UNDOCUMENTED
WINDOWS 2000
SECRETS

UNDOCUMENTED
WINDOWS 2000
SECRETS

A PROGRAMMERS
COOKBOOK

SVEN B. SCHREIBER

TT

ADDISON-WESLEY

Boston San Francisco New York Toronto Montreal
London Munich Paris Madrid Capetown
Sydney Tokyo Singapore Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison Wesley,
Inc. was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or conseguential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for specia sales.
For more information, please contact:

Pearson Education Corporate Sales Division
201 W. 103rd Street

Indianapolis, IN 46290

(800)428-5331

corpsa es@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Schreiber, Sven B., 1958
Undocumented Windows 2000 secrets. a programmer's cookbook / Sven
B.Schreiber
p. cm.
Includes bibliographical references and index.
ISBN 0-201-72187-2
1. Microsoft Windows (Computer file) 2. Operating systems (Computers)
I. Title.
QA76.73.0635389 2001
005.4'4769—dc21
00-054836

Copyright © 2001 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, eectronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

ISBN 0-201-72187-2

Text printed on recycled paper
23456789 10—CRS—04030201
Second printing, July 2001

To all the people in the world who never stopped asking "why"

Contents

Preface. ... XV
CHAPTER 1 Windows 2000 Debugging SUPPOItccoooiiiiiiiiiii i, 1
Setting up a Debugging Environment ... 1
PreparingforaCrash Dump... 2
Crashingthe System 6
Installingthe Symbol Files..................... 8

Setting up the Kernel Debugger................................. 11

Kernel Debugger Commands.. 13

The Top Ten Debugging Commands... 14

Shutting Downthe Debugger.................................. 21

More Debugging TooIS ... 21
MFVDasm: The Multi-Format Visual Disassembler................ 21
PEview—The PE and COFF File Viewer................................... . 22

Windows 2000 Debugging Interfaces..................................... ... 24

psapi.dil, imagehlp.dil, and dbghelp.dil. ...] 24

, Sample Codeonthe CD...................................... 29
Enumerating System Modules and Drivers.................................. 33

. Enumerating Active Processes. ... 37
Enumerating Process Modules ... 39
Adjusting Process Privileges ... 42
Enumerating Symbols............... 44

A Windows 2000 Symbol Browser... 50

Microsoft Symbol FileInternals. 51
Symbol Decoration ... 51

The Internal Structure of .dbgFiles... 54
CodeView Subsections ... 63

Vil

VIII CONTENTS

CHAPTER 2

CHAPTER 3

CodeView Symbols 67
The Internal Structure of .pdb Files 70
PDB Symbols...... ... 78
Symbol Address Computation. ... 79
OMAP Address CONVErsiON ... 81
Another Windows 2000 Symbol Browser. | Q0
The Windows 2000 NatiVe APLL.......crrereercereereesreeereeseeesesseseeseeseeseeees 93
THE NT*() AND ZW*() FUNCTION SETS. 93
Levels of “Undocumentedness” ... 94
The System Service Dispatcher 95
The Service Descriptor Tables 98
The INT 2Eh System Service Handler 102
The Win32 Kernel-Mode Interface... 103
Win32K Dispatch IDs ... 104
The Windows 2000 Runtime Library. 106
The C Runtime Library ... 106
The Extended Runtime Library 106
The Floating-Point Emulator.. 107
Other API Function Categories.. 108
Frequently Used Data Types...............ccooooooiiiiii 110
Integral TYpeS ... 110
SUINGS . 111
SUUCUMES ... 14
Interfacing to the Native APl ... 17
Adding the ntdil.dll Import Library to aProject 17
Writing Kernel-Mode DIIVEr S .. eeeeeeeereeeeeseesreeseesseesseeeesseesseeseesseenseenss 121
Creating a Driver Skeleton 1”1
The Windows 2000 Device Driver Kit..................................... 122
A Customizable Driver Wizard ... 125
Running the Driver Wizard 128
Inside the Driver Skeleton.. 130
Device /O Control ... 139
The Windows 2000 Killer Device......................cccoo 142
Loading and Unloading Drivers. 142
The Service Control Manager.. 142
High-Level Driver Management Functions................................. 144

Enumerating Servicesand Drivers............ . 155

CONTENTS IX

CHAPTER 4 Exploring Windows 2000 Memory............cccveieeenennnn.. 161
Intel 1386 Memory Management ... 161
Basic Memory Layout ... 162
Memory Segmentation and Demand Paging 162

o Data StruCtUres. ... 172
Macros and Constants ... 181

A Sample Memory Spy Device 187
Windows 2000 Memory Segmentation..................................... 188
The Device I/0O Control Dispatcher.. 188
The IOCTL Function SPY_IO_VERSION_INFO......................... 203
The IOCTL Function SPY_IO_OS_INFO 204
The IOCTL Function SPY_IO_SEGMENT................................. 208
ThelOCTL Function SPY_IO_INTERRUPT 214
The IOCTL Function SPY_IO_PHYSICAL. 219
The IOCTL Function SPY_IO_ CPU_INFO.................................. 220
The IOCTL Function SPY_IO_PDE_ARRAY............................. 222
The IOCTL Function SPY_IO_PAGE_ENTRY.......................... .. 222
The IOCTL Function SPY_IO_MEMORY_DATA 224
The IOCTL Function SPY_IO_MEMORY_BLOCK 228
The IOCTL Function SPY_IO_HANDLE_INFO......................... 229

A Sample Memory Dump Utility ... 230
Command Line Format ... 230
TEB-Relative Addressing ... 234
FS-Relative ADdreSsing ... 235
FS:[<base>] Addressing................................ 236
Handle/Object Resolution 237

- Relative Addressing ... 237
Indirect Addressing ... 238
Loading Modulesonthe Fly. 240
Demand-Paging in Action................................. 242
More Command Options.. 244
Interfacingtothe Spy Device ... 244
Device I/O Control Revisited ... 244
Windows 2000 Memory Internals ... 249
Basic Operating System Information........................ ... 250
Windows 2000 Segments and Descriptors. ... 251
Windows 2000 Memory Areas.................................... 256

