_DIRECTORY)
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LISTING 1-19. CodeView Data Structures

The CodeView NB09 directory consists of a single CV_DIRECTORY structure
followed by an array of CV_ENTRY items. This is reflected by the cv_NB09 structure
defined at the end of Listing 1-19. It comprises the CodeView header, directory,
and entry array. The size of the Entries [ ] array is determined by the dEntries
member of the CV_DIRECTORY . Each CV_ENTRY refers to a CodeView subsection of
the type specified by the wSubSectionType member, cvexefmt.h defines no fewer
than 21 subsection types. However, the Windows NT 4.0 symbol files make use of
only 3 of them: sstModule ( 0 x 0 1 2 0 ) , sstGlobalPub ( O x 0 1 2 A ) , and sstSegMap
(OxOl2D) . You will usually see several sstModule subsections in a symbol file, but
the sstGlobalPub and sstSegMap subsections are unique. As the name suggests,
sstGlobalPub is where we will find the global public symbol information of the
corresponding module.

tdefine sstModule 0x0120 // CV_MODULE

(define sstGlobalPub Ox012A // CV_PUBSYM

•define sstSegMap Ox012D // SV_SEGMAP

: //

typedef struct _CV_ENTRY

{

WORD wSubSectionType; // sst*

WORD wModulelndex; // -1 if not applicable

LONG ISubSectionOffset; // relative to CV_HEADER

DWORD dSubSectionSize; // in bytes, not including padding

}

CV_ENTRY, *PCV_ENTRY, **PPCV_ENTRY;

tdefine CV_ENTRY_ sizeof (CV_ENTRY)

//

typedef struct _CV_NB09 // CodeView 4.10

t

CV_HEADER Header ;

CV_DIRECTORY Directory;

CV_ENTRY Entries [ ] ;

}

CV_NB09, *PCV_NB09, **PPCV_NB09;

#define CV_NB09_ sizeof (CV_NB09)
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The w2k_img. dll API function imgCvEntry ( ) shown in Listing 1-20 allows
easy look up of CodeView directory entries by type. Its pc09 argument points to a
cv_NB09 structure, that is, to the NB09 signature of the CodeView data block inside a
. dbg file. The dType argument specifies one of the CodeView subsection type IDs
sst*, and the dindex value selects a specific subsection instance in cases of multiple
subsections of the same type. Therefore, setting dindex to a value other than zero
makes sense only if dType indicates sstModule.

PCV_ENTRY WINAPI imgCvEntry (PCV_NB09 pc09,

DWORD dType ,

DWORD dlndex)

{

DWORD i, j ;

PCV_ENTRY pee = NULL;

if ( (pc09 != NULL) &&

(pc09->Header. Signature. dVersion == CV_SIGNATURE_NB09) )

{

for ( i = j = 0 ; i < pc09->Directory,dEntries; i++)

{

if { (pc09->Entries [i] .wSubSectionType == dType) &&

( j++ == dlndex) )

{

pee = pc09->Entries + i;

break ;

}

}

}

return pee;

}

// _

PCV_PUBSYM WINAPI imgCvSymbolS (PCV_NB09 pc09,

PDWORD pdCount,

PDWORD pdsize)

{

PCV_ENTRY pee;

PCV_PUBSYM pcpl;

DWORD i ;

DWORD dCount = 0;

DWORD dsize = 0;

PCV_PUBSYM pep = NULL;

if ((pee = imgCvEntry (pc09, sstGlobalPub, 0)) != NULL)

{

pep = CV_PUBSYM_DATA ( (PBYTE) pc09

+ pce->lSubSectionOffset) ;

dsize = pce->dSubSectionSize;
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LISTING 1-20. The imgCvEntry ( ) and imgCvSymbols ( ) API Functions

CODEVIEW SYMBOLS
The lower half of Listing 1-20 shows the imgCvSymbols ( ) function that returns
a pointer to the first CodeView symbol record. The sstGlobalPub subsection
consists of a fixed-length CV_SYMHASH header, followed by a sequence of variable-
length CV_PUBSYM records. The definitions of both types are included in Listing 1-21.
First, imgCvSymbols ( ) calls imgCvEntry ( ) to find the CV_ENTRY that has its
wSubSectionType member set to sstGlobalPub. If available, it uses the
CV_PUBSYM_DATA ( ) macro included at the bottom of Listing 1-4 to skip over
the leading CV_SYMHASH structure. Finally, imgCvSymbols ( ) counts the number of
symbols by walking through the list of CV_PUBSYM records, using the CV_PUBSYM_SIZE ( )
macro in Listing 1-21 to compute the size of each record.

The CV_PUBSYM sequence bears some resemblance to the contents of an OMF
object file. As already noted, an OMF data stream consists of variable-length records,
each starting with a tag byte and a length word. CV_PUBSYM records are similar. They
start with an OMF_HEADER that comprises wRecordsize and wRecordType members.
This is just a variant of the OMF principle, different only in that the length word
comes first and the tag byte has been extended to 16 bits. The last part of the
CV_PUBSYM structure is the symbol name, specified in PASCAL format, as is usual in
an OMF record. A PASCAL string consists of a leading length byte, followed by 0 to
255 8-bit characters. Contrary to C strings, no terminating zero byte is appended.
The CV_PUBSYM record ends after the last Name character. However, the record is
stuffed with filler bytes up to the next 32-bit boundary. This padding is accounted for
by the wRecordsize value in the OMF_HEADER . Note that the wRecordsize specifies
the size of the CV_PUBSYM record, excluding the wRecordsize member itself. That's
why the CV_PUBSYM_SIZE ( ) macro in Listing 1-21 adds sizeof (WORD) to the
wRecordsize value to yield the total record size.

for (i = 0 ; dSize - i >= CV_PUBSYM_;

i += CV_PUBSYM_SIZE (pcpl))

{

pcpl = (PCV_PUBSYM) ( (PBYTE) pep + i ) ;

if (dSize - i < CV_PUBSYM_SIZE (pcpl)) break;

if (pcpl->Header.wRecordType == CV_PUB32) dCount++;

}

}

if (pdCount != NULL) *pdCount = dCount;

if (pdSize != NULL) *pdSize = dSize;

return pep;

}
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typedef struct _CV_SYMHASH

{

WORD wSymbolHashlndex;

WORD wAddressHashlndex;

DWORD dSymbolInfoSize;

DWORD dSymbolHashSize;

DWORD dAddressHashSize;

}

CV_SYMHASH, *PCV_SYMHASH, **PPCV_SYMHASH;

#define CV_SYMHASH^ sizeof (CV_SYMHASH)

/ /

typedef struct _OMF_HEADER

(

WORD wRecordSize ; // in bytes, not including this member

WORD wRecordType ;

}

OMF_HEADER, * POMF_HEADER , * * PPOMF_HEADER ;

fdefine OMF_HEADER_ sizeof (OMF_HEADER)

//

typedef struct _OMF_NAME

{

BYTE bLength; // in bytes, not including this member

BYTE abName [ ] ;

>
OMF_NAME, *POMF_NAME, **PPOMF_NAME;

#define OMF_NAME_ sizeof (OMF_NAME)

#define S_PUB32 0x0203

#define S_ALIGN 0x0402

#define CV_PUB32 S_PDB32

//

typedef struct _CV_PUBSYM

{

OMFJEADER Header;

DWORD dOffset;
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LISTING 1-21. The CV_SYMHASH and CV_PUBSYM Structures

If you are scanning the CV_PUBSYM stream, you typically will encounter two
record types: s_PUB32 ( 0 x 0 2 0 3 ) or S_ALIGN ( 0 x 0 4 0 2 ) . The latter can be safely
ignored because it is only padding. The s_PUB32 records carry the real symbol
information. Besides the symbol Name, the wSegment and dof f set members
are of interest. wSegment specifies a one-based index that identifies the PE file
section that contains the symbol. This value minus one can be used as an index into
the IMAGE_SECTION_HEADER array at the beginning of the . dbg file, dof f set
is the symbol's address relative to the beginning of its PE section. In this context,
a symbol address is the entry point of the function or the base address of the
global variable associated with the symbol. Normally, the dof f set value can
simply be added to the virtualAddress of the corresponding IMAGE_SECTION_
HEADER to yield the address of the symbol relative to the module's base address.
However, if the . dbg file includes IMAGE_DEBUG_TYPE_OMAP_TO_SRC and
IMAGE_DEBUG_TYPE_OMAP_FROM_SRC subsections, the doffset must pass
through an additional conversion layer. The usage of OMAP tables will be
discussed later, after introduction of the PDB file format.

The order of the symbols in a CodeView sstciobalPub subsection appears
somewhat random. I don't know what principle underlies it. However, I can say for
sure that the symbols are not sorted by section number, offset, or name. Don't rely
on assumptions about the order—if your applications need a specific sorting
sequence, you have to sort the symbol records yourself. The w2k_img.dll sample
library found on the companion CD provides three default symbol orders: by
address, by name with case sensitivity, and by name ignoring the character case.

WORD wSegment; // 1-based section index WORD wTypelndex; // 0

OMF_NAME Name; // zero-padded to next DWORD

}

CV_PUBSYM, *PCV_PUBSYM, **PPCV_PUBSYM;

ttdefine CV_PUBSYM_ sizeof (CV_PUBSYM)

fldefine CV_PUBSYM_DATA(_p) \

( (PCV_PUBSYM) ((PBYTE) (_p) + CV_SYMHASH_) )

#define CV_PUBSYM_SIZE (_p) \

((DWORD) (_p)->Header.wRecordSize + sizeof (WORD))

#define CV_PUBSYM_NEXT(_p) \

( (PCV_PUBSYM) ((PBYTE) (_p) + CV_PDBSYM_SIZE (_p) ) )
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THE INTERNAL STRUCTURE OF .pdb FILES

After installing the Windows 2000 symbol files, the first striking observation is usu-
ally that each module now has two associated files: one with the . dbg extension, as
usual, and an additional one with an extension of . pdb. Peeking into one of the
.pdb files reveals the string "Microsoft C/C++ program database 2.00" at its very
beginning. So PDB is obviously the acronym of Program Database. Searching for
details about the internal PDB structure in the MSDN Library or on the Internet
doesn't reveal anything useful, except for a Microsoft Knowledge Base article that
classifies this format as Microsoft proprietary (Microsoft Corporation, 2000d).
Even Windows guru Matt Pietrek admits:

"The format of PDB symbol tables isn't publicly documented. (Even I don't
know the exact format, especially as it continues to evolve with
each new release of Visual C++.)" (Pietrek 1997a)

Well, it might evolve with each Visual C/C++ release, but for the current version]
of Windows 2000,1 can tell you exactly how its PDB symbol files are structured.
This is probably the first time the PDB format has been publicly documented. But
first, let's examine how the . dbg and . pdb files are linked together.

One remarkable property of the Windows 2000 . dbg files is that they contain
just a very tiny, almost negligible CodeView subsection. Example 1-8 shows the
entire CodeView data included in the ntoskrnl .dbg file, generated by the w2k_dump.j
exe utility in the \src\w2k_dump directory tree of the sample CD. That's all—just
those 32 bytes. As usual, the subsection starts with a CV_HEADER structure containing
the CodeView version signature. This time, it is NBIO . The MSDN Library
(Microsoft 2000a) really doesn't tell us much about this special version:

"NBIO The signature for an executable with the debug information stored in a
separate PDB file. Corresponds with the formats set forth in NB09 or NB11."
(MSDN Library—April 2000 \ Specifications \ Technologies and Languages \
Visual C++ 5.0 Symbolic Debug Information Specification \ Debug Information ;
Format).

I don't know the internals of the NBH format, but the PDB format has almost
nothing in common with the NB09 format discussed above! The first sentence clearly
states why the NBIO data block is that small. All relevant information is moved to a
separate file, so the main purpose of this CodeView section is to provide a link to the
real data. As Example 1-8 suggests, the symbol information must be sought in the
ntoskrnl .pdb file in the Windows 2000 symbol setup.
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EXAMPLE 1-8. Hex Dump of a PDB CodeView Subsection

If you are wondering what purpose the remaining data in Example 1-8 serves,
Listing 1-22 should satisfy your curiosity. The CV_HEADER is self-explanatory. The
next two members at offset 0x8 and Oxc are named dsignature and dAge and play
an important role in the linkage of .dbg and .pdb files, dsignature is a 32-bit
UNIX-style time stamp, specifying the build date and time of the debug information
in seconds since 01-01-1970. The w2k_img. dll sample library provides the API func-
tions imgiimeunpack ( ) and imgTimePack ( ) to convert this Windows-untypical
date/time format back and forth. The purpose of the dAge member isn't entirely clear
to me. However, it appears that its value is initially set to one and incremented each
time the PDB data is rewritten. The dsignature and dAge values together constitute
a 64-bit ID that can be used by debuggers to verify that a given PDB file matches the
. dbg file referring to it. The PDB file contains duplicates of both values in one of its
data streams, so a debugger can refuse processing a . dbg/ . pdb pair of files with
unmatched dsignature and dAge information.

Whenever you are faced with an unknown data format, the first thing to do is
to run some examples of it through a hex dump viewer. The w2k_dump. exe utility on
this book's companion CD does a good job in this respect. Examining the hex dump
of a Windows 2000 PDB file such as ntoskrnl .pdb or ntf s .pdb reveals some
interesting properties:

• The file seems to be divided into blocks of fixed size—typically
0x400 bytes.

• Some blocks consist of long runs of 1-bits, occasionally interrupted by
shorter sequences of 0-bits.

• The information in the file is not necessarily contiguous. Sometimes, the
data end abruptly at a block boundary, but continue somewhere else in
the file.

• Some data blocks appear repeatedly within the file.

\ Address | 00 01 02 03-04 05 06 07 : 08 09 OA OB-OC OD OE OF | 0123456789ABCDEF

1 ' 1

00006590 | 4E 42 31 30-00 00 00 00 : 20 7D 23 38-54 00 00 00 | NB10.... }#8T...

000065AO | 6E 74 6F 73-6B 72 6E 6C : 2E 70 64 62-00 00 00 00 | ntoskrnl .pdb
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LISTING 1-22. The CodeView NB10 Subsection

It took some time for me to finally realize that these are typical properties of a
compound file. A compound file is a small file system packaged into a single file. The
"file system" metaphor readily explains some of the above observations:

• A file system subdivides a disk into sectors of fixed size and groups the
sectors into files of variable size. The sectors representing a file can be
located anywhere on the disk and don't need to be contiguous—the
file/sector assignments are defined in a file directory.

• A compound file subdivides a raw disk file into pages of fixed size and
groups the pages into streams of variable size. The pages representing a
file can be located anywhere in the raw disk file and don't need to be
contiguous—the stream/page assignments are defined in a stream
directory.

Obviously, almost any assertions about file systems can be mapped to com-
pound files by simply replacing "sector" by "page," and "file" by "stream." The file
system metaphor explains why a PDB file is organized in fixed-size blocks. It also
explains why the blocks are not necessarily contiguous. What about the pages with
the masses of 1-bits? Actually, this type of data is something very common in file sys-
tems. To keep track of used and unused sectors on the disk, many file systems main-
tain an allocation bit array that provides one bit for each sector (or sector cluster). If
a sector is unused, its bit is set. Whenever the file system allocates space for a file, it
searches for unused sectors by scanning the allocation bits. After adding a sector to a
file, its allocation bit is set to zero. The same procedure is applied to the pages and
streams of a compound file. The long runs of 1-bits represent unused pages, and the
0-bits are assigned to existing streams.

The only thing that remains is the observation that some data blocks reoccur
within a PDB file. The same thing happens with sectors on a disk. When a file in a file
system is rewritten a couple of times, each write operation may use different sectors to

typedef struct _CV_NB10 // PDB reference

(
CV_HEADER Header;

DWORD dSignature; // seconds since 01-01-1970

DWORD dAge; // 1 + +

BYTE abPdbName [ ] ; // zero-terminated

)

CV_NB10, *PCV_NB10, **PPCV_NB10 ;

tdefine CV_NB10_ sizeof (CV_NB10)
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store the data. Thus, it can happen that the disk contains free sectors with older dupli-
cates of the file information. This doesn't constitute a problem for the file system. If
the sector is marked free in the allocation bit array, it is unimportant what data it con-
tains. As soon as the sector is reclaimed for another file, the data will be overwritten
anyway. Applying the file system metaphor once more to compound files, this means
that the observed duplicate pages are usually left over from earlier versions of a stream
that has been rewritten to different pages in the compound file. They can be safely
ignored; all we have to care for are the pages that are referred to by the stream
directory. The remaining unassigned pages should be regarded as garbage.

With the basic paradigm of PDB files being introduced now, we can step to the
more interesting task of examining their basic building blocks. Listing 1-23 shows
the layout of the PDB header. The PDB_HEADER starts with a lengthy signature that
specifies the PDB version as a text string. The text is terminated with an end-of-file
(EOF) character (ASCII code OXIA) and supplemented with the magic number
0x0000474A, or "JG\0\0" if interpreted as a string. Maybe these are the initials of
the designer of the PDB format. The embedded EOF character has the nice effect
that an unknowledgeable user can issue a command such as type ntoskrnl .pdb in a
console window without getting garbage on the screen. The only thing that will be
displayed is the message Microsoft C/C + + program database 2 .00 \ r \n . All
Windows 2000 symbol files are shipped as PDB 2.00 files. Apparently, a PDB 1.00
format exists as well, but it seems to be structured quite differently.

#define PDB_SIGNATURE_200 \

"Microsoft C/C++ program database 2 . 00\r\n\xlAJG\0"

#define PDB_SIGNATURE_TEXT 40

/ /

typedef struct _PDB_SIGNATURE

{

BYTE abSignature [PDB_SIGNATURE_TEXT+4] ; // PDB_SIGNATORE_nnn

}

PDB_SIGNATURE, *PPDB_SIGNATURE, * *PPPDB_SIGNATURE;

tfdefine PDB_SIGNATURE_ sizeof (PDB_ SIGNATURE)

/ /

ttdefine PDB_STREAM_FREE -1

//

(continued)
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LISTING 1-23. The PDB File Header

if the i
sizei
mar

descr
the PI

Following the signature at offset Ox2c is a DWORD named dPageSize that specifies
the size of the compound file pages in bytes. Legal values are 0x0400 (1 KB), 0x0800
(2 KB), and Oxiooo (4 KB). The wFilePages member reflects the total number of pages
used by the PDB file image. The result of multiplying this value by the page size should
always exactly match the file size in bytes. wStartPage is a zero-based page number
that points to the first data page. The byte offset of this page can be computed by multi-
plying the page number by the page size. Typical values are 9 for 1-KB pages (byte
offset 0x2400), 5 for 2-KB pages (byte offset 0x2800), or 2 for 4-KB pages (byte offset

typedef struct _PDB_STREAM

1
DWORD dStreamSize; // in bytes, -1 = free stream

PWORD pwStreamPages ; // array of page numbers

}
PDB_STREAM, *PPDB_STREAM, **PPPDB_STREAM;

tdefine PDB_STREAM_ sizeof (PDB_STREAM)

//

#define PDB_PAGE_SIZE_1K 0x0400 // bytes per page

#define PDB_PAGE_SIZE_2K 0x0800

ttdefine PDB_PAGE_SIZE_4K 0x1000

fdefine PDB_PAGE_SHIFT_1K 10 // Iog2 (PDB_PAGE_SIZE_*)

#define PDB_PAGE_SHIFT_2K 11

#define PDB_PAGE_SHIFT_4K 12

tfdefine PDB_PAGE_COUNT_1K OxFFFF // page number < PDB_PAGE_COUNT_*

ttdefine PDB_PAGE_COUNT_2K OxFFFF

tdefine PDB_PAGE_COUNT_4K OxVFFF

typedef struct _PDB_HEADER

{

PDB_SIGNATURE Signature; // PDB_SIGNATURE_200

DWORD dPageSize; // 0x0400, 0x0800, 0x1000

WORD wStartPage; // 0x0009, 0x0005, 0x0002

WORD wFilePages; // file size / dPageSize

PDB_STREAM Rootstream; // stream directory

WORD awRootPages [ ] ; / / pages containing PDB_ROOT

}
PDB_HEADER, *PPDB_HEADER, **PPPDB_HEADER;

#define PDB_HEADER_ sizeof (PDB_HEADER)
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0x2000) . The pages between the PDB_HEADER and the first data page are reserved for the
allocation bit array of the compound file, always starting at the beginning of the second
page. This means that the PDB file maintains 0x2000 bytes with 0x10000 allocation bits
if the page size is 1 or 2 KB, and Oxiooo bytes with 0x8000 allocation bits if the page
size is 4 KB. In turn, this implies that the maximum amount of data a PDB file can
manage is 64 MB in 1-KB page mode, and 128 MB in 2-KB or 4-KB page mode.

The Rootstream and awRootPages [ ] members concluding the PDB_HEADER
describe the location of the stream directory within the PDB file. As already noted,
the PDB file is conceptually a collection of variable-length streams that carry the
actual data. The locations and compositions of the streams are managed in a single
stream directory. Odd as it may seem, the stream directory itself is stored in a stream.
I have called this special stream the "root stream." The root stream holding the
stream directory can be located anywhere in the PDB file. Its location and size are
supplied by the Rootstream and awRootPages [ ] members of the PDB_HEADER. The
dstreamsize member of the PDB_STREAM substructure specifies the number of pages
occupied by the stream directory, and the entries in the awRootPages [ ] array point to
the pages containing the data.

Let's illustrate this with a simple example. The hex dump excerpt in Example 1-9
shows the PDB_HEADER of the ntoskrnl .pdb file. The values referenced are underlined.
Obviously, this PDB file uses a page size of 0x0400 bytes and comprises Ox02Dl pages,
resulting in a file size of OxB4400 (738, 304 in decimal notation). A quick check with
the dir command shows that this value is correct. The root stream size is 0x580 bytes.
With a page size of 0x400 bytes, this means that the awRootPages [ ] array contains
two entries, found at the file offsets Ox3c and Ox3E. The values in these slots are page
numbers that need to be multiplied by the page size to yield the corresponding byte
offsets. In this case, the results are OxB2000 and OxB2800.

The bottom line of this computation is that the stream directory of the
ntoskrnl. exe PDB file is located in two file pages, extending from OxB2000 to
OxB23FF and OxB2800 to OxB29AF, respectively. Parts of these ranges are shown in
Example 1-10.

EXAMPLE 1-9. A Sample PDB Header

Address

00000000

00000010

00000020

00000030

00 01 02 03-04 05 06 07 : 08 09 OA OB-OC OD OE OF

4D 69 63 72-6F 73 6F 66 : 74 20 43 2F-43 2B 2B 20

70 72 6F 67-72 61 6D 20 : 64 61 74 61-62 61 73 65

20 32 2E 30-30 OD OA 1A : 4A 47 00 00-00 04 00 00

09 00 Dl 02-BO 05 00 00 : 5C 00 78 00-C8 02 CA 02

0123456789ABCDEF

Microsoft C/C++

program database

2 .00. . .JG

. .N. ° . . . \ .x.E.E.
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Address

OOOB2000

OOOB2010

OOOB2020

OOOB2030

OOOB2040

OOOB2050

OOOB23AO

OOOB23BO

OOOB23CO

OOOB23DO

OOOB23EO

OOOB23FO

OOOB2800

OOOB2810

OOOB2820

OOOB2830

OOOB2840

OOOB2850

OOOB2950

OOOB2960

OOOB2970

OOOB2980

OOOB2990

OOOB29AO

00 01 02 03-04 05 06 07

08 00 00 00-BO 05 00 00

88 57 26 00-38 00 00 00

F8 BA E9 00-00 00 00 00

C8 29 28 00-B4 9E 01 00

08 BD E9 00-12 00 C9 02

C7 01 C8 01-C9 01 CA 01

BD 00 BE 00-BF 00 CO 00

C5 00 C6 00-C7 00 C8 00

CD 00 CE 00-CF 00 DO 00

D5 00 D6 00-D7 00 D8 00

DD 00 DE 00-DF 00 EO 00

E5 00 E6 00-E7 00 E8 00

ED 00 EE 00-EF 00 FO 00

F5 00 F6 00-F7 00 F8 00

FD 00 FE 00-FF 00 00 01

05 01 06 01-07 01 08 01

OD 01 OE 01-OF 01 10 01

15 01 16 01-17 01 18 01

95 01 96 01-97 01 98 01

9D 01 9E 01-9F 01 AO 01

A5 01 A6 01-A7 01 A8 01

AD 01 AE 01-AF 01 BO 01

B5 01 B6 01-B7 01 B8 01

BD 01 BE 01-BF 01 CO 01

08 09 OA OB-OC OD OE OF

98 22 28 00-3A 00 00 00

78 57 26 00-A9 02 04 00

68 57 26 00-04 40 00 00

08 90 ED 00-3C DF 04 00

C7 02 13 00-C6 02 C6 01

CB 01 CC 01 -CD 01 CE 01

Cl 00 C2 00-C3 00 C4 00

C9 00 CA 00-CB 00 CC 00

Dl 00 D2 00-D3 00 D4 00

D9 00 DA 00 -DB 00 DC 00

El 00 E2 00-E3 00 E4 00

E9 00 EA 00-EB 00 EC 00

Fl 00 F2 00-F3 00 F4 00

F9 00 FA 00-FB 00 FC 00

01 01 02 01-03 01 04 01

09 01 OA 01-OB 01 OC 01

11 01 12 01-13 01 14 01

19 01 1A 01-1B 01 1C 01

99 01 9A 01-9B 01 9C 01

Al 01 A2 01 -A3 01 A4 01

A9 01 AA 01-AB 01 AC 01

Bl 01 B2 01-B3 01 B4 01

B9 01 BA 01-BB 01 BC 01

Cl 01 C2 01-C3 01 C4 01

0123456789ABCDEF

"... 7- {.:...
?w&.8. . .xw&.e. . .
0 = e hw&. .@. .

E) (.'?... .i.<E. .

.V2e. . .E.g. . .K.K.

C.E.E.E.E.i.i.I.

V2.3/4.i .A. A. A. A. A.

A.a.g.E.E.E.E.I.

I.I.I.B.S.6.6.6.
o.o.x.c.u.d.O.u.
_.p.S.a.a.a.a.a.

a.a.g.e.e.S.e.i.

i . 1 . i . 3 . ft . Z . 6 . o .
Q.6.-^.0.u.u.u.ii.

y-t-y

• .?.?. .i.«.£. n .
¥.j. §.".©.« .«.-i.

= .®.~. ° .±.2.3. ' .

U . 91 . • . , . x . a . » . V4 .
V2.3/4.£.A.A.A.A.A.

EXAMPLE 1-10. Excerpts from a Sample PDB Stream Directory

The stream directory is composed of two sections: a header part in the form of a
PDB_ROOT structure, as defined in Listing 1-24, and a data part consisting of an array
of 16-bit page numbers. The wcount member of the PDB_ROOT section specifies the
number of streams stored in the PDB compound file. The as trearns [ ] array contains
a PDB_STREAM entry (see Listing 1-23) for each stream, and the page number slots fol-
low immediately after the last astreams [ ] entry. In Example 1-10, the number of
streams is eight, as the underlined value at offset OxB2000 indicates. The subsequent
eight PDB_STREAM structures define streams of size OxSBO, Ox3A, 0x38, Ox402A9,
0x0, 0x4004, Oxl9EB4, and Ox4DF3c, respectively. These values are underlined in
Example 1-10, too. Expressed in 1-KB pages, the stream sizes are 0x2, Oxi, Oxl,
OxiOl, 0x0, Oxli, 0x68, and 0x138, yielding a total of Ox2B6 pages used by the
streams. The first underlined value after the PDB_STREAM array is the first slot of the
page number list. Counting two bytes per page number, and taking into account that
the page directory is interrupted by one page that belongs somewhere else, the next
offset after the page numbers should be OxB2044 + 0x400 + (Ox2B6 * 2} =
OxB29BO, which fits perfectly into the picture.
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LISTING 1-24. The PDB Stream Directory

Finding the page number block associated with a given stream is somewhat
tricky, because the page directory does not provide any cues except the stream size. If
you are interested in stream 3, you have to compute the number of pages occupied by
streams 1 and 2 to get the desired start index within the page number array. Once the
stream's page number list is located, reading the stream data is simple. Just walk
through the list and multiply each page number by the page size to yield the file off-
set, and read pages from the computed offsets until the end of the stream is reached.
On first look, parsing a PDB file seemed rather tough. But it turns out that it is actu-
ally quite simple—probably much simpler than parsing a . dbg file. The compound-
file nature of the PDB format with its clear-cut random access to stream pages
reduces the task of reading a stream to a mere concatenation of fixed-sized pages.
I'm amazed at this elegant data access mechanism!

An even greater benefit of the PDB format becomes apparent when updating an
existing PDB file. Inserting data into a file with a sequential structure usually means
reshuffling large portions of the contents. The PDB file's random-access structure
borrowed from file systems allows addition and deletion of data with minimal effort,
just as files can be modified with ease on a file system media. Only the stream direc-
tory has to be reshuffled when a stream grows or shrinks across a page boundary.
This important property facilitates incremental updating of PDB files. Microsoft
states the following in a Knowledge Base article titled "INFO: PDB and DBG Files—
What They Are and How They Work":

"The .PDB extension stands for 'program database.' It holds the new format
for storing debugging information that was introduced in Visual C++ version
1.0. In the future, the .PDB file will also hold other project state information.

(define PDB_STREAM_DIRECTORY 0

(define PDB_STREAM_PDB 1
(define PDB_STREAM_PUBSYM 7

/ /

typedef struct _PDB_ROOT

{
WORD wCount; // < PDB_STREAM_MAX

WORD wReserved; // 0

PDB_STREAM aStreams [ ] ; // stream #0 reserved for stream table

)
PDB_ROOT, *PPDB_ROOT, **PPPDB_ROOT;

(define PDB_ROOT_ sizeof (PDB_ROOT)
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One of the most important motivations for the change in format was to allow
incremental linking of debug versions of programs, a change first introduced in
Visual C++ version 2.0" (Microsoft Corporation 2000e).

Now that the internal format of PDB files is clear, the next problem is to iden-
tify the contents of their streams. After examining various PDB files, I have come to
the conclusion that each stream number serves a predefined purpose. The first stream
seems to always contain a stream directory, and the second one contains information
about the PDB file that can be used to verify that the file matches an associated . dbg
file. For example, the latter stream contains dSignature and dAge members that
should have the same values as the corresponding members of an NBIO CodeView
section, as outlined in Listing 1-22. The eighth stream is most interesting in the con-
text of this chapter because it hosts the CodeView symbol information we have been
seeking. The meaning of the other streams is still unclear to me and is another area
for future research.

I am not going to include PDB reader sample code here because this would
exceed the scope of this chapter. Instead, I encourage you to peek into the
w2k_img. c and w2k_img.h source files on the sample CD. Look for functions
named imgPdb* ( ) and data items called PDB_* for extensive code and data. By the
way, the CD contains a ready-to-run PDB stream reader with full source code.
You already know this program—it is the w2k_dump. exe utility that I have used to
create some of the hex dump examples above. This simple console-mode utility
provides a +p command line option that enables PDB stream decomposition. If
the specified file is not a valid PDB file, the program falls back to sequential hex
dump mode. The Visual C/C++ project files of w2k_dump. exe are found on the
CD in the \src\w2k_dump directory tree.

PDB SYMBOLS
After this long but hopefully interesting detour through the PDB format, it is time to
return to our initial mission: the extraction of CodeView symbol information. Fortu-
nately, this task is quite similar to the enumeration of public symbols in an NB09
CodeView subsection. Once the stream containing the symbols is located, we are
again faced with a sequence of OMF-like records of variable size. Unfortunately, the
NB09 and NBIO record formats differ somewhat, but the deviations are only marginal.
Listing 1-25 shows the layout of the PDB_PUBSYM structure. Compared with the corre-
sponding CV_PUBSYM structure of the NB09 format, included in Listing 1-21, the
dof f set and wsegment members have moved a bit toward the end. This and the fact
that the tag value of PDB symbols is 0x1009 instead of 0x0203 are the most remark-
able differences.
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LISTING 1-26. The IMG_PUBSYUM Union

doesn't contain any OMAP data in the form of IMAGE_DEBUG_TYPE_OMAP_TO_SRC
and IMAGE_DEBUG_TYPE_OMAP_FROM_SRC subsections, the address computation
algorithm is straightforward:

• Read the wSegment value of the symbol record and decrement it by one.

• Use the resulting index to look up the IMAGE_SECTION_HEADER of the
target section where the symbol resides.

• Retrieve the virtuaiAddress of this IMAGE_SECTION_HEADER.

• Add the doff set value of the symbol record.

In case the load address of the module is known, the absolute linear address
of the symbol can be determined by simply adding the computed relative address to
the base address. The imageBase member of the IMAGE_SEPARATE_DEBUG_HEADER at
the very beginning of the . dbg file specifies the module's preferred load address.
Unfortunately, this address isn't very helpful because many kernel modules are actu-
ally loaded to completely different addresses. For example, ntoskrnl. dbg reports a
preferred load address of 0x00400000, which is certainly wrong because this address
is far outside the kernel memory range. Therefore, the w2k_img. dll provides the
imgModuleBase ( ) API function that attempts to locate kernel modules in memory.
It uses the undocumented NtQuerySysteminformation ( ) function exported by
ntdll .dll to retrieve a list of modules currently found in memory. However,
this function works on Windows 2000/NT only. For Windows 9x compatibility,
imgModuleBase ( ) loads ntdll. dll dynamically, so w2k_img. dll won't blow up imme-
diately with a dynalink error while it is being loaded. Therefore, it always returns a
NULL pointer on Windows 9x. This is the same value that you will get on Windows
2000 and Windows NT 4.0 if the specified module is not present in memory.

typedef union _IMG_PUBSYM

OMF_HEADER Header; // CV_PUB32 or PDB_PUB32

CV_PUBSYM CvPubSym;

PDB_PUBSYM PdbPubSym;

IMG_PUBSYM, *PIMG_PUBSYM, **PPIMG_PUBSYM;

#define IMG_PUBSYM_ sizeof (IMG_PUBSYM)

#define IMG_PUBSYM_SIZE (_p) \

((DWORD) (_p) ->Header.wRecordSize + sizeof (WORD))

#define IMG_PUBSYM_NEXT (__p) \

( (PIMG_PUBSYM) ((PBYTE) (_p) + IMG_PUBSYM_SIZE (_p) ) )



LISTING 1-25. The PDB_PUBSYM Structure

The IMG_PUBSYM union in Listing 1-26 is a convenient means to reference sym-
bol records regardless of their type. This union can be interpreted in three ways:

1. OMF_HEADER: This point of view should be assumed unless the symbol type
is known. The header provides just enough information to identify the
symbol type or to skip to the next record.

2. cv_PUBSYM: This interpretation is valid only if the wRecordType of the
OMF_HEADER is Set to CV_PUB32 (0x0203) .

3. PDB_PUBSYM: This interpretation is valid only if the wRecordType of the
OMF_HEADER is Set to PDB_PUB32 ( 0x1009) .

The IMG_PUBSYM_SIZE ( ) and IMG_PUBSYM_NEXT ( ) macros found at the end of
Listing 1-26 allow type-independent determination of the size of the current record
and the address of the subsequent one, respectively.

SYMBOL ADDRESS COMPUTATION
The wSegment and dof f set members of the CV_PUBSYM and PDB_PUBSYM symbol
records, together with the IMAGE_SECTION_HEADER array at the beginning of the
.dbg file, supply necessary information for the computation of the address of a
symbol relative to the beginning of the module's base address. If the . dbg file

1 tdefine PDB_PUB32 0x1009

I.I ----------

typedef struct _PDB_PUBSYM

{

OMF_HEADER Header;

DWORD dReserved;

DWORD dOffset;

WORD wSegment; // 1-based section index

OMF_NAME Name; // zero-padded to next DWORD

)

PDB_PUBSYM, *PPDB_PUBSYM, **PPPDB_PUBSYM;

ttdefine PDB_PUBSYM_ sizeof (PDB_PUBSYM)

*define PDB_PUBSYM_SIZE(_p) \

((DWORD) ( _p) ->Header.wRecordSize + sizeof (WORD))

#define PDB_PUBSYM_NEXT (_p) \

( (PPDB_PUBSYM) ((PBYTE) (_p) + PDB_PUBSYM_SIZE (_p) ) )
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LISTING 1-26. The IMG_PUBSYUM Union

doesn't contain any OMAP data in the form of IMAGE_DEBUG_TYPE_OMAP_TO_SRC
and IMAGE_DEBUG_TYPE_OMAP_FROM_SRC subsections, the address computation
algorithm is straightforward:

• Read the wSegment value of the symbol record and decrement it by one.

• Use the resulting index to look up the IMAGE_SECTION_HEADER of the
target section where the symbol resides.

• Retrieve the virtuaiAddress of this IMAGE_SECTION_HEADER.

• Add the dof fset value of the symbol record.

In case the load address of the module is known, the absolute linear address
of the symbol can be determined by simply adding the computed relative address to
the base address. The imageBase member of the IMAGE_SEPARATE_DEBUG_HEADER at
the very beginning of the . dbg file specifies the module's preferred load address.
Unfortunately, this address isn't very helpful because many kernel modules are actu-
ally loaded to completely different addresses. For example, ntoskrnl. dbg reports a
preferred load address of 0x00400000, which is certainly wrong because this address
is far outside the kernel memory range. Therefore, the w2k_img. dll provides the
imgModuleBase ( ) API function that attempts to locate kernel modules in memory.
It uses the undocumented NtQuerySysteminf ormation ( ) function exported by
ntdll. dll to retrieve a list of modules currently found in memory. However,
this function works on Windows 2000/NT only. For Windows 9x compatibility,
imgModuleBase ( ) loads ntdll. dll dynamically, so w2k_img.dll won't blow up imme-
diately with a dynalink error while it is being loaded. Therefore, it always returns a
NULL pointer on Windows 9x. This is the same value that you will get on Windows
2000 and Windows NT 4.0 if the specified module is not present in memory.

typedef union _IMG_PUBSYM

{

OMF_HEADER Header; // CV_PUB32 or PDB_PUB32

CV_PUBSYM CvPubSym;

PDB_PUBSYM PdbPubSym;

)
IMG_PUBSYM, *PIMG_PUBSYM, **PPIMG_PUBSYM;

#define IMG_POBSYM_ sizeof (IMG_PUBSYM)

#define IMG_PUBSYM_SIZE (_p) \

((DWORD) (_p) ->Header .wRecordSize + sizeof (WORD))

f define IMG_PUBSYM_NEXT (_p) \

( (PIMG_PUBSYM) ((PBYTE) (_p) + IMG_PUBSYM_SIZE (_p) ) )
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OMAP ADDRESS CONVERSION

Several Windows 2000 symbol files contain OMAP subsections, identified by
IMAGE_DEBUG_DIRECTORY entries with Type IDS Of IMAGE_DEBUG_TYPE_OMAP_TO_SRC

and IMAGE_DEBUG_TYPE_OMAP_FROM_SRC . OMAP is yet another undocumented fea-
ture of the Microsoft development tools, so the reasons for its existence are still
somewhat speculative. The OMAP data inside a . dbg file consist of two arrays of
OMAP_TO_SRC and OMAP_FROM_SRC structures, as outlined in Listing 1-27, and this
information is used in the computation of symbol addresses from the offset values
stored in CV_PUBSYM or PDB_PUBSYM records.

In one of his fine MS/ "Under the Hood" articles about Microsoft debug
information, Matt Pietrek writes his thoughts about OMAP:

Yet another form of debug information is relatively new and undocumented,
except for a few obscure references in WINNT.H and the Win32 SDK help. This
type of information is known as OMAP. Apparently, as part of Microsoft's
internal build procedure, small fragments of code in EXEs and DLLs are moved
around to put the most commonly used code at the beginning of the code section.
This presumably keeps the process memory working set as small as possible.
However, when shifting around the blocks of code, the corresponding debug
information isn't updated. Instead, OMAP information is created. It lets symbol
table code translate between the original address in a symbol table and the
modified address where the variable or line of code really exists in memory.
(Pietrek 1997 a)

LISTING 1-27. The OMAP_TO_SRC and OMAP_FROM_SRC Table Entries

typedef struct _OMAP_TO_SRC

(

DWORD dTarget;

DWORD dSource;

}

OMAP_TO_SRC, *POMAP_TO_SRC, **PPOMAP_TO_SRC;

ttdefine OMAP_TO_SRC_ sizeof ( OMAP_TO_SRC )

/ /

typedef struct _OMAP_FROM_SRC

{

DWORD dSource;

DWORD dTarget;

}

OMAP_FROM_SRC , *POMAP_FROM_SRC , * * PPOMAP_FROM_SRC ;

#define OMAP_FROM_SRC_ sizeof ( OMAP_FROM_SRC )
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And more than 2 years later, MS] columnist John Robbins elaborates on this
assumption in the October 1997 "Bugslayer":

The undocumented OMAP information is interesting because it appears to have
something to do with basic block relocations. (Fellow MSJ colleague Matt
Pietrek briefly discussed this in the May 1997 "Under the Hood" column.) My
guess is that Microsoft has some sort of internal tool that packs the binary so
that the most common code is pushed up to the front and the rest is put in the
rear so that the working set is much smaller. Consequently, this binary
rearrangement makes the program faster because it will not have to page in as
much of the program. (Robbins 1999)

Although the working set argument is striking, the fact that the ntoskrnl. exe
module makes heavy use of OMAP seems to be at odds with it. As I will show in
Chapter 4, the entire ntoskrnl. exe module is mapped to a single 4-MB memory
page that is always present in memory, so splitting the code into more frequently
and more rarely used fractions shouldn't be of benefit with respect to paging. My
assumption is that this split is supposed to aid the processor's instruction prefetch.
Examination of the OMAP tables reveals that the addresses they contain typically
point to the beginning of a function, to an instruction that immediately follows a
jump or call, or to unused filler code. This suggests that the OMAP data is used to
reshuffle the branches of if /else instructions. Obviously, the Windows 2000 kernel
developers at Microsoft can somehow tell the compiler whether the if or else
branch is executed more frequently, so the code fraction that is run less frequently
can be moved out of the way. Normally, a compiler tends to keep the code of a func-
tion in a monolithic block, and doesn't split up if/else branches. In the Windows
2000 kernel modules, however, it can be easily observed that large functions with
numerous if /else clauses are heavily fragmented. The fact that the OMAP code
atoms correspond to conditional branches leads me to the assumption that OMAP
has something to do with branch prediction. If less frequently executed branches are
separated from the more frequently used ones, the CPU can perform more effective
instruction prefetch.

The OMAP_TO_SRC table converts a real instruction offset to a source offset, for
example, the real offset of the ExinterlockedAddLargeinteger ( ) API function
relative to the base address of ntoskrnl. exe is Ox000023 iE . To verify this, enter the
command u ExinterlockedAddLargeinteger at the Kernel Debugger prompt—it
will unassemble a couple of lines, starting at the linear address Ox804023iE.
Subtractingthentoskrni.exe load address 0x80400000 yields Ox000023lE, as
expected. If you scan the OMAP_TO_SRC table inside ntoskrnl. dbg, you will find an
entry whose dTarget member is set to this offset, and the corresponding dSource
offset is Ox0005E7E4 . The ExinterlockedAddLargeinteger ( ) function is located in
the . text section, and the offset of this section relative to the image base address is
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Ox000004co according to its IMAGE_SECTION_HEADER. Subtracting the section offset
from the source offset yields a raw symbol offset of Ox0005E324, and this is exactly
the dof f set value of the PDB_PUBSYM record that defines the ExinterlockedAdd-
Largeinteger symbol. That's easy, isn't it? Well, not really.

The OMAP_TO_SRC entries are always sorted in ascending order with respect
to the target address. This is a good idea, because it facilitates the lookup of
addresses by binary searching. The OMAP_FROM_SRC table is essentially a replica
of the OMAP_TO_SRC table, but with all source and target addresses swapped and
resorted by source address. This dual-table approach allows easy address transla-
tion in both directions.

An OMAP problem that puzzled me for several days is that you cannot make
immediate use of the virtuaiAddress values stored in the IMAGE_SECTION_HEADER
array of the . dbg file while converting from source to target addresses via the
OMAP_FROM_SRC table. In all PE sections except for the first one, this will result in
target addresses that are too high. The reason for this strange effect is that the
virtuaiAddress values are valid in the target address world only. On the source
address side, different section addresses apply. The main problem is now to find
out the source addresses of the PE sections. After scanning the .dbg and .pdb files
repeatedly—but without success—for any tables that might perform this transla-
tion, I eventually ended up with a trick that works fine, although I'm not sure
whether it is legal. To determine the source address of a section, I simply enumer-
ate all OMAP_TO_SRC entries that belong to this section and compute the minimum
of their source addresses. This procedure is based on the assumption that OMAP
is just a permutation of code fractions, so minimizing the source addresses of a
section means finding the snippet that has been bumped to the top of the section.
This address should correspond to the source address of the section. I have
applied this technique to numerous Windows 2000 symbol files, and thus far, it
has not failed.

If it sounds appealing to implement a symbol file parser based on the
above information, just do it! Or, you can use the w2k_img.dll on the sample
CD as is or rip out code from it. This DLL contains everything you need to take
.dbg and .pdb files apart and much more. The most powerful API function
set it exports is the imgTabie* ( ) group. It comprises the three functions listed
in Table 1-5, whose prototypes are shown in Listing 1-28. They are intended for
use by debugger or disassembler writers. With the imgTableLookup ( ) API func-
tion, an application can display symbols instead of raw addresses, and the
imgTabieResolve ( ) function can be used as a basis for a symbol search option.
Both functions are carefully optimized for speed, which is of great benefit to
applications that browse large amounts of symbol information. The sample
symbol browser presented below is based on w2k_img.dll and is able to dump
a sorted list of all ntoskrnl. exe symbols with lots of additional information to a
file in less than 2 seconds.
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TABLE 1-5. Symbol Table Management Functions Exported by w2k_img. dll

NAME DESCRIPTION

imgTableLoad()

imgTableLookup()

imgTableResolve()

Builds an IMG_TABLE symbol table from a . dbg or . pdb file

Finds an IMG_ENTRY symbol table entry matching a symbol address

Finds an IMG_ENTRY symbol table entry matching a symbol name

LISTING 1-28. Prototypes of the Symbol Table Management Functions

Listing 1-29 is a compilation of the structures on which the imgTable* ( ) func-
tions operate. Apparently, they don't resemble the CodeView and PDB structures dis-
cussed above. In fact, the symbol table management functions inside w2k_img. dll
completely rearrange the information found in the symbol files, allowing easier and
faster processing. The most fundamental structure is the IMG_TABLE , which comprises
the entire symbol information. It is composed of a fixed-size header, an array of
IMG_ENTRY structures, and three IMG_INDEX arrays. Because the arrays are of variable
size depending on the number of symbols, the IMG_TABLE also contains three pointers
to the IMG_INDEX base addresses. As indicated by the comments in Listing 1-29, the
indexes are sorted by address, by name considering character case, and by name ignor-
ing character case. These indexes are not only convenient for applications that output
symbol lists, but also for the imgTableLookup ( ) and imgTableResolve ( ) functions
because they allow them to perform fast binary searches for addresses and names.

One particularly nice feature of the IMG_ENTRY structure is that it specifies the
calling convention assigned to a symbol. This information is derived directly from the
symbol decoration, based on the rules in Table 1-4. This nontrivial task is done by
the imgSymbolundecorate ( ) function shown in Listing 1-30. First, it tries to identify
one of the common prefixes, listed in the apbPref ixes [ ] array. In the next step, the
code looks for a stack size trailer consisting of an @ character and a decimal number.
The calling convention is detected along the way by testing for special prefix/trailer
combinations, w2k_img.dll undecorates symbols with high reliability. Actually, it
correctly handles all fastcall import thunks that imagehlp.dll is unable to man-
age. imgSymbolundecorate ( ) , however, does not attempt to undecorate C++ and
PCH symbols. Maybe I will add this feature in a future version of w2k_img. dll.

PIMG_TABLE WINAPI imgTableLoad (PTBYTE ptPath,

PVOID pBase) ;

PIMG_ENTRY WINAPI imgTableLookup (PIMG_TABLE pit,

PVOID pAddress ,

PDWORD dOffset);

PIMG_ENTRY WINAPI imgTableResolve (PIMG_TABLE pit,

PBYTE pbSymbol ) ;
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(define IMG__CONVENTION_UNDEFINED 0

((define IMG_CONVENTION_STDCALL 1

((define IMG_CONVENTION_CDECL 2

((define IMG_CONVENTION_FASTCALL 3

If

typedef struct _IMG_ENTRY

(

DWORD dSection; // 1-based section number

PVOID pAddress; // symbol address

DWORD dConvention; // calling convention IMG_CONVENTION_*

DWORD dstack; // number of argument stack bytes

BOOL f Exported; // TRUE if exported symbol

BOOL f Special; // TRUE if special symbol

BYTE abSection [IMAGE_SIZEOF_SHORT_NAME+4] ; // section name

BYTE abSymbol [256]; // undecorated symbol name

BYTE abDecorated [256]; // decorated symbol name

}

IMG_ENTRY, *PIMG_ENTRY, * * PPIMG_ENTRY ;

((define IMG_ENTRY_ sizeof (IMG_ENTRY)

typedef struct _IMG_INDEX

(

PIMG_ENTRY apEntries [1] ;

}

IMG_INDEX, *PIMG_INDEX, **PPIMG_INDEX;

((define IMG_INDEX_ sizeof (IMG_INDEX)

((define IMG_INDEX (_n) ( (_n) * IMG_INDEX_)

/ /

typedef struct _IMG_TABLE

{

DWORD dSize; // table size in bytes

DWORD dSections; // number of sections

DWORD dSymbols; // number of symbols

DWORD dTimeStamp; // module time stamp (sec since 1-1-1970)

DWORD dCheckSum; // module checksum

PVOID pBase; // module base address

PIMG_INDEX piiAddress; // entries sorted by address

PIMG_INDEX piiName; // entries sorted by name

PIMG_INDEX piiNameIC; // entries sorted by name (ignore case)

BOOL funicode; // character format

union

{
(continued)
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LISTING 1-29. Symbol Table Management Structures

TBYTE atPath [MAX_PATH] ; // .dbg file path

BYTE abPath [MAX_PATH] ; // .dbg file path (ANSI)

WORD awPath [MAX_PATH] ; // .dbg file path (Unicode)

IMG_ENTRY aEntries [ ] ; // symbol info array

}
IMGJABLE, *PIMG_TABLE, **PPIMG_TABLE;

#define IMG_TABLE_ sizeof (IMG_TABLE)

#define IMG_TABLE (_n) \

(IMGJABLE_ + ( (_n) * IMG_ENTRY_) + (3 * IMG_INDEX (_n) ) )

DWORD WINAPI imgSyrnbolUndecorate (PBYTE pbSymbol,

PBYTE pbBuffer,

PDWORD pdConvention)

{

PBYTE apbPrefixes [] = {" imp ", " imp_@", " imp_" ,

"_" , "@" , " \x7F" ,

NULL} ;

BYTE abBuffer [256] = "";

DWORD i, j, k, 1;

DWORD dConvention = IMG_CONVENTION_UNDEFINED;

DWORD dStack = -1;

if (pbSymbol != NULL)

t

// skip common prefixes

for (i = j = 0; apbPrefixes [i] != NULL; i++)

{

for (j = 0; apbPrefixes [i] [j]; j++)

{

if (apbPrefixes [i] [j] != pbSymbol [j]) break;

}

if ( lapbPrefixes [i] [j]) break;

j = 0;

)

// test for multiple '@'

for (k = j, 1 = 0 ; (1 < 2) && pbSymbol [k] ; k++)

{

if (pbSymbol [k] == '@') 1++;

}



MICROSOFT SYMBOL FILE INTERNALS 87

// don't undecorate if multiple '§', or C++ symbol
if ((1 == 2) || (pbSymbol [0] = = '?'))

{
j = 0; // keep prefix

k = MAXDWORD; //. keep length

}
else

{
// search for next '@'
for (k = j; pbSymbol [k] && (pbSymbol [k] != '@'); k++);

// read number of argument stack bytes if '©' found
if (pbSymbol [k] == '@')

{
dStack = 0;

for (1 = k + 1; (pbSymbol [1] >= '0') &&

(pbSymbol [1] <= '9'); 1++)
{
dStack *= 10;
dStack + = pbSymbol [1] - ' 0 ' ;

}
// don't undecorate if non-numeric or empty trailer
if (pbSymbol [1] | | (1 == k + 1))

{
dStack - -1; // no stack size info

j = 0; // keep prefix
k = MAXDWORD; // keep length

}

}

}
// determine calling convention if single-char prefix

if (j == 1)

{
switch (pbSymbol [0])

{
case '@' :

{
dConvention = IMG_CONVENTION_FASTCALL;
break;

}
case '_' :

(
(continued)
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LISTING 1-30. The imgSymbolUndecorate ( ) API Function

Note that the imgTableResolve ( ) function ignores all symbols with undefined
calling convention. This restriction safely excludes all import thunk, C++, and PCH
symbols. Unfortunately, it also excludes some of the "good" symbols that don't have
standard decorations. I don't think, however, that this is a big problem, because these
symbols are not among those most frequently used.

The basic framework of a w2k_img.dll client application is outlined in
Listing 1-31. The application first loads the symbol table from the .dbg file
specified by the ptPath argument, using the imgTableLoad() API function. If the
file contains an NBIO CodeView subsection, the associated PDB file is loaded
seamlessly. If the returned pointer is valid, the symbol entries can be enumerated in
four ways, described by the comments inside the for ( ) loop. Basically, the client
can use the original order of the symbols as they appear in the . dbg or . pdb file, or
it can choose one of the predefined sort indexes. When the symbol processing is
finished, the application has to destroy the symbol table by calling imgMemory
Destroy ( ) . That's all! The application doesn't need any intimate knowledge about
the internals of symbol files. All information it needs is stored in the IMG_TABLE
and IMG_ENTRY structures set up by imgTableLoad() .

dConvention = (dStack != -1

? IMG_CONVENTION_STDCALL

: IMG_CONVENTION_CDECL) ;

break;

}

}

}

// copy selected name portion

k = min (k - j , sizeof {abBuffer} - 1) ;

IstrcpynA (abBuffer, pbSymbol + j, k -t- 1);

}

if (pbBuffer != NULL)

{

IstrcpyA {pbBuffer, abBuffer) ;

}

if (pdConvention != NULL) *pdConvention = dConvention;

return dStack;

}
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LISTING 1-31. Using the Symbol Table Management Functions

A typical client application of w2k_img. dll will be presented in the next sub-
section. Note that I will return to this powerful utility DLL in Chapter 6, where it
serves a rather unusual purpose: It looks up addresses of internal ntoskrnl. exe
symbols that are neither documented nor exported, and a companion DLL uses
this information to call into or read from these addresses. This trick sounds odd,
but it works fine and can solve some tough programming and debugging problems.
Stay tuned!

VOID WINAPI SymbolProcessor (PTBYTE ptPath)

{
PIMG_TABLE pit;

PIMG_ENTRY pie;

PVOID pBase;

DWORD i ;

pBase = imgModuleBase (ptPath) ; // get current module load address

if ( (p i t = imgTableLoad (ptPath, pBase) ) != NULL)

{
for (i = j = 0; i < pit->dSymbols; i++)

{
// Option #1: default symbol order

// pie = pit->aEntries + i;

// Option #2 : symbols sorted by address

// pie = pit->piiAddress->apEntries [i] ;

// Option #3: symbols sorted by name (case sensitive)

// pie = pit->piiName->apEntries [ i ] ;

// Option #4: symbols sorted by name (ignore case)

// pie = pit->piiNameIC->apEntries [i] ;

// Now, pie points to the IMG_ENTRY of the next symbol!

/ / Do something useful with it . . .

}
imgMemoryDestroy (pit) ;

}
return;

}
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ANOTHER WINDOWS 2000 SYMBOL BROWSER

The sample application that shall demonstrate the usage ofw2k_img.dll is an alterna-
tive version of the symbol browser presented in the previous section. It is named
w2k_sym2. exe, but despite the name similarity, it is not just a rehash of w2k_sym. exe.
The sample applications have quite different features and command options—just com-
pare their command help screens, shown in Examples 1-5 and 1-11. The source code
of w2k_sym2 . exe is found on the CD accompanying this book in the \src\w2k_sym2
directory tree.

Example 1-12 shows some sample output, generated by the command
w2k_sym2 +nu beep. sys. The +n option selects sorting by name without considera-
tion of the character case, and the +u option forces inclusion of symbols with
unknown calling convention. The symbols with CDECL or STDCALL in the ARGUMENTS
column refer to addresses of functions or global variables. The remaining rows in
Example 1-12 are mostly import thunks into ntoskrnl. exe or hal. dll.

EXAMPLE 1-11. The Command Help of w2k_sym2. exe

I

// w2k_sym2.exe

// SBS Windows 2000 Symbol Browser VI. 00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Usage: w2k_sym2 { [+~anNiprdxusz] [ :<sections>] [/<symbols>] <path> }

+ enable subsequent options

disable subsequent option

a sort by address

n sort by name

N sort by name {case sensitive)

i ignore case in filter strings

p force preferred load address

r display relative addresses

d display decorated symbols

x display exported symbols only

u include symbols with unknown calling convention

s include special symbols

z include zero- address symbols

<sections> and <symbols> are filter expressions,

optionally containing the wildcards * and ?.
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// w2k_sym2.exe

// SBS Windows 2000 Symbol Browser VI. 00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Module name : beep . sys

Time stamp: Wednesday, 10-20-1999, 22:

Base address: OxF09CFOOO

Check sum: OxOOOOC54F

Symbol file: E:\WINNT\Symbols\sys\beep

Symbol table: 23520 bytes

Symbol filter: *

Sections: *

# INDEX ADDRESS SECTION

1 0 F09CF70C 2 .rdata

2 1 F09CF6B2 1 .text

3 2 F09CF7B4 3 INIT

4 3 F09CF7AO 3 INIT

5 4 F09CF7C8 3 INIT

6 5 F09CF34C 1 .text

7 6 F09CF39E 1 .text

8 7 F09CF50E 1 .text

9 8 F09CF456 1 .text

10 9 F09CF4CO 1 .text

11 10 F09CF572 1 .text

12 11 F09CF660 1 .text

13 12 F09CF67E 1 .text

14 13 F09CF29A 1 .text

15 14 F09CF6CO 2 .rdata

16 15 F09CF6C4 2 .rdata

17 16 F09CF6D4 2 .rdata

18 17 F09CF6DO 2 .rdata

19 18 F09CF724 2 .rdata

20 19 F09CF6EO 2 .rdata

21 20 F09CF708 2 .rdata

22 21 F09CF6E8 2 .rdata

23 22 F09CF714 2 .rdata

24 23 F09CF710 2 .rdata

25 24 F09CF6F4 2 .rdata

26 25 F09CF6F8 2 .rdata

27 26 F09CF700 2 .rdata

28 27 F09CF6EC 2 .rdata

29 28 F09CF728 2 .rdata

30 29 F09CF718 2 .rdata

ARGUMENTS

CDECL

CDECL

CDECL

CDECL

8 STDCALL

8 STDCALL

8 STDCALL

8 STDCALL

8 STDCALL

8 STDCALL

10 STDCALL

4 STDCALL

8 STDCALL

4

4

4

4

8

4

4

1C

4

8

4

8

10

4

C

18:59

dbg

X NAME

_allmul

_allmul

_IMPORT_DESCRIPTOR_HAL

_IMPORT_DESCRIPTOR_ntoskrnl

_NULL_IMPORT_DESCRIPTOR

BeepCancel

BeepCleanup

BeepClose

BeepDeviceControl

BeepOpen

BeepStartlo

BeepTimeOut

BeepUnload

DriverEntry

ExAcquireFastMutex

ExReleaseFastMutex

HAL_NULL_THUNK_DATA

HalMakeBeep

Inter lockedDecrement

InterlockedExchange

Inter lockedlncrement

loAcquireCancelSpinLock

loCreateDevice

loDeleteDevice

lof CompleteRequest

loReleaseCancelSpinLock

loStartNext Packet

loStartPacket

KeCancelTimer

KelnitializeDpc

(continued)
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31

32

33

34

35

36

37

38

39

40

41

13

0

30

31

32

J3
)4

15
16
37

38

39

40

F09CF720

F09CF71C

F09CF6E4

F09CF6DC

F09CF704

F09CF6CC

F09CF6C8

F09CF6FO

F09CF6FC

F09CF72C

F09CF6D8

...

2

2

2

.:

:
:
;
2

.rdata

. rdata

. rdata

. rdata

. rdata

. rdata

.rdata

. rdata

. rdata

. rdata

. rdata

C

4
4

8

10

4

4

4

4

a

KelnitializeEvent

KelnitializeTimer

KeRemoveDeviceQueue

KeRemoveEntryDeviceQueue

KeSetTimer

KfLowerlrql

KfRaiselrql

MmLockPagableDataSection

MmUnlockPagablelmageSection

ntoskrnl_NULL_THUNK_DATA

RtllnitUni codes tr ing

non-NULL symbols

exported symbols

EXAMPLE 1-12. Sample Output of w2k_sym2.exe

Note that the _allmul symbol appears twice in the list. The first one is an
import thunk for the _allmul ( ) function exported by ntoskrnl. exe; the other one
is a simple function call forwarder that jumps through this thunk. If you add the +d
switch to the command to view the symbols with full decoration, you can see that the
_allmul import thunk is really called imp ailmul, whereas the original name of
the forwarder is ailmul. Obviously, those decorations do serve some useful pur-
pose, even though they are sometimes quite distracting.

This chapter has presented extensive information. Maybe you didn't expect that
there is so much to say about Windows 2000 debuggers, debugging APIs, and symbol
files. Most Windows programming books don't dedicate much space to this kind of
information. However, I believe that this essential background knowledge will help
you in writing your own debugging utilities.



C H A P T E R 2

The Windows
2000 Native API

This introductory chapter about the Windows 2000 Native API focuses on the rela-
tionships among the operating system modules that form the environment of this

basic programming interface. Emphasis is on the central interrupt gate mechanism
employed by Windows 2000 to route kernel service requests from user-mode to
kernel-mode and back. Additionally, the Win32K interface and some of the major
runtime libraries associated with the Native API will be presented, along with some
of the most frequently used data types. The chapter closes with hints for those who
want to write applications that interface to the Native API via the ntdll. dll library.

The architecture of Windows 2000 has been described in detail elsewhere. Many
things written about Windows NT also apply to Windows 2000, so both editions of
Inside Windows NT (Custer 1993, Solomon 1998) are good introductory books, as is
the follow-up volume Inside Windows 2000 (Solomon and Russinovich 2000).

THE NT*() AND ZW*() FUNCTION SETS

One of the most interesting facts about the architecture of Windows 2000 is that it
can emulate various operating systems. Windows 2000 comes with three built-in sub-
systems for Win32, POSIX, and OS/2 applications. The Win32 subsystem is clearly
the most popular, and therefore it is frequently regarded by application developers as
the operating system itself. They cannot really be blamed for this misconception—this
point of view is correct for legacy operating systems such as Windows 95 or 98, with
which the Win32 interface implementation is actually a fundamental part of the
system. However, Windows 2000 is designed quite differently. Although the Win32
subsystem contains a system module named kernel32 . dll, this is actually not the
real operating system kernel. Instead, it is just one of the basic components of the
Win32 subsystem. In many programming books, software development for Windows
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NT and 2000 is reduced to the task of interfacing to the Win32 Application Program-
ming Interface (API), concealing the fact that the NT platform exposes yet another
more basic interface called the Native API. Developers writing kernel-mode device or
file system drivers are already familiar with the Native API, because kernel-mode
modules are located on a low system level where the subsystems are invisible. How-
ever, you don't have to go down to the driver level to access this interface—even ordi-
nary Win32 applications can call down to the Native API at any time. There's no
technical restriction—it's just that Microsoft doesn't support this kind of application
development. Thus, little information has been available on this topic, and neither the
Windows Platform Software Development Kit (SDK) nor the Windows 2000 Device
Drive Kit (DDK) make the Native API available to Win32 applications. So this work
has been left to others, and this book is another piece of the puzzle.

LEVELS OF "UNDOCUMENTEDNESS"
Much of the material presented in this book refers to so-called undocumented infor-
mation. In its global sense, this means that this information isn't published by
Microsoft. However, there are several grades of "undocumentedness" because of the
large amount of information that could possibly be published about a huge operating
system such as Windows 2000. My personal category system looks as follows:

• Officially documented: The information is available in one of Microsoft's
books, papers, or development kits. The most prominent information
sources are the SDK, DDK, and the Microsoft Developer Network
(MSDN) Library.

• Semidocumented: Although not officially documented, the information
can be extracted from files officially distributed by Microsoft. For
example, many Windows 2000 functions and structures aren't mentioned
in the SDK or DDK documentation, but appear in some header files or
sample programs. For Windows 2000, the most important sources of
semidocumentation are the header files ntddk.h and ntdef .h, which are
part of the DDK.

• Undocumented, but not hidden: The information in question is neither
found in the official documentation nor included in any form in the
developer products, but parts of it are available for debugging tools. All
symbolic information contained in executable or symbol files belongs to
this category. The best examples are the iprocessf ieids and
! threadf ields commands of the Kernel Debugger, which dump the
names and offsets of the undocumented EPROCESS and ETHREAD structures
(see Chapter 1).
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• Completely undocumented: Some information bits are so well hidden by
Microsoft, that they can be unveiled only by reverse engineering and
inference. This class contains many implementation-specific details that
nobody except the Windows 2000 developers should care about, but it also
includes information that might be invaluable for system programmers,
particularly developers of debugging software. Unveiling system internals
such as this is extremely difficult, but also incredibly interesting, for
someone who loves puzzles of a million pieces.

The Windows 2000 internals discussed in this book are equally distributed on
levels two, three, and four of this category system, so there should be something
for everyone.

THE SYSTEM SERVICE DISPATCHER
The relationship between the Win32 subsystem API and the Native API is best
explained by showing the dependencies between the Win32 core modules and the Win-
dows 2000 kernel. Figure 2-1 illustrates the module relationships, using boxes for mod-
ules and arrows for dependencies. If an arrow points from module A to module B, this
means that A depends on B, that is, module A calls functions inside module B. Modules
connected by double arrows are mutually dependent on each other. In Figure 2-1, the
modulesuser32.dll, advapi32.dll, gdi32.dll, rpcrt4.dll, andkernel32.dll
represent the basic Win32 API providers. Of course, there are other DLLs that con-
tribute to this API, such as version.dll, shell32.dll, andcomctl32.dll, but for
clarity, I have omitted them. An interesting property illustrated in Figure 2-1 is that all
Win32 API calls are ultimately routed through ntdll. dll, which forwards them to
ntoskrnl.exe.

The ntdll. dll module is the operating system component that hosts the Native
API. To be more exact, ntdll. dll is the user-mode front end of the Native API. The
"real" interface is implemented in ntoskrnl. exe. The file name already suggests
that this is the NT Operating System Kernel. In fact, kernel mode drivers call into
this module most of the time if they require operating system services. The main role
of ntdll. dll is to make a certain subset of kernel functions available to applications
running in user mode, including the Win32 subsystem DLLs. In Figure 2-1, the arrow
pointing from ntdll. dll to ntoskrnl. exe is labeled INT 2Eh to indicate that Win-
dows 2000 uses an interrupt gate to switch the CPU's privilege level from user mode
to kernel mode. Kernel-mode programmers view user-mode code as offensive, buggy,
and dangerous. Therefore, this kind of code must be kept away from kernel func-
tions. Switching the privilege level from user mode to kernel mode and back in the
course of an API call is one way to handle this problem in a controlled manner. The
calling application never really touches any kernel bytes—it can only look at them.
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FIGURE 2-1. System Module Dependencies

For example, the Win32 API function DeviceioControl ( ) exported by
kernel32.dll eventuallycallsthentdll.dll export NtDeviceioControlFilef ) .
Disassembling this function reveals a surprisingly simple implementation, shown in
Example 2-1. First, CPU register EAX is loaded with the magic number 0x38 , which is
a dispatch ID. Next, register EDX is set up to point into the stack. The target address
is the current value of the stack pointer ESP plus four, so EDX will point right behind
the stack slot of the return address that has been saved on the stack immediately
before entering NtoeviceioControlFile ( ) . Of course, this is the place where the
arguments passed to the function are temporarily stored. The next instruction is a
simple INT 2 Eh, which branches to the interrupt handler stored in slot 0x2 E of the
Interrupt Descriptor Table (IDT). Doesn't that look familiar? In fact, this code looks
quite a bit like an old DOS INT 2ih API call. However, the INT 2 Eh interface of
Windows 2000 is much more than a simple API call dispatcher — it serves as the main
gate from user mode to kernel mode. Please note that this implementation of the
mode switch is Intel i386 CPU specific. On the Alpha platform, different tricks are
employed to achieve this transition.
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EXAMPLE2-1. Implementation o^ntdll.NtDeviceloControlFile()

The Windows 2000 Native API comprises 248 functions that are handled this
way. That's 37 more than in Windows NT 4.0. You can easily recognize them by the
function name prefix Nt in the ntdll. dli export list. There are 249 symbols of this
kind exported by ntdll. dll. The reason for this mismatch is that one of the func-
tions, NtCurrentTeb ( ) , is a pure user-mode function and therefore isn't passed to
the kernel. Table B-1 in Appendix B lists all available Native API functions, along
with their INT 2Eh dispatch IDs, if any. The table also indicates which functions are
exported by ntoskrni. exe. Surprisingly, only a subset of the Native API can be
called from kernel-mode modules. On the other hand, ntoskrni. exe exports two Nt*
symbols not provided by ntdll. dll, namely NtBuildNumber and NtGlobalFlag.
Neither symbol refers to a function. Instead, they are pointers to ntoskrni. exe vari-
ables that can be imported by a driver module using the C compiler's extern key-
word. The Windows 2000 kernel exports many more variables in this manner, and
the sample code following later will make use of some of them.

You may wonder why Table B-1 provides two columns for ntdll. dll and
ntoskrnl.exe, respectively, labeled ntdll .Nt* , ntdll. Zw*, ntoskrni.Nt*, and
ntoskrni. zw* . The reason is that both modules export two sets of related Native
API symbols. One of them comprises all names involving the Nt prefix, as listed in
the leftmost column of Table B-1. The other set contains similar names, but with Nt
replaced by zw. Disassembly of ntdll. dll shows that each pair of symbols refers to
exactly the same code. This may appear to be a waste of memory. However, if you
disassemble ntoskrni. exe, you will find that the Nt* symbols point to real code and
the zw* variants refer to INT 2Eh stubs such as the one shown in Example 2-1. This
means that the zw* function set is routed through the user-to-kernel-mode gate, and
the Nt * symbols point directly to the code that is executed after the mode transition.

Two more things in Table B-1 should be noted. First, the function NtCurrentTeb ( )
doesn't have a zw* counterpart. This is not a big problem because the Nt* and zw*
functions exported by ntdll. dll are the same anyway. Second, ntoskrni. exe does-
n't consistently export Nt/zw function pairs. Some of them come in either Nt* or zw*
versions only. I do not know the reason for this—I suppose that ntoskrni. exe
exports only the functions documented in the Windows 2000 DDK plus those

NtDeviceloControlFile :
mov eax, 38h

lea edx, [esp+4]

int 2Eh

ret 28h
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required by other operating system modules. Note that the remaining Native API
functions are nevertheless implemented inside ntoskrnl. exe. They don't feature a
public entry point, but of course they may be reached from outside through the
INT 2Eh gate.

THE SERVICE DESCRIPTOR TABLES
The disassembled code in Example 2-1 has shown that INT 2 Eh is invoked with
two parameters passed in the CPU registers EAX and EDX . I have already mentioned
that the magic number in EAX is a dispatch ID. Because all Native API calls except
NtcurrentTeb ( ) are squeezed through the same hole, the code handling the INT
2 Eh must determine which call should be dispatched to which function. That's why
the dispatch ID is provided. The interrupt handler inside ntoskrnl. exe uses the
value in EAX as an index into a lookup table, where it finds the information required
to route the call to its ultimate destination. This table is called a System Service
Table (SST), and the corresponding C structure SYSTEM_SERVICE_TABLE is defined
in Listing 2-1. This listing also comprises the definition of a structure named
SERVICE_DESCRIPTOR_TABLE, which is a four-member array of SSTs, the first two
of which serve special purposes.

Although both tables are fundamental data types, they are not documented in
the Windows 2000 DDK, which leads to the following important statement: Many
code snippets reprinted in this book contain undocumented data types and functions.
Therefore, there's no guarantee that this information is authentic. This is true for all
symbolic information, such as structure names, structure members, and arguments.
When creating symbols, I attempt to use appropriate names, based on the naming
scheme apparent through the small subset of known symbols (including those avail-
able from the symbol files). However, this heuristic approach is likely to fail on many
occasions. Only the original source code contains the full information, but I don't
have access to it. Actually, I don't want to see the source code, because this would
require a Non-Disclosure Agreement (NDA) with Microsoft, and the ties of an NDA
would make it quite difficult to write a book about undocumented information.

So let's return to the secrets of the Service Descriptor Table (SDT). Its definition
in Listing 2-1 shows that the first pair of slots is reserved for ntoskrnl. exe
and the kernel-mode part of the Win32 subsystem buried inside the wins2k. sys
module. The calls dispatched through the win32k SST originate from gdi32 . dll
and user32 . dll. ntoskrnl. exe exports a pointer to its main SDT via the symbol
KeServiceDescriptorTable. The kernel maintains an alternative SDT named
KeServiceDescriptorTableShadow, but this one is not exported. It is very simple to
access the main SDT from a kernel-mode module—you need only two C instructions,
as shown in Listing 2-2. The first is a simple variable declaration preceded by the
extern keyword, which tells the linker that this variable is not part of the module
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and the corresponding symbol cannot be resolved at link time. All references to this
symbol are linked dynamically as soon as the module is loaded into the address space
of a process. The second C instruction in Listing 2-2 is such a reference. Assigning
KeserviceDescriptorTable to a variable of type PSERVICE_DESCRIPTOR_TABLE
causes the creation of a dynamic link to ntoskrnl. exe, similar to an API call into a
DLL module.

LISTING 2-1. Structure of the Service Descriptor Table

LISTING 2-2. Accessing the Service Descriptor Table

typedef NTSTATUS (NTAPI *NTPROC) ( ) ;

typedef NTPROC *PNTPROC;

((define NTPROC_ sizeof (NTPROC)

typedef struct _SYSTEM_SERVICE_TABLE

{

PNTPROC ServiceTable; // array of entry points

PDWORD CounterTable; // array of usage counters

DWORD ServiceLimit ; // number of table entries

PBYTE ArgumentTable; // array of byte counts

)

SYSTEM_SERVICE_TABLE ,

* PSYSTEM_SERVICE_TABLE ,

* * PPSYSTEM_SERVICE_TABLE ;

/ / _ _ _ _ _ _ _ _ _ _ _ _

typedef struct _SERVICE_DESCRIPTOR_TABLE

{

SYSTEM_SERVICE_TABLE ntoskrnl ; // ntoskrnl.exe (native api)

SYSTEM_SERVICE_TABLE win32k; // win32k.sys (gdi/user support)

SYSTEM_SERVICE_TABLE Table3; // not used

SYSTEM_SERVICE_TABLE Table4; // not used

}

SERVICE_DESCRIPTOR_TABLE ,

* PSERVICE_DESCRIPTOR_TABLE,

* * PPSERVICE_DESCRIPTOR_TABLE ;

// Import SDT pointer

extern PSERVICE_DESCRIPTOR_TABLE KeServiceDescriptorTable;

// Create SDT reference

PSERVICE_DESCRIPTOR_TABLE psdt = KeServiceDescriptorTable;
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The serviceTable member of each SST contained in an SDT points to an array
of function pointers of type NTPROC, which is a convenient placeholder for the Native
API functions, similar to the PROC type used in Win32 programming. NTPROC is
defined at the top of Listing 2-1. Native API functions typically return an NTSTATUS
code and use the NTAPI calling convention, which is synonymous to stdcall. The
ServiceLimit member holds the number of entries found in the ServiceTable array.
On Windows 2000, its default value is 248. The ArgumentTable is an array of
BYTES, each one corresponding to a ServiceTable slot and indicating the number of
argument bytes (!) available on the caller's stack. This information, along with the
pointer supplied in register EDX, is required by the kernel when it copies the argu-
ments from the caller's stack to its own, as described below. The CounterTable mem-
ber is not used in the free build of Windows 2000. In the debug build, this member
points to an array of DWORDS that represent usage counters for each function. This
information can be used for profiling purposes.

It is easy to display the contents of the SDT using the Windows 2000 Kernel
Debugger. Please refer to Chapter 1 if you haven't yet set up this very useful applica-
tion. In Example 2-2,1 have first issued the command dd KeServiceDescrip-
torTable. The debugger resolves this public symbol to Ox8046AB80 and displays a
hex dump of the next 32 DWORDS at this address. Only the first four rows are signifi-
cant, corresponding to the four SDT members in Listing 2-1. For better readability,
they are printed in boldface. If you take a closer look, you will see that the fifth row
looks exactly like the first—could this be another SDT? This is a great occasion for a
test of the Kernel Debugger's in command (List Nearest Symbols). In Example 2-2.
right after the hex dump of KeServiceDescriptorTable, I have entered the com-
mand In 8046abcO . Obviously, the debugger knows the address Ox8046abcO well and
converts it to the symbol KeServiceDescriptorTableShadow, proving that this is
indeed the second SDT maintained by the kernel. The obvious difference between the
SDTs is that the latter contains entries for win32k. sys, whereas the former doesn't. In
both tables, the members Tables and Table4 are empty, ntoskrnl. exe provides a
convenient API function named KeAddSystemServiceTable ( ) to fill these slots.

kd> dd KeServiceDescriptorTable

dd KeServiceDescriptorTable

8046ab80 804704d8 00000000 OOOOOOfS 804708bc

8046ab90 00000000 00000000 00000000 00000000

8046abaO 00000000 00000000 00000000 00000000

8046abbd 00000000 00000000 00000000 00000000

8046abcO 804704d8 00000000 OOOOOOfS 804708bc

8046abdO a01859fO 00000000 0000027f a0186670
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EXAMPLE 2-2. Examination of the Service Descriptor Tables

8046abeO 00000000 00000000 00000000 00000000

8046abfO 00000000 00000000 00000000 00000000

kd> In 8046abcO

In 8046abcO

(8047b3aO ) ntoskrnl IKeServiceDescriptorTableShadow

kd> In 804704d8

In 804704d8

(8046cdOO) ntoskrnl! KiServiceTable

kd> In 804708bc

In 804708bc

(8046dOe4) ntoskrnl IKiArgumentTable

kd> In a01859fO

In a01859fO

(a016d8cO ) win32k!W32pServiceTable

kd> In a0186670

In a0186670

(a016e544) win32k!W32pArgumentTable

kd> dd KiServiceTable

dd KiServiceTable

804704d8 804ab3bf 804ae86b 804bdef3 8050b034

804704e8 804cllf4 80459214 8050c2ff 8050c33f

804704f8 804b581c 80508874 8049860a 804fc7e2

80470508 804955f7 8049c8a6 80448472 804a8d50

80470518 804b6bfb 804fOcef 804fcb95 8040189a

80470528 804d06cb 80418f66 804f69d4 8049eOcc

80470538 8044c422 80496f58 804ab849 804aa9da

80470548 80465250 804f4bd5 8049bc80 804ca7a5

kd> db KiArgumentTable

db KiArgumentTable

804708bc 18 20 2c 2c 40 2c 40 44-Oc 18 18 08 04 04 Oc 10 . , ,@,@D

804708cc 18 08 08 Oc 08 08 04 04-04 Oc 04 20 08 Oc 14 Oc

804708dc 2c 10 Oc Ic 20 10 38 10-14 20 24 Ic 14 10 20 10 8.. $... .

804708ec 34 14 08 04 04 04 Oc 08-28 04 Ic 18 18 18 08 18 4 (

804708fc Oc 08 Oc 04 10 00 Oc 10-28 08 08 10 00 Ic 04 08 (

8047090C Oc 04 10 00 08 04 08 Oc-28 10 04 Oc Oc 28 24 28 (....($(

8047091C 30 Oc Oc Oc 18 Oc Oc Oc-Oc 30 10 Oc Oc Oc Oc 10 0 0

8047092C 10 Oc Oc 14 Oc 14 18 14-08 14 08 08 04 2c Ic 24 ,.$

kd> In 8044C422

In 8044C422

(80449c90) ntoskrnl INtClose
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Note that I have truncated the output lines of the in command, to demonstrate
only the essential information.

At address Ox8046AB88 of the KeServiceDescriptorTable hex dump, where
the ServiceLimit member should be located, the value OxF8—248 in decimal
notation—shows up, as expected. The values of ServiceTable and ArgumentTable
are pointers to the addresses Ox804704d8 and Ox804708bc, respectively. This is
another case for the In command, revealing the names KiserviceTable and
KiArgumentTable, respectively. None of these symbols is exported by
ntoskrnl. exe, but the debugger recognizes them by looking into the Windows
2000 symbol files. The in command can also be applied to the pointers in the
win32k SST. For the ServiceTable and ArgumentTable members, the debugger
reports w32pServiceTable and w32pArgumentTable, respectively. Both symbols
are taken from the symbol file of win32k.sys . If the debugger refuses to resolve
these addresses, issue the . reload command to force a reload of all available
symbol files and try again.

The remaining parts of Example 2-2 are hex dumps of the first 128 bytes of
KiserviceTable and KiArgumentTable. If the things I said about the Native API
so far are correct, then the Ntciose ( ) function should be addressed by slot 24 of
KiserviceTable, located at address 0x80470538. The value found there is
Ox8044c422 , marked boldface in the results of the dd KiserviceTable command.
Applying the in command to this address yields Ntciose ( ) . As a final test, let's
examine slot 24 of KiArgumentTable at address Ox804708d4 . In the Windows
2000 DDK, zwClose ( ) is documented as receiving a single argument of type
HANDLE , so the number of argument bytes on the caller's stack should amount to
four. It doesn't come as a big surprise that this is exactly the value found in the argu-
ment table, marked boldface in the results of the db KiArgumentTable command.

THE INT 2Eh SYSTEM SERVICE HANDLER

The interrupt handler lurking at the kernel-mode side of the INT 2 Eh gate is
labeled KisystemService ( ) . Again, this is an internal symbol not exported by
ntoskrnl. exe, but contained in the Windows 2000 symbol files. Therefore, the
Kernel Debugger can resolve it without problem. Essentially, KisystemService ( )
performs the following steps:

1. Retrieve the SDT pointer from the current thread's control block.

2. Determine which one of the four SSTs in the SDT should be used. This is
done by testing bits 12 and 13 of the dispatch ID in register EAX and
selecting the corresponding SDT member. IDs in the range 0x000 O-OXOFFF
are mapped to the ntoskrnl table; the range Oxiooo-OxiFFF is assigned to
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the wins2k table. The remaining ranges Ox2000-Ox2FFF and Ox3000-Ox3FFF
are reserved for the additional SDT members Tables and Tabie4 . If an ID
exceeds 0x3 FFF, the unwanted bits are masked off before dispatching.

3. Check bits 0 to 11 of the dispatch ID in register EAX against the
ServiceLimit member of the selected SST. If the ID is out of range, an error
code of STATUS_INVALID_SYSTEM_SERVICE is returned. In an unused SST,
this member is zero, yielding an error code for all possible dispatch IDs.

4. Check the argument stack pointer in register EDX against the value of
MmUserProbeAddress. This is a public variable exported from
ntoskrnl. exe and usually evaluates to OXVFFFOOOO . If the argument
pointer is not below this address, STATUS_ACCESS_VIOLATION is returned.

5. Look up the number of argument stack bytes in the ArgumentTable
referenced by the SST, and copy all function arguments from the caller's
stack to the current kernel-mode stack.

6. Look up the service function pointer in the serviceTable referenced by
the SST, and call this function.

7. Transfer control to the internal function KiserviceExit i
from the service call.

after returning

It is interesting to see that the INT 2 Eh handler doesn't use the global SDT
addressed by KeServiceDescriptorTable, but uses a thread-specific pointer
instead. Obviously, threads can have different SDTs associated to them. On thread
initialization, KeInitializeThread() writes the KeServiceDescriptorTable
pointer to the thread control block. However, this default setting may be changed
later to a different value, such as KeServiceDescriptorTableShadow, for example.

THE WIN32 KERNEL-MODE INTERFACE

The discussion of the SDT in the previous section has shown that a second main kernel-
mode interface exists along with the Native API. This interface connects the Graphics
Device Interface (GDI) and the Window Manager (USER) of the Win32 subsystem to a
kernel-mode component called Win32K, introduced with Windows NT 4.0, and resid-
ing in the file win32k. sys. This component has been added to overcome an inherent
performance limit of the Win32 display engine, caused by the original Windows NT
subsystem design. On Windows NT 3.x, the client-server model imposed on the Win32
subsystem and the kernel involved frequent switches from user-mode to kernel-mode
and back. By moving considerable parts of the display engine to the kernel-mode mod-
ule win32k. sys, much of this overhead could be eliminated.
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WIN32K DISPATCH IDs

Now that win32k. sys has entered the scene, it's time for an update of Figure 2-1.
Figure 2-2 is based on the original drawing, but with a win32k. sys box added to the
left of ntoskrnl. exe. I have also added arrows pointing from gdi32 . dll and
user32 .dll to win32k.sys. Of course, this is not 100 percent correct, because the
INT 2Eh calls inside these modules are actually directed to ntoskrnl. exe, which
owns the interrupt handler. However, the calls are ultimately handled by
win32k. sys, and this is what the arrows should indicate.

As pointed out earlier, the Win32K interface is also based on the INT 2 Eh dis-
patcher, much like the Native API. The only difference is that Win32K uses a differ-
ent range of dispatch IDs. Although all Native API calls involve dispatch IDs that
range from 0x0000 to OXOFFF, Win32K dispatch IDs are numbers between Oxiooo
and OxiFFF. As Figure 2-2 demonstrates, the primary Win32K clients are gdi32 .dll
and user32 . dll. Therefore, it should be possible to find out the symbolic names
associated to the Win32K dispatch IDs by disassembling these modules. As it turns
out, only a small subset of INT 2 Eh calls has public names in their export sections, so
it is again time for a Kernel Debugger session. In Example 2-3,1 have issued the com-
mand dd w32pServiceTable. To be sure that the win32k. sys symbols are available,
it is preceded by a . reload command.

FIGURE 2-2. System Module Dependencies, including win32k. sys
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EXAMPLE 2-3. Examination of the Win32K System Services

In the last three lines of Example 2-3,1 have applied the in command to the
first entry in the w32pServiceTable hex dump. So the Win32K function with dispatch
ID zero is obviously called NtGdiAbortooc ( ) . You can repeat this procedure for all
639 dispatch IDs, but it is better to automate the symbol lookup. I have done this
for you, and the results are collected in Appendix B, Table B-2. The symbol mapping
from gdi32 . dll and user32 . dll to win32k.sys is simple: A GDI symbol is converted
to a Win32K symbol by adding the prefix Ntcdi, and a USER symbol is converted by
adding Ntuser. However, there are some minor exceptions. For example, if a GDI
symbol starts out with Gdi, the prefix is reduced to Nt, probably to avoid the character
sequence NtGdiGdi. In some other instances, the character case is different (e.g.,
EnableEUDC ( ) and NtGdiEnableEudc ( ) ) , or a trailing W marking a Unicode function is
missing (e.g., CopyAcceleratorTableW() and NtUserCopyAcceleratorTable ( ) ) .

Documenting the complete Win32K API in detail would be a tremendous effort.
The function set is almost three times larger than the Native API. Maybe someday
someone will pick up the pieces and write a great reference handbook, like Gary
Nebbett did for the Native API (Nebbett 2000). For the scope of this book, the above
information should suffice, however.

kd> .reload
.reload
Loading Kernel Symbols. . .
Unable to read image header for f dc . sys at £0798000 - status c O O O O O O l
Unable to read image header for ATMFD.DLL at beaafOOO - status c O O O O O O l
Loading User Symbols. . .
Unable to read selector for PCR for Processor 0
PPEB is NULL (Addr= O O O O O I S c )

kd> dd W32pServiceTable
dd W32pServiceTable
a01859fO a01077fO a011f59e a000788a a01141el
a0185aOO a0121264 a0107e05 a01084df a010520b
a0185alO a0120a6f a008c9eb aOObefa2 a007cb5c
a0185a20 a0085c9b a001e4e7 a0120fdl a0122d!9
a0185a30 aOOSBdOc a0122e73 a0027671 a006d l fO
a0185a40 a0043feO a009baeb a007eb9b a009eb05
a0185a50 a0043392 a007c!4f a01229cc a0027470
a0185a60 a001ad09 aOOaf751 a004e9f5 a004ef53

kd> In a01077fO
In a01077fO
(aOOb316e) win32k!NtGdiAbortDoc | (aOOba!73) win32k! IsRectEmpty
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THE WINDOWS 2000 RUNTIME LIBRARY

The Nt* ( ) and zw* ( ) functions making up the Native API are an essential, but never-
theless minor, part of the code found inside ntdll. dll. This DLL exports no fewer
than 1179 symbols. 249/248 of them belong to the Nt* ( ) /zw* ( ) sets, so there are
still 682 functions left that are not routed through the INT 2Eh gate. Obviously, this
large group of functions doesn't rely on the Windows 2000 kernel. So what purpose
do they serve?

THE C RUNTIME LIBRARY

If you study the symbols in the export section of ntdll. dll, you will find many
lowercase function names that look quite familiar to a C programmer. These well-
known names, such as memcpy ( ) , sprintf ( ) , and qsort ( ) , are members of the
C Runtime Library incorporated into ntdll. dll. The same is true for ntoskrnl. exe,
which features a similar set of C Runtime functions, although these sets are not iden-
tical. Table B-3 in Appendix B lists the union of both sets and points out which ones
are available from which module.

You can link to these functions by simply adding the file ntdll. lib from the
Windows 2000 DDK to the list of import libraries that should be scanned by the linker
during symbol resolution. If you prefer using dialogs, you can choose the Settings-
entry from the Project menu of Visual C/C++, click the Link tab, select the category
General, and append ntdll. dll to the Object/library modules list. Alternatively, you
can add the line #pragma comment (linker, "/defaultlib:ntdll. lib" } somewhere
to your source code. This has the same effect, but has the advantage that other develop-
ers can rebuild your project with default Visual C/C++ settings.

Disassembling the code of some of the C Runtime functions available from
both ntdll. dll and ntoskrnl. exe shows that ntdll. dll does not rely on
ntoskrnl. exe here, like it did with respect to the Native API functions. Instead,
both modules implement the functions separately. The same applies to all other
functions presented in this section. Note that some of these functions in Table B-3
aren't intended for import by name. For example, if you are using the shift opera-
tors » and « on 64-bit LARGE_INTEGER numbers in a kernel-mode driver, the com-
piler and linker will automatically import the _allshr ( ) and _allshi ( ) functions
from ntoskrnl. exe, respectively.

THE EXTENDED RUNTIME LIBRARY

Along with the standard C Runtime, Windows 2000 provides an extended set of run-
time functions. Again, both ntdll. dll and ntoskrnl. exe implement them separately,
and, again, the implemented sets overlap, but don't match exactly. The functions
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belonging to this group share the common name prefix Rtl (for Runtime Library).
Table B-4 in Appendix B lists them all, using the same layout as Table B-3. The Win-
dows 2000 Runtime Library contains helper functions for common tasks that go
beyond the capabilities of C Runtime. For example, some of them handle security
issues, others manipulate Windows 2000-specific data structures, and still others
support memory management. It is hard to understand why Microsoft documents just
115 out of these 406 extremely useful functions in the Windows 2000 DDK.

THE FLOATING-POINT EMULATOR

I'll conclude this gallery of API functions with another function set provided by
ntdll. dll, just to show how many interesting functions are buried inside this
goldmine. Table 2-1 lists a set of names that should look somewhat familiar to
assembly language programmers. Take one of the names starting with e and
strip this prefix—you get an assembly language mnemonic of the floating-point
unit (FPU) built into the i386-compatible CPUs. In fact, ntdll .dll contains a full-
fledged floating-point emulator, represented by the functions in Table 2-1. This
proves again that this DLL is an immense repository of code and almost invites
a system spelunker to disassembly.

TABLE 2-1. The Floating Point Emulator Interface of ntdll. dll

FUNCTION NAMES

eCommonExceptions

eEmulatorlnit

_eF2XMl

_eFABS

_eFADD32

_eFADD64

_eFADDPreg

_eFADDreg

_eFADDtop

_eFCHS

_eFCOM

_eFCOM32

_eFCOM64

_eFCOMP

_eFCOMP32

_eFIST32

_eFISTP16

_eFISTP32

_eFISTP64

_eFISUB16

_eFISUB32

_eFISUBR16

_eFISUBR32

_eFLDl

_eFIDIVR16

_eFIDIVR32

_eFILD16

_eFILD32

_eFILD64

_eFIMUL16

_eFLD64

_eFLD80

_eFLDCW

_eFLDENV

_eFLDL2E

_eFLDLN2

_eFLDPI

_eFLDZ

_eFMUL32

_eFMUL64

_eFMULPreg

_eFMULreg

eFMULtop

_eFPATAN

_eFPREM

_eFSTP32

__eFSTP64

_eFSTP80

_eFSTSW

_eFSUB32

_eFSUB64

_eFSUBPreg

_eFSUBR32

_eFSUBR64

_eFSUBreg

_eFSUBRPreg

_eFSUBRreg

_eFSUBRtop

_eFSUBtop

_eFTST

(continued)
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TABLE 2-1. (continued)

FUNCTION NAMES

_eFCOMP64

_eFCOMPP

_eFCOS

_eFDECSTP

_eFIDIVR16

_eFIDIVR32

_eFILD16

_eFILD32

_eFILD64

_eFIMUL16

_eFIMUL32

_eFINCSTP

_eFINIT

_eFIST16

_eFIMUL32

_eFINCSTP

eFINIT

_eFIST16

_eFIST32

_eFISTP16

_eFISTP32

_eFISTP64

_eFISUB16

_eFISUB32

_eFISUBR16

_eFISUBR32

_eFLDl

_eFLD32

_eFPREMl

_eFPTAN

_eFRNDINT

_eFRSTOR

_eFSAVE

_eFSCALE

_eFSIN

_eFSQRT

_eFST

_eFST32

_eFST64

_eFSTCW

_eFSTENV

_eFSTP

_eFUCOM

_eFUCOMP

eFUCOMPP
. t~Jfc

_eFXAM ' " < '

_eFXCH

_eFXTRACT

_eFYL2X

_eFYL2XPl

eGetStatusWord

NPXEMULATORTABLE

RestoreEmS 7Context

Sa veEm 8 7Context

For more information about the floating-point instruction set, please
consult the original documentation of the Intel CPUs 80386 and up. For example,
the Pentium manuals can be downloaded in PDF format from Intel's Web site at
http://developer.intel.com/design/pentium/manuals/. The manual explaining the machine
code instruction set is called Intel Architecture Software Developer's Manual.
Volume 2: Instruction Set Reference (Intel 1999b). Another great reference book with
detailed FPU information is Robert L. HummePs aged but still applicable i486 hand-
book (Hummel 1992).

OTHER API FUNCTION CATEGORIES

Along with the functions listed explicitly in Appendix B and Table 2-1, ntdll. dll
and ntoskrnl. exe export numerous other functions specific to various components
of the kernel. Rather than add more lengthy tables to this book, I'm including a short
one that lists the available function name prefixes with their associated categories
(Table 2-2). The ntdll. dll and ntoskrnl. exe columns contain the entry N/A (not
applicable) for modules that do not export functions of this category.
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TABLE 2-2. Function Prefix to

PREFIX

_e

Cc

Csr

Dbg

Ex

FsRtl

Hal

Inbv

Init

Interlocked

lo

Kd

Ke

Ki

Ldr

Lpc

Lsa

Mm

Nls

Nt

Ob

Pfx

Po

Ps

READ_REGISTER_

Rtl

Se

WRITE_REGISTER_

Zw

<other>

ntdll.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

'N/A

N/A

N/A

N/A

N/A

Function Category Mapping

ntoskrnl.exe CATEGORY

N/A Floating-point emulator

Cache manager

N/A Client-server runtime library

Debugging support

Executive support

File system runtime library

Hardware Abstraction Layer (HAL)
dispatcher

System initialization/VGA boot
driver (bootvid.dll)

System initialization

Thread-safe variable manipulation

I/O manager

Kernel Debugger support

Kernel routines

Kernel interrupt handling

Image loader

Local Procedure Call (LPC) facility

Local Security Authority (LSA)

Memory manager

National Language Support (NLS)

NT Native API

Object manager

Prefix handling

Power manager

Process support

Read from register address

Windows 2000 runtime library

Security handling

Write to register address

Alternative Native API

Helper functions and C runtime
library

N/A, Not applicable.
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Many kernel functions use a uniform naming scheme of type Prefix
OperationObject ( ) . For example, the function NtQuerylnf ormationFile ( )
belongs to the Native API because of its Nt prefix, and obviously it executes a
Querylnformation operation on a File object. Not all functions obey this
rule, but many do, so it is usually easy to guess what a function does by simply
parsing its name.

FREQUENTLY USED DATA TYPES

When writing software that interacts with the Windows 2000 kernel—whether in
user-mode via ntdll. dll or in kernel-mode via ntoskrnl. exe—you will have to
deal with a couple of basic data types that are rarely seen in the Win32 world.
Many of them appear repeatedly in this book. The following section outlines the
most frequently used types.

INTEGRAL TYPES

Traditionally, integral data types come in several different variations. Neither the
Win32 Platform SDK header files nor the SDK documentation commit themselves
to a special nomenclature—they mix fundamental C/C++ types with several
derived types. Table 2-3 lists the commonly used integral types, showing their
equivalence relationships. In the "MASM" column, the assembly language type
names expected by the Microsoft Macro Assembler (MASM) are shown. The
Win32 Platform SDK defines BYTE, WORD, and DWORD as aliases for the correspond-
ing fundamental C/C++ data types. The columns "Alias #1" and "Alias #2" con-
tain other frequently used aliases. For example, WCHAR represents the basic Unicode
character type. The last column, "Signed," lists the usual aliases of the correspond-
ing signed data types. It is important to keep in mind that ANSI characters of type
CHAR are signed quantities, whereas the Unicode WCHAR is unsigned. This inconsis-
tency can lead to unexpected side effects when the compiler converts these types to
other integral values in arithmetic or logical expressions.

The MASM TBYTE type (read "10-byte") in the last row of Table 2-3 is an
80-bit floating-point number used in high-precision floating-point unit (FPU) oper-
ations. Microsoft Visual C/C++ doesn't offer an appropriate fundamental data type
to Win32 programs—the 80-bit long double type featured by Microsoft's 16-bit
compilers is now treated like a double, that is, i.e. a signed 64-bit number with an
11-bit exponent and a 52-bit mantissa, according to the IEEE real*8 specification.
Please note that the MASM TBYTE type has nothing to do with the Win32 TBYTE
(read "text byte"), which is a convenient macro that can define a CHAR or WCHAR
type, depending on the absence or presence of a #def ine UNICODE line in the
source code.



FREQUENTLY USED DATA TYPES 111

The Windows 2000 Device Driver Kit (DDK) is more consistent in its use of
aliases. You will usually come across the type names in the "Alias #1" and "Signed"
columns throughout the header files and documentation. As a long-term assembly
language programmer, I've grown accustomed to using the MASM types. Therefore,
you will frequently find the names listed in the "MASM" column in the header files
on the companion CD of this book.

Because 64-bit integer handling is somewhat awkward in a 32-bit programming
environment, Windows 2000 usually does not employ the fundamental int64 type
and its derivatives. Instead, the DDK header file ntdef. h defines a neat union/struc-
ture combination that allows different interpretations of a 64-bit quantity as either a
pair of 32-bit chunks or a 64-bit monolith. Listing 2-3 shows the definition of the
LARGE_INTEGER and ULARGE_iNTEGER types, representing signed and unsigned inte-
gers, respectively. The sign is controlled by using LONGLONG/ULONGLONG for the 64-bit
QuadPart member or LONG/ULONG for the 32-bit HighPart member.

STRINGS
In Win32 programming, the basic types PSTR and PWSTR are commonly used for
ANSI and Unicode strings. PSTR is defined as CHAR* , and PWSTR is a WCHAR* (see
Table 2-3). Depending on the absence or presence of the #def ine UNICODE directive
in the source code, the additional PTSTR pseudo-type evaluates to PSTR or PWSTR,
respectively, allowing maintenance of ANSI and Unicode versions of an application
with a single set of source files. Basically, these strings are simply pointers to zero-
terminated CHAR or WCHAR arrays. If you are working with the Windows 2000 kernel,
you have to deal with quite different string representations. The most common type
is the UNICODE_STRING, which is a three-part structure defined in Listing 2-4.

TABLE 2-3. Equivalent Integral Data Types

BITS MASM FUNDAMENTAL ALIAS #1 ALIAS #2 SIGNED

8 BYTE unsigned char UCHAR CHAR

16 WORD unsigned short USHORT WCHAR SHORT

32 DWORD unsigned long ULONG LONG

32 DWORD unsigned int UINT INT

64 QWORD unsigned _int64 ULONGLONG DWORDLONG LONGLONG

80 TBYTE N/A
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LISTING 2-3. LARGE_INTEGER and ULARGE_INTEGER

LISTING 2-4. Structured String Types

typedef union _LARGE_INTEGER

{
struct

{

ULONG LowPart;

LONG HighPart;

};

LONGLONG QuadPart;

}

LARGE_INTEGER , * PULARGE_INTEGER ;

typedef union _ULARGE_INTEGER

{

struct

{

ULONG LowPart;

ULONG HighPart;

>'•
ULONGLONG QuadPart;

}

U LARGE_INTEGER, *PULARGE_INTEGER;

typedef struct _UNICODE_STRING

{
USHORT Length;

USHORT MaximumLength;

PWSTR Buffer;

}

UNICODE_STRING , * PUNICODE_STRING ;

typedef struct _STRING

{
USHORT Length;

USHORT MaximumLength;

PCHAR Buffer;

}

STRING, *PSTRING;

typedef STRING ANSI_STRING, *PANSI_STRING;

typedef STRING OEM_STRING, *POEM_STRING;
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The Length member specifies the current length of the string in bytes—not charac-
ters! The MaximumLength member indicates the size of the memory block addressed by
the Buffer member where the string data resides, again in bytes, not characters. Because
Unicode characters are 16 bits wide, the Length is always twice the number of string
characters. Usually, the string pointed to by the Buffer member is zero-terminated.
However, some kernel-mode modules might rely entirely on the Length value and won't
take care of adding the terminating zero character, so be careful in case of doubt.

The ANSI version of the Windows 2000 string structure is simply called
STRING, as shown in Listing 2-4. For convenience, ntdef.h also defines the
ANSI_STRING and OEM_STRING aliases to distinguish 8-byte strings containing charac-
ters of different code pages (default ANSI code page: 1252; default OEM code page:
437). However, the predominant string type of the Windows 2000 kernel is the UNI-
CODE_STRING. You will come across 8-bit strings only occasionally.

In Figure 2-3,1 have drawn two typical UNICODE_STRING examples. The sample
on the left-hand side consists of two independent memory blocks: a UNICODE_STRING
structure and an array of 16-bit PWCHAR Unicode characters. This is probably the
most common string type found inside the Windows 2000 data areas. On the right-
hand side, I have added a frequently occurring special case, in which both the
UNICODE_STRING and the PWCHAR are part of the same memory block. Several kernel
functions, including some inside the Native API, return structured system informa-
tion in contiguous memory blocks. If the data includes strings, they are often stored
as embedded UNICODE_STRINGS , as shown in the right half of Figure 2-3. For exam-
ple, the NtQuerySysteminf ormation ( ) function used in the sample code of Chapter 1
makes heavy use of this special string representation.

These string structures don't need to be manipulated manually, ntdll. dll
and ntoskrnl. exe export a rich set of runtime API functions such as RtlCreat
UnicodeString() , Rtl lnitUnicodeString(), RtlCopyUnicodeString() ,
and the like. Usually, an equivalent function is available for the STRING and
ANSI_STRING types as well. Many of these functions are officially documented in
the DDK, but some are not. However, it is usually easy to guess what the undocu-
mented string functions do and what arguments they take. The main advantage of
UNICODE_STRING and its siblings is the implicit specification of the size of the
buffer containing the string. If you are passing a UNICODE_STRING to a function
that converts its value in place, possibly increasing its length, this function simply
has to examine the MaximumLength member to find out whether enough space is
left for the result.
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FIGURE 2-3. Examples O/'UNICODE_STRINGS

STRUCTURES
Several kernel API functions that work with objects expect them to be specified by
an appropriately filled OBJECT__ATTRIBUTES structure, outlined in Listing 2-5. For
example, the NtopenFile ( ) function doesn't have a PWSTR or PUNICODE_STRING
argument for the path of the file to be opened. Instead, the obj ectName member of
an OBJECT_ATTRIBUTES structure indicates the path. Usually, the setup of this structure
is trivial. Along with the Obj ectName, the Length and Attributes members are
required. The Length must be set to sizeof (OBJECT_ATTRIBUTES) , and the
Attributes are a combination of OBJ_* values from ntdef. h, for example,
OBJ_CASE_INSENSITIVE if the object name should be matched without regard to
character case. Of course, the obj ectName is a UNICODE_STRING pointer, not a plain
PWSTR . The remaining members can be set to NULL as long as they aren't needed.
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Whereas the OBJECT_ATTRIBUTES structure specifies details about the input data
of an API function, the IO_STATUS_BLOCK structure in Listing 2-6 provides information
about the outcome of the requested operation. This structure is quite simple—the
status member contains an NTSTATUS code, which can assume the value STATUS_
SUCCESS or any of the error codes defined in the DDK header file ntstatus. h. The
information member provides additional request-specific data in case of success. For
example, if the function has returned a data block, this member is typically set to the
size of this block.

Another ubiquitous Windows 2000 data type is the LIST_ENTRY structure,
shown in Listing 2-7. The kernel uses this simple structure to arrange objects in
doubly linked lists. It is quite common that one object is part of several lists,
resulting in multiple LIST_ENTRY structures used in the object's definition. The
Flink member is the forward link, pointing to the next item, and the Blink mem-
ber is the backward link, addressing the previous one. The links always point to
another LIST_ENTRY, not to the owner object itself. Usually, the linked lists are
circular, that is, the last Flink points to the first LIST_ENTRY in the chain, and the
first Blink points to the end of the list. This makes it easy to traverse a linked list
in both directions from either end or even from a list item somewhere in the mid-
dle. If a program walks down a list of objects, it has to save the address of the
starting point to find out when it is time to stop. If a list contains just a single
entry, its LIST_ENTRY must reference itself—that is, both the Flink and Blink
members point to their own LIST_ENTRY.

LISTING 2-5. The OBJECT ATTRIBUTES structure

LISTING 2-6. The IO_STATUS_BLOCK structure

typedef struct _OBJECT_ATTRIBUTES

{

ULONG Length;

HANDLE RootDirectory;

PUNICODE_STRING ObjectName;

ULONG Attributes;

PVOID SecurityDescriptor;

PVOID SecurityQualityOfService;

}

OBJECT_ATTRIBDTES, *POBJECT_ ATTRIBUTES;

typedef struct _IO_STATUS_BLOCK

{

NTSTATDS Status;

ULONG Information;

}
IO_STATUS_BLOCK , * PIO_STATUS_BLOCK ;
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LISTING 2-7. The LIST_ENTRY Structure

Figure 2-4 illustrates the relationships between the members of object lists.
Objects Al, A2, and A3 are part of a three-item list. Note how A3 . Flink points
back to Al and Al .Blink points to A3. Object Bl on the right-hand side is the only
member of an orphaned list. Hence, its Flink and Blink members point to the
same address inside Object Bl. Typical examples of doubly linked lists are process
and thread lists. The internal variable PsActiveProcessHead is a LIST_ENTRY
structure inside the . data section of ntoskrni. exe that addresses the first (and—
by virtue of its Blink pointer—also the last) member of the system's process list.
You can walk down this list in a Kernel Debugger console window by first issuing
the command dd PsActiveProcessHead, and then using copy and paste to set up
subsequent dd commands for the Flink or Blink values. Of course, this is an
annoying way of exploring Windows 2000 processes, but it might help gaining
insight into the basic system architecture. The Windows 2000 Native API
features much more convenient ways of enumerating processes, such as
NTQuerySystemInformation() function.

FIGURE 2-4. Examples of Doubly Linked Lists

typedef struct _LIST_ENTRY

{

Struct _LIST_ENTRY *Flink;

Struct _LIST_ENTRY *Blink;

}

LIST_ENTRY, *PLIST_ENTRY;
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API functions operating on processes and threads, such as NtopenProcess ( )
and NtopenThread ( ) , use the CLiENT_io structure shown in Listing 2-8 to jointly spec-
ify process and thread IDs. Although defined as HANDLE types, the uniqueProcess and
uniqueThread members aren't handles in the strict sense. Instead, they are integral
process and thread IDs, as returned by the standard Win32 API functions GetCurrent-
Processid ( ) and GetCurrentThreadid ( ) , which have DWORD return values.

The CLIENT_ID structure is also used by the Windows 2000 Executive to
globally identify a thread in the system. For example, if you are issuing the Kernel
Debugger's ! thread command to display the parameters of the current thread, it
will list its CLIENT_ID in the first output line as "Cid ppp.ttt," where "ppp" is the
value of the UniqueProcess member, and "ttt" is the UniqueThread ID.

INTERFACING TO THE NATIVE API

For kernel-mode drivers, interfacing to the Native API is normal, just as calling
Win32 API functions is in a user-mode application. The header and library files
provided by the Windows 2000 DDK contain everything needed to call into the
Native API exposed by ntoskrnl. exe. On the other hand, the Win32 Platform
SDK contains almost no support for applications that want to use Native API func-
tions exported by ntdll .dll. I say "almost" because one important item is actu-
ally included: It is the import library ntdll. lib, supplied in the \Program Files\
Microsoft Platform SDKALib directory. Without the library, it would be difficult
to call functions exported by ntdll. dll.