TheWindows 2000 Memory Map... 261

X CONTENTS

CHAPTER 5

CHAPTER 6

Monitoring Native APl CallS.......erurerereenreeeerereseseresesesesesssesesssssessnsnnes 265
Patching the Service Descriptor Table 265
Serviceand Argument Tables................. . 266
Assembly LanguagetotheRescue..... 277
The Hook Dispatcher 279
The APl Hook Protocol.....................c 294
Handling Handles 299
Controlling the APl HooksinUser-Mode ... 307
The IOCTL Function SPY_IO_HOOK_INFO............................ 310
The IOCTL Function SPY_IO_HOOK_INSTALL 31
The IOCTL Function SPY_IO_HOOK_REMOVE 313
The IOCTL Function SPY_IO_HOOK_PAUSE 315
The IOCTL Function SPY_IO_HOOK_FILTER 315
The IOCTL Function SPY_IO_HOOK_RESET 316
The IOCTL Function SPY_IO_HOOK_READ............................. 316
The IOCTL Function SPY_IO_HOOK_WRITE 319
A Sample Hook Protocol Reader..............................ooo 321
Controllingthe Spy Device ... 321
Highlights and Pitfalls.................. ... 330
Calling Kernel API Functions from User-Mode................ccccoovevviiernnnns 331
A General Kernel Call Interface................................ 331
Designing a Gateto Kernel-Mode ... 332
Linking to System Modules at Runtime 339
Looking Up Names Exported by aPEImage 340
Locating System Modules and Driversin Memory. 346
Resolving Symbols of Exported Functions and Variables 351
TheBridgeto User-Mode ... 355
The IOCTL Function SPY_IO_MODULE_INFO......................... 358
The IOCTL FunctionSPY_IO_PE_ HEADER 359
The IOCTL Function SPY_IO_PE EXPORT................................ 360
The IOCTL Function SPY_IO_PE_SYMBOL............................. 362
The IOCTL Function SPY_IO_CALL. ... 362
Encapsulating the Call InterfaceinaDLL 363
Handling IOCTL Function Calls.. 364
Type-Specific Call Interface Functions................................... ... 368
Data-Copying Interface Functions......... ... 372
Implementing Kernel APl Thunks 375

CONTENTS XI

Accessing Nonexported Symbols....................... 383

Looking Up Internal Symbols.. 384

Implementing Kernel Function Thunks.................. ... 392

CHAPTER 7 Windows 2000 Object Management..........oceeeeeeeureeeesreseemesseseensesnenees 39
e Windows 2000 Object Structures.. 395
i Basic Object Categories. ... 396
The Object Header.................. . 399

The Object Creator Information ... 402

The Object Name ... 403

The Object Handle Database ... 403

Resource Chargesand Quotas... 404

Object DIreCtOri€S ... 406

ObJeCt TYPES . 407

0. . ObjectHandles. ... 411
Processand Thread Objects 416

Thread and Process Contexts ... 425

Thread and Process Environment Blocks.............................. . 429

Accessing Live System Objects. ... 434

Enumerating Object Directory Entries.. 434

Where Do We Go fromHere? ... 446

APPENDIX A Kernel Debugger COMMANGS. ... reeeeussserreeessssserseessssssesseesssssssssssssssssessesesd 447
APPENDIX B K NE APl FUNCHONS covurutreuuueesssnesssssesssssasssssasssssasssssasssssssssssassssssssssssasssssasssssaes 459
APPENDIX ¢ Congants, Enumerations, and StrUCEUNES ... e eeeeeeeee oo eeeseeeeeees 505
CoNStantS ... 505

; Dispatcher Object TypeCodes ... 505

FileObject Flags........................ ..l 506

Portable Executable Section Directory IDs. 506

I/O System Data Structure Type Codes..................................... 507

. I/0 Request Packet Functions ... 507
Object Header Flags.. 508
Object Type Array Indexes... 508

Object TypeTags ... 509

X1l CONTENTS

ENUMEratiONS ... 510
IO_ALLOCATION_ACTION. ... 510
LOOKASIDE_LIST_ID... ... 510
MODE (see also KPROCESSOR_MODE) 510
NT PRODUCT TYPE ... 510
POOL_TYPE .. 511

Structuresand AlIases ... 511
ANSLSTRING. 511
CALLBACK OBJECT. 511
CLIENT D 512
CONTEX T 512
CONTROLLER OBJECT. 513
CRITICAL_SECTION ... 513
DEVICE_OBJECT ... 513
DEVOBJ_EXTENSION. ... 514
DISPATCHER_HEADER 514
DRIVER_EXTENSION 514
DRIVER OBJECT. ... 515
EPROCESSo 515
ERESOURCE 517

, ERESOURCE_OLD............. 518
ERESOURCE_THREAD. 518
ETHREAD. . 519
ETIMER . 520
FAST MUTEX . 520
FILE_OBJECT ...] 520
FLOATING SAVE AREA ... 521
HANDLE ENTRY ... 521
HANDLE_LAYER1, HANDLE_LAYER2, HANDLE_LAYER3 522
HANDLE TABLE ... 522
HARDWARE_PTE ... 523
IMAGE_DATA DIRECTORY............. 523
IMAGE_EXPORT_DIRECTORY. 523
IMAGE_FILE_HEADER ... 524
IMAGE NT HEADERS 524

, IMAGE_OPTIONAL HEADER......... ... 524
IO COMPLETION. ... 525
IO COMPLETION_CONTEXT................] 525
IO ERROR LOG ENTRY. ... 525
IO ERROR LOG MESSAGE 526

IO_ERROR_LOG_PACKET ... 526

CONTENTS XIII

[O_STATUS BLOCK ... 526
IO_TIMER ... 526
KAFFINITY 527
KAPC 527
KAPC STATE ... 527
KDEVICE QUEUE 527
KDEVICE_QUEUE_ENTRY.... ... 528
KDPC .] 528
KEVENT. . 528
KEVENT _PAIR ... 528
KGDTENTRY. ... 529
KIDTENTRY .. 529
KIRQL .. 529
KMUTANT, KMUTEX ... 529
KPCR . 530
KPRCB. ... 530
KPROCESS ... 531
KPROCESSOR _MODE ... 531
KQUEUE 531
KSEMAPHORE 532
KTHREAD......... 532
KTIMER .. 533
KWAIT_BLOCK ... 534
LARGE_INTEGER ... 534
LIST_ENTRY. ... 534
MMSUPPORT. ... 534
NT_TIB (Thread Information Block).. 535
NTSTATUS 535
OBJECT ATTRIBUTES ... 535
OBJECT_CREATE_INFO................... ... 536
OBJECT_CREATOR_INFO...................................... 536
OBJECT DIRECTORY 536
OBJECT_DIRECTORY _ENTRY ... 536
OBJECT_HANDLE DB................... 537
OBJECT HANDLE DB_LIST. ... 537
OBJECT _HANDLE_INFORMATION. ... 537
OBJECT HEADER 537
OBJECT_NAME .. 538
OBJECT _NAME_INFORMATION. ... 538
OBJECT_QUOTA_CHARGES 538