ADDING THE NTDLL.DLL IMPORT LIBRARY TO A PROJECT

Before you can successfully compile and link user-mode code that uses ntdll. dll
API functions, you must consider the following four important points:

1. The Platform SDK header files don't contain prototypes for these functions.

2. Several basic data structures used by these functions are missing from the
SDK files.

LISTING 2-8. The CLIENT_ID Structure

typedef struct _CLIENT_ID

{
HANDLE UniqueProcess;

HANDLE UniqueThread;

)
CLIENT_ID, *PCLIENT_ID;
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3. The SDK and DDK header files are incompatible—you cannot add
#include <ntddk.h> to your Win32 C source files.

4. ntdll. lib is not included in the default list of import libraries offered by
Visual C/C++.

The last problem is easily solved. Just edit the project settings of your applica-
tion, or add the line #pragma comment (linker, "/defaultlib:ntdll.lib") to
your source code, as explained in the section The Windows 200 Runtime Library ear-
lier in this chapter. This linker pragma adds ntdll. lib to the /def auitlib settings
of the linker command at compile time. The problem with the missing definitions is
much more difficult. Because it is not possible to merge the SDK and DDK header
files in programs written in plain C, the least expensive solution is to write a custom
header file that contains just as many definitions as needed to call the required
ntdll .dll API functions. Fortunately, you don't have to start from scratch. The
w2k_def .h file in the \src\common\include directory of the sample CD contains
much of the basic information you may need. This header file will play an important
role in Chapters 6 and 7. Because it is designed to be compatible to both user-mode
and kernel-mode projects, you must insert the line #def ine _USER_MODE_ somewhere
before the #include <w2k_def. h> line in user-mode code to enable the definitions
that are present in the DDK but missing from the SDK.

Considerable information about Native API programming has already been
published elsewhere. Three good sources of detailed information on this topic are
listed below in chronological order of publication:

• Mark Russinovich has published an article titled "Inside the Native API"
on the sysinternals.com Web site, available for download at
http://www.sysinternals.com/ntdll.htm (Russinovich 1998).

• The November 1999 issue of Dr. Dobb's Journal (DDJ) contains my article
"Inside Windows NT System Data," which details, among other things,
how to interface to ntdll. dll and provides lots of sample code that
facilitates this task (Schreiber 1999). The sample code can be downloaded
from the DDJ Web site at http://www.ddi.com/ftp/1999/1999 11/ntinfo.zip.
Please note that this article targets Windows NT 4.0 only.

• Gary Nebbett's recently published Native API bible, Windows NT/2000
Native API Reference (Nebbett 2000), doesn't contain much sample code,
but it does feature complete coverage of all Native API functions available in
Windows NT 4.0 and Windows 2000, including the data structures and
other definitions they require. It is an ideal complement to the above articles.
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The w2k_cali. dll sample library, introduced in Chapter 6, demonstrates the
typical usage of w2k_def. h. Chapter 6 also discusses an alternative method to call
into the Windows 2000 kernel from user-mode that isn't restricted to the Native API
function set. Actually, this trick is not restricted to ntoskrnl. exe—it is applicable to
any module loaded into kernel memory that either exports API functions or comes
with matching . dbg or . pdb symbol files. As you see, there is plenty of interesting
material waiting for you in the remaining chapters of this book. But, before we get
there, we'll discuss some fundamental concepts and techniques.



C H A P T E R 3

Writing
Kernel-Mode
Drivers

I n the next chapters, we will frequently have to access system resources that are avail-
able in kernel-mode only. Large portions of the sample code are designed as kernel-

mode driver routines. Therefore, some basic knowledge about the development of this
type of software is required. Because I cannot assume that all readers already have this
expertise, I will insert here a short introduction to kernel-mode programming that
focuses on the usage of a driver wizard found on the accompanying CD.

This chapter also discusses the basics of the Windows 2000 Service Control
Manager that allow loading, controlling, and unloading drivers at runtime, resulting
in wonderfully short change-build-test turnaround cycles. The title of this chapter
might be a bit misleading—the word driver is usually associated with low-level soft-
ware that controls some piece of hardware. In fact, many kernel-mode programmers
do just that all day long. However, the layered driver model of Windows 2000 allows
much more than this. Kernel-mode drivers can do arbitrary complex tasks and might
even act like high-level user-mode DLLs, except that they are running on a higher
CPU privilege level and use a different programming interface. In this book, the dri-
ver paradigm will not be applied to any hardware. Instead, we will use this powerful
programming technique to spy on Windows 2000 internals, using kernel-mode dri-
vers as a shuttle to fly from the small world of user-mode to the outer space of the
Windows 2000 kernel.

CREATING A DRIVER SKELETON

Even developers who have been writing Win32 applications or libraries for a long
time tend to feel like absolute beginners as soon as they have to write their first ker-
nel-mode driver. The reason for this is that kernel-mode code runs in a completely
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different operating system environment. A Win32 programmer works exclusively
with a set of system components that belong to a subsystem of Windows 2000,
named Win32. Other programmers might prefer to write POSIX or OS/2 applica-
tions, which are also supported by Windows 2000 by means of additional subsys-
tems. Thanks to its subsystem concept, Windows 2000 acts like a chameleon—it can
emulate various operating systems by exposing their application interfaces in the
form of subsystems. Contrary to this, kernel-mode modules are located somewhere
below this layer, using a more basic operating system interface. Because there are no
more subsystems on this system level, kernel-mode code can "see" the real Windows
2000 operating system. The interface they are talking to is the "final frontier." Of
course, it is not absolutely correct that the kernel-mode zone is free of subsystems. In
Chapter 2, we saw that the win32k. sys module is a kernel-mode branch of the
Win32 GUI and Window Manager, installed there for performance reasons. How-
ever, only a small part of the API functions exposed by wins 2k. sys reappear in
gdi32 . dll and user32 . dii as Win32 API functions, so Win32K is more than just a
Win32 foot on kernel-mode soil. It could be regarded as a high-performance display
engine kernel as well.

THE WINDOWS 2000 DEVICE DRIVER KIT

Because kernel-mode programming works on a different system interface, the usual
header and import library files used in Win32 programming aren't of use here. For
Win32 development, Microsoft provides the Platform Software Development Kit
(SDK). For kernel-mode drivers, the Windows 2000 Device Driver Kit (DDK) is
required. Along with documentation, the DDK provides special header files and
import libraries needed to interface the Windows 2000 kernel modules. After
installing the DDK, your next step should be to open Microsoft Visual C to add the
DDK file paths to the directory lists of the compiler and linker. From the main menu,
select Tools and Options..., then click on the Directories tab. From the Show directo-
ries for: drop-down list, select Include files and add the appropriate DDK path to the
list, as shown in Figure 3-1. By default, the DDK is installed into a base directory
named \NTDDK, and the included files are located in the \NTDDK\inc subdirectory.
After entering the path, use the up arrow to move it to the position of your
choice—preferably on Top Two right after the Platform SDK. Always keep the origi-
nal Microsoft Visual Studio files at the end of the list, because many of them are
superseded by more recent SDK and DDK files.

After adding the base directory of the DDK header files, do the same for the
import libraries. The DDK comes with two sets of files, one for free (release)
builds, and another one for checked (debug) builds. The corresponding subdirecto-
ries are \NTDDK\l ibfre \ i386 and \NTDDK\libchk\i386, respectively. Figure 3-2
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FIGURE 3-1. Adding the DDK Header File Path

FIGURE 3-2. Adding the DDK Import Library Path
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shows an example. To enter the path, select Library files from the Show directories
for: list first. After you are done, move this entry to an appropriate position using
the up arrow.

The programming environment of the DDK differs somewhat from the Win32
model. The following list points out some of the most obvious differences:

• For Win32 programs, the main header file that has to be included is
windows. h. In kernel-mode driver code, this file is not applicable. It is
replaced by ntddk. h.

• The main entry point function is called DriverEntry ( ) , not winMain ( ) or
main ( ) . Its prototype is shown in Listing 3-1.

• Be aware that some of the common Win32 data types, such as BYTE,
WORD, and DWORD, are not available. The DDK prefers UCHAR, USHORT,
ULONG, and the like. However, it is easy to define your favorite types, as
done exemplary in Listing 3-2.

Three important differences between the Windows NT 4.0 and Windows 2000
versions of the DDK should be noted as well:

• Although the base directory of the Windows NT 4.0 DDK is called \DDK
by default, the Windows 2000 DDK now uses the default name \NTDDK .

• In the Windows NT 4.0 DDK, the main header file ntddk. h resides in the
base directory. In the Windows 2000 DDK, this file has moved to the
subdirectory ddk of the base directory.

• The paths of the import library files have changed as well: lib\i386\f ree
has become Iibfre\i386, and Iib\i386\checked has been replaced by
Iibchk\i386.

I am not sure whether this reshuffling and renaming was really necessary, but
we do have to live with it now.

LISTING 3-1. Prototype of the DriverEntry ( ) Function

NTSTATUS DriverEntry ( PDRIVER_OBJECT pDriverObject ,

PUNICODE_STRING pusRegistryPath) ;
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LISTING 3-2. Defining Common Win32 Data Types

A CUSTOMIZABLE DRIVER WIZARD

The main problem with kernel-mode drivers is that Visual C/C++ doesn't provide a
wizard for projects of this kind. None of the various project types offered by the
File/New dialog is suited for drivers. Fortunately, the Microsoft Developer Network
(MSDN) Library contains a series of great articles about Windows NT kernel-mode
driver development, written between 1994 and 1995 by Ruediger R. Asche. Two of
them give detailed instructions on how to add a custom driver wizard to Visual
C/C++, with sample code and application notes (Asche 1995a, 1995b). These articles
have been of immense help to me, and although the output of the original wizard did-
n't fit all my needs, it was an ideal starting point. The kernel-mode driver wizard I will
present now is based on output files generated by Ruediger Asche's original wizard.

My driver wizard is included with full source code on the companion CD of this
book in the directory tree \src\w2k_wiz . By reading the source files, you will find
that its real title is "SBS Windows 2000 Code Wizard." In fact, this is a general-
purpose Windows 2000 program skeleton generator that can produce several pro-
gram types, including Win32 DLLs and applications. However, the configuration
files on the CD are tailored to kernel-mode driver development. Essentially, my wiz-
ard is a file converter that reads in a set of files, converts them by applying some sim-
ple rules, and writes the results back to another set of files. The input files are
templates, and the output files are C project files. By modifying the templates, the
driver wizard can be turned into a DLL wizard, and so on. Up to seven templates can
be supplied (if one is missing, a noncritical error is reported):

• Files with the extension . tw are workspace templates and will be saved as
Microsoft Developer Studio Workspace Files with extension . dsw. You
probably know this file type from the File/Open Workspace... menu
command of Visual C/C++, which requests a . dsw file to be specified.

• Files with the extension . tp are project templates and will be saved as
Microsoft Developer Studio Project Files with extension .dsp. Project files
are referenced by the associated workspace files and contain all build
settings of the project for all configurations (e.g., Release and Debug).

typedef UCHAR BYTE, *PBYTE;

typedef USHORT WORD, *PWORD;

typedef ULONG DWORD, *PDWORD;
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• Files with the extensions . tc, . th, . tr, and . td are C source files and
will become files of type . c, .h, .re, and . def. I am sure that everyone
knows the purpose of these files.

• Files with the extension . ti are icon files and are saved unchanged with
extension . ico. This template is just a dummy icon included with the
wizard to prevent the resource compiler from reporting an error. You
should edit or replace it by your own creation after running the wizard.

This seven-piece set of files is the minimum requirement of a new project. The
. def file is a somewhat old-fashioned way of exporting API functions from a DLL,
but I like it more than the declspec (dllexport) method. Because drivers usually
don't export functions, I have omitted the . td template, which results in a benign
error reported by the wizard. I also could have omitted the resource script and the
icon, but experience shows that both are nice to have. Moreover, the default . re file
output by the wizard contains a full-featured personalized version resource, con-
structed from your individual configuration settings. The applied conversion rules
are simple, consisting of a short list of string substitutions. While scanning a template
file, the converter looks for escape sequences consisting of character pairs in which
the first one is a percent sign. If it detects one, it decides which action to take by eval-
uating the second character. Table 3-1 lists the recognized escape sequences.

TABLE 3-1. The Wizard's String Substitution Rules

INPUT OUTPUT

%n Project name (original notation)

%N Project name (uppercase notation)

%s Fully qualified path of the w2k_wiz.ini file

%d Current day (always two digits)

%m Current month (always two digits)

%y Current year (always four digits)

%t Default project description, as defined in w2k_wiz.ini

%c Author's company name, as defined in w2k_wiz.ini

%a Author's name, as defined in w2k_wiz.ini

%e Author's email address, as defined in w2k_wiz.ini

%p Default ProgID prefix, as defined in w2k_wiz.ini

%i DDK header file path, as defined in w2k_wiz.ini

%\ DDK import library path (release configuration), as defined in w2k_wiz.ini

%L DDK import library path (debug configuration), as defined in w2k_wiz.ini

%% % (escapement for a single percent character)

%<other> Copied unchanged to the output file
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Table 3-1 contains several references to the configuration file w2k_wiz. ini. Its
default contents are shown in Example 3-1. Before using the wizard, you should copy
w2k_wiz.exe, w2k_wiz. ini, and all w2k_wiz. t* template files from the CD's
\src\w2k_wiz\release directory to your hard disk and edit the configuration file,
replacing the values in angular brackets with your personal settings. You should also
set the Include, Free, and checked values to match your DDK setup configuration.
If you are using Visual C/C++ Version 6.0, the Root entry can remain unchanged. If
not, set its value to the registry key where the base directory of your projects is stored.
If this value ends with a backslash, it is interpreted as the default value of the specified
registry key. Otherwise, the token following the last backslash should denote a named
value of the key specified by the remaining character sequence. In Example 3-1, the
key is HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Directories, and
its value WorkspaceDir stores the basic workspace directory.

Invocation of the wizard is: Just type w2k_wiz MyDriver, and it will generate a
project folder named MyDriver in the current directory, containing the files
MyDriver.dsw, MyDriver.dsp, MyDriver.c, MyDriver.h, MyDriver.re, and
MyDriver. ico. If you specify the project name with a preceding path, the project
folder will be created at the specified location. Another legal command option is the
asterisk, such as in w2k_wiz *MyDriver. In this case, the wizard will not create the
project folder in the current directory, but queries the registry for the default base
directory maintained by Visual C/C++, using the Root entry in w2k_wiz . ini. This is
probably the most convenient command variant and is the one I usually use.

; w2k_wiz.ini

; 08-27-2000 Sven B. Schreiber

; sbs@orgon.com

[Settings]

Text = <SBS Windows 2000 Code Wizard Project>

Company ~ <MyCompany>

Author - <MyName>

Email - <my@email>

Prefix - <MyPrefix>

Include = E:\NTDDK\inc

Free = E:\NTDDK\libfre\i386

Checked = E:\NTDDK\libchk\i386

Root = HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Directories\WorkspaceDir

EXAMPLE 3-1. Personal Settings Supported by the Wizard
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The wizard always looks for its configuration and template files in the direc-
tory of the executable. Therefore, you can keep several copies of the wizard with
different settings on your disk, provided that they reside in individual directories or
have different base names. The files on the CD are preset for simple kernel-mode
driver projects. You can customize all files to fit your needs, keeping separate copies
for drivers, Win32 applications, DLLs, or whatever type of Windows 2000 code
you write.

RUNNING THE DRIVER WIZARD

Now it is time to try the driver wizard. The example below resulted from the com-
mand w2k_wiz *TestDrv entered at a Windows 2000 console prompt. This should
create a project named TestDrv in the default workspace folder of Visual C/C++.
Example 3-2 shows the status messages displayed by the program on the screen while
it is converting files.

EXAMPLE 3-2. Running the Windows 2000 Code Wizard

D:\>w2k_wiz *TestDrv

// w2k_wiz.exe

// SBS Windows 2000 Code Wizard VI. 00

// 08-27-2000 Sven B. Schreiber

// sbs8orgon.com

Project D:\Program Files\DevStudio\MyProjects\TestDrv\

Loading D:\etc32\w2k_wiz.tc ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv. c ... OK

Loading D: \etc32\w2k_wiz.td ... ERROR

Loading D:\etc32\w2k_wiz.th ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.h ... OK

Loading D:\etc32\w2k_wiz.ti ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv. ico ... OK

Loading D:\etc32\w2k_wiz.tp ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.dsp ... OK

Loading D: \etc32\w2k_wiz.tr ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.rc ... OK

Loading D:\etc32\w2k_wiz.tw ... OK

Writing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.dsw ... OK
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Obviously, all operations were completed without error except for the . td to
.def conversion, which is a benign error condition. The driver skeleton produced by
the wizard doesn't require a . def file, so there is no need for a . td template. Now it
should be possible to open the new workspace in Visual C/C++, using the File/Open
Workspace... menu command. Indeed, there is a new folder named TestDrv, and it
contains a workspace file named TestDrv. dsw that can be opened without problem.
Next, you should select the active configuration for your builds. The . dsp file gener-
ated by the driver wizard defines the following two configurations:

1. Win2K kernel-mode driver (debug)

2. Win2K kernel-mode driver (release)

By default, the debug configuration is selected, but you can switch configurations
at any time by choosing Build/Set Active Configuration... from the Visual C/C++ menu.
Next, you should copy the file \src\common\include\Drvinfo. h from the CD to one
of your header file directories, and open the TestDrv. c, TestDrv. h, and TestDrv. re
files for editing. When opening TestDrv. re, be sure to open it as a text file (Figure 3-3),
because it uses complex macros from Drvinf o. h that cause the resource editor to die
with an exception. This nasty problem was introduced with Visual C/C++ 5.0, as far as
I remember, and has not yet been fixed. Contrary to the editor, the resource compiler
doesn't have problems with complex resource macros.

FIGURE 3-3. Opening the Driver Source Files in Text Mode
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Now everything should be set up for the first build. In Example 3-3,1 have
attempted to build a release version of the new driver by selecting Build/Rebuild All
from the Visual C/C++ menu, and it seems that everything works fine. By the way,
the ellipses ending the first two lines of the build command output indicate that I
have truncated them.

The linker creates an executable file named TestDrv. sys in the Debug or
Release subdirectory of the project folder, depending on the chosen build configura-
tion. The release version of the test driver is 5.5 KB in size, and the debug version is
8 KB. You can use the Multi-Format Visual Disassembler (MFVDasm) or the PE
and COFF File Viewer (PEview) on the companion CD to verify that the resulting
TestDrv. sys file contains valid code and data.

EXAMPLE 3-3. Building the Release Version of the Test Driver

INSIDE THE DRIVER SKELETON
Listing 3-3 shows the TestDrv. c file emitted by the wizard. The associated header
file TestDrv.h is shown in Listing 3-4. In Listing 3-3, please note the <MyName> and
<MyCompany> tags in the heading and in the fourth line of the disclaimer. If the
Author and Company entries in w2k_wiz. ini are set appropriately, your own name
and company strings will go here. Also note that the current date appears in the
heading, as well as in the revision history. (Listing 3-3 was generated on August 27,
2000, so the date is correct.) More values from the wizard's configuration file are
found in the PROGRAM IDENTIFICATION section of Listing 3-4.

Deleting intermediate files and output files for project 'TestDrv - win2K . . .

•- Configuration: TestDrv - Win2K kernel-mode driver (release) ...

Compiling resources. . .

Compiling. . .

TestDrv. c

Linking. . .

TestDrv. sys - 0 error(s), 0 warning(s)
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// TestDrv.c

// 08-27-2000 <MyName>

// Copyright © 2000 <MyCompany>

Idefine _TESTDRV_SYS_

((include <ddk\ntddk.h>

((include "TestDrv.h"

// DISCLAIMER

/*

This software is provided "as is" and any express or implied

warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed.

In no event shall the author <MyName> be liable for any direct,

indirect, incidental, special, exemplary, or consequential

damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business

interruption) however caused and on any theory of liability, whether

in contract, strict liability, or tort (including negligence

or otherwise} arising in any way out of the use of this software,

even if advised of the possibility of such damage.

V

// REVISION HISTORY

/*

// 08-27-2000 VI. 00 Original version.

*/

// GLOBAL DATA

PRESET_UNICODE_STRING (usDeviceName, CSTRING (DRV_DEVICE) ) ;

PRESET_UNICODE_STRING (usSymbolicLinkName, CSTRING (DRV_LINK ) ) ;

PDEVICE_OBJECT gpDeviceObj ect = NULL;

PDEVICE_CONTEXT gpDeviceContext = NULL;

// =================================================================

// DISCARDABLE FUNCTIONS

(continued)
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NTSTATUS Driverlnitialize ( PDRIVER_OBJECT pDriverObject ,

PUNICODE^STRING pusRegistryPath) ;

NTSTATUS DriverEntry ( PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath) ;

ttifdef ALLOC_PRAGMA

ttpragma alloc_text (INIT, Driverlnitialize}

^pragma alloc_text (INIT, DriverEntry)

#endif

// DEVICE REQUEST HANDLER

NTSTATUS DeviceDispatcher ( PDEVICE_CONTEXT pDeviceContext ,

PIRP plrp)

{

PIO_STACK_LOCATION pisl;

DWORD dlnfo = 0;

NTSTATUS ns = STATUS_NOT_IMPLEMENTED;

pisl = loGetCurrentlrpStackLocation (plrp) ;

switch (pisl->MajorFunction)

{

case IRP_MJ_CREATE :

case IRP_MJ_CLEANUP :

case IRP_MJ_CLOSE:

{

ns = STATUS_SUCCESS;

break;

)

}

plrp->lostatus. Status = ns;

plrp->lostatus. Information = dlnfo;

loCompleteRequest (plrp, IO_NO_INCREMENT) ;

return ns ;

}

// DRIVER REQUEST HANDLER

NTSTATUS DriverDispatcher (PDEVICE_OBJECT pDeviceObject ,

PIRP plrp)

{
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return (pDeviceObject == gpDeviceObject

? DeviceDispatcher (gpDeviceContext , plrp)

: STATUS_INVALID_PARAMETER_1 ) ;

}

//

void DriverUnload { PDRIVER_OBJECT pDriverObject)

{

loDeleteSymbolicLink (kusSymbolicLinkName) ;

loDeleteDevice (gpDeviceObject) ;

return;

}

// DRIVER INITIALIZATION
II

NTSTATUS Driverlnitialize ( PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath)

{
PDEVICE_OBJECT pDeviceObject = NULL;

NTSTATUS ns = STATUS_DEVICE_CONFIGURATION_ERROR;

if ( (ns = loCreateDevice (pDriverObject, DEVICE_CONTEXT_,

kusDeviceName, FILE_DEVICE_CUSTOM,

0, FALSE, SpDeviceObject) )

== STATUS_SUCCESS)

t

if ( (ns = loCreateSymbolicLink {ScusSynibolicLinkName,

&usDeviceName) }

== STATUS_SUCCESS)

{

gpDeviceObject = pDeviceObject;

gpDeviceContext = pDeviceObject->DeviceExtension;

gpDeviceContext->pDriverObject = pDriverObject;

gpDeviceContext->pDeviceObject = pDeviceObject;

}

else

{

loDeleteDevice (pDeviceObject);

}

}

return ns;

}

/ /

NTSTATUS DriverEntry ( PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath)

{

(continued)
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LISTING 3-3. The Source Code of the Driver Skeleton

The C code of the driver skeleton in Listings 3-3 and 3-4 contains some com-
mon boilerplate code that is shared by all kernel-mode drivers I have written so far. I
have designed the wizard to be as customizable as possible. Feel free to change the

PDRIVER_DISPATCH *ppdd;

NTSTATUS ns = STATUS_DEVICE_CONFIGURATION_ERROR;

if ( (ns = Driverlnitialize (pDriverObject , pusRegistryPath) )

== STATUS_SUCCESS)

{
ppdd = pDriverObject->MajorFunction;

ppdd [ IRP_MJ_CREATE ] =

ppdd [IRP_MJ_CREATE_NAMED_PIPE ] =

ppdd [IRP_MJ_CLOSE ] =

ppdd [IRP_MJ_READ ] =

ppdd [ IRP_MJ_WRITE ] =

ppdd [IRP_MJ_QUERY_INFORMATION ] =

ppdd [ IRP_MJ_SET_INFORMATION ] =

ppdd [IRP_MJ_QUERY_EA ] =

ppdd [ IRP_MJ_SET_EA ] =

ppdd [ IRP_MJ_FLUSH_BUFFERS ] =

ppdd [IRP_MJ_QUERY_VOLUME_INFORMATION] =

ppdd [IRP_MJ_SET_VOLUME_INFORMATION ] =

ppdd [ IRP_MJ_DIRECTORY_CONTROL ] =

ppdd [IRP_MJ_FILE_SYSTEM_CONTROL ] =

ppdd [ IRP_MJ_DEVICE_CONTROL 1 =

ppdd [IRP_MJ_INTERNAL_DEVICE_CONTROL ] =

ppdd [IRP_MJ_SHUTDOWN ] =

ppdd [ IRP_MJ_LOCK_CONTROL ] =

ppdd [IRP_MJ_CLEANUP ] =

ppdd [ IRP_MJ_CREATE_MAILSLOT ] =

ppdd [IRP_MJ_QUERY_SECURITY ] =

ppdd [IRP_MJ_SET_SECURITY ] =

ppdd [ IRP_MJ_POWER ] =

ppdd [ IRP_MJ_SYSTEM_CONTROL ] =

ppdd [IRP_MJ_DEVICE_CHANGE ] =

ppdd [ IRP_MJ_QUERY_QUOTA ] =

ppdd [ IRP_MJ_SET_QUOTA ] =

ppdd [IRP_MJ_PNP ] = DriverDispatcher;

pDriverObject->DriverUnload = Driver-Unload;

return ns;

// END OF PROGRAM
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/ / TestDrv.h

// 08-27-2000 <MyName>

// Copyright © 2000 <MyCompany>

// PROGRAM IDENTIFICATION

(define DRV_BUILD 1

((define DRV_VERSION_HIGH 1

(define DRV_VERSION_LOW 0

//

(define DRV_DAY 27

(define DRV_MONTH 08

(define DRV_YEAR 2000

// Customize these settings by editing the configuration file

// D:\etc32\w2k_wiz. ini

(define DRV_MODULE TestDrv

(define DRV_NAME <SBS Windows 2000 Code Wizard Project>

(define DRV_COMPANY <MyCompany>

(define DRV_AUTHOR <MyName>

(define DRV_EMAIL <my@email>

(define DRV_PREFIX <MyPrefix>

// HEADER FILES

(include <drvinfo.h> // defines more DRV_* items

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

(ifndef _RC_PASS_

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

// CONSTANTS

fldefine FILE_DEVICE_CUSTOM 0x8000

// — =

// STRUCTURES

typedef struct _DEVICE_CONTEXT

(continued)



136 WRITING KERNEL-MODE DRIVERS

LISTING 3-4. The Header File of the Driver Skeleton

wizard's templates. For those who want to keep the code for now, the following sec-
tion is a short description of its internals.

The main entry point of the driver module is DriverEntry ( ) . Like all Windows
2000 module entry points, this name is not a requirement. You can choose any
symbol you like, but you must tell the linker the name of the entry point by adding
the /entry switch to its command line. For this test driver, the wizard has already
taken care of this task. Inside the w2k_wiz . tp template or the resulting TestDrv. dsp
file, you will find two occurrences of the string /entry: "DriverEntry@8" in the
linker command line, one for each build configuration. The @8 suffix indicates that
DriverEntry ( ) receives eight argument bytes on the stack, which is in perfect con-
gruence with its prototype definition in Listing 3-1: two pointer arguments, each of
them 32 bits wide, yield 64 bits, or 8 bytes.

The first thing DriverEntry ( ) does is call Driverinitialize ( ) , which
will create a device object and a symbolic link that you will probably need later to
communicate with the device from user-mode applications. It is a bit difficult to find
out which names are used in the loCreateDevice ( ) and IoCreateSymbolicLink()
calls, because they are constructed by macros defined in the common header file
Drvinfo.h, found in the \src\common\include directory of the CD. This file is a
header file that compiles various sorts of program information from a couple of basic
customizable strings. If you want to know more about this trick, go to the PROGRAM
IDENTIFICATION section in TestDrv. h (see top of Listing 3-4) and trace the DRV_*
definitions as they are grouped in various ways inside Drvinf o. h. For example, a
full-fledged VERSIONINFO resource is constructed from several pieces. Among other
things, the constants DRV_DEVICE and DRV_LINK are defined, which evaluate to

PDRIVER_OBJECT pDriverObject ;

PDEVICE_OBJECT pDeviceObject ;

}

DEVICE_CONTEXT, *PDEVICE_CONTEXT, **PPDEVICE_CONTEXT;

tdefine DEVICE_CONTEXT_ sizeof (DEVICE_CONTEXT)

#endif // tifndef _RC_PASS_

// END OF FILE
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\Device\TestDrv and \DosDevices\TestDrv here, respectively. Note that many
kernel API functions, such as loCreateDevice ( ) and loCreateSymbolicLink ( ) ,
don't accept strings as plain zero-terminated character sequences, but rather expect
them to be packed into a special UNICODE_STRING structure, introduced in Chapter 2
and repeated in Listing 3-5. The macro PRESET_UNICODE_STRING, defined in
Drvinf o. h and applied in the GLOBAL DATA section of TestDrv. c in Listing 3-3,
creates a static UNICODE_STRING structure from a simple Unicode string literal. This is
a convenient shorthand notation for the definition of UNICODE_STRINGS that remain
unchanged throughout the lifetime of a program instance.

After successfully creating the device object and its symbolic link, Driver
initialize ( ) stores pointers to the device object and the device context in static
global variables. The device context is a private structure of the device that can have
arbitrary size and shape. The driver skeleton attaches a simple DEVICE_CONTEXT struc-
ture, defined in TestDrv.h, to its device. This structure contains nothing but pointers
to the device and driver objects. You can extend this structure if you need persistent
device-specific storage for any private data of your driver. The device context will be
supplied by the system with every I/O Request Packet (IRP) the driver receives.

After Driverinitialize ( ) returns and reports success, DriverEntry ( ) sets up
an important array, passed in by the system as part of the driver object structure
pDriverobject. This array contains slots for all IRPs the driver can expect, and
DriverEntry ( ) has to write callback function pointers to the slots of all request
types it wishes to handle. The driver skeleton defers this decision and saves a single
Driveroispatcher ( ) pointer to all 28 available slots, listed in Table 3-2. Later on,
DriverDispatcher ( ) will decide which IRP types are of interest, returning
STATUS_NOT_IMPLEMENTED for all unhandled IRPs. Note that there are subtle differ-
ences between the Windows NT 4.0 and Windows 2000 layouts of the IRP handler
array. In Table 3-2, the differing slots are marked boldface.

LISTING 3-5. An Ubiquitous Windows 2000 Structure: UNICODE_STRING

typedef struct _UNICODE_STRING

{

WORD Length;

WORD MaximumLength;

PWORD Buffer;

}

UNICODE_STRING, * PUNICODE_STRING ;
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TABLE 3-2. I/O Request Packet Slots Compared

As soon as the IRP array is complete, DriverEntry ( ) writes a pointer to its
Driverunload ( ) callback function to the driver object structure. This allows the dri-
ver to be unloaded at runtime. Driverunload (} simply destroys all objects created by
Driverinitialize ( ) , that is, the symbolic link and the device. After that, the driver
can be safely removed from the system.

SLOT

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

OxOA

OxOB

OxOC

OxOD

OxOE

OxOF

0x10

Oxll

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

OxlA

OxlB

WINDOWS NT 4.0

IRP_MJ_CREATE

IRP_MJ_CREATE_NAMED_PIPE

IRP_MJ_CLOSE

IRP_MJ_READ

IRP_MJ_WRITE

IRP_MJ_QUERY_INFORMATION

IRP_MJ_SET_INFORMATION

IRP_MJ_QUERY_EA

IRP_MJ_SET_EA

IRP_MJ_FLUSH_BUFFERS

IRP_MJ_QUERY_VOLUME_INFORMATION

IRP_MJ_SET_VOLUME_INFORMATION

IRP_MJ_DIRECTORY_CONTROL

IRP_MJ_FILE_SYSTEM_CONTROL

IRP_MJ_DEVICE_CONTROL

IRP_MJ_INTERNAL_DEVICE_CONTROL

IRP_MJ_SHUTDOWN

IRP_MJ_LOCK_CONTROL

IRP_MJ_CLEANUP

IRP_MJ_CREATE_MAILSLOT

IRP_MJ_QUERY_SECURITY

IRP_MJ_SET_SECURITY

'IRP_MJ_QUERY_POWER

IRPJVIJ_SET_POWER

IRP_MJ_DEVICE_CHANGE

IRP_MJ_QUERY_QUOTA

IRP_MJ_SET_QUOTA

IRP_MJ_PNP_POWER

WINDOWS 2000

IRP_MLCREATE

IRP_MJ_CREATE_NAMED_PIPE

IRP_MJ_CLOSE

IRP_MJ_READ

IRP_MJ_WRITE

IRP_MJ_QUERY_INFORMATION

IRP_MJ_SET_INFORMATION

IRP_MJ_QUERY_EA

IRP_MJ_SET_EA

IRP_MJ_FLUSH_BUFFERS

IRP_MJ_QUERY_VOLUME_INFORMATION

IRP_MJ_SET_VOLUME_INFORMATION

IRP_MJ_DIRECTORY_CONTROL

IRP_MJ_FILE_SYSTEM_CONTROL

IRP_MJ_DEVICE_CONTROL

IRP_MJ_INTERNAL_DEVICE_CONTROL

IRP_MJ_SHUTDOWN

IRP_MJ_LOCK_CONTROL

IRP_MJ_CLEANUP

IRP_MJ_CREATE_MAILSLOT

IRP_MJ_QUERY_SECURITY

IRP_MJ_SET_SECURITY

IRP_MJ_POWER

IRP_MJ_SYSTEM_CONTROL

IRP_MJ_DEVICE_CHANGE

IRP_MJ_QUERY_QUOTA

IRP_MJ_SET_QUOTA

IRP_MJ_PNP
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The Driveroispatcher ( ) function is invoked whenever a module requests a
response from the driver. Because a driver can host several devices, the dispatcher
first checks which device should handle the request. The driver skeleton maintains
just a single device, so the only thing needed is a sanity check to verify that the device
object pointer is identical to the one received from loCreateDevice ( ) during initial-
ization. If it is, DriverDispatcher ( ) forwards the received IRP to the Device
Dispatcher ( ) function, along with the device context prepared by Driver
initialize ( ) . When you extend the skeleton to a multidevice driver, you may have
to write distinct IRP dispatchers for each device. The DeviceDispatcher ( ) in Listing
3-3 is a trivial implementation that recognizes only three very common requests:
IRP_MJ_CREATE, iRp_Mj_CLEANUP, and IRP_MJ_CLOSE. These requests are handled
by returning a STATUS_SUCCESS code. This is the minimum requirement to allow the
device to be opened and closed without error. Other requests cause a
STATUS_NOT_IMPLEMENTED to be reported.

You may wonder about the purpose of the ttpragma aiioc_text lines in the
DISCARDABLE FUNCTIONS section of Listing 3-3. #pragma directives are a powerful
means to send commands to the compiler and linker while they are building a
module. The alloc_text command instructs them to write the code of the
specified function to a nondefault section inside the executable file. By default, all
code goes into the . text section. However, the directive ttpragma alloc_text
(INIT, DriverEntry) causes the DriverEntry ( ) code to be saved to a new file sec-
tion called INIT . The driver loader recognizes this special section and discards it
after initialization. DriverEntry ( ) and its helper function Driverinitialize ( ) are
called only once while the driver starts up; therefore, they can be safely removed
from memory after having done their work.

The remaining ingredient of the driver skeleton is the resource script
TestDrv. re, shown in Listing 3-6. This file is trivial because it consists of references
to macros from Drvinf o. h only. DRV_RC_VERSION creates a VERSIONINFO resource
with various items compiled from data contributed by the wizard, and DRV_RC_ICON
evaluates to a simple ICON resource statement that adds TestDrv. ico to the resource
section of TestDrv. sys.

DEVICE I/O CONTROL

As mentioned in the introductory remarks of this chapter, we won't build hardware
drivers in this book. Instead, we will use the powerful capabilities of kernel-mode
drivers to investigate Windows 2000 secrets. The power of the drivers results from
the fact that these modules run at the highest possible CPU privilege level. This
means that a kernel-mode driver has access to all system resources, can read all mem-
ory, and is allowed to execute privileged CPU instructions, such as reading the
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LISTING 3-6. The Resource Script of the Driver Skeleton

current values of the CPU's control registers. User-mode applications will be aborted
immediately if they try to read a single byte from kernel memory or try to execute an
assembly language instruction such as MOV EAX, CR3 . However, the downside of this
power is that a driver can trash the entire system with a snap. Even the smallest error
is answered by the system with a Blue Screen, so a kernel-mode programmer must be
far more concerned about bugs than is a Win32 application or DLL developer.
Remember the Windows 2000 killer device we used in Chapter 1 to get a crash dump
of the system? All it did was touch the virtual memory address 0x00000000—and
boom! Be aware that you will boot your machine much more frequently when devel-
oping kernel-mode drivers.

The driver code I will present in the following chapters will employ a technique
called Device I/O Control (IOCTL) to allow user-mode code some degree of "remote
control." If an application needs access to some system resources that are unreach-
able from user-mode, a kernel-mode driver will do the job, and IOCTL will be the
bridge between the two. Actually, IOCTL is neither new nor specific to Windows
2000. Even ancient operating systems such as DOS 2.11 had this capability—
Function 0x44 with its various subfunctions has been the IOCTL workhorse of
DOS. Basically, IOCTL is a means to communicate with a device on a control chan-
nel, which is logically separated from its data channel. Imagine a hard disk device
that transfers disk sector contents through its main data channel. If a client wants
information about the media currently used by the device, it has to use a different

// TestDrv.rc

// 08-27-2000 <MyName>

// Copyright © 2000 <MyCompany>

#de£ine _RC_PASS_

#define _TESTDRV_SYS_

^include "TestDrv.h"

// =================================================================

// STANDARD RESOURCES

DRV_RC_VERSION

DRV_RC_ICON

// END OF FILE
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channel. For example, DOS function 0x44, subfunction OxOD, sub-subfunction 0x66
is the DOS IOCTL call that reads the 32-bit serial number of a disk drive (see Brown
and Kyle 1991, 1993).

Device I/O Control can be implemented in various ways, depending on the
device to be controlled. In its general form, IOCTL has the following characteristics:

• A client controls a device through a special entry point. On DOS, this has
been INT 2lh, function 0x44. On Windows 2000, it is the Win32
DeviceioControl ( ) function exported by kerne!32 . dll.

• The client provides a device identifier, a control code, an input data buffer,
and an output data buffer upon calling the IOCTL entry point. On
Windows 2000, the device identifier is a HANDLE to a successfully opened
device.

• The control code tells the target device's IOCTL dispatcher which control
function is requested by the client.

• The input buffer contains any additional data that the device might need
to fulfill the request.

• If the request generates any data, it is returned in the client's output buffer.

• The overall result of the IOCTL operation is reported to the client by
means of a status code.

It is obvious that this is a powerful general-purpose mechanism that can cover
a wide range of control requests. For example, an application might want to have
access to forbidden kernel memory. Because the application would throw an excep-
tion as soon as it touched the first byte, it could work around this problem by load-
ing a kernel-mode driver to delegate this task. Both modules would have to agree on
an IOCTL protocol to manage the data transfer. For example, the application might
send the control code 0x80002000 to trie driver if it wanted to read memory or
0x80002001 if it wanted to write to it. In a read request, the IOCTL input buffer
would probably specify the base address and the number of bytes to read. The ker-
nel-mode driver could pick up requests and distinguish read and write operations by
evaluating the control code. In a read request, it would copy the requested memory
range to the caller's output buffer and report success if the output buffer is large
enough to hold the data. In a write request, the driver would copy data from the
input buffer to a memory location that has been specified in the input buffer as well.
In Chapter 4,1 will provide sample code for such a memory spy.
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By now, it should be obvious that IOCTL is a sort of backdoor that Win32 appli-
cations can use to perform almost any action that is usually allowed to privileged
modules only. Of course, this involves writing such a privileged module in the first
place, but once you have such a spy module running in the system, everything else is
easy. Two aims of this book are to demonstrate in detail how to write such code and
to provide a sample driver that is capable of doing lots of amazing things.

THE WINDOWS 2000 KILLER DEVICE

Before stepping to more advanced driver projects, let's take a look at a very simple
driver. In Chapter 1,1 introduced the Windows 2000 killer device w2k_kili. sys,
which is designed to cause a benign system crash. This driver doesn't require most of
the code in Listing 3-3 because it will tear down the system before it had an opportu-
nity to receive the first I/O request packet. Listing 3-7 shows its apparently trivial
implementation. The file w2k_kiii .h is not reprinted here because it doesn't contain
any code of interest.

The code in Listing 3-7 does not attempt to perform initialization inside its
DriverEntry ( ) function. The system will stop before DriverEntry ( ) returns, so
extra work is unnecessary.

LOADING AND UNLOADING DRIVERS

After writing a kernel-mode driver, you probably want to run it immediately. How
is this done? Typically, drivers are loaded and started at system boot time, so do you
have to reboot the system every time you have updated your driver? Fortunately,
this is not necessary. Windows 2000 features a Win32 interface that allows loading
and unloading drivers at runtime. This is done by the Service Control (SC) Manager,
and the following section details its use.

THE SERVICE CONTROL MANAGER

The name "Service Control Manager" is a bit misleading because it suggests that this
component manages services only. Services are a class of powerful Windows 2000
modules well suited to run applications in the background, independent of the user
interface shell. That is, a service is a Win32 process that can keep running in the sys-
tem even if no user is logged in. Although service development is an exciting topic, it
is beyond the scope of this book. For further reading on service development, refer to
Paula Tomlinson's excellent tutorial in Windows Developer's Journal (WDJ) (Tom-
linson 1996a), as well as her follow-up treatises on services in her WDJ column
"Understanding NT" (Tomlinson 1996b and follow-up articles).



LOADING AND UNLOADING DRIVERS 143

LISTING 3-7. A Tiny System Crasher

The SC Manager can handle both services and drivers. For reasons of simplicity,
I will use the term "service" here to refer to all objects controlled by the SC Manager,
including services in the strict sense of the word and kernel-mode drivers. The SC
interface is made available to Win32 applications by the Win32 subsystem compo-
nent advapi32 . dll, which hosts an interesting collection of API functions. The
names of the main API functions required to load, control, and unload services are
listed in Table 3-3, along with short descriptions. Before you can load or access any
services, you must obtain a handle to the SC Manager by calling OpenSCManager ( ) .
In the following discussion, this will be called a manager handle. This handle is
required in all CreateService ( ) and OpenService ( ) calls. In turn, these functions
return handles that will be called service handles here. This type of handle can be
specified in all calls that refer to a specific service, such as Controiservice ( ) ,
DeleteService ( ) , and startservice ( ) . Both types of SC handles are released
by the CloseServiceHandle() function.

ttdefine _W2K_KILL_SYS_

#include <ddk\ntddk.h>

ttinclude Ww2k_kill.h"

// DISCARDABLE FUNCTIONS

NTSTATUS DriverEntry ( PDRIVER_OBJECT pDriverObject ,

PUNICODE_STRING pusRegistryPath) ;

#ifdef ALLOC_PRAGMA

^pragma alloc_text (INIT, DriverEntry)

#endif

// DRIVER INITIALIZATION

// =================================================================

NTSTATUS DriverEntry ( PDRIVER_OBJECT pDriverObject,

PUNICODE_STRING piisRegistryPath)

{

return *( (NTSTATUS *) 0);

}

// END OF PROGRAM
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TABLE 3-3. Essential Service Control API Functions

Loading and running a service involves the following typical sequence of steps:

1. Call OpenSCManager () to obtain a manager handle.

2. Call CreateService ( ) to add the service to the system.

3. Call StartService ( ) to set the service to the running state.

4. Call CloseServiceHandle ( ) to release the manager and service handles.

Be sure to rewind all previous successful actions if an error occurs somewhere
in this sequence. For example, you should call DeleteService ( ) if the SC Manager
reports an error on StartService ( ) . Otherwise, the service will remain loaded in
an undesired state. Another stumbling stone of the SC Manager API is that the
CreateService ( ) function insists on receiving a fully qualified path to the executable
file. If you specify a relative path, the function will fail—it will not be looking for
the file in the current directory. Therefore, you should normalize all file specifications
passed to CreateService ( ) using the Win32 function GetFullPathName ( ) unless
they are guaranteed to be fully qualified.

HIGH-LEVEL DRIVER MANAGEMENT FUNCTIONS

To make interaction with the SC Manager easier, the CD accompanying this book
contains high-level wrapper functions that hide most of its peculiarities. These func-
tions are part of the large Windows 2000 Utility Library found on the CD in the
directory tree \src\w2k_iib. All functions exported byw2k_lib.dll have a global
name prefix of w2k, and the service and driver management functions are discernible
by the group name prefix w2kservice. Listing 3-8 shows the implementation of the
library functions that load, control, and unload services and drivers.

NAME DESCRIPTION

CloseServiceHandle Close handle obtained from openscManager ( ) , createservice ( ) , or
OpenServicef )

ControlService Stop, pause, continue, interrogate, or notify a loaded service/driver

CreateService Load a service/driver

DeleteService Unload a service/driver

OpenSCManager Obtain a handle to the SC Manager

OpenService Obtain a handle to a loaded service/driver

QueryServiceStatus Query the properties and the current state of a service/driver

StartService Start a loaded service/driver
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SC_HANDLE WINAPI w2kServiceConnect (void)

{

return OpenSCManager (NULL, NOLL, SC_MANAGER__ALL_ACCESS) ;

}

1 " -

SC_HANDLE WINAPI w2kServiceDisconnect (SC_HANDLE hManager)

{
if (hManager != NULL) CloseServiceHandle (hManager);

return NULL;

}

//

SC_HANDLE WINAPI w2kServiceManager (SC_HANDLE hManager,

PSC_HANDLE phManager,

BOOL fOpen)

{
SC_HANDLE hManager 1 = NULL;

if (phManager != NULL)

if (fOpen)

{
if (hManager == NULL)

{
*phManager = w2kServiceConnect ( ) ;

}
else

{
*phManager = hManager;

}

else

if (hManager == NULL)

(
*phManager = w2kServiceDisconnect ( *phManager) ;

}

)
hManagerl = *phManager;

}
return hManagerl ;

}

//

SC_HANDLE WINAPI w2kServiceOpen (SC_HANDLE hManager,

PWORD pwName )

{
SC_HANDLE hManagerl;

(continued)
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SC_HANDLE hService = NULL;

w2kServiceManager (hManager, khManagerl, TRUE);

if ( (hManager 1 != NULL) && (pwName != NULL))

{
hService = OpenService (hManagerl, pwName,

SERVICE_ALL_ACCESS) ;

}
w2kServiceManager (hManager, khManagerl, FALSE);

return hService;

}

//

BOOL WINAPI w2kServiceClose (SC_HANDLE hService)

{
return (hService ! = NULL) && CloseServiceHandle (hService);

}

/ /

BOOL WINAPI w2kServiceAdd (SC_HANDLE hManager,

PWORD pwName ,
PWORD pwlnfo,

PWORD pwPath)

{
SC_HANDLE hManagerl, hService;

PWORD pwFile;

WORD awPath [MAX_PATH] ;
DWORD n;
BOOL fOk = FALSE;

w2kServiceManager (hManager, ShManagerl, TRUE) ;

if ((hManagerl != NULL) && (pwName != NULL) &k

(pwlnfo != NULL) && (pwPath != NULL) &&

(n = GetFullPathName (pwPath, MAX_PATH, awPath, fcpwFile) ) &&
(n < MAX_PATH) )

{
if ((hService = CreateService (hManagerl, pwName, pwlnfo,

SERVICE_ALL_ACCESS ,
SERVICE_KERNEL_DRIVER,
SERVICE_DEMAND_START ,

SERVICE_ERROR_NORMAL ,

awPath, NULL, NULL,
NULL, NULL, NULL) )

!= NULL)

{
w2kServiceClose (hService);
fOk = TRUE;
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}
else

{

fOk = (GetLastError ( ) ==

ERROR_SERVICE_EXISTS) ;

}

}

w2kServiceManager (hManager, khManagerl, FALSE);

' return fOk;

)

//

BOOL WINAPI w2kServiceRemove (SC_HANDLE hManager,

PWORD pwName )

(

SC_HANDLE hService;

BOOL fOk = FALSE;

if ((hService = w2kServiceOpen (hManager, pwName) ) != NULL)

{

if (DeleteService (hService))

{

fOk = TRUE;

}

else

{

fOk = (GetLastError () ==

ERROR_SERVICE_MARKED_FOR_DELETE ) ;

}

w2kServiceClose (hService) ;

}

return fOk;

}

/ 1

BOOL WINAPI w2kServiceStart (SĈ HANDLE hManager,

PWORD pwName )

(

SC_HANDLE hService;

BOOL fOk = FALSE;

if ((hService - w2kServiceOpen (hManager, pwName)) !- NULL)

{

if (StartService (hService, 1, &pwName) )

{

fOk = TRUE;

}

else

{

(continued)
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fOk = (GetLastError () ==

ERROR_SERVICE_ALREADY_RUNNING) ;

}
w2kServiceClose (hService) ;

}
return fOk;

}

//

BOOL WINAPI w2kServiceControl (SC_HANDLE hManager,

PWORD pwName ,
DWORD dControl)

{
SC_HANDLE hService;

SERVICE_STATUS ServiceStatus;
BOOL fOk = FALSE;

if {(hService = w2kServiceOpen (hManager, pwName) ) != NULL)

{
if (QueryServiceStatus (hService, SServiceStatus) )

{

switch (ServiceStatus . dwCurrentState)

{
case SERVICE_STOP_PENDING :
case SERVICE_STOPPED :

{
fOk = (dControl == SERVICE_CONTROL_STOP) ;

break;

}
case SERVICE_PAUSE_PENDING:
case SERVICE_PAUSED:

{

fOk = (dControl == SERVICE_CONTROL_PAUSE) ;
break;

}
case SERVICE_START_PENDING:
case SERVICE_CONTINUE_PENDING :
case SERVICE_RUNNING:

{

fOk = (dControl == SERVICE_CONTROL_CONTINUE) ;
break;

}

}

}
fOk = fOk | |

ControlService (hService, dControl, &ServiceStatus) ;

w2kServiceClose (hService) ;

}
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return fOk;

}

BOOL WINAPI w2kServiceStop ( SC_HANDLE hManager,

PWORD pwName )

{

\ return w2kServiceControl (hManager, pwName,

SERVICE_CONTROL_STOP) ;

)

BOOL WINAPI w2kServicePause (SC_HANDLE hManager,

PWORD pwName )

{

return »2kServiceControl (hManager, pwName,

SERVICE_CONTROL_PAUSE) ;

}

BOOL WINAPI w2kServiceContinue (SC_HANDLE hManager,

PWORD pwName )

{

return w2kServiceControl (hManager, pwName,

SERVICE_CONTROL_CONTINUE) ;

)

SC_HANDLE WINAPI w2kServiceLoad (PWORD pwName,

PWORD pwlnfo,

PWORD pwPath,

BOOL f Start)

{

BOOL fOk;

SC_HANDLE hManager = NULL;

if ((hManager = w2kServiceConnect ()) != NULL)

t

fOk = w2kServiceAdd (hManager, pwName, pwlnfo, pwPath };

if (fOk && fstart)

{

if (!(fOk = w2kServiceStart (hManager, pwName)))

{

w2kServiceRemove (hManager, pwName) ;

}

}

(continued)
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if (!fOk)

{
hManager = w2kServiceDisconnect (hManager) ;

}

}
return hManager;

}

/ /

SC_HANDLE WINAPI w2kServiceLoadEx (PWORD pwPath,

BOOL f Start)

{
PVS_VERSIONDATA pwd;

PWORD pwPathl , pwlnf o ;

WORD awName [MAX_PATH] ;
DWORD dName, dExtension;

SC_HANDLE hManager = NULL;

if (pwPath != NULL)

{
dName = w2kPathName (pwPath, kdExtension) ;

Istrcpyn (awName, pwPath + dName,
min (MAX_PATH, dExtension - dName + 1 ) ) ;

pwPathl = w2kPathEvaluate (pwPath, NULL) ;

pwd = w2kVersionData {pwPathl, -1);

pwlnfo = ((pwd != NULL) && pwd->awFileDescription [0]
? pwd->awFileDescription
: awName ) ;

hManager = w2kServiceLoad (awName, pwlnfo, pwPathl, f start );

w2kMemoryDestroy (pwd) ;
w2kMemoryDestroy (pwPathl);

}
return hManager;

}

//

BOOL WINAPI w2kServiceUnload (PWORD pwName,
SC_HANDLE hManager)

{
SC_HANDLE hManager 1 = hManager;

BOOL fOk = FALSE;

if (pwName != NULL)

{
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LISTING 3-8. Service and Driver Management Library Functions

In Table 3-4, the functions defined in Listing 3-8 are listed, along with
short descriptions. Some function names, such as w2kservicestart ( ) and
w2kservicecontrol ( ) , are similar to certain SC Manager API functions —
startservice ( ) and ControlService ( ) , in this case. This isn't coincidence — the
respective functions are in fact found at the heart of these wrappers. The main
difference is that startservice ( ) and ControlService ( } operate on service
handles, whereas w2kservicestart ( ) and w2kServiceControl ( ) accept service
names. The names are seamlessly converted to handles by internally calling
w2kServiceOpen ( ) and w2kServiceClose ( ) , which in turn call OpenService ( )

aflC/CloseServiceHandle ( ) .

if (hManagerl == NULL)

{

hManagerl = w2kServiceConnect ( ) ;

}
if (hManagerl != NULL)

{

w2kServiceStop (hManagerl, pwName);

fOk - w2kServiceRemove (hManagerl, pwName) ;

}

}

w2kServiceDisconnect (hManagerl) ;

return fOk;

)

/ /

BOOL WINAPI w2kServiceUnloadEx (PWORD pwPath,

SC_HANDLE hManager)

I
DWORD dNarne, dExtension;

WORD awName [MAX_PATH] ;

PWORD pwName = NULL;

if (pwPath != NULL)

{

dName = w2kPathName (pwPath, &dExtension) ;

Istrcpyn {pwName = awName, pwPath + dName,

min (MAX_PATH, dExtension - dName + 1) ) ;

}

return w2kServiceUnload (pwName, hManager) ;

}
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TABLE 3-4. SC Manager Wrappers Provided by w2 k_i ib. di 1

The typical usage of the library functions in Table 3-4 is along the
following guidelines:

• To load a service, call w2kServiceLoad() or w2kserviceLoadEx() . The
latter generates the service and display names automatically from the file's
path and version resource. The Boolean f start argument decides whether
the service should be started automatically after a successful load. On
success, the function returns a manager handle for further requests. No
error is reported if the service is already loaded or if f start is TRUE and
the service is already running. If an error occurs, the service is
automatically unloaded, if necessary.

• To unload a service, call w2kServiceUnload ( ) or w2kServiceUnloadEx ( ) ,
using the manager handle returned by w2kserviceLoad ( ) or
w2kServiceLoadEx() . w2kServiceUnloadEx() generates the service name
automatically from the file's path. If you have already closed this handle,

NAME

w2kServiceAdd

w2kServiceClose

w2kServiceConnect

wlkServiceContinue

w2kServiceControl

w2kServiceDisconnect

w2kServiceLoad

w2kServiceLoadEx

w2kServiceManager

w2kServiceOpen

w2kServicePause

w2kServiceRemove

w2kServiceStart

w2kServiceStop

w2kServiceUnload

w2kServiceUnloadEx

DESCRIPTION

Add a service/driver to the system

Close a service handle

Connect to the Service Control Manager

Resume a paused service/driver

Stop, pause, continue, interrogate, or notify a loaded service/driver

Disconnect from the Service Control Manager

Load and optionally start a service/driver

Load and optionally start a service/driver (automatic name generation)

Open/close a temporary Service Control Manager handle

Obtain a handle to a loaded service/driver

Pause a running service/driver

Remove a service/driver from the system

Start a loaded service/driver

Stop a running service/driver

Stop and unload a service/driver

Stop and unload a service/driver (automatic name generation)
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obtain a new one from w2kServiceConnect ( ) or simply pass in NULL to
work with a temporary handle. The manager handle will be closed
automatically by w2kserviceunload ( ) . No error is reported if the service is
already marked for deletion but cannot be deleted because open device
handles are still existing.

• To control a service, call w2kservicestart ( ) , w2kservicestop ( ) ,
w2kServicePause ( ) , or w2kServiceContinue ( ) , using a manager handle
returned by w2kServiceLoad ( } or w2kServiceConnect ( ) . If you supply
NULL for the manager handle, a temporary handle is used. No error is
reported if the service is already in the requested state.

• To close a manager handle, call w2kServiceDisconnect ( ) . You can
request another manager handle at any time by calling
w2kServiceConnect().

w2kServiceLoadEx() is a very powerful function. It builds all parameters
needed to load the service automatically, expecting nothing but the path of the
executable file. The service name requested by the SC Manager's CreateService ( )
function is derived from the file name by stripping the extension. To build an
appropriate display name for a newly created service, w2kServiceLoadEx ( ) attempts
to read the value of the FileDescription string from the file version information.
If no version resource is included in the executable, or the FileDescription string
is not available, the service name is used by default. Unlike w2kServiceLoad ( ) ,
w2kServiceLoadEx ( ) evaluates environment variables embedded in the path. That
is, if the path string contains substrings such as %systemRoot% or %TEMP% , they are
replaced by the current values of the corresponding environment variables. w2k
ServiceUnloadEx ( ) is the counterpart of w2kServiceLoadEx ()—it extracts the
service name from the supplied path, as explained above, and passes it to w2k
ServiceUnloadt) . Both functions are ideally suited for applications that have to
load and unload third-party device drivers on behalf of the user, knowing nothing
about them but their executable paths. A sample application of this kind is included
on the CD accompanying this book. The console-mode utility w2k_load. exe is a
general-purpose kernel-mode device driver (un)loader that provides a simple com-
mand line interface for w2kServiceLoadEx() and w2kServiceUnloadEx() . The
source files can be found on the CD in the directory tree \src\w2k_load. The
relevant code is shown in Listing 3-9, proving that this utility is almost trivial because
all the hard work is done insidew2k_lib.dll by the w2kServiceLoadEx() and
w2kServiceUnloadEx ( ) functions.
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// GLOBAL STRINGS
// =================================================================

WORD awUsage [] =

L"\r\n"

L"Usage: " SW(MAIN_MODULE) L" <driver path>\r\n"

L" " SW(MAIN_MODULE) L" <driver path> %s\r\n"

L" " SW(MAIN_MODULE) L" <driver name> %s\r\n";

WORD awUnload [] = LVunload";

WORD awOk [] = L"OK\r\n";

WORD awError [] = L"ERROR\r\n" ;

// COMMAND HANDLERS

BOOL WINAPI DriverLoad (PWORD pwPath)

{
SC_HANDLE hManager;

BOOL fOk = FALSE;

_printf (L" \r\nLoading \"%s\" ... ", pwPath) ;

if ((hManager = w2kServiceLoadEx (pwPath, TRUE)) != NULL)

{
w2kServiceDisconnect (hManager) ;

fOk = TRUE;

}
_printf (fOk ? awOk : awError) ;

return fOk;

}

//

BOOL WINAPI DriverUnload (PWORD pwPath)

{
BOOL fOk = FALSE;

I
_printf (L" \r\nUnloading \"%s\" ... ", pwPath) ;

fOk = w2kServiceUnloadEx (pwPath, NULL) ;

_printf (fOk ? awOk : awError) ;

return fOk;

}

// = =================================== =============================

// MAIN PROGRAM
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LISTING 3-9. Loading and Unloading Device Drivers

The remaining library functions listed in Table 3-4 are working on a lower level and
are used internally by w2k_lib. dll. Of course, you can call them from your applica-
tions, if you like. Their usage should be obvious from the source code in Listing 3-8.

ENUMERATING SERVICES AND DRIVERS

From time to time it might be necessary to know which services and drivers are
currently loaded inside the system and what state they are in. For this purpose, the
SC Manager provides another powerful function named EnumServicesStatus ( ) .
This function requires a manager handle, as usual, and fills an array of ENUM_
SERVICE_STATUS structures with information about each currently loaded service or
driver. The list can be filtered by service/driver type and state. If the buffer supplied
by the caller isn't large enough to hold all entries at once, the function can be called
repeatedly until all items have been retrieved. It is difficult to compute the required
buffer size in advance because the buffer has to provide extra space of unknown size
for the strings that are referenced by the members of the ENUM_SERVICE_STATUS
structures. Fortunately, EnumServicesStatus ( ) returns the number of bytes needed
to return the remaining entries, so the correct buffer size can be determined by trial
and error. Listing 3-10 shows the definitions of the SERVICE_STATUS and ENUM_
SERVICE_STATUS structures, which are declared in the Win32 header file winSvc .h.

DWORD Main (DWORD argc, PTBYTE *argv, PTBYTE *argp)

{
if (argc == 2)

{
DriverLoad {argv [1]};

}
else

{
if (large == 3) && ( ! Istrcmpi (argv [2], awUnload) ) )

{
DriverUnload (argv [1]);

}
else

{
_printf (awUsage, awUnload, awUnload);

)

}
return 0 ;

}
\

II

// END OF PROGRAM
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LISTING 3-10. Definition O/"ENUM_SERVICE_STATUS and SERVICE_STATUS

The w2kserviceList o function in Listing 3-11 is another goodie from the
w2k_lib. ail utility library on the companion CD. It hides the required actions
mentioned above and returns a ready-to-use structure with all requested data
plus a couple of extras. It returns a pointer to a w2K_sERvicES structure, defined in
w2k_lib.h and included at the top of Listing 3-11. Along with the ENUM_
SERVICE_STATUS array aess [ ] , this structure contains four additional members.
dEntries indicates how many entries have been copied to the status array, and
dBytes specifies the total size of the returned W2K_SERVICES structure, doisplay-
Name and dServiceName are set to the maximum lengths of the IpDisplayName
and IpServiceName strings in aess [ ] , respectively. These values are very conve-
nient if you are writing a console-mode application that outputs a service/driver
list to the screen with proper alignment of the name columns.

To report an accurate snapshot of the system, w2kserviceList ( ) attempts to
retrieve all entries in a single call to EnumServicesStatus ( ) . To this end, it starts out
with a zero-length buffer, which will usually yield an ERROR_MORE_DATA status. In this
case, EnumServicesStatus ( ) returns the required buffer size. After allocating an
appropriately sized buffer, w2kServiceList ( ) tries again. This time, EnumServices
Status ( ) should succeed. However, a small probability exists that another entry has
been added to the list in the meantime, so this procedure is repeated in a loop until
everything is correct or an error other than ERROR_MORE_DATA is returned.

typedef struct _SERVICE_STATUS

{
DWORD dwServiceType;

DWORD dwCurrentState;

DWORD dwControlsAccepted;

DWORD dwWin32ExitCode;

DWORD dwServiceSpecif icExitCode;

DWORD dwCheckPoint ;

DWORD dwWaitHint;

J

SERVICE_ST1VTUS , *IJESERVXCE_STI'JTOS ;

typedef struct _ENUM_SERVICE_STATUS

{
LPTSTR IpServiceName;

LPTSTR IpDisplayName;

SERVICE_STATUS ServiceStatus ;

}

ENUM_SERVICE_STATUS ;
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typedef struct _W2K_SERVICES

{
DWORD dEntries; // number of entries in aess [ ]

DWORD dBytes; // overall number of bytes

DWORD dDisplayName; // maximum display name length

DWORD dServiceName; // maximum service name length

ENUM_SERVICE_STATUS aess [ ] ,- // service/driver status array

)

W2K_SERVICES, *PW2K_SERVICES, * *PPW2K_SERVICES ;

tdefine W2K_SERVICES_ sizeof (W2K_SERVICES)

PW2K_SERVICES WINAPI w2kServiceList (BOOL fDriver,

BOOL f Win32,

BOOL f Active,

BOOL flnactive)

<
SC_HANDLE hManager;

DWORD dType, dState, dBytes, dResume, dName, i;

PW2K_SERVICES pws = NULL;

if ((pws = w2kMemoryCreate (W2K_SERVICES_) ) != NULL)

{

pws->dEntries = 0;

pws->dBytes = 0;

pws->dDisplayName - 0;

pws->dServiceName = 0;

if ((fDriver || fWin32) && (f Active || flnactive))

{
if ((hManager = w2kServiceConnect ()) != NULL)

{

dType = (fDriver ? SERVICE_DRIVER : 0) |

(fWin32 ? SERVICE_WIN32 : 0 ) ;

dState = (f Active && flnactive

? SERVICE_STATE_ALL

: (f Active

? SERVICE_ACTIVE

: SERVICE_INACTIVE) ) ;

dBytes = pws->dBytes ;

while (pws != NULL)

{
pws->dEntries = 0;

pws->dBytes = dBytes;

pws->dDisplayName = 0;

pws->dServiceName = 0;

dResume - 0 ;

(continued)
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LISTING 3-11. Enumerating Services and Drivers

w2kServiceList ( ) expects four Boolean arguments determining the contents of
the returned list. With the f Driver and f Win32 arguments, you can choose the inclu-
sion of drivers and services, respectively. If both flags are set, the list will contain
both drivers and services. The fActive and f inactive flags impose a state filter onto
the list. If fActive is set, the list contains all modules that currently are in the run-
ning or paused state. The f inactive parameter selects the remaining modules, that
is, those that are currently loaded but stopped. If all four arguments are FALSE , the
function returns a W2K_SERVICES structure with an empty status array. The sample
code CD contains a simple service and driver browser, designed as a Win32 console-
mode application and based on the w2kServiceList ( ) function ofw2k_lib.dll . It
uses the doisplayName and dServiceName members of the returned W2K_SERVICES

if (EnumServicesStatus (Manager, dType, dstate,

pws->aess, pws->dBytes,
&dBytes, &pws->dEntries,
&dResume) }

break;

dBytes += pws->dBytes;
pws = w2kMemoryDestroy (pws) ;

if (GetLastError () != ERROR_MORE_DATA) break;

pws = w2kMemoryCreate (W2K_SERVICES_ + dBytes);

}
w2kServiceDisconnect (hManager) ,-

}
else

{
pws = w2kMemoryDestroy (pws) ;
}

)
if (pws != NULL)

(
for (i = 0; i < pws->dEntries; i++)

{
dName = Istrlen (pws->aess [i] . IpDisplayName) ;
pws->dDisplayName = max (pws->dDisplayName, dName) ;

dName = Istrlen (pws->aess [i] . IpServiceName) ;

pws->dServiceName = max (pws->dServiceName, dName) ;

}

}

}
return pws;

}
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structure (see Listing 3-11) for proper horizontal alignment of all names. You can
find the source code of this utility in the CD's directory tree \src\w2k_svc. The pro-
gram can be run from the CD by executing \bin\w2k_svc. exe. Example 3-4
resulted from running it on my machine, requesting a list of all active kernel-mode
drivers by specifying the command switches /drivers /active.

EXAMPLE 3-4. Running the Service List Utility w2k_svc. exe

D:\> w2k_svc /drivers /active

// w2k_svc . exe

// SBS Windows 2000 Service List VI. 00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Found 29 active drivers:

1. Alerter Alerter

2 . Computer Browser Browser

3 . Creative Service for CDROM Access Creative Service

4. DHCP Client Dhcp

5. Logical Disk Manager dmserver

6. DNS Client Dnscache

7. Event Log Eventlog

8. COM+ Event System EventSystem

9 Server lanmanserver

10 Workstation lanmanworkstation

11. TCP/IP NetBIOS Helper Service LmHosts

12 . Messenger Messenger

13 . Network Connections Netman

14. Removable Storage NtmsSvc

15. Plug and Play PlugPlay

16. IPSEC Policy Agent PolicyAgent

17. Protected Storage ProtectedStorage

18. Remote Access Connection Manager RasMan

19 . Remote Registry Service RemoteRegistry

20. Remote Procedure Call (RFC) RpcSs

21. Security Accounts Manager SamSs

22 . Task Scheduler Schedule

23 . RunAs Service seclogon

24. System Event Notification SENS

25. Print Spooler Spooler

26. Telephony TapiSrv

27 . Distributed Link Tracking Client TrkWks

28. Windows Management Instrumentation WinMgmt

29. Windows Management Instrumentation Driver Extensions . Wmi
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In the next chapter, we will start developing a real-world kernel-mode driver
that spies on kernel memory and cracks essential memory management data struc-
tures. This project accompanies you while reading Chapters 4, 5, and 6, and the
driver is enhanced incrementally in each chapter. The final result is a versatile
Windows 2000 kernel spy, complemented by several nice client applications.



C H A P T E R 4

Exploring
Windows 2000
Memory

M emory management is one of the most important and most difficult duties of an
operating system. This chapter presents a comprehensive overview of Windows

2000 memory management and the structure of the 4-GB linear address space. In this
context, the virtual memory addressing and paging capabilities of the Intel i386 CPU
family are explained, focusing on how the Windows 2000 kernel exploits them. To
aid the exploration of memory, this chapter features a pair of sample programs: a
kernel-mode device driver that collects information about the system, and a user-
mode client application that queries this data from the driver via device I/O control
and displays it in a console window. The "spy driver" module will be reused in the
remaining chapters for several other interesting tasks that require execution of ker-
nel-mode code. This chapter—especially the first section—is tough reading because
it puts your hands directly on the CPU hardware. Nevertheless I hope you won't skip it,
because virtual memory management is an exciting topic, and understanding how
it works provides insight into the mechanics of a complex operating system such as
Windows 2000.

INTEL 1386 MEMORY MANAGEMENT

The Windows 2000 kernel makes heavy use of the protected-mode virtual memory
management mechanisms of the Intel i386 CPU class. To get a better understanding
of how Windows 2000 manages its main memory, it is important to be at least mini-
mally familiar with some architectural issues of the i386 CPU. The term i386 might
look somewhat anachronistic because the 80386 CPU dates back to the early days of
Windows computing. Windows 2000 is designed for Pentium CPUs and above.
However, even these newer processors rely on the memory management model origi-
nally designed for the 80386 CPU, with some important enhancements, of course.
Therefore, Microsoft usually labels the Windows NT and 2000 versions built for
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Intel processors "1386" or even "x86." Don't be confused about that—whenever you
read the numbers 86 or 386 in this book, keep in mind that the corresponding infor-
mation refers to a specific CPU architecture, not a specific processor release.

BASIC MEMORY LAYOUT

Windows 2000 uses a very straightforward memory layout for application and sys-
tem code. The 4-GB virtual memory space offered by the 32-bit Intel CPUs is divided
into two equal parts. Memory addresses below 0x80000000 are assigned to user-
mode modules, including the Win32 subsystem, and the remaining 2 GB are reserved
for the kernel. Windows 2000 Advanced Server also supports an alternative memory
model commonly called 4GT RAM Tuning, which has been introduced with Win-
dows NT 4.0 Server Enterprise Edition. This model features 3-GB address space for
user processes, and 1-GB space for the kernel. It is enabled by adding the /3GB switch
to the bootstrap command line in the boot manager configuration file boot. ini.

The Advanced Server and Datacenter variants of Windows 2000 support yet
another memory option named Physical Address Extension (PAE) enabled by the
boot. ini switch /PAE . This option exploits a feature of some Intel CPUs
(e.g., the Pentium Pro processor) that allows physical memory larger than 4 GB to
be mapped into the 32-bit address space. In this Chapter, I will ignore these special
configurations. You can read more about them in Microsoft's Knowledge Base
article Q171793 (Microsoft 2000c), Intel's Pentium manuals (Intel 1999a, 1999b,
1999c), and the Windows 2000 Device Driver Kit (DDK) documentation
(Microsoft 2000f).

MEMORY SEGMENTATION AND DEMAND PAGING

Before delving into the technical details of the i386 architecture, let's travel back in
time to the year 1978, when Intel released the mother of all PC processors: the 8086.
I want to restrict this discussion to the most significant milestones. If you want to
know more, Robert L. Hummel's 80486 programmer's reference is an excellent start-
ing point (Hummel 1992). It is a bit outdated now because it doesn't cover the new
features of the Pentium family; however, this leaves more space for important infor-
mation about the basic i386 architecture. Although the 8086 was able to address 1
MB of Random Access Memory (RAM), an application could never "see" the entire
physical address space because of the restriction of the CPU's address registers to 16
bits. This means that applications were able to access a contiguous linear address
space of only 64 KB, but this memory window could be shifted up and down in the
physical space with the help of a set of 16-bit segment registers. Each segment regis-
ter defined a base address in 16-byte increments, and the linear addresses in the
64-KB logical space were added as offsets to this base, effectively resulting in 20-bit



INTEL 1386 MEMORY MANAGEMENT 163

addresses. This archaic memory model is still supported even by the latest Pentium
CPUs, and it is called Real-Address Mode, commonly referred to as Real Mode.

An alternative mode was introduced with the 80286 CPU, referred to as
Protected Virtual Address Mode, or simply Protected Mode. It featured a memory
model where physical addresses were not generated by simply adding a linear address
to a segment base. To retain backward compatibility with the 8086 and 80186, the
80286 still used segment registers, but they did not contain physical segment addresses
after the CPU had been switched to Protected Mode. Instead, they provided a selector,
comprising an index into a descriptor table. The target entry defined a 24-bit physical
base address, allowing access to 16 MB of RAM, which seemed like an incredible
amount then. However, the 80286 was still a 16-bit CPU, so the limitation of the
linear address space to 64 KB tiles still applied.

The breakthrough came in 1985 with the 80386 CPU. This chip finally cut the
ties of 16-bit addressing, pushing up the linear address space to 4 GB by introducing
32-bit linear addresses while retaining the basic selector/descriptor architecture of its
predecessor. Fortunately, the 80286 descriptor structure contained some spare bits that
could be reclaimed. While moving from 16- to 32-bit addresses, the size of the CPU's
data registers was doubled as well, and new powerful addressing modes were added.
This radical shift to 32-bit data and addresses was a real benefit for programmers—
at least theoretically. Practically, it took several years longer before the Microsoft
Windows platform was ready to fully support the 32-bit model. The first version of
Windows NT was released on July 26th, 1993, constituting the very first incarnation
of the Win32 API. Whereas Windows 3.x programmers still had to deal with mem-
ory tiles of 64 KB with separate code and data segments, Windows NT provided a
flat linear address space of 4 GB, where all code and data could be addressed by
simple 32-bit pointers, without segmentation. Internally, of course, segmentation
was still active, as I will show later in this chapter, but the entire responsibility for
managing segments finally had been moved to the operating system.

Another essential new 80386 feature was the hardware support for paging, or,
more precisely, demand-paged virtual memory. This is a technique that allows mem-
ory to be backed up by a storage medium other than RAM—a hard disk, for exam-
ple. With paging enabled, the CPU can access more memory than physically available
by swapping out the least recently accessed memory contents to backup storage,
making space for new data. Theoretically, up to 4 GB of contiguous linear memory
can be accessed this way, provided that the backup media is large enough—even if
the installed physical RAM amounts to just a small fraction of the memory. Of
course, paging is not the fastest way to access memory. It is always good to have as
much physical RAM as possible. But it is an excellent way to work with large
amounts of data that would otherwise exceed the available memory. For example,
graphics and database applications require a large amount of working memory, and
some wouldn't be able to run on a low-end PC system if paging weren't available.
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In the paging scheme of the 80386, memory is subdivided into pages of 4-KB
or 4-MB size. The operating system designer is free to choose between these two
options, and it is even possible to mix pages of both sizes. Later I will show that
Windows 2000 uses such a mixed page design, keeping the operating system in
4-MB pages and using 4-KB pages for the remaining code and data. The pages are
managed by means of a hierarchically structured page-table tree that indicates for
each page where it is currently located in physical memory. This management
structure also contains information on whether the page is actually in physical
memory in the first place. If a page has been swapped out to the hard disk, and
some module touches an address within this page, the CPU generates a page fault,
similar to an interrupt generated by a peripheral hardware device. Next, the page
fault handler inside the operating system kernel will attempt to swap back this
page to physical memory, possibly writing other memory contents to disk to make
space. Usually, the system will apply a least-recently-used (LRU) schedule to decide
which pages qualify to be swapped out. By now it should be clear why this proce-
dure is sometimes referred to as demand paging: Physical memory contents are
moved to the backup storage and back on software demand, based on statistics of
the memory usage of the operating system and its applications.

The address indirection layer represented by the page-tables has two interest-
ing implications. First, there is no predetermined relationship between the addresses
used by a program and the addresses found on the physical address bus of the CPU
chip. If you know that a data structure of your application is located at the address,
say, 0x00140000, you still don't know anything about the physical address of your
data unless you examine the page-table tree. It is up to the operating system to
decide what this address mapping looks like. Even more, the address translation
currently in effect is unpredictable, in part because of the probabilistic nature of the
paging mechanism. Fortunately, knowledge of physical addresses isn't required in
most application cases. This is something left for developers of hardware drivers.
The second implication of paging is that the address space is not necessarily contigu-
ous. Depending on the page-table contents, the 4-GB space can comprise large
"holes" where neither physical nor backup memory is mapped. If an application
tries to read to or write from such an address, it will be aborted immediately by the
system. Later in this chapter, I will show in detail how Windows 2000 spreads its
available memory over the 4-GB address space.

The 80486 and Pentium CPUs use the very same i386 segmentation and paging
mechanisms introduced with the 80386, except for some exotic addressing features
such as the Physical Address Extension (PAE) of the Pentium Pro. Along with higher
clock frequencies, these newer models contain optimizations in other areas. For
example, the Pentium features a dual instruction pipeline that enables it to execute
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two operations at the same time, as long as these instructions don't depend on each
other. For example, if instruction A modifies a register value, and the consecutive
instruction B uses the modified value for a computation, B cannot be executed
before A has finished. But if instruction B involves a different register, the CPU can
execute A and B simultaneously without adverse effects. This and other Pentium
optimizations have opened a wide field for compiler optimization. If this topic looks
interesting, see Rick Booth's Inner Loops (Booth 1997).

In the context of i386 memory management, three sorts of addresses must be
distinguished, termed logical, linear, and physical addresses in Intel's system pro-
gramming manual for the Pentium (Intel 1999c).

1. Logical addresses: This is the most precise specification of a memory
location, usually written in hexadecimal form as xxxx: YYYYYYYY , where
xxxx is a selector, and YYYYYYYY is a linear offset into the segment addressed
by the selector. Instead of a numeric xxxx value, it is also possible to
specify the name of a segment register holding the selector, such as cs
(code segment), DS (data segment), ES (extra segment), FS (additional data
segment #1), GS (additional data segment #2), and ss (stack segment). This
notation is borrowed from the old "segment:offset" style of specifying "far
pointers" in 8086 Real-Mode.

2. Linear addresses: Most applications and many kernel-mode drivers
disregard virtual addresses. More precisely, they are just interested in the
offset part of a virtual address, which is referred to as a linear address. An
address of this type assumes a default segmentation model, determined by
the current values of the CPU's segment registers. "Windows 2000 uses flat
segmentation, with the cs, DS , ES , and ss registers pointing to the same
linear address space; therefore, programs can safely assume that all code,
data, and stack pointers can be cast among one another. For example, a
stack location can be cast to a data pointer at any time without concern
about the values of the corresponding segment registers.

3. Physical addresses: This address type is of interest only if the CPU
works in paging mode. Basically, a physical address is the voltage pattern
measurable at the address bus pins of the CPU chip. The operating system
maps linear addresses to physical addresses by setting up page-tables. The
layout of the Windows 2000 page-tables, which has some very interesting
properties for debugging software developers, will be discussed later in
this chapter.
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The distinction between virtual and linear addresses is somewhat artificial, and
some documentation uses both terms interchangeably. I will do my best to use this
nomenclature consistently. It is important to note that Windows 2000 assumes physi-
cal addresses to be 64 bits wide. This might seem odd on Intel i386 systems, which
usually have a 32-bit address bus. However, some Pentium systems can address more
than 4 GB of physical memory. For example, the Physical Address Extension (PAE)
mode of the Pentium Pro CPU extends the physical address space to 36 bits, allowing
access to 64 GB of RAM (Intel 1999c). Therefore, the Windows 2000 API functions
involving physical addresses usually rely on the data type PHYSICAL_ADDRESS, which
is just an alias name for the LARGE_INTEGER structure, as shown in Listing 4-1. Both
types are defined in the DDK header file ntdef .h. The LARGE_INTEGER is a structural
representation of a 64-bit signed integer, allowing interpretation as a concatenation of
two 32-bit quantities (LowPart and Highpart) or a single 64-bit number (QuadPart).
The LONGLONG type is equivalent to the native Visual C/C++ type int64. Its
unsigned sibling is called ULONGLONG or DWORDLONG and is based on the native
unsigned int64 type.

Figure 4-1 outlines the i386 memory segmentation model, showing the relation-
ship between logical and linear addresses. For clarity, I have drawn the descriptor
table and the segment as small, nonoverlapping boxes. However, this isn't a require-
ment. Actually, a 32-bit operating system usually applies a segmentation layout as
shown in Figure 4-2. This so-called flat memory model is based on segments that
span the entire 4-GB address space. As a side effect, the descriptor table becomes part
of the segment and can be accessed by all code that has sufficient access rights.

LISTING 4-1. Definition O/"PHYSICAL_ADDRESS and LARGE_INTEGER

typedef LARGE_INTEGER PHYSICAL_ADDRESS, *PPHYSICAL_ADDRESS;

typedef union _LARGE_INTEGER

{

struct

{

ULONG LowPart;

LONG HighPart ;

};

LONGLONG QuadPart;

}
LARGE_INTEGER, * PLARGE_INTEGER ;
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FIGURE 4-1. 1386 Memory Segmentation

The memory model in Figure 4-2 is adopted by Windows 2000 for the standard
code, data, and stack segments, that is, all logical addresses that involve the cs, DS ,
ES, and ss segment registers. The FS and GS segments are treated differently. GS is
not used by Windows 2000, and FS addresses special system data areas inside the
linear address space. Therefore, its base address is greater than zero and its size is less
than 4 GB. Interestingly, Windows 2000 maintains different FS segments in user-
mode and kernel-mode. More on this topic follows later in this chapter.
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FIGURE 4-2. Flat 4-GB Memory Segmentation

In Figures 4-1 and 4-2, the selector portion of the logical address is shown to
point into a descriptor table determined by a register termed GDTR . This is the CPU's
Global Descriptor Table Register, which can be set by the operating system to any
suitable linear address. The first entry of the Global Descriptor Table (GDT) is
reserved, and the corresponding selector called "null segment selector" is intended
as an initial value for unused segment registers. Windows 2000 keeps its GDT at
address 0x80036000 . The GDT can hold up to 8,192 64-bit entries, resulting in a
maximum size of 64 KB. Windows 2000 uses only the first 128 entries, restricting
the GDT size to 1,024 bytes. Along with the GDT, the i386 CPU provides a Local
Descriptor Table (LDT) and an Interrupt Descriptor Table (IDT), addressed by the
LDTR and IDTR registers, respectively. Whereas the GDTR and IDTR values are unique
and apply to all tasks executed by the CPU, the LDTR value is task-specific, and, if
used, contains a 16-bit GDT selector.
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Figure 4-3 demonstrates the complex mechanism of linear-to-physical address
translation applied by the i386 memory management unit if demand paging is
enabled in 4-KB page mode. The Page-Directory Base Register (PDBR) in the upper
left corner contains the physical base address of the page-directory. The PDBR is
identical to the i386 CR3 register. Only the upper 20 bits are used for addressing.
Therefore, the page-directory is always located on a page boundary. The remaining
PDBR bits are either flags or reserved for future extensions. The page-directory occu-
pies exactly one 4-KB page, structured as an array of 1,024 32-bit page-directory
entries (PDEs). Similar to the PDBR, each PDE can be divided into a 20-bit page-frame
number (PFN) addressing a page-table, and an array of bit flags. Each page-table is
page-aligned and spans 4 KB, comprising 1,024 page-table entries (PTEs). Again, the

FIGURE 4-3. Double-Layered Paging with 4-KB Pages
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upper 20 bits are extracted from a PTE to form a pointer to a 4-KB data page.
Address translation takes place by breaking a linear address into three parts: The
upper 10 bits select a PDE out of the page-directory, the next lower 10 bits select a
PTE out of the page-table addressed by the PDE, and, finally, the lower 12 bits spec-
ify an offset into the data page addressed by the PTE.

In the 4-KB paging scheme, the 4-GB linear address space is addressable by
means of a double-layered indirection mechanism. In the worst case, 1,048,576 PTEs
are required to cover the entire range. Because each page-table holds 1,024 PTEs, this
amounts to 1,024 page-tables, which is the number of PDEs the page-directory con-
tains. With the page-directory and each page-table consuming 4 KB, the maximum
memory management overhead in this paging model is 4 KB plus 4 MB, or 4,100 KB.
That's a reasonable price for a subdivision of the entire 4-GB space into 4-KB tiles
that can be mapped to any linear address.

In 4-MB paging mode, things are much simpler because one indirection layer is
eliminated, as shown in Figure 4-4. Again, the PDBR points to the page-directory,
but now only the upper 10 bits of the PDE are used, resulting in 4-MB alignment of
the target address. Because no page-tables are used, this address is already the base
address of a 4-MB data page. Consequently, the linear address now consists of two
parts only: 10 bits for PDE selection and 22 offset bits. The 4-MB memory scheme
requires no more than 4 KB overhead, because only the page-directory consumes
additional memory. Each of its 1,024 PDEs can address one 4-MB page. This is just
enough to cover the entire 4-GB address space. Thus, 4-MB pages have the advan-
tage of keeping the memory management overhead low, but for the price of a more
coarse addressing granularity.

Both the 4-KB and 4-MB paging modes have advantages and disadvantages.
Fortunately, operating system designers don't have to decide for one of them, but can
run the CPU in mixed mode. For example, Windows 2000 works with 4-MB pages in
the memory range 0x80000000 to OXSFFFFFFF, where the kernel modules hal .dll
and ntoskrnl. exe are loaded. The remaining linear address blocks are managed in
4-KB tiles. This mixed design is recommended by Intel for improved system perfor-
mance, because 4-KB and 4-MB page entries are cached in different Translation
Lookaside Buffers (TLBs) inside the i386 CPU (Intel 1999c, pp. 3-22f). The operating
system kernel is usually large and is always resident in memory, so storing it in sev-
eral 4-KB pages would permanently use up valuable TLB space.

Note that all address translation steps are carried out in physical memory. The
PDBR and all PDEs and PTEs contain physical address pointers. The only linear address
found in Figures 4-3 and 4-4 is the box in the lower left corner specifying the address to
be converted to an offset inside a physical pa&e. On the other hand, applications must
work with linear addresses and are ignorant of physical addresses. However, it is
possible to fill this gap by mapping the page-directory and all of its subordinate page-
tables into the linear address space. On Windows 2000 and Windows NT 4.0, all
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FIGURE 4-4. Single-Layered Paging with 4-MB Pages

PDEs and PTEs are accessible in the address range O x C O O O O O O O to OXCOSFFFFF. This is
a linear memory area of 4-MB size. This is obviously the maximum amount of memory
consumed by the page-table layer in 4-KB paging mode. The PTE associated to a linear
address can be looked up by simply using its most significant 20 bits as an index into
the array of 32-bit PTEs starting at O x C O O O O O O O . For example, the PTE of address
Oxoooooooo is located at Oxcooooooo. The PTE index of address Oxsooooooo is
computed by shifting it right by 12 bits to get at the upper 20 bits, yielding 0x80000.
Because each PTE takes four bytes, the target PTE is found at OxCOOOOOOO +
(4 * 0x80000) = Oxc0200000. This result looks interesting—obviously, the
address that divides the 4-GB address space in two equal halves is mapped to a
PTE address that divides the PTE array in two equal halves.
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Now let's go one more step ahead and compute the entry address of the PTE
array itself. The general mapping formula is ((LinearAddress » 12) * 4) +
O x C O O O O O O O . Setting LinearAddress to OxCOOOOOOO yields OxC0300000. Let's pause
for a moment: The entry at linear address Oxcosooooo points to the beginning of the
PTE array in physical memory. Now look back to Figure 4-3. The 1,024 entries start-
ing at address Oxcosooooo must be the page-directory! This special PDE and PTE
arrangement is exploited by various memory management functions implemented in
ntoskrnl. exe. For example, the (documented) API functions MmisAddressValid ( )
and MmGetPhysicalAddress ( ) take a 32-bit linear address, look up its PDE and, if
applicable, its PTE, and examine their contents. MmisAddressValid ( ) simply checks
out whether the target page is currently present in physical memory. If the test fails,
the linear address is either invalid or it refers to a page that has been flushed to
backup storage, represented by the set of system pagefiles. MmGetPhysicalAddress ( )
first extracts the page-frame number (PFN) corresponding to a linear address, which
is the base address of its associated physical page divided by the page size. Next, it
computes the offset into this page by extracting the least significant 12 bits of the lin-
ear address, and adds the offset to the physical base address determined by the PFN.

More thorough examination of the implementation of MmGetPhysicalAddress ( )
reveals another interesting property of the Windows 2000 memory layout. Before any-
thing else, the code tests whether the linear address is within the range 0x80000000 to
Ox9FFFFFFF. As already mentioned, this is the home of hal. dl 1 and ntoskrnl. exe,
and it is also the address block where Windows 2000 uses 4-MB pages. The interesting
thing is that MmGetPhysicalAddress ( ) doesn't care at all for PDEs or PTEs if the
address is within this range. Instead, it simply sets the top three bits to zero, adds the
byte offset, as usual, and returns the result as the physical address. This means that
the physical address range 0x00000000 to OXIFFFFFFF is mapped 1:1 to the linear
addresses 0x80000000 to 9FFFFFFF! Knowing thatntoskrnl.exe is always loaded to
the linear address 0x80400000, this means that the Windows 2000 kernel is always
found at physical address 0x00400000, which happens to be the base address of the
second 4-MB page in physical memory. In fact, examination of these memory regions
proves that the above assumptions are correct. You will have the opportunity to see
this with the memory spy presented in this chapter.

DATA STRUCTURES
Some portions of the sample code following in this chapter are concerned with low-
level memory management and peek inside the mechanisms outlined above. For con-
venience, I have defined several C data structures that make this task easier. Because
many data items inside the i386 CPU are concatenations of single bits or bit groups,
C bit-fields come in handy. Bit-fields are an efficient way to access individual bits of
or extract contiguous bit groups from larger data words. Microsoft Visual C/C++
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generates quite clever code for bit-field operations. Listing 4-2 is part one of a series
of CPU data type definitions, containing the following items:

• X86_REGISTER is a basic unsigned 32-bit integral type that can represent
various CPU registers. This comprises all general-purpose, index, pointer,
control, debug, and test registers.

• X86_SELECTOR represents a 16-bit segment selector, as stored in the
segment registers cs, DS, ES, FS, GS, and ss. In Figures 4-1 and 4-2,
selectors are depicted as the upper third of a logical 4 8-bit address, serving
as an index into a descriptor table. For computational convenience, the
16-bit selector value is extended to 32 bits, with the upper half marked
"reserved." Note that the X86_SELECTOR structure is a union of two
structures. The first one specifies the selector value as a packed 16-bit WORD
named wvalue, and the second breaks it up into bit-fields. The RPL field
specifies the Requested Privilege Level, which is either 0 (kernel-mode) or
3 (user-mode) on Windows 2000. The TI bit switches between the Global
and Local Descriptor Tables (GDT/LDT).

• x86_DESCRiPTOR defines the format of a table entry pointed to by a
selector. It is a 64-bit quantity with a very convoluted structure resulting
from its historic evolution. The linear base address defining the start
location of the associated segment is scattered among three bit-fields
named Basel, Base2 , dnd Base3, with Basel being the least significant
part. The segment limit specifying the segment size minus one is divided
into the pair Limitl and Limit2, with the former representing the least
significant half. The remaining bit-fields store various segment
properties (cf. Intel 1999c, pp. 3-11). For example, the G bit defines
the segment granularity. If zero, the segment limit is specified in bytes;
otherwise, the limit value has to be multiplied by 4 KB. Like X86_SELECTOR,
the X86_DESCRIPTOR structure is composed of a union to allow different
interpretations of its value. The dvalueLow and dvalueHigh members
are helpful if you have to copy descriptors without regard to their
internal structure.

• X86_GATE looks somewhat similar to X86_DESCRIPTOR. In fact, the
structures are related: X86_DESCRIPTOR is a GDT entry and describes the
memory properties of a segment, and X8 S_GATE is an entry inside the
Interrupt Descriptor Table (IDT) and describes the memory properties of
an interrupt handler. The IDT can contain task, interrupt, and trap gates.
(No, Bill Gates is not stored in the IDT!) The X86_GATE structure matches
all three types, with the Type bit-field determining the identity. Type 5
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identifies a task gate; types 6 and 14, interrupt gates; and types 7 and 15,
trap gates. The most significant type bit specifies the size of the gate:
16-bit gates have this bit set to zero; otherwise it is a 32-bit gate.

• x86_TABLE is a tricky structure that is used to read the values of the
GDTR or IDTR by means of the assembly language instructions SGDT
(store GDT register) and SIDT (store IDT register) respectively (cf. Intel
1999b, pp. 3-636). Both instructions require a 48-bit memory operand,
where the limit and base address values will be stored. To maintain
DWORD alignment for the 32-bit base address, X86_TABLE starts out
with the 16-bit dummy member wReserved. Depending on whether
the SGDT or SIDT instruction is applied, the base address must be
interpreted as a descriptor or gate pointer, as suggested by the union
of PX86_DESCRIPTOR and PX86_GATE types. The wLimit member is the
same for both table types.

II

// INTEL X86 STRUCTURES, PART 1 OF 3

typedef DWORD X86_REGISTER, *PX86_REGISTER, **PPX86_REGISTER;

//

typedef struct _X86_SELECTOR

{
union

{
struct

{
WORD wValue; // packed value

WORD wReserved;

};
struct

{
unsigned RPL : 2; // requested privilege level

unsigned TI : 1; // table indicator: 0=gdt, l=ldt

unsigned Index : 13; // index into descriptor table

unsigned Reserved : 16;

};

};
}
X86_SELECTOR, *PX86_SELECTOR, **PPX86_SELECTOR;
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#define X86_SELECTOR_ sizeof (X86_SELECTOR)

//

typedef struct _X86_DESCRIPTOR

{
union

{
struct

{

DWORD dValueLow; // packed value

DWORD dValueHigh;

};
struct

{
unsigned Limitl 16; // bits 15.. 00

unsigned Basel 16; // bits 15.. 00

unsigned Base2 8; // bits 23.. 16

unsigned Type 4; // segment type

unsigned S 1; // type (0=system, l=code/data)

unsigned DPL 2; // descriptor privilege level

unsigned P 1; // segment present

unsigned Limit2 4; // bits 19.. 16

unsigned AVL 1; // available to programmer

unsigned Reserved 1;

unsigned DB 1; // 0=16-bit, l=32-bit

unsigned G 1; // granularity (1=4KB)

unsigned Base3 8: // bits 31.. 24

};

};

}
X86_DESCRIPTOR, *PX86_DESCRIPTOR, **PPX86_DESCRIPTOR;

#define X86_DESCRIPTOR_ sizeof (X86_DESCRIPTOR)

//

typedef struct _X86_GATE

{
union

{
struct

{
DWORD dValueLow; // packed value

DWORD dValueHigh;

};
struct

{
unsigned Offsetl : 16; // bits 15.. 00

unsigned Selector : 16; // segment selector

unsigned Parameters : 5; // parameters

unsigned Reserved : 3 ;

(continued)
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LISTING 4-2. 1386 Registers, Selectors, Descriptors, Gates, and Tables

The next set of i386 memory management structures, collected in Listing 4-3,
relates to demand paging and contains several items illustrated in Figures 4-3 and 4-4:

• X86_PDBR is, of course, a structural representation of the CPU's CR3
register, also known as the page-directory base register (PDBR). The upper
20 bits contain the PFN, which is an index into the array of physical 4-KB
pages. PFN=O corresponds to physical address 0x00000000 , PFN=I to
OxOOOOiooo , and so forth. Twenty bits are just enough to cover the entire
4-GB address space. The PFN in the PDBR is the index of the physical
page that holds the page-directory. Most of the remaining bits are
reserved, except for bit #3, controlling page-level write-through (PWT),
and bit #4, disabling page-level caching if set.

unsigned Type : 4; // gate type and size

unsigned S : 1; // always 0
unsigned DPL : 2; // descriptor privilege level

unsigned P : 1; // segment present

unsigned QffsetZ : 16; // bits 31.. 16

};

>•'
)
X86_GATE, *PX86_GATE, **PPX86_GATE;

#define X86_GATE_ sizeof (X86_GATE)

//

typedef struct _X86_TABLE

{
WORD wReserved; // force 32-bit alignment

WORD wLimit; // table limit
union

{
PX86_DESCRIPTOR pDescriptors ; // used by sgdt instruction

PX86_GATE pGates; // used by sidt instruction

};

}
X86_TABLE, *PX86_TABLE, **PPX86_TABLE;

#define X86__TABLE_ sizeof (X86_TABLE)
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1 X86_PDE_4M and X86_PDE_4K are alternative incarnations of page-directory
entries (PDEs) for 4-MB and 4-KB pages, respectively. A page-directory
contains a maximum of 1,024 PDEs. Again, PFN is the page-frame number,
pointing to the subordinate page. For a 4-MB PDE, the PFN bit-field is
only 10 bits wide, addressing a 4-MB data page. The 20-bit PFN of 4-KB
PDE points to a page-table that ultimately selects the physical data pages.
The remaining bits define various properties. The most interesting ones are
the "Page Size" bit PS, controlling the page size (0 = 4-KB, 1 = 4-MB), and
the "Present" bit P, indicating whether the subordinate data page (4-MB
mode) or page-table (4-KB mode) is present in physical memory.

X86_PTE_4K defines the internal structure of a page-table entry
(PTE) contained in a page-table. Like a page-directory, a page-table
can contain up to 1,024 entries. The only difference between
X86_PTE_4K and X86_PDE_4K is that the former lacks the PS bit, which
is not required because the page size must be 4-KB, as determined by
the PDE's PS bit. Note that there is no such thing as a 4-MB PTE,
because the 4-MB memory model doesn't require an intermediate
page-table layer.

X86_PNPE represents a "page-not-present entry" (PNPE), that is, a PDE
or PTE in which the P bit is zero. According to the Intel manuals, the
remaining 31 bits are "available to operating system or executive" (Intel
1999c, pp. 3-28). If a linear address maps to a PNPE, this means either
that this address is unused or that it points to a page that is currently
swapped out to one of the pagefiles. Windows 2000 uses the 31
unassigned bits of the PNPE to store status information of the page.
The structure of this information is undocumented, but it seems that
bit #10, named PageFile in Listing 4-3, is set if the page is swapped
out. In this case, the Reservedl and Reserved2 bit-fields contain values
that enable the system to locate the page in the pagefiles, so it can be
swapped in as soon as one of its linear addresses is touched by a memory
read/write instruction.

x86_PE is included for convenience. It is merely a union of all possible
forms a page entry can take, comprising the PDBR contents, 4-MB and
4-KB PDEs, PTEs, and PNPEs.
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// INTEL X86 STRUCTURES, PART 2 OF 3

typedef struct _X86_PDBR // page-directory base register (cr3)

{
union

t
struct

{
DWORD dValue; // packed value

};
struct

{
unsigned Reservedl : 3 ;

unsigned PWT : 1; // page-level write-through

unsigned PCD : 1; // page-level cache disabled

unsigned Reserved2 : 7;

unsigned PFN : 20; // page-frame number

];

}

X86_PDBR, *PX86_PDBR, **PPX86_PDBR;

#define X86_PDBR_ sizeof (X86_PDBR)

//

typedef struct _X86_PDE_4M // page-directory entry (4-MB page)

{
union

{
struct

{
DWORD dValue; // packed value

};
struct

{
unsigned P 1; // present (1 = present)

unsigned RW 1; // read/write

unsigned US 1; // user/supervisor

unsigned PWT 1; // page-level write-through

unsigned PCD 1; // page-level cache disabled

unsigned A 1; // accessed

unsigned D 1; // dirty

unsigned PS 1; // page size (1 = 4-MB page)

unsigned G 1; // global page

unsigned Available 3; // available to programmer

unsigned Reserved 10;

unsigned PFN 10; // page-frame number

};
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};

}

X86_PDE_4M, *PX86_PDE_4M, **PPX86_PDE_4M;

ttdefine X86_PDE_4M_ sizeof (X86_PDE_4M)

//

typedef struct _X86_PDE_4K // page-directory entry (4-KB page)

{

union

{

struct

{

DWORD dvalue; // packed value

};

struct

{

unsigned P 1; // present (1 = present)

unsigned RW 1; // read/write

unsigned US 1; // user/supervisor

unsigned PWT 1; // page-level write-through

unsigned PCD 1; // page-level cache disabled

unsigned A 1; // accessed

unsigned Reserved 1; // dirty

unsigned PS 1; // page size (0 - 4-KB page)

unsigned G 1; // global page

unsigned Available 3; // available to programmer

unsigned PFN 20; // page- frame number

};

};

)

X86_PDE_4K, *PX86_PDE_4K, * * PPX8 6_PDE_4K ;

ttdefine X86_PDE_4K_ sizeof (X86_PDE_4K)

/ /

typedef struct _X86_PTE_4K // page-table entry (4-KB page)

{

union

{

struct

{

DWORD dvalue; // packed value

};

struct

{

unsigned P : 1; // present (1 = present)

unsigned RW : 1; // read/write

unsigned US : 1; // user/supervisor

(continued)



180 EXPLORING WINDOWS 2000 MEMORY

unsigned PWT : 1; // page-level write-through

unsigned PCD 1; // page-level cache disabled

unsigned A 1; // accessed

unsigned D 1; // dirty

unsigned Reserved 1;

unsigned G 1; // global page

unsigned Available 3; // available to programmer

unsigned PFN 20; // page-frame number

};

};

}

X86_PTE__4K, *PX86_PTE_4K, **PPX86_PTE_4K;

#define X86_PTE_4K_ sizeof (X86_PTE_4K)

typedef struct _X86_PNPE // page not present entry

{

union

{

struct

{

DWORD dvalue; // packed value

};

struct

{

unsigned P : 1; // present (0 = not present)

unsigned Reservedl : 9;

unsigned PageFile : 1; // page swapped to pagefile

unsigned Reserved2 : 21;

};

};

}

X86_PNPE, *PX86_PNPE, * *PPX86_PNPE;

#define X86_PNPE_ sizeof (X86_PNPE)

//

typedef struct _X86_PE // general page entry

{

union

{

DWORD dValue; // packed value

X86_PDBR pdbr; // page-directory Base Register

X86_PDE_4M pde4M; // page-directory entry (4-MB page)

X86_PDE_4K pde4K; // page-directory entry (4-KB page)

X86_PTE_4K pte4K; // page-table entry (4-KB page)

X86_PNPE pnpe; // page not present entry

};
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LISTING 4-3. i386 PDBR, PDE, PTE, and PNPE Values

In Listing 4-4,1 have added structural representations of linear addresses.
These structures are formal definitions of the "Linear Address" boxes in Figures 4-3
and 4-4:

• X86_LINEAR_4M is the format of linear addresses that point into a 4-MB
data page, as shown in Figure 4-4. The page-directory index PDI is an
index into the page-directory currently addressed by the PDBR, selecting
one of its PDEs. The 22-bit offset member points to the target address
within the corresponding 4-MB physical page.

• X86_LINEAR_4K is the 4-KB variant of a linear address. As outlined in
Figure 4-3, it is composed of three bit-fields: Like in a 4-MB address, the
upper 10 PDI bits select a PDE. The page-table index PTI has a similar
duty, pointing to a PTE inside the page-table addressed by this PDE. The
remaining 12 bits are the offset into the resulting 4-KB physical page.

• X86_LINEAR is another convenience structure that simply unites
X86_LINEAR_4M and X86_LINEAR_4K in a single data type.

MACROS AND CONSTANTS
The definitions in Listing 4-5 are supplements to the structures in Listings 4-2 to 4-4
and make the work with i386 memory management easier. They can be subdivided
into three main groups. The first group handles linear addresses:

1. X86_PAGE_MASK, x86_PDi_MASK, and x86_PTi_MASK are bit masks that
isolate the constituent parts of linear addresses. They are based on the
Constants PAGE_SHIFT (12) , PDI-SHIFT ( 2 2 ) , and PTI-SHIFT (12) ,

defined in the Windows 2000 DDK header file ntddk.h. X86_PAGE_MASK
evaluates to OXFFFFFOOO , effectively masking off the 4-KB offset part of a
linear address (cf. X86_LINEAR_4K). X86_PDI_MASK is equal to OXFFCOOOOO
and obviously extracts the 10 topmost PDI bits of a linear address (cf.
X86_LINEAR_4M and X86_LINEAR_4K>. x86_PTi_MASK evaluates to
OxOOBFFOOOO and masks off all bits except for the page-table index (PTI)
bits of a linear address (cf. X86_LINEAR_4K).

}

X86_PE, *PX86_PE, **PPX86_PE;

#define X86_PE_ sizeof (X86_PE)



182 EXPLORING WINDOWS 2000 MEMORY

// INTEL X86 STRUCTURES, PART 3 OF 3

typedef struct _X86_LINEAR_4M // linear address (4-MB page)

{
union

{
struct

{
PVOID pAddress; // packed address

struct

{
unsigned Offset : 22; // offset into page

unsigned PDI : 10; // page-directory index

X86_LINEAR_4M, *PX86_LINEAR_4M, **PPX86_L1NEAR_4M;

#define X86_LINEAR_4M_ sizeof (X86_LINEAR_4M)

typedef struct _X86_LINEAR_4K // linear address (4-KB page)

{
union

{
struct

{
PVOID pAddress; // packed address

};
struct

{
unsigned Offset : 12; // offset into page

unsigned PTI : 10; // page-table index

unsigned PDI : 10; // page-directory index

};

};

}
X86_LINEAR_4K, *PX86_LINEAR_4K, **PPX86_LINEAR_4K;

#define X86_LINEAR_4K_ sizeof (X86_LINEAR_4K)

/ /

typedef struct _X86_LINEAR // general linear address

{
union

{
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LISTING 4-4. i386 Linear Addresses

2. X86_PAGE ( ) , X86_poi ( ) , and X86_PTI ( ) use the above constants
to compute the page index, PDI, or PTI of a given linear address.
X86_PAGE ( ) is typically used to read a PTE from the Windows 2000 PTE
array starting at address Oxcooooooo . X86_PDI ( ) and x86_PTi ( ) simply
apply x86_poi_MASK or x86_PTi_ MASK to the supplied pointer and shift
the resulting index to the rightmost bit position.

3. X86_OFFSET_4M() and X86_OFFSET_4K ( ) extract the offset portion of a
4-MB or 4-KB linear address, respectively.

4. X86_PAGE_4M and X86_PAGE_4K compute the sizes of 4-MB and 4-KB
pages from the DDK constants PDI_SHIFT and PTI_SHIFT, resulting
in x86_PAGE_4M = 4,194,304 and X86_PAGE_4K = 4,096. Note that
X86_PAGE_4K is equivalent to the DDK constant PAGE_SIZE, also
defined in ntddk. h.

5. X86_PAGES_4M and X86_PAGES_4K state the number of 4-MB or 4-KB
pages fitting into the 4-GB linear address space. X86_PAGES_4M evaluates
to 1,024, and X86_PAGES_4K to 1,048,576.

The second group of macros and constants relates to the Windows 2000 PDE
and PTE arrays. Unlike several other system addresses, the base addresses of these
arrays are not available as global variables set up at boot time, but are defined as
constants. This can be proved easily by disassembling the memory manager API
functions MmGetphysicalAddress ( ) or MmisAddressValid ( ) , where these addresses
appear as "magic numbers." These constants are not included in the DDK header
files, but Listing 4-5 shows how they might have been defined.

• X86_PAGES is a hard-coded address and points, of course, to OxCOOOOOOO,
where the Windows 2000 PTE array starts.

PVOID pAddress; // packed address

X86_LINEAR_4M linear4M; // linear address (4-MB page)

X86_LINEAR_4K linear4K; // linear address (4-KB page)

}
X86_LINEAR, *PX86_LINEAR, * *PPX86_LINEAR;

#define X86_LINEAR_ sizeof (X86_LINEAR)
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X86_PTE_ARRAY is equal to X86_PAGES, but typecasts the value to PX86_PE,
that is, a pointer to an array of X8 6_PE page entry structures, as defined in
Listing 4-2.

X86_PDE_ARRAY is a tricky definition that computes the base address of the
PDE array from the PTE array location, using the PTI_SHIFT constant. As
explained earlier, the general formula for mapping a linear address to a PTE
address is ((LinearAddress » 12) * 4) + O x C O O O O O O O , and the page-
directory is located by setting LinearAddress to O x C O O O O O O O . Nothing else is
done by the definition of X86_PDE_ARRAY.

// INTEL X86 MACROS & CONSTANTS

#define X86_PAGE_MASK (0 - (1 « PAGE_SHIFT) )

tdefine X86_PAGE(_p) (((DWORD) (_p) & X86_PAGE_MASK) » PAGE_SHIFT)

#define X86_PDI_MASK (0 - 11 « PDI_SHIFT) )

#define X86_PDI(_p) (((DWORD) (_p) & X86_PDI_MASK) » PDI_SHIPT)

#define X86_PTI_MASK ( (0 - (1 « PTI_SHIFT) ) & ~X86_PDI_MASK)

#define X86_PTI(_p) (((DWORD) (_p) & X86_PTI_MASK) » PTI_SHIFT)

ttdefine X86_OFFSET_4M(_p) ( (_p) & - ( X8 6_PDI_MASK ))

#define X86_OFFSET_4K(_p) ( (_p) & ~ (X86_PDI_MASK | X86_PTI_MASK) )

#define X86_PAGE_4M (1 « PDI_SHIFT)

#define X86_PAGE_4K (1 « PTI_SHIFT)

ttdefine X86_PAGES_4M (1 « (32 - PDI_SHIFT) )

#define X86_PAGES_4K (1 « (32 - PTI_SHIFT) )

/ /

ttdefine X86_PAGES OxCOOOOOOO

#define X86_PTE_ARRAY ( (PX86_PE) X86_PAGES)

#define X8 6_PDE_ARRAY (X86_PTE_ARRAY + (X86_PAGES » PTI_SHIFT) )

//

#define X86_SELECTOR_RPL 0x0003

#define X86_SELECTOR_TI 0x0004

#define X86_SELECTOR_INDEX OxFFFS

#define X86_SELECTOR_SHIFT 3
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#define X86_SELECTOR_LIMIT (X86_SELECTOR_INDEX » \

X86

#define X86_DESCRIPTOR_SYS_TSS16A

#define X86_DESCRIPTOR_SYS_LDT

#define X86_DESCRIPTOR_SYS_TSS16B

#define X86_DESCRIPTOR_SYS_CALL16

#define X86_DESCRIPTOR_SYS_TASK

#define X86_DESCRIPTOR_SYS_INT16

#define X86_DESCRIPTOR_SYS_TRAP16

#define X86_DESCRIPTOR_SYS_TSS32A

#define X86_DESCRIPTOR_SYS_TSS32B

f de f ine X8 6_DESCRI PTOR_SYS_CALL3 2

#define X86_DESCRIPTOR_SYS_INT32

#define X86_DESCRIPTOR_SYS_TRAP32

/ / -

#define X86_DESCRIPTDR_APP_ACCESSED

#define X86_DESCRIPTOR_APP_READ_WRITE

ttdefine X86_DESCRIPTOR_APP_EXECUTE_READ

#define X86_DESCRIPTOR_APP_EXPAND_DOWN

#define X86_DESCRIPTOR_APP_CONFORMING

ttdefine X86_DESCRIPTOR_APP_CODE

_SELECTOR_SHIFT)

Oxl

0x2

0x3

0x4

0x5

0x6

0x7

0x9

OxB

OxC

OxE

OxF

Oxl

0x2

0x2

0x4

0x4

0x8

LISTING 4-5. Additional i386 Memory Management Definitions

The last two sections of Listing 4-5 handle selectors and special types of
descriptors, and are complementary to Listing 4-2:

• X86_SELECTOR_RPL, X86_SELECTOR__TI, and X86_SELECTOR_INDEX

are bit masks corresponding to the RPL , TI , and index members of the
X86_SELECTOR structures defined in Listing 4-2.

• X86_SELECTOR_SHIFT is a right-shift factor that right-aligns the value of
the selector's index member.

• x86_SELECTOR_LiMiT defines the maximum index value a selector can
hold and is equal to 8,191. This value determines the maximum size of a
descriptor table. Each selector index points to a descriptor, and each
descriptor consists of 64 bits or 8 bytes (cf. X86_DESCRIPTOR in Listing 4-2),
so the maximum descriptor table size amounts to 8,192 * 8 = 64 KB.
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• The list of X86_DESCRIPTOR_SYS_* constants define values of a
descriptor's Type member if its s-bit is zero, identifying it as a system
descriptor. Please refer to Listing 4-2 for the bit-field layout of a descriptor,
determined by the structure X86_DESCRIPTOR. The system descriptor types
are described in detail in the Intel manuals (Intel 1999c, pp. 3-15f) and
summarized in Table 4-1.

The x86_DESCRiPTOR_APP_* constants concluding Listing 4-5 apply to a
descriptor's Type member if it is an application descriptor referring to a code or
data segment, identified by a nonzero s-bit. Because application descriptor types
can be characterized by independent properties reflected by the four type bits, the
X86_DESCRIPTOR_APP_* constants are defined as single-bit masks, in which some
bits are interpreted differently for data and code segments:

• X86_DESCRIPTOR_APP_ACCESSED is set if the segment has been accessed.

• X86_DESCRIPTOR_APP_READ_WRITE decides whether a data segment allows
read-only or read/write access.

• X86_DESCRIPTOR_APP_EXECUTE_READ decides whether a code segment
allows execute-only or execute/read access.

• X86_DESCRIPTOR_APP_DOWN is set for expand-down data segments, which
is a property commonly exposed by stack segments.

• X86_DESCRIPTOR_APP_CONFORMING indicates whether a code segment is
conforming, that is, whether it can be called by less privileged code
(cf. Intel 1999c, pp. 4-13ff).

• X86_DESCRIPTOR_APP_CODE distinguishes code and data segments. Note
that stack segments belong to the data segment category and must always
be writable.

We will revisit system descriptors later when the memory spy application pre-
sented in the next sections is up and running. Table 4-1 also concludes a short intro-
duction to i386 memory management. For more information on this topic, please
refer to the original Intel Pentium manuals (Intel 1999a, 1999b, 1999c) or one of the
secondary readings, such as Robert L. Hummel's great 80486 reference handbook
(Hummel 1992).
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TABLE 4-1. System Descriptor Types

A SAMPLE MEMORY SPY DEVICE

One of the frequently recurring Microsoft statements about Windows NT and 2000 is
that it is a secure operating system. Along with user authentication issues in network-
ing environments, this also includes robustness against bad applications that might
compromise the system's integrity by misusing pointers or writing outside the bounds
of a memory data structure. This has always been a nasty problem on Windows 3.x,
in which the system and all applications shared a single memory space. Windows NT
has introduced a clear separation between system and application memory and
between concurrent processes. Each process gets its own 4-GB address space, as
depicted in Figure 4-2. Whenever a task switch occurs, the current address space is
switched out and another one is mapped in by selecting different values for the seg-
ment registers, page tables, and other memory management data specific to a
process. This design prevents applications from inadvertently tampering with
memory of other applications. Each process also requires access to system
resources, so the 4-GB space always contains some system code and data. To
protect these memory regions from being overwritten by hostile application code, a
different trick is employed.

NAME VALUE DESCRIPTION

X86_DESCRIPTOR_SYS_TSS16A Oxl 16-bit Task State Segment (Available)

X86_DESCRIPTOR_SYS_LDT 0x2 Local Descriptor Table

X86_DESCRIPTOR_SYS_TSS16B 0x3 16-bit Task State Segment (Busy)

X86_DESCRIPTOR_SYS_CALL16 0x4 16-bit Call Gate

X86_DESCRIPTOR_SYS_TASK 0x5 Task Gate

X86_DESCRIPTOR_SYSJNT16 0x6 16-bit Interrupt Gate

X86_DESCRIPTOR_SYS_TRAP16 0x7 16-bit Trap Gate

X86_DESCRIPTOR_SYS_TSS32A 0x9 32-bit Task State Segment (Available)

X86_DESCRIPTOR_SYS_TSS32B OxB 32-bit Task State Segment (Busy)

X86_DESCRIPTOR_SYS_CALL32 OxC 32-bit Call Gate

X86_DESCRIPTOR_SYS_INT32 OxE 32-bit Interrupt Gate

X86_DESCRIPTOR_SYS_TRAP32 OxF 32-bit Trap Gate
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WINDOWS 2000 MEMORY SEGMENTATION

Windows 2000 has inherited the basic memory segmentation scheme of Windows
NT 4.0, which divides the 4-GB process address space in two equal parts by default.
The lower half, comprising the range 0x00000000 to OX?FFFFFFF, contains applica-
tion data and code running in user-mode, which is equivalent to Privilege Level 3 or
"Ring 3" in Intel's terminology (Intel 1999a, pp. 4-8ff; Intel 1999c, pp. 4-8ff). The
upper half, ranging from 0x80000000 to OXFFFFFFFF, is reserved for the system,
which is running in kernel-mode, also known as Intel's Privilege Level 0 or "Ring 0."
The privilege level determines what operations may be executed and which memory
locations can be accessed by the code. Especially, this means that certain CPU
instructions are forbidden and certain memory regions are inaccessible, for low-
privileged code. For example, if a user-mode application touches any address in
the upper half of the 4-GB address space, the system will throw an exception and
terminate the application process without giving it another chance.

Figure 4-5 demonstrates what happens if an application attempts to read from
address 0x80000000 . This strict access limitation is good for the integrity of the sys-
tem but bad for debugging tools that should be able to show the contents
of all valid memory regions. Fortunately, an easy workaround exists: Like the sys-
tem itself, kernel-mode drivers run on the highest privilege level and therefore are
allowed to execute all CPU instructions and to see all memory locations. The trick is
to inject a spy driver into the system that reads the requested memory and sends the
contents to a companion application waiting in user-mode. Of course, even a kernel-
mode driver cannot read from virtual memory addresses that aren't backed up by
physical or page file memory. Therefore, such a driver must check all addresses care-
fully before accessing them in order to avoid the dreaded Blue Screen Of Death
(BSOD). Contrary to an application exception, which terminates the problem appli-
cation only, a driver exception stops the entire system and forces a full reboot.

FIGURE 4-5. Addresses Starting at 0x80000000 Are Not Accessible in User-mode

THE DEVICE I/O CONTROL DISPATCHER

The companion CD of this book contains the source code of a versatile spy device
implemented as a kernel-mode driver, which can be found in the \src\w2k_spy
directory tree. This device is based on a driver skeleton generated by the driver
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wizard introduced in Chapter 3. The user-mode interface of w2k_spy. sys is based on
Win32 Device I/O Control (IOCTL), briefly described in the same chapter. The spy
&raet &etmes> a &ev\ce, tvamed Vievicewr^syy axvd a. s>yn\Y>o\\cYvnk, xoosoevlcesX
w2k_spy, required to make the device reachable from user-mode. It is funny that the
namespace of symbolic links is called \DosDevices. We are certainly not working
with DOS device drivers here. This name has historic roots and is now set in stone.
With the symbolic link installed, the driver can be opened by any user-mode module
via the standard Win32 API function createFile ( ) , using the path \\ . \w2k_spy.
The character sequence \\ . \ is a general escape for local devices. For example,
\ \ . \ C : refers to hard disk c: of the local system. See the CreateFile ( ) documen-
tation in the Microsoft Platform SDK for more details.

Parts of the driver's header file w2k_spy.h are included above as Listings 4-2
to 4-5. This file is somewhat similar to a DLL header file: It contains definitions
required by the module itself during compilation, but it also provides enough infor-
mation for a client application that needs to interface to it. Both the DLL/driver
and the client application include the same header file, and each module picks out
the definitions it needs for proper operation. However, this Janus-headed nature
of the header file creates many more problems for a kernel-mode driver than for
a DLL because of the special development environment Microsoft provides for dri-
vers. Unfortunately, the header files contained in the DDK are not compatible with
the Win32 files in the Platform SDK. The header files cannot be mixed, at least not
in C language projects, resulting in a deadlocked situation in which the kernel-
mode driver has access to constants, macros, and data types not available to the
client application, and vice versa. Therefore, w2k_spy. c defines a flag constant
named _W2K_SPY_SYS_, and w2k_spy.h checks the presence or absence of this con-
stant to define items that are missing in one or the other environment, using
l i fdef . . . ttelse. . . #endif clauses. This means that all definitions found in the
#ifdef _W2K_SPY_SYS_ branch are "seen" by the driver code only, whereas the defini-
tions in the #eise branch are evaluated exclusively by the client application. All parts
of w2k_spy .h outside these conditional clauses apply to both modules.

In Chapter 3, in the discussion of my driver wizard, I presented the driver skeleton
code provided by the wizard in Listing 3-3. The starting point of any new driver project
created by this wizard is usually the DeviceDispatcher ( ) function. It receives a device
context pointer and a pointer to the I/O Request Packet (IRP) that is to be dispatched.
The wizard's boilerplate code already handles the basic I/O requests IRP_MJ_CREATE,
IRP_MJ_CLEANUP, and IRP_MJ_CLOSE, sent to the device when it is opened or closed by
a client. The DeviceDispatcher ( ) simply returns STATUS_SUCCESS for these requests,
so the device can be opened and closed without error. For some devices, this behavior is
sufficient, but others require more or less complex initialization and cleanup code here.
All remaining requests return STATUS_NOT_IMPLEMENTED . The first.step in the extension
of the code is to change this default behavior by handling more requests. As already
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noted, one of the main tasks of w2k_spy. sys is to send data unavailable in user-mode
to a Win32 application by means of IOCTL calls, so the work starts with the addition
of an IRP_MJ_DEVICE_CONTROL case to the DeviceDispatcher ( ) function. Listing 4-6
shows the updated code, as it appears in w2k_spy. c.

LISTING 4-6. Adding an IRP_MJ_DEVICE_CONTROL Case to the Dispatcher

NTSTATUS DeviceDispatcher (PDEVICE_CONTEXT pDeviceContext ,

PIRP plrp)

{

PIO_STACK_LOCATION pisl;

DWORD dlnfo = 0;

NTSTATUS ns = STATUS_NOT_IMPLEMENTED;

pisl = loGetCurrentlrpStackLocation (plrp) ;

switch (pisl->MajorFunction)

{

case IRP_MJ_CREATE :

case IRP_MJ_CLEANUP :

case IRP_MJ_CLOSE :

{

ns = STATUS_SUCCESS ;

break;

}

case IRP_MJ_DEVICE_CONTROL :

{

ns = SpyDispatcher (pDeviceContext,

pisl->Parameters . DeviceloControl

. loControlCode ,

pIrp->Associated!rp . SystemBuf fer,

pisl->Parameters . DeviceloControl

. InputBuf f erLength,

pIrp->Associated!rp. SystemBuf fer,

pisl->Parameters. DeviceloControl

. OutputBuf f erLength,

&dlnfo) ;

break;

}

)

p!rp->IoStatus . Status = ns;

p!rp->IoStatus . Information = dlnfo;

loCompleteReguest (plrp, IO_NO_INCREMENT) ;

return ns ;

}
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The IOCTL handler in Listing 4-6 is fairly simple—it just calls spyDispatcher ( )
with parameters it extracts from the IRP structure and the current I/O stack location
embedded in it. The SpyDispatcher ( ) , shown in Listing 4-7, requires the following
arguments:

• pDeviceContext is the driver's device context. The basic Device_context
structure provided by the driver wizard contains the driver and device object
pointers only (see Listing 3-4). The spy driver adds a couple of members to it
for private use.

• dcode specifies the IOCTL code that determines the command to be
executed by the spy device. An IOCTL code is a 32-bit integer consisting
of 4 bit-fields, as illustrated by Figure 4-6.

• pinput points to the buffer providing the IOCTL input data.

• dinput is the size of the input buffer.

• poutput points to the buffer receiving the IOCTL output data.

• doutput is the size of the output buffer.

• pdinf o points to a DWORD variable that should receive the number of bytes
written to the output buffer.

Depending on the IOCTL method used, the input and output buffers are
passed differently from the system to the driver. The spy device uses buffered I/O,
directing the system to copy the input data to a safe buffer allocated automatically
by the system, and to copy a specified amount of data from the same system buffer
to the caller's output buffer on return. It is important to keep in mind that the input
and output buffers overlap in this case, so the IOCTL handler must save any input
data it might need later before it writes any output data to the buffer. The pointer to
this I/O buffer is stored in the SystemBuf f er member of the Associatedirp union
inside the IRP structure (cf. ntddk.h). The input and output buffer sizes are stored
in a completely different location of the IRP—they are part of the DeviceioControl
member of the Parameters union inside the IRP ' s current stack location, named
InputBuf ferLength and OutputBuf ferLength, respectively. The DeviceioControl
substructure also provides the IOCTL code via its locontroicode member. More
information about the Windows NT/2000 IOCTL methods and how they pass data
in and out can be found in my article "A Spy Filter Driver for Windows NT" in
Windows Developer's Journal (Schreiber 1997).
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NTSTATUS SpyDispatcher ( PDEVICE_CONTEXT pDeviceContext ,

DWORD dCode ,

PVOID plnput ,

DWORD dlnput,

PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

SPY_MEMORY_BLOCK smb;

SPY_PAGE_ENTRY spe;

S P Y_C ALL_INPUT s c i ;

PHYSICAL_ADDRESS pa;

DWORD dValue, dCount;

BOOL f Reset, f Pause, f Filter, fLine;

PVOID pAddress;

PBYTE pbName ;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch) ;

*pdlnfo = 0;

switch (dCode)

{

case SPY_IO_VERSION_INFO:

{
ns = SpyOutputVersionlnfo (pOutput, dOutput, pdlnfo);

break;

case SPY_IO_OS_INFO :

{
ns = SpyOutputOsInf o {pOutput, dOutput, pdlnfo);

break;

}
case SPY_IO_SEGMENT :

{

if ( (ns = SpylnputDword (SdValue,

plnput, dlnput) )

== STATUS_SUCCESS )

{

ns = SpyOutputSegment (dValue,

pOutput, dOutput, pdlnfo);

}

break;

}

case SPY_IO_INTERRUPT:

{
if ( (ns = SpylnputDword (kdValue,

plnput, dlnput))

== STATUS_SUCCESS)

{
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ns = SpyOutputlnterrupt (dvalue,
pOutput, dOutput, pdlnfo);

}
break;

}
case SPY_IO_PHYSICAL :

{
if ( (ns = SpylnputPointer (&pAddress,

plnput, dlnput))

== STATUS_SUCCESS)

{
pa = MmGetPhysicalAddress (pAddress) ;

ns = SpyOutputBinary (&pa, PHYSICAL_ADDRESS_,
pOutput, dOutput, pdlnfo) ;

}
break;

}
case SPY_IO_CPU_INFO :

{
ns = SpyOutputCpuInfo (pOutput, dOutput, pdlnfo);
break;

)
case SPY_IO_PDE_ARRAY:

{
ns = SpyOutputBinary (X86_PDE_ARRAY, SPY_PDE_ARRAY_,

pOutput, dOutput, pdlnfo);
break;

)
case SPY_IO_PAGE_ENTRY :

{
if ( (ns = SpylnputPointer (&pAddress,

plnput, dlnput) )

== STATUS_SUCCESS)

{
SpyMemoryPageEntry (pAddress, &spe) ;

ns = SpyOutputBinary (&spe, S P Y_PAGE_ENTRY_ ,

pOutput, dOutput, pdlnfo);

}
break;

}
case SPY_IO_MEMORY_DATA:

{
if ( (ns = SpylnputMemory (&smb,

plnput, dlnput))

== STATUS_SUCCESS)

{
ns - SpyOutputMemory (&smb,

pOutput, dOutput, pdlnfo) ;

}

(continued)
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break;

}
case SPY_IO_MEMORY_BLOCK :

{
if ( (ns = SpylnputMemory (&smb,

plnput, dlnput) )
== STATUS_SUCCESS)

{
ns = SpyOutputBlock (isinb,

pOutput, dOutput, pdlnfo);

}
break;

)
case SPY_IO_HANDLE_INFO:

{
if ( (ns = SpylnputHandle (ihobject,

plnput, dlnput)}
== STATUS_SUCCESS)

{
ns = SpyOutputHandlelnfo (hobject,

pOutput, dOutput, pdlnfo);

}
break ;

}
case SPY_IO_HOOK_INFO:

{
ns = SpyOutputHooklnfo (pOutput, dOutput, pdlnfo);
break;

}
case SPY_IO_HOOK_INSTALL :

{
if ( ( (ns = SpylnputBool (kfReset,

plnput, dlnput))

== STATUS_SUCCESS)
&&

( (ns = SpyHooklnstall (f Reset, ScdCount) )
== STATUS_SUCCESS) )

{
ns = SpyOutputDword (dCount,

pOutput, dOutput, pdlnfo};

}
break;

)
case SPY_IO_HOOK_REMOVE :

I
if ( ( (ns = SpylnputBool (kfReset,

plnput, dlnput))
== STATUS_SUCCESS)
&&
( (ns = SpyHookRemove (fReset, &dCount) )
== STATUS_SUCCESS) )

{
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ns = SpyOutputDword (dCount,
pOutput, dOutput, pdlnfo);

}
break;

}
case SPY_IO_HOOK_PAUSE :

t
if ( (ns = SpylnputBool (&fPause,

plnput, dlnput) )

== STATUS_SUCCESS)

{
f Pause = SpyHookPause (f Pause);

ns = SpyOutputBool ( f Pause ,

pOutput, dOutput, pdlnfo) ;

}
break;

}
case SPY_IO_HOOK_FILTER:

{
if ( (ns = SpylnputBool (&fFilter,

plnput, dlnput))

== STATUS_SUCCESS)

{
fFilter = SpyHookFilter (fFilter);

ns = SpyOutputBool (fFilter,

pOutput, dOutput, pdlnfo);

}
break;

)
case SPY_IO_HOOK_RESET :

{
SpyHookReset ( ) ;

ns = STATUS_SUCCESS;
break;

}
case SPY_IO_HOOK_READ :

{
if ( (ns = SpylnputBool (kfLine,

plnput , dlnput ) )

== STATUS_SUCCESS)

{
ns = SpyOutputHookRead (fLine,

pOutput, dOutput, pdlnfo) ;

}
break;

}
case SPY_IO_HOOK_WRITE:

{
SpyHookWrite (plnput, dlnput) ;

(continued)
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ns = STATUS_SUCCESS;
break;

}
case SPY_IO_MODULE_INFO :

{
if ( (ns = SpylnputPointer (kpbName,

plnput , dlnput } )

== STATUS_SUCCESS)

{
ns = SpyOutputModulelnf o (pbName,

pOutput, dOutput, pdlnfo);

}
break ;

}
case SPY_IO_PE_HEADER :

{
if ( {ns = SpylnputPointer (&pAddress,

plnput, dlnput))

== STATUS^SUCCESS)

{
ns = SpyOutputPeHeader (pAddress,

pOutput, dOutput, pdlnfo) ;

}
break;

}
case SPY_IO_PE_EXPORT :

{
if ( (ns = SpylnputPointer (kpAddress,

plnput, dlnput))

= = STATUS_SUCCESS)

{
ns = SpyOutputPeExport (pAddress,

pOutput, dOutput, pdlnfo);

}
break;

}
case SPY_IO_PE_SYMBOL :

(
if ( (ns = SpylnputPointer (&pbName,

plnput, dlnput))

== STATUS_SUCCESS)

{
ns = SpyOutputPeSymbol (pbName,

pOutput, dOutput, pdlnfo);

}
break;

}
case SPY_IO_CALL:

{
if ( (ns = SpylnputBinary (&sci, SPY_CALL_INPUT_,

plnput, dlnput) )

== STATUS_SUCCESS)
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LISTING 4-7. The Spy Driver's Internal Command Dispatcher

The main DDK header file ntddk.h, as well as the Win32 file winioctl .h in
the Platform SDK, define the simple but highly convenient CTL_CODE ( ) macro shown
in Listing 4-8 to build IOCTL codes according to the diagram in Figure 4-6. The four
parts serve the following purposes:

1. DeviceType is a 16-bit device type ID. ntddk.h lists a couple of predefined
types, symbolized by the constants FILE_DEVICE_* . Microsoft reserves the
range Oxoooo to OXVFFF for internal use, while the range Oxsooo to OXFFFF
is available to developers. The spy driver defines its own device ID
FILE_DEVICE_SPY and sets it to 0x8000.

2. Access specifies the 2-bit access check value determining the required
access rights for the IOCTL operation. Possible values are FILE_ANY_
ACCESS (0), FILE_READ_ACCESS (1), FILE_WRITE_ACCESS (2), and the

combination of the latter two, FILE_READ_ACCESS | FILE_WRITE_
ACCESS (3). See ntddk.h for more details.

3. Function is a 12-bit ID that selects the operation to be performed by the
device. Microsoft reserves the values 0x000 to OX?FF for internal use, and
leaves range 0x800 to OXFFF for developers. The IOCTL function IDs
recognized by the spy device are drawn from the latter number pool.

4. Method consists of 2 bits, selecting one of four available I/O transfer
methods named METHOD_BUFFERED (0), METHOD_IN_DIRECT (1), METHOD_
OUT_DIRECT (2), and METHOD_NEITHER (3), found in ntddk.h. The spy
device uses METHOD_BUFFERED for all requests, which is a highly secure but
also somewhat sluggish method because of the data copying between the
client and system buffers. Because the I/O of the memory spy is not time-
critical, it is a good idea to opt for security. If you want to know more
about the other methods, please refer to my spy filter article mentioned on
p.191. (Schreiber 1997).

{
ns = SpyOutputCall (&sci,

pOutput, dOutput, pdlnfo) ;

break;

}

}
MUTEX_RELEASE (pDeviceContext->kmDispatch) ;
return ns ;
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LISTING 4-8. The CTL_CODE ( ) Macro Builds I/O Control Codes

FIGURE 4-6. Structure of a Device I/O Control Code

Table 4-2 summarizes all IOCTL functions supported by w2k_spy. sys. The
functions with IDs in the range 0 to 10 are memory exploration primitives that are
sufficient to cover a wide range of tasks; they are discussed later in this chapter. The
remaining functions with IDs of 11 and up belong to different IOCTL groups that
will be described in detail in the next chapters, where Native API hooks and kernel
calls from user-mode are discussed. Note that some IOCTL codes require the write
access right, indicated by bit #15 being set (see Figure 4-6). That is, all IOCTL com-
mands with a code of Ox80006nnn can be issued via a read-only device handle, and a
code of OxSOOOEnnn requires a read/write handle. The access rights are typically
requested in the createFile ( ) call that opens the device by specifying a combination
of the GENERIC_READ and GENERIC_WRITE flags for the dwDesiredAccess argument.

The function names in the leftmost column of Table 4-2 also appear as cases of the
large switch/case statement of the SpyDispatcher ( ) function in Listing 4-7. This func-
tion first obtains the device's dispatcher mutex to guarantee that only a single request is
executed at a time if more than one client or a multithreaded application communicates
with the device. MUTEX_WAIT ( ) is a wrapper macro for KeWaitForMutexObject ( ) ,
which takes no less than five arguments. KeWaitForMutexObject ( ) is a macro itself,
forwarding its arguments to KeWaitForSingleobject ( ) . MUTEX_WAIT ( ) , along with
its friends MUTEX_RELEASE ( ) and MUTEX_INITIALIZE ( ) , is shown in Listing 4-9. After
the mutex object becomes signaled, SpyDispatcher ( ) branches to various short code
sequences, depending on the received IOCTL code. At the end, it releases the mutex and
returns a status code to the caller.

The SpyDispatcher ( ) uses a couple of helper functions to read input parame-
ters, obtain the requested data, and write the data to the caller's output buffer. As
already mentioned, a kernel-mode driver must be overly fussy with any user-mode

#def ine CTL_CODE (DeviceType, Function, Method, Access) \
( ( (DeviceType) « 16) | ( (Access) « 14) | ( (Function) « 2} (Method) }
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TABLE 4-2. IOCTL Functions Supported by

FUNCTION NAME

SPYJO_VERSION_INFO

SPYJCLOSJNFO
SPY_IO_SEGMENT

SPYJOJNTERRUPT

SPYJCLPHYSICAL

SPYJO_CPU_INFO

SPY_IO_PDE_ARRAY

SPYJO_PAGE_ENTRY

SPY_IO_MEMORY_DATA

SPY_IO_MEMORY_BLOCK

SPY_IO_HANDLE_INFO

SPYJO_HOOK_INFO

SPYJO_HOOKJNSTALL

SPY_IO_HOOK_REMOVE

SPY_IO_HOOK_PAUSE

SPYJO_HOOK_FILTER

SPY_IO_HOOK_RESET

SPY_IO_HOOK_READ

SPY_IO_HOOK_WRITE

SPYJOJVIODULEJNFO

SPY_IO_PE_HEADER

SPYJO_PE_EXPORT

SPYJO_PE_SYMBOL

SPY_IO_CALL

ID

0
1
2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

IOCTL CODE

0x80006000

0x80006004

0x80006008

Ox8000600C

0x80006010

0x80006014

0x80006018

Ox8000601C

0x80006020

0x80006024

0x80006028

Ox8000602C

Ox8000E030

Ox8000E034

Ox8000E038

Ox8000E03C

Ox8000E040

0x80006044

Ox8000E048

Ox8000604C

0x80006050

0x80006054

0x80006058

Ox8000E05C

the Spy Device

DESCRIPTION

Returns spy version information

Returns operating system information

Returns the properties of a segment

Returns the properties of an interrupt gate

Linear-to-physical address translation

Returns the values of special CPU registers

Returns the PDE array at OxC0300000

Returns the PDE or PTE of a linear address

Returns the contents of a memory block

Returns the contents of a memory block

Looks up object properties from a handle

Returns info about Native API hooks

Installs Native API hooks

Removes Native API hooks

Pauses/resumes the hook protocol

Enables/disables the hook protocol filter

Clears the hook protocol

Reads data from the hook protocol

Writes data to the hook protocol

Returns information about loaded
system modules

Returns IMAGE_NT_HEADERS data

Returns IMAGE_EXPORT_DIRECTORY data

Returns the address of an exported
system symbol

Calls a function inside a loaded module

parameters it receives. From a driver's perspective, all user-mode code is evil and has
no other thing on its mind but to trash the system. This somewhat paranoid view is
not absurd—just the slightest slip brings the whole system to an immediate stop, with
the appearance of a BlueScreen. So, if a client application says: "Here's my buffer—it
can take up to 4,096 bytes," the driver does not accept it—neither that the buffer
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LISTING 4-9. Kernel-Mutex Management Macros

points to valid memory, nor that the buffer size is correct. In an IOCTL situation
with buffered I/O (i.e., if the Method portion of the IOCTL code indicates METHOD_
BUFFERED), the system takes care of the sanity checks and allocates a buffer that
is large enough to hold both the input and output data. However, the other I/O
transfer methods, most notably METHOD_NEITHER, where the driver receives original
user-mode buffer pointers, require more foresight.

Although the spy device uses buffered I/O, it has to check the input and output
parameters for validity. It might be that the client application passes in less data than is
required or provides an output buffer that is not large enough for the output data. The
system cannot catch these semantic problems, because it doesn't know what kind of
data is transferred in an IOCTL transaction. Therefore, SpyDispatcher ( ) calls the
Spylnput* ( ) and spyOutput* (} helper functions to copy data from or to the I/O
buffers. These functions execute the requested operation only if the buffer size
matches the requirements of the operation. Listing 4-10 shows the basic input
functions, and Listing 4-11 shows the basic output functions. spyinputBinary ( ) and
SpyOutputsinary ( } are the workhorses. They test the buffer size, and, if it is OK, they
copy the requested amount of data using the Windows 2000 Runtime Library function
RtlCopyMemory ( ) . The remaining functions are simple wrappers for the common data
types DWORD, BOOL, PVOID, and HANDLE. Additionally, spyOutputBlock() copies the
data block specified by the caller in a SPY_MEMORY_BLOCK structure after verifying that
all bytes in the indicated range are readable. The Spylnput* ( ) functions return STATUS_
INVALID_BUFFER_SIZE if incomplete input data is passed in, and the SpyOutput* ( )
functions return STATUS_ BUFFER_TOO_SMALL if the output buffer is smaller
than required.

ttdefine MUTEX_INITIALIZE (_mutex) \

KelnitializeMutex \

(&(_mutex), 0)

#define MUTEX_WAIT (_mutex) \

KeWaitForMutexObject \

(&(_mutex), Executive, KernelMode, FALSE, NULL)

#define MUTEX_RELEASE (_mutex) \

KeReleaseMutex \

(Sc(_mutex) , FALSE)



A SAMPLE MEMORY SPY DEVICE 201

LISTING 4-10. Reading Input Data from an IO CTL Buffer

NTSTATUS SpylnputBinary (PVOID pData,

DWORD dData,

PVOID plnput ,

DWORD dlnput)

{

NTSTATUS ns = STATUS_OBJECT_TYPE_MISMATCH;

if (dData <= dlnput)

{

RtlCopyMemory {pData, plnput, dData);

ns = STATUS_SUCCESS;

}
return ns ;

}

/ / ~

NTSTATUS SpylnputDword (PDWORD pdValue,

PVOID plnput ,

DWORD dlnput )

{

return SpylnputBinary (pdValue, DWORD_, plnput, dlnput) ;

}

/ ,

NTSTATUS SpylnputBool (PBOOL pfValue,

PVOID plnput,

DWORD dlnput)

{

return SpylnputBinary (pfValue, BOOL_, plnput, dlnput) ;

}

/ / — ~

NTSTATUS SpylnputPointer (PPVOID ppAddress,

PVOID plnput,

DWORD dlnput)

{

return SpylnputBinary (ppAddress, PVOID_, plnput, dlnput);

}

//

NTSTATUS SpylnputHandle (PHANDLE phObject,

PVOID plnput ,

DWORD dlnput)

{

return SpylnputBinary (phObject, HANDLE_, plnput, dlnput) ;

}
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NTSTATUS SpyOutputBinary (PVOID pData,

DWORD dData,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

{
NTSTATUS ns = STATUS_BUFFER_TOO_SMALL ;

*pdlnfo = 0;

if (dData <= dOutput)

{

RtlCopyMemory (pOutput, pData, *pdlnfo = dData);

ns = STATUS_SUCCESS;

}

return ns ;

, _ _

NTSTATUS SpyOutputBlock ( PSPY_MEMORY_BLOCK psmb,

PVOID pOutput ,

DWORD dOutput,

PDWORD pdlnfo)

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if (SpyMemoryTestBlock (psnib->pAddress, psmb->dBytes) )

{

ns = SpyOutputBinary (psmb->pAddress , psmb->dBytes ,

pOutput, dOutput, pdlnfo);

}
return ns ;

}

/ /

NTSTATUS SpyOutputDword (DWORD dValue,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

{
return SpyOutputBinary (kdvalue, DWORD_,

pOutput, dOutput, pdlnfo) ;

}

//

NTSTATUS SpyOutpUtBool (BOOL fValue,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

{
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LISTING 4-11. Writing Output Data to an IOCTL Buffer

You might have noticed that the SpyDispatcher ( ) in Listing 4-7 contains
references to a few more Spyinput* ( ) and SpyOutput* ( ) functions. Although
ultimately based on SpylnputBinary ( ) and SpyOutputBinary () , they are slightly
more complex than the basic functions in Listings 4-10 and 4-11 and, therefore,
are discussed separately a little later in this chapter. So let's start at the beginning
of SpyDispatcher ( ) and work through the switch/case statement step by step.

THE IOCTL FUNCTION SPYJCLVERSIONJNFO

The IOCTL SPY_IO_VERSION_INFO function fills a caller-supplied SPY_
VERSION_INFO structure with data about the spy driver itself. It doesn't require
input parameters and uses the SpyOutputversioninf o() helper function. This
function, included in Listing 4-12 together with the SPY_VERSION_INFO structure,
is trivial. It sets the aversion member to the constant SPY_VERSION (currently
100, indicating VI.00) defined in w2k_spy .h, and copies the driver's name
symbolized by the string constant DRV_NAME ("SBS Windows 2000 Spy Device")
to the awName member. The major version number is obtained by dividing
aversion by 100. The remainder yields the minor version number.

return SpyOutputBinary (&f Value, BOOL_,

pOutput, dOutput, pdlnfo) ;

}

/ / - _ _ _ - - _ _

NTSTATUS SpyOutputPointer (PVOID pValue,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

{

return SpyOutputBinary (kpValue, PVOID_,

pOutput, dOutput, pdlnfo) ;

}

typedef struct _SPY_VERSION_INFO

{
DWORD aversion;

WORD awName [SPY_NAME_] ;

}
SPY_VERSION_INFO, *PSPY_VERSION_INFO, **PPSPY_VERSION_INFO;

(continued)
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LISTING 4-12. Obtaining Version Information About the Spy Driver

THE IOCTL FUNCTION SPY_IO_OS_INFO

The IOCTL SPY_IO_OS_INFO function is much more interesting than the preceding
one. It is another output-only function, expecting no input arguments and filling a
caller-supplied SPY_OS_INFO structure with the values of several internal operating
system parameters. Listing 4-13 shows the definition of this structure and the helper
function spyOutputOsinfo ( ) called by the dispatcher. Some of the structure mem-
bers are simply set to constants drawn from the DDK header files and w2k_spy.h;
others receive "live" values read out from several internal kernel variables and struc-
tures. In Chapter 2, you became acquainted with the variables NtBuildNumber and
NtGlobalFlag, exported by ntoskrnl. exe (see Table B-l in Appendix B). Other
than the other exported Nt* symbols, these don't point to API functions, but to vari-
ables in the kernel's . data section. In the Win32 world, it is quite uncommon to
export variables. However, several Windows 2000 kernel modules make use of this
technique, ntoskrnl. exe exports no fewer than 55 variables, ntdll. dll provides 4,
and hal.dll provides 1. Of the set ofntoskrnl.exe variables, SpyOutputOsinf o ( )
copies MmHighestUserAddress, MmUserProbeAddress, MmSystemRangeStart,
NtGlobalFlag, KeI386MachineType, KeNumberProcessors, and NtBuildNumber
to the output buffer.

#define SPY_VERSION_INFO_ sizeof (SPY_VERSION_INFO)

/ /

NTSTATUS SpyOutputVersionlnfo (PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

{
SPY_VERSION_INFO svi ,-

svi.dVersion = SPY_VERSION;

wcscpyn ( svi . awName , USTRING (CSTRING (DRV_NAME) ) , SPY_NAME_) ;

return SpyOutputBinary (&svi, SPY_VERSION_INFO_,

pOutput, dOutput, pdlnfo);

}
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When a module imports data from another module, it has to instruct the com-
piler and linker accordingly by using the extern keyword. This will cause the linker
to generate an entry in the module's import section instead of trying to resolve the
symbol to a fixed address. Some extern declarations are already included in
ntddk.h. Those that are missing are included in Listing 4-13.

typedef struct _SPY_OS_INFO

{
DWORD dPageSize;
DWORD dPageShift;
DWORD dPtiShift;
DWORD dPdiShift;
DWORD dPageMask;
DWORD dPtiMask;
DWORD dPdiMask;
PX86_PE PteArray;
PX86_PE PdeArray;

PVOID pLowestUserAddress ;
PVOID pThreadEnvironmentBlock;

PVOID pHighestUserAddress;
PVOID pUserProbeAddress;
PVOID pSystemRangeStart ;
PVOID pLowestSystemAddress;
PVOID pSharedUserData;
PVOID pProcessorControlRegion;
PVOID pProcessorControlBlock;
DWORD dG 1 oba 1 F 1 ag ;

DWORD dI386MachineType;
DWORD dNumberProcessors;
DWORD dProductType;
DWORD dBuildNumber;
DWORD dNtMajorVersion;
DWORD dNtMinorVerssion;
WORD awNtSySteniRoot [MAX_PATH] ;

}
SPY_OS_INFO, *PSPY_OS_INFO, **PPSPY_OS_INFO;

#define SPY_OS_INFO_ sizeof (SPY_OS_INFO)

//

(continued)
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extern PWORD NlsAnsiCodePage;

extern PWORD NlsOemCodePage;

extern PWORD NtBuildNumber ;

extern PDWORD NtGlobalFlag;

extern PDWORD Kel386MachineType;

/ /

NTSTATUS SpyOutputOsInfo (PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

{
SPY_SEGMENT ss ;

SPY_OS_INFO soi ;

NT_PRODUCT_TYPE NtProductType;

PKPCR pkpcr ;

NtProductType = (SharedUserData->ProductTypeIsValid

? SharedUserData->NtProductType

: 0) ;

SpySegment (X86_SEGMENT_FS, 0, &ss);

pkpcr = ss.pBase;

soi.dPageSize PAGE_SIZE;

soi.dPageShift = PAGE_SHIFT;

soi.dPtiShift = PTI_SHIFT;

soi.dPdiShift = PDI_SHIFT;

soi . dPageMask = X86_PAGE_MASK;

soi.dPtiMask = X86_PTI_MASK;

soi.dPdiMask = X86_PDI_MASK;

soi.PteArray = X86_PTE_ARRAY;

soi.PdeArray = X8 6_PDE_ARRAY ;

soi.pLowestUserAddress • MM_LOWEST_USER_ADDRESS;

soi.pThreadEnvironmentBlock = pkpcr->NtTib. Self ;

soi.pHighestUserAddress = *MmHighestUserAddress;

soi .pUserProbeAddress = (PVOID) *MmUserProbeAddress;

soi .pSystemRangeStart - *MmSystemRangeStart ;

soi.pLowestSystemAddress •• MM_LOWEST_SYSTEM_ADDRESS;

soi .pSharedUserData = SharedUserData;

soi .pProcessorControlRegion = pkpcr;

soi .pProcessorControlBlock = pkpcr->Prcb;

soi .dGlobalFlag = *NtGlobalFlag;

soi.dI386MachineType = *KeI386MachineType;

soi .dNumberProcessors = *KeNumberProcessors;

soi.dProductType = NtProductType;

soi .dBuildNumber = *NtBuildNumber;

soi.dNtMajorVersion = SharedUserData->NtMajorVersion;

soi .dNtMinorVersion = SharedUserData->NtMinorVersion;



A SAMPLE MEMORY SPY DEVICE 207

LISTING 4-13. Obtaining Information About the Operating System

The remaining members of the SPY_OS_INFO structure are filled with
values from system data structures lying around in memory. For example,
SpyOutputOsinf o ( ) assigns the base address of the Kernel's Processor Control
Region (KPCR) to the pprocessorcontrolRegion member. This is a very important
data structure that contains lots of frequently used thread-specific data items, and
therefore is placed in its own memory segment addressed by the CPU's FS register.
Both Windows NT 4.0 and Windows 2000 set up FS to point to the linear address
OXFFDFFOOO in kernel-mode. SpyOutputOsinf o ( ) calls the SpySegment ( ) function
discussed later to query the base address of the FS segment in the linear address
space. This segment also comprises the Kernel's Processor Control Block (KPRCB),
pointed to by the Prcb member of the KPCR, immediately followed by a CONTEXT
structure containing low-level CPU status information of the current thread. The
definitions of the KPCR , KPRCB , and CONTEXT structures can be looked up in the
ntddk.h header file. More on this topic follows later in this chapter.

Another internal data structure referenced in Listing 4-13 is ShareduserData.
It is actually nothing but a "well-known address," typecast to a structure
pointer. Listing 4-14 shows the definition as it appears in ntddk.h. Well-known
addresses are locations within the linear address space that are set at compile
time, and hence do not vary over time or with the configuration. Obviously,
ShareduserData is a pointer to a KUSER_SHARED_DATA structure found at the
fixed linear address OXFFDFOOOO . This memory area is shared by the user-mode
application and the system, and it contains such interesting things as the
operating system's version number, which SpyOutputOsinf o ( ) copies to the
dNtMajorVersion and dNtMinorVersion members of the caller's SPY_OS_INFO
structure. As I will show later, the KUSER_SHARED_DATA structure is mirrored to
address O X V F F E O O O O , where user-mode code can access it.

Following the explanation of the spy device's IOCTL functions is a demo
application that displays the returned data on the screen.

LISTING 4-14. Definition of ShareduserData

wcscpyn (soi . awNtSystemRoot , SharedUserData->NtSystemRoot ,

MAX_PATH) ;

return SpyOutputBinary (&soi, SPY_OS_INFO_,

pOutput , dOutput, pdlnfo) ;

}

ttdefine KI_USER_SHARED_DATA OxffdfOOOO

#define SharedUserData ( ( KUSER_SHARED_DATA * const) KI_USER_SHARED_DATA)
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THE IOCTL FUNCTION SPYJO_SEGMENT

Now this discussion becomes really interesting. The SPY_IO_SEGMENT function does
some very-low-level operations to query the properties of a segment, given a selector.
SpyDispatcher ( ) first calls spyinputDword ( ) to get the selector value passed in by
the calling application. You might recall that selectors are 16-bit quantities. However,
I try to avoid 16-bit data types whenever possible because the native word size of the
i386 CPUs in 32-bit mode is the 32-bit DWORD. Therefore, I have extended the selector
argument to a DWORD where the upper 16 bits are always zero. If SpyinputDword ( )
reports success, the SpyOutputSegment ( ) function shown in Listing 4-15 is called.
This function simply returns to the caller whatever the spy segment ( ) helper function,
included in Listing 4-15, returns. Basically, SpySegment ( ) fills a SPY_SEGMENT struc-
ture, defined at the top of Listing 4-15. It comprises the selector's value in the form
of a X86_SELECTOR structure (see Listing 4-2), along with its 64-bit X86_DESCRIPTOR
(Listing 4-2, again), the corresponding segment's linear base address, the segment limit
(i.e., the segment size minus one), and a flag named f ok indicating whether the data
in the SPY_SEGMENT structure is valid. The latter is required in the context of other
functions (e.g., SPY_IO_CPU_INFO) that return the properties of several segments at
once. In this case, the f ok member enables the caller to sort out any invalid segments
contained in the output data.

typedef struct _SPY_SEGMENT

X86_SELECTOR Selector;

X86_DESCRIPTOR Descriptor;

PVOID pBase;

DWORD dLimit;

BOOL fOk;

}

SPY_SEGMENT, *PSPY_SEGMENT, **PPSPY_SEGMENT;

#define SPY_SEGMENT_ sizeof (SPY_SEGMENT)

/ / — _ — — — ~ —

NTSTATUS SpyOutputSegment (DWORD dSelector,

PVOID pOutput,

DWORD dOutput,

PDWORD pdlnfo)

{

SPY_SEGMENT ss;

SpySegment ( X8 6_SEGMENT_OTHER , dSelector, &ss);
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LISTING 4-15. Querying Segment Properties

SpySegment ( ) relies on several other helper functions that provide the parts that
make up the resulting SPY_SEGMENT structure. First, SpySelector ( ) copies a selector
value to the passed-in X86_SELECTOR structure (Listing 4-16). If the first argument,
dSegment, is set to X86_SEGMENT_OTHER, the dSelector argument is assumed to spec-
ify a valid selector value, so this value is simply assigned to the wvalue member of the
output structure. Otherwise, dSelector is ignored, and dSegment is used in a switch/
case construct that selects one of the CPU's segment registers or its task register TR .
Note that this requires a little bit of inline assembly—the C language doesn't provide a
standard means for accessing processor-specific features such as segment registers.

return SpyOutputBinary (Scss, SPY_SEGMENT_,

pOutput, dOutput, pdlnfo);

/ /

BOOL SpySegment (DWORD dSegment,
DWORD dSelector,

PSPY_SEGMENT pSegment)

{
BOOL fOk = FALSE;

if (pSegment != NULL)

{
fOk = TRUE;

if ( ! SpySelector (dSegment, dSelector,

&pSegment->Selector) )

{
fOk = FALSE;

}
if ( ISpyDescriptor (&pSegment->Selector ,

&pSegment->Descriptor) )

{
fOk = FALSE;

}
pSegment->pBase =

SpyDescriptorBase (&pSegment->Descriptor) ;

pSegment->dLimit -

SpyDescriptorLimit (kpSegment->Descriptor) ;

pSegment->fOk - fOk;

)

return fOk;

}
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#define X8 6_SEGMENT_OTHER 0
tdefine X86_SEGMENT_CS 1
#define X86_SEGMENT_DS 2
tfdefine X8 6_SEGMENT_ES 3

#define X86_SEGMENT_FS 4
#define X86_SEGMENT_GS 5
#define X86_SEGMENT_SS 6
#define X86_SEGMENT_TSS 7

//

BOOL SpySelector (DWORD dSegment,
DWORD dSelector,
PX86_SELECTOR pSelector)

{
X86_SELECTOR Selector = {0, 0 } ;
BOOL fOk = FALSE;

if (pSelector != NULL)

fOk = TRUE;

switch (dSegment)

{
case X86_SEGMENT_OTHER:

{
if (fOk = ((dSelector » X86_SELECTOR_SHIFT)

<= X86_SELECTOR_LIMIT) )

{
Selector. wValue = (WORD) dSelector;

)
break;

}
case X86_SEGMENT_CS:

{
asm mov Selector .wValue, cs

break;

}
case X86_SEGMENT_DS:

{
asm mov Selector .wValue, ds

break ;

}
case X86_SEGMENT_ES:

{
asm mov Selector .wValue, es

break ;

}
case X86_SEGMENT_FS:

{
asm mov Selector .wValue, fs

break;
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LISTING 4-16. Obtaining Selector Values

SpyDescriptor ( ) reads in the 64-bit descriptor pointed to by the segment selec-
tor (Listing 4-17). As you might recall, all selectors contain a Table Indicator (TI) bit
that decides whether the selector refers to a descriptor in the Global Descriptor Table
(GDT, Ti=0) or Local Descriptor Table (LDT, Ti=l). The upper half of Listing 4-17
handles the LDT case. First, the assembly language instructions SLOT and SGDT are used
to read the LDT selector value and the segment limit and base address of the GDT,
respectively. Remember that the linear base address of the GDT is specified explicitly,
whereas the LDT is referenced indirectly via a selector that points into the GDT. There-
fore, SpyDescriptor ( ) first validates the LDT selector value. If it is not the null seg-
ment selector and does not point beyond the GDT limit, the SpyDescriptorType ( ) ,
SpyDescriptorLimit ( ) , and SpyDescriptorBase ( ) functions attached to the
bottom of Listing 4-17 are called to obtain the basic properties of the LDT:

• SpyDescriptorType ( ) returns the values of a descriptor's Type and S bit-
fields (cf. Listing 4-2). The LDT selector must point to a system descriptor
of type X86_DESCRIPTOR_SYS_LDT (2).

}
case X86 SEGMENT GS :

{
asm mov Selector .wValue, gs

break;

}
case X86_SEGMENT_SS:

{
asm mov Selector .wValue, ss

break;

}
case X86_SEGMENT_TSS:

asm str Selector .wValue
break;

}
default:

{
fOk = FALSE;
break;

}

}
RtlCopyMemory (pSelector, &Selector, X86_SELECTOR_) ;

}
return fOk;

}
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• SpyDescriptorLimit ( ) compiles the segment limit from the Limiti and
Limit2 bit-fields of a descriptor. If its G flag indicates a granularity of
4-KB, the value is shifted left by 12 bits, shifting in 1-bits from the
right end.

• SpyDescriptorBase ( ) simply arranges the Basel, Base2, and Bases
bit-fields of a descriptor properly to yield a 32-bit linear address.

BOOL SpyDescriptor ( PX8 6_SELECTOR pSelector,

PX86_DESCRIPTOR pDescriptor)

{

X8 6_SELECTOR Idt ;

X86_TABLE gdt;

DWORD dType, dLimit;

BOOL fSystem;

PX86_DESCRIPTOR pDescriptors = NULL;

BOOL fOk = FALSE;

if (pDescriptor != NULL)

{

if (pSelector != NULL)

{
if (pSelector->TI) // Idt descriptor

{

asm

{

sldt Idt.wValue

sgdt gdt.wLimit

}
if (Uldt.TI) && Idt. Index &&

((Idt.wValue & X86_SELECTOR_INDEX)

<= gdt.wLimit))

{

dType = SpyDescriptorType (gdt .pDescriptors +

Idt. Index,

ifSystem) ;

dLimit = SpyDescriptorLimit (gdt .pDescriptors +

Idt. Index) ,-

if ( (dType == X86_DESCRIPTOR_SYS_LDT)

&&

( (DWORD) (pSelector->wValue

& X86_SELECTOR_INDEX)

<= dLimit) }

{

pDescriptors = \
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SpyDescriptorBase (gdt .pDescriptors +
Idt .Index) ;

}

)

}
else // gdt descriptor

{
if (pSelector->Index)

{
asm

{
sgdt gdt.wLimit

}
if ( (pSelector->wValue & X86_SELECTOR_INDEX)

<= gdt.wLimit)

{
pDescriptors = gdt .pDescriptors ;

>

}
}

if (pDescriptors != NULL)

{
RtlCopyMemory {pDescriptor ,

pDescriptors + pSelector->Index,

X86_DESCRIPTOR_) ;
fOk = TRUE;

)
else

{
RtlZeroMemory {pDescriptor,

X86_DESCRIPTOR_) ;

)

}
return fOk;

}

/ /

PVOID SpyDescriptorBase (PX86 ̂DESCRIPTOR pDescriptor)

{
return (PVOID) ( (pDescriptor->Basel ) |

(pDescriptor->Base2 « 16) |
(pDescriptor->Base3 « 24) ) ;

}

/ /

DWORD SpyDescriptorLimit (PX86_DESCRIPTOR pDescriptor)

{
return (pDescriptor->G ? (pDescriptor->Limitl « 12) |

(pDescriptor->Limit2 « 28) | OxFFF

(continued)
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LISTING 4-17. Obtaining Descriptor Values

If the selector's TI bit indicates a GDT descriptor, things are much simpler.
Again, the SGDT instruction is used to get the size and location of the GDT in linear
memory, and if the descriptor index specified by the selector is within the proper
range, the pDescriptors variable is set to point to the GDT base address. In both the
LDT and GDT cases, the pDescriptor variable is non-NULL if the caller has passed
in a valid selector. In this case, the 64-bit descriptor value is copied to the caller's
X86_DESCRIPTOR structure. Otherwise, all members of this structure are set to zero
with the kind help of RtlzeroMemory ( ) .

We are still in the discussion of the spySegment ( ) function shown in
Listing 4-15. The SpySelector ( ) and SpyDescriptor ( ) calls have been handled.
Only the concluding spyDescriptorBase ( ) and spyDescriptorLimit ( ) invoca-
tions are left, but you already know what these functions do (see Listing 4-17). If
SpySelector ( ) and SpyDescriptor ( ) succeed, the data returned in the SPY_
SEGMENT Structure is valid. SpyDescriptorBase ( ) and SpyDescriptorLimit ( )
don't return error flags because they cannot fail—they just might return meaning-
less data if the supplied descriptor is invalid.

THE IOCTL FUNCTION SPYJOJNTERRUPT

SPY_IO_INTERRUPT is similar to SPY_IO_SEGMENT, except that this function works on
interrupt descriptors stored in the system's Interrupt Descriptor Table (IDT), rather
than on LDT or GDT descriptors. The IDT contains up to 256 descriptors that can rep-
resent task, interrupt, or trap gates (cf. Intel 1999c, pp. 5-1 Iff). By the way, interrupts
and traps are quite similar in nature, differing in a tiny detail only: An interrupt handler
is always entered with interrupts disabled, whereas the interrupt flag is left unchanged
upon entering a trap handler. The SPY_IO_INTERRUPT caller supplies an interrupt num-
ber between 0 and 256 in its input buffer and a SPY_INTERRUPT structure as output
buffer, which will contain the properties of the corresponding interrupt handler on sue-

: (pDescriptor->Limitl ) |

(pDescriptor->Limit2 « 16));

}

//

DWORD SpyDescriptorType (PX86_DESCRIPTOR pDescriptor,

PBOOL pfSystem)

{
if (pfSystem != NULL) *pfSystem = !pDescriptor->S ;

return pDescriptor->Type;

}
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cessful return. The SpyOutputinterrupt ( ) helper function invoked by the dispatcher is
a simple wrapper that calls Spyinterrupt ( ) and copies the returned data to the output
buffer. Both functions, as well as the SPY_INTERRUPT structure they operate on, are
shown in Listing 4-18. The latter is filled by Spyinterrupt ( ) with the following items:

• selector specifies the selector of a Task-State Segment (TSS, see Intel
1999c, pp. 6-4ff) or a code segment. A code segment selector determines
the segment where an interrupt or trap handler is located.

• Gate is the 64-bit task, interrupt, or trap gate descriptor addressed by
the selector.

• Segment contains the properties of the segment addressed by the gate.

• pOf f set specifies the offset of the interrupt or trap handler's entry point
relative to the base address of the surrounding code segment. Because task
gates don't comprise an offset value, this member must be ignored if the
input selector refers to a TSS.

• f ok is a flag that indicates whether the data in the SPY_INTERRUPT
structure is valid.

A TSS is typically used to guarantee that an error situation is handled by a
valid task. It is a special system segment type that holds 104 bytes of processor state
information needed to restore a task after a task switch has occurred, as outlined in
Table 4-3. The CPU always forces a task switch and saves all CPU registers to the
TSS when an interrupt associated with a TSS occurs. Windows 2000 stores task gates
in the interrupt slots 0x02 (Nonmaskable Interrupt [NMI]), 0x08 (Double Fault), and
0x12 (Stack-Segment Fault). The remaining entries point to interrupt handlers. Unused
interrupts are handled by dummy routines named KiUnexpectedinterruptNNN ( ) ,
where "NNN" is a decimal ordinal number. These handlers branch to the internal
function KiEndUnexpectedRange ( ) , which in turn branches to Kiunexpected
interruptTail ( ) , passing in the number of the unhandled interrupt.

typedef struct _SPY_INTERRUPT

t

X86_SELECTOR Selector;

X86_GATE Gate;

SPY_SEGMENT Segment ;

PVOID pOffset;

BOOL fOk;

}

SPY_INTERRUPT , *PSPY_INTERRUPT, **PPSPY_INTERRUPT;

(continued)
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#define SPY_INTERRUPT_ sizeof (SPY_INTERRUPT)

„ ,
NTSTATUS SpyOutputlnterrupt (DWORD dlnterrupt,

PVOID pOutput,

DWORD dOutput,

PDWORD pdlnfo)

{

SPY_INTERRUPT si;

Spylnterrupt (dlnterrupt, &si);

return SpyOutputBinary (&si, SPY_INTERRUPT_,

pOutput, dOutput, pdlnfo);

BOOL Spylnterrupt (DWORD dlnterrupt,

PSPY ̂INTERRUPT plnterrupt )

<
BOOL fOk = FALSE;

if (plnterrupt != NULL)

if (dlnterrupt <= X86_SELECTOR_LIMIT)

{

fOk = TRUE;

if ( ISpySelector (X86_SEGMENT_OTHER,

dlnterrupt « X86_SELECTOR_SHIFT,

&p!nterrupt->Selector) )

<
fOk = FALSE;

}

if (ISpyldtGate (&p!nterrupt->Selector,

&p!nterrupt->Gate) )

fOk = FALSE;

}

if (ISpySegment (X86_SEGMENT_OTHER,

p!nterrupt->Gate . Selector ,

&pInterrupt->Segment) )

<
fOk = FALSE;

}

p!nterrupt->pOf fset = SpyGateOf fset (&pInterrupt->Gate) ;

}

else

{
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LISTING 4-18. Querying Interrupt Properties

TABLE 4-3.

OFFSET

0x00

0x04

0x08

OxOC

0x10

0x14

0x18

Oxl C

0x20

0x24

0x28

Ox2C

0x30

0x34

0x38

Ox3C

0x40

0x44

0x48

Ox4C

0x50

CPU Status Fields in the

BITS

16

32

16

32

16

32

16

32

32

32

32

32

32

32

32

32

32

32

16

16

16

ID

ESPO

sso
ESP1

SSI

ESP2

SS2

CR3

EIP

EFLAGS

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

ES

CS

SS

Task State Segment (TSS)

DESCRIPTION

Previous Task Link

Stack Pointer Register for Privilege Level 0

Stack Segment Register for Privilege Level 0

Stack Pointer Register for Privilege Level 1

Stack Segment Register for Privilege Level 1

Stack Pointer Register for Privilege Level 2

Stack Segment Register for Privilege Level 2

Page-Directory Base Register (PDBR)

Instruction Pointer Register

Processor Flags Register

General-Purpose Register EAX

General-Purpose Register ECX

General-Purpose Register EDX

General-Purpose Register EDX

Stack Pointer Register

Base Pointer Register

Source Index Register

Destination Index Register

Extra Segment Register

Code Segment Register

Stack Segment Register

(continued)

RtlZeroMemory (plnterrupt, SPY_INTERRUPT_) ;
}

p!nterrupt->fOk = fok;

}
return fOk;

}

I I — _

PVOID SpyGateOffset (PX86_GATE pGate)

{
return (PVOID) (pGate->Of fsetl | (pGate->Of fset2 « 16));

}
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TABLE 4-3.

OFFSET

0x54

0x58

Ox5C

0x60

0x64

0x66

0x68

(continued)

BITS

16

16

16

16

1

16

—

ID

I ) S

FS

GS

LOT

I

DESCRIPTION

Data Segment Register

Additional Data Segment Register #1

Additional Data Segment Register #2

Local Descriptor Table Segment Selector

Debug Trap Flag

I/O Map Base Address

End of CPU State Information

The SpySegment ( ) and SpySelector ( ) functions called by Spylnterrupt ( )
have already been presented in Listings 4-15 and 4-16. SpyGateOf f set ( ) ,
included at the end of Listing 4-18, works analogous to SpyDescriptorBase ( )
and SpyDescriptorLimit ( ) , picking up the Of f setl and of f set2 bit-fields of an
X86_GATE structure and arranging them properly to yield a 32-bit address.
SpyidtGate ( ) is defined in Listing 4-19. It bears a strong similarity to
SpyDescriptor ( ) in Listing 4-17 if the LDT clause would be omitted. The
assembly language instruction SIDT stores the 48-bit contents of the CPU's IDT
register, comprising the 16-bit table limit and the 32-bit linear base address of
the IDT. The remaining code in Listing 4-19 compares the descriptor index of the
supplied selector to the IDT limit, and, if it is valid, the corresponding interrupt
descriptor is copied to the caller's X86_GATE structure. Otherwise, all gate structure
members are set to zero.

BOOL SpyidtGate (PX86_SELECTOR pSelector,
PX86_GATE pGate)

{
X86_TABLE idt;

PX86_GATE pGates = NULL;

BOOL fOk = FALSE;

if (pGate != NULL)

{
if (pSelector != NULL)

{
asm

{
sidt idt.wLimit

}
if ( (pSelector->wValue & X86_SELECTOR_INDEX)
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LISTING 4-19. Obtaining IDT Gate Values

THE IOCTL FUNCTION SPY_IO_PHYSICAL

The IOCTL SPY_IO_PHYSICAL function is simple, because it relies entirely on the
MmGetPhysicalAddress ( ) function exported by ntoskrnl. exe. The IOCTL func-
tion handler simply calls spyinputPointer ( ) (see Listing 4-10) to get the linear
address to be converted, lets MmGetPhysicalAddress ( ) look up the corresponding
physical address, and returns the resulting PHYSICAL_ADDRESS value to the caller.
Note that PHYSICAL_ADDRESS is a 64-bit LARGE_INTEGER . On most i386 systems,
the upper 32 bits will be always zero. However, on systems with Physical Address
Extension (PAE) enabled and more than 4 GB of memory installed, these bits can
assume nonzero values.

MmGetPhysicalAddress ( ) uses the PTE array starting at linear address
O x C O O O O O O O to find out the physical address. The basic mechanism works
as follows:

• If the linear address is within the range 0x80000000 to Ox9FFFFFFF, the
three most significant bits are set to zero, yielding a physical address in the
range Oxoooooooo to OXIFFFFFFF.

• Otherwise, the upper 20 bits are used as an index into the PTE array at
address Oxcooooooo ,

<= idt .wLimit }

(
pGates = idt. pGates;

}

}
if (pGates != NULL)

{

RtlCopyMemory (pGate,

pGates + pSelector->Index,

X86_GATE_) ;

fOk = TRUE;

}

else

{

RtlZeroMemory (pGate, X86_GATE_) ;

)

}

return fOk;
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• If the P bit of the target PTE is set, indicating that the corresponding page
is present in physical memory, all PTE bits except for the 20-bit PEN are
stripped, and the least significant 12 bits of the linear address are added,
resulting in a proper 32-bit physical address.

• If the physical page is not present, MmGetPhysicalAddress ( ) returns zero.

It is interesting to see that MmGetPhysicalAddress ( ) assumes 4-KB pages for all
linear addresses outside the kernel memory range 0x80000000 to Ox9FFFFFFF. Other
functions, such as MmisAddressValid ( ) , first load the PDE of the linear address and
check its PS bit to find out whether the page size is 4 KB or 4 MB. This is a much
more general approach that can cope with arbitrary memory configurations. Both
functions return correct results, because Windows 2000 happens to use 4-MB pages
in the 0x80000000 to Ox9FFFFFFF memory area only. Some kernel API functions,
however, are apparently designed to be more flexible than others.

THE IOCTL FUNCTION SPY_IO_CPU_INFO
Several CPU instructions are available only to code running on privilege level zero,
which is the most privileged of the four available levels. In Windows 2000 terminol-
ogy, this means kernel-mode. Among the forbidden instructions are those that read
the contents of the control registers CRO , CR2, and CR3 . Because these registers
contain interesting information, an application might wish to find a way to access
them, and the SPY_IO_CPU_INFO function is the solution. As Listing 4-20 shows, the
spyoutputcpuinf o ( ) function invoked by the IOCTL handler uses some ASM inline
code to read the control registers, along with other valuable information, such as the
contents of the IDT, GDT, and LDT registers and the segment selectors stored in the
registers cs, DS, ES, FS, GS, ss, and TR. The Task Register TR contains a selector
that refers to the TSS of the current task.

typedef struct _SPY_CPU_INFO
r\

X86_REGISTER

X86_REGISTER

X86_REGISTER

SPY_SEGMENT

SPY_SEGMENT

SPY_SEGMENT

SPY_SEGMENT

SPY_SEGMENT

\ S'ê îS'E.Q.'MEK'Y

SPY_SEGMENT

X86_TABLE

X86_TABLE

crO;
cr2;

cr3 ;

cs;

ds;

es;

fs;

gs;

as ;

tss;

idt;

gdt;
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LISTING 4-20. Querying CPU State Information

X86_SELECTOR Idt;

)

SPY_CPU_INFO, *PSPY_CPU_INFO, **PPSPY_CPU_INFO;

ttdefine SPY_CPU_INFO_ sizeof (SPY_CPU_INFO)

/ / _ _

NTSTATUS SpyOutputCpuInfo (PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

{

SPY_CPU_INFO sci;

PSPY_CPU_INFO psci = &sci;

asm

{

push eax

push ebx

mov ebx, psci

mov eax, crO

mov [ebx.crO], eax

mov eax, cr2

mov [ ebx . cr 2 ] , eax

mov eax, cr3

mov [ebx.cr3] , eax

sidt [ebx.idt .wLimit]

mov [ebx. idt .wReserved] , 0

sgdt [ebx. gdt .wLimit ]

mov [ebx. gdt .wReserved] , 0

sldt [ebx.idt .wValue]

mov [ebx. Idt .wReserved] , 0

pop ebx

pop eax

}

SpySegment (X86_SEGMENT_CS, 0, ksci.cs)

SpySegment (X86_SEGMENT_DS, 0, ssci.ds)

SpySegment (X86_SEGMENT_ES, 0, ksci.es)

SpySegment (X86_SEGMENT_FS, 0, Ssci.fs)

SpySegment (X86_SEGMENT_GS, 0, ksci.gs)

SpySegment (X86_SEGMENT_SS, 0, ssci.ss)

SpySegment (X86_SEGMENT_TSS, 0, &sci.tss);

return SpyOutputBinary (&sci, SPY_CPU_INFO_,

pOutput, dOutput, pdlnfo};

}
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The segment selectors are obtained with the help of the SpySegment ( ) function
discussed earlier. See Listing 4-15 for details.

THE IOCTL FUNCTION SPY_IO_PDE_ARRAY

SPY_IO_PDE_ARRAY is another trivial function that simply copies the entire page-
directory from address Oxc0300000 to the caller's output buffer. This buffer has to
take the form of a SPY_PDE_ARRAY structure shown in Listing 4-21. As you might
have guessed, this structure's size is exactly 4 KB, and it comprises 1,024 32-bit PDE
values. The X86_PE structure used here, which represents a generalized page entry,
can be found in Listing 4-3, and the constant X86_PAGES_4M is defined in Listing 4-5.
Because the items in a SPY_PDE_ARRAY are always page-directory entries, the embed-
ded X86_PE structures are either of type X86_PDE_4M or X86_PDE_4K, depending on
the value of the page size bit PS .

It usually is not a good idea to copy memory contents without ensuring that the
source page is currently present in physical memory. However, the page-directory is
one of the few exceptions. The page-directory of the current task is always present in
physical memory while the task is running (Intel 1999c, pp. 3-23). It cannot be
swapped out to a pagefile unless another task is switched in. That's why the CPU's
Page-Directory Base Register (PDBR) doesn't have a P (present) bit, like the PDEs
and PTEs. Please refer to the definition of the X86_PDBR structure in Listing 4-3 to
verify this.

LISTING 4-21. Definition of SPY_PDE_ARRAY

THE IOCTL FUNCTION SPY_IO_PAGE_ENTRY

If you are interested in the page entry of a given linear address, this is the function
of choice. Listing 4-22 shows the internals of the SpyMemoryPageEntry ( ) function
that handles this IOCTL request. The SPY_PAGE_ENTRY structure it returns is basi-
cally a X86_PE page entry, as defined in Listing 4-3, plus two convenient additions:
The dsize member indicates the page size in bytes, which is either X86_PAGE_4K

typedef struct _SPY_PDE_ARRAY

{

X86_PE apde [X86_PAGES_4M] ;

}
SPY_PDE_ARRAY, *PSPY_PDE_ARRAY, **PPSPY_PDE_ARRAY;

#define SPY_PDE_ARRAY_ sizeof (SPY_PDE_ARRAY)
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(4,096 bytes) or X86_PAGE_4M (4,194,304 bytes), and the f Present member indi-
cates whether the page is present in physical memory. This flag must be contrasted
to the return value of spyMemorypageEntry ( ) itself, which can be TRUE even if
f Present is FALSE. In this case, the supplied linear address is valid, but points to
a page currently swapped out to a pagefile. This situation is indicated by bit #10
of the page entry—referred to as pageFile in Listing 4-22—being set while the
P bit is clear. Please refer to the introduction to the X86_PNPE structure earlier in
this chapter for details. X86_PNPE represents a page-not-present entry and is
defined in Listing 4-3.

SpyMemorypageEntry ( ) first assumes that the target page is a 4-MB page, and,
therefore, copies the PDE of the specified linear address from the system's PDE array
at address Oxcosooooo to the pe member of the SPY_PAGE_ENTRY structure. If the
P bit is set, the subordinate page or page-table is present, so the next test checks
the PS bit for the page size. If it is set, the PDE addresses a 4-MB page, and the work
is done—SpyMemorypageEntry ( ) returns TRUE, and the f Present member of the
SPY_PAGE_ENTRY structure is set to TRUE as well. If the PS bit is zero, the PDE refers
to a PTE, so the code extracts this PTE from the array at address O x C O O O O O O O and
checks its P bit. If set, the 4-KB page comprising the linear address is present, and both
SpyMemorypageEntry ( ) and f Present report TRUE . Otherwise, the retrieved value
must be a page-not-present entry, so f Present is FALSE, and SpyMemorypageEntry ()
returns TRUE only if the PageFile bit of the page entry is set.

1
typedef struct _SPY_PAGE_ENTRY

{

X86_PE pe;

DWORD dSize;

BOOL f Present;

}

SPY_PAGE_ENTRY, *PSPY_PAGE_ENTRY, **PPSPY_PAGE_ENTRY;

ttdefine SPY_PAGE_ENTRY_ sizeof (SPY_PAGE_ENTRY)

/ /

BOOL SpyMemorypageEntry (PVOID pVirtual ,

PSPY_PAGE_ENTRY pspe)

{

SPY_PAGE_ENTRY spe;

BOOL fOk = FALSE;

spe.pe = X86_PDE_ARRAY [X86_PDI (pVirtual)];

spe.dSize = X86_PAGE_4M;

spe.fPresent = FALSE;

(continued)
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LISTING 4-22. Querying PDEs and PTEs

Note that SpyMemoryPageEntry ( ) does not identify swapped-out 4-MB pages.
If a 4-MB PDE refers to an absent page, there is no indication whether the linear
address is invalid or the page is currently kept in a pagefile. 4-MB pages are used in
the kernel memory range 0x80000000 to OXDFFFFFFF only. I have never seen one of
these pages swapped out, even in extreme low-memory situations, so I was not able
to examine any associated page-not-present entries.

THE IOCTL FUNCTION SPY_IO_MEMORY_DATA

The SPY_IO_MEMORY_DATA function is certainly one of the most important ones,
because it copies arbitrary amounts of memory data to a buffer supplied by the caller.
As you might recall, user-mode applications are readily passed in invalid addresses.
Therefore, this function is very cautious and verifies the validity of all source
addresses before touching them. Remember, the Blue Screen is lurking everywhere
in kernel-mode.

The calling application requests the contents of a memory block by passing in a
SPY_MEMORY_BLOCK structure—shown at the top of Listing 4-23—that specifies its
address and size. For convenience, the address is defined as a union, allowing interpre-
tation as a byte array (PBYTE pbAddress) or an arbitrary pointer (PVOID pAddress) .

if (spe.pe.pde4M.P)

{
if (spe.pe.pde4M.PS)

{
fok = spe . f Present = TRUE;

}
else

{
spe.pe = X86_PTE_ARRAY [X86_PAGE (pVirtual ) ] ;

spe.dSize = X86_PAGE_4K;

if (spe.pe.pte4K.P)

{
fOk = spe. f Present = TRUE;

}
else

{
fOk = (spe.pe.pnpe.PageFile != 0);

}

}

}
if (pspe != NULL) *pspe = spe;

return fOk;

}
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The SpyinputMemory ( ) function in Listing 4-23 copies this structure from the IOCTL
input buffer. The companion function spyOutputMemory ( ) , concluding Listing 4-23,
is a wrapper around SpyMemoryReadBlock ( ) , which is shown in Listing 4-24. The
main duty of SpyOutputMemory ( ) is to return the appropriate NTSTATUS values while
SpyMemoryReadBlock ( ) provides the data.

SpyMemoryReadBlock ( ) returns the memory contents in a SPY_MEMORY_DATA
structure, defined in Listing 4-25.1 have chosen a different approach than in the pre-
vious definitions because SPY_MEMORY_DATA is a data type of variable size. Essentially,
it consists of a SPY_MEMORY_BLOCK structure named smb, followed by an array of
WORDS called awData [ ] . The length of the array is determined by the dBytes member
of smb. To allow easy definition of SPY_MEMORY_DATA instances as global or local
variables of a predetermined size, this structure's definition is based on the macro
SPY_MEMORY_DATA_N ( ) . The single argument of this macro specifies the size of the
awData [ ] array. The actual structure definition follows the macro definition, provid-
ing SPY_MEMORY_DATA with a zero-length awData [ ] array. The SPY_MEMORY_DATA ( )
macro computes the overall size of a SPY_MEMORY_DATA structure given the size of its
data array, and the remaining definitions allow packing and unpacking the data
WORDS in the array. Obviously, the lower half of each WORD contains the memory data
byte and the upper half specifies flags. Currently, only bit #8 has a meaning, indicat-
ing whether the data byte in bits #0 to #7 is valid.

typedef struct _SPY_MEMORY_BLOCK

{

union

{

PBYTE pbAddress;

PVOID pAddress;

};

DWORD dBytes;

}

SPY_MEMORY_BLOCK, *PSPY_MEMORY_BLOCK, **PPSPY_MEMORY_BLOCK;

ttdefine SPY_MEMORY_BLOCK_ sizeof (SPY_MEMORY_BLOCK)

/ 1

NTSTATUS SpyinputMemory (PSPY MEMORY BLOCK psmb,

PVOID plnput ,

DWORD dlnput )

{
return SpylnputBinary (psmb, SPY_MEMORY_BLOCK_, plnput, dlnput);

}

(continued)
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LISTING 4-23. Handling Memory Blocks

NTSTATUS SpyOutputMemory (PSPY_MEMORY_BLOCK psmb,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

{
NTSTATUS ns = STATUS_BUFFER_TOO_SMALL ;

if (*pdlnfo = SpyMemoryReadBlock (psmb, pOutput, dOutput) )

{
ns = STATUS_SUCCESS;

}
return ns;

}

DWORD SpyMemoryReadBlock (PSPY_MEMORY_BLOCK psmb,

PSPY_MEMORY_DATA psmd,

DWORD dSize)

{
DWORD i;

DWORD n = SPY_MEMORY_DATA (psmb->dBytes ) ;

if (dSize >= n)

{
psmd->smb = *psmb;

for ( i = 0 ; i < psmb->dBytes ; i++)

psmd->awData [i] =

(SpyMemoryTestAddress (psmb->pbAddress + i)

? SPY_MEMORY_DATA_VALUE (psmb->pbAddress [i], TRUE)

: SPY_MEMORY_DATA_VALUE (0, FALSE));

}

}
else

{
if (dSize >= SPY_MEMORY_DATA_)

{
psmd->smb.pbAddress = NULL;

psmd->smb.dBytes = 0 ;

}
n = 0;

}
return n;

}
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LISTING 4-24. Copying Memory Block Contents

The validity of a data byte is determined by the function spyMemoryTest
Address ( ) , which is called by spyMemoryReadBiock ( ) for the address of each byte
before it is copied to the buffer. SpyMemoryTestAddress ( ) , included in the lower
half of Listing 4-24, simply calls SpyMemoryPageEntry ( ) with the second argument
set to NULL . The latter function has just been introduced in the course of the
discussion of the IOCTL function SPY_IO_PAGE_ENTRY (Listing 4-22). Setting its
PSPY_PAGE_ENTRY pointer argument to NULL means that the caller is not interested
in the page entry of the supplied linear address, so all that remains is the function's
return value, which is TRUE if the linear address is valid. In the context of
SpyMemoryPageEntry ( ) , an address is valid if the page it is contained in is either
present in physical memory or resident in one of the system's pagefiles. Note that this
behavior is not compatible with the ntoskrnl. exe API function MmisAddressValid ( ) ,
which will always return FALSE if the page is not present, even if it is a valid page
currently kept in a pagefile. Also included in Listing 4-24 is the function

/ / ~

BOOL SpyMemoryTestAddress (PVOID pvirtual)

{
return SpyMemoryPageEntry (pVirtual, NULL) ;

/ /

BOOL SpyMemoryTestBlock (PVOID pVirtual,

DWORD dBytes)

{
PBYTE pbData;
DWORD dData;
BOOL fOk = TRUE;

if (dBytes)

{
pbData = (PBYTE) ((DWORD_PTR) pVirtual & X86_PAGE_MASK) ;

dData = (((dBytes + X86_OFFSET_4K (pVirtual) - 1)
/ PAGE_SIZE) + 1} * PAGE_SIZE;

do {

fOk = SpyMemoryTestAddress (pbData) ;

pbData += PAGE__SIZE;

dData -= PAGE_SIZE;

}
while (fOk && dData);

}
return fOk;

}
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LISTING 4-25. Definition O/'SPY_MEMORY_DATA

SpyMemoryTestBlock ( ) , which is an enhanced version of SpyMemoryTestAddress ( )
It tests a memory range for validity by walking across the specified block in
4,096-byte steps, testing whether all pages it spans are accessible.

Accepting swapped-out pages as valid address ranges has the important
advantage that the page will be pulled back into physical memory as soon as
spyMemoryReadBlock ( ) tries to access one of its bytes. The sample memory dump
utility presented later would not be quite useful if it relied on MmisAddressValid()
It would sometimes refuse to display the contents of certain address ranges, even if i
was able to display them 5 minutes before, because the underlying page recently
would have been transferred to a pagefile.

THE IOCTL FUNCTION SPY_IO_MEMORY_BLOCK

The SPY_IO_MEMORY_BLOCK function is related to SPY_IO_MEMORY_DATA in that it
also copies data blocks from arbitrary addresses to a caller-supplied buffer. The main
difference is that SPY_IO_MEMORY_DATA attempts to copy all bytes that are accessible,
whereas SPY_IO_MEMORY_BLOCK fails if the requested range comprises any invalid
addresses. This function will be needed in Chapter 6 to deliver the contents of data
structures living in kernel memory to a user-mode application. It is obvious that this
function must be very restrictive. A structure that contains inaccessible bytes cannot
be copied safely—the copy would be lacking parts of the data.

#define SPY_MEMORY_DATA_N(_n) \

struct _SPY_MEMORY_DATA_##_n \

{ \

SPY_MEMORY_BLOCK smb; \

WORD awData [_n] ; \

}

typedef SPY_MEMORY_DATA_N (0)

SPY_MEMORY_DATA, *PSPY_MEMORY_DATA, **PPSPY_MEMORY_DATA;

ttdefine SPY_MEMORY_DATA_ sizeof (SPY_MEMORY_DATA)

ttdefine SPY_MEMORY_DATA (_n) ( S P Y_MEMORY_DATA_ + ( (_n) * WORD_) )

#define SPY_MEMORY_DATA_BYTE OxOOFF

#define SPY_MEMORY_DATA_VALID 0x0100

# define SPY_MEMORY_DATA_VALUE (_b,_v) \

( (WORD) ( ( (_b) &- SPY_MEMORY_DATA_BYTE ) | \

( (_v) ? SPY_MEMORY_DATA_VALID : 0)))
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Like SPY_IO_MEMORY_DATA, the SPY_IO_MEMORY_BLOCK function expects input
in the form of a SPY_MEMORY_BLOCK structure that specifies the base address and size
of the memory range to be copied. The returned copy is a faithful 1:1 reproduction of
the original data. The output buffer must be large enough to hold the entire copy.
Otherwise, an error is reported, and no data is sent back.

THE IOCTL FUNCTION SPY_IO_HANDLEJNFO

Like the SPY_IO_PHYSICAL function introduced above, this function allows a user-mode
application to call kernel-mode API functions that are otherwise unreachable. A kernel-
mode driver can always get a pointer to an object represented by a handle by simply call-
ing the ntoskrnl. exe function obRef erenceObj ectByHandle ( ) . There is no equivalent
function in the Win32 API. However, the application can instruct the spy device to
execute the function call on its behalf and to return the object pointer afterward. List-
ing 4-26 shows the SpyOutputHandleinf o ( ) function called by the SpyDispatcher ( )
after obtaining the input handle via SpyinputHandle ( ) , defined in Listing 4-10.

The SPY_HANDLE_INFO structure at the beginning of Listing 4-26 receives the
pointer to the body of the object associated with the handle and the handle attrib-
utes, both returned by obReferenceObjectByHandle ( ) . It is important to call
ObDeref erenceOb ject ( ) if ObRef erenceOb j ectByHandle ( ) reports success to reset
the object's pointer reference count to its previous value. Failing to do so constitutes
an "object reference leak."

typedef struct _SPY_HANDLE_INFO

(
PVOID pObjectBody;

DWORD dHandleAttributes ;

}

SPY_HANDLE_INFO, *PSPY_HANDLE_INFO, * *PPSPY_HANDLE_INFO;

#define SPY_HANDLE_INFO_ sizeof (SPY_HANDLE_INFO)

NTSTATUS SpyOutputHandleinf o (HANDLE hobject,

PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

(

SPY_HANDLE_INFO Shi ;

OBJECT_HANDLE_INFORMATION ohi ;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

(continued)
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LISTING 4-26. Referencing an Object by Its Handle

A SAMPLE MEMORY DUMP UTILITY

Now that you have worked through the complex and possibly confusing IOCTL
function handler code of the memory spy device driver, you probably want to see
these functions in action. Therefore, I have created a sample console-mode utility
named "SBS Windows 2000 Memory Spy" that loads the spy driver and calls various
IOCTL functions, depending on the parameters passed in on the command line. This
application resides in the executable file w2k_mem. exe, and its source code is
included on the CD accompanying this book, in the directory \src\w2k_mem.

COMMAND LINE FORMAT

You can run the memory spy utility from the CD by invoking d: \bin\w2k_mem. exe,
where d: should be replaced by the drive letter of your CD-ROM drive. If w2 k_mem. exe
is started without arguments, the lengthy command info screen shown in Example 4-1
is displayed. The basic command philosophy of w2k_mem is that a command consists of
one or more data requests, each providing at least a linear base address where the mem-
ory dump should start. Optionally, the memory block size can be specified as well—
otherwise, the default size 256 is used. The memory size must be prefixed by the "#"
character. Several option switches may be added that modify the default behavior of the
command. An option consists of a single-character option ID and a "+" or "-" prefix
that determines whether the option is switched on or off. By default, all options are
turned off.

if (hObject != NULL)

{

ns = ObReferenceObjectByHandle (hObject,

STANDARD_RIGHTS_READ ,

NULL, KernelMode,

kshi .pObjectBody, &ohi);

if (ns == STATUS_SUCCESS)

<
shi.dHandleAttributes = ohi .HandleAttributes;

ns = SpyOutputBinary (&shi, SPY_HANDLE_JNFO_,

pOutput, dOutput, pdlnfo) ;

ObDereferenceObject (shi .pObjectBody} ;

return ns ;

}
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EXAMPLE 4-1. Help Screen of the Memory Spy Utility

/ 1 w2k_mem . exe

// SBS Windows 2000 Memory Spy VI. 00

// 08-27-2000 Sven B. Schreiber

/ / sbs@orgon . com

Usage: w2k_mem ( { [+option| -option] [/<path>] } [# [ [0]x]<size>] [ [0]x]<base> }

<path> specifies a module to be loaded into memory.

Use the +x/-x switch to enable/disable its startup code.

If <size> is missing, the default size is 256 bytes.

Display address options (mutually exclusive):

+z -z zero-based display on / OFF

+r -r physical RAM addresses on / OFF

Display mode options (mutually exclusive) :

+w -w WORD data formatting on / OFF

+d -d DWORD data formatting on / OFF
+C3 ~Q QWORD data formatting on / OFF

Addressing options (mutually exclusive) :

+t -t TEB-relative addressing on / OFF

+f -f FS-relative addressing on / OFF

+u -u user-mode FS:[<base>] on / OFF

•fk -k kernel-mode FS: [<base>] on / OFF

+h -h handle/object resolution on / OFF

+a -a add bias to last base on / OFF

+s -s sub bias from last base on / OFF

+p -p pointer from last block on / OFF

System status options (cumulative):

+o -o display OS information on / OFF

+c -c display CPU information on / OFF

+g -g display GOT information on / OFF

+i -i display IDT information on / OFF

+b -b display contiguous blocks on / OFF

Other options (cumulative):

+x -x execute DLL startup code on / OFF

Example: The following command displays the first 64

bytes of the current Process Environment Block (PEB)

in zero-based DWORD format, assuming that a pointer to

the PEB is located at offset 0x30 inside the current

Thread Environment Block (TEB) :

w2k__mem +t #0 0 +pzd #64 0x30

Note: Specifying #0 after +t causes the TEB to be

addressed without displaying its contents .
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A data request is executed for each command line token that cannot be identi-
fied as an option, a data block size specification, a path, or any other command
modifier. Each plain number on the command line is assumed to specify a linear
address and triggers a hex dump, starting at this address. Numbers are interpreted
as decimal by default or hexadecimal if prefixed by "Ox" or simply "x."

Complex command line option models like the one employed by
w2k_mem. exe are much easier to grasp if some simple examples are provided.
Here is a short compilation:

• w2k_mem 0x80400000 displays the first 256 bytes of memory at linear
address 0x80400000, yielding something that should look similar to
Example 4-2. By the way, this is the DOS header of the ntoskrnl. exe
module (note the "MZ" ID at the beginning).

• w2k mem #0x40 0x80400000 displays the same data block, but stops after
64 bytes, as demanded by the block size specification #0x40.

• w2k_mem +d #0x40 0x80400000 is another variant, this time packing the
bytes into 32-bit DWORD chunks because of the +d option. This option
remains in effect until reset by —d or overridden by a competing
option such as +w or +q.

• w2k_mem +wz #0x40 0x10000 +d -z 0x20000 contains two data
requests. First, the linear address range 0x10000 to Oxioo3F is shown in
16-bit WORD format, followed by the range 0x20000 to 0x2003F in DWORD
format (Example 4-3). The first request also includes the +z switch,
which forces the numbers in the "Address" column to start at zero. In
the second request, the zero-based display mode is turned off by adding
a -z switch.

• w2k_mem +rd #4096 OxC0300000 displays the system's page-directory at
address Oxcosooooo in DWORD format. The +r option enables the display of
physical RAM addresses in the "Address" column instead of linear ones.

By now, you should have a basic understanding of how the command line
format works. In the following subsections, some of the more exotic options and
features are discussed in more detail. Most of them alter the interpretation of the
address parameter they precede. In default mode, the specified address is a linear
base address where the memory dump starts. The options +t , + f , +u, +k, +h,
+a, +s, and +p change this default interpretation in various ways.
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E:\>w2k_mem 0x80400000

// w2k_mem.exe

// SBS Windows 2000 Memory Spy VI. 00

// 08-27-2000 Sven B. Schreiber

// sbs@orgon.com

Loading "SBS Windows 2000 Spy Device" (w2k_spy) . . .

Driver: "D: \Program Files\DevStudio\MyProjects\w2k_mem\Release\w2k_spy .sys"

Opening "\\ . \w2k_spy" . . .

SBS Windows 2000 Spy Device VI. 00 ready

80400000. .804000FF: 256 valid bytes

Address

80400000

80400010

80400020

80400030

80400040

80400050

80400060

80400070

80400080

80400090

804000AO

804000BO

804000CO

804000DO

804000EO

804000FO

00 01 02 03-04 05 06 07 08 09 OA OB-OC OD OE OF

~ ~
4D 5A 90 00-03 00 00 00 04 00 00 00-FF FF 00 00

B8 00 00 00-00 00 00 00 40 00 00 00-00 00 00 00

00 00 00 00-00 00 00 00 00 00 00 00-00 00 00 00

00 00 00 00-00 00 00 00 00 00 00 00-C8 00 00 00

OE IF BA OS-00 B4 09 CD 21 B8 01 4C-CD 21 54 68

69 73 20 70-72 6F 67 72 61 6D 20 63-61 6E 6E 6F

74 20 62 65-20 72 75 6E 20 69 6E 20-44 4F 53 20

6D 6F 64 65-2E OD OD OA 24 00 00 00-00 00 00 00

50 7A C4 CE-14 IB AA 9D 14 IB AA 9D-14 IB AA 9D

14 IB AB 9D-53 IB AA 9D 18 3B A4 9D-5B IB AA 9D

42 13 AC 9D-15 IB AA 9D 14 IB AA 9D-1A 19 AA 9D

4D 38 B9 9D-12 IB AA 9D 52 69 63 68-14 IB AA 9D

00 00 00 00-00 00 00 00 50 45 00 00-4C 01 13 00

17 9B 4D 38-00 00 00 00 00 00 00 00-EO 00 OE 03

OB 01 05 OC-CO 2D 14 00 80 D6 04 00-00 00 00 00

20 Dl 00 00-CO 04 00 00 80 73 06 00-00 00 40 00 |

0123456789ABCDEF

MZ« yy. .

a

E...

. . * . . ' .1! , ,Lf !Th

is program canno

t be run in DOS

mode .... $

Pz&l. .«•..'•..«•

. .«-S.«.. ;H .[.«.

B. -i«..*". .•«..••

M81- . . '.Rich. . •«

PE . . L . . .

. ?M8 a. . .

A-. .70

8. .A. . .?s. . . .9.

256 bytes requested

256 bytes received

Closing the spy device . . .

EXAMPLE 4-2. A Sample Data Request

E:\>w2k_mem +wz #0x40 0x10000 +d -z 0x20000

// w2k_mem.exe

// SBS Windows 2000 Memory Spy VI. 00

// 08-27-2000 Sven B. Schreiber
// sbs@orgon.com

Loading "SBS Windows 2000 Spy Device" (w2k_spy) . . .

(continued)
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EXAMPLE 4-3. Displaying Data in Special Formats

TEB-RELATIVE ADDRESSING

Each thread in a process has its own Thread Environment Block (TEB) where the
system keeps frequently used thread-specific data. In user-mode, the TEB of the
current thread is located in a separate 4-KB segment accessible via the processor's
FS register. In kernel-mode, FS points to a different segment, as will be explained
below. All TEBS of a process are stacked up in linear memory at linear address
Ox7FFDEOOO, expanding down in 4-KB steps as needed. That is, the TEB of the
second thread is found at address OXVFFDDOOO , the TEB of the third thread at
O X ? F F D C O O O , and so on. The contents of the TEBS and the Process Environment
Block (PEB) address OXVFFDFOOO will be discussed in more detail in Chapter 7
(see Listings 7-18 and 7-19). Here it should suffice to take note that TEBS exist
and that they are addressed by the FS register.

If the +t switch precedes an address on the command line, w2k_mem. exe adds
the base address of the FS segment to it, effectively applying a bias of OXVFFDEOOO
bytes. Example 4-4 shows the output of the command w2k_mem +dt #0x38 o on
my system. This time I have omitted the banner and status messages issued by
w2k_mem. exe. The omissions are marked by [...].

Driver: "D:\Program Files\DevStudio\MyProjects\w2k_mem\Release\ w2k_spy.sys"

Opening "\\.\w2k_spy" ...

SBS Windows 2000 Spy Device VI. 00 ready

I
00010000. .0001003F: 64 valid bytes

Address 0000 0002-0004 0006 0008 OOOA-OOOC OOOE

00000000 003D 0044-003A 003D 0044 003A-005C 0050

00000010 0072 006F-0067 0072 0061 006D-0020 0046

00000020 0069 006C-0065 0073 005C 0044-0065 0076

00000030 0053 0074-0075 0064 0069 006F-005C 004D

00020000. 0002003F: 64 valid bytes

Address 00000000 - 00000004 00000008 - OOOOOOOC

00020000 00001000 - 00000880 00000001 - 00000000

00020010 02B20001 - 00000000 00000003 - 00000007

00020020 OOOOOOOB - 0208006C 00020290 - 00000018

00020030 02A0029E - 00020498 00840082 - 00020738

128 bytes requested

128 bytes received

Closing the spy device . . .

00 02 04 06 08 OA OC OE

.= .D . : .= .D . : . \ .P

.r .0 .g .r .a .m . .F

.i .1 .e .s .\ .D .e .v

.S .t .u .d .i .0 . \ .M

0000 0004 0008 OOOC

. .? ...? .?.? ...8
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E:\>w2k_mem +dt #0x38 0

[...]

7FFDEOOO. .7FFDE037: 56 valid bytes

Address

7FFDEOOO

7FFDE010

7FFDE020

7FFDE030

[...]

00000000 - 00000004 00000008 - OOOOOOOC

0012FA58 - 00130000 0012EOOO - 00000000

00001EOO - 00000000 7FFDEOOO - 00000000

000002CO - 000002C8 00000000 - 00000000

7FFDFOOO - 00000000

0000 0004 0008 OOOC

. .iix A
ŷ

.. .A .. .E

. yo

EXAMPLE 4-4. Displaying the first Thread Environment Block (TEB)

PS-RELATIVE ADDRESSING
I have already mentioned that the FS refers to different segments in user- and kernel-
mode. Whereas the +t switch selects the user-mode FS address as the reference point, the
+f switch uses the FS base address that is in effect in kernel-mode. Of course, a Win32
application has no way to get at this value, so once again the spy device is required.
w2k_mem. exe calls the IOCTL function SPY_IO_CPU_INFO, introduced in the previous
section, to read CPU status information that includes the kernel-mode values of all seg-
ment registers. From there, everything goes on just the same as with the +t switch.

The kernel-mode FS points to another thread-specific structure frequently
accessed by the Windows 2000 kernel, named the Kernel's Processor Control Region
(KPCR). This structure has already been mentioned in the course of the discussion of the
IOCTL function SPY_IO_OS_INFO and will be revisited in Chapter 7 (see Listing 7-16).
Again, suffice it to note for now that this structure exists at linear address OXFFDFFOOO ,
and that the +f switch gives easy access to it. In Example 4-5,1 have issued the com-
mand w2k_mem +df #0x54 0 to demonstrate that the +f switch in fact applies a bias
of OXFFDFFOOO bytes to the specified memory address.

EXAMPLE 4-5. Displaying the Kernel's Processor Control Region (KPCR)
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FS:[<bASE>] ADDRESSING

When examining Windows 2000 kernel code, you will frequently come across
instructions such as MOV EAX, FS: [ 18h]. These instructions retrieve member values
of the TEB, KPCR, or other structures contained in the FS segment. Many of them are
pointers to other internal structures. The command line switches +u and +k allow you
to follow this indirection with ease. +u retrieves a pointer from the user-mode FS
segment; +k does the same in kernel-mode. For example, the command w2k_mem +du
#OxlE8 0x30 (see Example 4-6) dumps 488 bytes of the memory block addressed by
FS: [30h] in user-mode, which happens to be a pointer to the Process Environment
Block (PEB) ofw2k_mem.exe. The command w2k_mem +dk #0xic 0x20 (see Example
4-7) displays the first 28 bytes of memory pointed to by FS: [20h] in kernel-mode,
which is a pointer to the Kernel's Processor Control Block (KPRCB) , briefly mentioned
earlier in the discussion of the IOCTL function SPY_IO_OS_INFO and also discussed in
Chapter 7 (see Listing 7-15). Don't worry if you don't know what a PEB or KPRCB is—
you will know it after having read this book.
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EXAMPLE 4-6. Displaying the Process Environment Block (PER)

EXAMPLE 4-7. Displaying the Kernel's Processor Control Block (KPRCB)

HANDLE/OBJECT RESOLUTION

Suppose you have an object HANDLE and want to see what the corresponding object
looks like in memory. This is an almost trivial task if you use the +h switch, which sim-
ply calls the spy device's SPY_IO_HANDLE_INFO function (Listing 4-26) to look up the
object body of the given handle. The world of Windows 2000 objects is an amazing
topic that will be treated in depth in Chapter 7. So let's forget about it for now.

RELATIVE ADDRESSING

Sometimes it might be useful to display a series of memory blocks that are spaced out
by the same number of bytes. This might be, for example, an array of structures, like
the stack of TEBS in a multithreaded application. The +a and +s switches enable this
kind of relative addressing by changing the interpretation of the specified address to
an offset. The difference between these options is that +a ("add bias") yields a positive
offset, whereas +s ("subtract bias") yields a negative one. Example 4-8 shows the out-
put of the command w2k_mem +d #32 OxcOOOOOOO +a 4096 4096 on my system.
It samples the first 32 bytes of three consecutive 4-KB pages, starting at address
Oxcooooooo, where the system's page-tables are located. Note the +a switch near the
end of the command. It causes the following "4096" tokens to be interpreted as offsets
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EXAMPLE 4-8. Sampling Page-Tables

to be added to the previous base address. The +a and +s switches remain in effect
until switched off explicitly by specifying -a or -s or overridden by any of the other
switches that change the interpretation of the address parameter.

Example 4-8 also shows what happens if an invalid linear address is passed
in. Obviously, the first pair of page-tables referring to the 4-MB address ranges
Oxoooooooo to O x O O S F O O O O and 0x00400000 to O x O O V F O O O O were valid, and the
third one was not. w2k_mem. exe reflects this fact by displaying an empty hex
dump table. The program knows which address ranges are valid because the spy
device's SPY_IO_MEMORY_DATA function puts this information into the resulting
SPY_MEMORY_DATA structure (cf. Listing 4-25).

INDIRECT ADDRESSING
One of my favorite command options is +p, because it saved a lot of typing while
I was preparing this book. This option works similar to +u and +k, but doesn't
use the FS segment as reference, but rather uses the previously displayed data
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block. This is a great feature if you want to chase down a linked list of objects, for
example. Instead of displaying the first list member, reading out the address of the
next member, typing a new command with this address, and so on, simply append
+p to the command and a series of offsets that specify where the link to the next
object is located in the previous hex dump panel.

In Example 4-9,1 have used this option to walk down the list of active
processes. First, I have asked the Kernel Debugger to give me the address of the
internal variable PsActiveProcessHead, which is a LIST_ENTRY structure mark-
ing the beginning of the process list. A LIST_ENTRY consists of a Flink (forward
link) member at offset 0 and a Blink (backward link) member at offset 4 (cf.
Listing 2-7). The command w2k_mem #8 +d Ox8046al80 +p 0 0 0 0 first dumps
the LIST_ENTRY of PsActiveProcessHead, and then it switches to indirect
addressing on behalf of the +p switch. The four zeros tell w2k_mem. exe to extract
the value at offset zero of the previous data block, which is, of course, the Flink
member of each LIST_ENTRY. Note that the Blink members in Example 4-9,
located at offset 4, do in fact point back to the previous LIST_ENTRY, as expected.

If enough zero-valued parameters would be appended to the command, the hex
dump would eventually return to PsActiveProcessHead, which marks the beginning
and the end of the process list. As explained in Chapter 2, the doubly-linked lists main-
tained by Windows 2000 are usually circular; that is, the Flink of the last list member
points to the first one, and the Blink of the first list member points to the last one.



240 EXPLORING WINDOWS 2000 MEMORY

EXAMPLE 4-9. Walking Down the Active-Process List

LOADING MODULES ON THE FLY

Sometimes you might want to dump the memory image of a module, but the module
is not mapped into the linear address space of the w2k_mem. exe process. This prob-
lem can be solved by loading the module explicitly using the /<path> and +x com-
mand options. Every command token prefixed by a slash character is interpreted as a
module path, and w2k_mem. exe attempts to load this module from this path using the
Win32 API function LoadLibraryEx ( ) . By default, the load option DONT_RESOLVE_
DLL_REFERENCES is used, causing the module to be loaded without initializing it. For
a DLL, this means that its DllMain ( ) entry point is not called. Also, none of the
dependent modules specified in the import section is loaded. However, if you specify
the +x switch before the path, the module is loaded -and fully initialized. Note that
some modules might refuse initialization in the context of the w2k_mem. exe process.
For example, kernel-mode device drivers should not be loaded with this option
turned on.

Loading and displaying a module is typically a two-step operation, as shown in
Example 4-10. First you should load the module without displaying any data, to find
out the base address assigned to it by the system. Fortunately, load addresses are
deterministic as long as no other modules are added to the process in the meantime,
so the next attempt to load the module will yield the same base address. In Example
4-10,1 have loaded the kernel-mode device driver nwrdr. sys, which is the
Microsoft's NetWare redirector. I'm not using IPX/SPX on my machine, so this driver
is not yet loaded. Obviously, LoadLibraryEx ( ) succeeds, and the hex dumps of the
reported load address Ox007AOOOO preceding and following this API call prove that
this memory region is initially unused but contains a DOS header afterward.

E: \>w2k_mem /e: \winnt\system32\drivers\nwrdr.sys

[...]

You didn't request any data!
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EXAMPLE 4-10. Loading and Displaying a Module Image
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Oddly, you can even load the . exe file of another application into memory
using the /<path> option. However, this module probably will be loaded to an
unusual address, because its preferred load address is usually occupied by
w2k_mem. exe. Moreover, you cannot get the loaded application to run—the +x
switch applies to DLLs only and has no effect on other module types.

DEMAND-PAGING IN ACTION

In the discussion of the spy device function SPY_IO_MEMORY_DATA, I mentioned that
this function is able to read the contents of memory pages that are flushed out to a
pagefile. Now is the time to prove this claim. First, it is necessary to maneuver the
system into a severe low-memory situation, forcing it to swap to the pagefiles any-
thing that isn't urgently needed. My favorite method goes as follows:

1. Copy the Windows 2000 desktop to the clipboard by pressing the
Print key.

2. Paste this bitmap into a graphics application.

3. Inflate the bitmap to an enormous size.

Now watch out what the command w2k_mem +d #16 OxC0280000
OXAOOOOOOO OXAOOOIOOO OxA0002000 Oxco2soooo yields on the screen. You might
wonder what this command is supposed to do. Well, it simply takes a snapshot of
some PTEs before and after touching the pages they refer to. The four PTEs found
at address Oxc0280000 are associated with the linear address range O x A O O O O O O O to 1
OxA0003FFF, which is part of the image of the kernel module win32k. sys. As
Example 4-11 shows, this address range has been swapped out because of the
bitmap operation I had performed just before. How do I know? Because the four
DWORDS at address Oxc0280000 are even numbers, meaning that their least signifi-
cant bit—the P bit of a PTE—is zero, indicating a nonpresent page. The next three
hex dump panels belong to the command parameters OxAO 000000 , OxAO 0 01000,
and OxA0002000 , requesting data from three of the four pages currently under
examination. As it turns out, w2k_mem. exe has no problems accessing these
pages—the system simply swaps them in on demand. However, the final test is still
to come: What do the four PTEs look like afterward? The answer is given by the
last panel of Example 4-11: The first three PTEs have the P bit set, and the fourth
still indicates "not present."
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EXAMPLE 4-11. Watching PTEs Change Their States

Before stepping to the next section, please study the first hex dump panel of
Example 4-11 once more. The four PTEs at address OxC0280000 all look quite
similar. In fact, they differ only in the three least-significant bits. If you examine
more of these PNPES that refer to pages in the pagefiles, you find that they all have
bit #10 set. That's why I assigned the name pageFile to this bit in Listing 4-3. If it
is set, the remaining bits—except for the P flag, of course—apparently specify the
location of this page in the pagefiles.
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MORE COMMAND OPTIONS

Some of the most interesting command options listed in Example 4-1 have not yet
been explained. For example the "System status options"+o, +c, +g, +i , and
+b are missing, although they sound promising. I will return to them in the last
section of this chapter, where several secrets of the Windows 2000 memory system
will be revealed.

INTERFACING TO THE SPY DEVICE

Now that you know how w2k_mem. exe is used, it's time to see how it works. Rather
than discuss command line parsing and dispatching, let's see how this application
communicates with the spy device inside w2k_spy. sys.

DEVICE I/O CONTROL REVISITED

The kernel-mode side of IOCTL communication has already been shown in Listings
4-6 and 4-7. The spy device simply sits waiting for I/O Request Packets (IRPs) and
handles some of them, especially those tagged IRP_MJ_DEVICE_CONTROL, which
request some forbidden actions to be executed, at least forbidden in the context of
the user-mode application that sends these requests. It does so by calling the Win32
API function DeviceioControl ( ) , prototyped in Listing 4-27. The dwloControlCode,
IpInBuffer, nlnBufferSize, IpOutBuffer, nOutBufferSize, and IpBytesReturned
arguments should look familiar to you. In fact, they correspond 1:1 to the dCode,
pinput, dinput, pOutput, dOutput, and pdinf o arguments of the SpyDispatcher ( )
function in Listing 4-7. The remaining arguments are explained quickly, hoevice is
the handle to the spy device, and ipOverlapped optionally points to an OVERLAPPED
structure required for asynchronous IOCTL. We are not going to send asynchronous
requests, so this argument will always be NULL .

Listing 4-28 is a collection of wrapper functions that perform basic IOCTL
operations. The most basic function is locontrol ( ) , which calls DeviceioControl ( )
and tests the reported output data size. Because w2k_mem. exe sizes its output buffers
accurately, the number of output bytes should always be equal to the buffer size.
ReadBinary ( ) is a simplified version of locontrol ( ) for IOCTL functions that don't
require input data. ReadCpuinf o ( ) , ReadSegment ( ) , and ReadPhysical ( ) are
specifically tailored to the spy functions SPY_IO_CPU_INFO, SPY_IO_SEGMENT, and
SPY_IO_PHYSICAL, because these are the most frequently used IOCTL functions.
Encapsulating them in C functions makes the code much more readable.



A SAMPLE MEMORY DUMP UTILITY 245

LISTING 4-27. Prototype o/" DeviceloControl ( )

BOOL WINAPI DeviceloControl (HANDLE hDevice,

DWORD dwIoControlCode,

PVOID IpInBuffer,

DWORD nlnBuf ferSize,

PVOID IpOutBuffer,

DWORD nOutBuf ferSize,

PDWORD IpBytesRe turned,

POVERLAPPED IpOverlapped) ;

BOOL WINAPI loControl (HANDLE hDevice,

DWORD dCode ,

PVOID plnput,

DWORD dlnput,

PVOID pOutput ,

DWORD dOutput )

{

DWORD dData = 0;

return DeviceloControl (hDevice, dCode,

plnput, dlnput,

pOutput , dOutput ,

&dData, NULL)

&&

(dData == dOutput) ;

}

//

BOOL WINAPI ReadBinary (HANDLE hDevice,

DWORD dCode,

PVOID pOutput ,

DWORD dOutput )

{

return loControl (hDevice, dCode, NULL, 0, pOutput, dOutput);

)

BOOL WINAPI ReadCpuInfo (HANDLE hDevice,

PSPY_CPU_INFO psci)

{

return loControl (hDevice, SPY_IO_CPUJNFO,

NULL , 0 ,

psci, SPY_CPU_INFO_) ;

}

(continued)
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LISTING 4-28. Various IOCTL Wrappers

All functions shown so far in this section require a spy device handle. It's time
that I show how to obtain it. It is actually a quite simple Win32 operation, similar to
opening a file. Listing 4-29 shows the implementation of the command handler inside
w2k_mem. exe. This code uses the API functions w2kFilePath ( ) , w2kServiceLoad(),
and w2kserviceunload() , exported by the "SBS Windows 2000 Utility Library"
w2k_lib.dll, included on the companion CD of this book. If you have read the
section about the Windows 2000 Service Control Manager in Chapter 3, you already
know w2kServiceLoad ( ) and w2kServiceUnload ( ) from Listing 3-8. These power-
ful functions load and unload kernel-mode device drivers on the fly and handle
benign error situations, such as gracefully loading a driver that is already loaded.
w2kFilePath() is a helpful utility function that derives a file path from a base path,
given a file name or file extension. w2k_mem.exe calls it to obtain a fully qualified
path to the spy driver executable that matches its own path.

II

BOOL WINAPI ReadSegment (HANDLE hDevice,

DWORD dSelector,

PSPY_SEGMENT pss)

return loControl (hDevice, SPY_IO_SEGMENT,

StdSelector, DWORD_,

pss, SPY SEGMENT ) ;„• _ :
BOOL WINAPI ReadPhysical (HANDLE hDevice,

PVOID pLinear,

PPHYSICAL_ADDRESS ppa)

{
return loControl (hDevice, SPY_IO_PHYSICAL,

SpLinear, PVOID_,

ppa, PHYSICAL_ADDRESS_)

&&

(ppa->LowPart | | ppa->HighPart) ;

}

WORD awSpyFile [] = SW(DRV_FILENAME) ;

WORD awSpyDevice [] = SW(DRV_MODULE) ;

WORD awSpy Display [] = SW ( DRV_NAME ) ;

WORD awSpyPath [] = SW(DRV_PATH) ;
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//

void WINAPI Execute (PPWORD ppwArguments ,

DWORD dArguments)

{

SPY_VERSION_INFO svi;

DWORD dOptions, dRequest, dReceive;

WORD awPath [MAX_PATH] = L"?";

SC_HANDLE hControl = NULL;

HANDLE hDevice = NULL;

_printf (L" \r\nLoading \"%s\" (%s) . . . \r\n" ,

awSpyDisplay, awSpyDevice) ;

if (w2kFilePath (NULL, awSpyFile, awPath, MAX_PATH) )

{

_printf (L"Driver: \"%s\"\r\n",

awPath) ;

hControl = w2kServiceLoad (awSpyDevice, awSpyDisplay,

awPath, TRUE) ;

}

if (hControl != NULL)

(
_printf (L"Opening \"%s\" . . . \r\n" ,

awSpyPath) ;

hDevice = CreateFile (awSpyPath, GENERIC_READ,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL) ;

}

if (hDevice != INVALID_HANDLE_VALUE)

(

if (ReadBinary (hDevice, SPY_IO_VERSION_INFO,

&svi, SPY_VERSION_INFO_) )

{

_printf (L"\r\n%s V%lu.%021u ready\r\n",

svi . awName ,

svi.dVersion / 100, svi.dversion % 100);

)

dOptions = COMMAND_OPTION_NONE ;

dRequest = CommandParse (hDevice, ppwArguments, dArguments,

TRUE, adoptions) ;

dOptions = COMMAND_OPTION_NONE;

dReceive = CommandParse {hDevice, ppwArguments, dArguments,

FALSE, ScdOptionS) ;

if (dRequest)

{

_printf (awSummary,

dRequest, (dRequest == 1 ? awByte : awBytes) ,

(continued)
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LISTING 4-29. Controlling the Spy Device

Please note the four global string definitions at the top of Listing 4-29. The con-
stants DRV_FILENAME, DRV_MODULE, DRV_NAME, and DRV_PATH are drawn from the
header file of the spy device driver, w2k_spy.h. Table 4-4 lists their current values.
You will not find device-specific definitions in the source files of w2k_mem. exe.
w2k_spy.h provides everything a client application needs. This is very important: If
any device-specific definitions change in the future, there is no need to update any
application files. Just rebuild the application with the updated spy header file, and
everything will fall into place.