OBJECT_TYPE ... 538

X1V CONTENTS

OBJECT_TYPE_ARRAY..| SRR UUPURURTY 539
OBJECT TYPE_INFO 539
OBJECT_TYPE_INITIALIZER 540
OEM_STRING ... 540
OWNER_ENTRY........ 540
PEB (Process Environment Block).. 541
PHYSICAL_ADDRESS. ... 542
PROCESS PARAMETERS ... 542
QUOTA_BLOCK ... 543
RTL_BITMAP 543
RTL_CRITICAL_SECTION_DEBUG. 543
SECTION_OBJECT_POINTERS ... 544
SECURITY_DESCRIPTOR ... 544
SECURITY_DESCRIPTOR_CONTROL 544
SERVICE_DESCRIPTOR_TABLE ... 544
STRING. ... 544
SYSTEM_SERVICE_TABLE 545
TEB (Thread Environment Block).. 545
TIME_FELDS ... 545
ULARGE_INTEGER ... 546
UNICODE_STRING ... 546
VPB (VolumeParameter Block)... 546
WAIT_CONTEXT_BLOCK ... 547
BIDIOGIAPNY. .. ceeeeeereecere e 549

Preface

fter finishing the manuscript of my first book, Developing LDAP and ADSI

Clients for Microsoft Exchange (Schreiber 2000) in October 1999, 1 was hon-
estly convinced for some time that | would never write a book again. Wdll, this phase
didn't last long, as the pages you are reading right now prove. Actually, | was already
starting to think about writing another book as early as November 1999 while | was
playing around with the latest release candidate of Microsoft Windows 2000. Exam-
ining the kernel and its interfaces and data structures, | was very pleased to find that
this operating system—despite its ugly name that reminded me too much of Win-
dows 95 and 98—was till agood old Windows NT.

Poking around in the binary code of operating systems has always been one of
my favorite pastimes. Just a couple of weeks before | had the idea to write this book,
my article "Inside Windows NT System Data" (Schreiber 1999), showing how to
retrieve internal system data by means of the undocumented kernel API function
NtQuerySystemInformation()had been published in Dr. Dobb's Journal. The
preparatory research to this article left me with a huge amount of unpublished
material that longed for being printed somewhere, and so | yelled: "Hey, how about
a book about Windows 2000 Internals?” Because of the obvious similarities between
Windows NT 4.0 and Windows 2000, plus my pile of interesting undocumented
information too valuable to be buried, this seemed to be a great idea, and | am proud
that this idea took the physical form of the book you are holding in your hands.
While transforming the stuff | had Collected into something that was readable by
other people, | discovered lots of other interesting things, so this book aso features a
great deal of brand-new material that | hadn't planned to include beforehand.

Addison-Wesley has a long and glorious tradition of publishing books
of this kind. The list of milestones is long, containing the two-volume printed
version of Brown and Jim Kyle's classic "Interrupt List,” PC Interrupts and
Network Interrupts (Brown and Kyle 1991, 1993, 1994, available online at

XV

XVI PREFACE

http:/hwww.cs.cmu.edulafs/cs.cmu.eduluserlralfipub/W W W/files.htroljp editions of
Undocumented DOS (Schulman et al., 1990, 1993); the Windows 3.1 update thereof,
titted Undocumented Windows (Schulman et al., 1992); Matt Pietrek's Windows Inter-
nals (Pietrek 1993); aswell as DOS internal s by Geoff Chappell (Chappell 1994) and
Dissecting DOS by Michagl Podanoffsky (Podanoffsky 1994). Other authors have con-
tributed invaluable material in other areas such as PC hardware programming (Sargent
Il and Shoemaker 1994, van Gilluwe 1994). Andrew Schulman and Matt Fietrek both
have written two more books of this “undocumented” kind about Windows 95, this
time for IDG Books Worldwide (Schulman 1994, Pietrek 1995). However, what has
been painfully missing in the past few years was a smilar book for Windows NT sys-
tem programmers. Fortunately, some information has been made available in article
form. For example, Matt Pietrek has filled some parts of this huge gap in his "Under
the Hood" column (eg., Pietrek 1996a-d) in Microsoft SystemsJournal (MS], mean-
while transformed into MSDNMagazine), and The NT insider journal, published bi-
monthly by Open Systems Resources (OSR), is an indispensable source of know-how
(check out http:/fwww.osr.com/publications_ntinsider.htnfor a free subscription). We
should aso not forget about the incredible SysInternals Web site operated by Mark
Russinovich and Bryce Cogswell at http://mwww.sysinternals.com, who have brought us
numerous powerful utilities—some even including full source code—that really should
have been part of the Microsoft Windows NT Resource Kit.

For along time, the Microsoft Windows NT Device Driver Kit (DDK) has been
the only comprehensive source of information about Windows NT system internals.
However, the DDK documentation is tough to read—some people even say it's any-
thing but didactic. Moreover, the DDK is documenting just a small part of the avail-
able system interfaces and data structures. The largest part belongs to the category of
the so-called internal features. This has made it next to impossible to write nontrivial
kernel-mode software for Windows NT without searching for additional information
somewhere dse. In the past, however, reliable documentation and sample code was
hard. This situation improved somewhat in 1997 when The Windows NT Device
Driver Book by Art Baker and Rajeev Nagar's Windows NT File System
Internals appeared. The year 1998 was marked by the heavily revised update of
Helen Custer's two-volume set Inside Windows NT and Inside the Windows NT File
System (Custer 1993, 1994) by David Solomon (Solomon 1998), who added
alot of new, previously unpublished material. In early 1999, Windows NT Device
Driver Development, written by NT kernel-mode experts Peter G. Viscarola and W.
Anthony Mason, was published (Viscarola and Mason 1999). Both are consulting
partners of Open Systems Resources (OSR), and the OSR people are well known for
their excellent kernel-mode driver and file system programming courses, so having
their first-hand knowledge in printed form was areal benefit. In the sameyear,
Edward N. Dekker and Joseph M. Newcomer's Developing Windows NT Device
Drivers (Dekker and Newcomer 1999) appeared. Both books were probably the first

PREFACE XVII

comprehensive and practically useful NT kernel-mode programming tutorias. If you
want to read thoughtful and accurate reviews about several Windows NT driver pro-
gramming books, including some of those mentioned above, just peek into the Novem-
ber/December 1999 issue of TheNT Insider (Open Systems Resources 1999c).