The w2kFilePath ( ) call near the beginning of Listing 4-29 guarantees that
the w2k_spy. sys file specified by the global string awSpyFile (cf. Table 4-4) is
always loaded from the directory where w2k_mem. exe resides. Next, the code in
Listing 4-29 passes the global strings awSpyDevice and awSpyDisplay (cf. Table 4-4)
to w2kServiceLoad ( ) , attempting to load and start the spy device driver. If the
driver was not loaded yet, these strings will be stored in the driver's property list and
can be retrieved by other applications; otherwise, the current property settings are
retained. Although the w2kServiceLoad() call in Listing 4-29 returns a handle, this
is not a handle that can be used in any IOCTL calls. To get a handle to the spy device,
the Win32 multipurpose function createFile ( ) must be used. This function opens
or creates almost anything that can be opened or created on Windows 2000. You cer-
tainly have called this function a million times to get a file handle. CreateFile ( ) can
also open kernel-mode devices if the symbolic link name of the device is supplied in
the format \ \ . \<SymbolicLink> for the ipFiieName argument. The symbolic link of
the spy device is named w2k_spy, so the first CreateFile ( ) argument must be
\ \ . \w2k_spy, which is the value of the global string variable awSpyPath according
to Table 4-4.

dReceive, (dReceive == 1 7 awByte : awBytes));

}
_printf (L" \r\ndosing the spy device ...\r\n");

CloseHandle (hDevice) ;

else

{
_printf (L"Spy device not available. \r\n" );

}
if ( (hControl != NULL) && gfSpyUnload)

{
_printf (L"Unloading the spy device ...\r\n");
w2kServiceUnload (hControl, awSpyDevice);

}
return;

}
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TABLE 4-4. Device-Specific String Definitions

w2k_spy CONSTANT

DRV_FILENAME

DRV_MODULE

DRV_NAME

DRV.PATH

w2k_mem VARIABLE

awSpyFile

awSpyDevice

awSpyDisplay

awSpyPath

VALUE

w2k_spy.sys

w2k_spy

SBS Windows

\\Aw2k_spy

2000 Spy Device

If CreateFile ( ) succeeds, it returns a device handle that can be passed to
DeviceioControl ( ) . The Execute ( ) function in Listing 4-29 uses this handle imme-
diately to query the version information of the spy device, which it displays on the
screen if the IOCTL call succeeds. Next, the commandParse ( ) function is invoked
twice with a different BOOL value for the fourth argument. The first call simply checks
the command line for invalid parameters and displays any errors, and the second call
actually executes all commands. I do not want to discuss in detail the command parser.
The remaining code in Listing 4-29 is cleanup code that closes handles and optionally
unloads the spy drives. The source code of w2k_mem. exe contains other interesting code
snippets, but I will not discuss them here. Please see the files w2k_mem. c and w2k_mem. h
in the \src\w2k_mem directory on the sample CD for further details.

The only notable thing left is the gf spyUnload flag tested before unloading the
spy driver. I have set this global flag to FALSE , so the driver will not be unloaded
automatically. This enhances the performance of w2k_mem. exe and other w2k_spy.
sys clients because loading a driver takes some time. The first client has to take the
loading overhead, but all successors will benefit from having the driver already in
memory. This setting also avoids conflict situations involving competitive clients, in
which one client attempts to unload the driver while another one is still using it. Of
course, Windows 2000 will not unload the driver unless all handles to its devices are
closed, but it will put it into a STOP_PENDING state that will not allow new clients to
access the device. However, if you don't run w2k_spy. sys in a multiclient environ-
ment, and you are updating the device driver frequently, you should probably set the
gf SpyUnload flag to TRUE.

WINDOWS 2000 MEMORY INTERNALS

Along with the global separation of the 4-GB address space into user-mode and
kernel-mode portions, these two halves are subdivided into various smaller blocks.
As you might have guessed, most of them contain undocumented structures that
serve undocumented purposes. It would be easy to forget about them if they were
uninteresting. However, that's not the case—some of them are a real gold mine for
anyone developing system diagnosis or debugging software.
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BASIC OPERATING SYSTEM INFORMATION

Now the time has come to introduce one of the postponed command line options of
the memory spy application w2k_mem. exe. If you take a look at the lower half of the
program's help screen in Example 4-1, you will see a section titled "System Status
Options." Let's try the option +o, named "display OS information." Example 4-12
shows a sample run on my machine. The data displayed here are the contents of the
SPY_OS_INFO structure, defined in Listing 4-13 and set up by the spy device function
SpyOutputOsinf o ( ) , also included in Listing 4-13. In Example 4-12, you can
already see some characteristic addresses within the 4-GB linear memory space of a
process. For example, the valid user address range is reported to be 0x00010000 to
OxVFFEFFFF. You have probably read in other programming books about Windows
NT or Windows 2000 that the first and last 64 KB of the user-mode half of linear
memory are "no-access regions" that are there to catch wild pointers produced by
common programming errors (cf. Solomon 1998, Chapter 5). The output of
w2k_mem. exe proves that this is correct.
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EXAMPLE 4-12. Displaying Operating System Information

The last three lines of Example 4-12 contain interesting information about the
system, mostly extracted from the sharedUserData area at address OXFFDFOOOO . The
data structure maintained there by the system is called KUSER_SHARED_DATA and is
defined in the DDK header file ntddk. h.

WINDOWS 2000 SEGMENTS AND DESCRIPTORS
Another fine option of w2k_mem. exe is +c, which displays and interprets the contents
of the processor's segment registers and descriptor tables. Example 4-13 shows the
typical output. The contents of the cs, DS , and ES segment registers clearly demon-
strate that Windows 2000 provides each process with a flat 4-GB address space:
These basic segments start at offset 0x00000000 and have a limit of OXFFFFFFFF.

The flag characters in the rightmost column indicate the segment type as
defined by its descriptor's Type member. The type attributes of code and data segments
are symbolized by combinations of the characters "era" and "ewa," respectively. A
dash means that the corresponding attribute is not set. A Task State Segment (TSS)
can have the attributes "a" (available) and "b" (busy) only. All applicable attributes
are summarized in Table 4-5. Example 4-13 shows that the Windows 2000 cs seg-
ments are nonconforming and allow execute/read access, whereas the DS , ES , FS ,
and ss segments are of expand-up type and allow read/write access. Another incon-
spicuous but important detail is the different DPL of the cs, FS , and ss segments in
user- and kernel-mode. DPL is the Descriptor Privilege Level. For nonconforming
code segments, the DPL specifies the privilege level a caller must be on in order to be
able to call into this segment (cf. Intel 1999c, pp. 4-8f). In user-mode, the required
level is three; in kernel-mode, it is zero. For data segments, the DPL is the lowest
privilege level required to be able to access the segment. This means that the FS and
ss segments are accessible from all privilege levels in user-mode, whereas only level-0
accesses are allowed in kernel-mode.

Global flag 0x00000000

1386 machine type 0

Number of processors 1

Product type Windows NT Workstation (1)

Version & Build number 5.00.2195

System root "E:\WINNT"

[...]
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EXAMPLE 4-13. Displaying CPU Information

The contents of the IDT and GDT registers show that the GDT spans from lin-
ear address 0x80036000 to 800363FF, immediately followed by the IDT, occupying
the address range 0x80036400 to Ox80036BFF. With each descriptor taking 64 bits,
the GDT and IDT contain 128 and 256 entries, respectively. Note that the GDT
could comprise as many as 8,192 entries, but Windows 2000 uses only a small frac-
tion of them.

The w2k_mem. exe utility features two more options—+g and +i—that display
more details about the GDT and IDT. Example 4-14 demonstrates the output of the
+g option. It is similar to the "kernel-mode segments:" section of Example 4-13, but
lists all segment selectors available in kernel-mode, not just those that are stored in
segment registers. w2k_mem.exe compiles this list by looping through the entire GDT,
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TABLE 4-5. Code and Data Segment Type Attributes

SEGMENT ATTRIBUTE DESCRIPTION

CODE

CODE

CODE

DATA

DATA

DATA

TSS32

TSS32

c

r

a

e

w

a

a

b

Conforming segment (may be entered by less privileged code)

Read-access allowed (as opposed to execute-only access)

Segment has been accessed

Expand-down segment (typical attribute for stack segments)

Write-access allowed (as opposed to read-only access)

Segment has been accessed

Task State Segment is available

Task State Segment is busy

querying the spy device for segment information by means of the IOCTL function
SPY_IO_SEGMENT . Only valid selectors are displayed. It is interesting to compare
Examples 4-13 and 4-14 with the GDT selector definitions in ntddk.h, summarized
in Table 4-6. Obviously, they are in accordance with the details reported by
w2k_mem.exe.

E : \ >w2 k_mem +g
r II • - - J

GDT information:

001

002

003

004

005

006

007

008

009

OOA

OOB

OOC

OOD

OOE

OOF

010

Oil

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

Selector =

0008,

0010,

0018,

0020,

0028,

0030,

0038,

0040,

0048,

0050,

0058,

0060,

0068,

0070,

0078,

0080,

0088,

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 80244000,

= FFDFFOOO,

= 7FFDEOOO,

= 00000400,

= E2E6AOOO,

= 80470040,

= 804700A8,

= 00022ABO,

= OOOB8000,

= FFFF7000,

= 80400000,

= 80400000,

= 00000000,

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit -

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

FFFFFFFF,

FFFFFFFF,

FFFFFFFF,

FFFFFFFF,

000020AB,

00001FFF,

OOOOOFFF,

OOOOFFFF,

00000177,

00000068,

00000068,

OOOOFFFF,

00003FFF,

000003FF,

OOOOFFFF,

OOOOFFFF,

00000000,

DPLO,

DPLO,

DPL3,

DPL3,

DPLO,

DPLO,

DPL3,

DPL3,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

= CODE

= DATA

= CODE

= DATA

= TSS32

= DATA

= DATA

= DATA

= LOT

= TSS32

= TSS32

= DATA

= DATA

= DATA

= CODE

= DATA

= DATA

-ra

-wa
-ra
-wa

b

-wa

-wa

-wa

a
a

-wa

-w-

-w-

-r-
-w-

-w-

(continued)
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014

QIC

DID

DIE

OIF

020

021

022

[. . .

Selector

Selector

Selector

Selector

Selector

Selector

Selector

Selector

= OOAO,

= OOEO,

= OOE8,

= OOFO,

= OOF8,

= 0100,

= 0108,

= 0110,

Base

Base

Base

Base

Base

Base

Base

Base

= 814985A8,

= F0430000,

= 00000000,

= 8042DCE8,

= 00000000,

= F0440000,

= F0440000,

= F0440000,

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

Limit =

00000068,

OOOOFFFF,

OOOOFFFF,

000003B7,

OOOOFFFF,

OOOOFFFF,

OOOOFFFF,

OOOOFFFF,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

DPLO,

Type

Type

Type

Type

Type

Type

Type

Type

= TSS32

= CODE

= DATA

= CODE

= DATA

= DATA

= DATA

= DATA

a

era
-w-

-w-

-wa
-wa
-wa

EXAMPLE 4-14. Displaying GDT Descriptors

TABLE 4-6. GDT Selectors Defined in ntddk.h

SYMBOL VALUE COMMENTS

KGDT_NULL 0x0000 Null segment selector (invalid)

KGDT_RO_CODE 0x0008 CS register in kernel-mode

KGDT_RO_DATA 0x0010 SS register in kernel-mode

KGDT_R3_CODE 0x0018 CS register in user-mode

KGDT_R3_DATA 0x0020 DS, ES, and SS register in user-mode, DS and ES register in kernel-mode

KGDT_TSS 0x0028 Task State Segment in user- and kernel-mode

KGDT_RO_PCR 0x0030 FS register in kernel-mode (Processor Control Region)

KGDT_R3_TEB 0x0038 FS register in user-mode (Thread Environment Block)

KGDT_VDM_TILE 0x0040 Base 0x00000400, limit OxOOOOFFFF (Virtual DOS Machine)

KGDT_LDT 0x0048 Local Descriptor Table

KGDT_DF_TSS 0x0050 ntoskrnl.exe variable KiDoubleFaultTSS

KGDT NMI TSS 0x0058 ntoskrnl.exe variable KiNMITSS

The selectors in Example 4-14 that are not listed in Table 4-6 can in part be
identified by looking for familiar base addresses or memory contents, and by using
the Kernel Debugger to look up the symbols for some of the base addresses. Table 4-7
comprises the selectors that I have identified so far.

The +i option of w2k_mem. exe dumps the gate descriptors stored in the IDT.
Example 4-15 is an excerpt from this rather long list, comprising only the first
20 entries that have a predefined meaning assigned by Intel (Intel 1999c, pp. 5-6).
Interrupts 0x14 to OxiF are reserved for Intel; the remaining range 0x20 to OXFF is
available to the operating system.

In Table 4-8,1 have summarized all interrupts that refer to identifiable and non-
trivial interrupt, trap, and task gates. Most of the user defined interrupts point to
dummy handlers named KiunexpectedinterruptNNN ( ) , as explained earlier in this
chapter. Some interrupt handlers are located at addresses that can't be resolved to
symbols by the Kernel Debugger. .
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TABLE 4-7.

VALUE

0x0078

0x0080

OxOOAO

OxOOEO

OxOOFO

0x0100

0x0108

0x0110

More GDT Selectors

BASE

0x80400000

0x80400000

Ox814985A8

OxF0430000

Ox8042DCE8

OxF0440000

OxF0440000

OxF0440000

DESCRIPTION

ntoskrnl.exe code segment

ntoskrnl.exe data segment

TSS (EIP member points to HalpMcaExceptionHandlerWrapper)

ROM BIOS code segment

ntoskrnl.exe function KiI386CallAbios

ROM BIOS data segment

ROM BIOS data segment

ROM BIOS data segment

E : \ >w2 k_mem + i

r i
L • •

IDT

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

OF

10

11

12

13

[..

information :

Pointer

Pointer

TSS

Pointer

Pointer

Pointer

Pointer

Pointer

TSS

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

TSS

Pointer
]

= 0008:

= 0008:

= 0058,

= 0008:

= 0008:

= 0008:

= 0008:

= 0008:

= 0050,

= 0008:

= 0008:

= 0008:

= 0008:

= 0008:

= 0008:

= 0008:

= 0008:

= 0008:

= OOAO,

= 0008:

804625E6,

80462736,

80462AOE,

80462B72,

80462CB6,

80462E1A,

80463350,

8046370C,

80463814,

80463940,

80463C44,

80463E50,

804648A4,

80464C3F,

80464D47,

80464E6B,

80464C3F,

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

= 00000000,

= 00000000,

= 804700A8,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 80470040,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 00000000,

= 814985A8,

= 00000000,

Limit

Limit

L Liiri t

Ltmi t

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

Limit

bind t:

lYi m:i 1:

= FFFFFFFF,

= FFFFFFFF,

= 00000068,

= FFFFFFFF,

= FFFFFFFF,

= FFFFFFFF,

= FFFFFFFF,

= FFFFFFFF,

= 00000068,

= FFFFFFFF,

= FFFFFFFF,

= FFFFFFFF,

- FFFFFFFF,

= FFFFFFFF,

= FFFFFFFF,

= FFFFFFFF,

- FFFFFFFF,

= FFFFFFFF,

= 00000068,

= FFFFFFFF,

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

= INT32

= INT32

= TASK

= INT32

= INT32

= INT32

= INT32

= INT32

= TASK

= INT32

= INT32

= INT32

= INT32

= INT32

= INT32

= INT32

= INT32

= INT32

= TASK

= INT32

EXAMPLE 4-15. Displaying IDT Gate Descriptors
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TABLE 4-8.

INT

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

OxOA

OxOB

OxOC

OxOD

OxOE

OxOF

0x10

Oxll

0x12

0x13

Oxl4-OxlF

Ox2A

Ox2B

Ox2C

Ox2D

Ox2E

Ox2F

0x30

0x38

Windows 2000 Interrupt, Trap, and Task Gates

INTEL DESCRIPTION

Divide Error (DE)

Debug (DB)

NMI Interrupt

Breakpoint (BP)

Overflow (OF)

BOUND Range Exceeded (BR)

Undefined Opcode (UD)

No Math Coprocessor (NM)

Double Fault (DF)

Coprocessor Segment Overrun

Invalid TSS (TS)

Segment Not Present (NP)

Stack-Segment Fault (SS)

General Protection (GP)

Page Fault (PF)

(Intel reserved)

Math Fault (MF)

Alignment Check (AC)

Machine Check (MC)

Streaming SIMD Extensions

(Intel reserved)

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

OWNER

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

?

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

ntoskrnl.exe

hal.dll

hal.dll

HANDLER/TSS

KiTrapOO

KiTrapOl

KiNMITSS

KiTrap03

KiTrap04

KiTrap05

KiTrap06

KiTrapO?

KiDouble

KiTrap09

KiTrapOA

KiTrapOB

KiTrapOC

KiTrapOD

KiTrapOE

KiTrapOF

KiTraplO

KiTrapll

?

KiTrapOF

KiTrapOF

KiGetTickCount

KiCallbackReturn

KiSetLowWaitHighThread

KiDebugService

KiSystemService

KiTrapOF

HalpClocklnterrupt

HalpProfilelnterrupt

WINDOWS 2000 MEMORY AREAS

The last w2k_mem. exe option that remains to be discussed is the +b switch. It gener-
ates an enormously long list of contiguous memory regions within the 4-GB linear
address space. w2k_mem. exe builds this list by walking through the entire PTE array
at address O x C d O O O O O O , using the spy device's IOCTL function SPY_IO_PAGE_ENTRY.
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The dsize member contained in each resulting SPY_PAGE_ENTRY structure is added to
the linear address associated with the PTE to get the linear address of the next PTE to
be retrieved. Listing 4-30 shows the implementation of this option.

DWORD WINAPI DisplayMemoryBlocks (HANDLE hDevice)

{
SPY_PAGE_ENTRY spe ;

PBYTE pbPage , pbBase ;
DWORD dBlock, dPresent, dTotal;
DWORD n = 0;

pbPage = 0 ;
pbBase = INVALID_ADDRESS;
dBlock = 0;
dPresent = 0 ;
dTotal = 0;

n +- _printf (L" \r\nContiguous memory blocks:"

L"\r\n --\r\n\r\n");

do {

if UloControl (hDevice, SPY_IO_PAGE_ENTRY,
kpbPage, PVOID_,
&spe, SPY_PAGE_ENTRY_) )

f
n += __printf (L" !!! Device I/O error !!!\r\n");
break;

}
if (spe. f Present)

{
dPresent +~ spe.dSize;
}

if (spe .pe .dvalue)

{
dTotal += spe.dSize;

if (pbBase == INVALID_ADDRESS)

t
n += _printf (L"%51u : Ox%081X ->",

++dBlock, pbPage);

pbBase = pbPage;

}

}
else

{
if (pbBase != INVALID_ADDRESS)

{
n += _printf (L" Ox%081X (Ox%081X bytes) \r\n",

pbPage-1, pbPage-pbBase) ;

(continued)
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LISTING 4-30. Finding Contiguous Linear Memory Blocks

Example 4-16 is an excerpt from a sample run on my machine, showing some
of the more interesting regions. Some very obvious addresses are 0x00400000 , where
the image ofw2k_mem.exe starts (block #13), and 0x10000000, where the image of
w2k_lib. dll is located (block #23). The TEB and PEB pages also are clearly dis-
cernible (block #104), as are thehai.dll, ntoskrnl.exe, and win32k.sys areas
(blocks #105 and 106). Blocks #340 to 350 are, of course, the valid fragments of the
system's PTE array, featuring the page-directory as part of block #347. Block #2122
contains the sharedUserData area, and #2123 comprises the KPCR, KPRCB, and
CONTEXT structures containing thread and processor status information.

E: \>w2k_mem +b
I...]
Contiguous memory blocks:

1

2

3

4
5

6

7

0x00010000

0x00020000

OX0012DOOO

0x00230000

0x00240000

0x00247000

OX0024FOOO

-> OxOOOlOFFF

-> Ox00020FFF

-> OX00138FFF

-> OX00230FFF

-> OX00241FFF

-> Ox00247FFF

-> Ox00250FFF

(0x00001000

(0x00001000

(OxOOOOCOOO

(0x00001000

(0x00002000

(0x00001000

(0x00002000

bytes)

bytes)

bytes)

bytes )

bytes)

bytes)

bytes)

pbBase = INVALID_ADDRESS;

}

}

}

while (pbPage += spe.Size);

if (pbBase != INVALID_ADDRESS)

{

n += _printf (L"Ox%081X\r\n" , pbPage-1) ;

}

n += _printf (L"\r\n"

L" Present bytes: Ox%081X\r\n"

L" Total bytes: Ox%081X\r\n" ,

dPresent, dTotal);

return n;

}
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8

9

10

11

12

13

14

15

16

17

ia
19

20 :

21 :

22 :

23 :

24 :

25 :

26 :

[...]

103 :

104 :

105 :

106 :

107 :

108 :

109 :

110 :

[ . . . ]

340 :

341 :

342 :

343 :

344 :

345 :

346 :

347 •

348

349 :

350 •
r T
L . . • J

2121

2122

2123
r n

0x00260000

0x00290000

Ox002EOOOO

Ox002E2000

0x00360000

0x00400000

0x00406000

0x00410000

0x00419000

Ox0041BOOO

OxOOteOOOO
0x00760000

0x00770000

0x00780000

0x00790000

0x10000000

0x10005000

OxlOOOEOOO

Ox759BOOOO

Ox7FFD2000

Ox7FFDEOOO

0x80000000

OxAOlBOOOO

OxA0200000

OxA02FOOOO

OxA4000000

OxBE63BOOO

OxCOOOOOOO

OxC0040000

OxC01D6000

OxCOlDAOOO

OxCOlDDOOO

OxCOlFDOOO

OxCOlFFOOO

OxC0290000

OxC0303000

OxC0389000

OxC039EOOO

OxFFCOOOOO

OxFFDFOOOO

OxFFDFFOOO

-> Ox00260FFF

-> Ox00290FFF

-> Ox002EOFFF

-> Ox002E3FFF

-> Ox003BlFFF

-> Ox00404FFF

-> Ox00406FFF

-> Ox00410FFF

-> Ox00419FFF

-> Ox0041BFFF

-> 0x00450???
-> OX00760FFF

-> Ox00770FFF

-> Ox00783FFF

-> Ox00791FFF

-> Oxl0003FFF

-> OxlOOOSFFF

-> Oxl0016FFF

-> OX759B1FFF

-> Ox7FFD3FFF

-> Ox7FFEOFFF

-> OxAOlASFFF

-> OXA01F2FFF

-> OXA02C7FFF

-> OxA03FFFFF

-> OXA4001FFF

-> OXBE63CFFF

-> OxCOOOlFFF

-> OxC0040FFF

-> OXC01D6FFF

-> OxCOlDAFFF

-> OxCOlEOFFF

-> OxCOlFDFFF

-> OxC0280FFF

-> OXC0301FFF

-> OxC0386FFF

-> OxC038CFFF

-> OXC03FFFFF

-> OxFFDOFFFF

-> OxFFDFOFFF

-> OxFFDFFFFF

(0x00001000

(0x00001000

(0x00001000

(0x00002000

(0x00002000

(0x00005000

(0x00001000

(0x00001000

(0x00001000

(0x00001000

10x00001000

(0x00001000

(0x00001000

(0x00004000

(0x00002000

(0x00004000

(0x00001000

(0x00009000

(0x00002000

(0x00002000

(0x00003000

(Ox201A6000

(0x00043000

(OxOOOCSOOO

(0x00110000

(0x00002000

(0x00002000

(0x00002000

(0x00001000

(0x00001000

(0x00001000

(0x00004000

(0x00001000

(0x00082000

(0x00072000

(0x00084000

(0x00004000

(0x00062000

(0x00110000

(0x00001000

(0x00001000

bytes }

bytes )

bytes)

bytes }

bytes }

bytes)

bytes)

bytes)

bytes )

bytes )

bytes')
bytes)

bytes)

bytes )

bytes)

bytes)

bytes)

bytes)

bytes)

bytes )

bytes )

bytes)

bytes)

bytes)

bytes)

bytes)

bytes )

bytes)

bytes )

bytes)

bytes)

bytes)

bytes)

bytes)

bytes )

bytes)

bytes)

bytes )

bytes)

bytes )

bytes)

L • - • J

Present bytes: Ox22AA9000

Total

[...]

bytes: Ox2B8BAOOO

EXAMPLE 4-16. A Sample List of Contiguous Memory Blocks
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E:\>w2k_mem +d #0x200 OxC0300800
r 1
[ . . . J

C0300800. .C03009FF:

Address

C0300800

C0300810

C0300820

C0300830

C0300840

C0300850

C0300860

C0300870

C0300880

C0300890

C03008AO

C03008BO

C03008CO

C03008DO

C03008EO

C03008FO

C0300900

00000000

000001E3

010001E3

020001E3

030001E3

040001E3

050001E3

060001E3

070001E3

080001E3

090001E3

OA0001E3

OB0001E3

OC0001E3

OD0001E3

OE0001E3

OF0001E3

100001E3

512 valid bytes

- 00000004

- 004001E3

- 014001E3

- 024001E3

- 034001E3

- 044001E3

- 054001E3

- 064001E3

- 074001E3

- 084001E3

- 094001E3

- OA4001E3

- OB4001E3

- OC4001E3

- OD4001E3

- OE4001E3

- OF4001E3

- 104001E3

00000008 -

008001E3 -

018001E3 -

028001E3 -

038001E3 -

048001E3 -

058001E3 -

068001E3 -

078001E3 -

088001E3 -

098001E3 -

OA8001E3 -

OB8001E3 -

OC8001E3 -

OD8001E3 -

OE8001E3 -

OF8001E3 -

108001E3 -

OOOOOOOC

OOC001E3

01C001E3

02C001E3

03C001E3

04C001E3

05C001E3

06C001E3

07C001E3

08C001E3

09C001E3

OAC001E3

OBC001E3

OCC001E3

ODC001E3

OEC001E3

OFC001E3

10C001E3

0000 0004 0008

. . .a .8.a .?.a

. . .a .e.s .?.a

. . .8 .8.3 .7.3

. . .a .8.3 .7.8

. . .a .e. a . ?.a

. . .a .e.a .?.a

. . .a .8.8 .7.3

. . .a .8. a .7.3

. . .3 .e.a .?.a

. . .3 .s.a .?.a

. . .a .8.8 .7.3

. . .8 .8.3 .7.8

. . .8 .8.3 .7.8

. . .8 .8.3 .7.8

. . .8 .8.3 .7.8

. . .8 .8.8 .7. 3

. . .8 .8.3 .7.8

OOOC

.A. 3

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

.A. a

The odd thing about the +b option of w2k_mem. exe is that it reports an
amount of used memory that is far beyond any reasonable value. Note the
summary lines at the end of Example 4-16. Am I really using 700 MB of memory
now? The Windows 2000 Task Manager indicates 150 MB—so what's going on
here? This strange effect comes from memory block #105, which is reported to 1
range from 0 x 8 0 0 0 0 0 0 0 to OxAOlA5FFF, spanning 0x201A6000 bytes, which
equals 538,599,424 bytes. This is obviously nonsense. The problem is that the
entire linear address range from 0x80000000 to Ox9FFFFFFF is mapped to the
physical address range 0 x 0 0 0 0 0 0 0 0 to OXIFFFFFFF, as already noted earlier in th i j
chapter. All 4-MB pages in this range have valid PDEs in the page-directory at
address O x C O B O O O O O , which can be proved by issuing the command w2k_mem +a
#0x200 0x00300800 (Example 4-17). Because all PDEs in the resulting list are odd
numbers, the corresponding pages must be present; however, they are not neces-
sarily backed up by physical memory. In fact, large portions of this memory rangt
are really "holes" and seem to be filled with OXFF bytes if copied to a buffer.
Therefore, you shouldn't take the memory usage summary displayed by
w2k_mem.exe too seriously.
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C0300910

C0300920

C0300930

C0300940

C0300950

C0300960

C0300970

C0300980

C0300990

C03009AO

C03009BO

C03009CO

C03009DO

C03009EO

C03009FO

[...]

110001E3 - 114001E3

120001E3 - 124001E3

130001E3 - 134001E3

140001E3 - 144001E3

150001E3 - 154001E3

160001E3 - 164001E3

170001E3 - 174001E3

180001E3 - 184001E3

190001E3 - 194001E3

1A0001E3 - 1A4001E3

1B0001E3 - 1B4001E3

1C0001E3 - 1C4001E3

1D0001E3 - 1D4001E3

1E0001E3 - 1E4001E3

1F0001E3 - 1F4001E3

118001E3 - 11C001E3

128001E3 - 12C001E3

138001E3 - 13C001E3

148001E3 - 14C001E3

158001E3 - 15C001E3

168001E3 - 16C001E3

178001E3 - 17C001E3

188001E3 - 18C001E3

198001E3 - 19C001E3

1A8001E3 - 1AC001E3

1B8001E3 - 1BC001E3

1C8001E3 - 1CC001E3

1D8001E3 - 1DC001E3

1E8001E3 - 1EC001E3
iFHnniF.3 - iFrnniF3

. . .a .9.a .7.8 .A. a

. . .a .@.a .?.a .A. a

. . .a .9.8 .7.3 .A. a

. . .a .9.8 . ? .a .A. a

. . .a .9.3 .7.8 .A. a

a @ a 'a A a

. . .a .@.a .?.a .A. a

. . .a .e.a .?.a .A. a

. . .a .9.3 .?.a .A. a

. . .a .9.8 .?.a .A. a

. . .a .9. a .7.8 .A. a

. . .a .9. a .?.a .A. a

. . .8 .9.8 .7. a .A. 8

. . .a .9.8 .?.a .A. a
a 98 ' .8 .A. a

EXAMPLE 4-17. The PDEs of the Address Range Oxsooooooo to Ox9FFFFFFF

THE WINDOWS 2000 MEMORY MAP

The last part of this chapter is dedicated to the general layout of the 4-GB linear
address space as it is "seen" by a Windows 2000 process. Table 4-9 lists the address
ranges of various essential data structures. The big holes between them are used for
several purposes, such as load areas for process modules and device drivers, memory
pools, working set lists, and the like. Note that some addresses and block sizes might
vary considerably from system to system, depending on the memory and hardware
configuration, the process properties, and several other variables. Therefore, use this
list only as a rough sketch, not as an accurate roadmap.

Some physical memory blocks appear twice or more in the linear address space.
For example, the sharedUserData area at linear address OXFFDFOOOO is mirrored at
address OX?FFEOOOO . Both refer to the same page in physical memory—writing a byte
to OxFFDFOOOO+n mysteriously changes the value of the byte at Ox7FFEOOOO+n. This is
the world of virtual memory—a physical address can be mapped anywhere into the
linear address space, even to several addresses at the same time. It's just a matter of
setting up the page-directory and page-tables appropriately. Please recall Figures 4-3
and 4-4, which clearly show that linear addresses are fake. Their Directory and
Table bit fields are just pointers to structures that determine the real location of the
data. And if the PFNs of two PTEs happen to be identical, the corresponding linear
addresses refer to the same physical memory location.
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TABLE 4-9.

START

0x00000000

0x00010000

0x00020000

0x00030000

Ox7FFDDOOO

Ox7FFDEOOO

Ox7FFDFOOO

Ox7FFEOOOO

Ox7FFFOOOO

0x80000000

0x80036000

0x80036400

OxSOOCOOOO

0x80244000

Ox8046AB80

Ox8046ABCO

0x80470040

Ox804700A8

Ox804704D8

Ox804708B8

Ox804708BC

Ox814C6000

OxA01859FO

OxAOl 86670

OxCOOOOOOO

OxClOOOOOO

OxElOOOOOO

OxF0430000

OxF0440000

Identifiable Memory Regions in the Address Space of a Process

END

OxOOOOFFFF

0x000 1FFFF

OxOOOlFFFF

Ox0012FFFF

Ox7FFDDFFF

Ox7FFDEFFF

Ox7FFDFFFF

Ox7FFE02D7

Ox7FFFFFFF

Ox800003FF

Ox800363FF

Ox80036BFF

OxSOOFFFFF

Ox802460AA

Ox8046ABBF

Ox8046ABFF

Ox804700A7

Ox8047010F

Ox804708B7

Ox804708BB

0x80470983

Ox82CC5FFF

OxA01863EB

OxA01868EE

OxC03FFFFF

OxEOFFFFFF

OxE77FFFFF

OxF043FFFF

OxF044FFFF

HEX SIZE

10000

10000

10000

100000

1000

1000

1000

2D8

10000

400

400

800

40000

20AB

40

40

68

68

3EO

4

F8

1800000

9FC

27F

400000

20000000

6800000

10000

10000

TYPE/DESCRIPTION

Lower guard block

WCHAR[]/Environment strings, allocated in 4-KB pages

PROCESS_PARAMETERS/allocated in 4-KB pages

DWORD [4000]/Process stack (default: 1 MB)

TEB/Thread Environment Block of thread #2

TEB/Thread Environment Block of thread #1

PEB/Process Environment Block

KUSER_SHARED_DATA/SharedUserData in user-mode

Upper guard block

IVT/Interrupt Vector Table

KGDTENTRY[80]/Global Descriptor Table

KIDTENTRY[100]/Interrupt Descriptor Table

VGA/ROM BIOS

KTSS/user/kernel Task State Segment (busy)

KeServiceDescriptorTable

KeServiceDescriptorTableShadow

KTSS/KiDoubleFaultTSS

KTSS/KiNMITSS

PROC[F8]/KiServiceTable

DWORD/KiServiceLimit

BYTE[F8]/KiArgumentTable

PFN[100000]/MmPfnDatabase (max. for 4 GB)

PROC[27F]/W32pServiceTable

BYTE[27F]/W32pArgumentTable

X86_PE[100000]/page-directory and page-tables

System Cache (MmSystemCacheStart, MmSystemCacheEnd)

Paged Pool (MmPagedPoolStart, MmPagedPoolEnd)

ROM BIOS code segment

ROM BIOS data segment
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TABLE 4-9.

START

OxFFDFOOOO

OxFFDFFOOO

OxFFDFFllO

OxTOWmC

OxFFDFF620

(continued)

END

OxFFDF02D7

OxFFDFF053

OxFFDFFlSB

OxY?OT¥W7

OxFFDFF71F

HEX SIZE TYPE/DESCRIPTION

2D8 KUSER_SHARED_DATA/SharedUserData in kernel-mode

54 KPCR/Processor Control Region (kernel-mode FS segment)

1C KPRCB/Processor Control Block

ICC CONTEXT ITntead Context (,CP\3 stated

100 Lookaside list directories



C H A P T E R 5

Monitoring
Native API Calls

Intercepting operating system calls is an all-time favorite of programmers every-
where. The motivations for this public interest are numerous: code profiling and

optimization, reverse engineering, user activity logging, and the like. All of these
share a common intention: to pass control to a special piece of code whenever an
application calls a system service, making it possible to find out which service was
called, what parameters it received, what results it returned, and how long it took to
execute. Based on a technique originally proposed by Mark Russinovich and Bryce
Cogswell (Russinovich and Cogswell 1997), this chapter presents a general frame-
work for implanting hooks into arbitrary Native API functions. The approach used
here is completely data-driven, so it can be easily extended and adapted to other
Windows 2000/NT versions. The data gathered from the API calls of all processes in
the system are written to a circular buffer that can be read by a client application via
device I/O control. The protocol data are formatted as a simple line-oriented ANSI
text stream that obeys strict formatting rules, making automated postprocessing by
an application easy. To demonstrate the basic outline of such a client application, this
chapter also presents a sample protocol data viewer running in a console window.

PATCHING THE SERVICE DESCRIPTOR TABLE

Whereas "primitive" operating systems such as DOS or Windows 3.xx offered little
resistance to programmers who wanted to apply hooks to their Application Program-
ming Interfaces (APIs), Win32 systems such as Windows 2000, Windows NT, and
Windows 9x are much harder to handle, because they use clever protection mecha-
nisms to separate unrelated pieces of code from each other. Setting a system-wide
hook on a Win32 API is not a small task. Fortunately, we have Win32 wizards such
as Matt Pietrek (Pietrek 1996e) and Jeffrey Richter (Richter 1997), who have put
much work into showing us how it can be done, despite the fact that there's no

265
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simple and elegant solution. In 1997, Russinovich and Cogswell presented a completely
different approach to system-wide hooks for Windows NT, intercepting the system at a j
much lower level (Russinovich and Cogswell 1997). They proposed to inject the log-
ging mechanism into the Native API dispatcher, just below the frontier between user-
mode and kernel-mode, where Windows NT exposes a "bottleneck" that all user-mode
threads must pass through to be serviced by the operating system kernel.

SERVICE AND ARGUMENT TABLES

As discussed in Chapter 2, the doorway through which all Native API calls originat-
ing in user-mode must pass is the INT 2 Eh interface that provides an i386 interrupt
gate for the privilege level change. You might recall as well that all INT 2 Eh calls are
handled in kernel-mode by the internal function KiSystemService ( ) , which uses
the system's Service Descriptor Table (SDT) to look up the entry points of the Native
API handlers. In Figure 5-1, the interrelations of the basic components of this
dispatching mechanism are outlined. The formal definitions of the SERVICE_
DESCRIPTOR_TABLE structure and its subtypes from Chapter 2 (Listing 2-1) are
repeated in Listing 5-1.

KiSystemService ( ) is called with two arguments, passed in by the INT 2Eh
caller in the CPU registers EAX and EDX . EAX contains a zero-based index into an
array of API handler function pointers, and EDX points to the caller's argument stack.
KiSystemService ( ) retrieves the base address of the function array by reading the
value of the ServiceTable member of a public ntoskrnl. exe data structure named
KeServiceDescriptorTable, shown on the left-hand side of Figure 5-1. Actually,
KeServiceDescriptorTable points to an array of four service table parameter struc-
tures, but only the first one contains valid entries by default. KiSystemService ( )
looks up the address of the function that should handle the API call by using EAX as
an index into the internal KiServiceTable structure. Before calling the target func-
tion, KiSystemService ( ) queries the KiArgumentTable Structure in much the same
way to find out how many bytes were passed in by the caller on the argument stack,
and uses this value to copy the arguments to the current kernel-mode stack. After
that, a simple assembly language CALL instruction is required to invoke the API han-
dler. Everything is then set up as a normal stdcaii C function would expect.

Windows 2000 provides another service descriptor table parameter block named
KeServiceDescriptorTableShadow. Whereas KeServiceDescriptorTable
is publicly exported by ntoskrnl. exe so kernel-mode drivers can readily access it,
KeServiceDescriptorTableShadow is not. On Windows 2000, KeService
DescriptorTableShadow follows immediately after KeServiceDescriptorTable, but
you should not count on that—this rule does not hold on Windows NT 4.0, and it is
possible that it won't hold on future updates of Windows 2000. The difference between
both parameter blocks is that in KeServiceDescriptorTableShadow the second slot
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FIGURE 5-1. Structure of the KeServiceDescriptorTable

typedef NTSTATUS (NTAPI *NTPROC) ();

typedef NTPROC *PNTPROC;

tdefine NTPROC_ sizeof (NTPROC)

/ /

typedef struct _SYSTEM_SERVICE_TABLE

{

PNTPROC ServiceTable; // array of entry points

PDWORD CounterTable; // array of usage counters

DWORD ServiceLimit; // number of table entries

PBYTE ArgumentTable; // array of byte counts

}

SYSTEM_SERVICE_TABLE ,

* PSYSTEM_SERVICE_TABLE,

* * PPSYSTEM_SERVICE_TABLE ;

typedef struct _SERVICE_DESCRIPTOR_TABLE

{

SYSTEM_SERVICE_TABLE ntoskrnl ; // ntoskrnl.exe (native api)

(continued)
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LISTING 5-1. Definition of the SERVICE_DESCRIPTOR_TABLE Structure

is used by the system, too. It contains references to the internal w32pServiceTable
and w32pArgumentTable structures that are used by the Win32 kernel-mode compo-
nent win32k. sys to dispatch its own API calls, as shown in Figure 5-2. Kisystem
Service ( ) knows that it is handling a, win32k. sys API call by examining bits #12
and 13 of the function index in register EAX . If both bits are zero, it is a Native API
call handled by ntoskrnl. exe, so KiSystemService ( ) uses the first SDT slot. If bit
#12 is set and bit #13 is zero, KiSystemService ( ) uses the second slot. The remain-
ing two bit combinations are assigned to the last pair of slots, which are currently not
used by the system. This means that the index numbers of Native API calls poten-
tially range from 0x0000 to OXOFFF, and win32k. sys calls involve index numbers in
the range Oxiooo to OXIFFF. Consequently, the ranges 0x2000 to Ox2FFF and 0x3000
to 0x3FFF are assigned to the reserved tables. On Windows 2000, the Native API
service table contains 248 entries and the win32k. sys table contains 639 entries.

The ingenious idea of Russinovich and Cogswell was to hook API calls by
simply putting a different handler into the KiServiceTable array. This handler
would ultimately call the original handler inside ntoskrnl. exe, but it had the
opportunity to take a peek at the input and output parameters of the called function.
This approach is extremely powerful but also very simple. Because all user-mode
threads have to pass through this needle's eye in order to get their Native API
requests serviced, a simple exchange of function pointers installs a global hook that
continues to work reliably even after new processes and threads have been started.
There is no need for a notification mechanism that signals the addition or removal of
processes and threads.

Unfortunately, the system service pointer tables are subject to nontrivial
changes across Windows NT versions. Table 5-1 compares the KiServiceTable
entries of Windows 2000 and Windows NT 4.0. It is obvious that not only has the
number of handlers been increased from 211 to 248 but the new handlers haven't
been appended to the end of the list. They were inserted somewhere in between!
Thus, a service function index of, say, 0x20 refers to NtCreateFile ( ) on Windows
2000 but is associated with NtCreateProf ile ( ) on Windows NT 4.0. Consequently,

SYSTEM_SERVICE_TABLE win32k; // win32k.sys (gdi/user support)

SYSTEM_SERVICE_TABLE Table3; // not used

SYSTEM_SERVICE_TABLE Table4; // not used

}

SERVICE_DESCRIPTOR_TABLE ,

* PSERVICE_DESCRIPTOR_TABLE,

* *PPSERVICE_DESCRIPTOR_TABLE ;
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FIGURE 5-2. Structure of KeServiceDescriptorTableShadow

an API call monitor that installs a hook by manipulating the entries in the service
function table must carefully check the Windows NT version it is running on. This
can be done in several ways:

• One possibility is to check the public NtBuildNumber variable exported by
ntoskrnl. exe, as Russinovich and Cogswell did in their original article
(Russinovich and Cogswell 1997). Windows NT 4.0 exposes a build
number of 1,381 for all service packs. The build number of Windows
2000 is currently 2,195. Hopefully, this number will remain as stable
as it did in the previous Windows NT versions.

• Another possibility is to check the NtMajorVersion and NtMinorVersion
members of the shareduserData structure defined in the Windows 2000
header file ntddk.h. All Windows NT 4.0 service packs set SharedUserData-
>NtMajorVersion to four and SharedUserData->NtMinorVersion to zero.
Windows 2000 currently indicates a Windows NT version of 5.0.
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• The code presented in this chapter uses yet another alternative—it tests
whether the ServiceLimit member of the SDT entry matches its
expectations, which is 211 (OxD3) for Windows NT 4.0 and 248 (OxF8)
for Windows 2000.

TABLE 5-1. Windows 2000 and NT 4.0 Service Table Comparison

WINDOWS 2000

NtAcceptConnectPort

NtAccessCheck

NtAccessCheckAndAuditAlarm

NtAccessCheckByType

NtAccessCheckByTypeAndAuditAlarm

NtAccessCheckByTypeResultList

NtAccessCheckByTypeResultListAndAuditAlarm

NtAccessCheckByTypeResultListAndAuditAlarmByHandle

NtAddAtom

NtAdjustGroupsToken

NtAdjustPrivilegesToken

NtAlertResumeThread

NtAlertThread

NtAllocateLocallyUniqueld

NtAllocateUserPhysicalPages

NtAllocateUuids

NtAllocateVirtualMemory

NtAreMappedFilesTheSame

NtAssignProcessToJobObject

NtCallbackReturn

NtCancelloFile

NtCancelTi mer

NtCancelDeviceWakeupRequest

NtClearEvent

NtClose

NtCloseObjectAuditAlarm

NtCompleteConnectPort

NtConnectPort

NtContinue

NtCreateDirectoryObject

NtCreateEvent

NtCreateEventPair

NtCreateFile

NtCreateloCompletion

INDEX

0x00

0x01
0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

OxOA

OxOB

OxOC

OxOD

OxOE

OxOF

0x10

Oxll

0x12

0x13
0x14

0x15
0x16
0x17

0x18
0x19
OxlA

OxlB

OxlC

OxlD

OxlE

OxlF

0x20

0x21

WINDOWS NT 4.0

NtAcceptConnectPort

NtAccessCheck

NtAccessCheckAndAuditAlarm

NtAddAtom

NtAdjustGroupsToken

NtAdjustPrivilegesToken

NtAlertResumeThread

NtAlertThread

NtAllocateLocallyUniqueld

NtAllocateUuids

NtAllocateVirtualMemory

NtCallbackReturn

NtCancelloFile

NtCancelTimer

NtClearEvent

NtClose

NtCloseObjectAuditAlarm

NtCompleteConnectPort

NtConnectPort

NtContinue

NtCreateDirectoryObject

NtCreateEvent

NtCreateEventPair

NtCreateFile

NtCreateloCompletion

NtCreateKey

NtCreateMailslotFile

NtCreateMutant

NtCreateNamedPipeFile

NtCreatePagingFile

NtCreatePort

NtCreateProcess

NtCreateProfile

NtCreateSection



PATCHING THE SERVICE DESCRIPTOR TABLE 271

TABLE 5-1. (continued)

WINDOWS 2000

NtCreateJobObject

NtCreateKey

NtCreateMailslotFile

NtCreateMutant

NtCreateNamedPipeFile

NtCreatePagingFile

NtCreatePort

NtCreateProcess

NtCreateProfile

NtCreateSection

NtCreateSemaphore

NtCreateSymbolicLinkObject

NtCreateThread

NtCreateTimer

NtCreateToken

NtCreateWaitablePort

NtDelayExecution

NtDeleteAtom

NtDeleteFile

NtDeleteKey

NtDeleteObj ectAuditAlarm

NtDeleteValueKey

NtDeviceloControlFile

NtDisplayString

NtDuplicateObject

NtDuplicateToken

NtEnumerateKey

NtEnumerateValueKey

NtExtendSection

NtFilterToken

NtFindAtom

NtFlushBuffersFile

NtFlushlnstructionCache

NtFlushKey

NtFlushVirtualMemory

NtFlushWriteBuffer

NtFreeUserPhysicalPages

NtFreeVirtualMemory

NtFsControlFile

INDEX

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

Ox2A

Ox2B

Ox2C

Ox2D

Ox2E

Ox2F

0x30

0x31

0x32

0x33

0x34

0x35

0x36

0x37

0x38

0x39

Ox3A

Ox3B

Ox3C

Ox3D

Ox3E

Ox3F

0x40

0x41

0x42

0x43

0x44

0x45

0x46

0x47

0x48

WINDOWS NT 4.0

NtCreateSemaphore

NtCreateSymbolicLinkObject

NtCreateThread

NtCreateTimer

NtCreateToken

NtDelayExecution

NtDeleteAtom

NtDeleteFile

NtDeleteKey

NtDeleteObjectAuditAlarm

NtDeleteValueKey

NtDeviceloControlFile

NtDisplayString

NtDuplicateObject

NtDuplicateToken

NtEnumerateKey

NtEnumerateValueKey

NtExtendSection

NtFindAtom

NtFlushBuffersFile

NtFlushlnstructionCache

NtFlushKey

NtFlushVirtualMemory

NtFlushWriteBuffer

NtFreeVirtualMemory

NtFsControlFile

NtGetContextThread

NtGetPlugPlayEvent

NtGetTickCount

NtlmpersonateClientOfPort

NtlmpersonateThread

NtlnitializeRegistry

NtListenPort

NtLoadDriver

NtLoadKey

NtLoadKey2

NtLockFile

NtLockVirtualMemory

NtMakeTemporaryObject

(continued)
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TABLE 5-1. (continued)

WINDOWS 2000

NtGetContextThread

NtGetDevicePowerState

NtGetPlugPlayEvent

NtGetTickCount

NtGetWriteWatch

NtlmpersonateAnonymousToken

NtlmpersonateClientOfPort

NtlmpersonateThread

NtlnitializeRegistry

NtlnitiatePowerAction

NtlsSystemResumeAutomatic

NtListenPort

NtLoadDriver

NtLoadKey

NtLoadKey2

NtLockFile

NtLockVirtualMemory

NtMakeTemporaryObject

NtMapUserPhysicalPages

NtMapUserPhysicalPagesScatter

NtMapViewOfSection

NtNotifyChangeDirectoryFile

NtNotifyChangeKey

NtNotifyChangeMultipleKeys

NtOpenDirectoryObject

NtOpenEvent

NtOpenEventPair

NtOpenFile

NtOpenloCompletion

NtOpenJobObject

NtOpenKey

NtOpenMutant

NtOpenObjectAuditAlarm

NtOpenProcess

NtOpenProcessToken

NtOpenSection

NtOpenSemaphore

NtOpenSymbolicLinkObject

INDEX

0x49

Ox4A

Ox4B

Ox4C

Ox4D

Ox4E

Ox4F

0x50

0x51

0x52

0x53

0x54

0x55

0x56

0x57

0x58

0x59

Ox5A

Ox5B

Ox5C

Ox5D

Ox5E

Ox5F

0x60

0x61

0x62

0x63

0x64

0x65

0x66

0x67

0x68

0x69

Ox6A

Ox6B

Ox6C

Ox6D

Ox6E

WINDOWS NT 4.0

NtMapViewOfSection

NtNotifyChangeDirectoryFile

NtNotifyChangeKey

NtOpenDirectoryObject

NtOpenEvent

NtOpenEventPair

NtOpenFile

NtOpenloCompletion

NtOpenKey

NtOpenMutant

NtOpenObjectAuditAlarm

NtOpenProcess

NtOpenProcessToken

NtOpenSection

NtOpenSemaphore

NtOpenSymbolicLinkObject

NtOpenThread

NtOpenThreadToken

NtOpenTimer

NtPlugPlayControl

NtPri vilege Check

NtPrivilegedServiceAuditAlarm

NtPrivilegeObjectAuditAlarm

NtProtectVirtualMemory

NtPulseEvent

NtQuerylnformationAtom

NtQueryAttributesFile

NtQueryDefaultLocale

NtQueryDirectoryFile

NtQueryDirectoryObject

NtQueryEaFile

NtQueryEvent

NtQueryFullAttributesFile

NtQuerylnformationFile

NtQueryloCompletion

NtQuerylnformationPort

NtQuerylnformationProcess

NtQuerylnformationThread
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TABLE 5-1. (continued)

WINDOWS 2000

NtOpenThread

NtOpenThreadToken

NtOpenTimer

NtPlugPlayControl

NtPowerlnformation

NtPrivilegeCheck

NtPrivilegedServiceAuditAlarm

NtPrivilegeObjectAuditAlarm

NtProtectVirtualMemory

NtPulseEvent

NtQuerylnformationAtom

NtQueryAttributesFile

NtQueryDefaultLocale

NtQueryDefaultUILanguage

NtQueryDirectoryFile

NtQueryDirectoryObject

NtQueryEaFile

NtQueryEvent

NtQueryFullAttributesFile

NtQuerylnformationFile

NtQuerylnformationJobObject

NtQueryloCompletion

NtQuerylnformationPort

NtQuerylnformationProcess

NtQuerylnformationThread

NtQuerylnformationToken

NtQuerylnstallUILanguage

NtQuerylntervalProfile

NtQueryKey

NtQuery Multiple ValueKey

NtQuery Mutant

NtQueryObject

NtQueryOpenSubKeys

NtQueryPerformanceCounter

NtQueryQuotalnformationFile

NtQuerySection

NtQuerySecurityObject

NtQuery Semaphore

INDEX

Ox6F

0x70

0x71

0x72

0x73

0x74

0x75

0x76

0x77

0x78

0x79

Ox7A

Ox7B

Ox7C

Ox7D

Ox7E

Ox7F

0x80

0x81

0x82

0x83

0x84

0x85

0x86

0x87

0x88

0x89

Ox8A

Ox8B

Ox8C

Ox8D

Ox8E

Ox8F

0x90

0x91

0x92

0x93

0x94

WINDOWS NT 4.0

NtQuerylnformationToken

NtQuerylntervalProfile

NtQueryKey

NtQueryMultipleValueKey

NtQueryMutant

NtQueryObject

NtQueryOleDirectoryFile

NtQueryPerformanceCounter

NtQuerySection

NtQuerySecurityObject

NtQuery Semaphore

NtQuerySymbolicLinkObject

NtQuerySystemEnvironmentValue

NtQuerySystemlnformation

NtQuerySystemTime

NtQuery Timer

NtQueryTimerResolution

NtQuery ValueKey

NtQuery VirtualMemory

NtQuery VolumelnformationFile

NtQueueApcThread

NtRaiseException

NtRaiseHardError

NtReadFile

NtReadFileScatter

NtReadRequestData

NtReadVirtualMemory

NtRegisterThreadTerminatePort

NtReleaseMutant

NtReleaseSemaphore

NtRemoveloCompletion

NtReplaceKey

NtReplyPort

NtReplyWaitReceivePort

NtReplyWaitReplyPort

NtRequestPort

NtRequestWaitReplyPort

NtResetEvent

(continued)
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TABLE 5-1. (continued)

WINDOWS 2000

NtQuerySymbolicLinkObject

NtQuerySystemEnvironmentValue

NtQuerySystemlnformation

NtQuerySystemTime

NtQueryTimer

NtQueryTimerResolution

NtQueryValueKey

NtQueryVirtualMemory

NtQueryVolumelnformationFile

NtQueueApcThread

NtRaiseException

NtRaiseHardError

NtReadFile

NtReadFileScatter

NtReadRequestData

NtReadVirtualMemory

NtRegisterThreadTerminatePort

NtReleaseMutant

NtReleaseSemaphore

NtRemoveloCompletion

NtReplaceKey

NtReplyPort

NtReplyWaitReceivePort

NtReplyWaitReceivePortEx

NtReplyWaitRepiyPort

NtRequestDeviceWakeup

NtRequestPort

NtRequestWaitReplyPort

NtRequestWakeupLatency

NtResetEvent

NtResetWriteWatch

NtRestoreKey

NtResumeThread

NtSaveKey

NtSaveMergedKeys

NtSecureConnectPort

NtSetloCompletion

NtSetContextThread

NtSetDefaultHardErrorPort

INDEX

0x95

0x96

0x97

0x98

0x99

Ox9A

Ox9B

Ox9C

Ox9D

Ox9E

Ox9F

OxAO

OxAl

OxA2

OxA3

OxA4

OxA5

OxA6

OxA7

OxA8

OxA9

OxAA

OxAB

OxAC

OxAD

OxAE

OxAF

OxBO

OxBl

OxB2

OxB3

OxB4

OxB5

OxB6

OxB7

OxB8

OxB9

OxBA

OxBB

WINDOWS NT 4.0

NtRestoreKey

NtResumeThread

NtSaveKey

NtSetloCompletion

NtSetContextThread

NtSetDefaultHardErrorPort

NtSetDefaultLocale

NtSetEaFile

NtSetEvent

NtSetHighEventPair

NtSetHighWaitLowEventPair

NtSetHighWaitLowThread

NtSetlnformationFile

NtSetlnformationKey

NtSetlnformationObject

NtSetlnformationProcess

NtSetlnformationThread

NtSetlnformationToken

NtSetlntervalProfile

NtSetLdtEntries

NtSetLowEventPair

NtSetLowWaitHighEventPair

NtSetLowWaitHighThread

NtSetSecurity Object

NtSetSystemEnvironmentValue

NtSetSystemlnformation

NtSetSystemPowerState

NtSetSystemTime

NtSetTimer

NtSetTimerResolution

NtSetValueKey

NtSetVolumelnformationFile

NtShutdownSystem

NtSignalAndWaitForSingleObject

NtStartProfile

NtStopProfile

NtSuspendThread

NtSystemDebugControl

NtTerminateProcess
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TABLE 5-1. (continued)

WINDOWS 2000

NtSetDefaultLocale

NtSetDefaultUILanguage

NtSetEaFile

NtSetEvent

NtSetHighEventPair

NtSetHighWaitLowEventPair

NtSetlnformationFile

NtSetlnformationJobObject

NtSetlnformationKey

NtSetlnformationObject

NtSetlnformationProcess

NtSetlnformationThread

NtSetlnformationToken

NtSetlntervalProfile

NtSetLdtEntries

NtSetLowEventPair

NtSetLowWaitHighEventPair

NtSetQuotalnformationFile

NtSetSecurity O b j ect

NtSetSystemEnvironment Value

NtSetSystemlnformation

NtSetSystemPowerSrate

NtSetSystemTime

NtSetThreadExecutionState

NtSetTimer

NtSetTimerResolution

NtSetUuidSeed

NtSetValueKey

NtSetVolumelnformationFile

NtShutdownSystem

NtSignalAndWaitForSingleObject

NtStartProfile

NtStopProfile

NtSuspendThread

NtSystemDebugControl

NtTerminateJobObject

NtTerminateProcess

NtTerminateThread

NtTestAlert

INDEX

OxBC

OxBD

OxBE

OxBF

OxCO

OxCl

OxC2

OxC3

OxC4

OxC5

OxC6

OxC7

OxC8

OxC9

OxCA

OxCB

OxCC

OxCD

OxCE

OxCF

OxDO

OxDl

OxD2

OxD3

OxD4

OxD5

OxD6

OxD7

OxD8

OxD9

OxDA

OxDB

OxDC

OxDD

OxDE

OxDF

OxEO

OxEl

OxE2

WINDOWS NT 4.0

NtTerminateThread

NtTestAlert

NtUnloadDriver

NtUnloadKey

NtUnlockFile

NtUnlockVirtualMemory

NtUnmapViewOfSection

NtVdmControl

NtWaitForMultipleObjects

NtWaitForSingleObject

NtWaitHighEventPair

NtWaitLowEventPair

NtWriteFile

NtWriteFileGather

NtWriteRequestData

NtWriteVirtualMemory

NtCreateChannel

NtListenChannel

NtOpenChannel

NtReplyWaitSendChannel

NtSendWaitReplyChannel

NtSetContextChannel

NtYieldExecution

N/A

N/A

N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A

(continued)
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TABLE 5-1. (continued)

WINDOWS 2000

NtUnloadDriver

NtUnloadKey

NtUnlockFile

NtUnlockVirtualMemory

NtUnmapViewOfSection

NtVdmControl

NtWaitForMultipleObjects

NtWaitForSingleObject

NtWaitHighEventPair

NtWaitLowEventPair

NtWriteFile

NtWriteFileGather

NtWriteRequestData

NtWriteVirtualMemory

NtCreateChannel

NtListenChannel

NtOpenChannel

NtReplyWaitSendChannel

NtSendWaitReplyChannel

NtSetContextChannel

NtYieldExecution

INDEX

OxE3

OxE4

OxE5

OxE6

OxE7

OxE8

OxE9

OxEA

OxEB

OxEC

OxED

OxEE

OxEF

OxFO

OxFl

OxF2

OxF3

OxF4

OxF5

OxF6

OxF7

WINDOWS NT 4.0 I
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

The most important step taken by Russinovich and Cogswell was to write a ker-
nel-mode device driver that installs and maintains the Native API hooks, because user-
mode modules do not have the appropriate privileges to modify the system at this low
system level. Like the spy driver in Chapter 4, this is a somewhat unusual driver,
because it does not perform the usual I/O request processing. It just exposes a simple
Device I/O Control (IOCTL) interface to give user-mode code access to the data it col-
lects. The main task of this driver is to manipulate the KiServiceTable and intercept
and log selected calls to the Windows 2000 Native API. Although this method is sim-
ple and elegant, it is also somewhat alarming. Its simplicity reminds me of the old
DOS days when hooking a system service was as simple as modifying a pointer in the
processor's interrupt vector table. Anyone who knows how to write a basic Windows
2000 kernel-mode driver can hook any NT system service without much effort.

Russinovich and Cogswell used their technique to develop a very useful Windows
NT registry monitor. While adapting their code for other spying tasks, I quickly became
annoyed by the requirement of writing an individual hook function for each API func-
tion on which I wanted to spy. To avoid having to write extensive stereotypic code, I
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wanted to find a way to force all API functions I was interested in through a single
hook function. This turned out to be a task that took considerable time and showed me
all possible variants of Blue Screens. However, this resulted in a general-purpose solu-
tion that enabled me to vary the set of hooked API functions with minimum effort.

ASSEMBLY LANGUAGE TO THE RESCUE
The main obstacle to a general-purpose solution was the typical parameter passing
mechanism of the C language. As you may know, C usually passes function argu-
ments on the CPU stack before calling the function's entry point. Depending on the
number of arguments a function requires, the size of the argument stack varies con-
siderably. The 248 Native API functions of Windows 2000 involve argument stack
sizes between zero and 68 bytes. Given the diligent type checking of C, this makes
writing a unique hook function a tough job. Microsoft Visual C/C++ comes with a
versatile integrated assembly language (ASM) compiler that is capable of processing
moderately complex code. Ironically, the advantage of ASM in this situation is
exactly what is commonly regarded as one of its biggest drawbacks: ASM doesn't
provide a strict type checking mechanism. As long as the number of bits is OK, you
can store almost anything in any register and you can call any address without con-
cern for what is currently on the stack. Although this is a dangerous feature in appli-
cation programming, it comes in quite handy here: In ASM, it is easy to call a
common entry point with different arguments on the stack, and this feature will be
exploited in the API hook dispatcher introduced in a moment.

The Microsoft Visual C/C++ inline assembler is invoked by putting ASM code
into delimited blocks tagged by the keyword asm. It lacks the macro definition and
evaluation capabilities of Microsoft's big Macro Assembler (MASM), but this doesn't
severely restrict its usefulness. The best feature of the inline assembler is that it has
access to all C variables and type definitions, so it is quite easy to mix C and ASM code.
However, when ASM code is included in a C function, some important basic conven-
tions of the C compiler must be obeyed to avoid interference with the compiled C code:

• The caller of a C function assumes that the CPU registers EBP, EBX, ESI,
and EDI are preserved.

• If the ASM code is mixed with C code in a single function, be careful
to preserve all intermediate values the C code might hold in registers.
It is always a good idea to save and restore all registers used inside an

asm clause.

• 8-bit function results (CHAR, BYTE, etc.) are returned in register AL .

• 16-bit function results (SHORT, WORD, etc.) are returned in register AX.
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• 32-bit function results (INT, LONG, DWORD, pointers, etc.) are returned in
register EAX .

• 64-bit function results ( int64, LONGLONG, DWORDLONG, etc.) are
returned in register pair EDX:EAX. Register EAX contains bits #0 to 31, and
EDX holds bits #32 to 63.

• Functions with a fixed number of arguments usually pass arguments
according to the stdcall convention. From the caller's perspective,
this means that the arguments must be pushed onto the stack in reverse
order before the call, and the callee is responsible for removing them
from the stack before returning. From the perspective of the called
function, this means that the stack pointer ESP points to the caller's
return address, followed by the arguments in their original order. The
original order is retained because the stack grows downward, from high
linear addresses to lower ones. Therefore, the argument pushed last by
the caller (i.e., argument #1) appears as the first argument in the array
pointed to by ESP.

• Some API functions with fixed arguments, most notably the C Runtime
Library functions exported by ntdll .dll and ntoskrnl .exe,
traditionally employ the cdecl calling convention, which involves
the same argument ordering as stdcall, but forces the caller to clean
up the argument stack.

• Functions with a variable number of arguments are always of the cdecl
type, because only the caller knows exactly how many arguments were
passed to the callee. Therefore, the responsibility of removing the
arguments from the stack is left to the caller.

• Functions declared with the fas teal l modifier expect the first two
arguments in the CPU registers ECX and EDX . If more arguments are
required, they are passed in on the stack in reverse order, and the callee
cleans up the stack, as in the stdcall scheme.

• Many C compilers build a stack frame for the function arguments
immediately after entering the function, using the CPU's base pointer
register EBP . This code, shown in Listing 5-2, is frequently referred to as
a function's "prologue" and "epilogue." Some compilers use the more
elegant i386 ENTER and LEAVE operations that integrate this EBP/ESP
shuffling into single instructions (cf. Intel 1999b). After the prologue has

SomeFunction:
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LISTING 5-2. Stack frame, prologue, and epilogue

been executed, the stack appears as shown in Figure 5-3. The value of
the EBP register is the unique point of reference that splits the function's
parameter stack into (1) the local storage area containing all local
variables defined within the scope of the function and (2) the caller's
argument stack, including the EBP backup slot and the return address.
Note that the latest versions of Microsoft Visual C/C++ don't use stack
frames by default. Instead, the code accesses the values on the stack
through register ESP, specifying the offset of the variable relative to the
current top of the stack. Code of this kind is extremely difficult to read,
because each PUSH and POP instruction affects the ESP value and,
consequently, all parameter offsets. Because EBP isn't required in this
scenario, it is used as an additional general-purpose register.

• Be extremely careful when accessing C variables. One of the most frequent
inline ASM bugs is that you are loading the address of a variable to a
register instead of its value, and vice versa. In case of potential ambiguity,
use the ptr and offset address operators. For example, the instruction
mov eax, dword ptr SomeVariable loads the DWORD-type value of
SomeVariable to register EAX, whereas mov eax, offset SomeVariable
loads its linear address (i.e., a pointer to its value) to EAX.

THE HOOK DISPATCHER

The code that follows is extremely difficult. It took many hours to write, and pro-
duced an incredible number of Blue Screens in the process. My original approach
involved a separate module, written in native ASM language and assembled with
Microsoft's MASM. However, this design created problems on the linker level,
so I changed to inline ASM inserted into the main C module. Instead of creating
another kernel-mode driver, I decided to integrate the hook code into the spy device

; this is the function' s prologue

push ebp ; save current value of ebp

mov ebp, esp ; set stack frame base address

sub esp, SizeOf Local Storage ; create local storage area

; this is the function ' s epilogue

mov esp, ebp ; destroy local storage area

pop ebp ; restore value of ebp

ret
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FIGURE 5-3. Typical Layout of a Stack Frame

introduced in Chapter 4. Remember the SPY_IO_HOOK_* IOCTL functions listed at
the bottom of Table 4-2? Now is the time to take a closer look at them. The next
section of sample code is taken from the source files w2 k_spy. c and w2 k_spy. h,
found on the CD accompanying this book, in the \src\w2k_spy directory.

In Listing 5-3, the core parts of the Native API hook mechanism are shown.
The listing starts with a couple of constant and structure definitions referenced by the
code and is followed by the definition of the array aSpyHooks [ ] . Following this
array is a macro that evaluates to three important lines of inline assembly language
that will be investigated in a moment. The last part of Listing 5-3 is made up of the
function SpyHookinitializeEx ( ) . On first sight, it is difficult to grasp what this
function is supposed to do. This function is a combination of two functions:
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1. The "outer" part of SpyHookinitializeEx() consists of C code that
simply populates the aSpyHooks [ ] array with pointers to the spy device's
hook functions and their associated protocol format strings. This function
is split in two sections. The first ends inside the first asm clause at the
jmp SpyHook9 instruction. It is obvious that the second section must start
at an ASM label named SpyHook9, which can be found near the end of the
second asm block.

2. The "inner" part of spyHookinitializeEx() comprises everything
between the two C sections of the code. It starts with an extensive
repetition of spyHook macro invocations and is followed by a large and
complex ASM code section. As you may have guessed, this code is the
common hook handler mentioned earlier.

ttdefine SPY_CALLS 0x00000100 // max api call nesting level

#define SDT_SYMBOLS_NT4 OxD3

tfdefine SDT_SYMBOLS_NT5 OxF8

ttdefine SDT_SYMBOLS_MAX SDT_SYMBOLS_NT5

/ /

typedef struct _SPY_HOOK_ENTRY

{

NTPROC Handler;

PBYTE pbFormat;

}

SPY_HOOK_ENTRY, *PSPY_HOOK_ENTRY, **PPSPY_HOOK_ENTRY;

ttdefine SPY_HOOK_ENTRY_ sizeof (SPY_HOOK_ENTRY)

/ 1

typedef struct _SPY_CALL

(

BOOL flnUse; // set if used entry

HANDLE hThread; // id of calling thread

PSPY_HOOK_ENTRY pshe; // associated hook entry

PVOID pCaller; // caller's return address

DWORD dParameters; // number of parameters

DWORD adParameters [1+256]; // result and parameters

}

SPY_CALL, *PSPY_CALL, **PPSPY_CALL;

#define SPY_CALL_ sizeof (SPY_CALL)

/ /

(continued)
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SPY_HOOK_ENTRY aSpyHooks [SDT_SYMBOLS_MAX] ;

//

// The SpyHook macro defines a hook entry point in inline assembly

// language. The common entry point SpyHook2 is entered by a call

// instruction, allowing the hook to be identified by its return

// address on the stack. The call is executed through a register to

// remove any degrees of freedom from the encoding of the call.

#define SpyHook \

asm push eax \

asm mov eax, offset SpyHook2 \

asm call eax

// The SpyHooklnitializeExl ) function initializes the aSpyHooks []

// array with the hook entry points and format strings. It also

// hosts the hook entry points and the hook dispatcher.

void SpyHooklnitializeEx (PPBYTE ppbSymbols,

PPBYTE ppbFormats)

{

DWORD dHooksl, dHooks2, i, j, n;

asm

{

jmp SpyHookg

ALIGN 8

SpyHookl : ; start of hook entry point section

}

// the number of entry points defined in this section

// must be equal to SDT_SYMBOLS_MAX (i.e. OxF8)

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //08

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //10

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //18

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //20

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //28

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //30

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //38

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //40

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //48

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //50

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //58

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //60

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //68

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //70

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //78

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //80

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //88
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SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //90

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //98

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //AO

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //A8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //BO

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //B8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //CO

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //C8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //DO

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //D8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //EO

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //E8

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //FO

SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //F8

asm

{

SpyHook2 : ; end of hook entry point section

pop eax ; get stub return address

pushfd

push ebx

push ecx

push edx

push ebp

push esi

push edi

sub eax, offset SpyHookl ; compute entry point index

mov ecx, SDT_SYMBOLS_MAX

mul ecx

mov ecx, offset SpyHook2

sub ecx, offset SpyHookl

div ecx

dec eax

mov ecx, gf SpyHookPause ; test pause flag

add ecx, -1

sbb ecx, ecx

not ecx

lea edx, [aSpyHooks + eax * SIZE SPY_HOOK_ENTRY]

test ecx, [edx.pbFormat] ; format string == NULL?

j z SpyHook5

push eax

push edx

call PsGetCurrentThreadld ; get thread id

mov ebx , eax

pop edx

pop eax

cmp ebx, ghSpyHookThread ; ignore hook installer

j z SpyHookS

mov edi, gpDeviceContext

lea edi, [edi -SpyCalls] ; get call context array

mov esi, SPY_CALLS ; get number of entries

(continued)



SpyHookS :

mov ecx, 1 ; set in-use flag

xchg ecx, [edi.flnUse]

jecxz SpyHook4 ,- unused entry found

add edi, SIZE SPY_CALL ; try next entry

dec esi

jnz SpyHook3

mov edi, gpDeviceContext

inc [edi .dMisses] ; count misses

jmp SpyHookS ; array overflow

SpyHook4 :

mov esi, gpDeviceContext

inc [esi . dLevel ] ; set nesting level

mov [edi .hThread] , ebx ; save thread id

mov [edi.pshe], edx ; save PSPY_HOOK_ENTRY

mov ecx, offset SpyHookS ,- set new return address

xchg ecx, [esp+20h]

mov [edi .pCaller] , ecx ; save old return address

mov ecx, KeServiceDescriptorTable

mov ecx, [ecx] .ntoskrnl . ArgumentTable

movzx ecx, byte ptr [ecx+eax] ; get argument stack size

shr ecx, 2

inc ecx ; add 1 for result slot

mov [edi . dParameters] , ecx ; save number of parameters

lea edi, [edi .adParameters]

xor eax, eax ; initialize result slot

stosd

dec ecx

j z SpyHookS ; no arguments

lea esi, [esp+24h] ; save argument stack

rep movsd

SpyHookS :

mov eax, [edx. Handler] ; get original handler

pop edi

pop esi

pop ebp

pop edx

pop ecx

pop ebx

popfd

xchg eax, [esp] ; restore eax and. . .

ret ; ...jump to handler

SpyHookS :

push eax

pushfd

push ebx

push ecx

push edx

push ebp

push esi

push edi

push eax
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call PsGetCurrentThreadld ; get thread id
mov ebx , eax
pop eax

mov edi , gpDeviceContext

lea edi, [edi . SpyCalls] ; get call context array

mov esi, SPY_CALLS ; get number of entries
SpyHookV :

cmp ebx, [edi .hThread] ; find matching thread id

j z SpyHookS

add edi, SIZE SPY_CALL ; try next entry

dec esi
jnz SpyHookV

push ebx ; entry not found ? ! ?
call KeBugCheck

SpyHookS :

push edi ; save SPY_CALL pointer

mov [edi .adParameters] , eax ; store NTSTATUS
push edi

call SpyHookProtocol
pop edi ; restore SPY_CALL pointer

mov eax, [edi .pCaller]

mov [edi .hThread] , 0 ; clear thread id

mov esi, gpDeviceContext

dec [esi.dLevel] ; reset nesting level

dec [edi.flnUse] ; clear in-use flag
pop edi

pop esi

pop ebp
pop edx

pop ecx

pop ebx
popfd

xchg eax, [esp] ; restore eax and. . .

ret ; ...return to caller
SpyHook9 :

mov dHooksl, offset SpyHookl
mov dHooks2 , offset SpyHook2

}
n = (dHooks2 - dHooksl) / SDT_S YMBOLS_MAX ;

for (i = j = 0; i < SDT_SYMBOLS_MAX; i++, dHooksl += n)

{
if ( (ppbSymbols != NULL) && (ppbFormats != NULL) &&

(ppbSymbols [j] != NULL))

{
aSpyHooks [i] .Handler = (NTPROC) dHooksl;

aSpyHooks [i] .pbFormat =

SpySearchFormat {ppbSymbols [j++], ppbFormats);

}
else

{

(continued)
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LISTING 5-3. Implementation of the Hook Dispatcher

So what is the SpyHook macro all about? Inside spyHookmitializeEx() , this
macro is repeated exactly 248 (OXFS) times, which matches the number of Windows
2000 Native API functions. At the top of Listing 5-3, this number is assigned to the
constant SDT_SYMBOLS_MAX , which is the maximum of SDT_SYMBOLS_NT4 and
SDT_SYMBOLS_NT5 . Yes, that's right—I am going to support Windows NT 4.0 as
well! Back to the SpyHook macro: This sequence of invocations produces the ASM
code shown in Listing 5-4. Each SpyHook entry produces three lines of code:

1. First, the current contents of the EAX register are saved on the stack.

2. Next, the linear address of the label SpyHook2 is stored in EAX.

3. Finally, a CALL to the address in EAX is performed.

You might wonder what will happen when this CALL returns. Would the next
group of SpyHook code lines be invoked? No—this CALL is not supposed to return,
because the return address of this call is removed immediately from the stack after
reaching the destination label SpyHook2, as the POP EAX instruction at the end of List-
ing 5-4 proves. This apparently senseless code is a trick of the old ASM programming
days that has fallen into disuse in today's world of high-level object-oriented applica-
tion development. This trick was applied by ASM gurus when they had to build an
array of homogenous entry points to be dispatched to individual functions. Using
almost identical code for all entry points guarantees equal spacing, so the index of
the entry point used by a client could easily be calculated from the return address of
the CALL instruction, the base address and total size of the array, and the number of
entries, using a simple rule of three.

aSpyHooks [i] .Handler = NULL;
aSpyHooks [i] .pbFormat = NULL;

}

}
return;

}

SpyHookl :

push eax

mov eax, offset SpyHook2

call eax
push eax

mov eax, offset SpyHook2

call eax
; 244 boring repetitions omitted

push eax
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LISTING 5-4. Expansion of the SpyHook Macro Invocations

For example, the return address of the first CALL EAX instruction in Listing 5-4
is the address of the second entry point. Generally, the return address of the N-th
CALL EAX is equal to the address of entry N+I , except for the last one, which, of
course, would return to SpyHook2 . Thus, the zero-based array index of all entry
points can be computed by the general formula in Figure 5-4. The underlying rule
of three is as follows: SDT_SYMBOLS_MAX entry points fit into the memory block
SpyHook2—SpyHookl. How many entry points fit into ReturnAddress—SpyHookl?
Because the result of this computation is a number between one and SDT_SYMBOLS_
MAX, it must be decremented by one to get the zero-based index.

The implementation of the formula in Figure 5-4 can be found in Listing 5-3,
right after the ASM label spyHook2 . It is also included in the lower left corner
of Figure 5-5, which presents the basic mechanics of the hook dispatch mechanism.
Note that the i386 MUL instruction yields a 64-bit result in registers EDX = EAX, while
the DIV instruction expects a 64-bit dividend in EDX:EAX, so there is no danger
of an integer overflow. In the upper left corner, the KiServiceTable is depicted,
which will be patched with the addresses of the entry points generated by the
SpyHook macro. The middle section shows again the expanded macro code from
Listing 5-4. The linear addresses of the entry points are shown on the right-hand
side. By pure coincidence, the size of each entry point is 8 bytes, so the address is
computed by multiplying the KiServiceTable index of each function by 8 and
adding it to the address of SpyHookl.

Actually, I was just kidding—it's not pure coincidence that each entry is 8 bytes
long. In reality, I spent a considerable amount of time figuring out the ideal imple-
mentation of the hook entries. Although not strictly necessary, aligning code on 32-bit
boundaries is never a bad idea, because it speeds up performance. Of course, the per-
formance gain is marginal here. You may wonder why I perform an indirect CALL
to label spyHook2 through register EAX—wouldn't a simple middle-of-the-road
CALL SpyHook2 instruction have been much more efficient? Right! However, the
problem with the i386 call (and jump) instructions is that they can be implemented
in several ways that have the same effect but yield different instruction sizes. Just
consult Intel's Instruction Set Reference of the Pentium CPU family (Intel 1999b).

mov eax, offset SpyHook2

call eax

push eax

rnov eax, offset SpyHook2

call eax

SpyHook2 :

pop eax
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FIGURE 5-4. Identifying Hook Entry Points by their Return Addresses

FIGURE 5-5. Functional Principle of the Hook Dispatcher

Because the choice of variant used is up to the compiler/assembler, there would be no
guarantee that all entry points would end up in the same encoding. On the other
hand, a MOV EAX with a constant 32-bit operand is always encoded in the same way,
and so is the CALL EAX instruction.

Other points in Listing 5-3 should be clarified. Let's start with the final C code
section starting after the label spyHook9. The ASM code at this label has preset the C
variables dHookl and dHook2 with the linear addresses of the labels SpyHookl and
spyHook2 . Next, the variable n is set to the size of each hook entry point by dividing
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the size of the entry point array by the number of entries. Of course, this will yield
eight. The remaining part of Listing 5-3 is a loop that initializes all entries of the
global aSpyHooks [ ] array. This array consists of SPY_HOOK_ENTRY structures
defined in the top half of Listing 5-3, and each entry is associated with a Native
API function. To understand how their Handler and pbFormat members are set up,
it is necessary to know more about the arguments ppbSymbols and ppbFormats
passed to SpyHookinitializeEx() . Listing 5-5 shows the wrapper function
SpyHookinitialize ( ) that calls SpyHookinitializeEx ( ) with arguments appropri-
ate for the operating system (OS) version currently running. As noted earlier, the
code doesn't test the OS version or the build number directly, but rather compares
the ServiceLimit member of the SDT entry assigned to ntoskrnl. exe with the con-
stants SDT_SYMBOLS_NT4 and SDT_SYMBOLS_NT5. If none of them matches, the spy
device will initialize all aSpyHooks [ ] entries with NULL pointers, effectively disabling
the entire Native API hook mechanism.

LISTING 5-5. SpyHookInitialize() Chooses the Symbol Table Matching the OS Version

BOOL SpyHookinitialize (void)

{

BOOL fOk = TRUE;

switch (KeServiceDescriptorTable->ntoskrnl . ServiceLimit)

{

case SDT_SYMBOLS_NT4 :

{

SpyHookinitializeEx (apbSdtSymbolsNT4 , apbSdtFormats);

break;

}

case SDT_SYMBOLS_NT5 :

{

SpyHookinitializeEx (apbSdtSymbolsNTS, apbSdtFormats);

break;

}

default:

{

SpyHookinitializeEx (NULL, NULL) ;

fOk = FALSE;

break;

}

return fOk;

}
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The global arrays apbsdtsymbolsNT4 [ ] and apbsdtsymbolsNT5 [ ] passed into
spyHookinitializeEx ( ) as first argument ppbsymbols are simply string tables that
contain all Windows NT 4.0 and Windows 2000 Native API function names, sorted
by their KiServiceTable index, and terminated by a NULL pointer. The string array
apbSdtFormats [ ] is shown in Listing 5-6. This format string list is one of the most
important parts of the hook mechanism because it determines which Native API calls
are logged and the appearance of each log entry. Obviously, the structure of these
strings is borrowed from the printf ( ) function of the C Runtime Library but
specifically tailored to the most frequently used argument types of the Native API.
Table 5-2 is a complete list of format IDs recognized by the API logger.

PBYTE apbSdtFormats [] =

{

"%s=NtCancel!oFile(%! ,%i) ",

"%s=NtClose(%-) ",

"%s=NtCreateFile(%+,%n, %o, %i , %1, %n, %n, %n, %n, %p, %n) " ,

"%s=NtCreateKey (%+, %n, %o, %n, %u, %n, %d) " ,

"%s=NtDeleteFile(%o) ",

"%s=NtDeleteKey(%-) ",

"%s=NtDeleteValueKey(%! ,%u) ",

"%s=NtDevice!oControlFile(%! , %p, %p, %p, %i, %n, %p, %n, %p, %n) " ,

"%s=NtEnumerateKey(%! , %n, %n, %p, %n, %d) " ,

"%s=NtEnumerateValueKey {% ! , %n, %n, %p, %n, %d) " ,

"%s=NtFlushBuffersFile(%! , %i) ",

"%s=NtFlushKey(%! ) ",

"%s=NtFsControlFile(%! , %p, %p, %p, %i , %n, %p, %n, %p, %n) " ,

"%s=NtLoadKey(%o,%o) ",

"%s=NtLoadKey2 (%o, %o, %n) ",

"%s=NtNotifyChangeKey(% ! , %p, %p, %p, %i, %n, %b, %p, %n, %b) " ,

"%s=NtNotifyChangeMultipleKeys(%! ,%n, %o,%p,%p, %p, %i , %n, %b, %p, %n, %b) ",

"%s=NtOpenFile (%+, %n, %o, %i , %n, %n) " ,

"%s=NtOpenKey (%+, %n, %o) " ,

"%s=NtOpenProcess (%+, %n, %o, %c) " ,

"%s=NtOpenThread(%+, %n, %o, %c) " ,

"%s=NtQueryDirectoryFile(%! , %p, %p, %p, %i, %p, %n, %n, %b, %u, %b) " ,

"%s=NtQueryInformationFile(%! , %i , %p, %n, %n) " ,

"%s=NtQueryInformationProcess (% ! , %n, %p, %n, %d) " ,

"%s=NtQueryInformationThread(% ! , %n, %p, %n, %d) " ,

"%s=NtQueryKey(%! , %n, %p, %n, %d) " ,

"%s=NtQueryMultipleValueKey (% ! , %p, %n, %p, %d, %d) " ,

"%s=NtQueryOpenSubKeys (%o, %d) ",

"%s=NtQuerySystem!nformation(%n, %p, %n, %d) " ,

"%s=NtQuerySystemTime(%D ",

"%s=NtQueryValueKey (% ! , %u, %n, %p, %n, %d) " ,

"%s=NtQueryVolumeInformationFile(% ! , %i, %p, %n, %n) " ,

"%s=NtReadFile(%! , %p, %p, %p, %i, %p, %n, %1, %d) ",

"%s=NtReplaceKey(%o,%! ,%o) ",

"%s=NtSet!nformationKey (% ! , %n, %p, %n) " ,
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LISTING 5-6. Format Strings Used by the Native API Logger

It's important to note that each format string must contain the function
correctly spelled. SpyHookinitiaiizeEx() walks though the list of Native API
symbols it receives via its ppbsymbois argument and attempts to find a format
string in the ppbFormats list that contains a matching function name. The compari-
son is performed by the helper function SpySearchFormat ( ) , invoked in the if
clause at the end of Listing 5-3. Because many string search operations must be
performed for all aSpyHooks [ ] entries to be set up, I am using a highly optimized
search engine based on the ingenious "Shift/And Search Algorithm." If you want to
learn more about its implementation, please check out the SpySearch* ( ) function
group in the source file \src\w2k_spy\w2k_spy. c on the companion CD. As soon as
spyHookinitializeEx ( ) exits the loop, all Handler members in the aSpyHooks [ ]
array point to the appropriate hook entry points, and the pbFormat members provide
the matching format string, if any. With Windows NT 4.0, both members of the
entries in the index range OxD3 to OxF8 are set to NULL, because they are undefined
for this version.

TABLE 5-2. Recognized Format Control IDs

"%s=NtSetInformationFile(%! , %i, %p, %n, %n) " ,

"%s=NtSet!nformationProcess (% ! , %n, %p, %n) " ,

"%s=NtSetInformationThread(% ! , %n, %p, %n) " ,

"%s=NtSetSystem!nformation(%n, %p, %n) " ,

"%s=NtSetSystemTime (%!,%!) ",

"%s=NtSetValueKey(%! , %u, %n, %n, %p, %n) " ,

"%s=NtSetVolumeInformationFile(%! , %i, %p, %n, %n) " ,

"%s=NtUnloadKey(%o) ",

"%s=NtWriteFile(%! , %p, %p, %p, %i, %p, %n, %1, %d) " ,

NULL

};

ID NAME DESCRIPTION

%+ Handle (register) Logs a handle and object name and adds them to the handle
table

%! Handle (retrieve) Logs a handle and retrieves its object name from the
handle table

%- Handle (unregister) Logs a handle and object name and removes them from the
handle table

%a ANSI string Logs a string of 8-bit ANSI characters

%b BOOLEAN Logs an 8-bit BOOLEAN value

%c CLIENTJD * Logs the members of a CLIENTJD structure

(continued)
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TABLE 5-2. (continued)

ID NAME DESCRIPTION

%d DWORD * Logs the value of the addressed DWORD

%i IO_STATUS_BLOCK * Logs the members of an IO_STATUS_BLOCK structure

%1 LARGEJNTEGER * Logs the value of a LARGEJNTEGER structure

%n Number (DWORD) Logs the value of an unsigned 32-bit number

%o OBJECT1ATTRIBUTES * Logs the ObjectName of an object

%p Pointer Logs the target address of a pointer

%s Status (NTSTATUS) Logs a NT status code

% u UNICODE_STRING * Logs the Buffer member of an UNICODE_STRING
structure

%w Wide character string Logs a string of 16-bit Unicode characters

%% Percent escape Logs a single '%' characterZI •

The most notable property of this hook mechanism design is that it is com-
pletely data driven. The hook dispatcher can be adapted to a new Windows 2000
release by simply adding a new API symbol table. Moreover, the logging of addi-
tional API functions can be enabled at any time by adding new format strings to the ]
apbsdtFormats [ ] array. There is no need to write any additional code—the actions ]
of the API spy are completely determined by a set of character strings! However, care ]
must be taken while defining format strings. Never forget that w2k_spy. sys runs as a I
kernel-mode driver. On this system level, errors are not handled very gracefully.
Giving an invalid argument to a Win32 API is not a problem—you will get an error ]
window, and the application will be terminated. In kernel-mode, the tiniest access
violation will cause a Blue Screen. So be careful—an improper or missing format
control ID at the right place can easily tear down your system. Even a simple charac-
ter string sometimes can be deadly!

The only thing left to discuss is the large ASM block inside SpyHook
init ializeExf), enclosed by the ASM labels SpyHook2 and SpyHook9. One inter-
esting property of this code is that it is never executed when spyHookinitializeEx()
is called. On entry, the function code simply jumps across this entire section and
resumes execution at the label spyHook9, shortly before the C section containing
the aSpyHooks [ ] array initialization starts. This code can only be entered via the
Handler members of this array. Later, I will show how these entry points are linked
to the SDT.

One of my foremost aims in designing this code was to make it absolutely non-
intrusive. Intercepting operating system calls is dangerous because you never know
whether the called code relies on some unknown properties of the calling context.
Theoretically, it should suffice to obey the stdcall convention, but it is possible
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that problems may occur. 1 have chosen to put the original Native API function han-
dler into almost exactly the same environment it would find if no hooks were pre-
sent. This means that the function should run on the original argument stack and see
all CPU registers as they are passed in by the caller. Of course, a minimal degree of
intrusion must be accepted—otherwise, no monitoring would be possible. Here, the
most significant intervention is the manipulation of the return address on the stack.
If you flip back to Figure 5-3, you see that the caller's return address is on top of
the argument stack on entry of the function. The hook dispatcher inside spy
HookinitializeEx ( ) grabs this address and puts its own SpyHookS label address
there. Thus, the original Native API function handler will branch to this location
after terminating, enabling the hook dispatcher to inspect its arguments and
returned values.

Before calling the original handler, the dispatcher sets up a SPY_CALL control
block (see top section of Listing 5-3) containing parameters it needs later. Some of
them are required for proper API call logging, whereas others provide information
about the caller so the dispatcher can return control to it after writing the log entry,
just as if nothing had happened. The spy device maintains an array of SPY_CALL
structures in its global DEVICE_CONTEXT block, accessible via the global variable
gpDeviceContext in w2k_spy. c. The hook dispatcher searches for a free SPY_CALL
slot by examining their f inuse members. It uses the CPU's XCHG instruction to load
and set this member in a single operation. This is very important because this code
runs in a multithreaded environment, where read/write accesses to global data must
be protected against race conditions. If a free slot is available, the dispatcher stores
the caller's thread ID obtained from psGetCurrentThreadid ( ) , the address of the
SPY_HOOK_ ENTRY associated with the current API function, the return address of the
caller, and the entire argument stack. The number of argument bytes to be copied is
taken from the KiArgumentTabie array stored in the system's SDT. If all SPY_CALL
entries are in use, the original API function handler is invoked without logging it.

The necessity of a SPY_CALL array comes again from the multithreading nature
of Windows 2000. It happens quite frequently that a Native API function is sus-
pended, and another thread gains control, invoking another Native API function dur-
ing its time slice. This means that the spy device's hook dispatcher can be reentered at
any time and at any execution point. If the hook dispatcher would have a single
global SPY_CALL storage area, it would be overwritten by the running thread before
the waiting thread has finished using it. This situation is an ideal candidate for a
Blue Screen. To gain a better sense of the nesting level typically occurring within the
Native API, I have added the dLevel and dMisses members to the spy's DEVICE_
CONTEXT structure. Whenever the hook dispatcher is reentered (i.e., whenever a new
SPY_CALL slot is occupied) dLevel is increased by one. If the maximum nesting level
is exceeded (i.e., if no more SPY_CALL structures are available), dMisses is increased,
indicating that a log entry is missing. My observations have shown that in practical
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situations, nesting levels of up to four are easily observable. It is possible that the
Native API is reentered even more frequently in heavy-load situations, so I set the
upper limit generously to 256.

Before invoking the original API handler, the hook dispatcher restores all CPU
registers including the EFLAGS , and branches to the function's entry point. This is
done immediately before the SpyHooke label in Listing 5-3. At this time, SpyHooke is
on top of the stack, followed by the caller's arguments. As soon as the API handler
exits, control is passed back to the hook dispatcher at the SpyHooke label. The code
executed from there on is also designed to be as nonintrusive as possible. This time,
the main objective is to allow the caller to see the call context almost exactly as it was
set up by the original API function handler. The main problem of the dispatcher is
now to find the SPY_CALL entry where it has stored the information about the current
API call. The only reliable cue it has is the caller's thread ID, which has been saved to
the hThread member of the SPY_CALL structure. Therefore, the dispatcher loops
through the entire SPY_CALL array trying to find a matching thread ID. Note that the
code is not concerned about the value of the f muse flag; this is not necessary
because all unused entries have hThread set to zero, which is the thread ID of the
system idle thread. The loop should always terminate before the end of the array is
reached. Otherwise, the dispatcher cannot return control to the caller, which is fatal.
In this case, the code has few options, so it runs into a KeBugCheck ( ) that results in a
controlled system shutdown. This situation should never occur, but if it does, some-
thing terrible must have happened to the system, so the shutdown is probably the
best solution.

If the matching SPY_CALL slot can be found, the hook dispatcher has almost
finished its job. The last major action is the invocation of the logging function
SpyHookProtocol ( ) , passing in a pointer to the SPY_CALL structure. Everything
the logger needs is stored there. After SpyHookProtocol ( ) returns, the dispatcher
frees its SPY_CALL slot, restores all CPU registers, and returns to the caller.

THE API HOOK PROTOCOL

A good API spy should look at the arguments after the original function has been
called, because the function might return additional data in buffers passed in by ref-
erence. Therefore, the main logging function SpyHookProtocol ( ) is called at the end
of the hook handler, just before the API function returns to the caller. Before discussing
secrets of its implementation, examine the following two sample protocols for a
foretaste of what's to come. Figure 5-6 is a snapshot of the logged file operations
performed in the context of the console command dir c:\.
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Please compare the log entries listed in Figure 5-6 with the protocol format
strings contained in Listing 5-6. In Example 5-1, the format strings of NtopenFile ( )
and Ntciose ( ) are contrasted to the first and fourth protocol lines in Figure 5-6,
respectively. The similarities are striking; for each format control ID preceded by a per-
cent character (cf. Table 5-2), an associated parameter value entry is generated in the
protocol. However, the protocol obviously contains some additional information that is
not part of the format strings. I'll reveal the reason for this discrepancy in a moment.

The general format of a protocol entry is shown in Example 5-2. Each entry
consists of a fixed number of fields with intermittent separators. The separators
allow the entries to be easily parsed by a program. The fields are constructed on the
basis of the following set of simple rules:

• All numeric quantities are stated in hexadecimal notation without leading
zeros and without the usual leading "Ox."

• Function arguments are separated by commas.

• String arguments are enclosed in double quotes.

• If a pointer argument is NULL , its value is omitted.

• The values of structure members are separated by dots.

FIGURE 5-6. Sample Protocol of the Command dir c:\
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EXAMPLE 5-1. Comparing Format Strings to Protocol Entries

EXAMPLE 5-2. General Protocol Entry Format

• Object names associated with a handle are appended to the handle's value
with a separating "=" character.

• The date/time stamp is specified in VlO microsecond since 01-01-1601—
the basic system time format of Windows 2000.

• The thread ID indicates the unique numeric identifier of the thread that
called the API function.

• The handle count states the number of handles currently registered in the
spy device's handle list. This list allows the protocol function to look up
the object names associated with handles.

Figure 5-7 is another API spy protocol resulting from the command
type c:\boot.ini issued in a console window. The following is the semantic interpreta-
tion of some selected log entries:

• In line 0x31, NtCreateFile() is called to open the file \ ?? \c : \boot. ini.
(o" \ ?? \c : \boot. ini") The function returned an NTSTATUS code of zero
( s O ) , that is, STATUS_SUCCESS, and allocated a new file handle with value
0x18, owned by process 0x46C ( + 4 6 C . 1 8 ) . Consequently, the handle
count rises from one to two.

• In line 0x36, the type command reads in the first 512 bytes ( n 2 0 0 ) from
file \ ? ? \ c : \boot. ini to a buffer at the linear address OxOOl2F5B4
(pl2F5B4}, passing the handle obtained from NtcreateFile ( )
( ! 46C. 18 = " \ ?? \ c : \boot. ini") to NtReadFile ( ) . The system
successfully returns 512 bytes (i 0 . 2 0 0 ) .

" % s = N t O p e n F i l e ( % + , % n , % o , % i , % n , %n) "

18 :sO=NtOpenFi le (+46C.18 ,n l00001 ,o" \?? \C: \ " , i0 .1 ,n3 ,n4021) lBFEE5AE05B6710,278 ,2

"%s=NtClose(%-l "

lB:sO=NtClose( -46C.18=" \?? \C: \ " ) lBFEE5AE05B6710 ,278 , l

<#> : <status>=<function> (<arguments>) <time> , <thread>, <handles>
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FIGURE 5-7. Sample Protocol of the Command type c: \boot. ini

• In line 0x39, another file block of 512 bytes is ordered ( n 2 0 0 ) . This time,
however, the end of the file is reached, so NtReadFile ( ) returns 75 bytes
only ( 1 0 . 4 B ) . Obviously, the size of my boot, ini file is 512 + 75 = 587
bytes, which is correct.

• In line Ox3c, the file handle to \ ? ? \ c : \boot.ini is successfully released
by Ntciose ( ) ( -46C. i8="\?? \c : \boot.ini"), so the handle count drops
from two to one.

By now, you should have an idea of how the API spy protocol is structured,
which will help you grasp the details of the protocol generation mechanism, to
be discussed next. As already noted, the main API call logging function is called
SpyHookProtocol ( ) . This function, shown in Listing 5-7, uses the data in the
SPY_CALL structure it receives from the hook dispatcher to write a protocol record
for each API function call to a circular buffer. A spy device client can read this proto-
col via IOCTL calls. Each record is a text line terminated by a single line-feed charac-
ter ( * \n' in C notation). Access to the protocol buffer is serialized by means of the
kernel mutex KMUTEX kmProtocol, located in the global DEVICE_CONTEXT structure
of the spy device. The functions SpyHookWait ( ) and SpyHookRelease ( ) in Listing
5-7 acquire and release this mutex object. All accesses to the protocol buffer must be
preceded by SpyHookWait ( ) and followed SpyHookRelease ( ) , as demonstrated by
the SpyHookProtocol ( ) function.
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LISTING 5-7. The Main Hook Protocol Function SpyHookProtocol()

NTSTATUS SpyHookWait (void)
{
return MUTEX_WAIT (gpDeviceContext->kmProtocol) ;

}

/ / —

LONG SpyHookRelease (void)

{
return MUTEX RELEASE (gpDeviceContext->kmProtocol) ;

J/ /
// <#>:<status>=<function>(<arguments>)<time>,<thread>,<handles>

void SpyHookProtocol (PSPY_CALL psc)

{
LARGE_INTEGER liTime;
PSPY_PROTOCOL psp = &gpDeviceContext->SpyProtocol;

KeQuerySystemTime f&liTime) ;

SpyHookWait ( ) ;

if (SpyWriteFilter (psp, psc->pshe->pbFormat,
psc - >adParameter s ,
psc->dParameters) )

{
SpyWriteNumber (psp, 0, ++ (psp->sh.dCalls) ) ; // <#>:
SpyWriteChar (psp, 0, ' : ' ) ;

// <status>=
SpyWriteFormat (psp, psc->pshe->pbFormat, // <function>

psc->adParameters) ; // (<arguments>)

SpyWriteLarge (psp, 0, StliTime) ; // <time>,
SpyWriteChar (psp, 0, ' , ' ) ;

SpyWriteNumber (psp, 0, (DWORD) psc->hThread) ,- // <thread>,
SpyWriteChar (psp, 0, ' , ' ) ;

SpyWriteNumber (psp, 0, psp->sh.dHandles) ,- // <handles>
SpyWriteChar (psp, 0, '\n');

>
SpyHookRelease ( ) ;
return;

)
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If you compare the main body of SpyHookProtocol ( ) in Listing 5-7 with the
general protocol entry layout in Example 5-2, it is obvious which statement generates
which entry field. It also becomes clear why the protocol strings in Listing 5-6 don't
account for the entire entry data—some function-independent data are added by
SpyHookProtocol ( ) without the help of the format string. It's the SpyWriteFormat ( }
call at the heart of SpyHookProtocol ( ) that generates the <status>=<function>
(<arguments>) part, based on the format string associated with the currently logged
API function. Consult the source files w2k_spy. c and w2k_spy.h in directory
\src\w2k_spy of the accompanying sample CD for more information about the
implementation of the various SpyWrite* ( ) functions inside the spy device driver.

Note that this code is somewhat critical. This code was written in 1997 for Win-
dows NT 4.0, and it worked like a charm then. After porting the program to Windows
2000, occasional Blue Screens occurred when the hooks remained installed for a longer
time interval. Worse yet, some special operations reliably produced an instant Blue
Screen, for example, navigating to "My Computer" in the File \ Open dialog of my
favorite text editor. Analyzing numerous crash dumps, I found that the crashes were
the result of invalid non-NULL pointers passed to some API functions. As soon as
the spy device attempted to follow one of these pointers in order to log the data it
referenced, the system crashed. Typical candidates were pointers to IO_STATUS_BLOCK
structures, and invalid string pointers inside UNICODE_STRING and OBJECT_ATTRIBUTES
structures. I also found some UNICODE_STRINGS with Buffer members that were not
zero-terminated. Therefore, I emphasize again that you should not assume that all
UNicoDE_STRiNGs are zero-terminated. In case of doubt, the Length member always
tells the number of valid bytes you can expect at the Buffer address.

To remedy this problem, I have added pointer validation to all logging functions
that have to follow client pointers. To this end, I use the SpyMemoryTestAddress ( )
function discussed in Chapter 4 that checks out whether a linear address points to a
valid page-table entry (PTE). See Listings 4-22 and 4-24 for details. Another alterna-
tive possibility would have been the addition of Structured Exception Handling
(SEH) clauses ( try / except).

HANDLING HANDLES
It is important to note that SpyHookProtocol ( ) logs an API function call only if the
SpyWriteFiiter ( ) function in its if clause condition returns TRUE. This is a trick
that helps to suppress garbage in the hook protocol. For example, moving the mouse
across the screen triggers a distracting series of NtReadFile ( ) calls. Another source of
garbage has an interesting equivalent in physics: If you are measuring a physical effect
in an experimental situation, the act of measurement itself interferes with the mea-
sured effect and leads to distortion of the results. This also can happen in API logging.
Note that the NtDeviceioControlFile ( ) function is also included in the format string
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array in Listing 5-6. However, a client of the spy device uses device I/O control calls to
read the API hook protocol. This means that the client will find its own NtDeviceio-
ControlFiie ( ) calls in the protocol data. Depending on the frequency of the IOCTL
transactions, the desired data might easily get lost in self-made noise. The spy device
works around this problem by remembering the ID of the thread that installed the API
hooks to be able to ignore all API calls originating from this thread.

SpyWriteFilter ( ) eliminates garbage by ignoring all API calls involving han-
dles if the call that generated the handle has not been logged. If the spy device
observes that a handle is closed or otherwise returned to the system, any subsequent
functions using this handle value are discarded as well. Effectively, this trick sup-
presses all API calls that involve long-term handles created by the system or other
processes before the start of the API hook protocol. Of course, filtering can be
enabled or disabled on behalf of the client by means of IOCTL. You can easily test
the usefulness of the filter mechanism with the sample client application introduced
later in this chapter. You will be surprised how great this simple "noise filter" works!

In Listing 5-6, the functions that generate handles are NtcreateFile ( ) ,
NtCreateKey() , NtOpenFi le() , NtOpenKey() , NtOpenProcess(), and
NtOpenThread ( ) . All of these functions contain a %+ control token in their format
strings, which is identified as "Handle (register)" in Table 5-2. Functions that close
or invalidate handles are Ntciose ( ) and NtDeleteKey ( ) . Both include a %- token in
their format strings, labeled "Handle (unregister)" in Table 5-2. Other functions that
simply use a handle without creating or releasing it feature a % ! format control ID.
Basically, a handle is a number that uniquely identifies an object in the context of a
process. Physically, it provides an index into a handle table that contains the proper-
ties of the associated object. When a new handle is issued by an API function, the
client usually has to pass in an OBJECT_ATTRIBUTES structure that contains, among
other things, the name of the object it wishes to access. Later, this name is no longer
required because the system can look up all object properties it needs using the object
handle and the handle table. This is unfortunate for the user of an API spy because it
necessitates wading through countless protocol entries containing meaningless num-
bers instead of symbolic names. Therefore, my spy device registers all object names
together with the respective handle values and the IDs of the owning processes,
updating this list whenever a new handle appears. When one of the registered han-
dle/process pairs reappears later, the API logger retrieves the original symbolic name
from the list and adds it to the protocol.

A handle remains registered until it is explicitly closed by an API function or
reappears in an API call that generates a new handle. With Windows 2000,1 fre-
quently observed that the same handle value is returned several times by the system,
although the protocol doesn't contain any call that has closed this handle before. I
don't remember having seen this with Windows NT 4.0. A registered handle that
reappears with different object attributes has obviously been closed somehow, so it
must be unregistered. Otherwise, the handle directory of the spy device eventually
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would run into an overflow situation.
The SpyWriteFilter ( ) function called by SpyHookProtocol ( ) in Listing 5-7 is

an essential part of this handle tracking mechanism. Every call to any of the hooked
API functions has to pass through it. The implementation is shown in Listing 5-8.

BOOL SpyWriteFilter (PSPY_PROTOCOL psp,

PBYTE pbFormat,

PVOID pParameters,

DWORD dParameters)

{

PHANDLE phObject = NULL;

HANDLE hObject = NULL;

POBJECT_ATTRIBUTES poa = NULL;

PDWORD pdNext ;

DWORD i , j ;

pdNext = pParameters ;

i = j = 0 ;

while (pbFormat [i] )

{
while (pbFormat [i] && (pbFormat [i] != '%')) i + +;

if (pbFormat [i] && pbFormat [++!])

t

j++;

switch (pbFormat [i++] )

{
case 'b'

case 'a'

case 'w'

case 'u'

case 'n-

case ' 1 '

case 's'

case 'i'

case 'c'

case 'd'

case 'p'

{
break;

}

case ' o ' :

{
if (poa == NULL)

{
poa = (POBJECT_ATTRIBUTES) *pdNext;

(continued)
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LISTING 5-8. spyWrlteFiiter ( ) Excludes Undesired API Calls from the Protocol

}
break;

}
case '+' :

(
if (phObject == NULL)

phObject = (PHANDLE) *pdNext;

}
break;

}
case ' ! ' :
case '-' :

{
if (hobject == NULL)

{
hObject = (HANDLE) *pdNext;

}
break;

}
default:

{

j-;
break;

}
}

pdNext++;

}

}
return // number of arguments ok

(j =- dParameters)
&&

// no handles involved

(((phObject == NULL) && (hobject == NULL))

I I
// new handle, successfully registered

((phObject != NULL) &&

SpyHandleRegister (psp, PsGetCurrentProcessId (),

*phObject, OBJECT_NAME (poa)))

I I
// registered handle

SpyHandleSlot (psp, PsGetCurrentProcessId ( ) , hObject )

n
// filter disabled
( IgfSpyHookFilter) ) ;

}
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Basically, SpyWriteFiiter ( ) scans a protocol format string for occurrences of
%o (object attributes), %+ (new handle), %! (open handle), and %- (closed handle) and
takes special actions for certain combinations, as follows:

• If no handles are involved, the API call is always logged. This concerns all
API functions with format strings that don't contain the format control
IDs %+, % ! , and %-.

• If %+ is included in the format string, indicating that this function
allocates a new handle, this handle is registered and associated with
the name of the first %o item in the format string using the helper
function SpyHandleRegister ( ) . If no such item exists, the handle is
registered with an empty string. If the registration succeeds, the call
is logged.

• If % ! or %- occur in the format string, the called function uses or closes an
open handle. In this case, SpyWriteFiiter ( } tests whether this handle is
registered by querying its slot number via SpyHandleSlot ( ) . If this
function succeeds, the API call is logged.

• In all other cases, the call is logged only if the filter mechanism is disabled,
as indicated by the global Boolean variable gf SpyHookFilter.

The handle directory is part of the SPY_PROTOCOL structure, included in the
global DEVICE_CONTEXT structure of the spy device w2k_spy. sys and defined in
Listing 5-9, along with its SPY_HEADER substructure. Following the structure defini-
tions is the source code of the four handle management functions SpyHandleSlot ( ) ,
SpyHandleName(), SpyHandleUnregister(), and SpyHandleRegister(). A han-
dle is registered by appending its value to the current end of the ahOb j ects [ ] array.
At the same time, the ID of the owning process is added to the ahprocesses [ ]
array, the object name is copied to the awNames [ ] buffer, and the start offset of the
name is stored in the adNames [ ] array. When a handle is unregistered, these actions
are undone, shifting left all subsequent array members to ensure that none of the
arrays contains "holes." The constant definitions at the top of Listing 5-9 define the
dimensions of the handle directory: It can take up to 4,096 handles, the name data
limit is set to 1,048,576 Unicode characters (2 MB), and the protocol buffer size
amounts to 1 MB.