In late 1999, more authors delved into the depths of the Windows NT kernel.
A trio of system programmers and consultants from Puna, India, Prasad Dabak,
Sandeep Phadke, and Milind Borate, brought us the first Undocumented Windows
NT book (Dabak, Phadke, and Borate 1999). Because it was published before the
release of the final version of Windows 2000, it covers Windows NT 3.51 and 4.0
and the latest 2000 beta then available. After this overdue release, another must-have
book for anyone in Windows 2000 system programming appeared in January 2000:
Gary Nebbett's Windows NT/2000 Native APl Reference (Nebbett 2000). His work
provides a thorough, comprehensive, and extraordinarily detailed documentation of
all API functions and the structures they involve, providing the first opportunity to
double-check my findings about ntgQuerysystemInformation() in Dr. Dobb’s Journal
(Schreiber 1999). | was pleased to see that not only did our technical details match
perfectly but so did most of the symbolic names we had chosen independently. This
book should have been published by Microsoft years earlier!

You may think that everything has already been said about the internals of
Windows 2000. Not so! The internal functions and data structures inside the kernel
involve such avast area of knowledge that they can hardly be covered by just two
books. The book you're reading now is just one of the building blocks required for a
better understanding of the architecture of Windows 2000. Hopefully, the coming
years will bring many more publications of this kind. One recent publication is the
third edition of Inside Windows NT. Because it covers many of the new features
introduced with Windows 2000, it is consequently now called Inside Windows 2000
(Solomon and Russinovich 2000). This third edition is a genuine member of the for-
mer Inside Windows NT series. In this edition, Mark Russinovich is co-author with
David Solomon, which is areliable indicator that this book can be bought blindly.
There is no significant overlap between the contents of Inside Windows 2000 and
Undocumented Windows 2000 Secrets: A Programmer's Cookbook, so it is
probably a good idea to have both on the shelf.

THE TOPICS DISCUSSED IN THIS BOOK

If | had to compare this book with its predecessors, I'd say it's written in the tradition of
the old Undocumented DOS volumes (Schulman et al., 1990, 1993). | treasured these
books back in the days of DOS programming, because they involved an ideal trade-off
between comprehensiveness and an in-depth treatment of an essential subset of topics.
In my opinion, it is nearly impossible to write a comprehensive documentation of the
internals of acomplex operating system in a single volume without losing detail. If you

XVIIl PREFACE

don't opt for a multitome encyclopedia, you can either write a reference handbook,
such as Nebbett's (Nebbett 2000), or focus on specific topics, as Andrew Schulman and
friends did. Nebbett didn't leave much for other reference authors, but the in-depth
documentation of special Windows NT/2000 topicsis still a wide-open field.

Like Undocumented DOS this book of introduces Windows 2000 program-
ming topics that | have found both interesting and useful. In the “undocumented”
business, there is aways a danger of doing "art for art's sake.” Unveiling undocu-
mented features of an operating system isusually very exciting and fulfilling for the
person doing the work, but might be quite irrelevant for others. Not everything that
is undocumented is automatically useful aswell. Some operating system internals are
just internalsin their strictest sense, that is, implementation details. However, many
internals of Microsoft systems are much more than that. Microsoft has a notorious
reputation for intentionally preventing the developer community from knowing too
much about their target operating system. My favorite example is the ingenious and
extremely useful MS-DOS Network Redirector Interface described in Chapter 8 of
the second edition of Undocumented DOS (Schulman et al., 1993). Much time
would have been saved and much trouble avoided if Microsoft had documented this
wonderful interface when they introduced it. Unfortunately, Microsoft has pursued
this information policy with the follow-up systems Windows 3.x, Windows 9x, Win-
dows NT, and Windows 2000. However, books such asthis are being written to pro-
videfurther information.

After introducing you to the basic architecture of Windows 2000 and helping
you to set up your workstation for Windows 2000 kernel spelunking, this book leads
you through some very exciting corners inside the world of kernel programming.
Typicaly, each chapter first discusses the essential theory you need to know about the
topic, and then immediately presents sample code to illustrate the respective features.
The language chosen for the samplesisplain C. The probability is high that the
readers of this book are comfortable with C, and this language iswell supported by
Microsoft's Windows 2000 development tools.

This book deliberately does not attempt to give a broad overview of the architec-
ture of the Windows 2000 kernel, although it discusses parts of it in some chapters. If
you are looking for such information, see Inside Windows 2000 (Solomon and Russi-
novich 2000) instead, which takes a very general and theoretical approach to the
Windows 2000 internals. Neither Inside Windows 2000 nor the Undocumented
Windows 2000 Secrets: A Programmers Cookbook Windows NT/2000 Native API
Reference (Nebbett 2000) provide practical code examples and full-featured sample
applications that interact live with the system contains reprinted code samplesin
abundance, accompanying the Windows 2000 concepts and features under discus-
sion. The companion CD contains all of this code in ready-to-run applications that
you can extend, tear to shreds for use in other applications, or simply use asis.
Basically, you will beled through the following topics:

PREFACE XIX

» Using the Windows 2000 debugging interfaces

» Loading, parsing, and using the Windows 2000 symboal files
¢ Dissecting the Microsoft PDB file format

* Interfacing to the kernel's Native API.

» Writing simple kernel-mode drivers

» Exploring Windows 2000 system memory

» Hooking and monitoring calls to the Native API

» Calling kernel functions from user-mode applications

* Calling nonexported kernel functions

» Exploring the world of Windows 2000 kernel objects

You aso will learn many more details about the system both in the text and
samples. My foremost intention while writing the manuscript was to share with you
anything | knew about the topics covered.

THE ORGANIZATION OF THIS BOOK

After considering which sequence of chapters would be optimal for all potential read-
ers of this book, | have arranged the seven chapters in the order that | thought would
be best for a novice Windows 2000 system programmer. Therefore, any new con-
cepts or techniques introduced in a chapter are explained at their first appearance.
Consequently, newbies should read the chapters sequentially asthey appear inthe
book. This approach may bore expert readers who look for more "off-road" infor-
mation. However, it is easier for an expert to skip over familiar details than for a
novice to keep up if the material ispresented in a nondldactlc sequence.

Here is what awaits you in each chapter: :

» Chapter 1 begins with a guided tour through setup and use of the
Windows 2000 K ernel Debugger, because this is one of the most hel pful
tools for system exploration. Other highlights are the official Windows
2000 debugging interfaces in the form of the psapi. d11, imagehlp.dil,
and abghelp. d11 components. The chapter closes with detailed descrip-
tions of the layouts of Microsoft CodeView and Program Database (PDB)
files, complemented by a sample symbol file parser DLL and an accompa-
nying client application.

XX PREFACE

 Chapter 2 introduces the Windows 2000 Native API, discussing the main
system service dispatcher, the various API function groups exported by
ntdll.dll and ntoskrnl.exe, and the data types most frequently used by
these components.

» Chapter 3 is a short and easy introduction to basic kernel-mode driver
development. It is by no means intended as atutorial for heavy-duty
hardware driver developers. It simply points out essential information
required to understand the sample code in subsequent chapters, including
loading and unloading driver modules at runtime via the Service Control
Manger interface. Probably the most interesting highlight is the descrip-
tion of the customizable driver wizard included with full source code on
the companion CD.

» Chapter 4 is certainly the most challenging chapter for readers suffering
from hardware phobia, because it starts with a detailed description of the
Intel Pentium CPU features used by the Windows 2000 memory manager.
Anyone who survives this section is rewarded by extensive sample code of
a memory spy device that supports the visualization of prohibited memory
regions and internal memory manager data structures. Also included is a
Windows 2000 memory map that outlines how the system makes use of
the vast 4-GB address space offered by the Pentium CPU family.

» Chapter 5 explains in detail how you can hook Native API functions,
mainly focusing on call parameter monitoring and file/registry tracking.
This chapter makes heavy use of inline assembler code and CPU
stack twirling.

» Chapter 6 proposes a general-purpose solution for something that is com-
monly considered impossible in the Windows 2000 programming para-
digm: calling kernel-mode code from user-mode applications. The sample
code in this chapter builds a bridge from the Win32 subsystem to the main
kernel interfaces inside ntoskrnl.exe, hal.dll, and other core components.
The chapter also describes how to call nearly any kernel function as long
as its entry point is provided in the Windows 2000 symbol files.

» Chapter 7 delves deeply into the mysterious Windows 2000 object man-
ager. Theinternal structure of kernel objects is one of the best-kept secrets,
because Microsoft doesn't give you more information about an object
than an opaque void* pointer. This chapter unveils what this pointer really
points to, and how object structures and handles are maintained and man-
aged by the system. As a special feature, the layout of process and thread

PREFACE XXI

objects is discussed in detail. The last section of the chapter is a sample
application that displays the hierarchical arrangement of kernel objects by
tracing the relations of various undocumented object structures.

» Appendix A isrelated to Chapter 1 and contains all commands and com-
mand options of the Windows 2000 Kernel Debugger.

» Appendix B isrelated to Chapter 2 and summarizes several API functions
exported by the Windows 2000 kernel modules.

» Appendix C provides an extensive collection of Windows 2000 constants
and data typesin alphabetical order. Thisreference list documents several
undocumented kernel structures introduced and used throughout the book.

As you see, this book discusses much information that merits the attribute
"undocumented," and some of the material has never been published before.

THE AUDIENCE OF THIS BOOK

Undocumented Windows 2000 Secrets: A Programmer's Cookbook is intended for
system programmers who want to maximize the features of their target operating
system. First disclaimer: If the target platform of your software is Windows 95, 98,
or Me (Millennium Edition), don't read any further. Because of the architectural dif-
ferences of the Windows 9x/Me and NT/2000 platforms, you won't benefit from
reading this book. Second disclaimer: This book does not contain information on the
Alpha processor or multiprocessor systems—I will target the 32-bit Intel i386 single-
processor platform exclusively. Third disclaimer: Be aware that this text is not writ-
ten for the faint-hearted. You will be faced with programming techniques the average
Win32 programmer has never seen. The Windows 2000 kernel is an entirely different
world, bearing little resemblance to the Win32 subsystem built upon it. Some of the
interfacing techniques introduced toward the end of the book might be new to even
experienced kernel-mode programmers. Let me put it thisway: This is the book your
high-school teachers and Microsoft representatives have always warned you about!

If you are ill reading on, you are obviously an open-minded, courageous
person who wants to know everything about the things lurking beneath the surface
of the Windows 2000 operating system. That's great! Even if you won't use the
know-how you gain from this book on a daily basis, you will certainly benefit from
it. Knowing what is going on under the surface of an application interface is always
advantageous. It facilitates debugging and optimization, and helps avoid unwanted
side effects caused by misconceptions about the hidden mechanics of the system.

XXII PREFACE

The only expertise I'm expecting from my readers is "talking C” fluently and
basic knowledge of Win32 programming. If you have already written kernel-mode
drivers, you're in an even better position, but that's not a requirement. You will find
an introduction to kernel-mode driver programming in this book, telling you every-
thing you need to know within its scope. However, please note that thisis not a
comprehensive kernel-mode tutorial. If you are specificaly interested in kernel-
mode driver development, please get one of the good books that deal with this topic
exclusively (e.g., Viscarola and Mason 1999, or Dekker and Newcomer 1999).

Some chapters of this book include heavy use of inline assembly language
(ASM). | don't expect you to have thorough ASM programming experience, but a
basic knowledge of ASM will be certainly helpful. If you have never written aline of
ASM code, you may find these chapters difficult or you may choose to skip them
entirely. However, | encourage you to read at least parts of them, only skipping the
subsections that explain the details of the ASM code. Because the ASM code snippets
used in the samples are always well encapsulated in C function wrappers, you can
usually ignore their internals and still benefit from the remaining material that
surrounds them.

THE CONVENTIONS USED IN THIS BOOK

The target operating system of this book is Windows 2000. However, you will find
that most of the information also applies to Windows NT 4.0, and most of the sam-
ple applications run on this platform as well. Note that | am not covering Windows
NT 3x. Although it is probably outdated now, NT 351 has been my favorite NT so
far because it was relatively small and fast and did not burn up too many CPU MIPS
inits user interface. With respect to Windows NT 4.0, I have done everything to keep
the software compatible with this version, because it is still in use. Many companies
have designed their corporate networks for the classic Windows NT domain concept,
and they will need time to adopt the new Active Directory paradigm introduced with
Windows 2000. In some cases, it is not possible to provide common code for both
operating system versions because of differences in the layout of some internal data
structures. Therefore, some portions of the sample code contain version checking and
separate execution paths for different versions.