304 MONITORING NATIVE API CALLS

(tdefine SPY_HANDLES 0x00001000 // max number of handles

#define SPY_NAME_BUFFER 0x00100000 // object name buffer size

#define SPY_DATA_BUFFER 0x00100000 // protocol data buffer size

/ /

typedef struct _SPY_HEADER

LARGE_INTEGER liStart; // start time

DWORD dRead; // read data index

DWORD dWrite; // write data index

DWORD dCalls; // api usage count

DWORD dHandles; // handle count

DWORD dName; // object name index

'
SPY_HEADER, *PSPY_HEADER, **PPSPY_HEADER;

#define SPY HEADER sizeof (SPY HEADER), : : :
typedef struct _SPY_PROTOCOL

{

SPY_HEADER sh; // protocol header

HANDLE ahProcesses [SPY_HANDLES] ; // process id array

HANDLE ahObjects [SPY_HANDLES] ; // handle array

DWORD adNames [SPY_HANDLES] ; // name offsets

WORD awNames [SPY_NAME_BUFFER] ; // name strings

BYTE abData [SPY_DATA_BUFFER] ; // protocol data

}

SPY_PROTOCOL, *PSPY_PROTOCOL, **PPSPY_PROTOCOL;

tfdefine SPY_PROTOCOL_ sizeof (SPY_PROTOCOL)

//

DWORD SpyHandleSlot (PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObject)
r

DWORD dSlot = 0;

if (hObject != NULL)

{

while ( (dSlot < psp->sh. dHandles)

&&

{ (psp->ahProcesses [dSlot] \- hProcess) | |

(psp->ahObjects [dSlot] != hObject ))) dSlot++;
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dSlot = (dSlot < psp->sh.dHandles ? dSlot+1 : 0);

}

return dSlot;

)

//

DWORD SpyHandleName ( PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObject,

PWORD pwName ,

DWORD dName )

{

WORD w;

DWORD i;

DWORD dSlot = SpyHandleSlot (psp, hProcess, hObject) ;

if ( ( pwName ! = NULL ) && dName )

{

i = 0;

if (dSlot)

{

while ((i+1 < dName) &&

(w = psp->awNames [psp->adNames [dSlot-1] + i] } )

{
pwName [i++] = w;

}

}

pwName [ i ] = 0 ;

}

return dSlot;

}

/ /

DWORD SpyHandleUnregister ( PSPY_PROTOCOL psp,

HANDLE hProcess ,

HANDLE hObject,

PWORD pwName ,

DWORD dName )

DWORD i , j ;

DWORD dSlot = SpyHandleName (psp, hProcess, hObject,

pwName , dName ) ;

if (dSlot)

{

if (dSlot == psp->sh.dHandles)

{
// remove last name entry

(continued)
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psp->sh.dName = psp->adNames [dSlot-1] ;

}

else

{

i = psp->a<3Names [dSlot-1];

j = psp->adNames [dSlot ] ;

// shift left all remaining name entries

while (j < psp->sh.dName)

{

psp->awNames [i++] = psp->awNames [j++] ;

}

j -= (psp->sh.dName = i);

// shift left all remaining handles and name offsets

for (i = dSlot; i < psp->sh.dHandles; i++)

{

psp->ahProcesses [i-1] = psp->ahProcesses [i];

psp->ahObjects [i-1] = psp->ahObjects [i] ;

psp->adNames [i-1] = psp->adNames [i] - j ;

}

}
psp->sh.dHandles— ;

}

return dSlot;

}

//

DWORD SpyHandleRegister (PSPY_PROTOCOL psp,

HANDLE hProcess,

HANDLE hObjeot,

PUNICODE_STRING puName)

{

PWORD pwName;

DWORD dName;

DWORD i;

DWORD dSlot = 0;

if (hObject != NULL)

{

// unregister old handle with same value

SpyHandleUnregister (psp, hProcess, hObject, NULL, 0);

if (psp->sh.dHandles == SPY_HANDLES)

{
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LISTING 5-9. Handle Management Structures and Functions

CONTROLLING THE API HOOKS IN USER-MODE

A spy device client running in user-mode can control the Native API hook mechanism
and the protocol it generates by means of a set of IOCTL functions. This set of functions
with names of type SPY_IO_HOOK_* was mentioned in Chapter 4, where the memory
spying functions of w2k_spy. sys were discussed (see Listing 4-7 and Table 4-2).

The relevant part of Table 4-2 is repeated below in Table 5-3. Listing 5-10 is an
excerpt from Listing 4-7, demonstrating how the hook management functions are
dispatched. Each of these functions is reviewed in the subsequent subsections.

// unregister oldest handle if overflow
SpyHandleUnregister (psp, psp->ahProcesses [0],

psp->ahObjects [0] , NULL, 0);

}
pwName = ( (puName != NULL) && SpyMemoryTestAddress (puName)

? puName->Buf f er

: NULL) ;

dName = ( (pwName !- NULL) && SpyMemoryTestAddress (pwName)

? puName->Length / WORD_

: 0);

if (dName + 1 <= SPY_NAME_BUFFER - psp->sh. dName)

{
// append object to end of list
psp->ahProcesses [psp->sh.dHandles] = hProcess;
psp->ahObjects [psp->sh.dHandles] = hObject;
psp->adNames [psp->sh.dHandles] = psp~>sh. dName;

for (i = 0; i < dName; i++)

psp->awNames [psp->sh.dName++] = pwName [i] ;

}
psp->awNames [psp->sh.dName++] = 0;

psp->sh . dHandles++ ;

dSlot - psp->sh.dHandles ;

}

}
return dSlot;

}
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TABLE 5-3. IOCTL Hook Management Functions Supported by the Spy Device

FUNCTION NAME

SPY_IO_

SPY

SPY

SPY

SPY

SPY

SPY

SPY

J0_

JO_

_IO_

_IO_

JO_

_IO_
_IO_

HOOK

HOOK

HOOK

HOOK

HOOK

HOOK

HOOK

HOOK

JNFO

.INSTALL

_REMOVE

.PAUSE

.FILTER

.RESET

.READ

.WRITE

ID

11

12

13

14

15

16

17

18

IOCTL CODE

Ox8000602C

Ox8000E030

Ox8000E034

Ox8000E038

Ox8000E03C

Ox8000E040

0x80006044

Ox8000E048

DESCRIPTION

Returns info about Native API hooks

Installs Native API hooks

Removes Native API hooks

Pauses/resumes the hook protocol

Enables/disables the hook protocol filter

Clears the hook protocol

Reads data from the hook protocol

Writes data to the hook protocol

NTSTATUS SpyDispatcher (PDEVICE.CONTEXT pDeviceContext ,

DWORD dCode,

PVOID plnput ,

DWORD dlnput,

PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

{

SPY.MEMORY.BLOCK smb;

SPY.PAGE.ENTRY spe;

SPY.CALL.INPUT sci;

PHYSICAL_ADDRESS pa;

DWORD dValue, dCount;

BOOL fReset, fPause, fFilter, fLine;

PVOID pAddress ;

PBYTE pbName ;

HANDLE hOb j act;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX.WAIT (pDeviceContext->kmDispatch) ;

*pdlnfo = 0;

switch (dCode)

{

// unrelated IOCTL functions omitted (cf. Listing 4-7)

case SPY.IO.HOOK.INFO:

{

ns = SpyOutputHooklnfo (pOutput, dOutput, pdlnfo);

break;

}
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case SPY_IO_HOOK_INSTALL :

{
if { ( (ns - SpylnputBool (kfReset,

plnput, dlnput})

== STATUS_SUCCESS)
St&

( (ns = SpyHooklnstall (f Reset, &dCount)l

== STATUS_SUCCESS) )

{
ns = SpyOutputDword (dCount,

pOutput, dOutput, pdlnfo};

}
break;

}
case SPY_IO_HOOK_REMOVE :

{

if ( ( {ns = SpylnputBool (kfReset,
plnput, dlnput))

== STATUS_SUCCESS)
&&

( (ns = SpyHookRemove (f Reset, SdCount) )

== STATUS_SUCCESS) )

{
ns = SpyOutputDword (dCount,

pOutput, dOutput , pdlnfo};

}
break;

)
case SPY_IO_HOOK_PAUSE:

{
if ( (ns = SpylnputBool (&fPause,

plnput, dlnput))

== STATUS_SUCCESS)

{
fPause = SpyHookPause (fPause);

ns = SpyOutputBool (fPause,
pOutput, dOutput, pdlnfo);

}
break;

case SPY_IO_HOOK_FILTER:

{
if ( (ns = SpylnputBool (&fFilter,

plnput, dlnput) )

== STATUS_SUCCESS )

{
fFilter = SpyHookFilter (fFilter);

ns = SpyOutputBool (fFilter,

pOutput, dOutput, pdlnfo);

}

(continued)
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LISTING 5-10. Excerpt from the Spy Driver's Hook Command Dispatcher

THE IOCTL FUNCTION SPY_IO_HOOK_INFO

The IOCTL Function SPY_IO_HOOK_INFO function fills a SPY_HOOK_INFO structure
with information about the current state of the hook mechanism, as well as the
system's SDT. This structure (Listing 5-11) contains or references various other
structures introduced earlier:

• The SERVICE_DESCRIPTOR_TABLE is defined in Listing 5-1.

• SPY_CALL and SPY_HOOK_ENTRY are defined in Listing 5-2.

• SPY_HEADER and SPY_PROTOCOL are defined in Listing 5-9.

break ;

}
case SPY_IO_HOOK_RESET :

{
SpyHookReset ( ) ;

ns = STATUS_SUCCESS;
break;

}
case SPY_IO_HOOK_READ:

{
if ( {ns = SpylnputBool (&fLine,

plnput, dlnput})

== STATUS_SUCCESS)

{
ns = SpyOutputHookRead (fLine,

pOutput, dOutput, pdlnfo) ;

}
break;

}
case SPY_IO_HOOK_WRITE:

{
SpyHookWrite (plnput, dlnput) ;

ns = STATUS_SUCCESS ;
break;

)

// unrelated IOCTL functions omitted (cf. Listing 4-7)

}
MUTEX_RELEASE (pDeviceContext->kmDispatch) ;

return ns;

>
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LISTING 5-11. Definition of the SPY_HOOK_INFO structure

Be careful when evaluating the members of this structure. Some of them are
pointers into kernel-mode memory that is not accessible from user-mode. However,
you can use the spy device's SPY_IO_MEMORY_DATA function to examine the contents
of these memory blocks.

THE IOCTL FUNCTION SPY_IO_HOOK_INSTALL
The IOCTL SPY_IO_HOOK_INSTALL function patches the service table of ntoskrnl.
exe inside the system's SDT with the hook entry points stored in the global
aSpyHooks [ ] array. This array is prepared by spyHookinitialize ( ) (Listing 5-5) and
SpyHookinitializeEx ( ) (Listing 5-3) during driver initialization. Each aSpyHooks [ ]
entry comprises a hook entry point and a corresponding format string address, if
available. The spyoispatcher ( ) calls the spyHookinstail ( ) helper function shown in
Listing 5-12 to install the hooks. SpyHookinstail ( ) in turn uses SpyHookExchange ( } ,
also included in Listing 5-12, to perform this task.

typedef struct _SPY_HOOK_INFO

{

SPY_HEADER sh;

PSPY_CALL psc;

PSPY_PROTOCOL psp;

PSERVICE_DESCRIPTOR_TABLE psdt;

SERVICE_DESCRIPTOR_TABLE sdt;

DWORD ServiceLimit;

NTPROC ServiceTable [ SDT_SYMBOLS_MAX ] ;

BYTE ArgumentTable [SDT_SYMBOLS_MAX] ;

SPY_HOOK_ENTRY SpyHooks [SDT_SYMBOLS_MAX] ;

}

SPY_HOOK_INPO, *PSPY_HOOK_INFO, * *PPSPY_HOOK_INFO;

#define SPY_HOOK_INFO_ sizeof (SPY_HOOK_INFO)

DWORD SpyHookExchange (void)

{
PNTPROC ServiceTable;

BOOL f Pause;

DWORD i ;

DWORD n = 0;

fPause = SpyHookPause (TRUE) ;

ServiceTable = KeServiceDescriptorTable->ntoskrnl .ServiceTable;

for (i = 0; i < SDT_S YMBOLS_MAX ; i++)

(continued)
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LISTING 5-12. Patching the System's API Service Table

SpyHookExchange ( ) is used both in the installation and removal of hooks,
because it simply swaps the entries in the system's API service table and the aspy
Hooks [ ] array. Therefore, calling this function twice restores the service table and
the array to their original states. SpyHookExchange ( ) loops through the aspy
Hooks [ ] array and searches for entries that contain a format string pointer. The
presence of such a string indicates that the function should be monitored. In
this case, the API function pointer in the service table and the Handler member
of the aSpyHooks [ ] entry are exchanged using the ntoskrni. exe function
interlockedExchange ( ) , which guarantees that no other thread can interfere

{
if (aSpyHooks [i].pbFormat != NULL)

{
aSpyHooks [i] .Handler = (NTPROC)

InterlockedExchange ( (PLONG) ServiceTable+i,

( LONG) aSpyHooks [i] .Handler) ;

n++;

'
gfSpyHookState = ! gfSpyHookState;

SpyHookPause (fPause);

return n;

)

NTSTATUS SpyHooklnstall (BOOL f Reset,

PDWORD pdCount)

{

DWORD n = 0;

NTSTATUS ns = STATUS_INVALID_DEVICE_STATE;

if (! gfSpyHookState)

{
ghSpyHookThread = PsGetCurrentThreadld ( ) ;

n = SpyHookExchange ( ) ;

if (fReset) SpyHookReset ( ) ;

ns = STATUS_SUCCESS;

}
*pdCount = n;

return ns ;

}
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in this operation. The protocol mechanism is temporarily paused until the entire ser-
vice table is patched. spyHookinstall ( ) is merely a wrapper around spyHookEx-
change ( ) that performs some additional actions:

• The service table is not touched if the global gf spyHookstate flag
indicates that the hooks are already installed.

• The thread ID of the caller is written to the global variable ghSpyHookThread.
The hook dispatcher inside SpyHookinitializeEx ( ) uses this information
to suppress all API calls originating from this thread. Otherwise, the
hook protocol would be interrupted with irrelevant and distracting
material as a result of the interaction of the spy device and its user-mode
client.

• On request of the client, the protocol is reset. This means that all buffer
contents are discarded and the handle directory is reinitialized.

The SPY_IO_HOOK_INSTALL function receives a Boolean input parameter from
the caller. If TRUE, the protocol is reset after the hooks have been installed. This is the
most frequently used option. Passing in FALSE continues a protocol eventually left
over from a previous hook session. The return value of the function tells you how
many service table entries were patched. On Windows 2000, SPY_IO_HOOK_INSTALL
reports a value of 44, which is the number of entries in the format string array
apbSdtFormats [ ] in Listing 5-6. On Windows NT 4.0, only 42 hooks are installed,
because the API functions NtNotifyChangeMultipleKeys ( ) and NtQueryOpen
SubKeys ( ) are not supported by this operating system version.

THE IOCTL FUNCTION SPY_IO_HOOK_REMOVE

The IOCTL SPY_IO_HOOK_REMOVE function is similar to SPY_IO_HOOK_INSTALL,
because it basically reverses the actions of the latter. The IOCTL input and output
arguments are identical. However, the SpyHookRemove ( ) helper function called inside
the SpyDispatcher ( ) deviates in some important respects from SpyHookinstall ( ) ,
as a comparison of Listing 5-12 and 5-13 reveals:

• The call is ignored if the global gf SpyHookstate flag indicates that no
hooks are currently installed.

• After the service table has been restored to its original state, the thread
ID of the client that installed the hooks is cleared by setting the global
variable ghSpyHookThread to zero.
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• The most important extra feature is the do/while loop in the middle of
Listing 5-13. In this loop, spyHookRemove ( ) tests whether other threads
are currently serviced by the hook dispatcher by testing the f inuse
members of all SPY_CALL structures inside the global DEVICE_CONTEXT
structure. This is necessary because a client might attempt to unload the
spy driver immediately after uninstalling the hooks. If this happens while
some other processes' API calls are still within the hook dispatcher, the
system throws an exception, followed by a Blue Screen. These in-use tests
are performed in 100-msec intervals to give the other threads time to exit
the spy device.

LISTING 5-13. Restoring the System's API Service Table

NTSTATUS SpyHookRemove (BOOL f Reset,

PDWORD pdCount)

(
LARGEJNTEGER liDelay;

BOOL flnUse;

DWORD i ;

DWORD n = 0;

NTSTATUS ns = STATUS JNVALID_J5EVICE_STATE;

if (gfSpyHookState)

I
n = SpyHookExchange ( ) ;

if (fReset) SpyHookReset ( ) ;

do {

for (i = 0; i < SPY_CALLS; i++)

{

if (flnUse = gpDeviceContext->SpyCalls [i] . f InUse)

break ;

}

liDelay. QuadPart = -1000000;

KeDelayExecutionThread (KernelMode, FALSE, SliDelay) ;

}

while (flnUse) ;

ghSpyHookThread = 0;

ns = STATUS_SUCCESS ;

}
*pdCount = n;

return ns;

)
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Note that a final 100-msec delay is added even if all finuse flags are clear. This
precaution is required because a tiny security hole exists inside the hook dispatcher,
just between the instruction where the f inuse flag of the current SPY_CALL entry is
reset and the RET instruction where the dispatcher returns control to the caller (cf.
Listing 5-2 between the ASM labels spyHookS and spyHook9) . If all finuse flags are
FALSE, there is a small probability that some threads have been suspended just before
the RET instruction could be executed. Delaying the hook removal for another 100-
msec interval should allow all threads time to leave this critical code sequence.

THE IOCTL FUNCTION SPY JO_HOOK_PAUSE

The IOCTL SPY_IO_HOOK_PAUSE function, shown in Listing 5-14, allows a client to
temporarily disable and reenable the hook protocol function. Essentially, it sets the
global variable gf spyHookPause to the Boolean value supplied by the client and
returns its previous value, using the ntoskrnl. exe API function interlocked
Exchange ( ) . By default, the protocol is enabled; that is, gf SpyHookPause is FALSE.

It is important to note that SPY_IO_HOOK_PAUSE works totally independent of
SPY_IO_HOOK_INSTALL and SPY_IO_HOOK_REMOVE . If the protocol is paused while
hooks are installed, the hooks remain in effect, but the hook dispatcher lets all API
calls pass through without interference. You can also disable the protocol before
installing the hooks, if you don't want the protocol to start automatically after
SPY_IO_HOOK_INSTALL has patched the API service table. Note that the protocol is
automatically reset when the protocol is resumed.

THE IOCTL FUNCTION SPY JO_HOOK_FILTER

The IOCTL function SPY_IO_HOOK_FILTER manipulates a global flag, as shown in
Listing 5-15. Here, the global flag gf SpyHookFilter is set to the client-supplied
value, and the previous setting is returned. The default value is FALSE,- that is, the
filter is disabled.

LISTING 5-14. Switching the Protocol On and Off

BOOL SpyHookPause (BOOL f Pause)

{
BOOL fPausel = (BOOL)

Inter lockedExchange ( (PLONG) &gf SpyHookPause,
( LONG) f Pause) ;

if (IfPause) SpyHookReset ();
return fPausel;

}
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LISTING 5-15. Switching the Protocol Filter On and Off

You already know the variable gf spyHookFilter from the discussion of the
SpyWriteFilter ( ) function in Listing 5-8. If gf SpyHookFilter is TRUE, this func-
tion helps SpyHookProtocol ( ) (see Listing 5-7) to drop all API calls that involve
handles not previously registered by the spy device.

THE IOCTL FUNCTION SPYJOJHOOKJRESET

The IOCTL SPY_IO_HOOK_RESET function resets the protocol mechanism to its
original state, clearing the data buffer and discarding all registered handles. The Spy
HookReset ( ) function called by the SpyDispatcher ( } is merely a wrapper around
SpyWriteReset ( ) . Both functions are included in Listing 5-16. SpyHookReset ( )
features additional serialization by means of the mutex calls spyHookwait ( ) and
SpyHookRelease ( ) (see Listing 5-7).

THE IOCTL FUNCTION SPY_IO_HOOK_READ

The API hook logger writes the protocol data to the abData [ ] buffer inside the
global SPY_PROTOCOL structure shown in Listing 5-9. This byte array is designed as a
circular buffer. That is, it features a pair of pointers for read and write access, respec-
tively. Whenever one of the pointers moves past the end of the buffer, it is reset to the
buffer base. The read pointer always tries to catch up with the write pointer, and if
both point to the same location, the buffer is empty.

SPY_IO_HOOK_READ is by far the most important hook management function
offered by the spy device. It reads arbitrary amounts of data from the protocol data
buffer and adjusts the read pointer appropriately. This function should be called fre-
quently while the protocol is enabled, to avoid buffer overflows. Listing 5-17 shows
the function set handling this IOCTL request. The basic handlers are SpyReadData ( )
and spyReadLine ( ) . The difference between them is that the former returns the
requested amount of data, if available, whereas the latter retrieves single lines only.
Line mode can be very convenient when the read data must be filtered by a client
application. Callers of SPY_IO_HOOK_READ pass in a Boolean value that decides
whether block mode (FALSE) or line mode (TRUE) is requested.

BOOL SpyHookFilter (BOOL fFilter)

{

return (BOOL) InterlockedExchange ( (PLONG) &gf SpyHookFilter,

( LONG) fFilter) ;

}
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LISTING 5-16. Resetting the Protocol

void SpyWriteReset (PSPY_PROTOCOL psp)

{

KeQuerySystemTime (&psp->sh. liStart) ;

psp->sh.dRead = 0;

psp->sh.dwrite = 0 ;

psp->sh.dCalls = 0;

psp->sh.dHandles = 0;

psp->sh.dName = 0 ;

return;

}

//

void SpyHookReset (void)

t

SpyHookWait ( ) ;

SpyWriteReset (&gpDeviceContext->SpyProtocol) ;

SpyHookRelease ( ) ;

return;

}

DWORD SpyReadData (PSPY_PROTOCOL psp,

PBYTE pbData,

DWORD dData)

{
DWORD i = psp->sh. dRead;

DWORD n = 0;

while ( (n < dData) && (i != psp->sh.dWrite) )

(

pbData [n++] = psp->abData [i++];

if (i == SPY_DATA_BUFFER) i = 0 ;

}
psp->sh. dRead = i;

return n;

}

DWORD SpyReadLine (PSPY_PROTOCOL psp,

PBYTE pbData,

DWORD dData)

{

BYTE b = 0;

(continued)
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DWORD i = psp->sh.dRead;
DWORD n = 0;

while ((b != -\n') && (i ! = psp->sh.dWrite) )

{
b = psp->abData [1++];
if (i == SPY_DATA_BUFFER) i = 0 ;

if (n < dData) pbData [n++] = b;

if (b == -\n')

{
// remove current line from buffer

psp->sh.dRead = i;

}
else

{
// don't return any data until full line available

n = 0;

}
if (n)

(
pbData [n-1] = 0;

}
else

{
if (dData) pbData [0] = 0;

}
return n;

}

DWORD SpyHookRead (PBYTE pbData,

DWORD dData,

BOOL fLine)

{
DWORD n = 0;

SpyHookWait 0 ;

n = (fLine ? SpyReadLine : SpyReadData)
(&gpDeviceContext->SpyProtocol, pbData, dData);

SpyHookRelease ( ) ;

return n;

'

/ /
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LISTING 5-17. Reading from the Protocol Buffer

The SpyOutputHookRead ( ) and SpyHookRead ( ) functions are trivial.
SpyHookRead ( ) adds the usual mutex serialization and chooses between
SpyReadLine ( ) and SpyReadData ( ) , and SpyOutputHookRead () postprocesses
its results as demanded by the IOCTL framework.

THE IOCTL FUNCTION SPY_IO_HOOK_WRITE

The IOCTL SPY_IO_HOOK_WRITE function allows the client to write data to the proto-
col buffer. An application can use this feature to add separators or additional status
information to the protocol. The implementation is shown in Listing 5-18. spyHook
Write ( ) is yet another wrapper with additional mutex serialization. The spywrite
Data ( ) function it calls is the basic protocol generator of the spy device. All spy
Write* () helper functions (e.g., the SpyWriteFormat ( ) , SpyWriteNumber ( ) , Spy
WriteChar ( ) , and SpyWriteLarge ( ) functions used by SpyHookProtocol ( ) in
Listing 5-7) are ultimately built upon it.

NTSTATUS SpyOutputHookRead (BOOL fLine,
PVOID pOutput ,
DWORD dOutput ,
PDWORD pdlnfo)

{
*pdlnfo = SpyHookRead (pOutput, dOutput, fLine) ;
return STATUS SUCCESS;

}

DWORD SpyWriteData ( PSPY_PROTOCOL psp,
PBYTE pbData,
DWORD dData)

{
BYTE b;
DWORD i = psp->sh.dRead;
DWORD j = psp->sh.dWrite;
DWORD n = 0;

while (n < dData)

{
psp->abData [j++] = pbData [n++] ;
if (j == SPY_DATA_BUFFER) j = 0;

if (j == i)
{
// remove first line from buffer

(continued)
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LISTING 5-18. Writing to the Protocol Buffer

Note how SpyWriteData ( ) handles overflow situations. If the read pointer
advances slowly, the write pointer may lap it. In this situation, two options are available:

1. Write access is disabled until the read pointer is advanced.

2. Buffered data is discarded to make space.

The spy device chooses the second option. If an overflow occurs, the entire
protocol line at the current read pointer position is dropped by advancing the read
pointer to the next line. If the buffer contains just a single line (which is highly

do {

b = psp->abData [i++] ;

if (i == SPY_DATA_BUFFER) 1 = 0 ;

while ( (b != '\n') &S. (i != j ) ) ,-

// remove half line only if single line

if ( (i == j) &&

( (i += (SPY_DATA_BUFFER / 2)) >= SPY_DATA_BUFFER) )

{

i - = SPY_DATA_BUFFER;

}

}
}

psp->sh.dRead = i;

psp->sh. dwrite = j;

return n;

}

//

DWORD SpyHookWrite (PBYTE pbData,

DWORD dData)

{

DWORD n = 0;

SpyHookWait () ;

n = SpyWriteData

(&gpDeviceContext->SpyProtocol, pbData, dData);

SpyHookRelease ( ) ;

return n;

}
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improbable), only the first half of the line is discarded. The code handling these
situations is marked in Listing 5-18 by appropriate comments.

A SAMPLE HOOK PROTOCOL READER

To help you write your own API hook client applications, I have added a very simple
sample application that reads the hook protocol buffer and displays it in a console
window. The pause, filter, and reset functions can be issued by pressing keys P, F,
and R on the keyboard, and the output can be filtered according to a series of user-
specified function name patterns. The application is called "SBS Windows 2000 API
Hook Viewer," and its source code is available on the book's companion CD in the
directory tree \src\w2k_hook.

CONTROLLING THE SPY DEVICE

For convenience, the w2k_hook. exe application uses a couple of simple wrappers for
the various SPY_IO_HOOK_* IOCTL functions, summarized in Listing 5-19. These
utility functions make the code much more readable and minimize the probability of
parameter errors during the development of a spy device client application.

BOOL WINAPI SpyloControl (HANDLE hDevice,

DWORD dCode ,

PVOID plnput,

DWORD dlnput ,

PVOID pOutput,

DWORD dOutput)

{

DWORD dlnfo = 0;

return DeviceloControl (hDevice, dCode,

plnput, dlnput,

pOutput, dOutput,

Scdlnfo, NULL)

&&

(dlnfo == dOutput) ;

}

//

BOOL WINAPI SpyVersionlnfo (HANDLE hDevice,

PSPY_VERSION_INFO psvi )

f

return SpyloControl (hDevice, SPY_IO_VERSION_INFO,

NULL , 0 ,

(continued)
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psvi, SPY_VERSION_INFO_) ;

)

//

BOOL WINAPI SpyHooklnfo (HANDLE hDevice,

PSPY_HOOK_INFO pshi)

{
return SpyloControl (hDevice, SPY_IO_HOOK_INFO ,

NULL, 0,

pshi, SPY_HOOK_INFO_) ;

}

//

BOOL WINAPI SpyHooklnstall (HANDLE hDevice,

BOOL f Reset ,

PDWORD pdCount)

{
return SpyloControl (hDevice, SPY_IO_HOOK_INSTALL ,

&f Reset, BOOL_,

pdCount, DWORD_) ;

>

//

BOOL WINAPI SpyHookRemove (HANDLE hDevice,

BOOL f Reset,

PDWORD pdCount)

{

return SpyloControl (hDevice, SPY_IO_HOOK_REMOVE,

&f Reset, BOOL_,

pdCount, DWORD_) ;

}

//

BOOL WINAPI SpyHookPause (HANDLE hDevice,

BOOL f Pause,

PBOOL pf Pause)

{

return SpyloControl (hDevice, SPY_IO_HOOK_PAUSE,

&f Pause, BOOL_,

pf Pause, BOOL_) ;

}

//
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LISTING 5-19. Device I/O Control Utility Functions

BOOL WINAPI SpyHookFilter (HANDLE hDevice,

BOOL fFilter,

PBOOL pfFilter)

<

return SpyloControl (hDevice, SPYJO__HOOK_FILTER,

kfFilter, BOOL_,

pfFilter, BOOL_) ;

)

/ /

BOOL WINAPI SpyHookReset (HANDLE hDevice)

(

return SpyloControl (hDevice, SPY_IO_HOOK_RESET,

NULL, 0,

NULL, 0) ;

}

//

DWORD WINAPI SpyHookRead (HANDLE hDevice,

BOOL fLine,

PBYTE pbData,

DWORD dData)

{

DWORD dlnfo;

if ( iDeviceloControl (hDevice, SPY_IO_HOOK_READ,

kfLine, BOOL_,

pbData, dData,

Sdlnfo, NULL))

{

dlnfo = 0;

>
return dlnfo;

}

/ /

BOOL WINAPI SpyHookWrite (HANDLE hDevice,

PBYTE pbData)

return SpyloControl (hDevice, SPY_IO_HOOK_WRITE,

pbData, IstrlenA (pbData) ,

NULL, 0) ;

}
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Before the functions in Listing 5-19 can be used, the spy device must be loaded
and started. This operation is much the same as that outlined in Chapter 4 in con-
junction with the memory spy application w2k_mem. exe. Listing 5-20 shows the
application's main function, Execute ( ) , which loads and unloads the spy device
driver, opens and closes a device handle, and interacts with the device via IOCTL. If
you compare Listing 5-20 to Listing 4-29, the similarities at the beginning and end
are obvious. Only the middle sections, where the application-dependent code is
located, are different.

1 1
void WINAPI Execute (PPWORD ppwFilters,

DWORD dFilters)

{

SPY_VERSION_INFO svi ;

SPY_HOOK_INFO shi ;

DWORD dCount, i, j, k, n;

BOOL fPause, fFilter, fRepeat;

BYTE abData [HOOK_MAX_DATA] ;

WORD awData [HOOK_MAX_DATA] ;

WORD awPath [MAX_PATH] = L"?";

SC_HANDLE hControl = NULL;

HANDLE hDevice = INVALID_HANDLE_VALUE;

_printf (L" \r\nLoading \"%s\" (%s) ...\r\n",

awSpyDisplay, awSpyDevice) ;

if (w2kFilePath (NULL, awSpyFile, awPath, MAX_PATH) )

{
_printf (L"Driver: \"%s\"\r\n",

awPath) ;

hControl = w2kServiceLoad (awSpyDevice, awSpyDisplay,

awPath, TRUE) ;

}

if (hControl != NULL)

{

_printf (L"0pening \"%s\" ...\r\n",

awSpyPath) ;

hDevice = CreateFile (awSpyPath,

GENERIC_READ | GENERIC_WRITE,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL) ;

}

else

{
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_printf (L"Unable to load the spy device driver . \r\n" );

}

if (hDevice != INVALID_HANDLE_VALUE)

{

if (SpyVersionlnfo (hDevice, tsvi))

{

_jprintf (L"\r\n"

L"%s V%lu.%021u ready\r\n",

svi . awName ,

svi.dVersion / 100, svi.dVersion % 100);

}

if (SpyHooklnfo (hDevice, &shi) )

{

_printf (L"\r\n"

L"API hook parameters: Ox%081X\r\n"

L"SPY_PROTOCOL structure: Ox%081X\r\n"

L"SPY_PROTOCOL data buffer: Ox%081X\r\n"

L"KeServiceDescriptorTable: Ox%081X\r\n"

L"KiServiceTable: Ox%081X\r\n"

L"KiArgumentTable : Ox%081X\r\n"

L"Service table size: Ox%lX (%lu)\r\n",

shi .psc,

shi .psp,

shi .psp->abData,

shi .psdt ,

shi . sdt . ntoskrnl . ServiceTable ,

shi . sdt . ntoskrnl . ArgumentTable ,

shi .ServiceLimit, shi . ServiceLimit) ;

}

SpyHookPause (hDevice, TRUE, kfPause ) ; fPause = FALSE;

SpyHookFilter (hDevice, TRUE, sfFilter) ; fFilter = FALSE;

if (SpyHooklnstall (hDevice, TRUE, kdCount) )

{

_printf (L"\r\n"

L"Installed %lu API hooks\r\n",

dCount) ;

}

_printf (L"\r\n"

L" Protocol control keys:\r\n"

L"\r\n"

L"P pause ON/off\r\n"

L"F filter ON/off\r\n"

L"R reset protocol\r\n"

L"ESC exit\r\n"

L"\r\n") ;

for (f Repeat = TRUE; f Repeat;)

{

(continued)
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if (n = SpyHookRead (hDevice, TRUE,
abData, HOOK_MAX_DATA) )

{
if (abData [0] == •-•)

{
n = 0;

}
else

{
i = 0;

while (abData [i] && (abData [i++] != '='));

j = i;
while (abData [j] £.& (abData [j] != '(')) j++;

k = 0;

while (i < j) awData [k+ + ] = abData [i + + ] ;

awData [k] = 0;

for (i = 0; i < dFilters; i++)

{
if (PatternMatcher (ppwFilters [i] , awData))

{
n = 0;
break;

}

}

}
if (!n) _printf (L"%hs\r\n", abData);

Sleep (0);

}
else

{
Sleep (HOOK_IOCTL_DELAY) ;

}
switch (KeyboardData ())

{
case 'P' :

{
SpyHookPause (hDevice, fPause, &fPause) ;
SpyHookWrite (hDevice, (fPause ? abPauseOff

: abPauseOn) ) ;
break;

}
case 'F' :

{
SpyHookFilter (hDevice, fFilter, 5=fFilter) ;

SpyHookWrite (hDevice, (fFilter ? abFilterOff
: abFilterOn) ) ;
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LISTING 5-20. The Main Application Framework

Note that the Execute ( ) function in Listing 5-20 requests GENERIC_READ and
GENERIC_WRITE access in the createFile ( ) call, whereas the function in Listing 4-29
uses only GENERIC_READ access. The reason for this discrepancy is buried in the
IOCTL codes used by these applications. Whereas the memory spy in Chapter 4 uses
read-only functions throughout, the API hook viewer discussed here calls functions
that modify system data and hence require a device handle with additional write
access. If you examine the IOCTL codes in the third column of Table 5-3, you can see
that most of them have the hex digit E at the fourth position from the right, whereas
SPY_IO_HOOK_INFO and SPY_IO_HOOK_READ have the digit 6 there. According to
Figure 4-6 in Chapter 4, this means that the latter pair of hook management func-
tions require a device handle with read access, whereas the remaining ones require

break;

}
case 'R' :

{
SpyHookReset (hDevice) ;

SpyHookWrite (hDevice, abReset);
break;

}
case VK_ESCAPE:

{
_printf (L"%hs\r\n", abExit);

f Repeat = FALSE;
break;

}

}

}
if (SpyHookRemove (hDevice, FALSE, kdCount))

_printf (L"\r\n"

L"Removed %lu API hooks\r\n",

dCount) ;

)
_printf (L"\r\nClosing the spy device ...\r\n");
CloseHandle (hDevice) ;

}
else

{
_printf (L"Unable to open the spy device . \r\n" );

}
if ( (hControl != NULL) && gfSpyUnload)

{
_printf (L"Unloading the spy device ...\r\n");

w2kServiceUnload (awSpyDevice, hControl);

1

return;

}
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read/write rights. The designer of a device driver must decide which read/write access
right combinations are demanded by the I/O requests handled by the device. Patching
the system's API service table is a radical write operation, so urging a client to obtain
a handle with write access is certainly appropriate.

Most of the remaining code in Listing 5-20 should be self-explaining. Following
are features that are worth noting:

• The SPY_IO_HOOK_READ function is operated in line mode, as the second
argument of the SpyHookRead ( ) call at the beginning of the big for
loop shows.

• The user of the application can specify a series of pattern strings with
embedded wildcards ' *' and ' ?' on the command line. These patterns are
compared sequentially with the function name within each protocol line
using the helper function PatternMatcher ( } shown in Listing 5-21.
If no pattern matches the name, the line is suppressed. To view the hook
protocol unfiltered, the command w2k_hook * must be issued.

• After handling a protocol line, the application returns the rest of its time
slice to the system by calling sleep ( 0 ) , so the time is available for
other processes.

• If no protocol data is available, the application suspends itself for 10 msec
(HOOK_IOCTL_DELAY) before polling the spy device again. This reduces the
CPU load considerably in times with low usage of the Native API.

• In the main loop, the keyboard is polled as well. All keys except P, F, R,
and Esc are ignored. P switches the pause mode on and off (default: on),
F enables and disables filtering by handle (default: enabled), R resets the
protocol, and Esc terminates the application.

• If one of the P, F, R, or Esc keys is pressed, a separator line is written to the
hook protocol buffer using the SPY_IO_HOOK_WRITE function. This line
indicates the state change resulting from the entered command. Writing the
separator to the buffer is better than writing it directly to the console
window because the state change might appear on the screen with some
delay. For example, if the P key is pressed to halt the display, the application
will continue to generate output until all data has been read from the
protocol buffer. The separator generated by the P command will be
appended after the last entry, so it appears at the correct location.

• Just like the w2k_mem. exe application in Chapter 4, w2k_hook. exe
unloads the spy device only if the global flag gfspyUnioad is set. By
default, it is not set—for the reasons explained in Chapter 4.
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LISTING 5-21. A Simple String Pattern Matcher

The examples shown in Figures 5-6 and 5-7 were generated by w2k_hook. exe
with the name patterns *file and ntclose specified on the command line. This fil-
ters out all file management function calls plus Ntclose ( ) . It is important to keep
in mind that the name patterns are applied to the protocol data after it has been gen-
erated, whereas the "garbage" filter of the spy device based on registered handles
manipulates the protocol before it is written. If you exclude protocol entries by
specifying name patterns on the w2k_hook. exe command line, this has absolutely no

BOOL WINAPI PatternMatcher { PWORD pwFilter,

PWORD pwData)

{
DWORD i , j ;

i = j = 0 ;
while (pwFilter [i] && pwData [j])

{
if (pwFilter [i] != '?')

{
if (pwFilter [i] == '*')

{

i++;
if ((pwFilter [i] != •*') && (pwFilter [i] != '?'))

{
if (pwPilter [i])

{
while (pwData [j] &&

(! PatternMatcher (pwFilter + i,

pwData + j ) ) )

{

j++;
}

}
return (pwData [j]);

}

}
if ((WORD) CharUpperW ((PWORD) (pwFilter [i])) !=

(WORD) CharUpperW ((PWORD) (pwData [j])))

{
return FALSE;

}

)
i++;

j++;
}

if (pwFilter [i] == '*') i++;

return ! (pwFilter [i] || pwData [j]);

}
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effect on the protocol data generator. The only effect is that protocol entries are
thrown away after having been retrieved from the protocol buffer.

HIGHLIGHTS AND PITFALLS
The API hooking mechanism of Russinovich and Cogswell (Russinovich and
Cogswell 1997) adapted here is clearly ingenious and elegant. The following are
its most notable advantages:

• Installing and uninstalling a hook in the system's API service table is a
simple pointer exchange operation.

• After the hook is installed, it receives the Native API calls of all processes
running in the system, even of new ones started after the hook installation.

• Because the hook device runs in kernel-mode, it has maximum access to all
system resources. It is even allowed to execute privileged CPU instructions.

The following are problem areas I encountered during the development of
my spy device:

• The hook device must be designed and written with extreme care.
Because all traffic occurring on the Native API level will pass through in
the context of various application threads, it must be as stable as the
operating system kernel itself. The smallest oversight may immediately
crash the system.

• Only a small part of the kernel's API traffic is logged. For example, API
calls originating from other kernel-mode modules don't pass through the
system's INT 2Eh gate and hence don't appear in the hook protocol. Also,
many important functions exported by ntdll. dll and ntoskrnl. exe are
not part of the Native API, so they cannot be hooked in the service table.

The incomplete API coverage is clearly more restrictive than the demand for sta-
bility. Anyway, it is amazing how much useful data can be gained about the internals
of an application by tracing its Native API calls. For example, I was able to gain deep
insight into the NetWare Core Protocol (NCP) operations performed by Microsoft's
NetWare redirector nwrdr. sys by simply observing its NtFsControlFile ( ) traffic.
Therefore, this approach to API monitoring is certainly the most proficient of the
alternatives available to date for Windows 2000.



C H A P T E R 6

Calling Kernel
API Functions
from User-Mode

I n Chapter 2,1 explained how Windows 2000 allows user-mode applications to
call a subset of its kernel API functions—the Native API—by means of an interrupt

gate mechanism. Chapters 4 and 5 relied heavily on a mechanism referred to as
Device I/O Control (IOCTL) to carry out additional tasks that aren't allowed in user-
mode. Both the Native API and IOCTL are quite powerful, but think of the benefit
of being able to call almost any kernel-mode function as if it were located in a normal
user-mode DLL. This is generally considered impossible. However, I will demonstrate
in this chapter that it is possible with the help of a couple of wacky programming
tricks. Again, IOCTL will come to the rescue to solve a problem that seems impossi-
ble at first sight. This chapter is revolutionary because it builds a general-purpose
bridge from user-mode to kernel-mode, allowing the Win32 application to call kernel
API functions just as if they were part of the Win32 API. Even better, an application
can call internal kernel functions that are not even available to kernel-mode drivers,
with the help of the symbol files coming with the Windows 2000 debugging tools.
This "kernel call interface" works seamlessly in the background, almost completely
unnoticed by the calling application.

A GENERAL KERNEL CALL INTERFACE

In Chapter 4, we used a kernel-mode driver to call selected kernel API functions on
behalf of a user-mode program. For example, the SPY_IO_PHYSICAL function offered
by the spy driver w2k_spy. sys is merely a wrapper around the memory manager's
MmGetPhysicalAddress ( ) function. Another example is SPY_IO_HANDLE_INFO,
which is built upon the object manager's obRef erenceObjectByHandle ( ) and
ObDeref erenceobject ( ) functions. Although this technique works fine, it is quite
tedious and inefficient to design a custom IOCTL function for every kernel API
function that should be made available to user-mode code. Therefore, I have added

331



332 CALLING KERNEL API FUNCTIONS FROM USER-MODE

a general-purpose IOCTL function to the spy device inside the sample driver
w2k_spy. sys that calls arbitrary kernel-mode functions, given a symbolic name or an
entry point plus a list of arguments. This sounds like a lot of work, but you will be
surprised how simple the necessary code actually is. The only difficulty is that again
we will need a good deal of inline assembly language (ASM).

DESIGNING A GATE TO KERNEL-MODE

If a program running in user-mode wants to call a kernel-mode function, it has to
solve two problems. First, it must somehow jump across the barrier between user-
mode and kernel-mode, and second, it must transfer data in and out. For the subset
comprising the Native API, the ntdll. dll component takes over this duty, using an
interrupt gate Jx> accomplish the mode change and CPU registers to pass in a pointer
to the caller's argument stack and to return the function's result to the caller. For ker-
nel functions not included in the Native API, the operating system doesn't offer such
a gate mechanism. Therefore, we will have to create our own. Part one of the prob-
lem is easily solved: The w2k_spy. sys driver introduced in Chapter 4 and extended
in Chapter 5 crosses the user-to-kernel-mode border back and forth many times dur-
ing its IOCTL transactions. And because IOCTL optionally allows passing data
blocks in both directions, the date transfer problem is solved as well. In the end, the
whole matter boils down to the following simple sequence of steps:

1. The user-mode application posts an IOCTL request, passing in
information about the function to be called, as well as a pointer to its
argument stack.

2. The kernel-mode driver dispatches the request, copies the arguments onto
its own stack, calls the function, and passes the results back to the caller in
the IOCTL output buffer.

3. The caller picks up the results of the IOCTL operation and proceeds as it
would after a normal DLL function call.

The main problem with this scenario is that the kernel-mode module must cope
with various data formats and calling conventions. Following is a list of situations
the driver must be prepared for:

• The size of the argument stack depends on the target function. Because it
is impractical to give the driver detailed knowledge about all functions
it might possibly have to call, the caller must supply the size of the
argument stack.



A GENERAL KERNEL CALL INTERFACE 333

• Windows 2000 kernel API functions use three calling conventions:
stdcall, cdecl, and f astcall, which differ considerably in the

way arguments are treated. stdcall and cdecl require all arguments
to be passed in on the stack, whereas f astcall aims at minimizing
stack fumbling overhead by passing the first two arguments in the CPU
registers ECX and EDX. On the other hand, stdcall and f astcall
agree in the way arguments are removed from the stack, forcing the called
code to take over the responsibility. cdecl, however, leaves this task to
the calling code. Although the stack cleanup problem can be easily solved
by saving the stack pointer before the call and resetting it to its original
position after returning, regardless of the calling convention, the driver is
helpless with respect to the fastcail convention. Therefore, the caller
must specify on every call whether the fastcail convention is in effect,
to allow the driver to prepare the registers ECX and EDX if necessary.

• Windows 2000 kernel functions return results in various sizes, ranging
from zero to 64 bits. The 64-bit register pair EDX : EAX transports the
results back to the caller. Data is filled in from the least-significant end
toward the most-significant end. For example, if a function returns a 16-
bit SHORT data type, only register AX (comprising AL and AH) is significant.
The upper half of EAX and the entire EDX contents are undefined. Because
the driver is ignorant of the called function's I/O data, it must assume the
worst case, which is 64-bits. Otherwise, the result may be truncated.

• The application might supply invalid arguments. In user-mode, this is
usually benign. At worst, the application process is aborted with an error
message box. Occasionally, this error results in system damage that
requires a reboot for recovery. In kernel-mode, the most frequent
programming error, known as "bad pointer," almost instantly results in a
Blue Screen of Death, which might cause loss of user data. This problem
can be addressed to a great extent by using the operating system's
Structured Exception Handling (SEH) mechanism.

That said, let's examine how our spy driver handles function properties,
arguments, and results. Listing 6-1 shows the involved IOCTL input and output
structures, SPY__CALL_INPUT and SPY_CALL_OUTPUT. The latter is quite simple—it
consists of a ULARGE_INTEGER structure that is used by Windows 2000 to represent a
64-bit value both as a single 64-bit integer and a pair of 32-bit halves. Please consult
Listing 2-3 in Chapter 2 for the layout of this structure.
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LISTING 6-1. Definition O/"SPY_CALL_INPUT and SPY_CALL_OUTPUT

SPY_CALL_INPUT needs a bit more explanation. The purpose of the f FastCall
member should be obvious. It signals to the spy driver that the function to be called
obeys the fas teal l convention, so the first two arguments, if any, must not be
passed in on the stack, but in CPU registers. dArgumentBytes specifies the number of
bytes piled up on the argument stack, and pArguments points to the top of this stack.
The remaining arguments, pbsymbol and pEntryPoint, are mutually exclusive, and
tell the driver which function to execute. You can specify either a function name or a
plain entry point address. The other member should always be set to NULL . If both
values are non-NULL, pbsymbol takes precedence over pEntryPoint. Calling a func-
tion by name rather than by address adds an additional step, where the entry point
of the specified symbolic name is determined. If it can be retrieved, the function is
entered through this address. Passing in an entry point simply bypasses the symbol
resolution step.

Finding the linear address associated with a symbol exported by a kernel-mode
module sounds easier than it actually is. The powerful Win32 functions GetModule
Handle ( ) and GetProcAddress ( ) , which work fine with all components within the
Win32 subsystem, do not recognize kernel-mode system modules and drivers. Imple-
menting this part of the sample code was difficult, the details are covered in the next
section of this chapter. For now, let's assume that a valid entry point is available, no
matter how it has been supplied. Listing 6-2 shows the function SpyCall ( ) that

typedef struct _SPY_CALL_INPUT

BOOL fFastCall;

DWORD dArgumentBytes ;

PVOID pArguments ;

PBYTE pbSymbol;

PVOID pEntryPoint;

>
SPY_CALL_INPUT, *PSPY_CALL_INPUT, **PPSPY_CALL_INPUT;

#define SPY_CALL_INPUT_ sizeof (SPY_CALL_INPUT)

/ /

typedef struct _SPY_CALL_OUTPUT

{
ULARGE_INTEGER uliResult;

SPY_CALL_OUTPUT, *PSPY_CALL_OUTPUT, * *PPSPY_CALL_OUTPUT;

#define SPY_CALL_OUTPUT_ sizeof (SPY_CALL_ODTPUT)
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constitutes the core part of my kernel call interface. As you see, it is almost 100%
assembly language. It is always unpleasant to resort to ASM in a C program, but
some tasks simply can't be done in pure C. In this case, the problem is that spy-
Call ( ) needs total control of the stack and the CPU registers, and therefore it must
bypass the C compiler and optimizer, which use the stack and registers as they see fit.

Before delving into the details of Listing 6-2, let me describe another special fea-
ture of the spyCail ( ) function that obscures the code. As explained in Chapter 2, the
Windows 2000 system modules export some of their variables by name. Typical
examples are NtBuildNumber and KeServiceDescriptorTable. The Portable Exe-
cutable (PE) file format of Windows 2000/NT/9x provides a general-purpose mecha-
nism for attaching symbols to addresses, regardless of whether an address points to
code or data. Therefore, a Windows 2000 module is free to attach exported symbols
to its global variables at will. A client module can dynamically link to them like it
links to function symbols, and it is able to use these variables as if they were located
in its own global data section. Of course, my kernel call interface would not be com-
plete if it were not able to cope with this kind of symbol as well, so I decided that
negative values of the dArgumentBytes member inside the SPY_CALL_INPUT structure
should indicate that data is to be copied from the entry point instead of calling it.
Valid values range from -i to -9, where -l means that the entry point address itself
is copied to the SPY_CALL_OUTPUT buffer. For the remaining values, their one's com-
plement states the number of bytes copied from the entry point, that is, -2 copies a
single BYTE or CHAR,- -3, a 16-bit WORD or SHORT,- -5, a 32-bit DWORD or LONG,- and -9
a 64-bit DWORDLONG or LONGLONG . You may wonder why it should be necessary to
copy the entry point itself. Well, some kernel symbols, such as KeServiceDescriptor
Table point to structures that exceed the 64-bit return value limit, so it is wiser to
return the plain pointer rather than truncating the value to 64 bits.

void SpyCail (PSPY_CALL_INPUT psci,

PSPY_CALL_OUTPUT psco)

{

PVOID pStack;

asm

{

pushf d

pushad

xor eax, eax

mov ebx, psco ; get output parameter block

lea edi , [ebx.uliResult] ; get result buffer

mov [edi ], eax ; clear result buffer {lo)

mov [edi+4], eax ; clear result buffer (hi)

mov ebx, psci ; get input parameter block

mov ecx, [ebx. dArgumentBytes]

(continued)
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cmp

jb

mov

not
j ecxz

rep
jmp

SpyCalll:

mov
jmp

SpyCall2:

mov
cmp

jz
cmp

jb
mov

add
sub

cmp

jb
mov

add

sub
SpyCallS :

mov

jecxz

sub
mov

shr
rep

SpyCall4 :

mov

call

mov

mov

mov

mov

SpyCallS:

popad

popfd
i;

return;

}

ecx, -9

SpyCall2

esi, [ebx.pEntryPoint]

ecx ;

SpyCalll

movsb ;

SpyCallS

[edi ] , esi ;

SpyCallS

esi, [ebx.pArguments]

[ebx.fFastCall] , eax

SpyCall3

ecx , 4

SpyCallS

eax, [esi] ;

esi, 4 ;

ecx, 4

ecx , 4 ;

SpyCall3

edx, [esi] ;

esi, 4 ;

ecx, 4

pStack, esp ;

SpyCall4

esp , ecx ,-

edi, esp

ecx, 2

movsd

ecx, eax

[ebx.pEntryPoint]

esp, pStack ;

ebx, psco ;

[ebx.uliResult . LowPart ],

[ebx.uliResult.HighPart] ,

call or store/copy?

get entry point

get number of bytes

0 -> store entry point

copy data from entry point

store entry point

fastcall convention?

1st argument available?

eax = 1st argument

remove argument from list

2nd argument available?

edx = 2nd argument

remove argument from list

save stack pointer

no (more) arguments

copy argument stack

load 1st fastcall arg

call entry point

restore stack pointer

get output parameter block

eax ; store result (lo)

edx ; store result (hi)

LISTING 6-2. The Core Function of the Kernel Call Interface
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With the special case of accessing exported variables kept in mind, Listing 6-2
shouldn't be too difficult to understand. First, the 64-bit result buffer is cleared,
guaranteeing that unused bits are always zero. Next, the dArgumentBytes member
of the input data is compared with -9 to find out whether the client requested a func-
tion call or a data copying operation. The function call handler starts at the label
spyCall2 . After setting register ESI to the top of the argument stack by evaluating
the pArguments member, it is time to check the calling convention. If f astcall is
required and there is at least one 32-bit value on the stack, spyCall ( ) removes it and
stores it temporarily in EAX . If another 32-bit value is available, it is removed as well
and stored in EDX . Any remaining arguments remain on the stack. Meanwhile, the
label SpyCall3 is reached. Now the current top-of-stack address is saved to the local
variable pstack, and the argument stack (minus the arguments removed in the

fastcall case) is copied to the spy driver's stack using the fast i386 REP MOVSD
instruction. Note that the direction flag that determines whether MOVSD proceeds
upward or downward in memory can be assumed to be clear by default; that is, ESI
and EDI are incremented after each copying step. The only thing left to do before
executing the CALL instruction is to copy the first fastcall argument from its
preliminary location EAX to its final destination ECX. SpyCall ( ) blindly copies
EAX to ECX because this operation doesn't create havoc if the calling convention is

stdcall or cdecl. The MOV ECX, EAX instruction is so fast that executing it in
vain is much more efficient than jumping around it after testing the value of the
fFastCall member.

After the call to the function's entry point returns, SpyCall ( ) resets the stack
pointer to the location saved off to the variable pstack. This takes care of the differ-
ent stack cleanup policy of stdcall and fastcall versus cdecl. A cdecl
function returns to the caller, with the ESP register pointing to the top of the argu-
ment stack, whereas an stdcall or a fastcall function resets it to its original
address before the call. Forcing ESP to a previously backed-up address always cleans
up the stack properly, no matter which calling convention is used. The last few ASM
lines of SpyCall ( ) store the function result returned in EDX : EAX to the caller's
SPY_CALL_OUTPUT structure. No attempt is made to find out the correct result size.
This is unnecessary because the caller knows exactly how many valid result bits it can
expect. Copying too many bits does no harm—they are simply ignored by the caller.

One thing that should be noted about the code in Listing 6-2 is that it contains
absolutely no provisions for invalid arguments. It does not even check the validity
of the stack pointer itself. In kernel-mode, this is equivalent to playing with fire.
However, how could the spy driver verify all arguments? A 32-bit value on the stack
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could be a counter value, a bit-field array, or maybe a pointer. Only the caller and the
called target function know the argument semantics. The SpyCall ( ) function is a
simple pass-through layer that has no knowledge about the type of data it forwards.
Adding context-sensitive argument checking to this function would amount to
rewriting large parts of the operating system. Fortunately, Windows 2000 offers an
easy way out of this dilemma: Structured Exception Handling (SEH).

SEH is an easy-to-use framework that enables a program to catch exceptions
that would otherwise crash the system. An exception is an abnormal situation that
forces the CPU to stop whatever it is currently doing. Typical operations that gener-
ate exceptions are reading from or writing to linear addresses that don't map to
physical or paged-out memory, writing data to a code segment, attempting to execute
instructions in a data segment, or dividing a number by zero. Some exceptions are
benign. For example, accessing a memory location that has been swapped to a page-
file generates an exception that the system can handle by bringing the target page
back to physical memory. However, most exceptions are fatal, because the operating
system has no idea how to recover from the exception, so the system simply shuts
down. This reaction might seem harsh, but sometimes it is better to halt an imminent
catastrophe before things become worse. With SEH, the program that caused the
exception is granted a second chance. Using the Microsoft-specific C construct try
/ except, an arbitrary sequence of instructions can be guarded against exceptions.
If an exception puts the system into a critical state, a custom handler inside the pro-
gram is invoked, allowing the programmer to provide a more useful reaction than
just triggering a Blue Screen.

Obviously, SEH is also able to work around the parameter validation problem
of our spy device. Listing 6-3 shows a wrapper that puts the SpyCall ( } function into
a SEH frame. The guarded code is enclosed in the braces of the try clause. Of
course, not only the SpyCall ( ) instruction is protected; all subordinate code that is
executed in the context of the call is protected as well. If an exception is thrown, the
code inside the except clause is entered, as demanded by the filter expression
EXCEPTION_EXECUTE_HANDLER. The exception handler in Listing 6-3 is trivial. It just
causes SpyCallEx() to return the status code STATUS_ACCESS_VIOLATION instead of
STATUS_SUCCESS , which will in turn result in failure of the DeviceioControl ( ) call
on the user-mode side. No Blue Screen appears; the only problem remaining after the
exception is that the results of the called function are undefined, but this is something
the caller should be prepared for anyway.
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LISTING 6-3. Adding Structured Exception Handling to the Kernel Call Interface

Although SEH catches the most common parameter errors, you should not
expect it to be a remedy against any garbage a client application might possibly
deliver to a kernel API function. Some bad function arguments silently wreck the
system without causing an exception. For example, a function that copies a string
can easily overwrite vital parts of system memory if the destination buffer pointer is
set to the wrong address. This kind of bug might remain undetected for a long time,
until the system suddenly and unexpectedly breaks down when the program execu-
tion eventually rushes into the modified memory area. While testing the spy driver, I
occasionally managed to get the test application hung in its IOCTL call to the spy
device. The application didn't respond anymore and even refused to be removed from
memory. Even worse, the system became unable to shut down. This is almost as
annoying as a Blue Screen!

LINKING TO SYSTEM MODULES AT RUNTIME

After implementing the basic kernel call interface, the next problem is to resolve
symbolic function names to linear addresses required in the ASM CALL instruction in
Listing 6-2. This step is very important because you cannot be sure that the entry
points of the various kernel API functions remain unchanged over a longer period.
Whenever possible, functions should be called by name. Calling a system function by
address is certainly exceptional, typically restricted to functions that are not exported
by the target module. In most cases, it is more desirable to use the symbolic name,
which is provided somewhere in the module's export section.

NTSTATUS SpyCallEx ( PSPY_CALL_INPUT psci,

PSPY_CALL_OUTPUT psco)

NTSTATUS ns = STATUS_SUCCESS ;

try

{

SpyCall (psci, psco);

}

except (EXCEPTION_EXECUTE_HANDLER)

{

ns = STATUS_ACCESS_VIOLATION;

}

return ns;

}
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LOOKING UP NAMES EXPORTED BY A PE IMAGE

For a Win32 programmer, linking at runtime to a function exported by a DLL is an
everyday task. For example, if you want to write a DLL that uses the enhanced fea-
tures of Windows 2000, but also runs on legacy systems such as Windows 95 or 98
with reduced functionality, you should link to the special functions at runtime,
silently falling back to default behavior if these functions aren't available. In this
case, you would just call GetModuleHandle ( ) if the DLL is already in memory and
is guaranteed to stay there long enough, or LoadLibrary ( ) if it has to be loaded or
must be protected against premature unloading. The returned module handle can in
turn be used in a sequence of GetProcAddress ( ) calls that retrieve the entry points
of all DLL functions the application wants to call. So it seems only logical to try the
same with kernel functions exported by ntoskrnl. exe, hal. dll, or other system
modules. However, neither of the above functions works in this situation! Get
ModuleHandle ( ) reports that no such module is loaded, and GetProcAddress ( )
returns NULL all the time if you pass in a hard-coded module handle, for example,
(HMODULE) 0x80400000 for ntoskrni.exe. On second thought, this seems reason-
able; these functions are designed for Win32 components that run in user-mode and
therefore are loaded into the lower half of the 4-GB linear address space. Why should
they care about kernel-mode components that are out of reach for Win32 applica-
tions anyway?

If the Win32 subsystem is ignorant about the modules in kernel memory, the
next logical step is to let a kernel-mode driver do the work—the usual strategy
applied throughout this book. The undocumented MmGetSystemRoutineAddress ( )
function, exported by ntoskrnl. exe, obviously does the job, but, unfortunately, it
isn't available on Windows NT 4.0. Because the main premise of this book's sample
code is to remain compatible with the Windows 2000 predecessor to the greatest
extent possible, I chose to reject this special feature looking up the function entries
without the help of the system. The Windows 2000 runtime library provides some
limited support for image file parsing, such as the undocumented RtlimageNt
Header ( ) function, whose prototype is shown in Listing 6-4. This simple function
takes the base address of a module image mapped to linear memory (i.e., a pointer to
its IMAGE_DOS_HEADER structure, as defined in the Win32 SDK header file winnt. h)
and returns a pointer to the Portable PE header referenced by the DOS header's
e_lf anew member at file offset 0x3c. This function must be used with care, because
it performs only minimal sanity checks on the input pointer. It tests it for NULL
and OXFFFFFFFF and verifies that the memory block it points to contains the MZ
signature at the beginning. This means that if you pass in a bogus address that is nei-
ther NULL nor OXFFFFFFFF, a Blue Screen will be triggered immediately when Rtl
imageNtHeader ( ) reads the DOS header signature. Oddly, Windows NT 4.0 runs
this code in an SEH frame, whereas Windows 2000 doesn't.
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LISTING 6-4. The Prototype o/"RtlImageNtHeader()

Listing 6-4 shows that RtlimageNtHeader ( ) returns a pointer to an IMAGE_
NT_HEADERS structure. The entire set of PE file structures is defined in winnt. h.
Unfortunately, the DDK header files do not have them, so it is necessary to add
these definitions manually. My spy driver contains the structures it needs for symbol
lookup (Listing 6-5) in its header file w2k_spy.h. IMAGE_NT_HEADERS is simply a
concatenation of the PE signature % V P E \ O \ O , " an IMAGE_FILE_HEADER, and an
IMAGE_OPTIONAL_HEADER. The latter ends with an array of IMAGE_DATA_DIRECTORY
structures providing fast lookup of file sections with special duties. The first array
entry, identified by the index IMAGE_DIRECTORY_ENTRY_EXPORT defined at the very
beginning of Listing 6-5, points to the export section that contains the names and
addresses of the functions exported by the module. This is the section where we must
look up the function names passed to the kernel call interface.

#define IMAGE_DIRECTORY_ENTRY_EXPORT 0

(tdefine IMAGE_DIRECTORY_ENTRY_IMPORT 1

#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2

tfdefine IMAGE_DIRECTORY_ENTRY_EXCEPTION 3

tdefine IMAGE_DIRECTORY_ENTRY_SECURITY 4

ftdefine IMAGE_DIRECTORY_ENTRY_BASERELOC 5

ttdefine IMAGE_DIRECTORY_ENTRY_DEBUG 6

tdefine IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7

#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8

#define IMAGE_DIRECTORY_ENTRY_TLS 9

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10

#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11

ftdefine IMAGE_DIRECTORY_ENTRY_IAT 12

tdefine IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13

#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

/ I

typedef struct _IMAGE_FILE__HEADER

{

WORD Machine ;

WORD NumberOf Sections;

DWORD TimeDateStamp;

DWORD PointerToSymbolTable;

DWORD NumberOf Symbols ;

WORD SizeOfOptionalHeader;

WORD Characteristics;

}

IMA6E_FILE_HEADER, *PIMAGE_FILE_HEADER;

(continued)

PIMAGE_NT_HEADERS NTAPI RtlimageNtHeader (PVOID Base) ;
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//

typedef struct _IMAGE_DATA_DIRECTORY

{
DWORD VirtualAddress;

DWORD Size;

}
IMAGE_DATA_DIRECTORY , * PIMAGE_DATA_DIRECTORY ;

typedef struct _IMAGE_OPTIONAL_HEADER

(
WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;

DWORD SizeOf Code;

DWORD SizeOflnitializedData;

DWORD SizeOfUninitializedData;

DWORD AddressOfEntryPoint;

DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase ;

DWORD SectionAlignment ;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;

WORD MinorOperatingSystemVersion;

WORD MajorlmageVersion;

WORD MinorlmageVersion;

WORD MajorSubsystemVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;

DWORD SizeOflmage;

DWORD SizeOf Headers;

DWORD Checksum;

WORD Subsystem;

WORD DllCharacteristics;

DWORD SizeOfStackReserve;

DWORD SizeOf StackCoiranit;

DWORD SizeOfHeapReserve;

DWORD SizeOf HeapCoiranit;

DWORD LoaderFlags ;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory

[ IMAGE_NUMBEROF_DIRECTORY_ENTRIES ] ;

}
IMAGE_OPTIONAL_HEADER , * PIMAGE_OPTIONAL_HEADER ;

//

typedef struct _IMAGE_NT_HEADERS

{



LINKING TO SYSTEM MODULES AT RUNTIME 343

LISTING 6-5. A Subset of the Basic PE File Structures

The layout of the export section inside a PE file is governed by the IMAGE_
EXPORT_DIRECTORY structure, found at the bottom of Listing 6-5. Basically, it
consists of a header composed of the members of the IMAGE_EXPORT_DIRECTORY,
plus three variable-length arrays and a sequence of zero-terminated ANSI strings.
An export item is usually identified by the following three parameters:

1. A zero-terminated symbolic name, consisting of 8-bit ANSI characters

2. A 16-bit ordinal number

3. A 32-bit target offset relative to the beginning of the file image

The export mechanism is not restricted to functions. It is merely a means to
assign a symbol to an address inside the PE image. For functions, the symbol is
attached to its entry point. For public variables, the symbol references its base
address. The assignments are achieved by filling three parallel arrays with the charac-
teristic parameters of the symbols. In Figure 6-1, these arrays are referred to as Array
of Target Addresses, Array of Name Offsets, and Array of Ordinal Numbers. They
correspond to the IMAGE_EXPORT_DIRECTORY members AddressofFunctions,
AddressOfNames, and AddressOfNameOrdinals, respectively, which supply the

DWORD Signature;

IMAGE_FILE_HEADER FileHeader;

IMAGE_OPTIONAL_HEADER OptionalHeader ;

}

IMAGE_NT_HEADERS , * PIMAGE JJT_HEADERS ;

//

typedef struct _IMAGE_EXPORT_DIRECTORY

{

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Name;

DWORD Base;

DWORD NumberOf Functions;

DWORD NumberOf Names ;

DWORD Addressof Functions ;

DWORD AddressOfNames;

DWORD AddressOfNameOrdinals;

}

IMAGE_EXPORT_DIRECTORY , * PIMAGE_EXPORT_DIRECTORY ;
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array offsets relative to the image base address. The Name member contains the offset
of a symbol string that names the PE file itself. If the executable file is renamed, this
entry can be used to retrieve its original name. Figure 6-1 is just a common example
of an export section arrangement—the order of the arrays and the symbol string sub-
section is not fixed. A PE file writer can shuffle them around to its liking, as long as
the members of the IMAGE_EXPORT_DIRECTORY reference them correctly. The same is
true for the string referenced by the Name member. Although it is usually located at
the beginning of the name string sequence, this is not a requirement. Never rely on
assumptions about the locations of the variable portions of the export section.

The NumberOf Functions and NumberOfNames members of the
IMAGE_EXPORT_DIRECTORY specify the number of entries in the Addressof Functions
and AddressOfNames arrays, respectively. No count is specified for the Addressof
NameOrdinals array, because it always contains as many entries as the Addressof
Names array. The maintenance of separate entry counts for addresses and names
suggests that it might be possible to build executables that export unnamed
addresses. I have never seen such a file, but it is a good idea to keep this possibility in
mind while accessing the arrays. Again, don't rely on assumptions!

The process of looking up the address of an exported function or variable by
name requires the following steps, given a module base address (i.e., an HMODULE in
Win32 lingo):

1. Call RtlimageNtHeader ( ) with the module's base address to get at its
IMAGE_NT_HEADERS . If this function returns NULL , the address does not
reference a valid PE image.

2. Use the constant IMAGE_DIRECTORY_ENTRY_EXPORT as an index into the
DataDirectory of the OptionalHeader member to find out the offset of
the export section.

3. Locate the name array inside the export section by evaluating the
AddressOfNames member of the IMAGE_EXPORT_DIRECTORY header.

4. Enumerate the names until a match is found or the end of the array
indicated by NumberOf Names is reached.

5. If a matching name is available, use the name array index to read the
associated ordinal number from the array of ordinals. The values in this
array are zero-based, so you can use the name's ordinal immediately as an
index into the address array.

6. Add the module's base address to the offset retrieved from the address array.
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FIGURE 6-1. Typical Layout of a PE File's Export Section

This sequence of steps appears fairly simple. However, it contains one
unknown quantity: the module base address. Whereas the above actions basically
reflect the behavior of the Win32 GetProcAddress ( } function, finding the module
address means mimicking the behavior of GetModuleHandle ( ) . If you scan the
function names exported by ntoskrnl. exe, you won't be able to find anything
that sounds even remotely like a function that might do the trick. The reason
is that the Windows 2000 kernel provides a comprehensive function for this and
many other tasks that involve access to internal system data. This function is
called NtQuerySystemlnf ormation ( ) .
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LOCATING SYSTEM MODULES AND DRIVERS IN MEMORY

NtQuerySysteminf ormation ( ) is one of the most essential API functions for Windows
2000 system programmers, and there is hardly any built-in administration utility that
does not make use of it—yet you won't find it mentioned anywhere in the Device
Driver Kit (DDK) documentation. There is a single mention in the comments to the
CONFIGURATION_INFORMATION structure inside ntddk.h, proving that this function
exists, but that's it. If an "undocumentedness coefficient" would exist that were defined
as the usefulness of a function divided by its frequency of occurrence in the Microsoft
documentation, NtQuerySysteminf ormation ( ) would certainly be ranked at the top.
Along with many other wonderful things, this function can return a list of loaded sys-
tem modules, including all system core components and kernel-mode drivers.

The spy driver source files contain the bare minimum of code and type defini-
tions required to obtain the loaded-module list from NtQuerySysteminf ormation ( ) .
From the caller's point of view, it is a simple function. It expects four arguments, as
shown in Listing 6-6. The Systeminf ormationciass is a numeric zero-based value
that specifies the type of information to be queried. The information—which can be
of variable length, depending on the information class—is copied to the System
information buffer supplied by the caller. The buffer length is specified by the
Systeminf ormationLength argument. On success, the actual number of bytes copied
to the buffer is written to the variable pointed to by ReturnLength. The problem
with this function is that it doesn't report how many bytes it wanted to copy if it
finds out that the buffer is too small. Thus, the caller must apply a trial-and-error
heuristic until the returned status code changes from STATUS_INFO_LENGTH_MISMATCH
(OxC0000004) to STATUS_SUCCESS (OxOOOOOOOO).

Listing 6-6 doesn't show NtQuerySysteminf ormation ( ) itself, but rather its
twin, ZwQuerySysteminf ormation ( ) , which is identical except for the function name
prefix. You might recall from Chapter 2 that the Nt * and zw* variants of the Native
API functions work exactly the same if called from user-mode. The interface module
ntdll. dll routes each pair through the same INT 2Eh stub. In kernel-mode, however,
things are different. In this case, Native API calls are handled by ntoskrnl. exe, using
different execution paths for Nt* and zw* functions. The zw* variants are again routed
through the INT 2Eh interrupt gate, exactly as ntdll. dll. The Nt* variants, however,
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LISTING 6-6. The Prototype 0/"NtQuerySystemInf ormation ( )

NTSTATUS NTAPI ZwQuerySysteminf ormation {DWORD Systeminf ormationClass,

PVOID Systeminf ormation,

DWORD Systeminf ormationLength,

PDWORD ReturnLength} ;
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bypass this gate. In the glossary of the DDK documentation, Microsoft provides the
following description for the zw* function set (Microsoft 2000f):

"A set of entry points parallel to the executive's system services. A call to a
ZwXxx entry point from kernel-mode code (including calls from other system
services or drivers) supplies the corresponding system service, except the caller's
access rights and the arguments to the Z,w 'alias' are not checked for validity,
and the call does not cause the previous mode to be set to user mode."
(Windows 2000 DDK \ Kernel-Mode Drivers \ Design Guide \ Kernel-Mode
Glossary \ Z \ Zw routines.)

The last passage about the "previous mode" is important. Peter G. Viscarola
and W. Anthony Mason put it in different, more clarifying words:

"Although either variant of the function may typically be called from Kernel
mode, the Zw variant is used in place of the Nt version to cause the previous
mode (and hence the mode in which the request was issued) to be set to Kernel
mode." (Viscarola and Mason 1999, p. 18).

The side effect of this previous-mode handling is that calling NtQuerySystem
information ( ) from a kernel-mode driver without any additional provisions returns
an error status of STATUS_ACCESS_VIOLATION (Oxcoooooos) , whereas zwQuery
systeminformation ( ) succeeds or at least returns STATUS_INFO_LENGTH_MISMATCH.

In Listing 6-7, the constant and type definitions required for the system
Moduleinf ormation class are shown. The list of loaded modules is returned in the
form of a MODULE_LIST structure, composed of a 32-bit module count and an array
ofMODULE_INFO structures, one for each module.

#define SystemModulelnf ormation 11 // SYSTEMINFOCLASS

/ / — —

typedef struct _MODULE_INFO

{

DWORD dReservedl;

DWORD dReserved2;

PVOID pBase;

DWORD dSize;

DWORD dFlags;

WORD wlndex;

WORD wRank;

WORD wLoadCount; (continued)
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LISTING 6-7. SystemModulelnformation Definitions

Now everything is set up for a ZwQuerySysteminf ormation ( ) call. Listing 6-£
contains the spyModuleList ( ) function that implements the usual trial-and-error
loop required for this API function, along with two simple memory management
functions, SpyMemoryCreate ( } and SpyMemoryDestroy ( ) , that internally call the
Windows 2000 Executive functions ExAiiocatePoolwithTag ( ) and ExFreePool ( )
The code starts out with a 4,096-byte buffer and doubles its size if the status code
says STATUS_INFO_LENGTH_MISMATCH. All other status codes break the loop. The
optional arguments pdData and pns provide more information about the returned
value. If SpyModuleList ( ) yields NULL, indicating failure, the NTSTATUS buffer
pointed to by pns receives an error status code and *pdData is set to zero. On suc-
cess, * pdData specifies the number of bytes copied to the buffer, and *pns reports
STATUS SUCCESS.

WORD wNameOffset;

BYTE abPath [MAXIMUM_FILENAME_LENGTH] ;

}

MODULE_INFO, * PMODULE_INFO , **PPMODULE_INFO;

#define MODULE_INFO_ sizeof (MODULE_INFO)

typedef struct _MODULE LIST

{
DWORD dModules;

MODULE_INFO aModules [];

}
MODULE_LIST, *PMODULE_LIST, * *PPMODULE_LIST;

#define MODULE_LIST_ sizeof (MODULE_LIST)

#define SPY_TAG ' >YPS ' // SPY> read backwards

PVOID SpyMemoryCreate (DWORD dSize)

{
return ExAiiocatePoolwithTag {PagedPool, max (dSize, 1),

SPY_TAG) ;

}

//
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LISTING 6-8. Obtaining a module list from ZwQuerySystemlnf ormation ( )

The remaining actions to be taken to retrieve the base address of a given
module are quite simple. Listing 6-9 defines two more functions: spyModuleFindt)
is an enhanced spyModuieList ( ) wrapper that scans the module list returned by
ZwQuerySystemlnf ormation ( ) for a specified module file name, and spyModule
Base ( ) in turn wraps spyModuieFind ( ) , extracting just the base address of the mod-
ule in question from its MODULE_INFO and discarding the rest. The spyModuleHeader ( )
function concluding Listing 6-9 calls spyModuleBase ( ) and passes the result to
RtlimageNtHeader ( ) . This function provides the first step to the export section

PVOID SpyMemoryDestroy (PVOID pData)

if (pData != NULL) ExFreePool (pData) ;
return NULL;

}

//

PMODULE_LIST SpyModuieList (PDWORD pdData,

PNTSTATUS pns)

{

DWORD dSize;

DWORD dData = 0;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PMODULE_LIST pml = NULL;

for (dSize = PAGE_SIZE; (pml == NULL) && dSize; dSize «= 1)

{
if ( (pml = SpyMemoryCreate (dSize) ) == NULL)

{
ns = STATUS_NO_MEMORY;

break;

}
ns = ZwQuerySystemlnf ormation (SystemModulelnformation,

pml, dSize, &dData) ;

if (ns != STATUS_SUCCESS)

{
pml = SpyMemoryDestroy (pml);

dData = 0;

if (ns != STATUS_INFO_LENGTH_MISMATCH) break;

}
}

if (pdData != NULL) *pdData = dData;

if (pns != NULL) *pns = ns;

return pml;
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LISTING 6-8. Obtaining a module list from ZwQuerySystemlnf ormation ( )

The remaining actions to be taken to retrieve the base address of a given
module are quite simple. Listing 6-9 defines two more functions: SpyModuleFind()
is an enhanced SpyModuieList ( ) wrapper that scans the module list returned by
ZwQuerySystemlnf ormation ( ) for a specified module file name, and SpyModule
Base ( ) in turn wraps spyModuleFind ( ) , extracting just the base address of the mod-
ule in question from its MODULE_INFO and discarding the rest. The SpyModuieHeader ( )
function concluding Listing 6-9 calls SpyModuleBase ( ) and passes the result to
RtlimageNtHeader ( ) . This function provides the first step to the export section
of a loaded module.

PVOID SpyMemoryDestroy (PVOID pData)

{
if (pData != NULL) ExFreePool (pData) ;

return NULL;

}

1 1 -----

PMODULE_LIST SpyModuieList ( PDWORD pdData,

PNTSTATUS pns)

DWORD dSize;

DWORD dData = 0;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PMODULE__LIST pml = NULL;

for (dSize = PAGE_SIZE; (pml == NULL) && dSize; dSize «= 1)

{
if ( (pml = SpyMemoryCreate (dSize) ) == NULL)

{
ns = STATUS_NO_MEMORY;

break;

}
ns = ZwQuerySystemlnf ormation ( SystemModulelnf ormation,

pml, dSize, SdData) ;

if (ns != STATUS_SUCCESS)

{
pml = SpyMemoryDestroy (pml) ;

dData = 0;

if (ns != STATUS_INFO_LENGTH_MISMATCH) break;

}

}
if (pdData != NULL) *pdData = dData;

if (pns != NULL) *pns = ns;

return pml ;

}
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PMODULE_LIST SpyModuleFind (PBYTE pbModule,

PDWORD pdlndex,

PNTSTATUS pns)

{

DWORD i ;

DWORD dlndex = -1;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PMODULE_LIST pml = NULL;

if ((pml = SpyModuleList (NULL, &ns) ) != NULL)

{
for (i = 0 ; i < pml->dModules ; i++)

{
if (!_stricmp (pml->aModules [il.abPath +

pml->aModules [i] .wNameOf f set ,

pbModule) )

{
dlndex = i ;

break;

}

}
if (dlndex == -1)

{
pml = SpyMemoryDestroy (pml);

ns = STATUS_NO_SUCH_FILE;

}

}
if (pdlndex != NULL) *pdlndex = dlndex;

if (pns != NULL) *pns = ns;

return pml;

}

//

PVOID SpyModuleBase (PBYTE pbModule,

PNTSTATUS pns)

{
PMODULE_LIST pml ;

DWORD dlndex;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PVOID pBase = NULL;

if ((pml = SpyModuleFind (pbModule, kdlndex, Stns) ) != NULL)

{
pBase = pml->aModules [dlndex] .pBase;

SpyMemoryDestroy (pml) ;

}
if (pns != NULL) *pns = ns;

return pBase;

}

/ /
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LISTING 6-9. Looking Up Information About a Specified Module

RESOLVING SYMBOLS OF EXPORTED FUNCTIONS AND VARIABLES
The previous subsections explained how a PE file image is searched for a symbolic
name of an exported function or variable and how the base address of a loaded
system module or driver can be determined. Now it is time to put the loose ends
together. Essentially, looking up a symbol exported by a given module is a three-step
procedure:

1. Find out the linear base address of the module.

2. Search the export section of this module for the symbol.

3. Add the symbol offset to the module address.

The first step was discussed at some length above. Listing 6-10 provides
the implementation details concerning the remaining steps. spyModuleExport ( )
expects a file name, such as ntoskrnl.exe, hal.dll, ntfs.sys, or similar, for the
pbModule argument, and returns a pointer to the module's IMAGE_EXPORT_DIRECTORY
structure, provided that the module is present in kernel memory and features an
export section. The optional ppBase and pns arguments return additional informa-
tion: *ppBase returns the module base address on success, and *pns reports a diag-
nostic error status on failure. First, SpyModuleExport ( ) calls SpyModuleHeader ( )
to locate the IMAGE_NT_HEADERS ,- then it evaluates the PE DataDirectory that con-
tains the characteristic parameters of the export section in its first slot. If the

PIMAGE_NT_HEADERS SpyModuleHeader (PBYTE pbModule,

PPVOID ppBase,

PNTSTATUS pns)

{

PVOID pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PIMAGE_NT_HEADERS pinh = NULL;

if ( ( (pBase = SpyModuleBase (pbModule, tns)) != NULL) &&

( (pinh = RtllmageNtHeader (pBase) ) == NULL) )

{
ns = STATUS_INVALID_IMAGE_FORMAT;

}

if (ppBase != NULL) *ppBase = pBase;

if (pns != NULL) *pns = ns;

return pinh;

}
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virtuaiAddress member of this IMAGE_DATA_DIRECTORY entry (cf. Listing 6-5) is
non-NULL, and the size member states a reasonable value, the PE image contains
an export section. In this case, spyModuleExport ( ) uses the PTR_ADD (} macro
included at the top of Listing 6-10 to add the module base address to the virtual
Address, yielding the absolute linear address of the IMAGE_EXPORT_DIRECTORY . Oth-
erwise, it returns NULL and sets the status code to STATUS_DATA_ERROR ( O X C O O O O O S E ) .

#define PTR_ADD (_base,_of fset) \

((PVOID) ( (PBYTE) (_base) + (DWORD) (_offset»)

//

PIMAGE_EXPORT_DIRECTORY SpyModuleExport (PBYTE pbModule,

PPVOID ppBase,

PNTSTATUS pns)

{

PIMAGE_NT_HEADERS pinh;

PIMAGE_DATA_DIRECTORY pidd;

PVOID pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PIMAGE_EXPORT_DIRECTORY pied = NULL;

if ((pinh = SpyModuleHeader (pbModule, &pBase, Sins) ) != NULL)

{
pidd = pinh->OptionalHeader.DataDirectory

+ IMAGE_DIRECTORY_ENTRY_EXPORT;

if (pidd->VirtualAddress &&

(pidd->Size >= IMAGE_EXPORT_DIRECTORY_ ) )

{
pied = PTR_ADD (pBase, pidd->VirtualAddress) ;

}
else

{
ns = STATUS_DATA_ERROR;

}
if (ppBase != NULL) *ppBase = pBase;

if (pns != NULL) *pns = ns;

return pied;

}
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LISTING 6-10. Looking Up Symbols in a Module's Export Section

II

PVOID SpyModuleSymbol (PBYTE pbModule,

PBYTE pbName ,

PPVOID ppBase,

PNTSTATUS pns)

{

PIMAGE_EXPORT_DIRECTORY pied;

PDWORD pdNames, pdFunctions;

PWORD pwOrdinals;

DWORD i , j ;

PVOID pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PVOID pAddress = NULL;

if ((pied = SpyModuleExport (pbModule, kpBase, &ns>) != NULL)

{L

pdNames = PTR_ADD (pBase, pied->AddressOfNames ) ;

pdFunctions = PTR_ADD (pBase, pied->AddressOf Functions };

pwOrdinals - PTR_ADD {pBase, pied->AddressOfNameOrdinals) ;

for ( i = 0 ; i < pied->NumberOf Names; i++)

{

j = pwOrdinals [i] ;

if (Istrcmp (PTR_ADD (pBase, pdNames [i]), pbName))

{

if (j < pied->NumberOf Functions)

{
pAddress = PTR_ADD (pBase, pdFunctions [j]);

break;

}

}
if (pAddress == NULL)

{

ns = STATUS_PROCEDURE_NOT_FOUND ;

)

}

if (ppBase != NULL) *ppBase = pBase;

if (pns != NULL) *pns = ns;

return pAddress;

)
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SpyModuleSymbol ( ) does the final work. Here you find the code that accesses
the various items shown in Figure 6-1. After requesting an IMAGE_EXPORT_DIRECTORY
pointer from spyModuleExport ( ) , the linear addresses of the address, name, and
ordinal arrays are determined, again with the help of the PTR_ADD ( ) macro. Fortu-
nately, the PE file format specifies pointers to its internal data structures consistently
as offsets from the base address of the image, so the PTR_ADD ( ) macro constitutes a
convenient general-purpose shortcut whenever a linear address must be computed
from such an offset. It is important to note the role of the ordinal number array dur-
ing address lookup. If the symbol has been found in the name array, the variable i
contains the zero-based index of the array entry pointing to the symbol name. This
value cannot be used as is to retrieve the associated address—it must be converted by
means of the ordinal number array. The code line j = pwordinals [ i ] ; does the
trick. The resulting zero-based ordinal number j is the index that finally selects the
correct address. Note that ordinal numbers are 16-bit quantities, whereas the other
two arrays contain 32-bit numbers. If the symbol passed to SpyModuleSymbol ( ) as
its pbName argument cannot be resolved, a NULL pointer is returned, along with a
status code of STATUS_PROCEDURE_NOT_FOUND ( O X C O O O O O T A ) .

Although it looks like SpyModuleSymbol ( ) provides everything we need to
call kernel functions by name, I'm putting one more wrapper around it. Listing 6-11
shows the ultimate achievement: The function spyModuleSymbolEx ( ) takes a single
string composed of a module/symbol pair in the form "module! symbol" and resolves
it with the help of SpyModuleSymbol ( ) . The largest part of the code is busy parsing
the input string into a module name and a symbol. If no "!" separator is found, Spy
ModuleSymbolEx ( ) assumes that ntoskrnl. exe is the target module, because this is
certainly the most frequently used option.

PVOID SpyModuleSymbolEx (PBYTE pbSymbol,

PPVOID ppBase,

PNTSTATUS pns)

{
DWORD i ;

BYTE abModule [MAXIMUM_FILENAME_LENGTH] = "ntoskrnl.exe";

PBYTE pbName = pbSymbol;

PVOID pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PVOID pAddreSS = NULL;

for (i = 0; pbSymbol [i] && (pbSymbol [i] != '!'); i + + ) ;

if (pbSymbol [1++])

{
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LISTING 6-11. A Powerful Symbol Lookup Function

THE BRIDGE TO USER-MODE

Now the evolution of the kernel call interface will slowly come to an end—at least as
far as kernel-mode is concerned. Let me sum up what we have so far:

• A function named SpyCallEx ( ) (Listing 6-3) that receives a
SPY_CALL_INPUT control block containing a target address and some
function arguments. It calls the specified address and returns any results in
a SPY_CALL_OUTPUT control block.

• A mechanism to look up exported system functions and variables by
name, represented by the function spyModuleSymbolEx ( ) (Listing 6-11).

So the last question is: "How do we make this stuff accessible to user-mode
applications?" The answer is, of course: "Via Device I/O Control," as usual. To this
end, the spy device provides a couple of IOCTL functions, summarized in Table 6-1.
This is yet another excerpt from Table 4-2 in Chapter 4, which is a complete sum-
mary of all IOCTL functions offered by w2k_spy. sys. Listing 6-12 excerpts the rele-
vant portions of the SpyDispatcher (} function, which is shown in Listing 4-7 in
Chapter 4.

if (i <= MAXIMUM_FILENAME_LENGTH)

{
strcpyn (abModule, pbSymbol, i);

pbName = pbSymbol -t- i;

}
else

{
pbName = NULL;

}
if (pbName \= NULL)

{
pAddress = SpyModuleSymbol (abModule, pbName, kpBase, &ns) ;

}
if (ppBase != NULL) *ppBase = pBase;

if {pns != NULL) *pns = ns;

return pAddress;

}
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The last row in Table 6-1 names the SPY_IO_CALL function that will serve as the
bridge to user-mode. The remaining functions are there just for fun. I thought that
once the spy device has access to this sort of valuable information, it would be nice to
make it available to applications as well. As in Chapters 4 and 5, short descriptions
of all newly introduced IOCTL functions follow.

TABLE 6-1. IOCTL Functions Associated with the Kernel Call Interface

FUNCTION NAME

SPY_IO_MODULE_INFO

SPY_IO_PE_HEADER

SPY_IO_PE_EXPORT

SPY_IO_PE_SYMBOL

SPY_IO_CALL

ID

19

20

21

22

23

IOCTL CODE

Ox8000604C

0x80006050

0x80006054

0x80006058

Ox8000E05C

DESCRIPTION

Returns information about loaded
system modules

Returns IMAGE_NT_HEADERS data

Returns IMAGE_EXPORT_
DIRECTORY data

Returns the address of an exported
system symbol

Calls a function inside a loaded
module

NTSTATUS SpyDispatcher ( PDEVICE_CONTEXT pDeviceContext ,

DWORD dCode,

PVOID plnput ,

DWORD dlnput,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

{

SPY_MEMORY_BLOCK smb;

SPY_PAGE_ENTRY spe ;

S PY_CALL_INPUT s c i ;

PHYSICAL_ADDRESS pa;

DWORD dValue, dCount;

BOOL fReset, fPause, fFilter, fLine;

PVOID pAddress;

PBYTE pbName ;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext~>kmDispatch) ;

*pdlnfo = 0;

switch {dCode)

{
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II
// unrelated IOCTL functions omitted (cf. Listing 4-7)

case SPY_IO_MODULE_INFO :
{

if { (ns = SpylnputPointer t&pbName,

plnput, dlnput))

== STATUS_SUCCESS)

{

ns = SpyOutputModulelnfo (pbName,

pOutput, dOutput, pdlnfo);

}

break;

}

case SPY_IO_PE_HEADER:

{

if ( (ns = SpylnputPointer (kpAddress,

plnput, dlnput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeHeader (pAddress,

pOutput, dOutput, pdlnfo) ;

}

break;

}
case SPY_IO_PE_EXPORT :

(
if ( (ns = SpylnputPointer (kpAddress,

plnput, dlnput))

== STATUS_SUCCESS)

{

ns = SpyOutputPeExport (pAddress,

pOutput, dOutput, pdlnfo);

}
break ;

}

case SPY_IO_PE_SYMBOL :

{
if ( (ns = SpylnputPointer (&pbName,

plnput, dlnput) )

== STATUS_SUCCESS)

{

ns = SpyOutputPeSymbol (pbName,

pOutput, dOutput, pdlnfo);

}
break;

)
case SPY_IO_CALL:

{

(continued)
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LISTING 6-12. Excerpt from the Spy Driver's Hook Command Dispatcher

THE IOCTL FUNCTION SPY_IO_MODULE_INFO

The IOCTL SPY_IO_MODULE_INFO function receives a module base address and
sends back a SPY_MODULE_INFO structure if the address points to a valid PE image.
The definition of this structure plus the related spyOutputModuleinf o ( } helper
function called by the spyDispatcher ( ) in Listing 6-12 are shown in Listing 6-13.
SpyOutputModuleinf o ( ) is based on SpyModuleFind ( ) (Listing 6-9), which returns
MODULE_INFO data obtained from zwQuerySysteminf ormation ( ) . The MODULE_INFO
is converted to SPY_MODULE_INFO format and sent off to the caller.

if ( (ns = SpylnputBinary (&sci, SPY_CALL_INPUT_,

plnput, dlnput))

== STATUS_SUCCESS)

(

ns = SpyOutputCall (&sci,

pOutput, dOutput, pdlnfo);

}
break ;

}

// unrelated IOCTL functions omitted (cf. Listing 4-7)

}
MUTEX_RELEASE (pDeviceContext->kmDispatch) ;

return ns ;

}

typedef struct _SPY_MODULE_INFO

{
PVOID pBase;

DWORD dSize;

DWORD dFlags;

DWORD dlndex;

DWORD dLoadCount;

DWORD dNameOffset;

BYTE abPath [MAXIMUM_FILENAME_LENGTH] ;

}
SPY_MODULE_INFO, *PSPY_MODULE_INFO, **PPSPY_MODULE_INFO;

#define SPY_MODULE_INFO_ sizeof (SPY_MODULE_INFO)
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LISTING 6-13. Implementation O/SPY_IO_MODULE_INFO

THE IOCTL FUNCTION SPY_IO_PE_HEADER

The IOCTL SPY_IO_PE_HEADER function is merely an IOCTL wrapper for the
ntoskrnl. exe API function RtlimageNtHeader ( ) , as Listing 6-14 proves. Like
SPY_IO_MODULE_INFO, it expects a module base address. The returned data is the
module's IMAGE_NT_HEADERS structure.

NTSTATUS SpyOutputModulelnfo (PBYTE pbModule,

PVOID pOutput ,

DWORD dOutput ,

PDWORD pdlnfo)

SPY_MODULE_INFO smi;

PMODULE_LIST pml ;

PMODULE_INFO pmi ;

DWORD dlndex ;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pbModule != NULL) && SpyMemoryTestAddress (pbModule) &&

((pml = SpyModuleFind (pbModule, kdlndex, Sens)) ! = NULL))

{
pmi - pml->aModules + dlndex;

smi.pBase = pmi->pBase;

smi.dSize = pmi->dSize;

smi.dFlags = pmi->dFlags;

smi. dlndex = pmi->wlndex;

smi . dLoadCount - pmi->wLoadCount ;

smi . dNameOf f set - pmi->wNameOf f set;

strcpyn (smi.abPath, pmi->abPath, MAXIMUM_FILENAME_LENGTH) ;

ns = SpyOutputBinary (&smi, SPY_MODULE_INFO_,

pOutput, dOutput, pdlnfo);

SpyMemoryDestroy (pml) ;

}
return ns ;

}

NTSTATUS SpyOutputPeHeader (PVOID pBase,

PVOID pOutput,

DWORD dOutput,

PDWORD pdlnfo)

(continued)
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LISTING 6-14. Implementation O/'SPY_IO_PE_HEADER

THE IOCTL FUNCTION SPY_IO_PE_EXPORT

The IOCTL SPY_IO_PE_EXPORT function is more interesting than the previous one.
In short, it returns the IMAGE_EXPORT_DIRECTORY associated with a module base
address to the caller. A close look at its implementation in Listing 6-15 reveals
a strong similarity to the SpyModuleExport ( ) function in Listing 6-10. However,
SpyOutputPeExport ( ) does a lot of additional work. The reason for this is that the
IMAGE_EXPORT_DIRECTORY contains relative addresses throughout, as explained earlier.
The caller can't make much use of these offsets after the data has been copied to a sepa-
rate buffer, because the base address to which the offsets relate has changed. Without
additional address information from the PE header, it is impossible to compute a new
matching base address. To save the caller from this excess work, SpyOutputPeExport ( )
converts all offsets that point into the export section to offsets relative to the beginning
of this section by subtracting its virtualAddress specified in the IMAGE_DATA_
DIRECTORY . The entries in the address array must be handled differently because
they refer to other sections in the PE image. Therefore, SpyOutputPeExport ( )
relocates them to absolute linear addresses by adding the image base address.

{
PIMAGE_NT_HEADERS pinh;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ( (pBase != NULL) && SpyMemoryTestAddress (pBase) &&

((pinh = RtllmageNtHeader (pBase) ) != NULL))

{
ns = SpyOutputBinary (pinh, IMAGE_NT_HEADERS_,

pOutput, dOutput, pdlnfo);

)
return ns ;

}

NTSTATUS SpyOutputPeExport (PVOID pBase,

PVOID pOutput ,

DWORD dOutput,

PDWORD pdlnfo)

{

PIMAGE_NT_HEADERS pinh;

PIMAGE_DATA_DIRECTORY pidd;

PIMAGE_EXPORT_DIRECTORY pied;

PVOID pData;

DWORD dData, dBias, i;
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LISTING 6-15. Implementation O/SPY_IO_PE_EXPORT

PDWORD pdData;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ( (pBase != NULL) && SpyMemoryTestAddress (pBase) &&

( (pinh = RtllmageNtHeader (pBase) ) != NULL))

{

pidd = pinh->OptionalHeader . DataDirectory

+ IMAGE_DIRECTORY_ENTRY_EXPORT ;

if (pidd->VirtualAddress &&

(pidd->Size >= IMAGE_EXPORT_DIRECTORY_) )

{

pData = (PBYTE) pBase + pidd->VirtualAddress;

dData = pidd->Size;

if ( (ns = SpyOutputBinary {pData, dData,

pOutput, dOutput, pdlnfo) )

== STATUS SUCCESS)

{

pied = pOutput;

dBias = pidd->VirtualAddress;

pied->Name = dBias;

pied->AddressOf Functions -= dBias;

pied->AddressOfNames -= dBias;

pied->AddressOfNameOrdinals -= dBias;

pdData - PTR_ADD {pied, pied->AddressOf Functions };

for (i = 0; i < pied->NumberOf Functions ; i++)

{

pdData [i] += (DWORD) pBase;

}

pdData = PTR_ADD (pied, pied->AddressOfNames) ;

for (i = 0; i < pied->NumberOfNames; i++)

{

pdData [i] -= dBias;

'
}

}

else

{
ns = STATUS_DATA_ERROR;

}

}
return ns;

}
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THE IOCTL FUNCTION SPY_IO_PE_SYMBOL

The IOCTL SPY_IO_PE_SYMBOL function makes the symbol lookup engine of the ker-
nel call interface accessible to user-mode applications. Its implementation, shown in
Listing 6-16, isn't extraordinarily exciting, because it is an IOCTL wrapper for the
SpyModuleSymbolEx ( ) function in Listing 6-11. The caller must pass in a pointer to a
string in the form "module! symbol," or simply "symbol" if the symbol should be
looked up in the export section of ntoskrni. exe, and gets back a pointer to the
symbol's associated linear address, or NULL if the symbol is invalid or an error occurs.

THE IOCTL FUNCTION SPY_IO_CALL

Finally, this is the IOCTL SPY_IO_CALL function we have been waiting for. Listing
6-17 provides the implementation details. This function calls SpyModuleSymbolEx ( )
if the passed-in symbol string address is OK, and continues with spyCallEx ( ) if the
symbol could be resolved. Like SPY_IO_PE_SYMBOL, this function expects the symbol
name to be specified as "module! symbol" or simply "symbol," with the latter variant
defaulting to ntoskrni. exe. This time, however, the symbol string must be supplied
as part of a properly initialized SPY_CALL_INPUT structure. On success, SPY_IO_CALL
returns a SPY_CALL_OUTPUT structure containing either the result of the function
call if the symbol refers to an API function or the value of the target variable if the
symbol specifies a public variable such as NtBuildNumber or KeService
Descriptor-Table.

If SPY_IO_CALL fails, no data is returned. The caller must be prepared to
handle this situation properly. Ignoring this error would mean returning bogus data
from a kernel function call. If this data is passed in turn to another kernel function,
problems may occur. If you are lucky, the faulty data is caught by the exception
handler inside SpyCallEx ( ) . If you are not so lucky, the entire process may hang
persistently inside the spy device IOCTL call. As usual, however, there is a probabil-
ity of a Blue Screen. But don't worry—the next section shows how the kernel call
interface is properly used in user-mode applications.

NTSTATUS SpyOutputPeSymbol (PBYTE pbSymbol,

PVOID pOutput,
DWORD dOutput,

PDWORD pdlnfo)

{
PVOID pAddress ;

NTSTATDS ns = STATUS_INVALID_PARAMETER;

if ( (pbSymbol != NULL) && SpyMemoryTestAddress (pbSymbol)

&&
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LISTING 6-16. Implementation o/rspY_io_PE_SYMBOL

LISTING 6-17. Implementation O/'SPY_IO_CALL

ENCAPSULATING THE CALL INTERFACE IN A DLL

Although it is good news that w2k_spy.sys exports an IOCTL call interface for
kernel functions, this interface is somewhat clumsy to operate. Suppose you want to
call a simple function such as MmGetPhysicalAddress ( ) or MmisAddressValid ( ) .
First, you must fill a SPY_CALL_INPUT structure with information about the function
and its arguments. Next, you must issue a Win32 DeviceioControl ( ) call. If this
function reports ERROR_SUCCESS, the returned SPY_CALL_OUTPUT structure must be

( {pAddress = SpyModuleSymbolEx (pbSymbol, NULL, &ns) )

[ = NULL ) }

{
ns = SpyOutputPointer (pAddress ,

pOutput, dOutput , pdlnfo) ;
I

return ns ;

}

NTSTATUS SpyOutputCall (PSPY_CALL_INPUT psci,

PVOID pOutput,

DWORD dOutput ,

PDWORD pdlnfo)

{

SPY_CALL_OUTPDT SCO;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if (psci->pbSymbol != NULL)

{

psci->pEntryPoint =

(SpyMemoryTestAddress (psci->pbSyrabol )

? SpyModuleSymbolEx (psci->pbSymbol, NULL, &ns)

: NULL) ;

}

if ( (psci->pEntryPoint != NULL) &&

SpyMemoryTestAddress (psci->pEntryPoint ) &&

((ns = SpyCallEx (psci, &sco) ) == STATUS_SUCCESS) )

<
ns = SpyOutputBinary (&SCO, SPY_CALL_OUTPUT_,

pOutput, dOutput, pdlnfo);

}

return ns ;

)
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evaluated. Otherwise, the error must be handled properly. Doesn't sound very
appealing, does it? Fortunately, we have DLLs, so the solution to this problem is to
hide the IOCTL mechanism in a DLL that does the dirty work. That's the purpose of
the w2k_call. dll project included on this book's sample CD. The code snippets
reprinted in this section are excerpts from the files w2k_call. c and w2k_call. h,
found on the CD in the \src\w2k_cali directory.

HANDLING IOCTL FUNCTION CALLS

Before anything else, the DeviceioControl ( ) calls must be encapsulated in a conve-
nient way, because this is the bottleneck through which all kernel function calls must
pass. Listing 6-18 shows the wrapper function w2kSpyControl ( ) , which contains a
DeviceioControl ( ) invocation at its heart. Altogether, this function carries out the
following tasks:

• Validates the input/output parameters

• Loads the spy device driver and opens the spy device, if not yet done

• Invokes DeviceioControl()

• Tests the output data for the expected size

• Sets the Win32 last-error code appropriately

If successful, the system's last-error code, to be retrieved by the application via
GetLastError ( ) , is set to ERROR_succESS (o) . Otherwise, it is set according to the
following strategy:

• If the input or output parameters are invalid, the last-error value is
ERROR_INVALID_PARAMETER (sv), indicating "The parameter is incorrect"
according to the winerror. h header file in the Platform Software
Development Kit (SDK).

• If the spy device can't be initialized, the last-error value is
ERROR_GEN_FAILURE (31) , indicating "A device attached to the system is
not functioning."

• If the size of the data returned by the spy device doesn't match the caller's
buffer size, the last-error value is ERROR_DATATYPE_MISMATCH, indicating
"Data supplied is of wrong type."

• In all other cases, w2kspycontrol ( ) preserves the last-error value set by
the DeviceioControl ( ) function, whatever it might be. Usually, it will be
the NTSTATUS returned by the spy device, but mapped to a more or less
appropriate Win32 status code.
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LISTING 6-18. The Basic Deviceiocontroiu Wrapper

The w2kSpyStartup ( ) call in Listing 6-18, issued immediately before Deviceio
Control ( ) , deserves some more attention. Because w2k_call .dll relies on the ser-
vices of a kernel-mode driver, this driver must somehow be brought into memory
before the first IOCTL transaction. Moreover, a device handle must be opened, iden-
tifying the target device to be accessed via DeviceioControl ( ) . To keep the DLL as
flexible as possible, I opted for a mixed model in which the caller can either take full

BOOL WINAPI w2kSpyControl (DWORD dCode,

PVOID plnput,

DWORD dlnput,

PVOID pOutput,

DWORD dOutput)

{

DWORD dlnfo = 0;

BOOL fOk = FALSE;

SetLastError (ERROR_INVALID_PARAMETER) ;

if (((plnput != NULL) || (! dlnput )) &k

( (pOutput != NULL) || ( ! dOutput ) ) )

{

if (w2kSpyStartup (FALSE, NULL) )

{

if (DeviceioControl (ghDevice, dCode,

plnput, dlnput,

pOutput, dOutput,

Sdlnfo, NULL))

{

if (dlnfo == dOutput)

{

SetLastError (ERROR_SUCCESS) ;

fOk = TRUE;

}

else

{

SetLastError (ERROR_DATATYPE_MISMATCH) ;

}

}

}

else

{

SetLastError (ERROR_GEN_FAILORE) ;

)
}

return fOk;

)
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control of the loading/unloading and opening/closing of the spy device or rely on a
default mechanism, leaving the device management responsibilities to the DLL. This
automatism is quite simple: Loading the driver and opening the device is delayed
until the first IOCTL transaction is requested. As soon as the DLL is unloaded, it
automatically closes the device handle, but keeps the kernel-mode driver in memory.
The latter decision constitutes a defensive strategy. As long as the caller doesn't sup-
ply any information as to how the driver should be handled, w2k_call. dll assumes
that other clients might use the driver as well, so it can't unload the driver without
impairing the operation of the other applications. As explained in Chapter 4 in the
context of the memory spy application, the problem candidates are not the processes
that still have open handles to the spy device. The Windows 2000 service control
manager will delay the driver shutdown until all handles have been closed. The prob-
lem is that it won't allow any new device handles to be opened.

A w2k_call. dll client application can control the state of the spy device by
means of the API function pair w2kspystartup (} and w2kspycieanup ( ) , shown in
Listing 6-19. Because these functions might be called concurrently in a multithread-
ing scenario, they use a critical-section object for serialization. Only one thread at a
time can load/open or close/unload the spy device. If, for example, two threads call
w2kspystartup ( ) at approximately the same time, only one of them will be admitted
to open the device. The other one is suspended, and will find the device up and run-
ning after resuming execution.

BOOL WINAPI w2kSpyLock (void)

{
BOOL fOk = FALSE;

if (gpcs != NULL)

{
EnterCriticalSection (gpcs) ;

fOk = TRUE;

}
return fOk;

}

/ / —

BOOL WINAPI w2kSpyUnlock (void)

{
BOOL fOk = FALSE;

if (gpcs != NULL)

t
LeaveCriticalSection (gpcs) ;

fOk = TRUE;
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}
return fok;

}

/ /

BOOL WINAPI w2kSpyStartup (BOOL fUnload,

HINSTANCE hlnstance)

{

HINSTANCE hlnstancel;

SC_HANDLE hControl;

BOOL fOk = FALSE;

w2kSpyLock ( ) ;

hlnstancel = (hlnstance != NULL ? hlnstance : ghlnstance) ;

if ( (ghDevice == INVALID_HANDLE_VALUE) &&

w2kFilePath (hlnstancel, awSpyFile, awDriver, MAX_PATH)

&&

((hControl - w2kServiceLoad (awSpyDevice, awSpyDisplay,

awDriver, TRUE))

!= NULL) )

{
ghDevice - CreateFile (awSpyPath,

GENERIC_READ | GENERIC_WRITE,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL, OPEN_EXIST1NG,

FILE_ATTRIBUTE_NORMAL, NULL) ;

if ( (ghDevice == INVALID_HANDLE_VALUE) && fUnload)

{

w2kServiceUnload (awSpyDevice, hControl);

}

else

{

w2kServiceDisconnect (hControl) ;

}

}

fOk = (ghDevice != INVALID_HANDLE_VALUE) ;

w2kSpyUnlock ( ) ;

return fOk;

}

/ /

BOOL WINAPI w2kSpyCleanup (BOOL fUnload)

{

(continued)
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LISTING 6-19. The Spy Device Management Functions

TYPE-SPECIFIC CALL INTERFACE FUNCTIONS

The DeviceioControl ( ) calls and the spy device management automatism have
now been stowed in a set of functions, with w2kSpyControl ( ) constituting their main
entry point. The next step is to provide functions that perform SPY_IO_CALLS to the
spy device. Listing 6-20 shows the basic implementation of the user-mode side of the
kernel call interface, represented by the functions w2kCallExecute ( ) , w2kCall ( ) ,
and w2kcaliv() . Regarding its input arguments, the former is the user-mode equiva-
lent of SpyCallEx ( ) , shown in Listing 6-3. In fact, the implementation of
w2kCallExecute ( ) shows that it calls the spy device's SPY_IO_CALL function via
w2kSpyControl ( ) after ensuring that the input control block contains either a
symbol name string or an entry point address. From Listing 6-12, we know that
SPY_IO_CALL is implemented by spyOutputcall ( ) (Listing 6-17), which in turn relies
on SpyModuleSymbolEx() and SpyCallEx().

BOOL fOk = FALSE;

w2kSpyLock ( ) ;

if (ghDevice != INVALID_HANDLE_VALUE)

{

CloseHandle (ghDevice) ;

ghDevice = INVALID_HANDLE_VALUE;

}

if (f Unload)

{

w2kService Unload (awSpyDevice, NULL);

}
w2kSpyUnlock () ;

return fOk;

}

BOOL WINAPI w2kCallExecute (PSPY_CALL_INPUT psci,

PSPY_CALL_OUTPUT psco)

{

BOOL fOk = FALSE;

SetLastError ( ERROR_INVALID_PARAMETER ) ;

if (psco != NULL)

{

psco->uliResult .QuadPart = 0;
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LISTING 6-20. The Basic Call Interface Functions

if ( (psci != NULL)

&&

( (psci->pbSymbol != NULL) |

{psci->pEntryPoint !- NULL)))

{
fOk = w2kSpyControl (SPY_IO_CALL,

psci, SPY_CALL_INPUT_,

psco, SPY_CALL_OUTPUT_) ;

)

}

return fOk;

}

/ 1

BOOL WINAPI w2kCall ( PULARGE_INTEGER puliResult,

PBYTE pbSymbol ,

PVOID pEntryPoint ,

BOOL fFastCall,

DWORD dArgumentBytes ,

PVOID pArguments )

{

SPY_CALL_INPUT sci;

SPY_CALL_OUTPUT SCO;

BOOL fOk = FALSE;

sci. fFastCall = fFastCall;

sci .dArgumentBytes = dArgumentBytes;

sci .pArguments = pArguments;

sci. pbSymbol = pbSymbol;

sci.pEntryPoint = pEntryPoint;

fOk = w2kCallExecute (&sci, &sco) ;

if (puliResult != NULL) *puliResult = sco .uliResult ;

return fOk;

)

//

BOOL WINAPI w2kCallV ( PULARGE_INTEGER puliResult,

PBYTE pbSymbol,

BOOL fFastCall,

DWORD dArgumentBytes ,

.. .)

{

return w2kCall (puliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes , kdArgumentBytes + 1 ) ;

}
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The spycall ( ) and w2kCaliv ( ) functions in Listing 6-20 are the core functions
of the kernel call interface inside w2k_call. dil, serving as a basis for several more
specific functions. The main purpose of w2kCall ( ) is to put the values of its argu-
ments into a SPY_CALL_INPUT structure before calling w2kcallExecute ( ) and to
return the resulting ULARGE_INTEGER value. As explained earlier, not all bits of the
result must be valid, depending on the result type of the called kernel function.
w2kCallv() is a simple w2kCall ( ) wrapper, featuring a variable argument list (hence
the trailing v in the function name). Because the argument list of w2kCall ( ) is tai-
lored to the general case of kernel API invocations, it is overkill for many common
function types. The most common type is the stdcaii (or NTAPI) function that
returns an NTSTATUS value. In this case, the f Fastcall argument is always FALSE and
only the lower half of the returned 64-bit ULARGE_INTEGER contains valid data.
Therefore, the w2kCallNT ( ) function in Listing 6-21 does a much better job here.
Please note how w2kCaliNT ( ) handles errors reported by w2kcall ( ) . If w2kCall ( )
returns FALSE, this means that w2kSpyControl ( ) failed, indicating that the result of
the function call is invalid. In this case, it would be nonsense to retrieve the LowPart
value of the uliResult structure, because it contains unpredictable garbage. There-
fore, w2kcailNT ( ) defaults to STATUS_IO_DEVICE_ERROR (oxcooooiss). After all, the
caller must be prepared for return values other than STATUS_SUCCESS (Oxoooooooo) ,
so reporting this error code appears to be a reasonable decision. Other kernel func-
tions that don't return NTSTATUS codes require a much more cautious selection of
default return values in case of failure.

Listing 6-22 is a collection of five additional interface functions for stdcall
API functions that return the basic data types BYTE, WORD, DWORD, DWORDLONG, and
PVOID. A trailing number in the function name indicates the number of significant
return value bits. w2kCallp ( ) is equivalent to w2kcal!32 ( ) , except that the 32-bit
return value is typecast to a pointer. It is not necessary to provide separate functions
for the signed versions of the basic data types or for pointers to various types,

LISTING 6-21. A Simplified Interface for NTAPI/NTSTATUS Function Types

NTSTATUS WINAPI w2kCallNT ( PBYTE pbSymbol,

DWORD dArgumentBytes,

. . .)

{
ULARGE_INTEGER uliResult;

return (w2kCall l&uliResult, pbSymbol, NULL, FALSE,

dArgumentBytes, ScdArgumentBytes + 1}

? uliResult .LowPart

: STATUS_IO_DEVICE_ERROR) ;

}
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because these smallish differences will be addressed by the automatic typecasting
performed by the compiler. Note that all functions in Listing 6-22 expect a default
return value to be passed in as the first argument. This is necessary because the call
interface has no idea what value would be best to be returned if the call into kernel-
mode fails, so this responsibility is up to the caller.

BYTE WINAPI w2kCal!08 (BYTE bDe fault,
PBYTE pbSymbol,
BOOL fFastCall,
DWORD dArgumentBytes,

. . .)
{
ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol , NULL, fFastCall,
dArgumentBytes, kdArgumentBytes + 1)

? (BYTE) uliResult .LowPart
: bDe fault) ;

}

/ /

WORD WINAPI w2kCall!6 (WORD wDefault,

PBYTE pbSymbol,
BOOL fFastCall,
DWORD dArgumentBytes,

. . .)
{
ULARGE_INTEGER uliResult;

return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, SdArgumentBytes + 1)

? (WORD) uliResult .LowPart
: wDefault) ;

}

/ /

DWORD WINAPI w2kCal!32 (DWORD dDefault,
PBYTE pbSymbol,
BOOL fFastCall,
DWORD dArgumentBytes,

. . .)

{
ULARGE_INTEGER ul iResul t ;

(continued)
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LISTING 6-22. More Interface Functions for Common Function Types

DATA-COPYING INTERFACE FUNCTIONS

Before we get to the more interesting task of defining substitutes for a couple of real
kernel API functions, some more lines of boilerplate code are required. I mentioned
earlier that the kernel call interface of the spy device can also handle public variables
exported by the kernel modules. In the description of Listing 6-2, where the

return (w2kCall (kuliResult , pbSymbol, NULL, fFastCall,

dArgumentBytes, sdArgumentBytes + 1)

? uliResult .LowPart

: dDefault) ;

}

QWORD WINAPI w2kCal!64 (QWORD qDefault,

PBYTE pbSymbol,

BOOL fFastCall,

DWORD dArgumentBytes,

. . .)

{

ULARGE_INTEGER uliResult;

return (w2kCall (kuliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult .QuadPart

: qDefault) ;

}

//

PVOID WINAPI w2kCallP (PVOID pDefault,

PBYTE pbSymbol,

BOOL fFastCall,

DWORD dArgumentBytes,

. . .)

'
ULARGE_INTEGER uliResult;

return (w2kCall l&uliResult, pbSymbol, NULL, fFastCall,

dArgumentBytes, kdArgumentBytes -t- 1)

? (PVOID) uliResult .LowPart

: pDefault) ;

}



ENCAPSULATING THE CALL INTERFACE IN A DLL 373

SpyCall ( ) function was shown, I explained that a negative value for the argument
stack size, supplied via the dArgumentBytes member of the SPY_CALL_INPUT structure,
is interpreted as the one's complement of the size of an exported variable. In this case,
SpyCall ( ) doesn't call the specified entry point, but copies the appropriate number of
bytes from this address to the result buffer. If dArgumentBytes is set to -i, yielding a
one's complement of zero, the entry point address itself is copied to the buffer.

Listing 6-23 shows the data-copying functions exported by w2k_call. dll. This
function set closely corresponds to the set of call interface functions in Listing 6-22.
However, these functions require fewer input arguments. Copying the value of an
exported variable requires no more than the name of the variable—no input parame-
ters are required and no calling convention applies.

BOOL WINAPI w2kCopy ( PULARGE_INTEGER puliReSult,

PBYTE pbSyitlbol ,

PVOID pEntryPoint,

DWORD dBytes)

{

return w2kCall (puliResult, pbSyrtibol, pEntryPoint, FALSE,

OxFFFFFFFF - dBytes, NULL);

}

//

BYTE WINAPI w2kcopy08 (BYTE bDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (kuliResult, pbSymbol, NULL, 1)

? (BYTE) uliResult .LowPart

: bDefault) ;
}

/ /

WORD WINAPI w2kCopy!6 (WORD wDe fault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kCopy (kuliResult , pbSymbol, NULL, 2)

? (WORD) uliResult. LowPart

: wDefault) ;

}

//

(continued)
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LISTING 6-23. Data-Copying Interface Functions for the Basic Data Types

DWORD WINAPI w2kCopy32 (DWORD dDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kCopy (SculiResult , pbSymbol, NULL, 4)

? uliResult .LowPart

: dDefault) ;

}

/ / "

QWORD WINAPI w2kCopy64 (QWORD qDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 8)

? uliResult. QuadPart

: qDefault) ;

}

/ /

PVOID WINAPI w2kCopyP (PVOID pDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kCopy (kuliResult, pbSymbol, NULL, 4)

? (PVOID) uliResult. LowPart

: pDefault) ;

}

/ / — ' — —

PVOID WINAPI w2kCopyEP (PVOID pDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSymbol, NULL, 0)

? (PVOID) uliResult. LowPart

: pDefault) ;

}
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In Listing 6-23, w2kcopy ( ) is the main workhorse, much like the w2kcall ( )
function in case of a function invocation. Again, w2k_call. dll provides separate
functions for the basic data types BYTE, WORD, DWORD, DWORDLONG, and PVOID, with
a trailing number in the function name indicating the number of significant return
value bits. w2kCopyP ( ) returns a pointer value, and w2kCopyEP ( ) handles the special
case of querying an entry point address. Calling w2kCopyEP ( ) is equivalent to calling
the spy device's SPY_IO_PE_SYMBOL function. Yes, this is redundant, but having two
alternative ways home is always better than none at all, isn't it?

IMPLEMENTING KERNEL API THUNKS

Meanwhile, the basic framework for the simple and easy implementation of kernel
API function substitutes is available. I call these substitutes "thunks," which is the
usual term in Windows lingo for a short piece of code that serves as a front-end to a
function implemented in a different part of the system. Another common term is
"proxy," but it is too tightly associated with the Microsoft Component Object Model
(COM), so that using it here might be distracting. Let's start with two very simple
Windows 2000 Memory Manager functions that have been my primary test objects
during the development of the w2k_call .dll module: MmGetPhysicalAddress ( )
and MmisAddressValid() . Listing 6-24 shows how their thunks are implemented
with the help of w2kcall64 ( ) and w2kcal!08 ( ) . To avoid confusion with the origi-
nal target functions, I am prefixing all thunk names with an underscore character.

LISTING 6-24. Sample Thunks for MmGetPhysicalAddress ( ) and MmlsAddressValid ( )

PHYSICAL_ADDRESS WINAPI

_MmGetPhysicalAddress (PVOID BaseAddress)

{

PHYSICAL_ADDRESS pa;

pa.QuadPart = w2kCal!64 (0, ''MmGetPhysicalAddress", FALSE,

4, BaseAddress};

return pa;

}

//

BOOLEAN WINAPI

_MmIsAddressValid (PVOID VirtualAddress)

(

return w2kCall08 (FALSE, "MmlsAddressValid", FALSE,

4, VirtualAddress);

}
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MmGetPhysicalAddress ( ) receives a 32-bit linear address and returns a 64-bit
PHYSICAL_ADDRESS structure, which is nothing but an alias for LARGE_INTEGER .
Therefore, the thunk code calls w2kCall64 ( ) , indicating that 4 bytes are passed in on
the argument stack, and putting the BaseAddress parameter on the list of arguments.
The default value, to be returned in case of a fatal IOCTL error, is zero, which is the
value that the original function returns on error. Because MmGetPhysicalAddress ( )
uses the stdcall convention, fFastCall is set to FALSE. The implementation of the
MmisAddressValid ( ) thunk is similar, except that only the eight least significant bits
of the spyCallEx ( ) result, corresponding to a BOOLEAN data type, are returned. The
default return value is set to FALSE, which is a defensive choice. MmisAddressValid()
is typically called immediately before a memory access to avoid a potential page fault.
Therefore, returning TRUE when the actual result of the function is indeterminable
because of an IOCTL error would increase the risk of a Blue Screen.

That was easy. Now let's see how exported variables can be accessed in this
framework. In Listing 6-25, two thunks, _NtBuildNumber ( ) and _KeService
DescriptorTable ( ) , are shown. NtBuildNumber is exported by ntoskrnl. exe as a
16-bit WORD type, so the appropriate w2k_call. dll interface function is w2kCopyl6 ( ) .
The thunk returns zero in case of an error (if you can think of a more suitable value,
please let me know). The _KeServiceDescriptorTable ( ) thunk is a bit different,
because the original KeServiceDescriptorTable address exported by ntoskrnl. exe
points to a structure that comprises more than 64 bits. In this case, the best of the avail-
able options is to return the address of the KeServiceDescriptorTable itself, rather
than reading an incomplete portion of the data it refers to. Therefore, the thunk makes
use of the w2kcopyEP ( ) helper function included in Listing 6-23.

You can imagine how excited I was when I realized that these thunks actually
work! Then I thought: I'll try calling some very-low-level functions—that bang directly
onto the hardware—that read and write I/O ports or the like. Fortunately, I had designed

LISTING 6-25. Sample Thunks for NtBuildNumber and KeServiceDescriptorTable

WORD WINAPI

_NtBuildNumber (VOID)

{
return w2kCopy!6 (0, "NtBuildNumber");

}

PSERVICE_DESCRIPTOR_TABLE WINAPI

_KeServiceDescriptorTable (VOID)

return w2kCopyEP (NULL, "KeServiceDescriptorTable");

}
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the spyModuleSymbolEx() function in Listing 6-11 in a way that allows resolving
symbols in any system module, including kernel-mode drivers. My next task was to
call some functions exported by the Windows 2000 Hardware Abstraction Layer
(HAL). After scanning the list of symbols contained in the export section of hal. dll,
I decided to try two simple functions that are guaranteed to talk directly to the hard-
ware: HalMakeBeep ( ) and HalQueryRealTimeClock ( ) . The HalMakeBeep ( ) function
reminded me of the old DOS days when it was possible to let the PC speaker squeak in
many creative ways by programming some of the hardware chips on the motherboard.
Actually, the implementation of HalMakeBeep ( ) looks much like one of my old assem-
bly language programs from 1987 that was able to play long sequences of music,
given an array of tone pitches and durations. Operating the PC speaker involves pro-
gramming a timer and a parallel I/O (PIO) chip at the I/O addresses 0x0042, 0x0043,
and 0x0061, so HalMakeBeep ( ) was an ideal candidate for a first test of a thunk to a
hardware-dependent function that would also guarantee immediate audible feedback.

Listing 6-26 shows the implementation of the _HalMakeBeep ( ) thunk, an extra-
ordinarily simple piece of code thanks to the w2kcall08 ( ) helper function. Hal
MakeBeep ( ) starts a beep tone on the speaker with the requested pitch. If the pitch
argument is set to zero, the beep is stopped. The function returns TRUE if the pitch
value is valid, that is, zero or greater than 18. Note that the symbol string specified in
the w2kcall08 ( ) call includes the name of the target module, which is hal. dll in
this case. In Listings 6-24 and 6-25, no module was specified, because the symbols
referenced there are exported by the default module ntoskrnl. exe.

Although HalMakeBeep ( ) is a silly function, I was extremely happy to see the
_HalMakeBeep ( ) thunk working. The PC speaker beeped on my request! And this
was Windows 2000, not DOS with this proof that a Win32 application can call a
HAL function that does direct hardware access. I ported my old beep sequencer
from DOS to Windows 2000, resulting in the code shown in Listing 6-27.
w2kBeep ( ) issues a single tone of the specified pitch and duration. w2kBeepEx()
takes an array of pitch/duration values and plays them in sequence until coming
across a zero-duration value. Both functions are exported by w2k_call .dll. Maybe
you can use them to add musical background with a classic DOS feeling to your
Win32 applications.

LISTING 6-26. Thanking Down to HalMakeBeep ( )

BOOLEAN WINAPI

_HalMakeBeep (DWORD Pitch)

{
return w2kcal!08 (FALSE, "hal .dll ! HalMakeBeep ", FALSE,

4, Pitch) ;

}
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LISTING 6-27. A Simple Beep Sequencer

My next step was to try a more useful function, such as HalQueryRealTime
clock ( ) . I remember that accessing the on-board real-time clock in a DOS applica-
tion was at one time considered difficult. This involves reading and writing a couple
of hardware I/O ports. Listing 6-28 shows the thunks to HalQueryRealTimedock ( )
and its sibling HalsetRealTimeClock ( ) , along with the TIME_FIELDS structure on
which both functions operate. The TIME_FIELDS structure is defined in ntddk.h.

BOOL WINAPI w2kBeep (DWORD dDuration,

DWORD dPitch)

{
BOOL fOk = TRUE;

if ( !_HalMakeBeep (dPitch) ) fOk = FALSE;

Sleep {dDuration} ;

if ( !_HalMakeBeep (0 )) fOk = FALSE;

return fOk;

}

//

BOOL WINAPI w2kBeepEx (DWORD dData,

...)
{
PDWORD pdData;

BOOL fOk = TRUE;

for (pdData = kdData; pdData [01; pdData += 2)

{
if (!w2kBeep (pdData [0], pdData [1])) fOk = FALSE;

}
return fOk;

}

typedef struct _TIME_FIELDS

{
SHORT Year;

SHORT Month;

SHORT Day;

SHORT Hour;

SHORT Minute;

SHORT Second;

SHORT Milliseconds;

SHORT Weekday; // 0 = Sunday

)
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LISTING 6-28. Thunks for HalQueryRealTimeClock ( ) and HalSetRealTimeClock ( )

Listing 6-29 provides a typical application case of _HalQueryRealTime
clock ( ) , displaying the current date and time in a console window.

LISTING 6-29. Displaying the Current Date and Time

TIME_FIELDS, *PTIME_FIELDS;

//

#define TIME FIELDS \

sizeof (TIME_FIELDS)

.

VOID WINAPI

_HalQueryRealTimeClock (PTIME_FIELDS TimeFields)

{

w2kCallV (NULL, "hal.dll! HalQueryRealTimeClock", FALSE,

4, TimeFields) ;

return ,-

}

//

VOID WINAPI

_HalSetRealTimeClock (PTIME_FIELDS TimeFields)

{

w2kCallV (NULL, "hal . dll ! HalSetRealTimeClock" , FALSE,

4, TimeFields) ;

return;

)

VOID WINAPI DisplayTime (void)

{

TIME_FIELDS tf;

.HalQueryRealTimeClock (ktf ) ;

printf (L"\r\nDate/Time: %02hd-%02hd-%04hd %02hd:%02hd: %02hd\r\n" ,

tf. Month, tf.Day, tf.Year,

tf.Hour, tf. Minute, tf. Second);

return;

}
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Although it is great news that the kernel call interface works, it is also some-
what alarming. After all, we have been taught for years that Windows NT/2000 is a
secure operating system where an application can't do anything it likes. The average
Win32 programmer was cut off from the hardware. A more experienced NT pro-
grammer at least knew how to call Native API functions via ntdll. dll. An NT
wizard was able to write kernel-mode drivers to do things that were not allowed in
user-mode. Now, with the DLL presented here, all Win32 programmers are able to
call arbitrary kernel functions just like any other Win32 API function. Is this a big
security hole in the Windows 2000 kernel? No—the only 100% secure system is one
that grants applications no access at all, which would be a useless system. As soon
as there is a way to interact with the system, the system becomes vulnerable. And as
soon as an operating system vendor allows third-party developers to add components
to the system, it is possible to smuggle a direct bridge into the kernel, such as the
w2k_spy.sys 7w2k_call.dll pair. There is no such thing as a 100% secure system
as long as the system interacts with its environment.

DATA ACCESS SUPPORT FUNCTIONS
I have added several dozen kernel API thunks to w2k_caii. dll. For example, the
entire set of string management functions exposed by the Windows 2000 runtime
library is made available by this DLL. However, as you experiment with these prede-
fined thunks or thunks that you have added yourself, you will find that calling kernel
API functions from user-mode is a bit different from calling ordinary Win32 func-
tions. The simplicity of the kernel call interface introduced here tends to obscure the
fact that the calling application is still a user-mode program with limited privileges.
For example, an application might call a kernel function that returns a pointer to a
UNICODE_STRING structure. Most likely, this will be a pointer into kernel-mode mem-
ory, which is invisible to the calling application. Any attempts to access the string
data will terminate the application with an exception, stating that the instruction at
an address tried to read from a forbidden address. To solve this problem I have added
support functions to w2k_call. dll that provide easy access to the most common
types of data involved in kernel API calls.

The w2kspyRead ( ) function in Listing 6-30 is a general-purpose function that
copies arbitrary memory data blocks to a caller-supplied buffer. It is based on the
IOCTL function SPY_IO_MEMORY_BLOCK offered by the w2k_spy.sys spy device,
briefly described in Chapter 4. Use this function to read the contents or individual
members of structures allocated in kernel memory. It is important to note that
w2kSpyRead ( ) fails if the address range spanned by the memory block contains invalid
addresses. "Invalid" means that neither physical nor pagefile memory is associated
with this address. w2kspycione ( ) is an enhanced version of w2kspyRead ( ) that auto-
matically allocates a properly sized buffer and copies the kernel data to this buffer.
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LISTING 6-30. General-Purpose Data Access Functions

Reading strings requires a bit more work. Please recall that the most common
string type used by kernel-mode components is the UNICODE_STRING structure, com-
prising a string buffer pointer and information about the buffer size and the number
of bytes currently occupied by the string. Reading a UNICODE_STRING is usually a
two-part task. First, the UNICODE_STRING structure must be copied to find out the size
and address of the string buffer. In a second step, the string data is read. To simplify
this common task, w2k_call .dll provides the function set contained in Listing 6-31.
w2kStringAnsi ( ) and w2kstringUnicode ( ) allocate and initialize empty
ANSI_STRING and UNICODE_STRING structures, respectively, including a string buffer

BOOL WINAPI w2kSpyRead (PVOID pBuffer,

PVOID pAddress,

DWORD dBytes)

{

SPY_MEMORY_BLOCK smb;

BOOL fOk = FALSE;

if ( (pBuf fer != NULL) && (pAddress != NULL) && dBytes)

{
ZeroMemory (pBuffer, dBytes);

smb .pAddress - pAddress;

smb. dBytes = dBytes;

fOk = w2kSpyControl (SPY_IO_MEMORY_BLOCK,

&smb, SPY_MEMORY_BLOCK_,

pBuffer, dBytes) ;

)
return fOk;

)

/ /

PVOID WINAPI w2kSpyClone (PVOID pAddress,

DWORD dBytes)

{
PVOID pBuffer = NULL;

if ((pAddress != NULL) && dBytes &&

((pBuffer = w2kMemoryCreate (dBytes)) != NULL) &&

(!w2kSpyRead (pBuffer, pAddress, dBytes)))

{
pBuffer = w2kMemoryDestroy (pBuffer) ;

}
return pBuffer;
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of the specified size. For reasons of simplicity, the string header and buffer are inte-
grated into a single memory block. These structures can be used as targets for string
copying, as demonstrated by w2kstringdone ( ) . This function creates a faithful
copy of a UNICODE_STRING in user-mode memory. The MaximumLength of the copy is
usually equal to the original, except if the source string has inconsistent parameters.
For example, if the indicated MaximumLength is less than or equal to the value of
the Length member, it is invalid and therefore is set to Length+2 . However, the
MaximumLength of the copy will never be smaller than the original MaximumLength.

PANSI_STRING WINAPI w2kStringAnsi (DWORD dSize)

{

PANSI_STRING pasData = NULL;

if ( (pasData = w2kMemoryCreate (ANSI_STRING_ + dSize) )

!= NULL)

{

pasData->Length = 0;

pasData->MaximumLength = (WORD) dSize;

pasData->Buf fer = PTR_ADD (pasData, ANSI_STRING_) ;

if (dSize) pasData->Buf fer [0] = 0;

}

return pasData;

}

/ I

PUNICODE_STRING WINAPI w2kStringUnicode (DWORD dSize)

{
DWORD dSizel = dSize * WORD_;

PUNICODE_STRING pusData = NULL;

if ( (pusData = w2kMemoryCreate (UNICODE_STRING_ + dSizel) )

!= NULL)

{
pusData->Length = 0;

pusData->MaximumLength = (WORD) dSizel;

pusData->Buf fer = PTR_ADD (pusData, UNICODE_STRING_) ;

if (dSize) pusData->Buffer [0] = 0;

>
return pusData;

/ /
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LISTING 6-31. String Management Functions

Another way of copying a kernel string down to the application memory space
is to use one of the kernel runtime functions. For example, you can use a combina-
tion of the _RtlInitUnicodeString ( ) and _RtlCopyUnicodeString ( ) thunks pro-
vided by w2k_call. dll to achieve a similar effect. However, calling
w2kstringcione ( ) is usually easier, because this function automatically allocates the
memory required for the string copy.

ACCESSING NONEXPORTED SYMBOLS

What we have achieved so far is to enable an application to execute operations that
formerly were reserved to kernel-mode drivers. Can we enhance an application with
capabilities that not even a kernel-mode driver has? Can we call internal functions
that are neither documented nor exported? This sounds dangerous, but, as I will
show in this section, it is not as bad as it might seem, if handled with care.

PUNICODE_STRING WINAPI w2kStringClone ( PUNICODE_STRING pusSource)

{

DWORD dSize;

UNICODE_STRING usCopy;

PUNICODE_STRING pusData = NULL;

if (w2kSpyRead (SusCopy, pusSource, UNICODE_STRING_) )

{

dSize = max (usCopy .Length + WORD_,

usCopy.MaximumLength) / WORD_;

if ( ( (pusData = w2kStringUnicode (dSize) ) != NULL) &&

usCopy -Length && (usCopy -Buf fer != NULL)}

{
if (w2kSpyRead (pusData->Buf fer , usCopy .Buf fer,

usCopy . Length) )

{

pusData->Length = usCopy .Length ;

pusData->Buffer [usCopy .Length / WORD_] = 0;

}

else

{

pusData = w2kMemoryDestroy (pusData) ;

}

}

}
return pusData;

}
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LOOKING UP INTERNAL SYMBOLS

The kernel call interface described in the previous sections delegated the task of
looking up the addresses of exported symbols to the spy device, which has full
access to the PE images of the kernel modules residing in the upper half of the
linear address space. However, if the function to be called or the global variable to
be accessed is not exported, the spy device has no chance to find out its address.
While writing this chapter and examining some disassembly listing emitted by the
Kernel Debugger, I frequently thought: "What a pity that they don't export this
nifty function!" What made me especially angry was that the Kernel Debugger
showed me the exact function name, but my application code was absolutely
ignorant of it. Of course, I could have used my kernel call interface to jump
through the plain binary entry point of the function, but that's not good program-
ming style. The next service pack might shift this entry point to a completely
different address.

I reasoned that if the Debugger can do it, my application also should be able
to do it. A sample DLL described in Chapter 1 put me on the right track. The
w2k_img.dll provides everything needed to look up the address of any symbol
defined by the Windows 2000 kernel modules, provided that the operating sys-
tem's symbol files are properly installed. So I extended the w2k_call. dli by an
API function that first resolves an internal symbol to its linear address and then
uses w2kcall ( ) to execute it. Of course, an analogous function is provided for
global variables.

Listing 6-32 shows the complete set of extended call interface functions.
Again, a separate convenience function is provided for each major function type,
corresponding to the functions in Listings 6-20 to 6-22. w2kxcall ( ) is the main
workhorse. It calls the w2k_img.dll API function imgTableResolve ( ) to retrieve
the address of the supplied symbol and, if successful, specifies it in a subsequent
invocation of w2kcall ( ) . Because w2kCall ( ) is supposed to call an address
instead of a symbol, a NULL pointer is passed in for its pbsymbol argument. The
pEntryPoint argument is set to the symbol address pie->pAddress just retrieved
from the symbol files. As explained in Chapter 1, w2k_img.dll is able to determine
the calling conventions of most internal functions, so the fFastcall argument
can be set up automatically by testing the value of pie->dconvention for IMG_
CONVENTION_FASTCALL . The number of argument bytes and the pointer to the
arguments are forwarded as received from the caller. It would have been possible
to retrieve the number of arguments from the symbol information as well, but this
works with stdcall and fastcall functions only. cdecl symbols don't
encode the argument stack size in their decoration.
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BOOL WINAPI w2kXCall ( PULARGE_INTEGER puliResult,

PBYTE pbSymbol ,

DWORD dArgumentBytes,

PVOID pArguments)

{

PIMG_TABLE pit;

PIMG_ENTRY pie;

BOOL fOk = FALSE;

if (((pit = w2kSymbolsGlobal (NULL)) != NULL) &&

((pie = imgTableResolve (pit, pbSymbol )) != NULL) &&

(pie->pAddress != NULL))

{

fOk = w2kCall (puliResult, NULL, pie->pAddress,

pie->dConvention == IMG_CONVENTION_FASTCALL,

dArgumentBytes, pArguments);

}

else

{

if (puliResult != NULL) puliResult->QuadPart = 0;

)

return fOk;

}

//

BOOL WINAPI w2kXCallV ( PULARGE_INTEGER puliResult,

PBYTE pbSymbol ,

DWORD dArgumentBytes ,

. . .)

{
return w2kXCall (puliResult, pbSymbol,

dArgumentBytes, ScdArgumentBytes + 1) ;

}

/ /

NTSTATUS WINAPI w2kXCallNT (PBYTE pbSymbol,

DWORD dArgumentBytes,

. . .)

{
ULARGE_INTEGER uliResult;

return (w2kXCall f&uliResult, pbSymbol,

dArgumentBytes, &dArgumentBytes + 1)

? uliResult .LowPart

: STATUS_IO_DEVICE_ERROR) ;

}

(continued)



386 CALLING KERNEL API FUNCTIONS FROM USER-MODE

BYTE WINAPI w2kXCall08 (BYTE bDefault,

PBYTE pbSymbol,

DWORD dArgument Bytes ,

. . .)

f

ULARGE_INTEGER uliResult;

return (w2kXCall (kuliResult, pbSymbol,

dArgument Bytes , & dArgument Bytes + i )

? (BYTE) uliResult. LowPart

: bDefault) ;

/ /

WORD WINAPI w2kXCall!6 (WORD wDefault,

PBYTE pbSymbol,

DWORD dArgument Bytes ,

. . . »

{
ULARGE_INTEGER uliResult;

return (w2kXCall (&uliResult, pbSymbol,

dArgumentBytes , kdArgumentBytes + 1 )

? (WORD) uliResult .LowPart

: wDefault) ;

}

/ /

DWORD WINAPI w2kXCal!32 (DWORD dDefault,

PBYTE pbSymbol,

DWORD dAr gumen t By t e s ,

. . .)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (SuliResult, pbSymbol,

dArgumentBytes, StdArgumentBytes + 1)

? uliResult .LowPart

: dDefault) ;

}

/ / — ~
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LISTING 6-32. The Extended Call Interface

Note in Listing 6-32 that w2kxcail ( ) invokes w2kSymbolsGlobal ( ) before
doing anything else. This function is included in Listing 6-33, along with some
helpers, and its purpose is to load the ntoskrnl. exe symbol as soon as the first
w2kxcall ( ) is executed. The table is stored in the global PIMG_TABLE variable named
gpit, so subsequent calls can reuse it. With support of some helper functions,
w2kSymbolsLoad ( } returns one of the status codes listed in Table 6-2 via the optional
*pdstatus argument. To avoid jumping to an invalid address because of unmatched
symbol information, w2kSymbolsLoad ( ) carefully checks the time stamp and check
sum of the symbol files against the corresponding fields in the memory-resident
image of the target module using the w2kPeCheck ( } API function (not reprinted) and
discards the symbol table if they don't match exactly.

QWORD WINAPI w2kXCal!64 (QWORD qDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

- . .)

{

ULARGE_INTEGER uliResult;

return (w2kXCall (SuliResult, pbSymbol,

dArgumentBytes, kdArgumentBytes + 1)

? uliResult .QuadPart

: qDefault) ;

}

/ /

PVOID WINAPI w2kXCallP (PVOID pDefault,

PBYTE pbSymbol,

DWORD dArgumentBytes,

. . .)
{
ULARGE_INTEGER uliResult;

return (w2kXCall (SuliResult, pbSymbol,

dArgumentBytes, SdArgumentBytes + 1)

? (PVOID) uliResult. LowPart

: pDefault) ;

}
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PIMG_TABLE WINAPI w2kSymbolsLoad (PBYTE pbModule,
PDWORD pdStatus)

{
PVOID pBase;

DWORD dStatus = W2K_SYMBOLS_UNDEFINED;

PIMG_TABLE pit = NULL;

if ( (pBase = imgModuleBaseA (pbModule)} == NULL)

{
dStatus = W2K_SYMBOLS_MODULE_NOT_FOUND;

}
else

{
if ((pit = imgTableLoadA (pbModule, pBase) ) == NULL)

{
dStatus = W2K_SYMBOLS_LOAD_ERROR;

}
else

{
if ( !w2kPeCheck (pbModule, pit->dTimeStamp,

pit->dCheckSum) )

{
dStatus = W2K_SYMBOLS_CHECKSUM_ERROR;

pit = imgMemoryDestroy (pit);

}
else

{
dStatus = W2K_SYMBOLS_OK;

}

}

if (pdStatus != NULL) *pdStatus = dStatus;

return pit;

}

/ /

PIMG_TABLE WINAPI w2kSymbolsGlobal (PDWORD pdStatus)

{
DWORD dStatus = W2K_SYMBOLS_UNDEFINED;

PIMG_TABLE pit = NULL;

w2kSpyLock ( ) ;

if ( (gdStatus == W2K_SYMBOLS_OK) && (gpit == NULL) )

{
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LISTING 6-33. The Symbol Table Manager Functions

The w2ksymbolsstatus ( ) and w2kSymbolsReset ( ) functions at the bottom
of Listing 6-33 are used to load and unload the symbol table on demand. w2ksymbols
status ( ) attempts to load the symbol table if it isn't already present and returns its
status. Ifw2k_call.dll already tried to load the table without success, the function
simply returns the last error status (Table 6-2) unless the symbol table is reset by a
w2kSymbolsReset ( ) call. The latter function also destroys the memory block occu-
pied by the symbol table, if any, forcing a complete symbol reload on the next request
that involves the ntoskrni. exe symbol table.

gpit = w2kSymbolsLoad (NULL, kgdStatus) ;

}

dStatus = gdStatus;

pit = gpit;

w2kSpyUnlock ( ) ;

if (pdStatus '.= NULL) *pdStatus = dStatus;

return pit;

}

/ /

DWORD WINAPI w2kSyiribolsStatus (VOID)

DWORD dStatus = W2K_SYMBOLS_UNDEFINED;

w2kSymbolsGlobal (StdStatus) ;

return dStatus;

}

/ /

VOID WINAPI w2kSymbolsReset (VOID)

{

w2kSpyLock ( ) ;

gpit = imgMemoryDestroy (gpit) ;

gdStatus = W2K_SYMBOLS_OK;

w2kSpyUnlock ( ) ;

return;

)
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TABLE 6-2. wZkSymbolsLoadQ Status Codes

The w2kxcopy* ( ) function set making up the extended copy interface is shown
in Listing 6-34, which corresponds to Listing 6-23 above. w2kxcopy ( ) simply calls
w2kxcall (} with a negative value for dArgumentBytes, and the remaining copy
functions are merely wrappers with simplified argument lists.

STATUS CODE

W2K_SYMBOLS_OK

W2K_SYMBOLS_MODULE_ERROR

W2K_SYMBOLS_LOAD_ERROR

W2K_SYMBOLS_VERSION_ERROR

W2K_SYMBOLS_UNDEFINED

DESCRIPTION

The module's symbol table has been loaded

The module is not resident in memory

The module's symbol files couldn't be loaded

The symbol files don't match the resident
module image

The symbol table status is undefined

BOOL WINAPI w2kXCopy ( PULARGE_INTEGER puliResult,

PBYTE pbSymbol ,

DWORD dBy tes )

{

return w2kXCall {puliResult, pbSymbol,

OxFFFFFFFF - dBytes, NULL) ;

}

BYTE WINAPI w2kXCopy08 (BYTE bDefault,

PBYTE pbSymbol)
/I
ULARGEJNTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 1)

? (BYTE) uliResult.LowPart

: bDefault) ;

//

WORD WINAPI w2kXCopy!6 (WORD wDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kXCopy (SuliResult, pbSymbol, 2)

? (WORD) uliResult.LowPart

: wDefault) ;

}
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LISTING 6-34. The Extended Copy Interface

DWORD WINAPI w2kXCopy32 (DWORD dDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kXCopy (&uliResult, pbSymbol, 4)

? uliResult . LowPart

: dDefault) ;

)

/ /

QWORD WINAPI w2kXCopy64 (QWORD qDefault,

PBYTE pbSymbol)

{

ULARGE_INTEGER uliResult;

return (w2kXCopy t&uliResult, pbSymbol, 8)

? uliResult .QuadPart

: qDefault) ;

>

//

PVOID WINAPI w2kXCopyP (PVOID pDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kXCopy (SuliResult, pbSymbol, 4)

? (PVOID) uliResult. LowPart

: pDefault) ;

}

/ / _ — — —

PVOID WINAPI w2kXCopyEP (PVOID pDefault,

PBYTE pbSymbol)

{
ULARGE_INTEGER uliResult;

return (w2kXCopy (SuliResult, pbSymbol, 0)

? (PVOID) uliResult. LowPart

: pDefault) ;

)
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IMPLEMENTING KERNEL FUNCTION THUNKS

The same guidelines apply to the implementation of thunks for internal kernel func-
tions as for exported API functions, except that only functions inside ntoskrnl. exe
can be called. This restriction is imposed by the symbol table manager inside
w2k_cail. dll, not by the call interface itself. To simplify matters, only the
ntoskrnl. exe symbol table is loaded, because this is the module where the most
interesting symbols are found (of course, w2k_call. dll could have been enhanced to
load multiple tables on request). Listing 6-35 comprises two sample thunks for inter-
nal functions of the Windows 2000 object manager that return information about
type objects (object types will be discussed in detail in Chapter 7).

Listing 6-36 shows three thunks for some very important internal data struc-
tures that will be used by the sample code in Chapter 7. Note that I have prefixed the
names of all thunks that use the extended kernel call interface with two underscores.
This is just a reminder that this function will work only with a proper set of symbol
files. If you install a service pack without also updating the symbol files, w2kSymbols
Load ( ) will refuse to load any symbols and the thunks will fail and return default
values. On the other hand, the thunks with a single leading underscore should con-
tinue to work with unmatched symbol files, because they resolve symbols on the
basis of the memory-resident export tables of the new modules. However, they may
fail as well after an update if the updated modules fail to export all referenced API
functions or some argument lists have been changed.

NTSTATUS WINAPI

ObQueryTypelnfo ( POBJECT_TYPE ObjectType,

POBJECT_TYPE_INFO Typelnfo,

/* bytes */ DWORD TypelnfoLength,

/* init to 0 */ PDWORD ReturnLength)

{

return w2kXCallNT ("ObQueryTypelnfo",

16, ObjectType, Typelnfo, TypelnfoLength,

ReturnLength) ;

}

/ /

NTSTATUS WINAPI

ObQueryTypeName (POBJECT Object,

POBJECT_NAME_INFORMATION NameStr ing ,

/* bytes */ DWORD NameStringLength,
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LISTING 6-35. Sample Thunks for ObQueryTypelnf o ( ) and ObQueryTypeName ( )

LISTING 6-36. Sample Thunks for Some Internal Variables

This should suffice for now. You may be a bit disappointed that I am not adding
sample code here to demonstrate the usage of the w2k_call. dll API functions. Don't
worry—you will get your sample code in the next chapter.

PDWORD ReturnLength)

{
return w2kXCallNT ( "ObQueryTypeName" ,

16, Object, NameString, NameStringLength,
ReturnLength) ;

}

PERESODRCE WINAPI

ObpRootDirectoryMutex (VOID)

{

return w2kXCopyP (NULL, "ObpRootDirectoryMutex");

}

//

POBJECT_DIRECTORY WINAPI

ObpRootDirectoryObject (VOID)

{
return w2kXCopyP (NULL, "ObpRootDirectoryObject");

}

//

POBJECT_DIRECTORY WINAPI

ObpTypeDirectoryObject (VOID)

{
return w2kXCopyP (NULL, "ObpTypeDirectoryObject");

)



C H A P T E R

Windows 2000
Object
Management

There is hardly anything more fascinating in the internals of Windows 2000 than
the world of its objects. If the memory space of an operating system is viewed as

the surface of a planet, the objects are the creatures living on it. Several types of
objects exist—small and large ones, simple and complex ones—and they interact in
various ways. Windows 2000 features a clever, well-structured object management
mechanism that is almost completely undocumented. This chapter attempts to give
you a small insight into this huge, complex universe. Unfortunately, this part of
Windows 2000 is one of the best-kept secrets of Microsoft, and many questions must
be left unanswered here. However, I hope that this chapter will serve as a starting
point for others, helping them to go "where no man has gone before."

WINDOWS 2000 OBJECT STRUCTURES

The companion CD of this book contains a large header file named w2k_def .h in
the \src\common\inciude directory that makes the heart of a Windows 2000 system
programmer throb with joy. It is a large collection of constant and type definitions,
resulting from years of Windows NT/2000 spelunking. The w2k_def. h file is
designed to be included in Win32 applications as well as kernel-mode drivers, using
conditional compilation to account for their different build environments. For
example, Win32 applications can't make use of the ntdef .h and ntddk.h files that
contain most of the kernel data type definitions. Therefore, w2k_def.h includes all
#def ine' s and typedef' s found in the Device Documentation Kit (DDK) header
files that are required in the definitions of the undocumented items. To avoid
redefinition errors in a kernel-mode driver build, these definitions are put into an
#if def _USER_MODE_ clause, so they are ignored by the compiler if the _USER_MODE_
symbol is not defined. This means that you must put a #def ine _USER_MODE_ line

395
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into your source code before including w2k_def. h to enable the processing of the
DDK definitions in a Win32 application or DLL build. The #else clause of the
#ifdef _USER_MODE_ construct contains a small number of definitions that are miss-
ing from the Windows 2000 DDK header files, such as the SECURITY_DESCRIPTOR
and SECURITY_DESCRIPTOR_CONTROL types.

BASIC OBJECT CATEGORIES

Although objects are clearly the gist of the Windows 2000 operating system, you will
find remarkably little information about their inner structure in the DDK. Out of the
21 Ob* ( ) object manager API functions exported by ntoskrnl. exe, only 6 are listed
in the DDK documentation. API functions that receive pointers to objects as argu-
ments usually define these pointers as simple PVOID types. If you search the main DDK
header files ntdef. h and ntddk. h for occurrences of type definitions that somehow
are related to objects, you won't find much useful information. Some important object
data types are defined as placeholders only. For example, the OBJECT_TYPE structure
appears as typedef struct _OBJECT_TYPE *POBJECT_TYPE; just to keep the compiler
happy, without revealing anything useful about its internals.

Whenever you come across an object pointer, you should view it as a linear
address that divides a memory-resident structure into two parts: an object header
and an object body. The object pointer doesn't point to the base address of the
object itself, but to its body section that immediately follows the header. Therefore,
the header parts of an object must be accessed by applying negative offsets to the
object pointer. The internals of the object body are completely dependent on the type
of object and may vary considerably. The most simple object is the event object with
its 16-byte body. Among the most complex ones are thread and process objects,
which are several hundred bytes. Basically, the object body types can be sorted into
the following three main categories:

1 Dispatcher objects reside on the lowest system level and share a
common data structure called DISPATCHER__HEADER (Listing 7-1) at the
beginning of their object bodies. This header contains an object type ID
and the length of the object body in 32-bit DWORD units. The names of
all dispatcher object structures start with a K for "kernel." The presence
of a DISPATCHER_HEADER makes an object "waitable." This means
that the object can be passed to the synchronization functions
KeWaitForSingleObject() and KeWaitForMultipleObjects(),
which are the ones the Win32 API functions waitForsingleObject ( )
and WaitForMultipleObjects ( ) are built upon.
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LISTING 7-1. Definition of the DISPATCHER_HEADER

2. I /O system data structures are higher-level objects whose body starts
with a SHORT member specifying an object type ID. Usually, this ID is
followed by another SHORT or WORD member indicating the object body
size in 8-bit BYTE units. However, not all objects of this category follow
this guideline.

3. other objects—some objects fit into neither of the above categories.

Note that the type IDs of dispatcher objects and I/O system data structures—
named I/O objects from now on—are assigned independently and hence overlap.
Table 7-1 lists the dispatcher object types of which I'm currently aware. Some of the
structures in the "C Structure" column are defined in the DDK header file ntddk.h.
Unfortunately, the most interesting ones, such as KPROCESS and KTHREAD, are miss-
ing. Don't worry, however—these special object types will be discussed in detail later
in this chapter. All undocumented structures whose internals are at least partially
known to me are included in the header file w2k_def .h on the companion CD, as
well as in Appendix C of this book.

TABLE 7-1. Summary of Dispatcher Objects

typedef struct _DISPATCHER_HEADER
{

/ * 0 0 0 * / BYTE Type; // DISP_TYPE_*
/*001*/ BYTE Absolute;
/*002* / BYTE Size; // number of DWORDs
/*003* / BYTE Inserted;
/*004* / LONG SignalState;
/*008*/ LIST_ENTRY WaitListHead;
/*010*/ }

DISPATCHER_HEADER,
* PDISPATCHER_HEADER,

**PPDISPATCHER_HEADER;

ID

0

1

2

3

4

TYPE

DISP_TYPE_NOTIFICATION_EVENT

DISP_TYPE_SYNCHRONIZATION_EVENT

DISP_TYPE_MUTANT

DISP_TYPE_PROCESS

DISP_TYPE_QUEUE

C STRUCTURE

KEVENT

KEVENT

KMUTANT, KMUTEX

KPROCESS

KQUEUE

DEFINITION

ntddk.h

ntddk.h

ntddk.h

w2k_def.h

w2k_def.h

(continued)
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TABLE 7-1. (continued)

ID

5

6

8

9

TYPE

DISP_TYPE_SEMAPHORE

DISP_TYPE_THREAD

DISP_TYPE_NOTIFICATION_TIMER

DISP_TYPE_SYNCHRONIZATION_TIMER

C STRUCTURE

KSEMAPHORE

KTHREAD

KTIMER

KTIMER

DEFINITION

ntddk.h

w2k_def.h

ntddk.h

ntddk.h

Table 7-2 summarizes the I/O objects I have identified so far. Only the first 13
IDs are defined in ntddk. h. Again, some of the structures in the "C Structure" col-
umn can be looked up in the DDK. Some of the remaining ones are included in
w2k_def. h and in Appendix C of this book.

TABLE 7-2. Summary of I/O Objects

ID

1

2

3

4

5

6

7

8

9

10

11

12

13

18

19

20

21

22

23

TYPE

IO_TYPE_AD AFTER

IO_TYPE_CONTROLLER

IO_TYPE_DEVICE

IO_TYPE_DRIVER

IO_TYPE_FILE

IO_TYPE_IRP

IO_TYPE_MASTER_AD AFTER

IO_TYPE_OPEN_PACKET

IO_TYPE_TIMER

IO_TYPE_VPB

IO_TYPE_ERROR_LOG

IO_TYPE_ERROR_MESSAGE

IO_TYPE_DEVICE_OBJECT_ EXTENSION

IO_TYPE_APC

IO_TYPE_DPC

IO_TYPE_DEVICE_QUEUE

IO_TYPE_EVENT_PAIR

IOJTYPE_INTERRUPT

IO_TYPE_PROFILE

C STRUCTURE

ADAPTER_OBJECT

CONTROLLER_OBJECT

DEVICE_OBJECT

DRIVER_OBJECT

FILE_OBJECT

IRP

IO_TIMER

VPB

IO_ERROR_LOG_ENTRY

IO_ERROR_LOG_MESSAGE

DEVOBJ_EXTENSION

KAPC

KDPC

KDEVICE_QUEUE

KEVENT_PAIR

KINTERRUPT

KPROFILE

DEFINITION

ntddk.h

ntddk.h

ntddk.h

ntddk.h

ntddk.h

w2k_def.h

ntddk.h

w2k_def.h

ntddk.h

ntddk.h

ntddk.h

ntddk.h

ntddk.h

w2k_def.h
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THE OBJECT HEADER

The body of an object can assume any form suitable for the creator of the object. The
Windows 2000 object manager doesn't impose any restrictions on the size and struc-
ture of the object body. Contrary to this, there is much less freedom with the header
portion of an object. Figure 7-1 shows the memory layout of a full-featured object,
with the maximum number of header fields. Every object features at least a basic
OBJECT_HEADER structure, immediately preceding the object body, plus up to four
optional structures that supply additional information about the object. As already
noted, an object pointer always refers to the object body, not to the header, so the
header fields are accessed via negative offsets relative to the object pointer. The basic
header contains information about the availability and location of additional header
fields, which are stacked up on the OBJECT_HEADER structure in the order shown in
Figure 7-1, if present. However, this sequence isn't mandatory, and your programs
should never rely on it. The information in the OBJECT_HEADER is sufficient to locate
all header fields regardless of their order, as will be shown in a moment. The only
exception is the OBJECT_CREATOR_INFO structure that always precedes the
OBJECT_HEADER immediately if it is included.

FIGURE 7-1. Memory Layout of an Object
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Listing 7-2 shows the definition of the OBJECT_HEADER structure. Its members
serve the following purposes:

• The PointerCount member indicates how many active pointer
references to this object currently exist. This value is similar to the
reference count maintained by Component Object Model (COM)
objects. The ntoskrnl. exe API functions ObfRef erenceObject ( ) ,
ObReferenceObjectByHandle(), ObReferenceObjectByName(), and
ObReferenceObjectByPointer ( ) increment the PointerCount, and
ObfDereferenceObject() and ObDereferenceObject() decrement it.

• The HandleCount member indicates how many open handles currently
refer to this object.

LISTING 7-2. The OBJECT_HEADER Structure

#define OB_FLAG_CREATE_INFO 0x01 // has OBJECT_CREATE_INFO

#define OB_FLAG_KERNEL_MODE 0x02 // created by kernel

#define OB_FLAG_CREATOR_INFO 0x04 // has OBJECT_CREATOR_INFO

#define OB_FLAG_EXCLUSIVE 0x08 // OBJ_EXCLUSIVE

#define OB_FLAG_PERMANENT 0x10 // OBJ_PERMANENT

#define OB_FLAG_SECURITY 0x20 // has security descriptor

#define OB_FLAG_SINGLE_PROCESS 0x40 //no HandleDBList

typedef struct _OBJECT_HEADER

{

/*000*/ DWORD PointerCount; // number of references

/*004*/ DWORD HandleCount; // number of open handles

/*008*/ POBJECT_TYPE ObjectType;

/*OOC*/ BYTE NameOffset; // -> OBJECT_NAME

/*OOD*/ BYTE HandleDBOffset; // -> OBJECT_HANDLE_DB

/*OOE*/ BYTE QuotaChargesOffSet; // -> OBJECT_QUOTA_CHARGES

/*OOF*/ BYTE ObjectFlags; // OB_FLAG_*

/*010*/ union

{ // OB_FLAG_CREATE_INFO ? ObjectCreatelnf o : QuotaBlock

/*010*/ PQUOTA_BLOCK QuotaBlock;

/*010*/ POBJECT_CREATE_INFO ObjectCreatelnf o;

/*014*/ };

/*014*/ PSECURITY_DESCRIPTOR SecurityDescriptor ;

/*018*/ }

OBJECT_HEADER,

* POBJECT_HEADER,

* * PPOB JECT_HEADER ;
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• The objectType member points to an OBJECT_TYPE structure (described
later) representing the type object that has been used in the creation of
this object.

• The NameOf f set specifies the number of bytes to be subtracted from trie
OBJECT_HEADER address to locate the object header's OBJECT_NAME portion.
If zero, this structure is not available.

• The HandleDBOf f set specifies the number of bytes to be subtracted from
the OBJECT_HEADER address to locate the object header's
OBJECT_HANDLE_DB portion. If zero, this structure is not available.

• The Quotachargesof f set specifies the number of bytes to be subtracted
from the OBJECT_HEADER address to locate the object header's
OBJECT_QUOTA_CHARGES portion. If zero, this structure is not available.

• The obj ectFlags specify various binary properties of an object, as listed
in the top section of Listing 7-2. If the OB_FLAG_CREATOR_INFO bit is set,
the object header includes an OBJECT_CREATOR_INFO structure that
immediately precedes the OBJECT_HEADER. In windows NT/2000 Native
API Reference, Gary Nebbett mentions these flags with slightly different
names in his description of the Systemobjectinf ormation class of the
ZwQuerySysteminf ormation ( ) function (Nebbett 2000, p. 24), as shown
in Table 7-3.

• The QuotaBlock and objectcreateinfo members are mutually exclusive.
If the obj ectFlags member has the OB_FLAG_CREATE_INFO flag set, this
member contains a pointer to the OBJECT_CREATE_INFO structure
(described later) used in the creation of this object. Otherwise, it points to
a QUOTA_BLOCK that provides information about the usage of the paged
and nonpaged memory pools. Many objects have their QuotaBlock
pointer set to the internal PspDefaultQuotaBlock structure. The value of
this union can be NULL .

• The securityDescriptor member points to a SECURITY_DESCRIPTOR
structure if the OB_FLAG_SECURITY bit of the obj ectFlags is set.
Otherwise, its value is NULL .

In the above list, several structures have been mentioned that weren't discussed
in detail so far. Each of them will be introduced now, starting with the four optional
header parts shown in Figure 7-1.
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TABLE 7-3. Comparison o^ObjectFlags Interpretations

SCHREIBER

OB_FLAG_CREATE_INFO

OB_FLAG_KERNEL_MODE

OB_FLAG_CREATOR_INFO

OB_FLAG_EXCLUSIVE

OB_FLAG_PERMANENT

OB_FLAG_SECURITY

OB_FLAG_SINGLE_PROCESS

VALUE

0x01

0x02

0x04

0x08

0x10

0x20

0x40

NEBBETT

N/A

KERNEL_MODE

CREATORJNFO

EXCLUSIVE

PERMANENT

DEFAULT_SECURITY_QUOTA

SINGLE_HANDLE_ENTRY

THE OBJECT CREATOR INFORMATION

The OBJECT_HEADER of an object is immediately preceded by an OBJECT_CREATOR_INFO
structure if the OB_FLAG_CREATOR_INFO bit of its objectFiags member is set. The
definition of this optional header part is shown in Listing 7-3. The objectList mem-
ber is a node within a doubly linked list (cf. Listing 2-7 in Chapter 2) that connects
objects of the same type to each other. As usual, this list is circular. The list head
where the object list originates and ends is located within the OBJECT_TYPE structure
that represents the common type object of the list members. By default, only Port
and waitablePort objects include OBJECT_CREATOR_INFO data in their headers. The
SystemObjectlnformation class of the ZwQuerySystemlnformation (} API function
uses the objectList to return complete lists of currently allocated objects, grouped
by object type. Gary Nebbett points out in windows NT/2000 Native API Reference
that "[...] this information class is only available if FLG_MAINTAIN_OBJECT_TYPELIST
was set in the NtGlobalFlags at boot time" (Nebbett 2000, p. 25).

LISTING 7-3. The OBJECT CREATOR INFO Structure

typedef struct _OBJECT_CREATOR_INFO

{

/*000*/ LIST_ENTRY ObjectList; // OBJECT_CREATOR_INFO

/*008*/ HANDLE UnigueProcessId;

/*OOC*/ WORD Reserved!;

/*OOE*/ WORD Reserved2;

/*010V }

OBJECT_CREATOR_INFO ,

* POBJECT_CREATOR_INFO,

* * PPOB JECT_CREATOR_INFO ;
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The uniqueProcessid is the zero-based numeric ID of the process that created
the object. Although defined as a HANDLE, this member is not a handle in the usual
sense. It might be described more accurately as an opaque 32-bit unsigned integer.
Actually, the Win32 GetCurrentProcessid ( ) API function returns these HANDLE
values as DWORD types.

THE OBJECT NAME

If the NameOf f set member of the OBJECT_HEADER is nonzero, it specifies the inverse
offset of an OBJECT_NAME structure with respect to the base address of the
OBJECT_HEADER . Typical values are Oxio or 0x20, depending on the presence of an
OBJECT_CREATOR_INFO header part. Listing 7-4 shows the definition of the
OBJECT_NAME structure. The Name member is a UNICODE_STRING whose Buffer
member points to the name string, which is usually not part of the memory block
containing the object. Not all named objects use an OBJECT_NAME structure in the
header to store the name. For example, some objects rely on a QueryNameProcedure ( )
provided by their associated OBJECT_TYPE .

If the Directory member is not NULL , it points to the directory object repre-
senting the layer in the system's object hierarchy where this object is located. Like
files in a file system, Windows 2000 objects are kept in a hierarchically structured
tree consisting of directory and leaf objects. More details about the OBJECT_
DIRECTORY structure follow in a moment.

LISTING 7-4. The OBJECT NAME Structure

THE OBJECT HANDLE DATABASE

Some objects maintain process-specific handle counts stored in a so-called "handle
database." If this is the case, the HandleDBOf f set member of the OBJECT_HEADER
contains a nonzero value. Just like the NameOf f set described above, this is an offset
to be subtracted from the base address of the OBJECT_HEADER to locate this header

typedef struct OBJECT NAME

{

/*000*/ POBJECT_DIRECTORY Directory;

/*004*/ UNICODE_STRING Name;

/*00c*/ DWORD Reserved;

/*010*/ }

OBJECT_NAME,

* POBJECT_NAME ,

* * PPOB JECT_NAME ;
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part. The OBJECT_HANDLE_DB structure is defined in Listing 7-5. If the OB__FLAG_
SINGLE_PROCESS flag is set in the objectFlags, the Process member of the union
at the beginning of this structure is valid and points to a process object. If more
that one process holds handles to the object, the OB_FLAG_SINGLE_PROCESS
flag is cleared, and the HandleDBList member becomes valid, pointing to an
OBJECT_HANDLE_DB_LIST that constitutes an array of OBJECT_HANDLE_DB structures,
preceded by a count value.

LISTING 7-5. The OBJECT HANDLE_DB Structure

RESOURCE CHARGES AND QUOTAS
If a process opens a handle to an object, the process must "pay" for usage of system
resources caused by this operation. The paid dues are referred to as charges, and the

typedef struct _OBJECT_HANDLE_DB

{

/*000*/ union

{
/*000*/ struct _EPROCESS *Process;

/*000*/ Struct _OBJECT_HANDLE_DB_LIST "HandleDBList ;

/*004*/ };

/*004*/ DWORD HandleCount;

/*008*/ }

OB JECT_HANDLE_DB ,

* POBJECT_HANDLE_DB,

* *PPOBJECT_HANDLE_DB ;

#define OBJECT_HANDLE_DB_ \

Sizeof (OBJECT_HANDLE_DB)

//

typedef struct OBJECT HANDLE DB LIST

{

/*000*/ DWORD Count;

/*004*/ OBJECT_HANDLE_DB Entries [ ] ;

/*???*/ }

OBJECT_HANDLE_DB_LIST,

* POBJECT_HANDLE_DB_LIST,

* *PPOBJECT_HANDLE_DB_LIST ;

#define OBJECT_HANDLE_DB_LIST_ \

sizeof (OBJECT_HANDLE_DB_LIST)
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upper limit a process may spend for resources is termed the quota. In the glossary of
the DDK documentation (Microsoft, 2000F), Microsoft defines the "quota" term in
the following way:

QUOTA

A per-process limit on the use of system resources.

For each process, Windows NT®/Windows® 2000 sets limits on certain system resources the

process's threads can use, including quotas for paging-file, paged-pool, and nonpaged-pool
usage, etc. For example, the Memory Manager "charges quota" against the process as its
threads use page-file, paged-pool, or nonpaged-pool memory; it also updates these values
when threads release memory. (Windows 2000 DDK \ Kernel-Mode Drivers \ Design Guide \
Kernel-Mode Glossary \ Q \ quota)

By default, an object's OBJECT_TYPE determines the charges to be applied for
paged/nonpaged pool usage and security. However, this default can be overridden by
adding an OBJECT_QUOTA_CHARGES structure to the object header. The location of this
data relative to the OBJECT_HEADER base address is specified by the QuotaChargesOf f set
member of the OBJECT_HEADER as an inverse offset, as usual. Listing 7-6 shows the struc-
ture definition. The usages of the paged and nonpaged pools are charged separately. If
the object requires security, an additional SecurityCharge is added to the paged-pool
usage. The default security charge is 0x800.

If the OB_FLAG_CREATE_INFO bit of the objectFlags in the OBJECT_HEADER is
zero, the QuotaBlock member points to a QUOTA_BLOCK structure (Listing 7-7) that
contains statistical information about the current resource usage of the object.

LISTING 7-6. The OBJECT_QUOTA_CHARGES Structure

#define OB_SECURITY_CHARGE 0x00000800

typedef struct _OBJECT_QUOTA_CHARGES

{

/*000*/ DWORD PagedPoolCharge ;

/*004*/ DWORD NonPagedPoolCharge;

/*008*/ DWORD SecurityCharge;

/*OOC*/ DWORD Reserved;

/*010*/ }

OBJECT_QUOTA_CHARGES ,

* POBJECT QUOTA CHARGES,

* *PPOBJECT_QUOTA_CHARGES ;
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LISTING 7-7. The QUOTA_BLOCK Structure

OBJECT DIRECTORIES

As already noted in the discussion of the OBJECT_NAME header part, the Windows
2000 object manager keeps individual objects in a tree of OBJECT_DIRECTORY struc-
tures, also known as "directory objects." An OBJECT_DIRECTORY is just another fancy
type of object, with an ordinary OBJECT_HEADER and everything a real object needs.
The Windows 2000 object directory management is quite tricky. As Listing 7-8
shows, the OBJECT_DIRECTORY is basically a hash table with 37 entries. This unusual
size has probably been chosen because it is a prime number. Each table entry can
hold a pointer to an OBJECT_DIRECTORY_ENTRY whose object member refers to an
object. When a new object is created, the object manager computes a hash value in
the range 0 to 36 from the object name and creates an OBJECT_DIRECTORY_ENTRY. If
the target slot of the hash table is empty, this slot is set up to point to the new direc-
tory entry. If the slot is already in use, the new entry is inserted into a singly-linked
list of entries originating from the target slot, using the NextEntry members of the
involved OBJECT_DIRECTORY_ENTRY structures. To represent hierarchical object rela-
tionships, object directories can be nested in a straightforward way by simply adding
an OBJECT_DIRECTORY_ENTRY with an object member that points to a subordinate
directory object.

To optimize the access to frequently used objects, the object manager applies a
simple most recently used (MRU) algorithm. Whenever an object has successfully been
retrieved, it is put in front of the linked list of entries that are assigned to the same
hash table slot. Moreover, a pointer to the updated list is kept in the CurrentEntry
member of the OBJECT_DIRECTORY. The currentEntryvalid flag indicates whether
the CurrentEntry pointer is valid. Access to the system's global object directory is
synchronized by means of an ERESOURCE lock called obpRootDirectoryMutex. This
lock is neither documented nor exported.

typedef struct _QUOTA_BLOCK

{

/*000*/ DWORD Flags;

/*004*/ DWORD ChargeCount;

/*008*/ DWORD PeakPoolUsage [2]; // NonPagedPool, PagedPool

/*010*/ DWORD PoolUsage [21; // NonPagedPool, PagedPool

/*018*/ DWORD PoolQuota [2]; // NonPagedPool, PagedPool

/*020*/ }

QUOTA_BLOCK,

* PQUOTA_BLOCK,

* * PPQUOTA_BLOCK ;
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LISTING 7-8. The OBJECT_DIRECTORY and OBJECT_DIRECTORY_ENTRY Structures

OBJECT TYPES

The above object header part descriptions have frequently referred to "type objects"
or OBJECT_TYPE structures, so it is now time to introduce these. Formally, a type
object is nothing but a special kind of object, such as an event, device, or process, and
as such has an OBJECT_HEADER and potentially some of the optional header substruc-
tures. The only difference is that type objects are related in a special way to other
objects. A type object is sort of a "master object" that defines common properties of
objects of the same kind, and optionally keeps all of its subordinate objects in a dou-
bly-linked list, as explained earlier in the description of the OBJECT_CREATOR_INFO
structure. Therefore, type objects are frequently referred to as "object types" to
emphasize that they are more than just ordinary objects.

The body of a type object consists of an OBJECT_TYPE structure with an embed-
ded OBJECT_TYPE_INITIALIZER, both of which are shown in Listing 7-9. The latter
is used during object creation via obcreateobject ( ) to build a proper object header.
For example, the MaintainHandleCount and MaintainTypeList members are used

typedef struct _OBJECT_DIRECTORY_ENTRY

{

/*000*/ struct _OBJECT_DIRECTORY_ENTRY *NextEntry;

/*004*/ POBJECT Object;

/*008*/ }

OBJECT_DIRECTORY_ENTRY ,

* POBJECT_DIRECTORY_ENTRY ,

**PPOBJECT_DIRECTORY_ENTRY;

//

ftdefine OBJECT_HASH_TABLE_SIZE 37

typedef struct _OBJECT_DIRECTORY

{
/*000*/ POBJECT_DIRECTORY_ENTRY HashTable [OBJECT_HASH_TABLE_SIZE] ;

/*094*/ POBJECT_DIRECTORY_ENTRY CurrentEntry ;

/*098*/ BOOLEAN CurrentEntryValid;

/*099*/ BYTE Reserved!;

/*09A*/ WORD Reserved2;

/*09C*/ DWORD ReservedS;

/*OAO*/ }

OB JECT_DIRECTORY ,

* POBJECT_DIRECTORY,

* * PPOB JECT_DIRECTORY ;
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typedef struct _OBJECT_TYPE_INITIALIZER

{

/*000*/ WORD Length; //Ox004C

/*002*/ BOOLEAN UseDefaultObject ; / /OBJECT_TYPE .Def aultObject

/*003*/ BOOLEAN Reservedl;

/*004*/ DWORD InvalidAttributes;

/*008*/ GENERIC_MAPPING GenericMapping;

/*018*/ ACCESS_MASK ValidAccessMask;

/*01C*/ BOOLEAN SecurityRequired;

/*01D*/ BOOLEAN MaintainHandleCount ; // OBJECT_HANDLE_DB

/*01E*/ BOOLEAN MaintainTypeList ; // OBJECT_CREATOR_INFO

/*01F*/ BYTE Reserved2;

/*020*/ BOOL PagedPool;

/*024*/ DWORD DefaultPagedPoolCharge;

/*028*/ DWORD DefaultNonPagedPoolCharge;

/*02C*/ NTPROC DumpProcedure ;

/*030*/ NTPROC OpenProcedure;

/*034*/ NTPROC CloseProcedure;

/*038*/ NTPROC DeleteProcedure;

/*03C*/ NTPROC_VOID ParseProcedure;

/*040*/ NTPROC_VOID SecurityProcedure; // SeDefaultObjectMethod

/*044*/ NTPROC_VOID QueryNameProcedure;

/*048*/ NTPROC_BOOLEAN OkayToCloseProcedure;

/*04C*/ }

OBJECT_TYPE_INITIALIZER,

* POBJECT_TYPE_INITIALIZER,

**PPOBJECT_TYPE_INITIALIZER;

/ /

typedef struct _OBJECT_TYPE
{

/*000*/ ERESOURCE Lock;

/*038*/ LIST_ENTRY ObjectListHead; // OBJECT_CREATOR_INFO

/*040*/ UNICODE_STRING ObjectTypeName; // see above

/*048*/ union

{

/*048*/ PVOID DefaultObject; // ObpDefaultObject

/*048*/ DWORD Code; // File: 5C, WaitablePort : AO

};

/*04C*/ DWORD ObjectTypelndex; // OB_TYPE_INDEX_*

/*050*/ DWORD ObjectCount;

/*054*/ DWORD HandleCount;

/*058*/ DWORD PeakObjectCount;

/*05C*/ DWORD PeakHandleCount;

/*060*/ OBJECT_TYPE_INITIALIZER ObjectTypelnitializer ;

/*OAC*/ DWORD ObjeCtTypeTag; // OB_TYPE_TAG_*

/*OBO*/ }
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LISTING 7-9. The OBJECT_TYPE and OBJECT_TYPE INITIALIZER Structures

by the internal ntoskrnl. exe function obpAllocateObj ect ( ) to decide whether all
newly created objects will comprise OBJECT_HANDLE_DB and OBJECT_CREATOR_INFO
header parts, respectively. Setting the MaintainTypeList flag has the nice side effect
that the objects of this type will be tied to each other in a doubly linked list, originating
from and ending at the objectListHead member of the OBJECT_TYPE . The
OBJECT_TYPE_INITIALIZER also provides the default quota charges (mentioned earlier
in the discussion of the OBJECT_QUOTA_CHARGES header component) via its Default-
PagedPoolCharge and Def aultNonPagedPoolCharge members.

Because type objects/object types are essential building blocks of the Windows
2000 object universe, ntoskrnl. exe stores them in named variables, making it easy to
verify the type of an object by simply comparing the obj ectType member of its
OBJECT_HEADER to the stored type object in question. Type objects are unique—the sys-
tem never creates more than one type object for each kind of object. Table 7-4 summa-
rizes the type objects maintained by Windows 2000. The information in the various
columns has the following meaning:

TABLE

INDEX

l
2

3

4

5

6

7

8

9

10

11

7-4.

TAG

"ObjT"

"Dire"

"Symb"

"Toke"

"Proc"

"Thre"

"Job "

"Even"

"Even"

"Muta"

"Call"

Available Object Types

NAME

"Type"

"Directory"

"SymbolicLink"

"Token"

"Process"

"Thread"

"Job"

"Event"

"EventPair"

"Mutant"

"Callback"

C STRUCTURE

OBJECT_TYPE

OBJECT_DIRECTORY

TOKEN

EPROCESS

ETHREAD

KEVENT

KEVENT_PAIR

KMUTANT

CALLBACK_OBJECT

PUBLIC

No

No

No

No

Yes

Yes

Yes

Yes

No

No

No

SYMBOL

ObpTypeObjectType

ObpDirectoryObjectType

ObpSymbolicLinkObjectType

SepTokenObjectType

PsProcessType

PsThreadType

PsJobType

ExEventObjectType

ExEventPairObjectType

ExMutantObjectType

ExCallbackObjectType

(continued)

OBJECT_TYPE,

* POBJECT_TYPE ,

* * PPOB JECT_TY PE ;
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TABLE 7-4. (continued)

• The "Index" column specifies the value of the objectTypeindex member
of the OBJECT__TYPE structure.

• The "Tag" is the 32-bit identifier stored in the objectTypeTag member of
the OBJECT_TYPE structure. Windows 2000 tags are typically binary values
generated by concatenation of four ANSI characters. During debugging,
these characters can easily be identified in a hex dump listing. Testing the
ObjectTypeTag value is the easiest way to verify that a given type object is
of the expected kind. When allocating memory for an object, Windows
2000 also uses this value—logically OR'ed with 0x80000000—to tag the
new memory block.

• The "Name" column states the object name, as it is specified by the type
object's OBJECT_NAME header component. It is obvious that the type tag is
generated from the object name by truncating it to four characters,
appending spaces if the name is shorter.

• "C Structure" is the name of the object body structure associated with the
object type. Some of them are documented in the DDK and some in the

INDEX

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

TAG

"Sema"

"Time"

"Prof"

"Wind"

"Desk"

"Sect"

"Key"

"Port"

"Wait"

"Adap"

"Cont"

"Devi"

"Driv"

"loCo"

"File"

"WmiG"

NAME

"Semaphore"

"Timer"

"Profile"

C STRUCTURE PUBLIC

KSEMAPHORE

ETIMER

KPROFILE

" WindowStation "

"Desktop"

"Section"

"Key"

"Port"

"WaitablePort"

"Adapter"

"Controller"

"Device"

"Driver"

"loCompletion "

"File"

"WmiGuid"

ADAPTER_OBJECT

CONTROLLER_OBJECT

DEVICE_OBJECT

DRIVER_OBJECT

ICLCOMPLETION

FILE_OBJECT

GUID

Yes

No

No

Yes

Yes

Yes

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

SYMBOL

ExSemaphoreObjectType

ExTimerObjectType

ExProfileObjectType

ExWindowStationObjectType

ExDesktopObjectType

MmSectionObjectType

CmpKeyObjectType

LpcPortObjectType

LpcWaitablePortObjectType

loAdapterObjectType

loControllerObjectType

loDeviceObjectType

loDriverObjectType

loCompletionObjectType

loFileObjectType

WmipGuidObjectType
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w2k_def .h header file on the CD provided with this book. If no name is
present, the structure is currently unknown or unidentified.

• The "Symbol" column indicates the name of the pointer variable that
refers to the type object. If the "Public" column contains "yes," the
variable is exported and can be accessed by kernel-mode drivers or
applications that link to the kernel via the w2k_call. dll library presented
in Chapter 6.

The "Index" column requires further explanation. The value shown here is
taken from the objectTypeindex member of the corresponding OBJECT_TYPE struc-
ture. This value is not a predefined type ID as are the DISP_TYPE_* and IO_TYPE_*
constants used by dispatcher and I/O objects (see Tables 7-1 and 7-2). It merely
reflects the order in which the system created these type objects. Therefore, you
should never use the objectTypeindex to identify the type of an object. It is safer to
use the objectTypeTag instead, which is certainly more stable across future operat-
ing system versions.

OBJECT HANDLES

Whereas a kernel-mode driver can directly contact an object by querying a pointer to
its object body, a user-mode application cannot. When it calls one of the API func-
tions that open an object, it receives back a handle that must be used in subsequent
operations on the object. Although Windows 2000 applies the "handle" metaphor to
a variety of things that are not necessarily related, there is a construct that can be
called the handle in the strictest sense. This pure form of a handle is a process-spe-
cific 16-bit number that is usually a multiple of four and constitutes an index into a
handle table maintained by the kernel for each process. The main HANDLE_TABLE
structure is shown at the end Listing 7-10. This table points to a HANDLE_LAYERI
structure that consists of pointers to HANDLE_LAYER2 structures, which in turn are
composed of HANDLE_LAYERS pointers. Finally, the third indirection layer contains
pointers to the actual handle table entries, represented by HANDLE_ENTRY structures.

// HANDLE BIT-FIELDS

/ /

/ / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
/ / F E D C B A 9 8 7 6 5 4 3 2 1 0 F E D C B A 9 8 7 6 5 4 3 2 1 0
/ /
/ / | x | x | x x | x | x a | a | a | a | a | a | a j a | b b | b | b | b | b | b | b | c | c | c | c | c | c | c | c | y | y |

(continued)
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// | not used | HANDLE_LAYER1 | HANDLE_LAYER2 | HANDLE_LAYER3 |tag|

#define HANDLE_LAYER_SIZE 0x00000100

//

tfdefine HANDLE_ATTRIBUTE_INHERIT 0x00000002

tdefine HANDLE_ATTRIBUTE_MASK 0x00000007

#define HANDLE_OBJECT_MASK OxFFFFFFFS

typedef struct _HANDLE_ENTRY // cf. OBJECT_HANDLE_INFORMATION

{
/*000*/ union

{

/*OOOV DWORD HandleAttributes;// HANDLE_ATTRIBUTE_MASK

/*000*/ POBJECT_HEADER ObjectHeader ; // HANDLE_OBJECT_MASK

/*004*/ };

/*004*/ union

{

/*004*/ ACCESS_MASK GrantedAccess ; // if used entry

/*004V DWORD NextEntry; // if free entry

/*008*/ };

/*008*/ }

HANDLE_ENTRY,

* PHANDLE_ENTRY,

* * PPHANDLE_ENTRY ;

/ / -

typedef struct _HANDLE_LAYER3

{
/*000*/ HANDLE_ENTRY Entries [HANDLE_LAYER_SIZE] ; // bits 2 to 9

/*800*/ }

HANDLE_LAYER3 ,

* PHANDLE_LAYER3 ,

* *PPHANDLE_LAYER3 ;

// -

typedef struct _HANDLE_LAYER2

{

/*000*/ PHANDLE_LAYER3 Layer3 [HANDLE_LAYER_SIZE] ; // bits 10 to 17

/*400*/ }

HANDLE_LAYER2 ,

* PHANDLE_LAYER2 ,

* * PPHANDLE_LAYER2 ;

/ /
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LISTING 7-10. Handle Tables, Layers, and Entries

This three-layered addressing mechanism is a clever trick to be able to dynami-
cally increase or decrease the storage needed for handle entries with minimum effort
while also minimizing waste of memory. Because each handle table layer takes up to
256 pointers, a process can theoretically open 256 * 256 * 256, or 16,777,216
handles. With each handle entry consuming 8 bytes, the required maximum storage
amounts to 128 MB. However, because a process rarely needs that many handles, it
would be an immense waste of space to allocate the complete handle table from the
start. The three-layered approach used by Windows 2000 starts out with the mini-
mum set of a single subtable per layer. Not counting the HANDLE_TABLE itself, the
required storage is 2 5 6 *4 + 2 5 6 * 4 + 2 5 6 * 8 , or 4, 096 bytes. The initial han-
dle table material fits exactly into a single physical memory page.

To look up the HANDLE_ENTRY of a HANDLE , the system divides the 32-bit value
of the handle into three 8-bit fragments, discarding bits #0 and #1, as well as the top-
most six bits. Given these three fragments, the handle resolution mechanism proceeds
as follows:

typedef struct _HANDLE_LAYER1

{

/*000*/ PHANDLE_LAYER2 Layer2 [HANDLE_LAYER_SIZE] ; // bits 18 to 25

/*400V )

HANDLE_LAYER1 ,

* PHANDLE_LAYER1 ,

* *PPHANDLE_LAYER1 ;

/ /

typedef struct _HANDLE_TABLE

{

/*000*/ DWORD Reserved;

/*004*/ DWORD HandleCount;

/*008*/ PHANDLE_LAYER1 Layerl ;

/*OOC*/ struct _EPROCESS "Process; // passed to PsChargePoolQuota ()

/*010*/ HANDLE UniqueProcessId;

/*014*/ DWORD NextEntry;

/*018*/ DWORD TotalEntries;

/*01C*/ ERESOURCE HandleTableLock;

/*054*/ LIST_ENTRY HandleTableList ;

/*05C*/ KEVENT Event;

/*06C*/ }

HANDLE_TABLE ,

* PHANDLE_TABLE,

* *PPHANDLE_TABLE ;
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1. Bits #18 to #25 of the HANDLE are used as an index into the Layer2 array
of the HANDLE_LAYERI block referred to by the Layerl member of the
HANDLEJTABLE.

2. Bits #10 to #17 of the HANDLE are used as an index into the Layers array
of the HANDLE_LAYER2 block retrieved in the previous step.

3. Bits #2 to #9 of the HANDLE are used as an index into the Entries array of
the HANDLE_LAYER3 block retrieved in the previous step.

4. The HANDLE_ENTRY retrieved in the previous step provides a pointer to the
OBJECT_HEADER (see Listing 7-2) of the object associated to the HANDLE.

If this sounds confusing, Figure 7-2 may clarify what occurs in this situation.
Actually, Figure 7-2 is remarkably similar in structure to Figure 4-3 in Chapter 4,
where the i386 CPU's linear-to-physical address translation is depicted. Both algo-
rithms break an input value into three fragments, with two of them used as offsets
into two hierarchically arranged indirection layers and the third one selecting an
entry from the target layer. Note that the layered handle table model is new to
Windows 2000. Windows NT 4.0 provided a single-layered table that had to be
expanded if the currently opened handles didn't fit into the memory block currently
allocated for the handle table (cf. Custer 1993, Solomon 1998).

FIGURE 7-2. HANDLE to OBJECT_HEADER Resolution
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Because each process has its own handle table, the kernel must somehow keep
track of the currently allocated tables. Therefore, ntoskrnl. exe maintains a
LIST_ENTRY variable named HandleTableListHead that is the root of a doubly linked
list of HANDLE_TABLE structures, chained together by means of their HandleTableList
members. When following their Flink or Blink pointers, you must always subtract
the HandleTableList member offset 0x54 to get to the base address of the surround-
ing HANDLE_TABLE structure. The owning process of each table can easily be deter-
mined by consulting its uniqueProcessid member. The first HANDLE_TABLE in
the list is usually owned by the System process (ID=8), followed by the table of the
System idle Process (ID=0). The latter HANDLE_TABLE is also reachable by an inter-
nal variable referred to as obpKernelHandleTable.

When accessing handle tables, the system uses a couple of synchronization
objects to preserve data integrity in multithreaded handle access scenarios. The
entire handle table list is locked by means of the global HandleTableListLock
inside ntoskrnl. exe, which is an ERESOURCE structure. This type of synchron-
ization object allows exclusive or shared locks, acquired with the help of the
ExAcquireResourceExclusiveLite() and ExAcquireResourceSharedLite()
API functions, respectively. The lock is released by calling ExReleaseResourceLite ( ) .
After locking the handle table list for exclusive access, you are guaranteed that the
system will not change any list entries until the lock is released. Each HANDLE_TABLE
in the list entry has its own ERESOURCE lock, termed HandleTableLock in Listing
7-10. ntoskrnl. exe provides the internal functions ExLockHandleTableExclusive ( )
and ExLockHandleTableSharedf) to acquire this ERESOURCE, and ExUnlockHandle
TableShared ( ) to release it (no matter whether the lock is exclusive or shared, even
though the name suggests that it is good for shared locks only). These functions are
simply wrappers around ExAcquireResourceExclusiveLite ( ) , ExAcquireResource
sharedLite ( ) , and ExReleaseResourceLite ( ) , taking a pointer to a HANDLE_TABLE
and passing over its HandleTableLock.

Unfortunately, all essential functions and global variables used by the kernel's
handle manager are not only undocumented, but also inaccessible because they are
not exported by the ntoskrnl. exe module. Although it is certainly possible to look up
objects by their handles using the kernel call interface proposed in Chapter 6 and the
scheme outlined in Figure 7-2,1 don't recommend doing so. One reason is that this
code would deliberately give up compatibility with Windows NT 4.0 because of the
radical handle table design change. Another reason is that the kernel provides a luxu-
rious function that returns the contents of all handle tables owned by the currently
active processes. This function is NtQuerySysteminf ormation ( ) , and the information
class required to obtain the handle information is SystemHandleinformation (16).
Please refer to Schreiber (1999) or Nebbett (2000) for extensive details on how to
issue this API call. The SystemHandleinformation data are obtained from the internal
function ExpGetHandlelnf ormation ( ) that relies on ObGetHandlelnf ormation ( ) .
The latter in turn calls ExSnapShotHandleTables ( ) , where the handle table list
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enumeration is ultimately performed. ExSnapShotHandleTables ( ) expects a pointer
to a callback function that is called for each HANDLE_ENTRY referring to an object.
ObGetHandlelnf ormation ( ) uses the internal ObpCaptureHandlelnf ormation ( ) call-
back function to fill the caller's buffer with an array of structures containing informa-
tion about each handle currently maintained by the system.

PROCESS AND THREAD OBJECTS

Probably the most interesting and complex inhabitants of the Windows 2000 object
world are the process and thread objects. These are usually the top-level entities a soft-
ware developer must deal with. A kernel-mode component always runs in the context
of a thread, and this thread is often part of a user process. Therefore, it is quite natural
that process and thread objects are object types that frequently are explored in debug-
ging situations. The Windows 2000 Kernel Debugger accounts for this requirement by
providing the "bang" commands iprocessfields and ! threadfields, exported
by the debugger extension kdextx86. dll. Both commands output a simple list of
name/offset pairs describing the members of the EPROCESS and ETHREAD structures,
respectively (cf. Examples 1-1 and 1-2 in Chapter 1). These object structures are
undocumented, so these debugger commands are currently the only official source of
information about them.

Unfortunately, the iprocessfields output (cf. Example 1-1) starts with a
member named Pcb that refers to a substructure comprising Ox6c bytes, because the
next member Exitstatus is located at this offset. Pcb is a KPROCESS structure that is
completely undocumented. This arrangement is interesting: Obviously, a process
is represented by a smaller kernel object embedded in a larger executive object. This
nesting scheme reappears with the thread object. The debugger's ! threadfields
command (cf. Example 1-2) reveals a Tcb member of no less than OxlBO bytes at the
beginning of the ETHREAD structure. This is a KTHREAD structure, representing another
kernel object inside an executive object.

Although it is helpful that the Kernel Debugger provides symbolic informa-
tion about the executive's process and thread objects, the plain member names do
not necessarily provide enough cues to identify the members' data types. Moreover,
the opacity of the Pcb and Tcb members makes it quite difficult to understand the
nature of these objects. In a disassembly listing generated by the Kernel Debugger,
you will frequently see instructions referencing data within the confines of these
opaque members. The used offsets are completely useless without information
about the name and type of the referenced data. Therefore, I have collected infor-
mation from various sources plus results of my investigation, to figure out what
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these objects look like. Part one of the results is shown in Listings 7-11 and 7-12,
defining the KPROCESS and KTHREAD structures, respectively. The DISPATCHER_HEADER
at the beginning of both objects qualifies processes and threads as dispatcher
objects, which in turn means they can be waited for using KeWaitForsingleObj act ( )
and KeWaitForMultipleObjects ( ) . A thread object becomes signaled after execu-
tion of the thread has ceased, and a process object enters the signaled state after all
of its threads have terminated. This is nothing new for Win32 programmers—it is
quite common to wait for termination of a process spawned by another process by
means of the Win32 API function waitForSingleObject ( ) . However, now you
finally know why waiting for processes and threads is possible in the first place.

typedef

/*000*/

/*010*/

/*018*/

/*01C*/

/*020*/

/*028*/

/*030*/

/*032*/

/*033*/

/*034*/

/*038*/

/*03C*/

/*040*/

/*048*/

/*050*/

/*058*/

/*05C*/

/*060*/

/*062*/

/*063*/

/*064*/

/*065*/

/*066*/

/*067*/

/*068V

/*06C*/

*

struct _KPROCESS
ii

DISPATCHER_HEADER

LIST_ENTRY

DWORD

DWORD

KGDTENTRY

KIDTENTRY

WORD

BYTE

BOOLEAN

DWORD

DWORD

DWORD

LIST_ENTRY

LIST_ENTRY

LIST_ENTRY

PVOID

KAFFINITY

WORD

BYTE

BYTE

BOOLEAN

BYTE

BYTE

BOOLEAN

DWORD

}

KPROCESS,

PKPROCESS,

Header; // DO_TYPE_PROCESS (OxlB)

ProfileListHead;

DirectoryTableBase;

PageTableBase;

LdtDescriptor;

Int21Descriptor;

lopmOf f set ;

lopl ;

VdmFlag;

ActiveProcessors ;

KernelTime; // ticks

UserTime; // ticks

ReadyListHead;

SwapListEntry;

ThreadListHead; // KTHREAD . ThreadListEntry

ProcessLock;

Affinity;

StackCount ;

BasePriority ;

ThreadQuantum;

AutoAlignment ;

State;

ThreadSeed;

DisableBoost ;

d68;

**PPKPROCESS;

LISTING 7-11. The KPROCESS Object Structure
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typedef struct _KTHREAD

{

/*000*/ DISPATCHER_HEADER Header; // DO_TYPE_THREAD (Ox6C)

/*010*/ LIST_ENTRY MutantListHead;

/*018*/ PVOID InitialStack;

/*01C*/ PVOID StackLimit;

/*020*/ struct _TEB *Teb;

/*024*/ PVOID TlsArray;

/*028*/ PVOID KernelStack;

/*02C*/ BOOLEAN DebugActive;

/*02D*/ BYTE State; // THREAD_STATE_*

/*02E*/ BOOLEAN Alerted;

/*02F*/ BYTE bReservedOl;

/*030V BYTE lopl;

/*031*/ BYTE NpxState;

/*032*/ BYTE Saturation;

/*033*/ BYTE Priority;

/*034*/ KAPC_STATE ApcState;

/*04C*/ DWORD ContextSwitches;

/*050*/ DWORD WaitStatus;

/*054*/ BYTE Waitlrql;

/*055*/ BYTE WaitMode;

/*056*/ BYTE WaitNext;

/*057*/ BYTE WaitReason;

/*058*/ PLIST_ENTRY WaitBlockList ;

/*05C*/ LIST_ENTRY WaitListEntry ;

/*064*/ DWORD WaitTime;

/*068*/ BYTE BasePriority;

/*069*/ BYTE DecrementCount;

/*06A*/ BYTE PriorityDecrement;

/*06B*/ BYTE Quantum;

/*06C*/ KWAIT_BLOCK WaitBlock [4];

/*OCC*/ DWORD LegoData;

/*ODO*/ DWORD KernelApcDisable;

/*OD4*/ KAFFINITY UserAf f inity ;

/*OD8*/ BOOLEAN SystemAf f inityActive;

/*OD9*/ BYTE Pad [3] ;

/*ODC*/ PSERVICE_DESCRIPTOR_TABLE pServiceDescriptorTable;

/*OEO*/ PVOID Queue;

/*OE4*/ PVOID ApcQueueLock;

/*OE8*/ KTIMER Timer;

/*110*/ LIST_ENTRY QueueListEntry ;

/*118*/ KAFFINITY Affinity;

/*11C*/ BOOLEAN Preempted;

/*11D*/ BOOLEAN ProcessReadyQueue;

/*11E*/ BOOLEAN KernelStackResident ;

/*11F*/ BYTE NextProcessor;

/*120*/ PVOID CallbackStack;
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/*124*/ struct _WIN32_THREAD *Win32Thread;

/*128*/ PVOID TrapFrame;

/*12C*/ PKAPC_STATE ApcStatePointer ;

/*130*/ PVOID p!30;

/*134*/ BOOLEAN EnableStackSwap;

/*135*/ BOOLEAN LargeStack;

/*136*/ BYTE Resourcelndex;

/*137*/ KPROCESSOR_MODE PreviousMode;

/*138*/ DWORD KernelTime; // ticks

/*13C*/ DWORD UserTime; // ticks

/*140*/ KAPC_STATE SavedApcState ;

/*157V BYTE bReserved02;

/*158*/ BOOLEAN Alertable;

/*159*/ BYTE ApcStatelndex;

/*15A*/ BOOLEAN ApcQueueable;

/*15B*/ BOOLEAN AutoAlignment ;

/*15C*/ PVOID StackBase;

/*160*/ KAPC SuspendApc;

/*190*/ KSEMAPHORE SuspendSemaphore ;

/*1A4*/ LIST_ENTRY ThreadListEntry ; // see KPROCESS

/*1AC*/ BYTE FreezeCount;

/*1AD*/ BYTE SuspendCount ;

/*1AE*/ BYTE IdealProcessor;

/*1AF*/ BOOLEAN DisableBoost ;

/*1BO*/ }

KTHREAD,

* PKTHREAD,

**PPKTHREAD;

LISTING 7-12. The KTHREAD Object Structure

A KPROCESS links to its threads via its ThreadListHead member, which is the
starting and ending point of a doubly linked list of KTHREAD objects. The list nodes of
the threads are represented by their ThreadListEntry members. As usual with
LIST_ENTRY nodes, the base address of the surrounding object is computed by sub-
tracting the offset of the LIST_ENTRY member from its address, because the Flink
and Blink members always point to the next LIST_ENTRY inside the list, not to the
owner of the list node. This makes it possible to interlink objects in multiple lists
without any interference.

In Listings 7-11 and 7-12, as well as in the following listings, you see occasional
members with names consisting of a lower-case letter and a three-digit hexadecimal
number. These are members whose identity and purpose is currently unknown to me.
The leading character reflects the supposed member type (e.g., d for DWORD or p for
PVOID), and the numeric trailer specifies the member's offset from the beginning of
the structure.
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The EPROCESS and ETHREAD executive objects surrounding the KPROCESS and
KTHREAD dispatcher objects are shown in Listings 7-13 and 7-14. These structures
contain several unidentified members that hopefully will be analyzed soon by others,
maybe encouraged by the material in this book. However, the most important and
most frequently referenced members are included, and at least it is known what
information is missing.

typedef struct _EPROCESS

{

/*000*/ KPROCESS Pcb;

/*06C*/ NTSTATUS ExitStatus;

/*070*/ KEVENT LockEvent;

/*080*/ DWORD LockCount;

/*084*/ DWORD d084;

/*088*/ LARGE_INTEGER CreateTime;

/*090*/ LARGE_INTEGER ExitTime;

/*098*/ PVOID LockOwner;

/*09C*/ DWORD UniqueProcessId;

/*OAO*/ LIST_ENTRY ActiveProcessLinks ;

/*OA8*/ DWORD QuotaPeakPoolUsage [2]; // NP, P

/*OBO*/ DWORD QuotaPoolUsage [2]; // NP, P

/*OB8*/ DWORD Pagefileusage;

/*OBC*/ DWORD CommitCharge;

/*OCO*/ DWORD PeakPagefileUsage;

/*OC4*/ DWORD PeakVirtualSize;

/*OC8*/ LARGE_INTEGER VirtualSize;

/*ODO*/ MMSUPPORT Vm;

/*100*/ DWORD dlOO;

/*104*/ DWORD d!04;

/*108*/ DWORD d!08;

/*10C*/ DWORD dlOC;

/*110*/ DWORD dllO;

/*114*/ DWORD dl!4;

/*118*/ DWORD dl!8;

/*11CV DWORD dllC;

/*120*/ PVOID DebugPort;

/'124*/ PVOID ExceptionPort;

/*128*/ PHANDLE_TABLE ObjectTable;

/*12C*/ PVOID Token;

/*130*/ PAST_MUTEX WorkingSetLock;

/*150*/ DWORD WorkingSetPage;

/*154*/ BOOLEAN ProcessOutswapEnabled;

/*155*/ BOOLEAN ProcessOutswapped;

/*156*/ BOOLEAN AddressSpacelnitialized;

/*157*/ BOOLEAN AddressSpaceDeleted;

/*158*/ FAST_MUTEX AddressCreationLock;

/*178*/ KSPIN_LOCK HyperSpaceLock;

/*17C*/ DWORD ForklnProgress;
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/*180*/ WORD VmOperation;

/*182*/ BOOLEAN ForkWasSuccessful ;

/*183*/ BYTE MmAgressiveWsTrimMask;

/*184*/ DWORD VmOperationEvent ;

/*188*/ HARDWARE_PTE PageDirectoryPte;

/*18C*/ DWORD LastFaultCount;

/*190*/ DWORD ModifiedPageCount;

/*194*/ PVOID VadRoot;

/*198*/ PVOID VadHint;

/*19C*/ PVOID CloneRoot;

/*1AO*/ DWORD NumberOf PrivatePages ;

/*1A4*/ DWORD NumberOf LockedPages ;

/*1A8*/ WORD NextPageColor;

/*1AA*/ BOOLEAN ExitProcessCalled;

/*1AB*/ BOOLEAN CreateProcessReported;

/*1AC*/ HANDLE SectionHandle;

/*1BO*/ struct _PEB *Peb;

/*1B4*/ PVOID SectionBaseAddress;

/*1B8*/ PQUOTA_BLOCK QuotaBlock;

/*1BC*/ NTSTATUS LastThreadExitStatus;

/*1CO*/ DWORD WorkingSetWatch;

/*1C4*/ HANDLE Win32WindowStation;

/*1C8*/ DWORD InheritedFromUnigueProcessId;

/*1CC*/ ACCESS_MASK GrantedAccess ;

/*1DO*/ DWORD DefaultHardErrorProcessing; // HEM_*

/*1D4*/ DWORD Ldtlnformation;

/*1D8*/ PVOID VadFreeHint ;

/*1DC*/ DWORD VdmObjects;

/*1EO*/ PVOID DeviceMap; // 0x24 bytes

/*1E4*/ DWORD Sessionld;

/*1E8*/ DWORD dlE8;

/*1EC*/ DWORD dlEC;

/*1FO*/ DWORD dlFO;

/*1F4*/ DWORD dlF4;

/*1F8*/ DWORD dlF8;

/*1FC*/ BYTE ImageFileName [16];

/*20C*/ DWORD VmTrimFaultValue;

/*210*/ BYTE SetTimerResolution;

/*211*/ BYTE Priori tyClass;

/*212*/ union

{

struct

t

/*212*/ BYTE SubSystemMinorVersion;

/*213*/ BYTE SubSystemMajorVersion;

};

struct

{
/*212*/ WORD SubSystemVersion;

(continued)
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LISTING 7-13. The EPROCESS Object Structure

};

/*214*/ struct _WIN32_PROCESS *Win32Process ;

/*218*/ DWORD d218;

/*21C*/ DWORD d21C;

/*220*/ DWORD d220;

/*224*/ DWORD d224;

/*228*/ DWORD d228;

/*22C*/ DWORD d22C;

/*230*/ PVOID Wow64;

/*234*/ DWORD d234;

/*238*/ IO_COUNTERS loCounters;

/*268*/ DWORD d268;

/*26C*/ DWORD d26C;

/*270*/ DWORD d270;

/*274*/ DWORD d274;

/*278V DWORD d278;

/*27C*/ DWORD d27C;

/*280*/ DWORD d280;

/*284*/ DWORD d284;

/*288*/ }

EPROCESS,

* PEPROCESS,

**PPEPROCESS;

typedef struct _ETHREAD

{

/*000*/ KTHREAD Tcb;

/*1BO*/ LARGE_INTEGER CreateTime;

/*1B8*/ union

{

/*1B8*/ LARGE_INTEGER ExitTime;

/*1B8*/ LIST_ENTRY LpcReplyChain;

};

/*1CO*/ union

{

/*1CO*/ NTSTATUS ExitStatus;

/*1CO*/ DWORD OfsChain;

);
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LISTING 7-14. The ETHREAD Object Structure

/*1C4*/ LISTJINTRY PostBloCkList ;

/*1CC*/ LIST_ENTRY TerminationPortList ;

/*1D4*/ PVOID ActiveTimerListLock;

/*1D8*/ LIST_ENTRY ActiveTimerListHead;

/*1EO*/ CLIENT_ID Cid;

/*1E8*/ KSEMAPHORE LpcReplySemaphore ;

/*1FC*/ DWORD LpcReplyMessage;

/*200*/ DWORD LpcReplyMessageld;

/*204*/ DWORD PerformanceCountLow;

/*208*/ DWORD Impersonationlnfo;

/*20C*/ LIST_ENTRY IrpList;

/*214*/ PVOID TopLevellrp;

/*218*/ PVOID DeviceToVerify;

/*21C*/ DWORD ReadClusterSize;

/*220*/ BOOLEAN ForwardClusterOnly ;

/*221*/ BOOLEAN DisablePageFaultClustering;

/*222*/ BOOLEAN DeadThread;

/*223*/ BOOLEAN Reserved;

/*224*/ BOOL HasTerminated;

/*228*/ ACCESS_MASK GrantedAccess ;

/*22C*/ PEPROCESS ThreadsProcess ;

/*230*/ PVOID StartAddress;

/*234*/ union

{

/*234*/ PVOID Win32StartAddress;

/*234*/ DWORD LpcReceivedMessageld;

};

/*238*/ BOOLEAN LpcExitThreadCalled;

/*239*/ BOOLEAN HardErrorsAreDisabled;

/*23A*/ BOOLEAN LpcReceivedMsgldValid;

/*23B*/ BOOLEAN Activelmpersonationlnf o;

/*23C*/ DWORD PerformanceCountHigh;

/*240*/ DWORD d240;

/*244*/ DWORD d244;

/*248*/ }

ETHREAD,

* PETHREAD,

**PPETHREAD;
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It is apparent that both the EPROCESS and ETHREAD object structures contain
additional members after the ones listed by the ! process fields and ! threadf ields
debugger commands. You may wonder how I dare to claim that. Well, there are two
principal ways to find out details about undocumented object structure members.
One is to observe how system functions operating on objects access their members;
the other one is to examine how objects are created and initialized. The latter
approach yields the size of an object. The basic object creation function inside
ntoskrnl. exe is ObCreateObject ( } . It allocates the memory for the object header
and body and initializes common object parameters. However, ObCreateObject ( ) is
absolutely ignorant about the type of object it creates, so the caller must specify the
number of bytes required for the object body. Hence, the problem of finding out the
size of an object boils down to finding an ObCreateObject ( ) call for this object type.
Process objects are created by the Native API function NtCreateProcess ( } , which
lets PspCreateProcess ( ) do the dirty work. Inside this function, an ObCreateObject ( }
call can be found that requests an object body size of 0x288 bytes. That's why Listing
7-13 contains a couple of unidentified trailing members until a final offset of 0x288 is
reached. The situation is similar for the ETHREAD structure. The NtCreateThread ( )
API function calls PspCreateThread() , which in turn calls ObCreateObject ( ) ,
requesting 0x248 bytes.

The list of currently running processes is formed by interlinking the
ActiveProcessLinks member of the EPROCESS structure. The head of this list is
stored in the internal global variable PsActiveProcessHead, and the associated
FAST_MUTEX synchronization object is named PspActiveProcessMutex. Unfortu-
nately, the PsActiveProcessHead variable is not exported by ntoskrnl. exe, but
PsinitialSystemProcess is, pointing to the EPROCESS structure of the System
process with the process ID 8. Following the Blink of its ActiveProcessLinks list
entry leads us directly to the PsActiveProcessHead. Basically, the linkage of
processes and threads is structured as shown in Figure 7-3. Figure 7-3 is overly sim-
plified because the illustrated process list contains only two items. In a real-world
scenario, the list will be much longer. (While I am writing this paragraph, my task
manager reports 36 processes!) To keep the picture as simple as possible, only the
thread list of one process is shown, assuming that this process has two active threads.

Listings 7-12 and 7-13 suggest that there must be a third process and thread
object layer above the kernel and executive layers, indicated by pointers to
wiN32_FROCESS and wiN32_THREAD structures inside EPROCESS and KTHREAD. These
undocumented structures constitute the process and thread representations of the
Win32 subsystem. Although the purposes of some of their members are quite obvi-
ous, they still contain too many unidentified holes to be included here. This is another
area of future research.
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FIGURE 7-3. Process and Thread Object Lists

THREAD AND PROCESS CONTEXTS

While the system executes code, the execution always takes place in the context of
a thread that is part of some process. In several situations, the system has to look
up thread- or process-specific information from the current context. Therefore, the
system always keeps a pointer to the current thread in the Kernel's Processor Control
Block (KPRCB). This structure, defined in ntddk.h, is shown in Listing 7-15.

typedef struct _KPRCB // base address OxFFDFF120

{

/*000*/ WORD MinorVersion;

/*002*/ WORD MajorVersion;

/*004*/ struct _KTHREAD *CurrentThread;

/*008*/ struct _KTHREAD *NextThread;

/*OOC*/ struct _KTHREAD *IdleThread;

/*010*/ CHAR Number;

/"Oil*/ CHAR Reserved;

(continued)
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LISTING 7-15. The Kernel's Processor Control Block (KPRCB)

The KPRCB structure is found at linear address OxFFDFFl20, and a pointer to it
is stored in the Prcb member of the Kernel's Processor Control Region (KPCR), also
defined in ntddk.h (Listing 7-16) and located at address OXFFDFFOOO . As explained
in Chapter 4, this essential data area is readily accessible in kernel-mode via the FS
segment; that is, reading from address FS : 0 is equivalent to reading from linear
address DS : OXFFDFFOOO . At address OXFFDFFISC, immediately following the KPRCB,
the system keeps low-level CPU information in a CONTEXT structure (Listing 7-17).

LISTING 7-16. The Kernel's Processor Control Region (KPCR)

/*012*/ WORD BuildType; /*014*/ KAFFINITY SetMember ;

/*018*/ Struct _RESTART_BLOCK *RestartBlock;

/*01C*/ }

KPRCB,

* PKPRCB,

**PPKPRCB;

typedef struct _KPCR // base address OxFFDFFOOO

{

/*000*/ NT_TIB NtTib;

/*01C*/ struct _KPCR *SelfPcr;

/*020*/ PKPRCB Prcb;

/*024*/ KIRQL Irql;

/*028*/ DWORD IRR;

/*02C*/ DWORD IrrActive;

/*030*/ DWORD IDR;

/*034*/ DWORD Reserved2;

/*038*/ struct _KIDTENTRY *IDT;

/*03C*/ Struct _KGDTENTRY *GDT;

/*040*/ struct _KTSS *TSS;

/*044*/ WORD MajorVersion;

/*046*/ WORD MinorVersion;

/*048*/ KAFFINITY SetMember;

/*04C*/ DWORD StallScaleFactor;

/*050*/ BYTE DebugActive;

/*051*/ BYTE Number;

/*054*/ }

KPCR,

* PKPCR,

**PPKPCR;



LISTING 7-17. The CPU's CONTEXT and FLOATING_SAVE_AREA

#define SIZE_OF_80387_REGISTERS 80

typedef struct _FLOATING_SAVE_AREA // base address OxFFDFF158

f

/*000*/ DWORD ControlWord;

/*004*/ DWORD StatusWord;

/*008*/ DWORD TagWord;

/*OOC*/ DWORD ErrorOffset;

/*010*/ DWORD ErrorSelector;

/*014*/ DWORD DataOffset;

/*018V DWORD DataSelector;

/*01C*/ BYTE RegisterArea [SIZE_OF_80387_REGISTERS] ;

/*06C*/ DWORD CrONpxState;

/*070*/ }

FLOATING_SAVE_AREA,

* PFLOATING_SAVE_AREA,

*'PPFLOATING_SAVE_AREA;

#define MAXIMUM_SUPPORTED_EXTENSION 512

typedef struct .CONTEXT // base address OxFFDFFISC

{

/*000*/ DWORD ContextFlags;

/*004*/ DWORD DrO;

/*008*/ DWORD Drl;

/*OOC*/ DWORD Dr2;

/*010*/ DWORD Dr3;

/*014*/ DWORD Dr6;

/*018*/ DWORD Dr7;

/*01C*/ FLOATING_SAVE_AREA FloatSave;

/*08C*/ DWORD SegGs;

/*090*/ DWORD SegFs;

/*094*/ DWORD SegEs;

/*098*/ DWORD SegDs;

/*09C*/ DWORD Edi;

/*OAO*/ DWORD Esi;

/*OA4*/ DWORD Ebx;

/*OA8*/ DWORD Edx;

/*OAC*/ DWORD Ecx;

/*OBO*/ DWORD Eax;

/*OB4*/ DWORD Ebp;

/*OB8*/ DWORD Eip;

/*OBC*/ DWORD SegCs;

/*OCO*/ DWORD EFlags;

/*OC4*/ DWORD Esp;

/*OC8*/ DWORD SegSs;

/*OCC*/ BYTE ExtendedRegisters [MAXIMUM_SUPPORTED_EXTENSION] ;

/*2CC*/ }

CONTEXT ,

* PCONTEXT,

**PPCONTEXT;
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According to Listing 7-15, the KPRCB contains three KTHREAD pointers at the offsets
0x004, 0x008, and OxOOC:

1. currentThread points to the KTHREAD object of the thread that is currently
executing. This member is accessed very frequently by the kernel code.

2. NextThread points to the KTHREAD object of the thread scheduled to run
after the next context switch.

3. idleThread points to the KTHREAD object of an idle thread that performs
background tasks while no other threads are ready to run. The system
provides a dedicated idle thread for each installed CPU. On a single-
processor machine, the idle thread object is named POBootThread and is
the only thread in the thread list of the PsidleProcess object.

Because the first member of an ETHREAD is a KTHREAD, a KTHREAD pointer always
points to an ETHREAD as well, and vice versa. This means that KTHREAD and ETHREAD can
be typecast interchangeably. The same is true for KPROCESS and EPROCESS pointers.

Because the Windows 2000 kernel maps the linear address OXFFDFFOOO to
address 0x00000000 of the CPU's FS segment in kernel-mode, the system always finds
the current KPCR, KPRCB, and CONTEXT data at the addresses FS: 0x0, FS: 0x120, and
FS : 13C. When you are disassembling kernel code in a debugger, you will frequently
see the system retrieve a pointer from FS : 0x124, which is obviously the current
thread object. Example 7-1 lists the output of the Kernel Debugger if the command
u PsGetCurrent Process id is issued, instructing the debugger to unassemble
10 lines of code, starting at the address of the symbol PsGetCurrentProcessid.
The implementation of the PsGetCurrentProcessid ( ) function simply retrieves the
KTHREAD/ETHREAD of the current thread and returns the value of the member at offset
OxlEO, which happens to be the uniqueProcess ID of the CLIENT_ID cid member of
the ETHREAD, according to Listing 7-14. PsGetcurrentThreadid() is almost identical,
except that it retrieves the uniqueThread ID at offset OxlE4, By the way, the CLIENT_ID
structure has been introduced in Chapter 2, Listing 2-8.

kd> u PsGetCurrentProcessid

u PsGetCurrentProcessid

ntoskrnl ! PsGetCurrentProcessid:

8045252a 64al24010000 raov eax, fs : [00000124]

80452530 8b80e0010000 mov eax, [eax+OxleO]
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EXAMPLE 7-1. Retrieving Process and Thread IDs

Sometimes, the system needs a pointer to the process object that owns the current
thread. This address can be looked up quite easily by reading the Process member of
the Apcstate substructure inside the current KTHREAD.

THREAD AND PROCESS ENVIRONMENT BLOCKS

You may wonder about the purpose of the Teb and Peb members inside the KTHREAD and
EPROCESS structures. The Teb, points to a Thread Environment Block (TEB) , outlined
in Listing 7-18. The first part of the TEB the Thread information Block (NT_TIB) , is
defined in the Platform Software Development Kit (SDK) and DDK header files winnt. h
and ntddk.h, respectively. The remaining members are undocumented. Windows 2000
maintains a TEB structure for each thread object in the system. In the address space
of the current process, the TEBS of its threads are mapped to the linear addresses
Ox7FFDEOOO, OX?FFDDOOO , Ox7FFDCOOO, and so on, always stepping down one 4-KB
page per thread. As noted in Chapter 4, the TEB of the current thread is also accessible
via the FS segment in user-mode. Many ntdli. dll functions access the current TEB by
reading the value at address FS : 0x18, which is the Self member of the embedded
NT_TIB . This member always provides the linear address of the surrounding TEB
within the 4-GB address space of the current process.

80452536 c3 ret

80452537 cc int 3

ntoskrnl ! PsGetCurrentThreadld :

80452538 64al24010000 mov eax, fs : [00000124]

8045253e 8b80e4010000 mov eax, [eax+0xle4]

80452544 c3 ret

80452545 cc int 3

// typedef struct _NT_TIB // see winnt. h / ntddk.h

// {

// /*000*/ struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList ;

// /*004*/ PVOID StackBase;

// /*008*/ PVOID StackLimit;

// /*OOC*/ PVOID SubSystemTib;

// /*010*/ union (continued)
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LISTING 7-18. The Thread Environment Block (TEB)

Just as each thread has its own TEB , each process has an associated PEB or
Process Environment Block. The PEB is much more complex than the TEB, as List-
ing 7-19 demonstrates. It contains various pointers to subordinate structures that refer
to more subordinate structures, and most of them are undocumented. Listing 7-19
includes raw sketches of some of them, using tentative names and leaving much to be
desired. The PEB is located at linear address OXTFFDFOOO , that is, in the first 4-KB page
following the TEB stack of the process. The system can easily access the PEB by simply
referencing the Peb member of the current thread's TEB.