Concerning terminology, when | use the term Windows 2000, it usually
includes Windows NT 4.0 as well. Remember that this funny name isjust a market-
ing gimmick to propel the sales of a system that should have been named Windows
NT 5.0. In the same way, the term Windows NT without a version specification
refers to the NT platform in general, including Windows 2000 and Windows NT 4.0.
Note again that Windows NT 3.x is not on the list. In discussing version-specific

PREFACE XXIII

features, | will use the terms Windows 2000 and Windows NT 4.0 in a contrasting
fashion, pointing out the respective differences.

THE SAMPLE CODE ON THE CD

The sample code included on the companion CD and partially reprinted in this
book has been written for Microsoft Visual C/C++ 6.0 with Service Pack 3. If you
want to rebuild or change the samples, you should also install the latest releases of
the Win32 Platform Software Development Kit (SDK) and the Windows 2000
Device Driver Kit (DDK). These development kits contain the latest header file and
import library updates. Be sure to set the compiler's and linker's search paths appro-
priately to guarantee that the SDK and DDK files are found before the header and
library filesinstalled with Visual C/C++. Both kits are distributed on CD or DVD as
part of the Microsoft Developer Network (MSDN) Professional and Universal Sub-
scriptions. If you aren't a subscriber yet, go for it! You will receive al updates of
Microsoft's operating systems and development kits, plus more than 1 gigabyte of
first-hand technical documentation. The subscription is somewhat expensive, but |
think it is worthwhile. More information is available from Microsoft's MSDN Web
ste a http://msdn.microsoft.com/subscriptions/prodinfoloverview.asp.

The CD included with this book contains both the C source code of all samples
and compiled and linked binary builds thereof for immediate use. All directories are
set up as Microsoft Visual Studio 6.0 expects them: There is a base directory for each
module containing the source files (C code and header files, resource scripts, defini-
tion files, project and workspace information, etc.) and a subdirectory called release
holding the binaries (executables, object code, import libraries, etc.). Figure P-1 out-
lines the overall directory structure of the CD. All source and project files are found
inthe\src tree. It contains a subtree for each sample project, plus a common directory
for header and library files shared by them. The \bin directory contains all . exe,
.a11, and . sys files of the samples, allowing you to start all applications directly
from the CD. The \tools treeis a collection of third-party tools that | thought would
be helpful for readers of this kind of book.

To rebuild a sample, simply copy the modul€'s base directory including the
release subdirectory to the folder where you are keeping your own projects. The
base directory contains . asw and . dsp workspace and project definition files provid-
ing build information for Visual Studio. Rebuilding is easy: Open the . dsw filein
Visual Studio, choose the active configuration (e.g., Release) and select Build \ Build
or Build \ Rebuild All from the main menu. Please note that some header files con-
tain additional linker directivesin the form of #pragma statements. This neat trick
alows you to rebuild all sampleswith default Visual Studio settings—no need to
enter anything into the project setting dial ogs.

XX1V PREFACE

FIGURE P-1.

El--\ﬁ Compact Disc

{3 bin
E L:] src

@1 common
I O include
LM b
&CB w2k_call
i L] release
m C:] w2k_cv
i L release
- {itl w2k_dhg
f {3 release
®- f:] wzk_dump
¢ {3 release
a CB w2k_hook
{3 release
ﬂ 03 w2k_img
;{1 release
B EZI w2k_kill
: =7 release
2 Eﬂ w2k_lib
¢ L release
& E] w2k_load
f ----- »-{] release
& f_:i w2k_mem
L L) release
: C:i w2k _obj
¢ o {33 release
! nm w2k_spy
i {3 release
ECJ w2k_sve
i {1 relaase
E«ﬁ] w2k_sym
. =0 release
E CJ w2k_sym2
. ~{Orelease
8-(3 w2k_wiz
- L3 release
& CZI toals
~{) MFVDasm
L) PEview

Directory Structure of the Sample CD

PREFACE XXV

Because most of the code is guaranteed to be not Windows 9x compatible, | did
not provide support for ANSI characters. The native character set of Windows 2000
is Unicode, featuring 16-bit characters. Therefore, strings are defined as WORD arrays
or pointers, except for the rare occasions that the system actually expects ANSI
strings. This makes it a lot easier, doesn't it? Good Win32 programmers always try to
support both ANSI and Unicode side by side to give legacy operating systems such as
Windows 95 and 98 afair chance to execute their code. This problem does not arise
here—the code presented in this book usually goes well below the Win32 layer, so we
can make full use of al native features of Windows 2000. The only notable exception
isthew2k_img. d11 library project and its companion application w2k_sym2 . exe,
both discussed toward the end of Chapter 1. The DLL supports both ANSI and
Unicode, and the application is compiled for ANSI. Thisis the only sample applica-
tion on the CD that runs even on Windows 95.

There are manifold dependencies between the sample projects on the CD. For
example, the kernel-mode driver w2k_spy. sys and the utility library w2k _lib.dll
arereferenced by several applications, introduced in different chapters. Figure P-2
outlines these dependencies. The diagram should always be read from left to right. For
example, the w2k_ob7 . exe application imports API functions from w2k_cal1. dll and
w2k_1ib.d11l, and w2k_call.dllinturnrelies on w2k_1ib.d11 and w2k_img.dll,
additionally performing Device 1/O Control calls into w2k_spy. sys. This means that
you should always place the dependent files into the same directory with w2k_obj . exe
to be able to run this application reliably. Note that | have added imagehlp.dll and
psapi. dll to the diagram, although they are Microsoft components. This isjust to
emphasize that the w2x_dbg. dll library relies on these additional DLLS, whereas the
other sample programs do not.

One of the sample modules should be mentioned explicitly here: It is the
"Windows 2000 Utility Library" found in thew?2k_lib directory branch. Aswell as
hosting large portions of the sample code reprinted in the following chapters, it also
contains lots of Win32 boilerplate code not specifically related to the focus of this
book that you might want to reuse in other projects. It features memory, registry,
object pool, and linked-list management, CRC32 computation, pseudo-random
number generation, operating system and file version checking, and much more.

The hugew2k_1ib. c fileisarepository of general-purpose code | have written for
myself in the past few years, and it is intended to make the life of Win32 programmers
somewhat easier. Enjoy!