// {
// /*010*/ PVOID FiberData;

// /*010*/ ULONG Version;

// );
// /*014*/ PVOID ArbitraryUserPointer;

// /*018*/ struct _NT_TIB *Self;

// /*01C*/ }

// NT_TIB,

// * PNT_TIB,

// **PPNT_TIB;

//

typedef struct _TEB // base addresses OxVFFDEOOO, Ox7FFDDOOO, ...

{
/*000*/ NT_TIB Tib;

/*01C*/ PVOID EnvironmentPointer;

/*020*/ CLIENT_ID Cid;

/*028*/ HANDLE RpcHandle;

/*02C*/ PPVOID ThreadLocalStorage;

/*030*/ PPEB Peb;

/*034*/ DWORD LastErrorValue;

/*038V )

TEB,

* PTEB,

**PPTEB;

typedef struct _MODULE_HEADER

{
/*000*/ DWORD dOOO;

/*004*/ DWORD d004;

/*008V LIST_ENTRY Listl;

/*010*/ LIST_ENTRY List2;
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/*018*/ LIST_ENTRY List3 ;

/*020V }

MODULE_HEADER,

* PMODULE_HEADER,

* * PPMODULE_HEADER ;

/ /

typedef struct _PROCESS_MODULE_INFO

{
/*000*/ DWORD Size; // 0x24

/*004*/ MODULE_HEADER ModuleHeader ;

/*024*/ }

PROCESS_MODULE_INFO ,

* PPROCESS_MODULE_INFO,

* *PPPROCESS_MODULE_INFO ;

//

// see RtlCreateProcessParameters ( )

typedef struct _PROCESS_PARAMETERS

{
/*000*/ DWORD Allocated;

/*004*/ DWORD Size;

/*008*/ DWORD Flags; // bit 0: all pointers normalized

/*OOC*/ DWORD Reservedl;

/*010*/ LONG Console;

/*014*/ DWORD ProcessGroup;

/*018*/ HANDLE Stdlnput;

/*01C*/ HANDLE StdOutput;

/*020*/ HANDLE StdError;

/*024*/ UNICODE_STRING workingDirectoryName;

/*02C*/ HANDLE workingDirectoryHandle;

/*030*/ UNICODE_STRING SearchPath;

/*038*/ UNICODE_STRING ImagePath;

/*040*/ UNICODE_STRING CommandLine ,-

/*048*/ PWORD Environment;

/*04C*/ DWORD X;

/*050*/ DWORD Y;

/*054*/ DWORD XSize;

/*058*/ DWORD YSize;

/*05C*/ DWORD XCountChars ;

/*060*/ DWORD YCountChars;

/*064*/ DWORD FillAttribute;

/*068*/ DWORD Flags2;

/*06C*/ WORD ShowWindow;

/*06E*/ WORD Reserved2;

/*070*/ UNICODE_STRING Title;

/*078*/ UNICODE_STRING Desktop;

/*080*/ UNICODE_STRING Reserved3 ;
(continued)
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/*088*/ UNICODE_STRING Reserved4;

/*090*/ }

PROCESS_PARAMETERS ,

* PPROCESS_PARAMETERS,

* *PPPROCESS_PARAMETERS ;

//

typedef struct _SYSTEM_STRINGS

{

/*000*/ UNICODE_STRING SystemRoot; // d:\WINNT

/*008*/ UNICODE_STRING System32Root ; // d:\WINNT\System32

/*010*/ UNICODE_STRING BaseNamedObjects; // \BaseNamedObjects

/*018*/ }

SYSTEM_STRINGS,

* PSYSTEM_STRINGS ,

* *PPSYSTEM_STRINGS ;

typedef struct _TEXT_INFO

{

/*000*/ PVOID Reserved;

/*004*/ PSYSTEM_STRINGS SystemStrings ;

/*008*/ }

TEXT_INFO,

* PTEXT_INFO,

**PPTEXT_INFO;

//

typedef struct _PEB // base address OxVFFDFOOO

{

/*OOOV BOOLEAN InheritedAddressSpace;

/*001*/ BOOLEAN ReadlmageFileExecOptions;

/*002*/ BOOLEAN BeingDebugged;

/*003*/ BYTE b003;

/*004*/ DWORD d004;

/*008*/ PVOID SectionBaseAddress;

/*OOC*/ PPROCESS_MODULE_INFO ProcessModulelnf o;

/*010*/ PPROCESS_PARAMETERS ProcessParameters;

/*014*/ DWORD SubSystemData;

/*018*/ HANDLE ProcessHeap;

/*01C*/ PCRITICAL_SECTION FastPebLoCk;

/*020*/ PVOID AcquireFastPebLock; // function

/*024*/ PVOID ReleaseFastPebLock; // function

/*028*/ DWORD d028;

/*02C*/ PPVOID User32Dispatch; // function

/*030V DWORD d030;
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LISTING 7-19. The Process Environment Block (PEB)

,
/*034*/ DWORD d034;

/*038*/ DWORD d038;

/*03C*/ DWORD TlsBitMapSize; // number of bits

/*040V PRTL_BITMAP TlsBitMap; // ntdll ! TlsBitMap

/*044*/ DWORD TlsBitMapData [2]; // 64 bits

/*04C*/ PVOID p04C;

/*050*/ PVOID p050;

/*054*/ PTEXT_INFO Textlnfo;

/*058*/ PVOID InitAnsiCodePageData;

/*05C*/ PVOID InitOemCodePageData;

/*060*/ PVOID InitUnicodeCaseTableData;

/*064*/ DWORD KeNumberProcessors;

/*068*/ DWORD NtGlobalFlag;

/*06C*/ DWORD d6C;

/*070*/ LARGE_INTEGER MmCriticalSectionTimeout ;

/*078*/ DWORD MmHeapSegmentReserve ;

/*07C*/ DWORD MmHeapSegmentCoiranit;

/*080*/ DWORD MitiHeapDeCommitTotalFreeThreshold;

/*084*/ DWORD MmHeapDeCominitFreeBlockThreshold;

/*088*/ DWORD NumberOf Heaps;

/*08C*/ DWORD AvailableHeaps; // 16, *2 if exhausted

/*090*/ PHANDLE ProcessHeapsListBuf f er ;

/*094*/ DWORD d094;

/*098*/ DWORD d098;

/*09C*/ DWORD d09C;

/*OAO*/ PCRITICAL_SECTION LoaderLock;

/*OA4*/ DWORD NtMajorVersion;

/*OA8*/ DWORD NtMinorVersion;

/*OAC*/ WORD NtBuildNumber;

/*OAE*/ WORD CmNtCSDVersion;

/*OBO*/ DWORD Platformld;

/*OB4*/ DWORD Subsystem;

/*OB8*/ DWORD MajorSubsystemVersion;

/*OBC*/ DWORD MinorSubsystemVersion;

/*OCO*/ KAFFINITY Af f inityMask;

/*OC4*/ DWORD adOC4 [351;

/*150*/ PVOID p!50;

/*154*/ DWORD ad!54 [32];

/*1D4*/ HANDLE Win32WindowStation;

/*1D8*/ DWORD dlD8;

/*1DC*/ DWORD dlDC;

/*1EO*/ PWORD CSDVersion;

/*1E4*/ DWORD dlE4;

/*1E8*/ }

PEB,

* PPEB,

**PPPEB;
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ACCESSING LIVE SYSTEM OBJECTS

The preceding sections have provided a lot of theoretical information. As a practical
example to illustrate object management in the most useful form, I thought of writing
a kernel object browser. This would show how objects are arranged hierarchically
and how some of their properties can be retrieved. Unfortunately, ntoskrnl. exe fails
to export several key structures and functions required in an object browser applica-
tion. This means that not even a kernel-mode driver has access to them—they are
reserved for internal system use. On the other hand, Chapter 6 introduced a mecha-
nism that allows access to nonexported data and code by evaluating the Windows
2000 symbol files, so the object browser seemed to be an ideal test case to check out
the practical suitability of this approach. The symbolic call interface from Chapter 6
passed this test, so I have included the sample application w2k_obj . exe with full
source code on the companion CD in the directory tree \src\w2k_obj . However, the
most interesting parts of the code are not buried inside w2k_obj . c. The hard work is
really done by the w2k_call. dll library introduced in Chapter 6. Hence, many of
the subsequent code snippets are pulled from w2k_call. c.

ENUMERATING OBJECT DIRECTORY ENTRIES

You probably know the small objdir. exe utility in the Windows 2000 DDK, in the
\ntddk\bin directory, objdir. exe retrieves object directory information via the undoc-
umented Native API function NtQueryDirectoryObj ect ( ) exported by ntdll. dll.
Contrary to this, my object browser w2k_obj . exe bangs directly at the object directory
and its leaf objects. This sounds rather scary, but actually it isn't. The best proof is that
w2k_obj . exe works on both Windows 2000 and Windows NT 4.0 without a single
line of version-dependent code. Admittedly, there are a couple of subtle differences in
the object structures of both operating system versions, but the basic model has
remained the same. Providing a sample application that works directly on the raw
object structures rather than using higher-level API functions is an illustrative means to
verify whether the structures shown in the preceding sections are accurate.

The most important thing to do before accessing global system data structures
is to lock them. Otherwise it might happen that the system alters the data in the con-
text of a concurrent thread, so the application unexpectedly reads invalid data or
reaches into the void. Windows 2000 provides a large set of locks for the numerous
internal data items it maintains. The problem with these locks is that they are usually
not exported. Although a kernel-mode driver can do all sorts of things forbidden in
user-mode, it can't safely access nonexported data structures. However, the extended
kernel call interface discussed in Chapter 6 and implemented by the w2k_call. dll
sample library can make the impossible possible by looking up the addresses of inter-
nal symbols from the operating system's symbol files. This DLL exports the following
three object manager data thunks that allow access to the kernel's object directory:
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1. obpRootoirectoryMutexO returns the address of the ERESOURCE lock
that synchronizes access to the object directory as a whole.

2. obpRootoirectoryobject ( ) returns a pointer to the OBJECT_DIRECTORY
structure representing the root node of the object directory.

3. obpTypeDirectoryObject ( ) returns a pointer to the OBJECT_DIRECTORY
structure representing the \objectTypes subdirectory node of the object
directory.

An application must be extremely cautious when it works with pointers to kernel
objects, especially after acquiring a global lock. If the lock isn't properly released, the
system might be left in a handcuffed state, unable to perform even the simplest tasks.

Although the root directory lock is named obpRootoirectoryMutex, it isn't
really a mutex in the strict sense of the word. It is an ERESOURCE rather than a KMUTEX,
and as such must be acquired with the help of the ExAcquireResourceExclusiveLite ( )
or ExAcquireResourceSharedLite ( ) API functions. The "Lite" suffix is important—
never use the siblings ExAcquireResourceExclusive ( ) or ExAcquireResourcShared ( )
on Windows 2000 or NT4 ERESOURCE locks. This structure has been revised quite a
bit since Windows NT 3.x, and the latter pair of functions works only with the
old-style ERESOURCE type, included in w2k_def .h as ERESOURCE_OLD (see also
Appendix C). The counterpart of the ExAcquireResource*Lite ( ) functions is
named ExReleaseResourceLite ( ) and should be carefully distinguished from its
old-style sibling ExReleaseResource ( ) .

The basic approach of my object browser is to lock the object directory, take a
snapshot of all nodes found in its hierarchic structure, and display the snapshot data
after releasing the directory lock. This procedure guarantees the least interference
with the system, and the application can take as much time as it needs to display
the data without overusing the system. Taking a faithful snapshot of the directory
requires very intimate knowledge of the system's object structures, so this application
is a great test case for the reliability of the object information I have supplied above.
This job can be subdivided into the following two basic tasks:

1. Copying the structure of the object directory tree. This involves copying
and interlinking several OBJECT_DIRECTORY structures, each one
representing an individual nonleaf node.

2. Copying the contents of the object directory tree. This means copying the
OBJECT_HEADER and its related structures of each leaf node in the tree.

The w2kDirectoryOpen ( ) function shown in Listing 7-20 performs the first task.
It locks the directory and enumerates all children of the supplied OBJECT_DIRECTORY .
To capture the entire object tree, this function must be called recursively for each
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directory entry that is itself an OBJECT_DIRECTORY . Please recall that each object direc-
tory node consists of a hash table that can accommodate a maximum of 37 entries.
Each hash table slot can in turn refer to an arbitrary number of entries by putting
them into a linked list. Therefore, enumeration of directory entries requires two nested
loops: The outer one scans all 37 hash table slots for non-NULL entries, and the inner
one walks down the linked lists. This is about all the w2kDirectoryOpen ( ) function
does. The resulting data is structurally equivalent to the original model, except that
all pointers refer to memory blocks reachable in user-mode. The basic copying including
automatic memory allocation is performed by the powerful w2kSpydone ( ) function,
also exported by w2k_call. dll (see Listing 6-30). The w2kDirectorydose ( } function in
Listing 7-20 undoes the work done by w2koirectoryOpen ( ) , simply deallocating all
cloned memory blocks.

POBJECT_DIRECTORY WINAPI

w2kDirectoryOpen (POBJECT_DIRECTORY pDir)

{

DWORD i ;

PERESOURCE pLock;

PPOBJECT_DIRECTORY_ENTRY ppEntry;

POBJECT_DIRECTORY pDirl = NULL;

if ( ( (pLock = ObpRootDirectoryMutex ()) != NULL) &&

_ExAcquireResourceExclusiveLite {pLock, TRUE) )

{

if ( (pDirl = w2kSpyClone (pDir, OBJECT_DIRECTORY_) ) != NULL)

{
for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i++)

{

ppEntry = pDirl->HashTable + i ;

while (*ppEntry \= NULL)

{

if ( (*ppEntry =

w2kSpyClone (*ppEntry,

OBJECT_DIRECTORY_ENTRY_) )

!= NULL)

{

(*ppEntry) ->0bject =

w2kObjectOpen ( ( *ppEntry) ->0bject) ;

ppEntry = & ( 'ppEntry) ->NextEntry;

}

>
}

}
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LISTING 7-20. 77;ew2kDirectoryOpen() and w2kDirectoryClose ( ) API Functions

A closer look at Listing 7-20 reveals that w2kDirectoryOpen ( ) and
w2kDirectoryClose ( ) call the functions w2kObjectOpen() and w2kObjectClose ( ) ,
respectively. w2kObj ectopen ( ) takes care of part two of the directory copying proce-
dure: It clones leaf objects. It doesn't produce complete object copies, because this
would require identifying each object type and copying the appropriate number of
bytes from the object body. w2kobjectOpen ( ) copies the entire header portion of an
object, including most of its subordinate structures, and builds a fake object body
that contains pointers to the real object body and to various parts of the object
header copy. Listing 7-21 shows the data structures built and initialized by
w2kobjectOpen(} . w2K_OBJECT_FRAME is a monolithic data block that comprises
the object header copy and the fake object body. The latter is represented by the
W2K_OBJECT structure, which is just a collection of pointers to members of

_ExReleaseResourceLite (pLock) ;

}
return pDirl;

}

/ /

POBJECT_DIRECTORY WINAPI

w2kDirectoryClose (POBJECT_DIRECTORY pDir)

{
POBJECT_DIRECTORY_ENTRY pEntry, pEntryl;

DWORD i ;

if (pDir != NULL)

{
for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i++)

{
for (pEntry = pDir->HashTable [i];

pEntry != NULL;

pEntry = pEntryl)

{
pEntryl = pEntry->NextEntry;

w2kObjectClose (pEntry->Object) ;

w2kMemoryDestroy (pEntry) ;

}

}
w2kMemoryDestroy (pDir) ;

)
return NULL;

}
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W2K_OBJECT_FRAME. w2kObjectOpen ( ) allocates memory for the W2K_OBJECT_FRAME

structure, initializes it with data from the original object, and returns a pointer to the
object frame's object member. If you recall the foregoing description of object bodies
and headers, it becomes apparent that the W2K_OBJECT_FRAME mimics the structure of
a real object. That is, it has all header fields the original object has, and an application
can access them in the same way that the system accesses its objects in kernel-mode
memory, using the offsets and flags in the OBJECT_HEADER .

LISTING 7-21. Object Clone Structures

typedef struct _W2K_OBJECT

{
POBJECT pObject;

POBJECT_HEADER pHeader;

POBJECT_CREATOR_INFO pCreatorlnf o ;

POBJECT_NAME pName ;

POBJECT_HANDLE_DB pHandleDB;

POBJECT_QUOTA_CHARGES pQuotaCharges ;

POBJECT_TYPE pType ;

PQUOTA_BLOCK pQuotaBlock;

POBJECT_CREATE_INFO pCreatelnf o;

PWORD pwName ;

PWORD pwType ;

}

W2K_OBJECT, *PW2K_OBJECT, **PPW2K_OBJECT ;

#define W2K_OBJECT_ sizeof (W2K_OBJECT)

typedef struct _W2K_OBJECT_FRAME

{

OBJECT_QUOTA_CHARGES QuotaCharges ;

OBJECT_HANDLE_DB HandleDB;

OBJECT_NAME Name ;

OBJECT_CREATOR_INFO Creator Info ;

OBJECT_HEADER Header ;

W2K_OBJECT Object;

OBJECT_TYPE Type ;

QUOTA_BLOCK QuotaBlock;

OBJECT_CREATE_INFO Createlnfo;

WORD Buffer [] ;

}
W2K_OBJECT_FRAME, *PW2K_OBJECT_FRAME, **PPW2K_OBJECT_FRAME;

tfdefine W2K_OBJECT_FRAME_ sizeof (W2K_OBJECT_FRAME)

#define W2K_OBJECT_FRAME (_n) (W2K_OBJECT_FRAME_ + ( (_n) * WORD_) )
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I don't want to go into the details of w2kobjectopen ( ) and all of its subordinate
functions. For illustrative purposes, the three-part set of functions shown in Listing 7-22
should suffice. w2kobjectHeader ( ) creates a copy of an object's OBJECT_HEADER,
and w2kObj ectCreatorlnf o ( ) and w2kObj ectName ( ) copy the OBJECT_CREATOR_INFO
and OBJECT_NAME header parts, if present. Again, w2kspydone ( ) is the main work-
horse. For more examples of this kind, please refer to the w2k_call. c source file on
the accompanying CD.

#define BACK(_p,_d) ((PVOID) ( ( (PBYTE) (_p) ) - (_d) ) )

/ /

POBJECT_HEADER WINAPI

w2kObjectHeader (POBJECT pObject)

{

DWORD dOffset = OB JECT_HEADER_ ;

POBJECT_HEADER pHeader = NULL;

if (pObject != NULL)

{

pHeader = w2kSpyClone (BACK (pObject, dOffset) ,

doff set) ;

}

return pHeader;

}

//

POBJECT_CREATOR_INPO WINAPI

w2kObj ectCreatorlnf o ( POBJECT_HEADER pHeader,

POBJECT pObject)

{
DWORD dOffset;

POBJECT_CREATOR_INFO pCreatorlnfo = NULL;

if ((pHeader != NULL) && (pObject != NULL) &&

(pHeader->ObjectFlags & OB_FLAG_CREATOR_INFO ) )

{

dOffset = OBJECT_CREATOR_INFO_ + OBJECT_HEADER_;

pCreatorlnfo = w2kSpyClone (BACK (pObject, dOffset) ,

OBJECT_CREATOR_INFO_) ;

}

return pCreatorlnfo;

}

(continued)
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LISTING 7-22. Object Cloning Helper Functions

The bottom line of the story is that w2kDirectoryOpen ( ) takes a pointer to a
live OBJECTJDIRECTORY node and returns a copy that contains W2K_OBJECT pointers
where the original directory stores its object body pointers. The object browser
application calls this API function repeatedly, once for each directory layer it dis-
plays. Listing 7-23 is a heavily edited version of the browser code, stripped down
to its bare essentials. The original code found in w2k_obj . c contains many distract-
ing extras that would have obscured the basic functional layout. The top-level
function is named DisplayObjects ( ) . It requests the object root pointer from
w2k_call .dll via ObpRootDirectoryObject ( ) and forwards it to DisplayOject ( } ,
which displays the type and name of the object and calls itself recursively if the object
is an OBJECT_DIRECTORY. For each nesting level, Displayobject ( ) adds a line inden-
tation of three spaces. I have added the functions in Listing 7-23 to w2k_obj . c on the
companion CD under the section header "POOR MAN'S OBJECT BROWSER."
However, this code is not called anywhere, although it does work.

/ /

POBJECT_NAME WINAPI

w2kObjectName ( POBJECT_HEADER pHeader,

POBJECT pObject)

{

DWORD dOffset;

POBJECT_NAME pName = NULL;

if ( (pHeader != NULL) && (pObject != NULL) &&

(dOffset = pHeader->NameOffset) )

{
dOffset += OBJECT_HEADER_;

pName = w2kSpyClone (BACK (pObject, dOffset) ,

OBJECT_NAME_) ;

)
return pName;

}

VOID WINAPI _DisplayObject (PW2K_OBJECT pObject,

DWORD dLevel )

{

POBJECT_DIRECTORY pDir;

POBJECT_DIRECTORY_ENTRY pEntry;

DWORD i ;
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LISTING 7-23. A Very Simple Object Browser

In Example 7-2,1 have compiled some characteristic parts of an object directory
listing generated by the code in Listing 7-23. For example, the \BaseNamedobjects
subdirectory comprises named objects that are typically shared between processes
and can be opened by name. The \objectTypes subdirectory contains all 27
OBJECT_TYPE type objects (cf. Listing 7-9) supported by the system, as listed
in Table 7-4.

for (i = 0; i < dLevel; i++) printf (L" ");

_printf (L"%+. -16s%s\r\n" , pObject->pwType, pObject->pwName) ;

if ((llstrcmp (pObject->pwType, L"Directory" ) ) &&

( (pDir = w2kDirectoryOpen (pObject->pObject) ) != NULL))

{
for (1=0; i < OBJECT_HASH_TABLE_SIZE; i++)

{
for (pEntry = pDir->HashTable [i];

pEntry ! = NULL ;

pEntry = pEntry- >NextEntry)

{
_DisplayObject (pEntry->Object , dLevel+1);

}

}
w2kDirectoryClose (pDir) ;

}
return;

}

//

VOID WINAPI _DisplayObjects (VOID)

{
PW2K_OBJECT pObject;

if ( (pObject = w2kObjectOpen ( ObpRootDirectoryObject ()))

!= NULL)

{
_DisplayObject (pObject, 0);
w2kObjectClose (pObject) ;

}
return;

}



442 WINDOWS 2000 OBJECT MANAGEMENT

1 1
Directory \

Directory ArcName

Symbol icLink. . . .multi (0) disk(O) rdisk(O)

SymbolicLink. . . .multi (0) disk(O) rdisk(l)

SymbolicLink. . . .multi (0) disk(O) rdisk(l)partitiond)

SymbolicLink. . . .multi (0) disk(O) rdisk(O)partitiond)

SymbolicLink. . . .multi (0) disk(O) fdisk(O)

SymbolicLink. . . .multi (0) disk (0) rdisk(0 (partition (2)

Device Ntfs

Port SeLsaCommandPort

Key REGISTRY

Port XactSrvLpcPort

Port DbgUiApiPort

Directory NLS

Section NlsSectionCP874

Section NlsSectionCP950

Section NlsSectionCP20290

Section NlsSectionCP1255c 1255. nls

Directory BaseNamedObjects

Section Df SharedHeapE445BB

Section DFMapO-14765686

Mutant ZonesCacheCounterMutex

Section DFMapO-14364447

Event WINMGMT COREDLL UNLOADED

Mutant MCICDA DeviceCritSec 19

Event AgentToWkssvcEvent

Event userenv: Machine Group Policy has been applied

SymbolicLink. . . .Local

Section DFMapO-15555297

Section Df SharedHeapED2256

Section Df SharedHeapE8F975

Section DFMapO-15232696

Section DFMapO-15170325

Event Shell Notif icationCallbacksOutstanding

Section DFMapO-14364985

Event SETTermEvent

Event winlogon: User GPO Event 112121

Directory ObjectTypes

Type Directory

Type Mutant

Type Thread

Type Controller

Type Profile

Type Event

Type Type

Type Section
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EXAMPLE 7-2. Excerpts from an Object Directory

The full-featured object browser code inside w2k_obj . exe not only displays the
directory tree in a more pleasing visual form, but also allows display of additional
object features and filtering of object types. Example 7-3 shows the various options
offered by the w2k_obj. exe command line.

Type EventPair

Type SymbolicLink

Type Desktop

Type Timer

Type File

Type WindowStation

Type Driver

Type WmiGuid

Type Device

Type Token

Type loCompletion

Type Process

Type Adapter

Type Key

Type Job

Type WaitablePort

Type Port

Type Callback

Type Semaphore

Directory Security

Event TRKWKS EVENT

WaitablePort. . . .TRKWKS_PORT

Event LSA AUTHENTICATION INITIALIZED

Event NetworkProviderLoad

// w2k_obj.exe

// SBS Windows 2000 Object Browser VI. 00

// 08-27-2000 Sven B. Schreiber

/ / sbs@orgon . com

Usage: w2k_obj [+-atf ] [<type>] [<#>|-1] [/root] [/types]

+a -a : show/hide object addresses (default: -a)

+t -t : show/hide object type names (default: -t)

+f -f : show/hide object flags {default: -f)

(continued)
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EXAMPLE 7-3. The Command Help o/rw2k_obj. exe

In Example 7-4,1 have issued the sample command w2k_obj +atf *port 2 /root
mentioned in the help screen. It restricts the output to Port and WaitablePort objects
by applying the type filter expression *port and includes object body addresses,
type names, and flags for each entry. The display is limited to two subordinate
directory layers.

<type> : show <type> objects only (default: *)

<#> : show <#> directory levels (default: -1)

-1 : show all directory levels

/root : show ObpRootDirectoryObject tree

/types : show ObpTypeDirectoryObject tree

Example: w2k_obj +atf *port 2 /root

This command displays all Port and WaitablePort objects,

starting in the root and scanning two directory levels.

Each line includes address, type, and flag information.

Root directory contents: (2 levels shown)

8149CDDO Directory <32> \

> | E26A0540 Port <24> SeLsaCommandPort

> | E130CC20 Port <24> XactSrvLocPort

> | E13E2380 Port <24> DboUiAoiPort

> | E13E4BAO Port <:26> SeRmCommandPort

> | E26A9D20 Port <24> LsaAuthenticationPort

> | E13E4CAO Port <24> DbaSsApiPort

> | E13E3260 Port <24> SmAoiPort

> | E2707680 Port <24> ErrorLooPort

| 81499B70 Directory <32> \ArcName

| 812FDB60 Directory <10> \NLS

| 814940BO Directory <32> \Driver

81490B30 Directory <32> \WmiGuid

| 81499A90 Directory <32> \Device

| | 814AEA90 Directory <32^ \Device\DmControl

| | 814AE4FO Directory <32> \Device\HarddiskDmVolumes

| | 8148BE50 Directory <32> \Device\Ide

| | 814AB3DO Directory <32> \Device\HarddiskO

| | 814852FO Directory <32> \Device\Harddiskl

| | 814A9F50 Directory <22> \Device\WinDfs
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| \ 814AB030 Directorv <32> \Device\Scsi

| 81319030 Directorv <30> \Windows

> E2615520 Port <24> SbAoiPort

> E260E1AO Port <24> AoiPort

812FC810 Directorv <32> \Windows\WindowStations

81319150 Directory <30> \RPC Control

> E26B6A20 Port <24> taosrvlcc

> E3228440 Port <24> OLE3c

> E269F360 Port <24> sooolss

> E269B6EO Port <24> OLE2

> E2C96C60 Port <24> OLE3f

> E1306BCO Port <24> OLE3

> E269BD20 Port <24> LRPC0000021c . 00000001

> E276D520 Port <24> OLE5

> E2699D40 Port <24> OLE6

> E2697COO Port <24> OLE7

> E26FOAEO Port <24> ntsvcs

> E26B6B20 Port <24> policvaaent

> E2814CAO Port <24> OLEa

> E29DC3CO Port <24> OLEb

> E304C8AO Port <24> OLE40

> E3165660 Port <24> OLE41

> E26979AO Port <24> eraiaDoer

> | E13069AO Port <24> senssvc

> | \ E2C8D040 Port <24> OLE42

| 812FD030 Directorv <30> \BaseNamedOb-iects

| \ 812FDF50 Directory <30> \BaseNamedObjects\Restricted

| 8149CBDO Directorv <32> \??

1 814B5030 Directorv <32> \FileSvstem

| 8149CCBO Directory <32> \ObjectTypes

| 81499C50 Directorv <32> \Securitv

> | \_ 8121EB20 WaitablePort <24> TRKWKS_PORT

| 8149B2DO Directory <32> \Callback

\ 81446E90 Directory <30> \KnownDlls

54 objects

EXAMPLE 7-4. Output of the Command w2k_obj +atf *port 2 /root

Note that Directory objects are always included in the list, even though the
type name pattern doesn't match them. Otherwise, it would be unclear to which node
in the directory hierarchy the matching objects are assigned. The > characters in the
first display column act as visual cues that distinguish the objects with a matching
object type from the additional Directory objects.
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WHERE DO WE GO FROM HERE?

So much could still be said about Windows 2000 internals. But the number of
words fitting into a reasonably sized book is limited, so it must end somewhere.
The seven chapters of this book were tough reading, but maybe it was thrilling as
well. If you are now seeing Windows 2000 with different eyes, I have reached my
goal. If you are a programming or debugging tool developer, the programming and
interfacing techniques in this book will help you add value to your products that
none of the competitive tools can currently offer. If you are developing other kinds
of software for Windows 2000, the understanding of the inner system dynamics
imparted by this book will help you writing more efficient code that optimally
exploits the features of your operating system. I also would like this book to spur
the inquiring minds of developers everywhere, kicking off an avalanche of research
that unveils the mysteries that still surround most parts of the Windows 2000
kernel. I never believed that treating the operating system as a black box was a
good programming paradigm—and I still don't believe it.
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Kernel
Debugger
Commands

The following tables provide a quick reference to the Windows 2000 Kernel Debug-
ger's console command interface, described in Chapter 1.

TABLE A-1. Built-in Kernel Debugger Commands

(continued)
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COMMAND

A [<address>]

BA[#] <elrlwlixll2l4> <address>

BC[<bp>]

BD[<bp>]

BE[<bp>]

BL[<bp>]

BP[#] <address>

C <range> <address>

D[type][<range>]

Eftype] <address> [<list>]

F <range> <list>

G [=<address> [<address>...]]

I<type> <port>

J<expression> [']cmdlt'];[']cmd2[']

K[B] <count>

KB = <base> <stack> <ip>

DESCRIPTION

Assemble

Address breakpoint

Clear breakpoint(s)

Disable breakpoint(s)

Enable breakpoint(s)

List breakpoint(s)

Set breakpoint

Compare memory

Dump memory

Enter

Fill memory

Go to address

Read from I/O port

Conditional execution

Stack trace

Stack trace from specific state

(continued)
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TABLE A-1. (continued)

COMMAND

L{+l-}[lost*]

LN <expression>

LS[.] [<first>][,<count>]

LSA <address>[,<first>][,<count>]

LSC

LSF[-] <file>

M <range> <address>

N [<radix>]

P[R] [=<address>] [<value>]

Q
#R

R[F][L][M <expression>] [[<register> [= <expression>]]]

Rm[?] [<expression>]

S <range> <list>

SS <n 1 a 1 w>

SX [eld [<event>l*l<expression>]]

T[R] [=<address>] [<expression>]

U [<range>]

O<type> <port> <expression>

X [<*lmodule>!]<*lsymbol>

.cache [size]

.logopen [<file>]

.logappend [<file>]

.logclose

.reboot

.reload

~<:processor>

? <expression>

#<strin^> ^addtess\

$< <filename>

DESCRIPTION

Control source options

List nearest symbols

List source file lines

List source file lines at address

Show current source file and line

Load or unload a source file for
browsing

Move memory

Set / show number radix

Program step

Quit debugger

Multiprocessor register dump

Get/set register/flag value

Control prompt register output mask

Search memory

Set symbol suffix

Exception

Trace

Unassemble

Write to I/O port

Examine symbols

Set virtual memory cache size

Open new log file

Append to log file

Close log file

Reboot target machine

Reload symbols

Change current processor

Display expression

St^cVAw ̂ sXTYCv%Yh<ta& fosassewfoYy

Take input from a command file
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TABLE A-2. Command Argument Types Used in Table 1-1

ARGUMENT

<address>

<event>

<expression>

<flag>

<list>

<pattern>

<radix>

<range>

<register>

<type>

DESCRIPTION

#<1 6-bit protect-mode [seg:]address>

&<V86-mode [seg:]address>

ct, et, Id, av, cc

operators: + - * / not by wo dw poi mod(%) and(&) xor(A) or(l) hi low

operands: number in current radix, public symbol, <register>

iopl, of, df, if, tf, sf, zf, af, pf, cf

<byte> [<byte> ...]

[(nt 1 <dll-name>)!]<var-name> (<var-name> can include ? and *)

8,10,16

<address> <address>

<address> L <count>

[e]ax, [e]bx, [e]cx, [e]dx, [e]si, [e]di, [e]bp, [e]sp, [e]ip, [e]fl

al, ah, bl, bh, cl, ch, dl, dh, cs, ds, es, fs, gs, ss

crO, cr2, cr3, cr4, drO, drl, dr2, dr3, dr6, dr7

gdtr, gdtl, idtr, idtl, tr, Idtr

b (BYTE)

w (WORD)

d[s] (DWORD [with symbols])

q (QWORD)

f (FLOAT)

D (DOUBLE)

a (ASCII)

c (DWORD and CHAR)

u (Unicode)

sIS (ASCII/Unicode string)

1 (list)
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TABLE A-3. Bang Commands Exported by kdextx86.dll

COMMAND

!acl <Address> [flags]

lapic [base]

larbiter [flags]

iarblist <address> [flags]

.'bugdump

Ibushnd

Ibushnd <address>

!ca <address> [flags]

Icallback <address> [num]

Icalldata <table name>

Icbreg <BaseAddr> 1 %%<PhyAddr>

Icmreslist <CM Resource List>

!cxr

!db <physical address>

Idblink <address> [count] [bias]

!dcs <Bus>.<Dev>.<Fn>

!dd <physical address>

Idefwrites

Jdevext <address> <type>

Idevnode <node> [flags] [service]

DESCRIPTION

Display the ACL

Dump local APIC

Display all arbiters and arbitrated ranges

flags: 1 I/O arbiters

2 Memory arbiters

4 IRQ arbiters

8 DMA arbiters

10 Bus number arbiters

Dump set of resources being arbitrated

flags: 1 Include Interface and Slot info per device

Display bug check dump data

Dump HAL "BUS HANDLER" list

Dump HAL "BUS HANDLER" structure of handler <address>

Dump control area of a section

Dump callback frames for specified thread

Dump call data hash table

Dump CardBus registers

Dump CM resource list

Dump context record at specified address

Display physical memory BYTEs

Dump a list via its blinks

Dump PCI ConfigSpace of device

Display physical memory DWORDs

Dump deferred write queue and triages cached write throttles

Dump device extension at <address> of type <type> <type>
PCI, PCMCIA, USED, OpenHCI, USBHUB, UHCD, HID

Dump device node

node: 0 List main tree

1 List pending removals

2 List pending ejects

addr List specified node

flags: 1 Dump children

2 Dump CM Resource List

4 Dump I/O Resource List

8 Dump translated CM Resource List

10 Dump only nodes that aren't started

20 Dump only nodes that have problems

service: If present, only nodes driven by this service dumped
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TABLE A-3. Bang Commands Exported by kdextx86 .dii

COMMAND

Idevobj <device>

Idevstack <device>

Idflink <address> [count] [bias]

bias

[drivers

Idrvobj <driver> [flags]

!eb <physical address> <BYTE list>

led <physical address>

lerrlog

lexca <BasePort>.<SktNum>

lexqueue [flags]

!exr <address>

Ifilecache

Ifilelock <address>

Ifiletime

Ifpsearch <address>

ifrag [flags]

Igentable <address>

lhandle <address> <flags> <process>

<TypeName>

Iheap <address> [flags]

DESCRIPTION

Dump device object and IRP queue

<device> Device object address or name

Dump device stack associated with device object

Dump a list via its flinks

Mask of bits to ignore in each pointer

Display information about all loaded system modules

Dump driver object and related information

<driver> Driver object address or name

flags: 1 Dump device object list

2 Dump driver entry points

Enter BYTE values to physical memory

Enter DWORD values to physical memory <DWORD list>

Dump the error log contents

Dump ExCA registers

Dump the ExWorkerQueues

flags: 1/2/4 Same as Ithread / [process

1 0 Only critical work queue

20 Only delayed work queue

40 Only hypercritical work queue

Dump exception record at specified address

Dump information about the file system cache

Dump file lock structure

Dump 64-bit FILETIME as a human-readable time

Find a freed special pool allocation

Display kernel mode pool fragmentation

flags: 1 List all fragment information

2 List allocation information

3 Both

Dump the given rtl_generic_table

Dump handle for a process

flags: 2 Dump nonpaged object

Dump heap for a process

address: Desired heap to dump or 0 for all

flags: -v Verbose

-f Free List entries

-a All entries

(continued)
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TABLE A-3. Bang Commands Exported by kdextx86 .dli

COMMAND

Ihelp

IHidPpd <address> <flags>

lib <port>

lid <port>

lioapic [base]

lioreslist <IO Resource List>

lirp <address> <dumplevel>

lirpfind [pooltype] [restart addr]
[<irpsearch> <address>]

!iw <port>

Ijob <address> [<flags>]

llocks [-v] <address>

llookaside <address> <options>
<depth>

llpc

Imemusage

Imps

Imtrr

!npx [base]

lob <port>

DESCRIPTION

-s Summary

-x Force a dump even if the data is bad

Display command help

Dump preparsed Data of HID device

Read a BYTE from an I/O port

Read a DWORD from an I/O port

Dump I/O APIC

Dump I/O resource requirements list

Dump IRP at specified address

address == 0 Dump active IRPs (checked only)

dumplevehO Basic stack info

1 Full field dump

2 Include tracking information (checked only)

Search pool for active IRPs
pooltype: 0 Nonpaged pool (default)

1 Paged pool

2 Special pool

restart addr If present, scan will be restarted from here in pool

<irpsearch> Specifies filter criteria to find a specific IRP:

userevent Irp.UserEvent == <address>

device Stack location: DeviceObject == <address>

fileobject Irp.Tail.Overlay.OriginalFileObject == <address>

mdlprocess Irp.MdlAddress.Process ==<address>

thread Irp.Tail. Overlay. Thread == <address>

arg One of the arguments == <address>

Read a WORD from an I/O port

Dump JobObject at <address>, processes in job

Dump kernel-mode resource locks

Dump lookaside lists
options: 1 Reset list counters

2 Set list depth to <depth>

Dump LPC ports and messages

Dump the page frame database table

Dump MPS BIOS structures

Dump MTTR

Dump NPX save area

Write a BYTE to an I/O port
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TABLE A-3. Bang Commands Exported by kdextxse. dii

(continued)

COMMAND

lobja <TypeName>

lobject <-r 1 Path 1 address

!od <port>

low <port>

Ipatch

DESCRIPTION

Dump an object manager object's attributes

1 0 TypeNamoDump an object manager object

-r Force reload of cached object pointers

Write a DWORD to an I/O port

Write a WORD to an I/O port

Enable and disable various driver flags

!pci [flag] [bus] [device] [function] Dump PCI typel configuration [rawdump:minaddr] [maxaddr]

'

Ipciir

Ipcitree

!pcr

!pfn

!pic

Ipnpevent <address>

Ipocaps

Ipodev <devobj>

Ipolist

Ipolist [<devobj>]

Iponode

Ipopolicy

Ipoproc <Address>

Ipool <address> [detail]

flag: 0x01 Verbose

0x02 From bus 0 to 'bus'

0x04 Dump raw BYTEs

0x08 Dump raw DWORDs

0x10 Do not skip invalid devices

0x20 Do not skip invalid functions

0x40 Dump capabilities if found

0x80 Dump device specific on VendorID:8086

Dump the PCI IRQ routing table

Dump the PCI tree structure

Dump the Processor Control Region (PCR)

Dump the page frame database entry for the physical page

Dump PIC (8259) information

Dump specified PNP event, or all events if <address> == 0

Dump system power capabilities

Dump power relevant data in device object

Dump power IRP serial list

Dump power IRP serial list entries for specified devobj

Dump power device node stack (devnodes in power order)

Dump system power policy

Dump processor power state.

Dump kernel mode heap

address: 0 Only the process heap (default)

-1 All heaps in the process

else Pool entry

detail: 0 Summary Information

1 Summary + location/size of regions

2 Display information only for address

(continued)
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TABLE A-3. Bang Commands Exported by kdextxse. dii

COMMAND

Ipoolfind <tag> [pooltype]

Ipoolused [flags [TAG]]

IpoReqList [<devobj>]
Iportcls <devobj> [flags]

Ipotrigger <address>
Iprocess [flags] [image name]

Iprocessfields

!pte
Iptov <PhysicalPageNumber>

Iqlocks
! range <RtlRangeList>

Iready
Ireghash
Iregkcb <address>

Iregpool [sir]

DESCRIPTION

3 Summary + blocks in committed regions
4 Summary + free lists

Find occurrences of the specified pool <tag>

<tag> Four-character tag, * and ? are wild cards

pooltype: 0 Nonpaged pool (default)

1 Paged pool
2 Special pool

Dump usage by pool tag

flags: 1 Verbose
2 Sort by NonPagedPool Usage

4 Sort by PagedPool Usage
Dump PoRequestedPowerlrp created Power IRPs
Dump portcls data for portcls bound devobj

flags: 1 Port dump
2 Filter dump
4 Pin dump

8 Device context
10 Power info

100 Verbose

200 Really verbose
Dump POP_ACTION_TRIGGER

Dump process at specified address

flags: 1 Don't stop after Cid/Image information
2 Dump thread wait states
4 Dump only thread states

6 Dump thread states and stack

Show offsets to all fields in the EPROCESS structure

Dump the corresponding PDE and PTE for the entered address
Dump all valid physical/virtual mappings for a page directory
Dump state of all queued spin locks
Dump RTL_RANGE_LIST

Dump state of all ready system threads
Dump registry hash table
Dump registry key-control-blocks
Dump registry allocated paged pool

s Save list of registry pages to temporary file

r Restore list of registry pages from temporary file
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TABLE A-3. Bang Commands Exported by kdextxse .dii

COMMAND

Irellist <relation list> [flags]

Iremlock
!sd <Address> [flags]
!sel [selector]

[session <id> [flags] [image name]

!sid <Address> [flags]

'.socket <address>
!srb <address>
! stacks <detail-level>

Isysptes

! thread <address> [flags]

Ithreadfields

Itime
Itimer

Itoken <address> [flags]
Itokenfields

Itrap [base]
!tss [register]

Itunnel <address>
!tz [<address> <flags>]

Itzinfo <address>

!urb <address> <flags>
lusblog <log> [addr] [flags]

DESCRIPTION

Dump PNP relation lists

flags: 1 Not used
2 Dump CM Resource List

4 Dump I/O Resource List

8 Dump translated CM Resource

Dump a remove lock structure
Display SECURITY_DESCRIPTOR
Examine selector values

Dump sessions
Display the SID structure at the specified address
Dump PCMCIA socket structure
Dump SCSI Request Block at specified address
Dump summary of current kernel stacks

detail-level: 0 Display stack summary

1 Display stacks, no parameters
2 Display stacks, full parameters

Dump the system PTEs

Dump thread at specified address

flags: 1 Not used
2 Dump thread wait states
4 Dump only thread states
6 Dump thread states and stack

List

Show offsets to all fields in the ETHREAD structure

Report PerformanceCounterRate and TimerDifference
Dump timer tree
Dump token at specified address

Show offsets to all fields in a token structure

Dump trap frame
Dump TSS
Dump a file property tunneling cache
Dump thermal zones (No arguments: dump all zones)

Dump thermal zone information

Dump an USB Request Block
Display an USB log
<log> USBHUB, USED, UHCD, OpenHCI

(continued)
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TABLE A-3. Bang Commands Exported by kdextx86.dll

COMMAND

lusbstruc <address> <type>

!vad

Iversion

!vm

!vpd <address>
Jvtop DirBase address
Iwdmaud <address> <flags>

.'zombies

DESCRIPTION

addr: Address to begin dumping from in <log>

flags: -r Reset the log to dump from most
recent entry

-s L Search for tags in comma-delimited list L

-1 N Set number of lines to display at a time to N
Display an USB HC descriptor of <type>

<type> OHCIReg, HCCA, OHCIHcdED, OHCIHcdTD,
OHCIEndpoint, DevData, UHCDReg

Dump VADs
Version of extension DLL

Dump virtual memory values
Dump volume parameter block
Dump physical page for virtual address
Dump wdmaud data for structures

flags: 1 I/O control history dump given

WdmaloctlHistoryListHead
2 Pending IRPs given

WdmaPendinglrpListHead
4 Allocated MDLs given

WdmaAllocatedMdlListHead
8 pContext dump given

WdmaContextListHead
100 Verbose

Find all zombie processes
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TABLE A-4. Bang Commands Exported by userkdx.dll

COMMAND

!atom

Idcls [pels]

Idcss

Idcur -aivp [pcur]

!dde -vr [convlwindowlxact]

Iddesk -vh <pdesk>

!ddl [pdesk]

!ddk <PKbdTbl>

!df [flags] l[-ppid]

!dfa

!dha address

!dhe [pointerlhandie] 1 [-t[o[p]] type [pti/ppi]]

!dhk -ag [pti]

Idhot

!dhs -vpty [idltype]

!di

!dii <piiex>

Idimc [-hrvus] -[wci] [imclwnd,etc.]

Idimk [plmeHotKeyObj]

Idinp -v [pDevicelnfo]

!dkl -akv <pkl>

!dll [*]addr [1#] [b#] [o#] [c#] [t[addr]]

!dlr <pointerlhandle>

!dm -vris <menulwindow>

Idmon <pMonitor>

!dmq [-ac] [pq]

!dms <MenuState>

!dp -vcpt [id]

!dpa -cvsfrp

!dpi [ppi]

!dpm <ppopupmenu>

!dq -t [pq]

Idsbt <pSBTrack>

Idsbwnd <psbwnd>

!dsi [-bchmopvw]

DESCRIPTION

Dump atoms or atom tables

Dump window class

Dump critical section stack traces

Dump cursors

Dump DDE tracking information

Display objects allocated in desktop

Dump desktop log

Dump deadkey table

Display or set debug flags

Dump allocation fail stack trace

Dump heap allocations and verify heap

Dump handle entries

Dump hooks

Dump registered hotkeys

Dump handle table statistics

Display USER input processing globals

Dump extended IME information

Dump Input Context

Dump IME Hotkeys

Dump input diagnostics

Dump keyboard layout structures

Dump linked list (can Ctrl-C)

Display assignment locks for object

Dump a menu

Dump MONITOR

List messages in queues

Dump a pMenuState

Display simple process information

Dump pool allocations

Display PROCESSINFO structure specified

Dump a popup menu

Display Q structure specified

Display Scroll Bar Track structure

Dump extra fields of Scrollbar windows

Display SERVERINFO structure

(continued)
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TABLE A-4. (continued)

COMMAND

Idsms -vl [psms]

!dso <Structure> [Field] [addr [*n]|

!dt -gvcp [id]

!dtdb [ptdb]

!dti [pti]

!dtl [-t] [pointerlhandle]

Jdtmr [ptmr]

!du [pointerlhandle]

Idumphmgr [-s]

!dup

Idupm

!dvs -s

!dw -aefhvsprwoz [hwnd/pwnd]

!dwe [-n] [addr]

!dwpi -p [pwpi 1 ppi]

!dws [pws]

!dy [pdi]

Ifind baseaddr addr [o#]

!fno <address>

!frr <psrcLo> <psrcHi> <prefLo> [prefHi]

Ihelp -v [cmd]

!hh

!kbd -au [pq]

!sas [-s] <addr> [length]

Itest

luver

DESCRIPTION

Display SMS (SendMessage structure) specified

Dump structure field(s)'s offset(s) and value(s)

Display simple thread information

Dump Task Database

Display THREADINFO structure

Display thread locks

Dump timer structure

Generic object dumping routine

Dump object allocation counts (debug version only)

User preferences DWORDs

User preference bit mask

Dump sections and mapped views

Display information on windows in system

Display WinEvent hooks/notifies

Display WOWPROCESSINFO structure specified

Dump window stations

Dump DISPLAYINFO

Find linked list element

Find nearest object

Find Range Reference

Display command help (-v verbose)

Dump gdwHydraHint

Display key state for queue

Stack Analysis Stuff

Test basic debug functions

Show versions of USERTEXTS and WIN32K.SYS
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Kernel API
Functions

Appendix B contains a compilation of functions exported by the system modules
win32k.sys, ntdll.dll, and ntoskrnl.exe, disCUSSed in Chapter 2.

TABLE B-l. The Windows 2000 Native API

459

FUNCTION NAME INT 2Eh ntdll.Nt* ntdll.Zw*

NtAcceptConnectPort 0x0000

NtAccessCheck 0x0001

NtAccessCheckAndAuditAlarm 0x0002

NtAccessCheckByType 0x0003

NtAccessCheckByTypeAndAuditAlarm
0x0004

NtAccessCheckByTypeResultList 0x0005

NtAccessCheckByTypeResultListAndAuditAlarm
0x0006

NtAccessCheckByTypeResultListAndAuditAlarmByHandle
0x0007

NtAddAtom 0x0008

NtAdjustGroupsToken 0x0009

NtAdjustPrivilegesToken 0x000 A

NtAlertResumeThread OxOOOB

NtAlertThread OxOOOC

NtAllocateLocallyUniqueld OxOOOD

NtAllocateUserPhysicalPages OxOOOE

N/A Not Available

ntoskrnl.Nt*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(continued)
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TABLE B-l. (continued)

FUNCTION NAME

NtAllocateUuids

NtAllocateVirtualMemory

NtAreMappedFilesTheSame

NtAssignProcessToJobObject

NtBuildNumber

NtCallbackReturn

NtCancelDeviceWakeupRequest

NtCancelloFile

NtCancelTimer

NtClearEvent

NtClose

NtCloseObjectAuditAlarm

NtCompleteConnectPort

NtConnectPort

NtContinue

NtCreateChannel

NtCreateDirectoryObject

NtCreateEvent

NtCreateEventPair

NtCreateFile

NtCreateloCompletion

NtCreateJobObject

NtCreateKey

NtCreateMailslotFile

NtCreateMutant

NtCreateNamedPipeFile

NtCreatePagingFile

NtCreatePort

NtCreateProcess

NtCreateProfile

NtCreateSection

NtCreateSemaphore

NtCreateSymbolicLinkObject

INT 2Eh ntdll-Nt* ntdll.Zw*

OxOOOF

0x0010

0x0011

0x0012

N/A N/A N/A

0x0013

0x0016

0x0014

0x0015

0x0017

0x0018

0x0019

OxOOlA

0x00 IB

OxOOlC

OxOOFl

OxOOlD

OxOOlE

OxOOlF

0x0020

0x0021

0x0022

0x0023

0x0024

0x0025

0x0026

0x0027

0x0028

0x0029

Ox002A

Ox002B

Ox002C

Ox002D

ntoskrnl.Nt* ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-l. (continued)

FUNCTION NAME

NtCreateThread

NtCreateTimer

NtCreateToken

NtCreateWaitablePort

NtCurrentTeb

NtDelayExecution

NtDeleteAtom

NtDeleteFile

NtDeleteKey

NtDeleteObjectAuditAlarm

NtDeleteValueKey

NtDeviceloControlFile

NtDisplayString

NtDuplicateObject

NtDuplicateToken

NtEnumerateKey

NtEnumerateValueKey

NtExtendSection

NtFilterToken

NtFindAtom

NtFlushBuffersFile

NtFlushlnstructionCache

NtFlushKey

NtFlushVirtualMemory

NtFlushWriteBuffer

NtFreeUserPhysicalPages

NtFreeVirtualMemory

NtFsControlFile

NtGetContextThread

NtGetDevicePowerState

NtGetPlugPlayEvent

NtGetTickCount

NtGetWriteWatch

INT 2Eh

Ox002E

Ox002F

0x0030

0x0031

N/A

0x0032

0x0033

0x0034

0x0035

0x0036

0x0037

0x0038

0x0039

Ox003A

Ox003B

Ox003C

Ox003D

Ox003E

Ox003F

0x0040

0x0041

0x0042

0x0043

0x0044

0x0045

0x0046

0x0047

0x0048

0x0049

Ox004A

Ox004B

Ox004C

Ox004D

ntdll.Nt* ntdll.Zw* ntoskrnl.Nt*

N/A

N/A

N/A

N/A

N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(continued)
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TABLE B-l. (continued)

FUNCTION NAME

NtGlobalFlag

NtlmpersonateAnonymousToken

NtlmpersonateClientOfPort

NtlmpersonateThread

NtlnitializeRegistry

NtlnitiatePowerAction

NtlsSystemResumeAutomatic

NtListenChannel

NtListenPort

NtLoadDriver

NtLoadKey

NtLoadKey2

NtLockFile

NtLockVirtualMemory

NtMakeTemporaryObject

NtMapUserPhysicalPages

NtMapUserPhysicalPagesScatter

NtMapViewOf Section

NtNotifyChangeDirectoryFile

NtNotifyChangeKey

NtNotifyChangeMultipleKeys

NtOpenChannel

NtOpenDirectoryObject

NtOpenEvent

NtOpenEventPair

NtOpenFile

NtOpenloCompletion

NtOpenJobObject

NtOpenKey

NtOpenMutant

NtOpenObjectAuditAlarm

NtOpenProcess

NtOpenProcessToken

INT 2Eh

N/A

Ox004E

Ox004F

0x0050

0x0051

0x0052

0x0053

OxOOF2

0x0054

0x0055

0x0056

0x0057

0x0058

0x0059

Ox005A

Ox005B

Ox005C

Ox005D

Ox005E

Ox005F

0x0060

OxOOF3

0x0061

0x0062

0x0063

0x0064

0x0065

0x0066

0x0067

0x0068

0x0069

Ox006A

Ox006B

ntdll.Nt* ntdll.Zw* ntoskrnl.Nt*

N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-l. (continued)

FUNCTION NAME

NtOpenSection

NtOpenSemaphore

NtOpenSymbolicLinkObject

NtOpenThread

NtOpenThreadToken

NtOpenTimer

NtPlugPlayControl

NtPowerlnformation

NtPrivilegeCheck

NtPrivilegedServiceAuditAlarm

NtPrivilegeObjectAuditAlarm

NtProtectVirtualMemory

NtPulseEvent

NtQueryAttributesFile

NtQueryDefaultLocale

NtQueryDefaultUILanguage

NtQueryDirectoryFile

NtQueryDirectoryObject

NtQueryEaFile

NtQueryEvent

NtQueryFullAttributesFile

NtQuerylnformationAtom

NtQuerylnformationFile

NtQuerylnformationJobObject

NtQuerylnformationPort

NtQuerylnformationProcess

NtQuerylnformationThread

NtQuerylnformationToken

NtQuerylnstallUILanguage

NtQuerylntervalProfile

NtQueryloCompletion

NtQueryKey

NtQueryMultipleValueKey

INT 2Eh

Ox006C

Ox006D

Ox006E

Ox006F

0x0070

0x0071

0x0072

0x0073

0x0074

0x0075

0x0076

0x0077

0x0078

Ox007A

Ox007B

Ox007C

Ox007D

Ox007E

Ox007F

0x0080

0x0081

0x0079

0x0082

0x0083

0x0085

0x0086

0x0087

0x0088

0x0089

OxOOSA

0x0084

OxOOSB

OxOOSC

ntdll.Nt* ntdll.Zw* ntoskrnl.Nt*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(continued)
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TABLE B-l. (continued)

FUNCTION NAME

NtQueryMutant

NtQueryObject

NtQueryOpenSubKeys

NtQueryPerformanceCounter

NtQueryQuotalnformationFile

NtQuerySection

NtQuerySecurityObject

NtQuerySemaphore

NtQuerySymbolicLinkObject

NtQuerySystemEnvironment Value

NtQuerySystemlnformation

NtQuerySystemTime

NtQuery Timer

NtQueryTimerResolution

NtQueryValueKey

NtQuery VirtualMemory

NtQuery VolumelnformationFile

NtQueueApcThread

NtRaiseException

NtRaiseHardError

NtReadFile

NtReadFileScatter

NtReadRequestData

NtReadVirtualMemory

NtRegisterThreadTerminatePort

NtReleaseMutant

NtReleaseSemaphore

NtRemoveloCompletion

NtReplaceKey

NtReplyPort

NtReplyWaitReceivePort

NtReplyWaitReceivePortEx

NtReplyWaitReplyPort

INT2EH

OxOOSD

OxOOSE

OxOOSF

0x0090

0x0091

0x0092

0x0093

0x0094

0x0095

0x0096

0x0097

0x0098

0x0099

Ox009A

Ox009B

Ox009C

Ox009D

Ox009E

Ox009F

OxOOAO

OxOOAl

OxOOAl

OxOOA3

OxOOA4

OxOOA5

OxOOA6

OxOOA7

OxOOAS

OxOOA9

OxOOAA

OxOOAB

OxOOAC

OxOOAD

ntdll.Nt* ntdlLZw* ntoskrnl.Nt*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoslanLZw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A



APPENDIX B 465

TABLE B-l. (continued)

FUNCTION NAME

NtReplyWaitSendChannel

NtRequestDeviceWakeup

NtRequestPort

NtRequestWaitReplyPort

NtRequestWakeupLatency

NtResetEvent

NtResetWriteWatch

NtRestoreKey

NtResumeThread

NtSaveKey

NtSaveMergedKeys

NtSecureConnectPort

NtSendWaitReplyChannel

NtSetContextChannel

NtSetContextThread

NtSetDefaultHardErrorPort

NtSetDefaultLocale

NtSetDefaultUILanguage

NtSetEaFile

NtSetEvent

NtSetHighEventPair

NtSetHighWaitLowEventPair

NtSetlnformationFile

NtSetlnformationJobObject

NtSetlnformationKey

NtSetlnformationObject

NtSetlnformationProcess

NtSetlnformationThread

NtSetlnformationToken

NtSetlntervalProfile

NtSetloCompletion

NtSetLdtEntries

NtSetLowEventPair

INT 2Eh

OxOOF4

OxOOAE

OxOOAF

OxOOBO

OxOOBl

OxOOB2

OxOOB3

OxOOB4

OxOOB5

OxOOB6

OxOOB?

OxOOBS

OxOOF5

OxOOF6

OxOOBA

OxOOBB

OxOOBC

OxOOBD

OxOOBE

OxOOBF

OxOOCO

OxOOCl

OxOOCl

OxOOC3

OxOOC4

OxOOCS

OxOOC6

Oxooc?
OxOOCS

OxOOC9

OxOOB9

OxOOCA

OxOOCB

ntdlLNt* ntdlLZw* ntoskrnl.Nt*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(continued)
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TABLE B-l. (continued)

FUNCTION NAME

NtSetLowWaitHighEventPair

NtSetQuotalnformationFile

NtSetSecurityObject

NtSetSystemEnvironment Value

NtSetSystemlnformation

NtSetSystemPowerState

NtSetSystemTime

NtSetThreadExecutionState

NtSetTimer

NtSetTimerResolution

NtSetUuidSeed

NtSetValueKey

NtSetVolumelnformationFile

NtShutdownSystem

NtSignalAndWaitForSingleObject

NtStartProfile

NtStopProfile

NtSuspendThread

NtSystemDebugControl

NtTerminateJobObject

NtTerminateProcess

NtTerminateThread

NtTestAlert

NtUnloadDriver

NtUnloadKey

NtUnlockFile

NtUnlockVirtualMemory

NtUnmapViewOfSection

NtVdmControl

NtWaitForMultipleObjects

NtWaitForSingleObject

NtWaitHighEventPair

NtWaitLowEventPair

INT2EH

OxOOCC

OxOOCD

OxOOCE

OxOOCF

OxOODO

OxOODl

OxOOD2

OxOOD3

OxOOD4

OxOOD5

OxOOD6

OxOOD7

OxOODS

OxOOD9

OxOODA

OxOODB

OxOODC

OxOODD

OxOODE

OxOODF

OxOOEO

OxOOEl

OxOOE2

OxOOE3

OxOOE4

OxOOE5

OxOOE6

OxOOE7

OxOOE8

OxOOE9

OxOOEA

OxOOEB

OxOOEC

ntdlLNt* ntdll.Zw* ntoskrnl.Nt*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ntoskrnl.Zw*

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-l. (continued)

FUNCTION NAME

NtWriteFile

NtWriteFileGather

NtWriteRequestData

NtWriteVirtualMemory

NtYieldExecution

TABLE B-2. The GDI/Win32K

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

AnyLinkedFonts

FontlsLinked

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

GdiConsoleTextOut

N/A

N/A

INT 2Eh

OxOOED

OxOOEE

OxOOEF

OxOOFO

OxOOF?

Interface

INT2EH

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1006

0x1007

0x1008

0x1009

OxlOOA

Oxl OOB

Oxl OOC

Oxl ODD

Oxl OOE

Oxl OOF

0x1010

0x1011

0x1012

0x1013

0x1014

0x1015

0x1016

0x1017

ntdll.Nt* ntdll.Zw* ntoskrnl.Nt* ntoskrnl.Zw*

N/A N/A

N/A N/A

N/A N/A

N/A

win32k.sys

NtGdiAbortDoc

NtGdiAbortPath

NtGdiAddFontResourceW

NtGdiAddRemoteFontToDC

NtGdiAddFontMemResourceEx

NtGdiRemoveMergeFont

NtGdiAddRemoteMMInstanceToDC

NtGdiAlphaBlend

NtGdiAngleArc

NtGdiAnyLinkedFonts

NtGdiFontlsLinked

NtGdiArcInternal

NtGdiBeginPath

NtGdiBitBlt

NtGdiCancelDC

NtGdiCheckBitmapBits

NtGdiCloseFigure

NtGdiColorCorrectPalette

NtGdiCombineRgn

NtGdiCombineTransform

NtGdiComputeXformCoefficients

NtGdiConsoleTextOut

NtGdiConvertMetafileRect

NtGdiCreateBitmap

(continued)
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

CreateHalftonePalette

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT2EH

0x1018

0x1019

OxlOlA

OxlOlB

OxlOlC

OxlOlD

OxlOlE

OxlOlF

0x1020

0x1021

0x1022

0x1023

0x1024

0x1025

0x1026

0x1027

0x1028

0x1029

Oxl 02 A

Oxl02B

Oxl02C

Oxl 02D

Oxl 02E

Oxl 02F

0x1030

0x1031

0x1032

0x1033

0x1034

0x1035

0x1036

0x1037

0x1038

win32k.sys

NtGdiCreateClientObj

NtGdiCreateColorSpace

NtGdiCreateColorTransform

NtGdiCreateCompatibleBitmap

NtGdiCreateCompatibleDC

NtGdiCreateDIBBrush

NtGdiCreateDIBitmapInternal

NtGdiCreateDIBSection

NtGdiCreateEllipticRgn

NtGdiCreateHalftonePalette

NtGdiCreateHatchBrushlnternal

NtGdiCreateMetafileDC

NtGdiCreatePalettelnternal

NtGdiCreatePatternBrushlnternal

NtGdiCreatePen

NtGdiCreateRectRgn

NtGdiCreateRoundRectRgn

NtGdiCreateServerMetaFile

NtGdiCreateSolidBrush

NtGdiD3dContextCreate

NtGdiD3dContextDestroy

NtGdiD3 dContextDestroy All

NtGdiD3dValidateTextureStageState

NtGdiD3dDrawPrimitives2

NtGdiDdGetDriverState

NtGdiDdAddAttachedSurface

NtGdiDdAlphaBlt

NtGdiDdAttachSurface

NtGdiDdBeginMoCompFrame

NtGdiDdBlt

NtGdiDdCanCreateSurface

NtGdiDdCanCreateD3DBuffer

NtGdiDdColorControl
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT 2Eh

0x1039

Oxl03A

OxlOSB

Oxl03C

Oxl03D

Oxl03E

Oxl03F

0x1040

0x1041

0x1042

0x1043

0x1044

0x1045

0x1046

0x1047

0x1048

0x1049

Oxl 04 A

Oxl 04B

Oxl 04C

Oxl 04D

Oxl04E

Oxl 04F

0x1050

0x1051

0x1052

0x1053
0x1054

0x1055

0x1056

0x1057

0x1058

0x1059

win32k.sys

NtGdiDdCreateDirectDrawO bj ect

NtGdiDdCreateSurface

NtGdiDdCreateSurface

NtGdiDdCreateMoComp

NtGdiDdCreateSurfaceObject

NtGdiDdDeleteDirectDrawObject

NtGdiDdDeleteSurfaceObject

NtGdiDdDestroyMoComp

NtGdiDdDestroySurface

NtGdiDdDestroyD3DBuffer

NtGdiDdEndMoCompFrame

NtGdiDdFlip

NtGdiDdFlipToGDISurface

NtGdiDdGetAvailDriverMemory

NtGdiDdGetBltStatus

NtGdiDdGetDC

NtGdiDdGetDriverlnfo

NtGdiDdGetDxHandle

NtGdiDdGetFlipStatus
NtGdiDdGetlnternalMoCompInfo

NtGdiDdGetMoCompBufflnfo

NtGdiDdGetMoCompGuids

NtGdiDdGetMoCompFormats

NtGdiDdGetScanLine

NtGdiDdLock

NtGdiDdLockD3D

NtGdiDdQueryDirectDrawObject

NtGdiDdQueryMoCompStatus

NtGdiDdReenableDirectDrawObject

NtGdiDdReleaseDC
NtGdiDdRenderMoComp

NtGdiDdResetVisrgn

NtGdiDdSetColorKey

(continued)
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT 2Eh

OxlOSA

Oxl05B

Oxl05C

Oxl05D

Oxl05E

Oxl05F

0x1060

0x1061

0x1062

0x1063
0x1064

0x1065

0x1066

0x1067

0x1068

0x1069

Oxl06A

Oxl06B

Oxl06C

Oxl06D

Oxl06E

Oxl06F

0x1070

0x1071

0x1072

0x1073

0x1074

0x1075

0x1076

0x1077

0x1078

0x1079

Oxl 07A

win32k.sys

NtGdiDdSetExclusiveMode

NtGdiDdSetGammaRamp
NtGdiDdCreateSurfaceEx

NtGdiDdSetOverlayPosition

NtGdiDdUnattachSurface

NtGdiDdUnlock

NtGdiDdUnlockD3D

NtGdiDdUpdateOverlay

NtGdiDdWaitForVerticalBlank

NtGdiDvpCanCreateVideoPort

NtGdiDvpColorControl

NtGdiDvpCreateVideoPort

NtGdiDvpDestroyVideoPort

NtGdiDvpFlipVideoPort

NtGdiDvpGetVideoPortBandwidth

NtGdiDvpGetVideoPortField

NtGdiDvpGetVideoPortFlipStatus

NtGdiDvpGetVideoPortlnputFormats

NtGdiDvpGetVideoPortLine

NtGdiDvpGetVideoPortOutputFormats

NtGdiDvpGetVideoPortConnectlnfo

NtGdiDvpGetVideoSignalStatus
NtGdiDvpUpdateVideoPort

NtGdiDvpWaitForVideoPortSync

NtGdiDeleteClientObj

NtGdiDeleteColorSpace

NtGdiDeleteColorTransform

NtGdiDeleteObjectApp

NtGdiDescribePixelFormat

NtGdiGetPerBandlnfo

NtGdiDoBanding

NtGdiDoPalette

NtGdiDrawEscape
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TABLE B-2. (continued)

gdi32.dll

N/A

EnableEUDC

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

GdiFullscreenControl

N/A

N/A

N/A

N/A

N/A

nsrriEh

Oxl07B

Oxl07C

Oxl07D

Oxl07E

Oxl07F

0x1080

0x1081

0x1082

0x1083

0x1084

0x1085

0x1086

0x1087

0x1088

0x1089

OxlOSA

OxlOSB

OxlOSC

OxlOSD

OxlOSE

OxlOSF

0x1090

0x1091

0x1092

0x1093

0x1094

0x1095

0x1096

0x1097

0x1098

0x1099

Oxl09A

Oxl09B

win32k.sys

NtGdiEllipse

NtGdiEnableEudc

NtGdiEndDoc

NtGdiEndPage

NtGdiEndPath

NtGdiEnumFontChunk

NtGdiEnumFontClose

NtGdiEnumFontOpen

NtGdiEnumObjects

NtGdiEqualRgn

NtGdiEudcEnumFaceNameLinkW

NtGdiEudcLoadUnloadLink

NtGdiExcludeClipRect

NtGdiExtCreatePen

NtGdiExtCreateRegion

NtGdiExtEscape

NtGdiExtFloodFill

NtGdiExtGetObjectW

NtGdiExtSelectClipRgn

NtGdiExtTextOutW

NtGdiFillPath

NtGdiFillRgn

NtGdiFlattenPath

NtGdiFlushUserBatch

GreFlush

NtGdiForceUFIMapping

NtGdiFrameRgn

NtGdiFullscreenControl

NtGdiGetAndSetDCDword

NtGdiGetAppClipBox

NtGdiGetBitmapBits

NtGdiGetBitmapDimension

NtGdiGetBoundsRect

(continued)
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TABLE B-2. (continued)

gdi32.dll

N/A
N/A
N/A
N/A
GetCharWidthlnfo

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

GetGlyphlndicesW

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT2EH

Oxl09C

Oxl09D

Oxl09E

Oxl09F

Oxl OAO
OxlOAl

Oxl OA2
Oxl OA3
OxlOA4

Oxl OA5
Oxl OA6
OxlOA7

OxlOAS

Oxl OA9
OxlOAA

OxlOAB

OxlOAC

Oxl OAD
OxlOAE

Oxl OAF
Oxl OBO
OxlOBl

OxlOBl

OxlOB3

OxlOB4

Oxl OBJ
OxlOB6
Oxl OB7
OxlOBS

OxlOB9

OxlOBA

OxlOBB

Oxl OBC

win32k.sys

NtGdiGetCharABCWidthsW

NtGdiGetCharacterPlacementW

NtGdiGetCharSet

NtGdiGetCharWidthW

NtGdiGetCharWidthlnfo

NtGdiGetColor Adj ustment

NtGdiGetColorSpaceforBitmap

NtGdiGetDCDword

NtGdiGetDCforBitmap

NtGdiGetDCObject

NtGdiGetDCPoint

NtGdiGetDeviceCaps

NtGdiGetDeviceGammaRamp

NtGdiGetDeviceCapsAll

NtGdiGetDIBitsInternal

NtGdiGetETM

NtGdiGetEudcTimeStampEx

NtGdiGetFontData

NtGdiGetFontResourcelnfoInternalW

NtGdi GetGlyphlndicesW

NtGdiGetGlyphlndicesWInternal

NtGdiGetGlyphOutline

NtGdiGetKerningPairs

NtGdiGetLinkedUFIs

NtGdiGetMiterLimit

NtGdiGetMonitorlD

NtGdiGetNearestColor

NtGdiGetNearestPalettelndex

NtGdi GetObjectBitmapHandle

NtGdi GetOutlineTextMetricsInternalW

NtGdi GetPath

NtGdi GetPixel

NtGdiGetRandomRgn
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

GdiGetSpoolMessage

N/A

N/A

N/A

N/A

GetTextCharsetlnfo

N/A

N/A

N/A

N/A

N/A

N/A

N/A

GetFontUnicodeRanges

N/A

N/A

N/A

N/A

N/A

N/A

GdilnitSpool

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT 2Eh

Oxl OBD

Oxl QBE

Oxl OBF

OxlOCO

OxlOCl

OxlOC2

OxlOC3

OxlOC4

OxlOC5

OxlOC6

OxlOC?

OxlOCS

OxlOC9

Oxl OCA

OxlOCB

OxlOCC

OxlOCD

Oxl OCE

OxlOCF

Oxl ODO

Oxl OD1

Oxl OD2

OxlODS

Oxl OD4

OxlOD5

OxlOD6

OxlOD7

OxlODS

OxlOD9

OxlODA

Oxl ODB

OxlODC

Oxl ODD

win32k.sys

NtGdiGetRasterizerCaps

NtGdiGetRealizationlnfo

NtGdiGetRegionData

NtGdiGetRgnBox

NtGdiGetServerMetaFileBits

NtGdiGetSpoolMessage

NtGdiGetStats

NtGdiGetStockObject

NtGdiGetStringBitmapW

NtGdiGetSystemPaletteUse

NtGdi GetTextCharsetlnfo

NtGdiGetTextExtent

NtGdi GetTextExtentExW

NtGdiGetTextFaceW

NtGdiGetTextMetricsW

NtGdiGetTransform

NtGdiGetUFI

NtGdiGetUFIPathname

NtGdi GetFontUnicodeRanges

NtGdiGetWidthTable

NtGdiGradientFill

NtGdiHfontCreate

NtGdilcmBrushlnfo

NtGdilnit

NtGdilnitSpool

NtGdilntersectClipRect

NtGdilnvertRgn

NtGdiLineTo

NtGdiMakeFontDir

NtGdiMakelnfoDC

NtGdiMaskBlt

NtGdiModifyWorldTransform

NtGdiMonoBitmap

(continued)
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

GdiQueryFonts

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT 2Eh

OxlODE

OxlODF

OxlOEO

OxlOEl

Oxl OE2

OxlOES

OxlOE4

OxlOE5

OxlOE6

Oxl OE7

OxlOE8
OxlOE9

Oxl OEA

Oxl OEB

OxlOEC

Oxl OED

OxlOEE

Oxl OEF

Oxl OFO

OxlOFl

Oxl OF2

Oxl OF3

OxlOF4

OxlOF5

OxlOF6

Oxl OF7

OxlOFS

OxlOF9

Oxl OFA

Oxl OFB

Oxl OFC

Oxl OFD

OxlOFE

win32k.sys

NtGdiMoveTo

NtGdiOffsetClipRgn

NtGdiOffsetRgn

NtGdiOpenDCW

NtGdiPatBlt

NtGdiPolyPatBlt

NtGdiPathToRegion

NtGdiPlgBlt

NtGdiPolyDraw

NtGdiPolyPolyDraw

NtGdiPolyTextOutW

NtGdiPtlnRegion

NtGdiPtVisible

NtGdiQueryFonts

NtGdiQueryFontAssocInfo

NtGdiRectangle

NtGdiRectlnRegion

NtGdiRectVisible

NtGdiRemoveFontResourceW

NtGdiRemoveFontMemResourceEx

NtGdiResetDC

NtGdiResizePalette

NtGdiRestoreDC

NtGdiRoundRect

NtGdiSaveDC

NtGdiScaleViewportExtEx

NtGdiScaleWindowExtEx

NtGdiSelectBitmap

NtGdiSelectBrush

NtGdiSelectClipPath

NtGdiSelectFont

NtGdiSelectPen

NtGdiSetBitmapBits
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

SetMagicColors

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

INT 2Eh

OxlOFF

0x1100

0x1101

0x1102

0x1103

0x1104

0x1105

0x1106

0x1107

0x1108

0x1109

Oxl 10A

Oxl 10B

Oxl IOC

Oxl 10D

Oxl 10E

Oxll OF

0x1110

Oxllll

0x1112

0x1113

0x1114

0x1115

0x1116

0x1117

0x1118

0x1119

Oxl 11 A

Oxll IB

Oxl 11C

Oxll ID

Oxl HE

Oxll IF

win32k.sys

NtGdiSetBitmapDimension

NtGdiSetBoundsRect

NtGdiSetBrushOrg

NtGdiSetColor Adj ustment

NtGdiSetColorSpace

NtGdiSetDeviceGammaRamp

NtGdiSetDIBitsToDevicelnternal

NtGdiSetFontEnumeration

NtGdiSetFontXform

NtGdiSetlcmMode

NtGdiSetLinkedUFIs

NtGdiSetMagicColors

NtGdiSetMetaRgn

NtGdiSetMiterLimit

NtGdiGetDevice Width

NtGdiMirrorWindowOrg

NtGdiSetLayout

NtGdiSetPixel

NtGdiSetPixelFormat

NtGdiSetRectRgn

NtGdiSetSystemPaletteUse

NtGdiSetTextJustification

NtGdiSetupPublicCFONT

NtGdiSetVirtualResolution

NtGdiSetSizeDevice

NtGdiStartDoc

NtGdiStartPage

NtGdiStretchBlt

NtGdiStretchDIBitsInternal

NtGdiStrokeAndFillPath

NtGdiStrokePath

NtGdiSwapBuffers

NtGdiTransformPoints

(continued)
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

N/A

N/A

N/A

N/A

ActivateKeyboardLayout

N/A

N/A

AttachThreadlnput

BeginPaint

N/A

Blocklnput

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ChangeClipboardChain

N/A

N/A

N/A

ChildWindowFromPointEx

ClipCursor

INT 2Eh

0x1120

0x1121

0x1122

0x1123

0x1124

0x1125

0x1126

0x1127

0x1128

0x1129

Oxl 12A

Oxll2B

Oxl 12C

Oxll2D

Oxl 12E

Oxl 12F

0x1130

0x1131

0x1132

0x1133

0x1134

0x1135

0x1136

0x1137

0x1138

0x1139

Oxll3A

Oxll3B

Oxll3C

Oxll3D

Oxll3E

Oxll3F

0x1140

win32k.sys

NtGdiTransparentBlt

NtGdiUnloadPrinterDriver

NtGdiUnmapMemFont

NtGdiUnrealizeObject

NtGdiUpdateColors

NtGdiWidenPath

NtUser ActivateKeyboardLayout

NtUserAlterWindowStyle

NtUserAssociatelnputContext

NtUserAttachThreadlnput

NtUserBeginPaint

NtUserBitBltSysBmp

NtUserBlocklnput

NtUserBuildHimcList

NtUserBuildHwndList

NtUserBuildNameList

NtUserBuildPropList

NtUserCallHwnd

NtUserCallHwndLock

NtUserCallHwndOpt

NtUserCallHwndParam

NtUserCallHwndParamLock

NtUserCallMsgFilter

NtUserCallNextHookEx

NtUserCallNoParam

NtUserCallOneParam

NtUserCallTwoParam

NtUserChangeClipboardChain

NtUserChangeDisplaySettings

NtUserChecklmeHotKey

NtUserCheckMenuItem

NtUserChildWindowFromPointEx

NtUserClipCursor
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TABLE B-2. (continued)

gdi32.dll

CloseClipboard

CloseDesktop

Close WindowStation

N/A

N/A

CopyAcceleratorTableW

CountClipboardFormats

CreateAcceleratorTableW

CreateCaret

N/A

N/A

N/A

N/A

N/A

DdeGetQualityOfService

N/A

DdeSetQualityOfService

DeferWindowPos

N/A

DeleteMenu

N/A

N/A

N/A

DestroyMenu

Destroy Window

N/A

N/A

DragDetect

DragObject

DrawAnimatedRects

N/A

N/A

N/A

INT 2Eh

0x1141

0x1142

0x1143

0x1144

0x1145

0x1146

0x1147

0x1148

0x1149

Oxl 14A

Oxl 14B

Oxl 14C

Oxl 14D

Oxl 14E

Oxl 14F

0x1150

0x1151

0x1152

0x1153

0x1154

0x1155

0x1156

0x1157

0x1158

0x1159

Oxll5A

Oxll5B

Oxl 15C

Oxll5D

Oxl 15E

Oxl 15F

0x1160

0x1161

win32k.sys

NtUserCloseClipboard

NtUserCloseDesktop

NtUserCloseWindowStation

NtUserConsoleControl

NtUserConvertMemHandle

NtUserCopyAcceleratorTable

NtUserCountClipboardFormats

NtUserCreateAcceleratorTable

NtUserCreateCaret

NtUserCreateDesktop

NtUserCreatelnputContext

NtUserCreateLocalMemHandle

NtUserCreateWindowEx

NtUserCreate WindowStation

NtUserDdeGetQualityOfService

NtUserDdelnitialize

NtUserDdeSetQualityOfService

NtUserDeferWindowPos

NtUserDefSetText

NtUserDeleteMenu

NtUserDestroyAcceleratorTable

NtUserDestroyCursor

NtUserDestroylnputContext

NtUserDestroyMenu

NtUserDestroy Window

NtUserDisableThreadlme

NtUserDispatchMessage

NtUserDragDetect

NtUserDragObject

NtUserDrawAnimatedRects

NtUserDrawCaption

NtUserDrawCaptionTemp

NtUserDrawIconEx

(continued)
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TABLE B-2. (continued)

gdi32.dll

N/A
EmptyClipboard

N/A

EnableScrollBar

N/A

EndMenu

EndPaint

N/A

EnumDisplayMonitors

N/A

N/A

ExcludeUpdateRgn

N/A

N/A

N/A

FlashWindowEx

N/A

GetAncestor

N/A

N/A

GetCaretBlinkTime

GetCaretPos

N/A

N/A

N/A

N/A

GetClipboardOwner

GetClipboardSequenceNumber

GetClipboardViewer

GetClipCursor

GetComboBoxInfo

N/A

N/A

INT 2Eh

0x1162

0x1163

0x1164

0x1165

0x1166

0x1167

0x1168

0x1169

Oxl 16A

Oxl 16B

Oxll6C

Oxl 16D

Oxll6E

Oxl 16F

0x1170

0x1171

0x1172

0x1173

0x1174

0x1175

0x1176

0x1177

0x1178

0x1179

Oxl 17A

Oxl 17B

Oxl 17C

Oxl 17D

Oxl 17E

Oxl 17F

0x1180

0x1181

0x1182

win32k.sys

NtUserDrawMenuBarTemp

NtUserEmptyClip board

NtUserEnableMenuItem

NtUserEnableScrollBar

NtUserEndDeferWindowPosEx

NtUserEndMenu

NtUserEndPaint

NtUserEnumDisplayDevices

NtUserEnumDisplayMonitors

NtUserEnumDisplaySettings

NtUserEvent

NtUserExcludeUpdateRgn

NtUserFillWindow

NtUserFindExistingCursorlcon

NtUserFindWindowEx

NtUserFlashWindowEx

NtUserGetAltTablnfo

NtUserGetAncestor

NtUserGetApplmeLevel

NtUserGetAsyncKeyState

NtUserGetCaretBlinkTime

NtUserGetCaretPos

NtUserGetClassInfo

NtUserGetClassName

NtUserGetClipboardData

NtUserGetClipboardFormatName

NtUserGetClipboardOwner

NtUserGetClipboardSequenceNumber

NtUserGetClipboardViewer

NtUserGetClipCursor

NtUserGetComboBoxInfo

NtUserGetControlBrush

NtUserGetControlColor
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TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys

N/A 0x1183

N/A 0x1184

GetCursorlnfo 0x1185

GetDC 0x1186

GetDCEx 0x1187

GetDoubleClickTime 0x1188

GetForegroundWindow 0x1189

GetGuiResources Oxl 18A

GetGUIThreadlnfo Oxl 18B

N/A Oxl18C

N/A Oxl18D

N/A Oxl18E

N/A Oxl18F

GetlnternalWindowPos 0x1190

GetKeyboardLayoutList 0x1191

N/A 0x1192

GetKeyboardState 0x1193

N/A 0x1194

N/A 0x1195

GetListBoxInfo Oxl 196

GetMenuBarlnfo 0x1197

N/A 0x1198

GetMenuItemRect Oxl 199

N/A Oxl19A

GetMouseMovePointsEx Oxl 19B

GetUserObjectlnformationW Oxl 19C

GetOpenClipboardWindow Oxl 19D

GetPriority ClipboardFormat Ox 119E

GetProcessWindowStation Oxl 19F

GetScrollBarlnfo Oxl 1AO

GetSystemMenu Oxl 1A1

N/A Oxl 1A2

N/A Oxll A3

NtUserGetCPD

NtUserGetCursorFramelnfo

NtUserGetCursorlnfo

NtUserGetDC

NtUserGetDCEx

NtUserGetDoubleClickTime

NtUserGetForegroundWindow

NtUserGetGuiResources

NtUserGetGUIThreadlnfo

NtUserGetlconlnfo

NtUserGetlconSize

NtUserGetlmeHotKey

NtUserGetlmelnfoEx

NtUserGetlnternalWindowPos

NtUserGetKeyboardLayoutList

NtUserGetKeyboardLayoutName

NtUserGetKeyboardState

NtUserGetKeyNameText

NtUserGetKeyState

NtUserGetListBoxInfo

NtUserGetMenuBarlnfo

NtUserGetMenuIndex

NtUserGetMenuItemRect

NtUserGetMessage

NtUserGetMouseMovePointsEx

NtUserGetObjectlnformation

NtUserGetOpenClipboardWindow

NtUserGetPriorityClipboardFormat

NtUserGetProcessWindowStation

NtUserGetScrollBarlnfo

NtUserGetSystemMenu

NtUserGetThreadDesktop

NtUserGetThreadState

(continued)
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TABLE B-2. (continued)

gdi32.dll

GetTitleBarlnfo

N/A

N/A

GetWindowDC

GetWindowPlacement

N/A

N/A

HideCaret

HiliteMenuItem

ImpersonateDdeClient Window

N/A

N/A

N/A

N/A

InvalidateRect

InvalidateRgn

IsClipboardFormatAvailable

KillTimer

N/A

LockWindowStation

LockWindowUpdate

Lock Workstation

N/A

MenuItemFromPoint

N/A

N/A

N/A

N/A

N/A

Move Window

N/A

N/A

N/A

INT 2Eh

Oxl 1A4

Oxl 1A5

Oxl 1A6

Oxl 1A7

Oxl 1A8

Oxl 1A9

Oxl 1AA

Oxl 1AB

Oxll AC

Oxl IAD

Oxl 1AE

Oxl 1AF

Oxl 1BO

OxllBl

Oxl 1B2

Oxl 1B3

Oxl 1B4

Oxl 1B5

Oxl 1B6

Oxl 1B7

Oxl IBS

Oxl 1B9

Oxl 1BA

Oxl IBB

Oxl 1BC

Oxl 1BD

Oxl 1BE

Oxl 1BF

Oxl ICO

OxllCl

Oxl 1C2

Oxl 1C3

Oxl 1C4

win32k.sys

NtUserGetTitleBarlnfo

NtUserGetUpdateRect

NtUserGetUpdateRgn

NtUserGetWindowDC

NtUserGetWindowPlacement

NtUserGetWOWClass

NtUserHardErrorControl

NtUserHideCaret

NtUserHiliteMenuItem

NtUserlmpersonateDdeClient Window

NtUserlnitialize

NtUserlnitializeClientPfnArrays

NtUserlnitTask

NtUserlnternalGetWindowText

NtUserlnvalidateRect

NtUserlnvalidateRgn

NtUserlsClipboardFormatAvailable

NtUserKillTimer

NtUserLoadKeyboardLayoutEx

NtUserLockWindowStation

NtUserLockWindowUpdate

NtUserLockWorkStation

NtUserMapVirtualKeyEx

NtUserMenuItemFromPoint

NtUserMessageCall

NtUserMinMaximize

NtUserMNDragLeave

NtUserMNDragOver

NtUserModifyUserStartupInfoFlags

NtUserMove Window

NtUserNotifylMEStatus

NtUserNotifyProcessCreate

NtUserNotifyWinEvent
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TABLE B-2. (continued)

gdi32.dll

N/A

N/A

OpenlnputDesktop

N/A

PaintDesktop

N/A

N/A

N/A

N/A

N/A

N/A

QuerySendMessage

QueryUserCounters

N/A

RealChildWindowFromPoint

RedrawWindow

N/A

RegisterHotKey

RegisterTasklist

N/A

RemoveMenu

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Sendlnput

N/A

N/A

SetActive Window

N/A

INT 2Eh

Oxl 1C5

OxllC6

OxllC7

Oxl 1C8

Oxl 1C9

Oxl 1CA

Oxl 1CB

Oxl ICC

Oxl 1CD

Oxl ICE

Oxl 1CF

OxllDO

OxllDl

Oxl 1D2

Oxl 1D3

Oxl 1D4

Oxl 1D5

Oxl 1D6

Oxl 1D7

Oxl IDS

Oxl 1D9

Oxl IDA

Oxl IDE

Oxl IDC

Oxl 1DD

Oxl IDE

Oxl IDF

Oxl 1EO

Oxl 1E1

Oxl 1E2

Oxl 1E3

Oxl 1E4

Oxl 1E5

win32k.sys

NtUserOpenClipboard

NtUserOpenDesktop

NtUserOpenlnputDesktop

NtUserOpenWindowStation

NtUserPaintDesktop

NtUserPeekMessage

NtUserPostMessage

NtUserPostThreadMessage

NtUserProcessConnect

NtUserQuerylnformationThread

NtUserQuerylnputContext

NtUserQuerySendMessage

NtUserQueryUserCounters

NtUserQuery Window

NtUserRealChildWindowFromPoint

NtUserRedrawWindow

NtUserRegisterClassExWOW

NtUserRegisterHotKey

NtUserRegisterTasklist

NtUser Register WindowMessage

NtUserRemoveMenu

NtUserRemoveProp

NtUserResolveDesktop

NtUserResolveDesktopForWOW

NtUserSBGetParms

NtUserScrollDC

NtUserScrollWindowEx

NtUserSelectPalette

NtUserSendlnput

NtUserSendMessageCallback

NtUserSendNotify Message

NtUserSetActive Window

NtUserSetAppImeLevel

(continued)
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TABLE B-2. (continued)

gdi32.dll

SetCapture

N/A

SetClassWord

N/A

SetClipboard Viewer

SetConsoleReserveKeys

SetCursor

SetCursorContents

N/A

PrivateSetDbgTag

SetFocus

N/A

N/A

N/A

N/A

N/A

SetlnternalWindowPos

SetKeyboardState

SetLogonNotify Window

N/A

SetMenuContextHelpId

SetMenuDefaultltem

N/A

SetUserObjectlnformationW

SetParent

SetProcessWindowStation

N/A

PrivateSetRipFlags

SetScrollInfo

SetShellWindowEx

N/A

N/A

SetSystemMenu

INT 2Eh

Oxl 1E6

OxllE7

Oxl 1E8

Oxl 1E9

Oxl 1EA

Oxl 1EB

Oxl 1EC

Oxl 1ED

Oxl 1EE

Oxl 1EF

Oxl 1FO

Oxl 1F1

Oxl 1F2

Oxl 1F3

Oxl 1F4

Oxl 1F5

Oxl 1F6

Oxl 1F7

Oxl 1F8

Oxl 1F9

Oxl 1FA

Oxl 1FB

Oxl 1FC

Oxl 1FD

Oxl 1FE

Oxl IFF

0x1200

0x1201

0x1202

0x1203

0x1204

0x1205

0x1206

win32k.sys

NtUserSetCapture

NtUserSetClassLong

NtUserSetClassWord

NtUserSetClipboardData

NtUserSetClipboardViewer

NtUserSetConsoleReserveKeys

NtUserSetCursor

NtUserSetCursorContents

NtUserSetCursorlconData

NtUserSetDbgTag

NtUserSetFocus

NtUserSetlmeHotKey

NtUserSetlmelnfoEx

NtUserSetlmeOwnerWindow

NtUserSetlnformationProcess

NtUserSetlnformationThread

NtUserSetlnternalWindowPos

NtUserSetKeyboardState

NtUserSetLogonNotify Window

NtUserSetMenu

NtUserSetMenuContextHelpId

NtUserSetMenuDefaultltem

NtUserSetMenuFlagRtoL

NtUserSetObjectlnformation

NtUserSetParent

NtUserSetProcessWindowStation

NtUserSetProp

NtUserSetRipFlags

NtUserSetScrollInfo

NtUserSetShellWindowEx

NtUserSetSysColors

NtUserSetSystemCursor

NtUserSetSystemMenu
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TABLE B-2. (continued)

gdi32.dll

SetSystemTimer

SetThreadDesktop

N/A

N/A

SetTimer

N/A

N/A

SetWindowPlacement

SetWindowPos

N/A

N/A

N/A

N/A

SetWindowWord

N/A

ShowCaret

ShowScrollBar

ShowWindow

ShowWindowAsync

N/A

SwitchDesktop

N/A

N/A

N/A

N/A

N/A

TrackMouseEvent

TrackPopupMenuEx

N/A

N/A

Unhook WindowsHookEx

UnhookWinEvent

N/A

INT 2Eh

0x1207

0x1208

0x1209

Oxl20A

Oxl20B

Oxl20C

Oxl20D

Oxl20E

Oxl20F

0x1210

0x1211

0x1212

0x1213

0x1214

0x1215

0x1216

0x1217

0x1218

0x1219

Oxl21A

Oxl21B

Oxl21C

Oxl21D

Oxl21E

Oxl21F

0x1220

0x1221

0x1222

0x1223

0x1224

0x1225

0x1226

0x1227

win32k.sys

NtUserSetSystemTimer

NtUserSetThreadDesktop

NtUserSetThreadLayoutHandles

NtUserSetThreadState

NtUserSetTimer

NtUserSetWindowFNID

NtUserSetWindowLong

NtUserSetWindowPlacement

NtUserSetWindowPos

NtUserSetWindowRgn

NtUserSetWindowsHookAW

NtUserSet WindowsHookEx

NtUserSetWindowStationUser

NtUserSetWindowWord

NtUserSetWinEventHook

NtUserShowCaret

NtUserShowScrollBar

NtUserShow Window

NtUserShowWindowAsync

NtUserSoundSentry

NtUserSwitchDesktop

NtUserSystemParametersInfo

NtUserTestForlnteractiveUser

NtUserThunkedMenuInfo

NtUserThunkedMenuItemlnfo

NtUserToUnicodeEx

NtUserTrackMouseEvent

NtUserTrackPopupMenuEx

NtUserTranslateAccelerator

NtUserTranslateMessage

NtUserUnhookWindowsHookEx

NtUserUnhookWinEvent

NtUserUnloadKeyboardLayout

(continued)
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TABLE B-2. (continued)

gdi32.dll

Unlock WindowStation

N/A

UnregisterHotKey

N/A

N/A

UpdateLayeredWindow

SetLayeredWindow Attributes

N/A

UserHandleGrantAccess

N/A

ValidateRect

N/A

N/A

N/A

WaitMessage

Win32PoolAllocationStats

WindowFromPoint

N/A

N/A

N/A

N/A

N/A

N/A

EngAssociateSurface

EngCreateBitmap

EngCreateDeviceSurface

EngCreateDeviceBitmap

EngCreatePalette

N/A

EngCopyBits

N/A

EngDeleteSurface

EngEraseSurface

INT 2Eh

0x1228

0x1229

Oxl22A

Oxl22B

Oxl22C

Oxl22D

Oxl22E

Oxl22F

0x1230

0x1231

0x1232

0x1233

0x1234

0x1235

0x1236

0x1237

0x1238

0x1239

Oxl23A

Oxl23B

Oxl23C

Oxl23D

Oxl23E

Oxl23F

0x1240

0x1241

0x1242

0x1243

0x1244

0x1245

0x1246

0x1247

0x1248

win32k.sys

NtUserUnlock WindowStation

NtUserUnregisterClass

NtUserUnregisterHotKey

NtUserUpdatelnputContext

NtUserUpdatelnstance

NtUserUpdateLayeredWindow

NtUserSetLayeredWindow Attributes

NtUserUpdatePerUserSystemParameters

NtUserUserHandleGrantAccess

NtUserValidateHandleSecure

NtUserValidateRect

NtUserVkKeyScanEx

NtUserWaitForlnputldle

NtUserWaitForMsgAndEvent

NtUserWaitMessage

NtUserWin32PoolAllocationStats

NtUserWindowFromPoint

NtUserYieldTask

NtUserRemoteConnect

NtUserRemoteRedrawRectangle

NtUserRemoteRedrawScreen

NtUserRemoteStopScreenUpdates

NtUserCtxDisplaylOCtl

NtGdiEngAssociateSurface

NtGdiEngCreateBitmap

NtGdiEngCreateDeviceSurface

NtGdiEngCreateDeviceBitmap

NtGdiEngCreatePalette

NtGdiEngComputeGlyphSet

NtGdiEngCopyBits

NtGdiEngDeletePalette

NtGdiEngDeleteSurface

NtGdiEngEraseSurface
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TABLE B-2. (continued)

gdi32.dll

EngUnlockSurface

EngLockSurface

EngBitBlt

EngStretchBlt

EngPlgBlt

EngMarkBandingSurface

EngStrokePath

EngFillPath

EngStrokeAndFillPath

EngPaint

EngLineTo

EngAlphaBlend

EngGradientFill

EngTransparentBlt

EngTextOut

EngStretchBltROP

XLATEOBJ_cGetPalette

XLATEOBJJXlate

XLATEOBJJiGetColorTransform

CLIPOBJ_bEnum

CLIPOBJ_cEnumStart

CLIPOBJ_ppoGetPath

EngDeletePath

EngCreateClip

EngDeleteClip

BRUSHOBJ_ulGetBrushColor

BRUSHOBJ_pvAllocRbmsh

BRUSHOBJ_pvGetRbrush

BRUSHOBJJiGetColorTransform

XFORMOBJ_bApplyXform

XFORMOBJJGetXform

FONTOBJ_vGetInfo

FONTOBJ_pxoGetXform

INT 2Eh

0x1249

Oxl24A

Oxl24B

Oxl24C

Oxl24D

Oxl24E

Oxl24F

0x1250

0x1251

0x1252

0x1253

0x1254

0x1255

0x1256

0x1257

0x1258

0x1259

Oxl25A

Oxl25B

Oxl25C

Oxl25D

Oxl25E

Oxl25F

0x1260

0x1261

0x1262

0x1263

0x1264

0x1265

0x1266

0x1267

0x1268

0x1269

win32k.sys

NtGdiEngUnlockSurface

NtGdiEngLockSurface

NtGdiEngBitBlt

NtGdiEngStretchBlt

NtGdiEngPlgBlt

NtGdiEngMarkBandingSurface

NtGdiEngStrokePath

NtGdiEngFillPath

NtGdiEngStrokeAndFillPath

NtGdiEngPaint

NtGdiEngLineTo

NtGdiEngAlphaBlend

NtGdiEngGradientFill

NtGdiEngTransparentBlt

NtGdiEngTextOut

NtGdiEngStretchBltROP

NtGdiXLATEOBJ_cGetPalette

NtGdiXLATEOBJJXlate

NtGdiXLATEOBJ_hGetColorTransform

NtGdiCLIPOBJ_bEnum

NtGdiCLIPOBJ_cEnumStart

NtGdiCLIPOBJ_ppoGetPath

NtGdiEngDeletePath

NtGdiEngCreateClip

NtGdiEngDeleteClip

NtGdiBRUSHOBJ_ulGetBrushColor

NtGdiBRUSHOBJ_pvAllocRbrush

NtGdiBRUSHOBJ_pvGetRbrush

NtGdiBRUSHOBJ_hGetColorTransform

NtGdiXFORMOBJ_bApplyXform

NtGdiXFORMOBJJGetXform

NtGdiFONTOBJ_vGetInfo

NtGdiFONTOBJ_pxoGetXform

(continued)
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TABLE B-2. (continued)

gdi32.dll

FONTOBLcGetGlyphs

FONTOBJ_pifi

FONTOBJ_pfdg

FONTOBJ_pQueryGlyphAttrs

FONTOBJ_pvTrueTypeFontFile

FONTOBJ_cGetAllGlyphHandles

STROBJ_bEnum

STROBJ_bEnumPositionsOnly

STROBJ_bGetAdvanceWidths

STROBJ_vEnumStart

STROBJ_dwGetCodePage

PATHOBJ_vGetBounds

PATHOBJ_bEnum

PATHOBJ_vEnumStart

PATHOBJ_vEnumStartClipLines

PATHOBJ_bEnumClipLines

N/A

EngCheckAbort

HT_Get8 BPPFormatPalette

HT_Get8BPPMaskPalette

N/A

INT 2Eh

Oxl26A

Oxl26B

Oxl26C

Oxl26D

Oxl26E

Oxl26F

0x1270

0x1271

0x1272

0x1273

0x1274

0x1275

0x1276

0x1277

0x1278

0x1279

Oxl27A

Oxl27B

Oxl27C

Oxl27D

Oxl27E

win32k.sys

NtGdiFONTOBJ_cGetGlyphs

NtGdiFONTOBJ_pifi

NtGdiFONTOBJ_pfdg

NtGdiFONTOBJ_pQueryGlyphAttrs

NtGdiFONTOBJ_pvTrueTypeFontFile

NtGdiFONTOBJ_cGetAllGlyphHandles

NtGdiSTROBJ_bEnum

NtGdiSTROBJ_bEnumPositionsOnly

NtGdiSTROBJ_bGetAdvanceWidths

NtGdiSTROBJ_vEnumStart

NtGdiSTROBJ_dwGetCodePage

NtGdiPATHOBJ_vGetBounds

NtGdiPATHOBJ_bEnum

NtGdiPATHOBJ_vEnumStart

NtGdiPATHOBJ_vEnumStartClipLines

NtGdiPATHOBJ_bEnumClipLines

NtGdiGetDhpdev

NtGdiEngCheckAbort

NtGdiHT_Get8BPPFormatPalette

NtGdiHT_Get8BPPMaskPalette

NtGdiUpdateTransform

TABLE B-3. The C Runtime Library

FUNCTION NAME ntdll.dll

isascii

iscsym

iscsymf

toascii

_abnormal_termination N/A

_alldiv

_allmul

_alloca_probe

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A
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(continued)

TABLE B-3. (continued)

FUNCTION NAME ntdll.dll

_allrem

_allshl

_allshr

_atoi64

_aulldiv

_aullrem

_aullshr

_chkstk

_CIpow

_except_handler2 N/A

_except_handler3 N/A

_fltused

Jtol

_global_unwind2 N/A

_i64toa

_i64tow

_itoa

_itow

_local_unwind2 N/A

_ltoa

_ltow

_memccpy

_memicmp

_purecall N/A

_snprintf

_snwprintf

_splitpath

_strcmpi

_stricmp

_strlwr

_strnicmp

_strnset N/A

_strrev N/A

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-3. (continued)

FUNCTION NAME ntdll.dll

_strset N/A

_strupr

_tolower

_toupper

_ui64toa

_ultoa

_ultow

_vsnprintf

_wcsicmp

_wcslwr

_wcsnicmp

_wcsnset N/A

_wcsrev N/A

_wcsupr

_wtoi

_wtoi64

_wtol

abs

atan

atoi

atol
,,

ceil

cos

fabs

floor

isalnum

isalpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A



TABLE B-3. (continued)

FUNCTION NAME ntdll.dll

isspace

isupper

iswalpha

iswctype

iswdigit

iswlower

iswspace

iswxdigit

isxdigit

labs

log

mbstowcs

mbtowc N/A

memchr

I memcmp

memcpy

memmove

memset

pow

qsort

rand N/A

sin

I sprintf

sqrt

srand N/A

sscanf

strcat

strchr

strcmp

strcpy

strcspn

strlen

strncat

APPENDIX B 489

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(COMfr'«He^
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TABLE B-3. (continued)

FUNCTION NAME ntdll.dll ntoskrnl.exe

strncmp

strncpy

strpbrk N/A

strrchr

strspn

strstr

strtol N/A

strtoul N/A

swprintf

tan N/A

tolower

toupper

towlower

towupper

vsprintf

wcscat

wcschr

wcscmp

wcscpy

wcscspn

wcslen

wcsncat

wcsncmp

wcsncpy

wcspbrk N/A

wcsrchr

wcsspn

wcsstr

wcstombs N/A

wctomb N/A

wcstol N/A

wcstombs N/A

wcstoul N/A
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(continued)

TABLE B-4. The Windows 2000 Runtime Library

FUNCTION NAME ntdll.dll

RtlAbortRXact

RtlAbsoluteToSelfRelativeSD

RtlAcquirePebLock

RtlAcquireResourceExclusive

RtlAcquireResourceShared

RtlAddAccessAllowedAce

RtlAddAccessAllowedAceEx

RtlAddAccessAllowedObjectAce

RtlAddAccessDeniedAce

RtlAddAccessDeniedAceEx

RtlAddAccessDeniedObjectAce

RtlAddAce

RtlAddActionToRXact

RtlAddAtomToAtomTable

RtlAddAttributeActionToRXact

RtlAddAuditAccessAce

RtlAddAuditAccessAceEx

RtlAddAuditAccessObjectAce

RtlAddCompoundAce

RtlAddRange

Rtl Adj ustPrivilege

RtlAllocateAndlnitializeSid

RtlAllocateHandle

RtlAllocateHeap

RtlAnsiCharToUnicodeChar

RtlAnsiStringToUnicodeSize

RtlAnsiStringToUnicodeString

RtlAppendAsciizToString

RtlAppendStringToString

RtlAppendUnicodeStringToString

RtlAppendUnicodeToString

RtlApplyRXact

RtlApplyRXactNoFlush

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlAreAllAccessesGranted

RtlAreAnyAccessesGranted

RtlAreBitsClear

RtlAreBitsSet

RtlAssert

RtlCallbackLpcClient

RtlCancelTimer

RtlCaptureContext N/A

RtlCaptureStackBackTrace

RtlCharToInteger

RtlCheckForOrphanedCriticalSections

RtlCheckRegistryKey

RtlClearAllBits

RtlClearBits

RtlCompactHeap

RtlCompareMemory

RtlCompareMemoryUlong

RtlCompareString

RtlCompareUnicodeString

RtlCompressBuffer

RtlCompressChunks N/A

RtlConsoleMultiByteToUnicodeN

RtlConvertExclusiveToShared

RtlConvertLongToLargelnteger

RtlConvertProperty To Variant

RtlConvertSharedToExclusive

RtlConvertSidToUnicodeString

RtlConvertToAutoInheritSecurityObject

RtlConvertUiListToApiList

RtlConvertUlongToLargelnteger

Rtl Convert VariantToProperty

RtlCopyLuid

RtlCopyLuidAndAttributes Array

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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(continued)

TABLE B-4. (continued)

FUNCTION NAME

RtlCopyRangeList

RtlCopySecurityDescriptor

RtlCopySid

RtlCopySidAndAttributes Array

RtlCopyString

RtlCopyUnicodeString

RtlCreateAcl

RtlCreateAndSetSD

RtlCreateAtomTable

RtlCreateEnvironment

RtlCreateHeap

RtlCreateLpcServer

RtlCreateProcessParameters

RtlCreateQueryDebugBuffer

RtlCreateRegistryKey

RtlCreateSecurityDescriptor

RtlCreateTagHeap

RtlCreateTimer

RtlCreateTimerQueue

RtlCreateUnicodeString

RtlCreateUnicodeStringFromAsciiz

RtlCreateUserProcess

RtlCreateUserSecurityObject

RtlCreateUserThread

RtlCustomCPToUnicodeN

RtlCutoverTimeToSystemTime

RtlDebugPrintTimes

RtlDecompressBuffer

RtlDecompressChunks

RtlDecompressFragment

RtlDefaultNpAcl

RtlDelete

RtlDeleteAce

ntdll.dll ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlDeleteAtomFromAtomTable

RtlDeleteCriticalSection

RtlDeleteElementGenericTable

RtlDeleteNoSplay

RtlDeleteOwnersRanges

RtlDeleteRange

RtlDeleteRegistryValue

RtlDeleteResource

RtlDeleteSecurityObject

RtlDeleteTimer

RtlDeleteTimerQueue

RtlDeleteTimerQueueEx

RtlDeNormalizeProcessParams

RtlDeregisterWait

RtlDeregisterWaitEx

RtlDescribeChunk N/A

RtlDestroyAtomTable

RtlDestroyEnvironment

RtlDestroyHandleTable

RtlDestroyHeap

RtlDestroyProcessParameters

RtlDestroyQueryDebugBuffer

RtlDetermineDosPathNameType_U

RtlDnsHostNameToComputerName

RtlDoesFileExists_U

RtlDosPathNameToNtPathName_U

RtlDosSearchPathJJ

RtlDowncaseUnicodeString

RtlDumpResource

RtlEmptyAtomTable

RtlEna bleEarly CriticalSectionEventCreation N/A

RtlEnlargedlntegerMultiply

RtlEnlargedUnsignedDivide

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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(continued)

TABLE B-4. (continued)

FUNCTION NAME ntdll.dll ntoskrnl.exe

RtlEnlargedUnsignedMultiply

RtlEnterCriticalSection N/A

RtlEnumerateGenericTable

RtlEnumerateGenericTableWithoutSplaying

RtlEnumProcessHeaps N/A

RtlEqualComputerName N/A

RtlEqualDomainName N/A

RtlEqualLuid

RtlEqualPrefixSid N/A

RtlEqualSid

RtlEqualString

RtlEqualUnicodeString

RtlEraseUnicodeString N/A

RtlExpandEnvironmentStringsJJ N/A

RtlExtendedlntegerMultiply

RtlExtendedLargelntegerDivide

RtlExtendedMagicDivide

RtlExtendHeap N/A

RtlFillMemory

RtlFillMemoryUlong

RtlFindClearBits

RtlFindClearBitsAndSet

RtlFindClearRuns N/A

RtlFindFirstRunClear N/A

RtlFindLastBackwardRunClear

RtlFindLeastSignificantBit

RtlFindLongestRunClear

RtlFindMessage

RtlFindMostSignificantBit

RtlFindNextForwardRunClear

RtlFindRange

RtlFindSetBits

RtlFindSetBitsAndClear
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlFindUnicodePrefix N/A

RtlFirstFreeAce

RtlFormatCurrentUserKeyPath

RtlFormatMessage

RtlFreeAnsiString

RtlFreeHandle

RtlFreeHeap

RtlFreeOemString

RtlFreeRangeList

RtlFreeSid

RtlFreeUnicodeString

RtlFreeUserThreadStack

RtlGenerate8dot3Name

RtlGetAce

RtlGetCallersAddress

RtlGetCompressionWorkSpaceSize

RtlGetControlSecurityDescriptor

RtlGetCurrentDirectory_U

RtlGetDaclSecurityDescriptor

RtlGetDefaultCodePage N/A

RtlGetElementGenericTable

RtlGetFirstRange

RtlGetFullPathName_U

RtlGetGroupSecurityDescriptor

RtlGetLongestNtPathLength

RtlGetNextRange

RtlGetNtGlobalFlags

RtlGetNtProductType

RtlGetOwnerSecurityDescriptor

RtlGetProcessHeaps

RtlGetSaclSecurityDescriptor

RtlGetSecurityDescriptorRMControl

RtlGetUserlnfoHeap

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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(continued)

TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlGetVersion

RtlGUIDFromString

RtlldentifierAuthoritySid

RtllmageDirectoryEntryToData

RtllmageNtHeader

RtllmageRvaToSection

RtllmageRvaToVa

RtllmpersonateLpcClient

RtllmpersonateSelf

RtllnitAnsiString

RtllnitCodePageTable

RtllnitializeAtomPackage

RtllnitializeBitMap

RtllnitializeContext

RtllnitializeCriticalSection

RtllnitializeCriticalSectionAndSpinCount

RtllnitializeGenericTable

RtllnitializeHandleTable

RtllnitializeRangeList

RtllnitializeResource

RtllnitializeRXact

RtllnitializeSid

RtllnitializeUnicodePrefix N/A

RtllnitNlsTables

RtllnitString

RtllnitUnicodeString

RtllnsertElementGenericTable

RtllnsertElementGenericTableFull N/A

RtllnsertUnicodePrefix N/A

RtlInt64ToUnicodeString

RtllntegerToChar

RtllntegerToUnicodeString

RtllnvertRangeList

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll ntoskrnl.exe

RtllsDosDeviceNameJJ N/A

RtllsGenericTableEmpty

RtlIsNameLegalDOS8Dot3

RtllsRangeAvailable

RtllsTextUnicode N/A

RtllsValidHandle N/A

RtllsValidlndexHandle N/A

RtllsValidOemCharacter N/A

RtlLargelntegerAdd

RtlLargelntegerArithmeticShift

RtlLargelntegerDivide

RtlLargelntegerNegate

RtlLargelntegerShiftLeft

RtlLargelntegerShiftRight

RtlLargelntegerSubtract

RtlLargelntegerToChar N/A

RtlLeaveCriticalSection N/A

RtlLengthRequiredSid

RtlLengthSecurityDescriptor

RtlLengthSid

RtlLocalTimeToSystemTime N/A

RtlLockHeap N/A

RtlLookupAtomlnAtomTable

RtlLookupElementGenericTable

RtlLookupElementGenericTableFull N/A

RtlMakeSelfRelativeSD N/A

RtlMapGenericMask

RtlMergeRangeLists

RtlMoveMemory

RtlMultiByteToUnicodeN

RtlMultiByteToUnicodeSize

RtlNewInstanceSecurityObject N/A

RtlNewSecurityGrantedAccess N/A
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(continued)

TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlNewSecurityObject

RtlNewSecurityObjectEx

RtlNextUnicodePrefix N/A

RtlNormalizeProcessParams

RtlNtStatusToDosError

RtlNtStatusToDosErrorNoTeb N/A

RtlNumberGenericTableElements

RtlNumberOfClearBits

RtlNumberOfSetBits

RtlOemStringToCountedUnicodeString N/A

RtlOemStringToUnicodeSize

RtlOemStringToUnicodeString

RtlOemToUnicodeN

RtlOpenCurrentUser

RtlPcToFileHeader

RtlPinAtomlnAtomTable

RtlpNtCreateKey

RtlpNtEnumerateSubKey

RtlpNtMakeTemporaryKey

RtlpNtOpenKey

RtlpNtQueryValueKey

RtlpNtSetValueKey

RtlPrefixString

RtlPrefixUnicodeString

RtlProtectHeap

RtlpUnWaitCriticalSection

RtlpWaitForCriticalSection

RtlQueryAtomlnAtomTable

RtlQueryEnvironmentVariable_U

RtlQuerylnformationAcl

RtlQueryProcessBackTracelnformation

RtlQueryProcessDebuglnformation

RtlQueryProcessHeapInformation

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlQueryProcessLocklnformation

RtlQueryRegistry Values

RtlQuerySecurityObject

RtlQueryTagHeap

RtlQueryTimeZonelnformation

RtlQueueWorkltem

RtlRaiseException

RtlRaiseStatus

RtlRandom

RtlReAllocateHeap

RtlRealPredecessor

RtlRealSuccessor

RtlRegisterWait

RtlReleasePebLock

RtlReleaseResource

RtlRemoteCall

RtlRemoveUnicodePrefix N/A

RtlReserveChunk N/A

RtlResetRtlTranslations

RtlRunDecodeUnicodeString

RtlRunEncodeUnicodeString

RtlSecondsSince 1 9 70ToTime

RtlSecondsSince 198 OToTime

RtlSelfRelativeToAbsoluteSD

RtlSelfRelativeToAbsoluteSD2

RtlSetAllBits

RtlSetAttributesSecurityDescriptor

RtlSetBits

RtlSetControlSecurityDescriptor

RtlSetCriticalSectionSpinCount

RtlSetCurrentDirectory_U

RtlSetCurrentEnvironment

RtlSetDaclSecurityDescriptor

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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(continued)

TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlSetEnvironment Variable

RtlSetGroupSecurityDescriptor

RtlSetlnformationAcl

RtlSetloCompletionCallback

RtlSetOwnerSecurityDescriptor

RtlSetSaclSecurityDescriptor

RtlSetSecurityDescriptorRMControl

RtlSetSecurityObject

RtlSetSecurityObjectEx

RtlSetThreadPoolStartFunc

RtlSetTimer

RtlSetTimeZonelnformation

RtlSetUnicodeCallouts

RtlSetUserFlagsHeap

RtlSetUserValueHeap

RtlShutdownLpcServer

RtlSizeHeap

RtlSplay

RtlStartRXact

RtlStringFromGUID

RtlSubAuthorityCountSid

RtlSubAuthoritySid

RtlSubtreePredecessor

RtlSubtreeSuccessor

RtlSystemTimeToLocalTime

RtlTimeFieldsToTime

RtlTimeToElapsedTimeFields

RtlTimeToSecondsSince 1 9 70

RtlTimeToSecondsSincel980

RtlTimeToTimeFields

RtlTryEnterCriticalSection

RtlUlongByteSwap

RtlUlonglongByteSwap

ntoskrnl.exe

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll ntoskrnl.exe

RtlUnicodeStringToAnsiSize

RtlUnicodeStringToAnsiString

RtlUnicodeStringToCountedOemString

RtlUnicodeStringToInteger

RtlUnicodeStringToOemSize

RtlUnicodeStringToOemString

RtlUnicodeToCustomCPN

RtlUnicodeToMultiByteN

RtlUnicodeToMultiByteSize

RtlUnicodeToOemN

RtlUniform N/A

RtlUnlockHeap N/A

RtlUnwind

RtlUpcaseUnicodeChar

RtlUpcaseUnicodeString

RtlUpcaseUnicodeStringToAnsiString

RtlUpcaseUnicodeStringToCountedOemString

RtlUpcaseUnicodeStringToOemString

RtlUpcaseUnicodeToCustomCPN

RtlUpcaseUnicodeToMultiByteN

RtlUpcaseUnicodeToOemN

RtlUpdateTimer N/A

RtlUpperChar

RtlUpperString

RtlUsageHeap N/A

RtlUshortByteSwap

RtlValidAcl N/A

RtlValidateHeap N/A

RtlValidateProcessHeaps N/A

RtlValidRelativeSecurityDescriptor

RtlValidSecurityDescriptor

RtlValidSid

RtlVerifyVersionlnfo N/A
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TABLE B-4. (continued)

FUNCTION NAME ntdll.dll

RtlVolumeDeviceToDosName N/A

RtlWalkFrameChain

RtlWalkHeap

RtlWriteRegistryValue

RtlxAnsiStringToUnicodeSize

RtlxOemStringToUnicodeSize

RtlxUnicodeStringToAnsiSize

RtlxUnicodeStringToOemSize

RtlZeroHeap

RTlZeroMemory

ntoskrnl.exe

N/A



A P P E N D I X C

Constants,
Enumerations,
and Structures

The code samples and descriptions in this book make frequent references to data
definitions from the Windows 2000 Device Driver Kit (DDK), the Win32 Plat-

form Software Development Kit (SDK), and header files found on the companion
CD of this book. To allow easy lookup of these definitions, I have compiled the
most important ones in Appendix C. Most of the definitions are drawn from the
w2k_def .h header file found in the CD directory \src\common\include.