XXVI

PREFACE

THE THIRD-PARTY TOOLS ON THE CD
Along with the sample code | wrote exclusively for this book, the companion CD

contains valuable tools contributed by others. | am indebted to Jean-Louis Seigne and
Wayne J. Radburn for allowing me to distribute their finest tools on this CD. In the
\tools directory, you will find the following goodies:

w2k_obj.exe w2k_call.dll w2k_spy.sys -
w2k_hook.exe
w2k_mem.exe ~wek_lib.dIl
w2k_load. exe

w2k_svec.exe w2k_img.dll

- w2k _dump.exe
w2k_cv.exe w2k_kill.sys
w2k_sym2.exe
w2k_sym.oxe __imagehlp.dit
w2k _wiz.exe psap_i_._d_ll
FIGURE P-2. Dependencies of the Sample Programs

e The Multi-Format Visual Disassembler (MFVDasm) is written by
Jean-Louis Seigne, who has been in the Windows software devel opment
business since 1990. Actually, MFVDasm is much more than just a disas-
sembler—it is a Portable Executable (PE) file cruncher, disassembler, hex

PREFACE XXVII

dump utility, and ASM code browser in one. The \tools\MFvDasm direc-
tory on the CD contains a fully functional timed demo version, protected
with the Softlocx software produced by BitArts. You can get an unlimited
version by paying US$100.00 to Jean-Louis Seigné via credit card. The lat-
es version of MFVDasm is available at http://redirect.to/MFVDasm;
inquiries about the software should be emailed to MFVDasm@redirect.to.

» The PE and COFF File Viewer (PEview) is contributed by Wayne J.
Radburn and is given royalty-free as a special bonus for the readers of this
book. Wayne is a die-hard Win32 assembly language programmer like me,
except that he is still doing the job while | have moved to C. Application
programming in ASM is tough, so you can be sure that Wayne is atrue
expert. PEview is certainly the most versatile PE file browser I'm aware of,
and it is an essential tool for operating system spelunkers. It provides a
quick and easy way to view the structure and content of 32-bit Portable
Executable (PE) and Component Object File Format (COFF) files, and it
supportstheviewing of .exe, .d11, .0bj, .1ib, .dbg, and other file
types. Meet Wayne on the Web at http://tfww.magma.ca/~wjr/, or send
email to wjr@magma.ca.

Because this is third-party software, included here by special license agreement
with the respective authors, neither Addison-Wesley nor | take any responsibility
for its usage. Please read the licensing information displayed by these programs for
more details.

THE "WITHOUT WHOM" SECTION

Before writing my first book, | wasn't aware that so many people participate in a
book's production process. Writing the manuscript is just one of many steps to be
taken until the first printed copy appears on the shelves of the bookstores. This
section is dedicated to the numerous people who have contributed substantially to
the making of this book.

First, | want to thank Gary Clarke, formerly of Addison-Wesley, for putting this
book project onto the track. Unfortunately, Gary left Addison-Wesley just before the
first manuscript line was written, but fate brought me together again with Karen
Gettman and Mary Hart, who coordinated the manuscript creation phase of my
first book. This was good luck; | can't think of a better team for the birth of a new
book. However, my joy halted abruptly just as | was writing the last paragraphs of
Chapter 7, when | got notice that Mary left Addison-Wesley. Fortunately, Emily Frey
jumped in and saved the day. I'm also indebted to Mamata Reddy, who coordinated
the book's production, Curt Johnson, Jennifer Lawinski, and Chanda D. Leary-Coutu

XXVIIl PREFACE

of the marketing team, Katie Noyes for doing the cover artwork, and Beth Hayes for
faithfully copyediting my raw manuscript. Severa other people at Addison-Wesley
whose names are unknown to me were involved in the production and marketing of
this book, and | thank them all from my heart. Additionally, specid thanks go to my
queen of hearts Gerda B. Gradl, my parents Alla and Olaf Schreiber, and my colleague
Rita Spranger for continuous encouragement and support throughout the entire
project—writing a book is sometimes a lonesome job, and it is good to have someone
with whom to talk about it sometimes.

And finally, a big, big "thank you" to Roine Stolt, leader of the Swedish Pro-
gressive-Rock band The Flower Kings (http://www.users.wineasy.selflowerkings/),
for his unbelievable, indescribable music, which has been an endless source of
inspiration to me during manuscript writing. He always keeps on reminding me
that "Stardust we are."

We believe in the light,

We believe in love,

Every precious little thing.

We believe you can still surrender,
You can serve the Flower King.

NOTE: Excerpt from "The Flower King" by Roine Solt, 1994. Used by kind permission.

CHAPTER 1

Windows 2000
Debugging
Support

B ecause much of the information found in this book is of the so-called undocu-
mented kind, some of it is available only by peeking inside the operating system
code. The Windows 2000 Device Driver Kit (DDK) provides a powerful debugger
that does a great job in this respect. This chapter begins with detailed step-by-step
instructions to set up a full-fledged debugging environment on your machine. While
reading the following chapters, you will frequently go back to the Kernel Debugger
to extract operating system internals of various kinds. If you are becoming bored
with the Kernel Debugger, you might want to tailor your own debugging tools.
Therefore, this chapter also includes information about the documented and undocu-
mented Windows 2000 debugging interfaces, including detailed inside information
about Microsoft symbol files. It features two sample libraries with companion appli-
cations that list processes, process and system modules, and various kinds of symbol
information buried inside the Windows 2000 symbol files. As a special bonus, you
will find the first public documentation of the Microsoft Program Database (PDB)
file format at the end of this chapter.

SETTING UP A DEBUGGING ENVIRONMENT

"Hey, | don't want to debug a Windows 2000 program. First of al, | want to write
one!" you might shout out after reading this headline. “Right!” | say, "That's what
you are going to do!” But why should you start the voyage by setting up a debugging
environment? The answer is simple: The debugger is sort of a backdoor into the
operating system. Of course, this has not been the primary intention of the persons
who wrote this tool. However, every good debugger must be able to tell you some-
thing useful about the system while you are stepping through the execution of your
own code or after your application has died unexpectedly. It is not quite acceptable
to report an eight-digit crash address that points somewhere into the 4GB address

2 WINDOWS 2000 DEBUGGING SUPPORT

space, leaving you figuring out alone what really happened. The debugger should at
least tell you which module's code the offending code was executing last, and, ideally,
it should also tell you the name of the function where the application passed away.
Therefore, the debugger usually must know much more about the system than is
printed in the programming manuals, and you can use this knowledge to explore the
internals of the system.