CONSTANTS

This section contains definitions of symbolic constants used throughout the book.
They are also referred to in subsequent sections of this appendix.

DISPATCHER OBJECT TYPE CODES
#define DISP_TYPE_NOTIFICATION_EVENT 0
#define DISP_TYPE_SYNCHRONIZATION_EVENT 1
#define DISP_TYPE_MUTANT 2
#define DISP_TYPE_PROCESS 3
#define DISP_TYPE_QUEUE 4
#define DISP_TYPE_SEMAPHORE 5
#define DISP_TYPE_THREAD 6
#define DISP_TYPE_NOTIFICATION_TIMER 8
ttdefine DISP_TYPE SYNCHRONIZATION TIMER 9

505
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FILE OBJECT FLAGS
#define FO_FILE_OPEN
ttdefine FO_SYNCHRONOUS_IO
#define FO_ALERTABLE_IO
ttdefine FO_NO_INTERMEDIATE_BUFFERING
ttdefine FO_WRITE_THROUGH
#define FO_SEQUENTIAL_ONLY
#define FO_CACHE_SUPPORTED
#define FO_NAMED_PIPE
#define FO_STREAM_FILE
#define FO_MAILSLOT
#define FO_GENERATE_AUDIT_ON_CLOSE
#define FO_DIRECT_DEVICE_OPEN
#define FO_FILE_MODIFIED
#define FO_FILE_SIZE_CHANGED
ttdefine FO_CLEANUP_COMPLETE
tdefine FO_TEMPORARY_FILE
#define FO_DELETE_ON_CLOSE
#define FO_OPENED_CASE_SENSITIVE
tdefine FO_HANDLE_CREATED
#define FO_FILE_FAST_IO_READ
#define FO_RANDOM_ACCESS
#define FO_FILE_OPEN_CANCELLED
#define FO_VOLUME_OPEN

PORTABLE EXECUTABLE SECTION DIRECTORY IDs
#define IMAGE_DIRECTORY_ENTRY_EXPORT
#define IMAGE_DIRECTORY_ENTRY_IMPORT
tfdefine IMAGE_DIRECTORY_ENTRY_RESOURCE
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION
#define IMAGE_DIRECTORY_ENTRY_SECURITY
#define IMAGE_DIRECTORY_ENTRY_BASERELOC
#define IMAGE_DIRECTORY_ENTRY_DEBUG
#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT
tfdefine IMAGE_DIRECTORY_ENTRY_GLOBALPTR
#define IMAGE_DIRECTORY_ENTRY_TLS
#de f ine IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
#define IMAGE_DIRECTORY_ENTRY_IAT
#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT
ttdefine IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR

ttdefine IMAGE_NUMBEROF_DIRECTORY_ENTRIES

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000

0
1
2
3
4
5
6
7
8
9

10
11
12

13
14

16
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I/O SYSTEM DATA STRUCTURE TYPE CODES
#define
ttdefine
ttdefine
ttdefine
#def ine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine

ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine

IO_TYPE_ADAPTER
IO_TYPE_CONTROLLER
IO_TYPE_DEVICE
IO_TYPE_DRIVER
IO_TYPE_FILE
IO_TYPE_IRP
IO_TYPE_MASTER_ADAPTER
IO_TYPE_OPEN_PACKET
IO_TYPE_TIMER
IO_TYPE_VPB
IO_TYPE_ERROR_LOG
IO_TYPE_ERROR_MESSAGE
IO_TYPE_DEVICE_OBJECT_EXTENSION

IO_TYPE_APC
IO_TYPE_DPC
IO_TYPE_DEVICE_QUEUE
IO_TYPE_EVENT_PAIR
IO_TYPE_INTERRUPT
IO_TYPE_PROFILE

1

2
3
4

-
( ,
7

8
9

10
11
12

13

18

1 ':)

20
21

22

23

I/O REQUEST PACKET FUNCTIONS
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
#rlef i.ne
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
ttdefine

IRP_MJ_CREATE
IRP_MJ_CREATE_NAMED_PIPE
IRP_MJ_CLOSE
IRP_MJ_READ
IRP_MJ_WRITE
IRP_MJ_QUERY_INFORMATION
I RP_M J_SET_INFORMAT I ON
I RP_M J_QUERY_EA
IRP_MJ_SET_EA
IRP_MJ_FLUSH_BUFFERS
IRP_MJ_QUERY_VOLUME_INFORMATION
I RP_M J_SET_VOLUME_INFORMAT I ON
IRP_MJ_DIRECTORY_CONTROL
IRP_MJ_FILE_SYSTEM_CONTROL
IRP_MJ_DEVICE_CONTROL
IRP_MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_SHUTDOWN
IRP_MJ_LOCK_CONTROL
IRP_MJ_CLEANUP
IRP_MJ_CREATE_MAILSLOT
IRP_MJ_QUERY_SECURITY

0

1

2
3
4
5
6
7
•',
y

10
11
12

13

14

15

16

17

18

19
20
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OBJECT HEADER FLAGS
ttdefine OB_FLAG_CREATE_INFO 0x01 //
#define OB_FLAG_KERNEL_MODE 0x02 //
#define OB_FLAG_CREATOR_INFO 0x04 //
#define OB_FLAG_EXCLUSIVE 0x08 //
ttdefine OB_FLAG_PERMANENT 0x10 //
tdefine OB_FLAG_SECURITY 0x20 //
tdefine OB_FLAG_SINGLE_PROCESS 0x40 //

has OBJECT_CREATE_INFO
created by kernel
has OBJECT_CREATOR_INFO
OBJ_EXCLUSIVE
OBJ_PERMANENT
has security descriptor
no HandleDBList

OBJECT TYPE ARRAY INDEXES
#define OB_TYPE_INDEX_TYPE
tdefine OB_TYPE_INDEX_DIRECTORY
tdefine OB_TYPE_INDEX_SYMBOLIC_LINK
tdefine OB_TYPE_INDEX_TOKEN
ttdefine OB_TYPE_INDEX_PROCESS
tdefine OB_TYPE_INDEX_THREAD
tdefine OB_TYPE_INDEX_JOB
tdefine OB_TYPE_INDEX_EVENT
ttdefine OB_TYPE_INDEX_EVENT_PAIR
tdefine OB_TYPE_INDEX_MUTANT
ttdefine OB_TYPE_INDEX_CALLBACK
tdefine OB_TYPE_INDEX_SEMAPHORE
tdefine OB_TYPE_INDEX_TIMER
tdefine OB_TYPE_INDEX_PROFILE
ttdefine OB_TYPE_INDEX_WINDOW_STATION
tdefine OB_TYPE_INDEX_DESKTOP
ttdefine OB_TYPE_INDEX_SECTION
tdefine OB_TYPE_INDEX_KEY
ttdefine OB_TYPE_INDEX_PORT
tdefine OB_TYPE_INDEX_WAITABLE_PORT
ttdefine OB_TYPE_INDEX_ADAPTER
tdefine OB_TYPE_INDEX_CONTROLLER
tdefine OB_TYPE_INDEX_DEVICE

1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

10 /
11 /
12 /
13 /
14 /
15 /
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /

/ [ObjT]
/ [Dire]
/ [Symb]
/ [Toke]
/ [Proc]
/ [Thre]
/ [Job ]
/ [Even]
/ [Even]
/ [Muta]
/ [Call]
/ [ Sema ]
/ [Time]
/ [Prof]
/ [Wind]
/ [Desk]
/ [Sect]
/ [Key ]
/ [Port]
/ [Wait]
/ [Adap]
/ [Cont]
/ [Devi]

"Type"
"Directory"
"SymbolicLink"
"Token"
"Process"
"Thread"
"Job"
"Event"
"EventPair"
"Mutant"
"Callback"
"Semaphore"
"Timer"
"Profile"
"Windows tat ion
"Desktop"
"Section"
" Key "
" Port "
"WaitablePort"
"Adapter"
"Controller"
"Device"

tdefine IRP_MJ_SET_SECURITY 21
# define IRP_MJ_POWER 22
#define IRP_MJ_SYSTEM_CONTROL 23
tdefine IRP_MJ_DEVICE_CHANGE 24
ttdefine IRP_MJ_QUERY_QUOTA 25
#define IRP_MJ_SET_QUOTA 26
#define IRP_MJ_PNP 27
#define IRP_MJ_MAXIMUM_FUNCTION 27

tdefine IRP_MJ_FUNCTIONS ( IRP_MJ_MAXIMUM_FUNCTION + 1)
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ttdefine OB_TYPE_INDEX_DRIVER
#define OB_TYPE_INDEX_IO_COMPLETION
#define OB_TYPE_INDEX_FILE
#define OB_TYPE_INDEX_WMI_GUID

24 // [Driv] "Driver"
25 // [loCo] "loCompletion"
26 // [File] "File"
27 // [WmiG] "WmiGuid"

OBJECT TYPE TAGS
ttdefine OB_TYPE_TAG_TYPE
#define OB_TYPE_TAG_D I RECTORY
ttdefine OB_TYPE_TAG_SYMBOLIC_LINK
ttdefine OB_TYPE_TAG_TOKEN
#define OB_TYPE_TAG_PROCESS
#define OB_TYPE_TAG_THREAD
ttdefine OB_TYPE_TAG_JOB
#define OB_TYPE_TAG_EVENT
tdefine OB_TYPE_TAG_EVENT_PAIR
tdefine OB_TYPE_TAG_MUTANT
#define OB_TYPE_TAG_CALLBACK
#define OB_TYPE_TAG_SEMAPHORE
#define OB_TYPE_TAG_TIMER
tdefine OB_TYPE_TAG_PROFILE
ttdefine OB_TYPE_TAG_WINDOW_STATION
ttdefine OB_TYPE_TAG_DESKTOP
#define OB_TYPE_TAG_SECTION
#define OB_TYPE_TAG_KEY
#define OB_TYPE_TAG_PORT
#de f ine OB_TYPE_TAG_WAITABLE_PORT
tdefine OB_TYPE_TAG_ADAPTER
#define OB_TYPE_TAG_CONTROLLER
#define OB_TYPE_TAG_DEVICE
ttdefine OB_TYPE_TAG_DRIVER
#define OB_TYPE_TAG_IO_COMPLETION
#define OB_TYPE_TAG_FILE
#define OB_TYPE_TAG_WMI_GUID

'TjbO' /
'eriD' /
1 bmyS ' /
-ekol" /
'corP' /
1 erhT ' /
1 boJ' /
% nevE ' /
1 nevE ' /
'atuM' /
'llaC' /
1 ameS ' /
1 emiT ' /
'forP' /
vdniW /
vkseD' /
'tceS' /
1 yeK' /

'troP' /
'tiaW /
'padA' /
1 tnoC ' /
'iveD' /
'virD' /
'oCol' /
•eliF' /
1 GimW ' /

/ [ObjT]
/ [Dire]
/ [Symb]
/ [Toke]
/ [Proc]
/ [Thre]
/ [Job ]

/ [Even]
/ [Even]
/ [Muta]
/ [Call]
/ [Sema]
/ [Time]
/ [Prof]
/ [Wind]
/ [Desk]
/ [Sect]
/ [Key ]
/ [Port]
/ [Wait]
/ [Adap]
/ [Cont]
/ [Devi]
/ [Driv]
/ [loCo]
/ [File]
/ [WmiG]

"Type"
"Directory"
" Symbol icLink"
"Token"
"Process"
"Thread"
"Job"

"Event"
"EventPair"
"Mutant"
"Callback"
"Semaphore"
"Timer"
"Profile"
"Windows tat ion
"Desktop"
"Section"
"Key"

"Port"
"WaitablePort"
"Adapter"
"Controller"
"Device"
"Driver"
"loCompletion"
"File"
"WmiGuid"

OBJECT ATTRIBUTE FLAGS
#define OBJ_INHERIT 0x00000002
ttdefine OBJ_PERMANENT 0x00000010
ttdefine OBJ_EXCLUSIVE 0x00000020
#define OBJ_CASE_INSENSITIVE 0x00000040
ttdefine OBJ_OPENIF 0x00000080
#define OBJ_OPENLINK 0x00000100
#define OBJ_KERNEL_HANDLE 0x00000200
ttdefine OBJ VALID_ATTRIBUTES Ox000003F2
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ENUMERATIONS

Some Windows 2000 constant definitions come in the form of enumerations. Following
is an alphabetical collection of the most frequently used ones. The effective values of the
enumeration members are shown in comments inserted before each definition line.

IO_ALLOCATION_ACTION

typedef enum _IO_ALLOCATION_ACTION
{

/*OOW KeepObject = 1,
/*002*/ DeallocateObject,
/*003*/ DeallocateObjectKeepRegisters

}
IO_ALLOCATION_ACTION;

LOOKASIDE_LIST_ID

typedef enum _LOOKASIDE_LIST_ID
{

/*000*/ SmalllrpLookasideList,
/*001*/ LargelrpLookasideList,
/*002*/ MdlLookasideList,
/*003*/ CreatelnfoLookasideList,
/*004*/ NameBufferLookasideList,
/*005*/ TwilightLookasideList,
/*006*/ CompletionLookasideList

}
LOOKASIDE_LIST_ID;

MODE CSEE ALSO KPROCESSOR_MODE)
typedef enum _MODE

{
/*000*/ KernelMode,
/*001*/ UserMode,
/*002*/ MaximumMode

}
MODE ;

NT_PRODUCT_TYPE

typedef enum _NT_PRODUCT_TYPE
{

/*000*/ NtProductlnvalid,
/*001*/ NtProductWinNt,
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/*002*/ NtProductLanManNt,
/*003*/ NtProductServer

}
NT_PRODUCT_TYPE;

POOL_TYPE
typedef enum _POOL_TYPE

{
/*000*/ NonPagedPool,
/*001*/ PagedPool,
/*002*/ NonPagedPoolMustSucceed,
/*003*/ DontUseThisType,
/* 004*/ NonPagedPooICacheAligned,
/*005*/ PagedPoolCacheAligned,
/*006*/ NonPagedPoolCacheAlignedMustS,
/*007*/ MaxPoolType

}
POOLJTYPE;

STRUCTURES AND ALIASES

This section is an alphabetical collection of structure and alias type definitions used
by kernel-mode drivers and low-level system programs. Parts of them are undocu-
mented. Before the member names, I have inserted comments indicating the offsets of
all structure members relative to the structure base address. This allows easy read-out
of member values from a hex dump listing.

ANSI_STRING
typedef STRING ANSI_STRING;

CALLBACK_OBJECT
typedef struct _CALLBACK_OBJECT

{
/*000*/ DWORD Tag; // Ox6C6C6143 ("Call")
/*004*/ KSPIN_LOCK Lock;

/*008*/ LIST_ENTRY CallbackList ;

/*010*/ BOOLEAN AllowMultipleCallbacks ;

/*014*/ }
CALLBACK_OB JECT ;
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CLIENTJD
typedef struct _CLIENT_ID

{
/*000*/ HANDLE UnigueProcess;
/*004*/ HANDLE UnigueThread;
/*008*/ }

CLIENT_ID;

CONTEXT
// base address OxFFDFF13C

#define MAXIMUM_SUPPORTED_EXTENSION 512

typedef struct _CONTEXT

/*000*/
/*004*/
/*008*/
/*OOC*/
/*010*/
/*014*/
/*018*/
/*01C*/
/*08C*/
/*090*/
/*094*/
/*098*/
/*09C*/
/*OAO*/
/*OA4*/
/*OA8*/
/*OAC*/
/*OBO*/
/*OB4*/
/*OB8*/
/*OBC*/
/*OCO*/
/*OC4*/
/*OC8*/
/*OCC*/
/*2CC*/

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
FLOATING.
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
BYTE
}
CONTEXT;

ContextFlags ;
DrO;
Drl;
Dr2;
Dr3;
Dr6;
Dr7;

_SAVE_AREA FloatSave;
SegGs ;
SegFs ;
SegEs;
SegDs ;
Edi;
Esi;
Ebx;
Edx;
Ecx;
Eax;
Ebp;
Eip;
SegCs ;
EFlags ;
Esp;
SegSs;
ExtendedRegisters [MAXIMUM_SUPPORTED_EXTENSION]
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CONTROLLER_OBJECT

typedef struct _CONTROLLER_OBJECT
{

/*000*/ SHORT Type; // IO_TYPE_CONTROLLER 0x02
/*002*/ SHORT Size; // number of BYTEs
/*004*/ PVOID ControllerExtension;
/*008*/ KDEVICE_QUEUE DeviceWaitQueue;
/*01C*/ DWORD Sparel;
/*020*/ LARGE_INTEGER Spare2 ;
/*028*/ }

CONTROLLER_OB JECT ;

CRITICAL_SECTION

typedef struct _RTL_CRITICAL_SECTION
{

/*000*/ PRTL_CRITICAL_SECTION_DEBUG Debuglnfo;
/*004*/ LONG LockCount;
/*008*/ LONG RecursionCount;
/*OOC*/ HANDLE OwningThread;
/*010*/ HANDLE LockSemaphore;
/*014*/ DWORD_PTR SpinCount;
/*018*/ }

CRITICAL_SECTION ;

DEVICE_OBJECT

typedef struct _DEVICE_OBJECT
{

/*000*/ SHORT Type; // IO_TYPE_DEVICE 0x03
/*002*/ WORD Size; // number of BYTEs
/*004*/ LONG ReferenceCount;
/*008*/ struct _DRIVER_OBJECT *DriverObject ;
/*OOC*/ struct _DEVICE_OBJECT *NextDevice;
/*010*/ struct _DEVICE_OBJECT *AttachedDevice;
/*014*/ struct _IRP *CurrentIrp;
/*018*/ struct _PIO_TIMER *Timer;
/*01C*/ DWORD Flags; // D0_*
/*020*/ DWORD Characteristics; // FILE_*
/*024*/ PVPB Vpb;
/*028*/ PVOID DeviceExtension;
/*02C*/ DEVICE_TYPE DeviceType;
/*030*/ CHAR StackSize;
/*034*/ union

{
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/*034*/ LIST_ENTRY ListEntry;
/*034*/ WAIT_CONTEXT_BLOCK Web;
/*05C*/ } Queue;
/*05C*/ DWORD AlignmentRequirement;
/*060*/ KDEVICE_QUEUE DeviceQueue;
/*074*/ KDPC Dpo;
/*094*/ DWORD ActiveThreadCount;
/*098*/ PSECURITY_DESCRIPTOR SecurityDescriptor ;
/*09C*/ KEVENT DeviceLock;
/*OAC*/ WORD SectorSize;
/*OAE*/ WORD Sparel;
/*OBO*/ struct _DEVOBJ_EXTENSION *DeviceObjectExtension;
/*OB4*/ PVOID Reserved;
/*OB8*/ }

DEVICE_OBJECT;

DEVOB/_EXTENS7ON
typedef struct _DEVOBJ_EXTENSION

{
/*000*/ SHORT Type; / / IO_TYPE_DEVICE_OBJECT_EXTENSION OxOD
/*002*/ WORD Size; // number of BYTEs
/*004*/ PDEVICE_OBJECT DeviceObject ;
/*008*/ }

DEVOB J_EXTENS I ON ;

DISPATCHER_HEADER
typedef struct _DISPATCHER_HEADER

{
/*000*/ BYTE Type; // DISP_TYPE_*
/*001*/ BYTE Absolute;
/*002*/ BYTE Size; // number of DWORDs
/*003*/ BYTE Inserted;
/*004*/ LONG SignalState;
/*008*/ LIST_ENTRY WaitListHead;
/*010*/ }

DI SPATCHER_HEADER ;

DRIVER_£XTENSION
typedef struct _DRIVER_EXTENSION

{
/*000*/ struct _DRIVER_OBJECT *DriverObject ;
/*004*/ PDRIVER_ADD_DEVICE AddDevice;
/*008*/ DWORD Count;
/ * O O C * / UNICODE_STRING ServiceKeyName;
/*014*/ }

DRI VER_EXTENS I ON ;
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DRIVER_OBJECT
typedef struct _DRIVER_OBJECT

{
/*000*/ SHORT Type; // IO_TYPE_DRIVER 0x04
/*002*/ SHORT Size; // number of BYTEs
/*004*/ PDEVICE_OBJECT DeviceObject ;
/*008*/ DWORD Flags;
/*OOC*/ PVOID DriverStart;
/*010*/ DWORD DriverSize;
/*014*/ PVOID DriverSection;
/*018*/ PDRIVER_EXTENSION DriverExtension;
/*01C*/ UNICODE_STRING DriverName;
/*024*/ PUNICODE_STRING HardwareDatabase;
/*028*/ PFAST_IO_DISPATCH FastloDispatch;
/*02C*/ PDRIVER_INITIALIZE Driverlnit;
/*030*/ PDRIVER_STARTIO DriverStartlo;
/*034*/ PDRIVER_UNLOAD DriverUnload;
/*038*/ PDRIVER_DISPATCH Ma jorFunction [IRP_MJ_FUNCTIONS] ;
/*OA8*/ }

DRIVER_OB JECT ;

EPROCESS
typedef struct _EPROCESS

{
/*000*/ KPROCESS Pcb;
/*06C*/ NTSTATUS ExitStatus;
/*070*/ KEVENT LockEvent;
/*080*/ DWORD LockCount;
/*084*/ DWORD d084;
/*088*/ LARGE_INTEGER CreateTime;
/*090*/ LARGE_INTEGER ExitTime;
/*098*/ PVOID LockOwner;
/*09C*/ DWORD UniqueProcessId;
/*OAO*/ LIST_ENTRY ActiveProcessLinks ;
/*OA8*/ DWORD QuotaPeakPoolUsage [2]; // NP, P
/*OBO*/ DWORD QuotaPoolUsage [2] ; // NP, P
/*OB8*/ DWORD PagefileUsage;
/*OBC*/ DWORD CommitCharge;
/*OCO*/ DWORD PeakPagefileUsage;
/*OC4*/ DWORD PeakVirtualSize;
/*OC8*/ LARGE_INTEGER VirtualSize;
/*ODO*/ MMSUPPORT Vm;
/*100*/ DWORD dlOO;
/*104*/ DWORD d!04;
/*108*/ DWORD d!08;
/*10C*/ DWORD dlOC;
/*110*/ DWORD dllO;
/*114*/ DWORD dl!4;
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/*118*/ DWORD dl!8;
/*11C*/ DWORD dllC;
/*120*/ PVOID DebugPort;
/*124*/ PVOID ExceptionPort;
/*128*/ PHANDLE_TABLE ObjectTable;
/*12C*/ PVOID Token;
/*130*/ FAST_MUTEX WorkingSetLock;
/*150*/ DWORD WorkingSetPage;
/*154*/ BOOLEAN ProcessOutswapEnabled;
/*155*/ BOOLEAN ProcessOutswapped;
/*156*/ BOOLEAN AddressSpacelnitialized;
/*157*/ BOOLEAN AddressSpaceDeleted;
/*158*/ FAST_MUTEX AddressCreationLock;
/*178*/ KSPIN_LOCK HyperSpaceLock;
/*17C*/ DWORD ForklnProgress;
/*180*/ WORD VmOperation;
/*182*/ BOOLEAN ForkWasSuccessful ;
/*183*/ BYTE MmAgressiveWsTrimMask;
/*184*/ DWORD VmOperationEvent;
/*188*/ HARDWARE_PTE PageDirectoryPte ,-
/*18C*/ DWORD LastFaultCount;
/*190*/ DWORD Modif iedPageCount ;
/*194*/ PVOID VadRoot;
/*198*/ PVOID VadHint;
/*19C*/ PVOID CloneRoot;
/*1AO*/ DWORD NumberOfPrivatePages;
/*1A4*/ DWORD NumberOf LockedPages ;
/*1A8*/ WORD NextPageColor;
/*1AA*/ BOOLEAN ExitProcessCalled;
/*1AB*/ BOOLEAN CreateProcessReported;
/*1AC*/ HANDLE SectionHandle ;
/*1BO*/ struct _PEB *Peb;
/*1B4*/ PVOID SectionBaseAddress;
/*1B8*/ PQUOTA_BLOCK QuotaBlock;
/*1BC*/ NTSTATUS LastThreadExitStatus ;
/*1CO*/ DWORD WorkingSetWatch;
/*1C4*/ HANDLE Win32WindowStation;
/*1C8*/ DWORD InheritedFromUniqueProcessId;
/*1CC*/ ACCESS_MASK GrantedAccess ;
/*1DO*/ DWORD DefaultHardErrorProcessing; // HEM_*
/*1D4*/ DWORD Ldtlnformation;
/*1D8*/ PVOID VadFreeHint;
/*1DC*/ DWORD VdmObjects;
/*1EO*/ PVOID DeviceMap; // 0x24 bytes
/*1E4*/ DWORD Sessionld;
/*1E8*/ DWORD dlE8;
/*1EC*/ DWORD dlEC;
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ERESOURCE
typedef struct _ERESOURCE

{
/*000*/ LIST_ENTRY SystemResourcesList;
/*008*/ POWNER_ENTRY OwnerTable;

/*1FO*/ DWORD dlFO;
/*1F4*/ DWORD dlF4;
/*1F8*/ DWORD dlF8;
/*1FC*/ BYTE ImageFileName [16];
/*20C*/ DWORD VmTrimFaultValue;
/*210*/ BYTE SetTimerResolution;
/*211*/ BYTE PriorityClass;
/*212*/ union

{
struct

{
/*212*/ BYTE SubSystemMinorVersion;
/*213*/ BYTE SubSystemMajorVersion;

};
struct

{
/*212*/ WORD SubSystemVersion;

};
};

/*214*/ struct _WIN32_PROCESS *Win32Process;
/*218*/ DWORD d218;
/*21C*/ DWORD d21C;
/*220*/ DWORD d220;
/*224*/ DWORD d224;
/*228V DWORD d228;
/*22C*/ DWORD d22C;
/*230*/ PVOID Wow64;
/*234*/ DWORD d234;
/*238*/ IO_COUNTERS loCounters;
/*268*/ DWORD d268;
/*26C*/ DWORD d26C;
/*270*/ DWORD d270;
/*274*/ DWORD d274;
/*278*/ DWORD d278;
/*27C*/ DWORD d27C;
/*280*/ DWORD d280;
/*284*/ DWORD d284;
/*288*/ }

EPROCESS;
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ERESOURCE_THREAD
typedef DWORD_PTR ERESOURCE_THREAD;

/*OOC*/ SHORT ActiveCount;
/*OOE*/ WORD Flag;
/*010*/ PKSEMAPHORE SharedWaiters;
/*014*/ PREVENT ExclusiveWaiters;
/*018*/ OWNER_ENTRY OwnerThreads [2];
/*028*/ DWORD ContentionCount;
/*02C*/ WORD NumberOf SharedWaiters;
/*02E*/ WORD NumberOf ExclusiveWaiters;
/*030*/ union

{
/*030*/ PVOID Address;
/*030*/ DWORD_PTR CreatorBackTracelndex;
/*034*/ };
/*034*/ KSPIN_LOCK SpinLock;
/*038*/ }

ERESOURCE ;

ERESOURCE_OLD
typedef struct _ERESOURCE_OLD

{
/*000*/ LIST_ENTRY SystemResourcesList ;
/*008*/ PERESOURCE_THREAD OwnerThreads;
/*OOC*/ PBYTE OwnerCounts;
/*010*/ WORD TableSize;
/*012*/ WORD ActiveCount;
/*014*/ WORD Flag;
/*016*/ WORD TableRover;
7*018* / BYTE InitialOwnerCounts [4] ;
/*01C*/ ERESOURCE_THREAD InitialOwnerThreads [4];
/*02C*/ DWORD Sparel;
/*030*/ DWORD ContentionCount;
/*034*/ WORD NumberOf ExclusiveWaiters;
/*036*/ WORD NumberOf SharedWaiters;
/*038*/ KSEMAPHORE SharedWaiters;
/*04C*/ KEVENT ExclusiveWaiters;
/*05C*/ KSPIN_LOCK SpinLock;
/*060*/ DWORD CreatorBackTracelndex;
/*064*/ WORD Depth;
/*066*/ WORD Reserved;
/*068*/ PVOID OwnerBackTrace [4] ;
/*078*/ }

ERESOURCE_OLD;
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ETHREAD
typedef struct _ETHREAD

{
/*000*/ KTHREAD Tcb;
/*1BO*/ LARGE_INTEGER CreateTime;
/*1B8*/ union

{
/*1B8*/ LARGE_INTEGER ExitTime;
/*1B8*/ LIST_ENTRY LpcReplyChain;

};
/*1CO*/ union

{
/*1CO*/ NTSTATUS ExitStatus;
/*1CO*/ DWORD OfsChain;

};
/*1C4*/ LIST_ENTRY PostBlockList ;
/*1CC*/ LIST_ENTRY TerminationPortList ;
/*1D4*/ PVOID ActiveTimerListLock;
/*1D8*/ LIST_ENTRY ActiveTimerListHead;
/*1EO*/ CLIENT_ID Cid;
/*1E8*/ KSEMAPHORE LpcReplySemaphore ;
/*1FC*/ DWORD LpcReplyMessage;
/*200*/ DWORD LpcReplyMessageld;
/*204*/ DWORD PerformanceCountLow;
/*208*/ DWORD Impersonationlnfo;
/*20C*/ LIST_ENTRY IrpList;
/*214*/ PVOID TopLevellrp;
/*218*/ PVOID DeviceToVerify;
/*21C*/ DWORD ReadClusterSize;
/*220*/ BOOLEAN ForwardClusterOnly ;
/*221*/ BOOLEAN DisablePageFaultClustering;
/*222*/ BOOLEAN DeadThread;
/*223*/ BOOLEAN Reserved;
/*224*/ BOOL HasTerminated;
/*228*/ ACCESS_MASK GrantedAccess ;
/*22C*/ PEPROCESS ThreadsProcess;
/*230*/ PVOID StartAddress;
/*234*/ union

{
/*234*/ PVOID Win32StartAddress;
/*234*/ DWORD LpcReceivedMessageld;

};
/*238*/ BOOLEAN LpcExitThreadCalled;
/*239*/ BOOLEAN HardErrorsAreDisabled;
/*23A*/ BOOLEAN LpcReceivedMsgldValid;
/*23B*/ BOOLEAN Activelmpersonationlnfo;
/*23C*/ DWORD PerformanceCountHigh;
/*240*/ DWORD d240;
/*244*/ DWORD d244;
/*248*/ }

ETHREAD;
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ETIMER
typedef struct _ETIMER

{
/*000*/ KTIMER Tcb;
/*028*/ KAPC Ape;
/*058*/ KDPC Dpc;
/*078*/ LIST_ENTRY ActiveTimerList ;
/*080*/ KSPIN_LOCK Lock;
/*084*/ LONG Period;
/*088*/ BOOLEAN Active;
/*089*/ BOOLEAN Resume;
/*08C*/ LIST_ENTRY WakeTimerList ;
/*098*/ }

ETIMER;

FAST_MUTEX
typedef struct _FAST_MUTEX

{
/*000*/ LONG Count;
/*004*/ struct _KTHREAD *0wner;

/*008*/ DWORD Contention;

/ * O O C * / KEVENT Event;

/*01C*/ DWORD Oldlrql;
/*020* / }

FAST_MUTEX;

FILEJOEJECT

typedef struct _FILE_OBJECT

{
/*000*/ SHORT Type; // IO_TYPE_FILE 0x05
/*002*/ SHORT Size; // number of BYTEs
/*004*/ PDEVICE_OBJECT DeviceObject ;
/*008*/ PVPB Vpb;
/*OOC*/ PVOID FsContext;
/*010*/ PVOID FsContext2;
/*014*/ PSECTION_OBJECT_POINTERS SectionObj ectPointer ;
/*018*/ PVOID PrivateCacheMap;
/*01C*/ NTSTATUS FinalStatus ;
/*020*/ struct _FILE_OBJECT *RelatedFileObject ;
/*024*/ BOOLEAN LockOperation;
/*025*/ BOOLEAN DeletePending;
/*026*/ BOOLEAN ReadAccess;
/*027*/ BOOLEAN WriteAccess ;
/*028*/ BOOLEAN DeleteAccess ;
/*029*/ BOOLEAN SharedRead;
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/*02A*/ BOOLEAN SharedWrite;
/*02B*/ BOOLEAN SharedDelete;
/*02C*/ DWORD Flags; // F0_*
/*030*/ UNICODE_STRING FileName;
/*038*/ LARGE_INTEGER CurrentByteOf f set ;
/*040*/ DWORD Waiters;
/*044*/ DWORD Busy;
/*048*/ PVOID LastLock;
/*04C*/ KEVENT Lock;
/*05C*/ KEVENT Event;
/*06C*/ PIO_COMPLETION_CONTEXT CompletionContext ;
/*070*/ }

FILE_OBJECT;

FLOAT7NG_SAVE_AR£A
// base address OxFFDFF158

ttdefine SIZE_OF_80387_REGISTERS 80

typedef struct _FLOATING_SAVE_AREA

{
/*000*/ DWORD ControlWord;
/*004*/ DWORD StatusWord;
/*008*/ DWORD TagWord;
/*OOC*/ DWORD ErrorOffset;
/*010*/ DWORD ErrorSelector;
/*014*/ DWORD DataOffset;
/*018*/ DWORD DataSelector;
/*01C*/ BYTE RegisterArea [SIZE_OF_80387_REGISTERS] ;
/*06C*/ DWORD CrONpxState;
/*070*/ }

FLOATING_SAVE_AREA ;

JMNDL£_£NTRY
ttdefine HANDLE_ATTRIBUTE_INHERIT 0x00000002
tdefine HANDLE_ATTRIBUTE_MASK 0x00000007
ttdefine HANDLE_OBJECT_MASK OxFFFFFFFS

typedef struct _HANDLE_ENTRY // cf. OBJECT_HANDLE_INFORMATION

{
/*000*/ union

{
/*000*/ DWORD HandleAttributes; // HANDLE_ATTRIBUTE_MASK
/*000*/ POBJECT_HEADER ObjectHeader ; // HANDLE_OBJECT_MASK
/*004*/ };
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/*004*/ union
{

/*004*/ ACCESS_MASK GrantedAccess ; // if used entry
/*004*/ DWORD NextEntry; // if free entry
/*008*/ };
/*008*/ }

HANDLE_ENTRY;

HANDLE_LAYER1, HANDLE_LAYER2, HANDLE_LAYER3
#define HANDLE_LAYER_SIZE 0x00000100

typedef struct _HANDLE_LAYER1

{
/ *000* / PHANDLE_LAYER2 Layer2 [HANDLE_LAYER_SIZE] ; // bits 18 to 25

/MOO*/ }
HANDLE_LAYER1 ;

typedef struct _HANDLE_LAYER2

{
/*000*/ PHANDLE_LAYER3 Layer3 [HANDLE_LAYER_SIZE] ; // bits 10 to 17
/*400*/ }

HANDLE_LAYER2 ;

typedef struct _HANDLE_LAYER3

{
/*000*/ HANDLE_ENTRY Entries [HANDLE_LAYER_SIZE] ; // bits 2 to 9
/*800*/ }

HANDLE_LAYER3 ;

HANDLE_TABLE
typedef struct _HANDLE_TABLE

{
/*000*/ DWORD Reserved;
/*004*/ DWORD HandleCount;
/*008*/ PHANDLE_LAYER1 Layer 1 ;
/*OOC*/ struct _EPROCESS ^Process; // passed to PsChargePoolQuota ()
/*010*/ HANDLE UniqueProcessId;
/*014*/ DWORD NextEntry;
/*018*/ DWORD TotalEntries;
/*01C*/ ERESOURCE HandleTableLock;
/*054*/ LIST_ENTRY HandleTableList ;
/*05C*/ KEVENT Event;
/*06C*/ }

HANDLE_TABLE ;
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HARDWARE_PTE
typedef struct _HARDWARE_PTE

{
/*000*/ unsigned Valid 1;

unsigned Write 1;
unsigned Owner 1 ;
unsigned WriteThrough 1;
unsigned CacheDisable 1;
unsigned Accessed 1;
unsigned Dirty 1;
unsigned LargePage 1;

/*001*/ unsigned Global 1 ;
unsigned CopyOnWrite 1;
unsigned Prototype 1;
unsigned reserved 1;
unsigned PageFrameNumber 20;

/*004*/ )
HARDWARE_PTE ;

IMAGE_DATA_DIRECTORY
typedef struct _IMAGE_DATA_DIRECTORY

{
/*000*/ DWORD VirtualAddress;
/*004*/ DWORD Size;
/*008*/ }

IMAGE_DATA_DIRECTORY;

IMAGE_EXPORT_DIRECTORY
typedef struct _IMAGE_EXPORT_DIRECTORY

{
/*000*/ DWORD Characteristics;
/*004*/ DWORD TimeDateStamp;
/*008*/ WORD MajorVersion;
/*OOA*/ WORD MinorVersion;
/*OOC*/ DWORD Name;
/*010*/ DWORD Base;
/*014*/ DWORD NumberOf Functions;
/*018*/ DWORD NumberOfNames;
/*01C*/ DWORD AddressOf Functions;
/*020V DWORD AddressOfNames;
/*024*/ DWORD AddressOf NameOrdinals;
/*028*/ }

IMAGE_EXPORT_DIRECTORY;
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IMAGE_FILE_HEADER
typedef struct _IMAGE_FILE_HEADER

{
/*000*/ WORD Machine;
/*002*/ WORD NumberOfSections;
/*004*/ DWORD TimeDateStamp;
/*008*/ DWORD PointerToSymbolTable;
/*OOC*/ DWORD NumberOfSymbols;
/*010*/ WORD SizeOfOptionalHeader;
/*012*/ WORD Characteristics;
/*014*/ }

IMAGE_FILE_HEADER;

IMAGE_NT_HEADERS
typedef struct _IMAGE_NT_HEADERS

{
/*000*/ DWORD Signature;
/*004*/ IMAGE_FILE_HEADER FileHeader;
/*018*/ IMAGE_OPTIONAL_HEADER OptionalHeader;
/*OF8*/ }

IMAGE_NT_HEADERS;

IMAGE_OPTIONAL_HEADER

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

typedef struct _IMAGE_OPTIONAL_HEADER

{
/*000*/ WORD Magic;
/*002*/ BYTE MajorLinkerVersion;
/*003*/ BYTE MinorLinkerVersion;
/*004*/ DWORD SizeOfCode;
/*008*/ DWORD SizeOflnitializedData;
/*OOC*/ DWORD SizeOfUninitializedData;
/*010*/ DWORD AddressOfEntryPoint;
/*014*/ DWORD BaseOfCode;
/*018*/ DWORD BaseOfData;
/*01C*/ DWORD ImageBase;
/*020*/ DWORD SectionAlignment;
/*024*/ DWORD FileAlignment;
/*028*/ WORD MajorOperatingSystemVersion;
/*02A*/ WORD MinorOperatingSystemVersion;
/*02C*/ WORD MajorlmageVersion;
/*02E*/ WORD MinorlmageVersion;
/*030*/ WORD MajorSubsystemVersion;
/*032*/ WORD MinorSubsystemVersion;
/*034*/ DWORD Win32VersionValue;
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IO_COMPLETION
typedef struct _IO_COMPLETION

C
/*000*/ KQUEUE Queue;
/*028*/ }

IO_COMPLETION;

IO_COMPLETION_CONTEXT
typedef struct _IO_COMPLETION_CONTEXT

{
/*000*/ PVOID Port;
/*004*/ PVOID Key;
/*008*/ }

IO_COMPLETION_CONTEXT;

/*038*/ DWORD SizeOflmage;
/*03C*/ DWORD SizeOf Headers;
/*040*/ DWORD Checksum;
/*044*/ WORD Subsystem;
/*046*/ WORD DllCharacteristics;
/*048*/ DWORD SizeOfStackReserve;
/*04C*/ DWORD SizeOf StackCommit;
/*050V DWORD SizeOfHeapReserve;
/*054*/ DWORD SizeOfHeapCommit;
/*058*/ DWORD LoaderFlags;
/*05C*/ DWORD NumberOfRvaAndSizes;
/*060*/ IMAGE_DATA_DIRECTORY DataDirectory

[ IMAGE_NUMBEROF_DIRECTORY_ENTRIES ] ;
/*OEO*/ }

IMAGE_OPTIONAL_HEADER;

IO_ERROR_LOG_ENTRY
typedef struct _IO_ERROR_LOG_ENTRY

{
/ *000* / SHORT Type; // IO_TYPE_ERROR_LOG OxOB
/*002* / SHORT Size; // number of BYTEs
/*004*/ LIST_ENTRY ErrorLogList ;
/ * O O C * / PDEVICE_OBJECT DeviceObj ect ;
/*010*/ PDRIVER_OBJECT DriverObj ect ;
/*014*/ DWORD Reserved;
/*018*/ LARGE_INTEGER TimeStamp;
/ * 0 2 0 * / IO_ERROR_LOG_PACKET EntryData;

/*050*/ }
IO_ERROR_LOG_ENTRY ;
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IO_STATUS_BLOCK
typedef struct _IO_STATUS_BLOCK

{
/*000*/ NTSTATUS Status;
/*004*/ ULONG Information;
/*008*/ }

IO_STATUS_BLOCK;

7O_T7MER
typedef struct _IO_TIMER

{
/*000*/ SHORT Type; // IO_TYPE_TIMER 0x09
/*002*/ WORD TimerState; // 0 = stopped, 1 = started
/*004*/ LIST_ENTRY TimerQueue;
/*OOC*/ PIO_TIMER_ROUTINE TimerRoutine;

IO_ERROR_LOG_MESSAGE
typedef struct _IO_ERROR_LOG_MESSAGE

{
/ * 0 0 0 * / WORD Type; // IO_TYPE_ERROR_MESSAGE OxOC
/*002*/ WORD Size; // number of BYTEs
/*004*/ WORD DriverNameLength;
/*008*/ LARGE_INTEGER TimeStamp;
/*010*/ DWORD DriverNameOffset;
/*018*/ IO_ERROR_LOG_PACKET EntryData;
/*048*/ }

IO_ERROR_LOG_MESSAGE ;

IO_ERROR_LOG_PACKET
typedef struct _IO_ERROR_LOG_PACKET

{
/*000*/ BYTE MajorFunctionCode;
/*001*/ BYTE RetryCount;
/*002*/ WORD DumpDataSize;
/*004*/ WORD NumberOf Strings ;
/*006*/ WORD StringOffset;
/*008*/ WORD EventCategory;
/*OOC*/ NTSTATUS ErrorCode ;
/*010*/ DWORD UniqueErrorValue;
/*014*/ NTSTATUS FinalStatus ;
/*018*/ DWORD SequenceNumber;
/*01C*/ DWORD loControlCode;
/*020*/ LARGE_INTEGER DeviceOf f set ;
/*028*/ DWORD DumpData [1];
/*030*/ }

IO_ERROR_LOG_PACKET ;
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KAPC_STATE

typedef struct _KAPC__STATE

{
/*000*/ LIST_ENTRY ApcListHead [2];
/*010*/ struct _KPROCESS *Process;
/*014*/ BOOLEAN KernelApdnProgress;
/*015*/ BOOLEAN KernelApcPending;
/*016*/ BOOLEAN UserApcPending;
/*018*/ }

KAPC_STATE;

/*010*/ PVOID Context;
/*014*/ PDEVICE_OBJECT DeviceObject ;
/*018*/ }

IO_TIMER;

KAFF/N/7Y

typedef DWORD KAFFINITY;

KAPC
typedef struct _KAPC

{
/*000*/ SHORT Type; // IO_TYPE_APC 0x12
/*002*/ SHORT Size; // number of BYTEs
/*004*/ DWORD SpareO;
/*008*/ struct _KTHREAD *Thread;
/*OOC*/ LIST_ENTRY ApcListEntry;
/*014*/ PKKERNEL_ROUTINE KernelRoutine ; // KiSuspendNop
/*018*/ PKRUNDOWN_ROUTINE RundownRoutine ;
/*01C*/ PKNORMAL_ROUTINE NormalRoutine; // KiSuspendThread
/*020*/ PVOID NormalContext;
/*024*/ PVOID SystemArgumentl;
/*028*/ PVOID SystemArgument2;
/*02C*/ CHAR ApcStatelndex;
/*02D*/ KPROCESSOR_MODE ApcMode;
/*02E*/ BOOLEAN Inserted;
/*030*/ }

KAPC ;

KDEVICE^QUEUE
typedef struct _KDEVICE_QUEUE

{
/ *000* / SHORT Type; // IO_TYPE_DEVICE_QUEUE 0x14
/ * 0 0 2 * / SHORT Size; // number of BYTEs
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KEVENT
typedef struct _KEVENT

{
/*000*/ DISPATCHER_HEADER Header; // DISP_TYPE_*_EVENT 0x00, 0x01
/*010*/ }

KEVENT;

/*004*/ LIST_ENTRY DeviceListHead;
/*OOC*/ KSPIN_LOCK Lock;
/*010*/ BOOLEAN Busy;
/*014*/ }

KDEVICE_QUEUE;

KDEVICE_QUEUE_ENTRY
typedef struct _KDEVICE_QUEUE_ENTRY

{
/ *000* / LIST_ENTRY DeviceListEntry;
/*008*/ DWORD SortKey;
/ * O O C * / BOOLEAN Inserted;
/*010*/ }

KDEVICE_QUEUE_ENTRY ;

KDPC
typedef struct _KDPC

{
/*000*/ SHORT Type; // IO_TYPE_DPC 0x13
/*002*/ BYTE Number;
/*003*/ BYTE Importance;
/*004*/ LIST_ENTRY DpcListEntry;
/*OOC*/ PKDEFERRED_ROUTINE Def erredRoutine ;
/*010*/ PVOID DeferredContext;
/*014*/ PVOID SystemArgumentl;
/*018*/ PVOID SystemArgument2;
/*01C*/ PDWORD_PTR Lock;
/*020*/ }

KDPC ;

KEVENT_PAIR
typedef struct _KEVENT_PAIR

{
/*000*/ SHORT Type; // IO_TYPE_EVENT_PAIR 0x15
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/*002*/ WORD Size; // number of BYTEs
/*004*/ KEVENT Event1;
/*014*/ KEVENT Event2;
/*024*/ }

KEVENT_PAIR;

KGDTENTRY
typedef struct _KGDTENTRY

{
/*000*/ WORD LimitLow;
/*002*/ WORD BaseLow;
/*004*/ DWORD HighWord;
/*008*/ }

KGDTENTRY;

KIDTENTRY
typedef struct _KIDTENTRY

{
/*000*/ WORD Offset;
/*002*/ WORD Selector;
/*004*/ WORD Access;
/*006*/ WORD ExtendedOffset;
/*008*/ }

KIDTENTRY;

KIRQL
typedef BYTE KIRQL;

KMUTANT, KMVTEX
typedef struct _KMUTANT

{
/*000*/ DISPATCHER_HEADER Header; // DISP_TYPE_MUTANT 0x02
/*010*/ LIST_ENTRY MutantListEntry;
/*018*/ struct _KTHREAD *OwnerThread;
/*01C*/ BOOLEAN Abandoned;
/*01D*/ BYTE ApcDisable;
/*020*/ }

KMUTANT, KMUTEX;
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KPCR
II base address OxFFDFFOOO

typedef struct _KPCR // processor control region

{
/*000*/ NT_TIB NtTib;
/*01C*/ struct _KPCR *SelfPcr;
/*020*/ PKPRCB Prcb;
/*024*/ KIRQL Irql;
/*028*/ DWORD IRR;
/*02C*/ DWORD IrrActive;
/*030*/ DWORD IDR;
/*034*/ DWORD Reserved2;
/*038*/ struct _KIDTENTRY *IDT;
/*03C*/ struct _KGDTENTRY *GDT;
/*040*/ struct _KTSS *TSS;
/*044*/ WORD MajorVersion;
/*046*/ WORD MinorVersion;
/*048*/ KAFFINITY SetMember;
/*04C*/ DWORD StallScaleFactor;
/*050*/ BYTE DebugActive;
/*051*/ BYTE Number;
/*054*/ }

KPCR;

XPRCB
// base address OxFFDFF120

typedef struct _KPRCB // processor control block

{
/*000*/ WORD MinorVersion;
/*002*/ WORD MajorVersion;
/*004*/ struct _KTHREAD *CurrentThread;
/*008*/ struct _KTHREAD *NextThread;
/*OOC*/ struct _KTHREAD *IdleThread;
/*010*/ CHAR Number;
/*011*/ CHAR Reserved;
/*012*/ WORD BuildType;
/*014*/ KAFFINITY SetMember;
/*018*/ struct _RESTART_BLOCK *RestartBlock;

/*01C*/ }
KPRCB ;
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KPROCESSOR_MODE
typedef CHAR KPROCESSOR_MODE;

KPROCESS
typedef struct _KPROCESS

{
/*000*/ DISPATCHER_HEADER Header; // DO_TYPE_PROCESS (OxlB)
/*010*/ LIST_ENTRY Prof ileListHead;
/*018*/ DWORD DirectoryTableBase;
/*01C*/ DWORD PageTableBase;
/*020*/ KGDTENTRY LdtDescriptor ;
/*028*/ KIDTENTRY Int21Descriptor ;
/*030*/ WORD lopmOffset;
/*032*/ BYTE lopl;
/*033*/ BOOLEAN VdmFlag;
/*034*/ DWORD ActiveProcessors;
/*038*/ DWORD KernelTime; // ticks
/*03C*/ DWORD UserTime; // ticks
/*040*/ LIST_ENTRY ReadyListHead;
/*048*/ LIST_ENTRY SwapListEntry ;
/*050*/ LIST_ENTRY ThreadListHead; // KTHREAD.ThreadListEntry
/*058*/ PVOID ProcessLock;
/*05C*/ KAFFINITY Affinity;
/*060*/ WORD StackCount;
/*062*/ BYTE BasePriority;
/*063*/ BYTE ThreadQuantum;
/*064*/ BOOLEAN AutoAlignment ;
/*065*/ BYTE State;
/*066*/ BYTE ThreadSeed;
/*067*/ BOOLEAN DisableBoost ;
/*068*/ DWORD d068;
/*06C*/ }

KPROCESS;

KQUEUE
typedef struct _KQUEUE

{
/*000*/ DISPATCHER_HEADER Header; // DISP_TYPE_QUEUE 0x04
/*010*/ LIST_ENTRY EntryListHead;
/*018*/ DWORD CurrentCount;
/*01C*/ DWORD MaximumCount ;
/*020*/ LIST_ENTRY ThreadListHead;
/*028*/ }

KQUEUE ;
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KSEMAPHORE
typedef struct _KSEMAPHORE

{
/ *000* / DISPATCHER_HEADER Header; // DISP_TYPE_SEMAPHORE 0x05

/*010*/ LONG Limit;

/*014*/ }
KSEMAPHORE ;

KTHREAD
typedef struct _KTHREAD

{
/*000*/ DISPATCHER_HEADER Header; // DO_TYPE_THREAD (Ox6C)
/*010*/ LIST_ENTRY MutantListHead;
/*018*/ PVOID InitialStack;
/*01C*/ PVOID StackLimit;
/*020*/ struct _TEB *Teb;
/*024*/ PVOID TlsArray;
/*028*/ PVOID KernelStack;
/*02C*/ BOOLEAN DebugActive;
/*02D*/ BYTE State; // THREAD_STATE_*
/*02E*/ BOOLEAN Alerted;
/*02F*/ BYTE bReservedOl;
/*030*/ BYTE lopl;
/*031*/ BYTE NpxState;
/*032*/ BYTE Saturation;
/*033*/ BYTE Priority;
/*034*/ KAPC_STATE ApcState;
/*04C*/ DWORD ContextSwitches;
/*050*/ DWORD WaitStatus;
/*054*/ BYTE Waitlrql;
/*055*/ BYTE WaitMode;
/*056*/ BYTE WaitNext;
/*057*/ BYTE WaitReason;
/*058*/ PLIST_ENTRY WaitBlockList ;
/*05C*/ LIST_ENTRY WaitListEntry;
/*064*/ DWORD WaitTime;
/*068*/ BYTE BasePriority;
/*069*/ BYTE DecrementCount;
/*06A*/ BYTE PriorityDecrement;
/*06B*/ BYTE Quantum;
/*06C*/ KWAIT_BLOCK WaitBlock [4];
/*OCC*/ DWORD LegoData;
/*ODO*/ DWORD KernelApcDisable;
/*OD4*/ KAFFINITY UserAf f inity ;
/*OD8*/ BOOLEAN SystemAf f inityActive;
/*OD9*/ BYTE Pad [3] ;
/*ODC*/ PSERVICE_DESCRIPTOR_TABLE pServiceDescriptorTable;
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/*OEO*/ PVOID Queue;
/*OE4*/ PVOID ApcQueueLock;
/*OE8*/ KTIMER Timer;
/* 110*/ LIST_ENTRY QueueListEntry;
/*118*/ KAFFINITY Affinity;
/*11C*/ BOOLEAN Preempted;
/*11D*/ BOOLEAN ProcessReadyQueue;
/*11E*/ BOOLEAN KernelStackResident ;
/*11F*/ BYTE Next Process or;
/*120*/ PVOID CallbackStack;
/*124*/ struct _WIN32_THREAD *Win32Thread;
/*128*/ PVOID TrapFrame;
/*12C*/ PKAPC_STATE ApcStatePointer ;
/*130*/ PVOID p!30;
/*134*/ BOOLEAN EnableStackSwap;
/*135*/ BOOLEAN LargeStack;
/*136*/ BYTE Resourcelndex;
/*137*/ KPROCESSOR_MODE PreviousMode ;
/*138*/ DWORD KernelTime; // ticks
/*13C*/ DWORD UserTime; // ticks
/*140*/ KAPC_STATE SavedApcState;
/*157*/ BYTE bReserved02;
/*158*/ BOOLEAN Alertable;
/*159*/ BYTE ApcStatelndex;
/*15A*/ BOOLEAN ApcQueueable;
/*15B*/ BOOLEAN AutoAlignment ;
/*15C*/ PVOID StackBase;
/*160*/ KAPC SuspendApc;
/*190*/ KSEMAPHORE SuspendSemaphore ;
/*1A4*/ LIST_ENTRY ThreadListEntry; // see KPROCESS
/*1AC*/ BYTE FreezeCount;
/*1AD*/ BYTE SuspendCount ;
/*1AE*/ BYTE IdealProcessor;
/*1AF*/ BOOLEAN DisableBoost ;
/*1BO*/ }

KTHREAD;

JCTIMER
typedef struct _KTIMER

{
/*000*/ DISPATCHER_HEADER Header; // DISP_TYPE_*_TIMER 0x08, 0x09
/*010*/ ULARGE_INTEGER DueTime;
/*018*/ LIST_ENTRY TimerListEntry ;
/*020*/ struct _KDPC *Dpc;
/*024*/ LONG Period;
/*028*/ }

KTIMER;
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KWAIT_BLOCK

typedef struct _KWAIT_BLOCK

{
/*000*/ LIST_ENTRY WaitListEntry;
/*008*/ struct _KTHREAD *Thread;
/*OOC*/ PVOID Object;
/*010*/ struct _KWAIT_BLOCK *NextWaitBlock;
/*004*/ WORD WaitKey;
/*006*/ WORD WaitType;

/*018*/ }
KWAIT_BLOCK ;

LARGE_INTEGER
typedef union _LARGE_INTEGER

{
/*000*/ struct

{
/*000*/ ULONG LowPart;
/*004*/ LONG HighPart;
/*008*/ };
/*000*/ LONGLONG QuadPart;
/*008*/ }

LARGE_INTEGER;

LJST_£iVTRY
typedef struct _LIST_ENTRY

{
/*000*/ struct _LIST_ENTRY *Flink;
/*004*/ struct _LIST_ENTRY *Blink;
/*008*/ }

LIST_ENTRY;

MMSUPPORT

typedef struct _MMSUPPORT

{
/*000*/ LARGE_INTEGER LastTrimTime ;
/*008*/ DWORD LastTrimFaultCount;
/*OOC*/ DWORD PageFaultCount;
/*010*/ DWORD PeakWorkingSetSize;
'/*014*/ DWORD WorkingSetSize;
/*018*/ DWORD MinimumWorkingSetSize;
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NT_TIB (THREAD INFORMATION BLOCK)
typedef struct _NT_TIB // see winnt.h / ntddk.h

{
/*000*/ struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;
/*004*/ PVOID StackBase;
/*008*/ PVOID StackLimit;
/*OOC*/ PVOID SubSystemTib;
/*010*/ union

{
/*010*/ PVOID FiberData;
/*010*/ ULONG Version;

};
/*014*/ PVOID ArbitraryUserPointer;
/*018*/ struct _NT_TIB *Self;
/*01C*/ }

NT_TIB;

NTSTA7T/S
typedef LONG NTSTATUS;

/*01C*/ DWORD MaximumWorkingSetSize;
/*020*/ PVOID VmWorkingSetList;
/*024*/ LIST_ENTRY WorkingSetExpansionLinks;
/*02C*/ BOOLEAN AllowWorkingSetAdjustment ;
/*02D*/ BOOLEAN AddressSpaceBeingDeleted;
/*02E*/ BYTE ForegroundSwitchCount;
/*02F*/ BYTE MemoryPriority;
/*030*/ }

MMSUPPORT ;

OBJECT_ATTRIBUTES

typedef struct _OBJECT_ATTRIBUTES

{
/*000*/ DWORD Length; // 0x18
/*004*/ HANDLE RootDirectory;
/*008*/ PUNICODE_STRING ObjectName;
/*OOC*/ DWORD Attributes;
/*010*/ PSECURITY_DESCRIPTOR SecurityDescriptor ;
/*014*/ PSECURITY_QUALITY_OF_SERVICE SecurityQualityOf Service;
/*018*/ }

OBJECT_ATTRIBUTES ;
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OBJECT_CREATE_INFO
typedef struct _OBJECT_CREATE_INFO

/*000*/ DWORD Attributes; // OBJ_*
/*004*/ HANDLE RootDirectory;
/*008*/ DWORD Reserved;
/*OOC*/ KPROCESSOR_MODE AccessMode;
/*010*/ DWORD PagedPoolCharge;
/*014*/ DWORD NonPagedPoolCharge;
/*018*/ DWORD SecurityCharge;
/*01C*/ PSECURITY_DESCRIPTOR SecurityDescriptor ;
/*020*/ PSECURITY_QUALITY_OF_SERVICE SecurityQualityOf Service;
/*024*/ SECURITY_QUALITY_OF_SERVICE SecurityQualityOf ServiceBuffer;
/*030*/ }

OB JECT_CREATE_INFO ;

OBJECT_CREATOR_INFO
typedef struct _OBJECT_CREATOR_INFO

{
/*000*/ LIST_ENTRY ObjectList; // OBJECT_CREATOR_INFO
/*008*/ HANDLE UniqueProcessId;
/ * O O C * / WORD Reservedl;
/*OOE*/ WORD Reserved2;
/*010*/ }

OBJECT_CREATOR_INFO ;

OBJECT_DIRECTORY
#define OBJECT_HASH_TABLE_SIZE 37

typedef struct _OBJECT_DIRECTORY
{

/*000*/ POBJECT_DIRECTORY_ENTRY HashTable [OBJECT_HASH_TABLE_SIZE] ;
/*094*/ POBJECT_DIRECTORY_ENTRY CurrentEntry;
/*098*/ BOOLEAN CurrentEntryValid;
/*099*/ BYTE Reservedl;
/*09A*/ WORD Reserved2;
/*09C*/ DWORD Reserved3;
/*OAO*/ }

OB JECT_DIRECTORY ;

'

OBJECT_DIRECTORY_ENTRY
typedef struct _OBJECT_DIRECTORY_ENTRY

{
/*000*/ struct _OBJECT_DIRECTORY_ENTRY *NextEntry;
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/*004*/ POBJECT Object;
/*008*/ }

OB JECT_DIRECTORY_ENTRY ;

OBJECT _HANDLE_DB
typedef struct _OBJECT_HANDLE_DB

{
/*000*/ union

{
/*000*/ struct _EPROCESS *Process;
/*000*/ struct _OBJECT_HANDLE_DB_LIST *HandleDBList ;
/*004* / };
/*004* / DWORD HandleCount;
/*008*/ }

OB JECT_HANDLE_DB ;

OBJECT_HANDLE_DB_LIST
typedef struct _OBJECT_HANDLE_DB_LIST

{
/ *000* / DWORD Count;
/*004*/ OBJECT_HANDLE_DB Entries [ ] ;
/*???* / }

OBJECT_HANDLE_DB_LIST;

OBJECT_HANDLE_INFORMATION
#define OBJ_HANDLE_TAGBITS 0x00000003

typedef struct _OBJECT_HANDLE_INFORMATION // cf. HANDLE_ENTRY
{

/*000*/ DWORD HandleAttributes; // cf. HANDLE_ATTRIBUTE_MASK
/*004*/ ACCESS_MASK GrantedAccess ;
/*008*/ }

OBJECT_HANDLE_INFORMATION ;

OBJECT_HEADER
typedef struct _OBJECT_HEADER

{
/*000*/ DWORD PointerCount; // number of references
/*004*/ DWORD HandleCount; // number of open handles
/*008*/ POBJECT_TYPE ObjectType;
/*OOC*/ BYTE NameOffset; // -> OBJECT_NAME
/*OOD*/ BYTE HandleDBOffset; // -> OBJECT_HANDLE_DB
/*OOE*/ BYTE QuotaChargesOffset; // -> OBJECT_QUOTA_CHARGES
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OBJECTJKAME_INFORMATION
typedef struct _OBJECT_NAME_INFORMATION

{
/*000*/ UNICODE_STRING Name; // points to Buffer!]
/*008*/ WORD Buffer [];
/*7??*/ }

OB JECT_NAME_INFORMATION ;

OBJECT_QUOTA_CHARGES
#define OB_SECURITY_CHARGE 0x00000800

typedef struct _OBJECT_QUOTA_CHARGES
{

/*000*/ DWORD PagedPoolCharge;
/*004*/ DWORD NonPagedPoolCharge;
/*008*/ DWORD SecurityCharge;
/*OOC*/ DWORD Reserved;
/*010*/ }

OBJECT_QUOTA_CHARGES;

/*OOF*/ BYTE ObjectFlags; // OB_FLAG_*
/*010*/ union

{ // OB_FLAG_CREATE_INFO ? Obj ectCreatelnf o : QuotaBlock
/*010*/ PQUOTA_BLOCK QuotaBlock;
/*010*/ POBJECT_CREATE_INFO Obj ectCreatelnf o;
/*014*/ };
/*014*/ PSECURITY_DESCRIPTOR SecurityDescriptor ;
/*018*/ }

OBJECT_HEADER;

OBJECT_NAME
typedef struct OBJECT NAME

«
/*000*/ POBJECT_DIRECTORY Directory;
/*004*/ UNICODE_STRING Name;
/*OOC*/ DWORD Reserved;
/*010*/ }

OBJECT NAME;
~

OBJECT_TYPE
typedef struct _OBJECT_TYPE

{
/*000*/ ERESOURCE Lock;

/*038*/ LIST_ENTRY Obj ectListHead; // OBJECT_CREATOR_INFO
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/*040*/ UNICODE_STRING ObjectTypeName; // see above
/*048*/ union

{
/*048*/ PVOID DefaultObject; // ObpDefaultObject
/*048*/ DWORD Code; // File: 5C, WaitablePort: AO

};
/*04C*/ DWORD ObjectTypelndex; // OB_TYPE_INDEX_*
/*050*/ DWORD ObjectCount;
/*054*/ DWORD HandleCount;
/*058*/ DWORD PeakObjectCount;
/*05C*/ DWORD PeakHandleCount;
/*060*/ OBJECT_TYPE_INITIALIZER ObjectTypelnitializer;
/*OAC*/ DWORD ObjectTypeTag; // OB_TYPE_TAG_*
/*OBOV }

OBJECT_TYPE;

OBJECT_TYPE_ARRAY
typedef struct _OBJECT_TYPE_ARRAY

{
/*000*/ DWORD ObjectCount;
/*004*/ POBJECT_CREATOR_INFO ObjectList []
/*???*/ }

OB JECT_TYPE_ARRAY;

OBJECT_TYPE_INFO

typedef struct _OBJECT_TYPE_INFO
{

/*000*/ UNICODE_STRING ObjectTypeName; // points to Buffer []
/*008*/ DWORD ObjectCount;
/*OOC*/ DWORD HandleCount;
/*010*/ DWORD Reservedl [4];
/*020*/ DWORD PeakObjectCount;
/*024*/ DWORD PeakHandleCount;
/*028*/ DWORD Reserved2 [4] ;
/*038*/ DWORD InvalidAttributes;
/*03C*/ GENERIC_MAPPING GenericMapping;
/*04C*/ ACCESS_MASK ValidAccessMask;
/*050*/ BOOLEAN SecurityRequired;
/*051*/ BOOLEAN MaintainHandleCount ;
/*052*/ WORD ReservedB;
/*054*/ BOOL PagedPool;
/*058*/ DWORD DefaultPagedPoolCharge;
/*05C*/ DWORD DefaultNonPagedPoolCharge;
/*060*/ WORD Buffer [];
/*?77*/ j

OB JECT_TYPE_INFO ;
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OBJECT_TYPE_INITIALIZER
typedef struct _OBJECT_TYPE_INITIALIZER

{
7*000*7 WORD Length; //Ox004C
/*002*/ BOOLEAN UseDefaultObject ; //OBJECT_TYPE . DefaultObject
7*003*7 BOOLEAN Reservedl;
7*004*7 DWORD InvalidAttributes;
7*008*7 GENERIC_MAPPING Gene ricMapp ing;
/*018*/ ACCESS_MASK ValidAccessMask;
/*01C*/ BOOLEAN SecurityRequired;
/*01D*/ BOOLEAN MaintainHandleCount ; // OBJECT_HANDLE_DB
/*01E*/ BOOLEAN MaintainTypeList ; // OBJECT_CREATOR_INFO
/*01F*/ BYTE Reserved2;
7*020*7 BOOL PagedPool;
/*024*/ DWORD DefaultPagedPoolCharge;
/*028*/ DWORD DefaultNonPagedPoolCharge;
/*02C*/ NTPROC DumpProcedure;
/*030*/ NTPROC OpenProcedure;
/*034*/ NTPROC CloseProcedure;
/*038*/ NTPROC DeleteProcedure;
/*03C*/ NTPROC_VOID ParseProcedure;
7*040* / NTPROC_VOID SecurityProcedure; 77 SeDefaultObjectMethod
/*044*/ NTPROC_VOID QueryNameProcedure;
7*048*7 NTPROC_BOOLEAN OkayToCloseProcedure;
7*04C*7 }

OB JECT_TYPE_INITIALI ZER ;

OEM_STRING
typedef STRING OEM_STRING;

OWNER_ENTRY
typedef struct _OWNER_ENTRY

{
7*000*7 ERESOURCE_THREAD OwnerThread;
7*004*7 union

7*004*7 LONG OwnerCount;
7*004*7 DWORD TableSize;
7*008*7 };
7*008*7 }

OWNER_ENTRY;
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PEE (PROCESS ENVIRONMENT BLOCK)
// located at OxVFFDFOOO

typedef struct _PEB
{

/*000*/ BOOLEAN InheritedAddressSpace;
/*001*/ BOOLEAN ReadlmageFileExecOptions ;
/*002*/ BOOLEAN BeingDebugged;
/*003*/ BYTE b003;
7*004* / DWORD d004;
/*008*/ PVOID SectionBaseAddress;
/*OOC*/ PPROCESS_MODULE_INFO ProcessModulelnf o ;
/*010*/ PPROCESS_PARAMETERS ProcessParameters ;
/*014*/ DWORD SubSystemData;
/*018*/ HANDLE ProcessHeap;
/*01C*/ PCRITICAL_SECTION FastPebLock;
/*020*/ PVOID AcguireFastPebLock; // function
/*024*/ PVOID ReleaseFastPebLock; // function
/*028*/ DWORD d028;
/*02C*/ PPVOID User32Dispatch; // function
/*030*/ DWORD d030;
/*034*/ DWORD d034;
/*038*/ DWORD d038;
/*03C*/ DWORD TlsBitMapSize; // number of bits
/*040*/ PRTL_BITMAP TlsBitMap; // ntdll ITlsBitMap
/*044*/ DWORD TlsBitMapData [2]; // 64 bits
/*04C*/ PVOID p04C;
/*050*/ PVOID p050;
/*054*/ PTEXT_INFO Textlnfo;
/*058*/ PVOID InitAnsiCodePageData;
/*05C*/ PVOID InitOemCodePageData;
/*060*/ PVOID InitUnicodeCaseTableData;
/*064*/ DWORD KeNumberProcessors;
/*068*/ DWORD NtGlobalFlag;
/*06C*/ DWORD d6C;
/*070*/ LARGE_INTEGER MmCriticalSectionTimeout ;
/*078*/ DWORD MmHeapSegmentReserve;
/*07C*/ DWORD MmHeapSegmentCommit;
/*080*/ DWORD MmHeapDeCommitTotalFreeThreshold;
/*084*/ DWORD MmHeapDeCommitFreeBlockThreshold;
/*088*/ DWORD NumberOf Heaps ;
/*08C*/ DWORD AvailableHeaps; // 16, *2 if exhausted
/*090*/ PHANDLE ProcessHeapsListBuf f er ;
/*094*/ DWORD d094;
/*098*/ DWORD d098;
/*09C*/ DWORD d09C;
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PHYSICAL_ADDRESS
typedef LARGE_INTEGER PHYSICAL_ADDRESS;

/*OAO*/ PCRITICAL_SECTION LoaderLock;
/*OA4*/ DWORD NtMajorVersion;
/*OA8*/ DWORD NtMinorVersion;
/*OAC*/ WORD NtBuildNumber;
/*OAE*/ WORD CmNtCSDVersion;
/*OBO*/ DWORD Platformld;
/*OB4*/ DWORD Subsystem;
/*OB8*/ DWORD MajorSubsystemVersion;
/*OBC*/ DWORD MinorSubsystemVersion;
/*OCO*/ KAFFINITY Af f inityMask;
/*OC4*/ DWORD adOC4 [35];
/*150*/ PVOID p!50;
/*154*/ DWORD ad!54 [32];
/*1D4*/ HANDLE Win32WindowStation;
/*1D8*/ DWORD dlD8;
/*1DC*/ DWORD dlDC;
/*1EO*/ PWORD CSDVersion;
/*1E4*/ DWORD dlE4;
/*1E8*/ }

PEB;

PROC£SS_PAJMMET£RS
typedef struct _PROCESS_PARAMETERS

{
/*000*/ DWORD Allocated;
/*004*/ DWORD Size;
/*008*/ DWORD Flags; // bit 0: all pointers normalized
/*OOC*/ DWORD Reservedl;
/*010*/ LONG Console;
/*014*/ DWORD ProcessGroup;
/*018*/ HANDLE Stdlnput;
/*01C*/ HANDLE StdOutput;
/*020*/ HANDLE StdError;
/*024*/ UNICODE_STRING WorkingDirectoryName;
/*02C*/ HANDLE WorkingDirectoryHandle ;
/*030*/ UNICODE_STRING SearchPath;
/*038*/ UNICODE_STRING ImagePath;
/*040*/ UNICODE_STRING CommandLine;
/*048*/ PWORD Environment;
/*04C*/ DWORD X;
/*050*/ DWORD Y;
/*054*/ DWORD XSize;
/*058*/ DWORD YSize;
/*05C*/ DWORD XCountChars;
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/*060*/ DWORD YCountChars ;
/*064*/ DWORD FillAttribute;
/*068*/ DWORD Flags2;
/*06C*/ WORD ShowWindow;
/*06E*/ WORD Reserved2;
/*070*/ UNICODE_STRING Title;
/*078*/ UNICODE_STRING Desktop;
/*080*/ UNICODE_STRING Reserved3 ;
/*088*/ UNICODE_STRING Reserved4;

/*090*/ }
PROCESS_PARAMETERS ;

QUOTA_BLOCK
typedef struct _QUOTA_BLOCK

{
/*OOOV DWORD Flags;
/*004*/ DWORD ChargeCount;
/*008*/ DWORD PeakPoolUsage [2]; // NonPagedPool , PagedPool
/*010*/ DWORD PoolUsage [2]; // NonPagedPool, PagedPool
/*018*/ DWORD PoolQuota [2]; // NonPagedPool, PagedPool
/*020*/ }

QUOTA_BLOCK;

RTL_BITMAP
typedef struct _RTL_BITMAP

{
/*000*/ DWORD SizeOfBitMap;
/*004*/ PDWORD Buffer ;
/*008*/ }

RTL_BITMAP;

RTL_CRITICAL_SECTION_DEBUG
ttdefine RTL_CRITSECT_TYPE 0
ttdefine RTL_RESOURCE_TYPE 1

typedef struct _RTL_CRITICAL_SECTION_DEBUG
{

/*000*/ WORD Type;
/*002*/ WORD CreatorBackTracelndex;
/*004* / struct _RTL_CRITICAL_SECTION *CriticalSection;
/*008*/ LIST_ENTRY ProcessLocksList ;
/*010*/ DWORD EntryCount;
/*014*/ DWORD ContentionCount;
/*018*/ DWORD Spare [ 2 ] ;
/*020*/ }

RTL_CRITICAL_SECTION_DEBUG;
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SECTION_OBJECT_POINTERS
typedef struct _SECTION_OBJECT_POINTERS

/*000*/ PVOID DataSectionObject;
/*004*/ PVOID SharedCacheMap;
/*008*/ PVOID ImageSectionObject;
/ * O O C * / }

SECTION_OBJECT_POINTERS ;

SECURITY_DESCRIPTOR
typedef struct _SECURITY_DESCRIPTOR

{
/*000*/ BYTE Revision;
/*001*/ BYTE Sbzl;
/*002*/ SECURITY_DESCRIPTOR_CONTROL Control;
/*004*/ PSID Owner;
/*008*/ PSID Group;
/ * O O C * / PACL Sad;
/*010*/ PACL Dacl;
/*014*/ }

SECURITY_DESCRIPTOR;

SECURITY_DESCRIPTOR_CONTROL
typedef WORD SECURITY_DESCRIPTOR_CONTROL;

SERVICE_DESCRIPTOR_TABLE
typedef struct _SERVICE_DESCRIPTOR_TABLE

{
/*000*/ SYSTEM_SERVICE_TABLE ntoskrnl ; // ntoskrnl.exe (native api)
/*010*/ SYSTEM_SERVICE_TABLE win32k; // win32k.sys (gdi/user)
/*020*/ SYSTEM_SERVICE_TABLE Table3 ; // not used
/*030*/ SYSTEM_SERVICE_TABLE Table4; // not used
/*040*/ }

SERVICE_DESCRIPTOR_TABLE ;

STRING
typedef struct _STRING

{
/*000*/ WORD Length;
/*002*/ WORD MaximumLength;
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/*004*/ PBYTE Buffer;
/*008*/ }

STRING ;

SYSTEM_SERVICE_TABLE

typedef NTSTATUS (NTAPI *NTPROC) ();
typedef NTPROC *PNTPROC;

typedef struct _SYSTEM_SERVICE_TABLE
{

/*000*/ PNTPROC ServiceTable; // array of entry points
/*004*/ PDWORD CounterTable; // array of usage counters
/*008*/ DWORD ServiceLimit; // number of table entries
/*OOC*/ PBYTE ArgumentTable; // array of byte counts
/*010*/ }

SYSTEM_SERVICE_TABLE ;

TEE (THREAD ENVIRONMENT BLOCK)
// located at OxVFFDEOOO, OxVFFDDOOO, . . .

typedef struct _TEB
{

/*000*/ NT_TIB Tib;
/*01C*/ PVOID EnvironmentPointer;
/*020*/ CLIENT_ID Cid;
/*028*/ HANDLE RpcHandle;
/*02C*/ PPVOID ThreadLocalStorage;
/*030*/ PPEB Peb;
/*034*/ DWORD LastErrorValue;
/*038*/ }

TEB;

TIME_FIELDS

typedef struct _TIME_FIELDS
{

/*000*/ SHORT Year;
/*002*/ SHORT Month;
/*004*/ SHORT Day;
/*006*/ SHORT Hour;
/*008*/ SHORT Minute;
/*OOA*/ SHORT Second;
/*OOC*/ SHORT Milliseconds;
/*OOE*/ SHORT Weekday; // 0 = Sunday
/*010*/ }

TIME_FIELDS;
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UNICODE_STRING
typedef struct _UNICODE_STRING

{
/ *000* / WORD Length;
/*002*/ WORD MaximumLength;
/*004*/ PWORD Buffer ;
/*008*/ }

UNICODE_STRING ;

ULARGE_INTEGER
typedef union _ULARGE_INTEGER

{
/ *000* / struct

{
/*000*/ ULONG LowPart;
/*004*/ ULONG HighPart;
/*008*/ };
/*000*/ ULONGLONG QuadPart;
/*008*/ }

ULARGE_INTEGER ;

VPB (VOLUME PARAMETER BLOCK)
#define MAXIMUM_VOLUME_LABEL 32
#define MAXIMUM_VOLUME_LABEL_LENGTH (MAXIMUM_VOLUME_LABEL * WORD_)

typedef struct _VPB // volume parameter block

/*000*/ SHORT Type; // IO_TYPE_VPB OxOA
/*002V SHORT Size; // number of BYTEs
/*004*/ WORD Flags;
/*006*/ WORD VolumeLabelLength; // bytes (no term.)
/*008*/ struct _DEVICE_OBJECT *DeviceObject ;
/*OOC*/ struct _DEVICE_OBJECT *RealDevice;

/*010*/ DWORD SerialNumber;
/*014*/ DWORD ReferenceCount;
/*018*/ WORD VolumeLabel [MAXIMUM_VOLUME_LABEL] ;
/*058*/ }

VPB;
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WAIT_CONTEXT_BLOCK
typedef struct _WAIT_CONTEXT_BLOCK

{
/*000*/ KDEVICE_QUEUE_ENTRY WaitQueueEntry ;
/*010*/ PDRIVER_CONTROL DeviceRoutine;
/*014*/ PVOID DeviceContext;
/*018*/ DWORD NumberOfMapRegisters;
/*01C*/ PVOID DeviceObject;
/*020*/ PVOID Currentlrp;
/*024*/ PKDPC Buf ferChainingDpc;
/*028*/ }

WAIT_CONTEXT_BLOCK ;
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@ character, 51, 53
= ("equals"), 296
/ (slash), 240
_ (underscore), 51, 53

imagehlp.dll, 47
object tags, 410
PSTR and PWSTR types, 111
strings, 113-114, 381-383
w2k_img.dll, 58
API call. See Kernel API call; Native API call
Application descriptor, 185-187
Argument stack, 277-279,293, 332-334, 373
Array
allocation, 72, 75
export, 343-344, 354
Asche, Ruediger R., 125
Assembly language (ASM), 24, 277-279,

286, 292
At character (@), 51, 53

B
+b switch, 256-257, 260
Bad pointer, 333
Bang command, 11,13-14, 416, 450-458
Base address, 344-345, 349-354, 360
Bit array, 72, 75
Bitfield, 172-173
Bit mask, 181, 185
Blink, 239
Block, memory, 228-229, 380
"Blue Screen Of Death" (BSOD), 2
Body structure, object, 410-411
Booth, Rick, 165
Branch prediction, 82
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A
+a switch, 237-238
Address, 165

base, 344-345, 349-354, 360
computation, 69, 79-80
driver load, 8
exported names, 339-345
FS, 167,235-237
indirect, 238
linear, 165-171,181-182, 261, 354
load, 80
logical, 165-168
OMAP conversion, 81-89
physical, 165-166,170-172, 219-220,

261
relative, 237-238
TEB, 234
virtual, 165-166
See also Memory management

Advanced Server, 162
Alias, 110, 511-547
_allmul symbol, 92
Allocation bit array, 72, 75
ANSI character, 29
CHAR type, 110
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Brown, R, 141
Buffer

circular, 316
protocol, 319-321
size, 155
string, 381-382

Buffered I/O, 191,200
Bug, 12, 339, 364, 370
"Bugslayer", 82
Build number, 269
BYTE, 15

c
C bit field, 172-173
C language, 277, 279
C runtime library, 106-107, 486-490
C source file, 126
Call interface function, 368-372
Callback function, 45
Category, object, 396-398
CD contents

driver wizard, 125-130
hook viewer, 321
PDB stream reader, 78
service and driver browser, 156
Spy Search, 291
Utility Library, 144
w2k_call.c, 439
w2k_call.dll, 364
w2k_cv.exe, 58
w2k_dbg.dll, 29-33
w2k_def.h, 118,395-396
w2k_dump.exe, 71
w2k_img.dll, 58, 69, 83-84
w2k_load.exe, 153
w2k_mem.exe, 230
w2k_obj.exe, 434
w2k_spy.h & w2k_spy.c, 280, 299
w2k_spy.sys, 188
w2k_sym.exe, 29
_cdecl, 51,278
internal symbols, 384
kernel-mode gate, 333, 337

CHAR type, 110
Charge, resource, 404-406
Checkpoint file, 51
Circular buffer, 316

CLIENTJD, 117
Cloning, object, 437-440
Code, IOCTL, 191
CodeView, 58, 63-69

.dbg files, 70
directories, 61, 65-66

Cogswell, Bryce, 265-269, 276, 330
CommandParse, 249
Common Object File Format (COFF), 63
Compound file, 72-73
Configuration, kernel-mode driver, 129
Constant, 505-509

Intel 1368,181-187
Context, thread/process, 425-429
Control code, 141
Control register, 220
Copying memory blocks, 380
CPU register, 333-334
Crash dump, 2-8
CreateFile, 248, 327
Custer, H., 93, 414
CV_PUBSYM, 67-69
CV_SYMHASH, 67-69

D
Data access function, 380-383
Data structure, 114-117, 511-547

Intel i368, 172-181
I/O system, 397-398

Data type
integral, 110-112
strings, 111-114
structure, 114-117

Data-copying interface function, 372-375
db command, 15
.dbg file, 54-62

header, 55-58
linkage, 70-71
OMAP, 61, 81

dbghelp.dll, 24-29
\DBG.HTM file, 9
dbgSymbolLoad, 47
dd command, 15
Debugging, 1-92

crash dump, 2-8
i368kd.exe, 2
MFVDasm, 21-22
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PEview, 22-23
postmortem, 2
support library, 29-33
WinDbg.exe, 2
See also Interface, debugging; Kernel

Debugger; Symbol file
Decoration, symbol, 51-54, 84, 92
.def file, 126,129
Demand paging, 162-172

memory dump utility, 242-243
X86 data structures, 176-182
Descriptor
application, 185-187
system, 186-187

Descriptor Privilege Level (DPL), 251
Device context, 137
Device Driver Kit (DDK), 1, 94, 111

constants, 183
header files, 117-118, 122, 124, 197
kernel-mode drivers, 122-125
w2k_def.h, 395-396

Device I/O Control (IOCTL). See IOCTL
Directory

debug, 60-61
handle, 303
lock, 435
stream, 75-78

Dispatch ID
interrupt handler, 98, 102-103
Win32K, 104-105

Dispatcher
driver, 139
object, 396-398, 505
service, 95-98
spy, 191

DLL, 340, 363-366
DOS, 140
\DosDevices, 189
Driver

EnumDeviceDrivers, 33-36
exception, 188
w2k_kill.sys, 6-8
See also Kernel-mode driver; Spy device

Driver skeleton, 130-140
[drivers, 18-19
.dsp file, 129
.dsw file, 125

Dump command, 15
See also Memory dump utility

Dump Memory, 15
dw command, 15
DWORD, 15,44

E
Entry point, 141
Entry point driver, 136
EnumDeviceDrivers, 33-36
Enumeration, 510-511
EnumProcesses, 37-39
EnumServicesStatus, 155, 156
Environment variable, 153
EPROCESS, 16-18, 416, 420-424
"Equals" character (=), 296
ERESOURCE, 435
Error

bad arguments, 339
crash dump, 12
kernel API calls, 370
last-error code, 364

ETHREAD, 18-19, 416, 420-424, 428
ExAcquireResourceExclusive, 435
Examine Symbols, 15-16
Exception, 188

SEH, 299, 333, 338-339
Execute, 249, 327
Exported symbol

API thunks, 376
assigning, 335, 340-345
resolving, 351-356
SPY_IO_PE_EXPORT, 360
SPY_IO_PE_SYMBOL, 362

Extended kernel call interface, 384-393
Extended runtime library, 106-107, 491-503
Extension, debugger, 11, 13-14

F
+f switch, 235
Jastcall, 51, 53

ASM, 278
internal symbols, 384
kernel-mode gate, 333-334, 337

File system, 72-73
Filter, garbage, 299-303, 315-316
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Flag
file object, 401, 506
fOk, 208
object attribute, 509
object header, 508

Flat memory model, 166
Flink, 239
Floating point emulator, 107-108
fOk flag, 208
Format control ID, 290-292, 295, 303
Format string, 290-292, 295, 303
FS:[<base>]:addressing, 236-237
FS-relative addressing, 167, 235
Function

callback, 45
categories, 108-110
IOCTL, 199,203-230, 244-246, 307-321
kernel API, 459-503
names, 151
wrapper, 144, 152, 244-246

Function set
imgTable*, 83-88
Nt* & Zw», 93-94, 97, 346-347

G
+g option, 252
Garbage filter, 299-303, 315-316
Gate

descriptor, 254
interrupt, 254-256
kernel-mode, 332-339
See also Interrupt handler

GetModuleHandle, 340
GetProcAddress, 340
Gircys, G.R., 63
Global Descriptor Table (GDT), 168,

211,214
selectors, 252-254

Graphics Device Interface (GDI), 103
kernel API functions, 467-486
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+h switch, 237
HalMakeBeep, 377
HalQueryRealTimeClock, 377-379
Handle, 300
API hook protocol, 299-307

directory, 303
handle count, 296-297
object, 237,411-416
process, 39-42, 44
registered/unregistered, 300-303
Service Control, 142-144, 151-153
spy device, 246-249
Handle database, 403-404
HANDLE JTABLE, 411-413
Hardware, accessing, 6
Hardware Abstraction Layer (HAL), 377
Hash table, 436
Header file
.dbg, 55-58
DDK, 117-118, 122, 124, 197
Drvlnfo.h, 136
ntddk.h/ntdef.h, 94
ntdll.lib, 117-119
object, 399-402
TestDrv.h, 130
w2k_spy.h, 188, 248, 280, 299
Hex dump viewer, 71
HMODULE, 39-41,44
Hook, API
dispatcher, 279-294
handles, 299-307
management functions, 307-321
protocol, 294-299
reader, 321-330
system-wide, 266, 276-277
Hummel, Robert L., 108, 162, 186

I

Icon file, 126
imagehlp.dll, 24-29
symbols, 44
undecoration, 52-53
ImageLoad, 46-49
IMG_DBG, 58
IMG_PUBSYM union, 79
imgTable* function set, 83-88
Import library, 117-119
DDK, 122-124
Import thunk, 51-52, 92
Incremental updating, 77-78
Index
object type, 410-411, 508
page-directory, 181
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Indirect addressing, 238
Inline assembler, 277
Inner Loops, 165
Input buffer, 191, 200
Inside Windows NT, 6, 93
Inside Windows 2000, 93
INT 2Eh service handler. See

Interrupt handler
Integral data type, 110-112
Intel i368 memory management, 161-181
data structures, 172-181
80270 CPU, 163
80368 CPU, 108,161-164
80486 CPU, 164
layout, 162
macros/constants, 181-187
segmentation/demand paging, 162-172
Interface
GDI, 103
interface functions, 368-375
kernel API calls, 331-339, 384-393
Native API, 117-119
spy device, 244-249
Win32K kernel-mode, 103-105
Interface, debugging, 24-51
dbghelp.dll, 24-29
EnumDeviceDrivers, 33-36
EnumProcesses, 37-39
EnumProcessModules, 39-42
imagehlp.dll, 24-29, 44
process privileges, 42-44
psapi.dll, 24-29
Interrupt Descriptor Table (IDT), 96,168,252
gate descriptors, 254
SPYJOJNTERRUPT, 214, 218
X86_GATE, 173-174
Interrupt handler, 96-98, 214
gates, 254-256
KiSystemService, 102-103, 266-268
Zw* functions, 346
I/O object, 397-398
I/O Request Packet (IRP), 137, 507
IOCTL, 141-142
code, 191
handler, 191
hook management functions, 307-321
kernel API calls, 331-334, 356-368
spy device functions, 199, 203-230

spy device handle, 246-249
type codes, 507
wrapper functions, 244-246
IRP handler array, 137
i368kd.exe, 2,11

K
+k switch, 236
Kernel API call, 331-393
calling conventions, 333
data access functions, 380-383
DLL encapsulation, 363-366
exported symbols, 339-345
interface functions, 368-375
internal symbols, 384-393
IOCTL, 331-334, 356-368
resolving symbols, 351-356, 362
retrieving module addresses, 346-351
SEH, 338-339
SpyCall, 334-338
thunks, 375-380
Kernel API functions, 459-503
Kernel Debugger, 2
commands, 11-19, 447-458
In command, 16, 100-102
process and thread objects, 416, 428
setup, 11
symbol decoration, 52-53
Kernel-mode driver, 121-160

configuration, 129
enumerating services and drivers, 155-159
I/O control, 140-142
kernel API call, 332
management function, 144-155
Native API hooks, 276
nonexported structures, 434
ntoskrnl.exe, 95
privilege level, 188
SC Manager, 142-144
skeleton, 130-140
system crash, 6-8
wizard, 125-130

Kernel-mode interface, Win32, 103-105,
121-122

Kernel's Processor Control Block (KPCB),
207, 425-426
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Kernel's Processor Control Region (KPCR),
207, 235, 426

kernel32.dll, 93
KeServiceDescriptorTable, 266-268, 376
Keyboard poll, 328
Killer device, 6-8, 142
Kill.exe, 43
KiSystemService, 102-103, 266-268
KMUTEX, 435
KPROCESS, 416-419
KTHREAD, 416-419, 428
Kyle, J, 141

L
LARGEJNTEGER, 166
Least-recently-used (LRU) schedule, 164
Library

C runtime, 106-107
DDK, 122-124
extended, 106-107, 491-503
ntdll.lib, 117-119
w2k_img.dll, 58, 69

Linear address, 165-171, 181-182, 261, 354
Linked list, 115
List Nearest Symbols, 16
LIST_ENTRY, 115
In command, 16, 100-102
Load address, 80
Loading modules, 240-242
LoadLibrary, 340
Local Descriptor Table (LOT), 168, 211-214
Lock
global, 434-435
handle table, 415
Log file, 295
Logical address, 165-168
LONGLONG, 166

M
Macro
Intel 1368,181-187
SpyHook, 280-294
Macro Assembler (MASM), 24, 110,

277, 279
Manager handle, 143,152-153
Map, memory, 261-263
Mask, bit, 181,185

Mason, W. Anthony, 347
Memory dump utility, 230-243
command options, 228-234, 244, 250-251
demand paging, 242-243
FS addressing, 235-237
handle/object resolution, 237
indirect addressing, 238
loading modules, 240-242
relative addressing, 237-238
TEB-relative addressing, 234
Memory management, 161-263

descriptors, 251-256
dump commands, 15
Intel 1368,161-181
memory areas, 256-261
memory blocks, 228-229, 380
memory layout, 162
memory map, 261-263
selectors, 20-21
spy driver, 188-203
spy functions, 203-230
spy interface, 244-249
system information, 250-251
See also Address

Memory segmentation, 188, 251-256
Intel 1368,162-172
segment registers, 162-163,209, 251-253
SPY_IO_SEGMENT, 208-214

Microsoft Developer Network (MSDN)
Library, 94

MmGetPhysicalAddress, 172, 183,219-220,
375-376

MmlsAddressValid, 172, 183, 227, 375-376
Module

handle, 39-42
loading, 240-242
relationships, 95

Most recently used (MRU) algorithm, 406
Multi-Format Visual Disassembler

(MFVDasm), 21-22, 130
Multithreaded environment, 293, 366
Mutex, 198, 435

N

Name
exported, 340-345
object, 403, 410
pattern, 329-330
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Native API, 93-119
datatypes, 110-118
dispatch IDs, 103-105
function handler, 293-294
function sets, 93-94, 97, 346-347
INT 2Eh handler, 102-103
interfacing to, 117-119
monitoring calls, 265
nesting level, 293-294
runtime library, 105-110
SDTs, 98-100,265-307
service dispatcher, 95-98
undocumentedness, 94-95
Win32 kernel-mode interface, 103-105
See also Spy device

Native API call, 265-330
garbage filter, 299-303
hook dispatcher, 279-294
hook management functions, 307-321
hook protocol, 294-299
INT 2Eh handler, 266
SDTs, 266-276

NB09 format, 63-64
NB10 format, 70
Nebbett, Gary, 36, 105, 118, 401-402, 415
Nesting level, 293-294
NT. See Windows NT
Nt* function set, 93-94, 97, 346-347
NT Insider, The, 12, 14
NtBuildNumber, 376
ntdll.dll library, 95-97, 105-110, 117-119
ntoskrnl.exe, 95-98,105-110

exported variables, 204
handle tables, 415
memory management, 172

NTPROC, 100
NtQuerySystemlnformation, 36, 38-39, 110

address computation, 80
handle tables, 415
kernel API calls, 346-348
strings, 113

NULL pointer, 6

o
ObCreateObject, 424
Object, 395-445

categories, 396-398
charges and quotas, 404-406

creator information, 402-403
directory, 406-407
dispatcher, 396-398
file flags, 506
handle database, 403-404
handle tables, 411-416
header, 399-402
I/O, 397-398
mutex, 198
name, 403, 410
process/thread, 416-425
type, 401,407-411

Object browser, 434-445
cloning structures and functions, 437-440
command help, 443-444
global lock, 434-435
object manager thunks, 434-435

Object Module Format (OMF), 63, 67
OBJECT_ATTRIBUTES, 114
OBJECT_CREATOR_INFO, 402
OBJECT_DIRECTORY, 406-407
OBJECT_HANDLE_DB, 404
OBJECTJSIAME, 403
OBJECT_QUOTA_CHARGES, 404
OBJECTJTYPE, 407-409
ObReferenceObjectByHandle, 229
Offset

.dbg files, 57-61
export section, 360
memory dump utility, 237-238
object headers, 401, 403
OMAP, 82-83

OMAP address conversion, 81-89
.dbg files, 61,81

Open Systems Resources (OSR), 2
OpenProcess, 42
Optimization, 164-165
Ordinal number array, 354
Output buffer, 191,200
Overflow, 320-321
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+p switch, 238
Page entry, 177, 222-224
Page-Directory Base Register (PDBR),

169-170,176, 222
Page-directory entry (PDE), 169-172,

177,183
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SPY_IO_PDE_ARRAY, 222
Page-directory index (PDI), 181-183
Page-frame number (PFN), 169,172,176
Page-level write-through (PWT), 176
Page-not-present entry (PNPE), 177
Page-table entry (PTE), 169-172, 177,

183-184
Page-table index (PTI), 181-183
Paging

charges and quotas, 404
crash dump, 3, 7
demand, 162-172,176-182, 242-243
page fault, 164
swapping to pagefiles, 242-243

PASCAL string, 67
Pattern

name, 329-330
string, 328

Pcb,416
.pdb file, 54, 70-82

header, 73-75
linkage, 70-71
stream directory, 75-78

PDB.PUBSYM, 78
Pentium CPU, 161-165
PEview, 21-23,130
Physical address, 165-166, 170-172, 261
Physical Address Extension (PAE), 162,

166, 219-220
Pietrek, Matt, 44, 55, 63, 70, 81, 265
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bad, 333
invalid, 299
KTHREAD/ETHREAD, 428-429
NULL, 6
object, 396
table, 268-269

Portable Executable (PE) file, 22-24, 335
directory IDs, 506
exported names, 340-345, 351-354

Postmortem debugging, 2
ppbFormats, 289
ppbSymbols, 289-291
pProcessorControlRegion, 207
#pragma directive, 139
Privilege level, 42-44

DPL, 251
kernel-mode drivers, 139, 220

memory segmentation, 188
module relationships, 95

Process
context, 425-429
handle, 39-42, 44
ID, 37-38,42,117,403
module, 39-42
object, 416-425

Process Environment Block (PEB), 42,
429-433

Jprocessfields, 16-18, 94, 416
Program Database (PDB) file. See .pdb file
Project template, 125
Protected Virtual Address Mode, 163
Protocol, API hook, 294-299

buffer, 319-321
entry format, 295-296
filter, 299-303, 315-316
reader, 321-330

Proxy, 375
psapi.dll, 24-30, 36
Pseudo handle, 44
PSTR type, 111
PTSTR type, 45
PWSTR type, 111
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q command, 21
Quota, resource, 404-406
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.re file, 126
Read access right, 328
Real-Address Mode, 163
Registry key, 127
Relative addressing, 237-238
Requested Privilege Level (RPL), 173
Resource script, 139
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Robbins, John, 82
Root stream, 75
RtllmageNtHeader, 340-341, 359
Runtime library, 105-110
Runtime linkage, 339
Russinovich, Mark, 93,118, 265-269,

276, 330
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+s switch, 237-238
Security, system, 187, 380
Segmentation, memory. See Memory

segmentation
Seigne, Jean-Louis, 21
!sel, 20
Selector, 163,173,185-187
GDT, 252-254
spy device functions, 208-214
Service, 142
enumerating, 155-159
loading/unloading, 152-153
Service Control (SC) Manager, 142-144
Service Descriptor Table (SDT), 98-102,

163, 265-307
handles, 299-307
hook dispatcher, 279-294
hook protocol, 294-299
SpyHookExchange, 312-313
Windows 2000 vs. NT, 270-276
Service dispatcher, 95-98
Service handle, 143, 151-153
SharedUserData, 207, 269
Slash character (/), 240
Software Development Kit (SDK), 94
aliases, 110
header files, 117-119
Solomon, D. A., 6, 93, 414
Source file, C, 126
Spy device, 188-203
dump utility, 230-243
header files, 189, 197, 248
hook dispatcher, 279-294
hook management functions, 307-321
hook protocol, 294-299
interface, 244-249
internal symbols, 384
IOCTL functions, 199, 203-230, 244-246,

307-321
IOCTL handler, 191
kernel API calls, 356-362
protocol reader, 321-330

SPY_CALLJNPUT, 333-334
SPY_CALL_OUTPUT, 333
SPY_IO_CALL, 362, 368
SPY_IO_CPU_INFO, 220-222, 235
SPY_IO_HANDLE_INFO, 229

SPY_IO_HOOK_FILTER, 315-316
SPY_IO_HOOK_INFO, 310-311
SPY_IO_HOOKJNSTALL, 311-313
SPY_IO_HOOK_PAUSE, 315
SPY_IO_HOOK_READ, 316-319
SPY_IO_HOOK_REMOVE, 313-315
SPYJO_HOOK_RESET, 316
SPY_IO_HOOK_WRITE, 319-321
SPY_IO_MEMORY_BLOCK, 228-229, 380
SPY_IO_MEMORY_DATA, 224-225
SPY_IO_MODULE_INFO, 358-359
SPY_IO_OS_INFO, 204-207, 250
SPY_IO_PAGE_ENTRY, 222-224, 256
SPY_IO_PDE_ARRAY, 222
SPY_IO_PE_EXPORT, 360-361
SPY_IO_PE_HEADER, 359-360
SPY_IO_PE_SYMBOL, 362, 375
SPY_IO_PHYSICAL, 219-220
SPY_IO_SEGMENT, 208-214
SPY_IO_VERSION_INFO, 203
SpyCall, 334-338, 370
SpyHook macro, 280-294
SpyHooklnitialize, 280-281
Stack frame, 278-279
_stdcall, 51, 53

ASM, 278
internal symbols, 384
kernel API calls, 370
kernel-mode gate, 333, 337

Stream directory, 75-78
String, 111-114

ANSI/Unicode, 113-114,137
format, 290-292, 295, 303
kernel, 381-383
PASCAL, 67
pattern, 328
substitution, 126
zero-terminated, 299

Structure, 114-117, 511-547
Intel 1368,172-181
I/O system, 397-398

Structured Exception Handling (SEH), 299,
333,338-339

Symbol browser
w2k_sym.exe, 29, 50-51
w2k_sym2.exe, 90-92

Symbol file, 8-11,51-92
address computation, 69, 79-80
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CodeView, 63-69
.dbg, 54-62
decoration, 51-54, 84, 92
internal symbols, 384-393, 434
In command, 16
OMAP, 81-89
path setup, 10-11
.pdb, 70-79
symbol table management functions,

83-84,88-89,389
See also Exported symbol

SymEnumerateSymbols, 44-49
Synchronization object, 415
System crash, 6-8
System descriptor, 186-187
System Service Table (SST), 98,102-103
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Tagged record, 63
Task gate, 256
Task Register (TR), 220
Task-State Segment (TSS), 215-218,251-251
TBYTE type, 110
Tcb,416
.td file, 126, 129
TEB-relative addressing, 234
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TestDrv.c file, 130
Thread

context, 425-429
ID, 117,294
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object, 416-425
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429-433

Jthreadfields, 18, 94,416
Thunk, 51-52, 92

API, 375-380
function, 392-393
object manager, 434-435

.ti file, 126
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Type ID, 397
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datatypes, 110
driver wizard, 125
ntdll.dll, 106
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.pdb files, 77-78
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Win32, 93-94, 163

accessing hardware, 6
ASM programming, 24
hooks, 265-266
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kernel-mode interface, 103-105, 121-122
and Native API, 95-98
SDK header file, 55
w2k_def.h, 395-396

Win64, 29
Window Manager (USER), 103
Windows NT, 163

.dbg files, 54, 63-65
DDK, 124
debugging interfaces, 24
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handle table, 414
hooks, 266
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system security, 187
Win32K, 103

Windows NT/2000 Native API Reference,
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WORD, 15
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Wrapper function, 144

IOCTL, 244-246
SC Manager, 152
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w2k_img.dll, 58, 69, 83-84, 88
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X86_GATE, 173-174
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X86_OFFSET, 183
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X86_PDE, 177, 184
X86_PDI, 181-183
X86_PE, 177
X86_PNPE, 177
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