Windows 2000 comes with two native debuggers. winbbg. exe (pronounced like
“WindBag”) is aWin32 GUI application, and i386kd.exeis its console-mode equiva-
lent. | have worked with both versions for some time and finally decided that
i386kd.exe S the better one because it has a more powerful set of options. Recently,
however, it seems that winpbg. exe has improved, causing the people at Open Systems
Resources (OSR) to include an article titled "There's a New WinDBG in Town—And
It Doesn't Suck Anymore" in the May/June 2000 edition of The NT Insider (Open
Systems Resources 2000). Nevertheless, all examples in this book that somehow
involve a Windows 2000 debugger relate to 1i386kd.exe. AS you might have guessed,
the i386 portion of the name refers to the target processor platform (Intel 386 family
inthis case, including all Pentium versions), and kd is short for Kernel Debugger. The
Windows 2000 Kernel Debugger is avery powerful tool. For example, it knows how
to make use of the symbol files distributed on the Windows 2000 setup CDs, and
therefore can give you invaluable symbolic information about almost any addressin
system memory. Moreover, it will disassemble binary code, list hex dumps of memory
contents in various formats, and even show you the layout of some key structures of
the kernel. And it gives away this information for free—the debugger's command
interface is fully documented inits online help.

PREPARING FOR A CRASH DUMP

This is the good news. The bad news is that you have to do some preparatory work
before the Kernel Debugger will obey you. The first obstacle is that debugging usu-
aly involves two separate machines connected by a cable—one running the debugger,
the other one hosting the debuggee. However, there is a much easier way, eliminating
the necessity of a second machine, if live debugging is not a requirement. For exam-
ple, if a buggy application throws an unhandled exception causing the infamous NT
"Blue Screen Of Death" (BSOD) to pop up, you can choose to save the memory
image that was in effect right before the crash to a file and examine this crash dump
after rebooting. This technique is usually called post mortem debugging (post mortem
is Latin and means "after death"), and it is one of the preferred methods used
throughout this book. Our primary task here is to explore system memory, and for
most situations, it doesn't matter whether the memory under examination is alive or
a snapshot of the last breath of a dead system. However, some interesting insights can

SETTING UP A DEBUGGING ENVIRONMENT 3

be gained by peeking into the innards of alive system using a kernel-mode driver, but
thisis atopic to be saved for later chapters.

A crash dump is simply a copy of the current memory contents flushed to a disk
file. Therefore, the size of a complete crash dump fileis (almost) the same asthe
amount of physical RAM installed on the machine—in fact, it is a bit less than that.
The crash dump is written by a specia routine inside the kernel in the course of han-
dling the fatal exception. However, this handler doesn't write the memory contents
immediately to the target file. Thisis agood idea, because the disk file system might
not be in good health after the crash. Instead, the image is copied to the page file stor-
age, which is part of the system's memory manager. Therefore, you should increase the
total size of your pagefilesto at least twice the size of physical memory. Twice?
Wouldn't the same size be enough? Of course—just enough for the crash dump. How-
ever, the system will attempt to copy the crash dump image to areal disk file during
bootstrap, and this means that the system might run out of virtual memory if it can't
free the page file memory occupied by the image in time. Usually, the system will cope
with this situation, just throwing some annoying "low on virtual memory" warnings
at you while thrashing the disk, but you can save alot of time by making the pagefile
large enough whenever you are expecting an increased probability of a Blue Screen.

That said, you should proceed now by starting the Windows 2000 Control
Panel utility and changing the following settings:

* Increase the overall size of your page files to at least twice the amount of
installed RAM. To this end, open the System applet, select the Advanced
tab of the System Properties dialog, and click the Performance Options...
button. In the Virtual memory frame, click the Change... button, and
change the value in the Maximum size (MB) field if it doesn't match your
physical memory configuration. Figure 1-1 is a sample snapshot taken on
the system on which | am currently writing these lines. | have 256 MB of
RAM inside my tower, so 512 MB isjust enough. Click Set after changing
the settings, and confirm all open dialogs except the System Properties by
pressing their OK buttons.

* Next, configure the system to write a crash dump file on every Blue Screen.
In the System Properties dialog, click the Startup and Recovery... button,
and examine the Write Debugging Information options. Y ou should select
the Complete Memory Dump option from the drop-down list to get a
faithful copy of the entire memory contents. In the Dump File box, enter
the path and name of the file where the dump will be copied to from the
page file. $systemrRoot%\MEMORY.DMP IS @ commonly used setting
(Figure 1-2). Check or uncheck the Overwrite any existing file option
according to your own preference, and confirm al open dialogs.

4 WINDOWS 2000 DEBUGGING SUPPORT

s

FIGURE 1-1 Setting the Size of the Page File Storage

SETTING UPA DEBUGGING ENVIRONMENT 5

FIGURE 1-2. Choosing Crash Dump Options

6 WINDOWS 2000 DEBUGGING SUPPORT

CRASHING THE SYSTEM

After having set up the system for a crash dump, it is time to do the most horrible
thing in the life of a Windows 2000 system programmer: Let's crash the system! Usu-
aly, you will get the dreaded Blue Screen whenever Damocles sword is hanging
above your head—typically when a production deadline is due in afew hours. Now
that you are willing to crash the system, you are probably unable to find any unstable
piece of software that will do the job. Try David Solomon's neat trick described in the
second edition of Inside Windows NT. This is his proposal:

"How can you reliably generate a crash dump? Just kill the Win32 subsystem
process (csrss.exe) or the Windows NT logon process (winlogon.exe) with the
Windows NT Resource Kit tool kill.exe. (You must have administrator
privileges to do #4is.)” (Solomon [1998], p. 23.)

Surprise, surprisel This trick doesn't work anymore on Windows 2000! On first
sight, that's bad luck, but on the other hand, it is good news. What do you think
about an operating system that can be trashed so easily by atiny and simple tool offi-
ciadly distributed by Microsoft? In fact, it is good that Microsoft has closed this secu-
rity gap. However, we are now in need of an alternative way to tear down the system.
At this point, itistime for an old and simple NT rule: "If anything seems to be
impossible in the Win32 world, just write a kernel-mode driver, and it will work out
all right!” Windows 2000 manages Win32 applications very carefully. It constructs a
wall between the application and the kernel, and anyone trying to cross this border
will be shot without mercy. This is good for the overal stability of the system, but
bad for programmers who need to write code that has to touch hardware. Contrary
to DOS, where any application was allowed to do anything to the hardware, Win-
dows 2000 is very picky in this respect. This doesn't mean that accessing hardware
on Windows 2000 is impossible. Instead, this kind of access is restricted to a specia
kind of module called kernel-mode driver.

| can tell you now that | will present a short introduction to kernel-mode driver
programming in Chapter 3. For now, it should suffice to say that crashing the system
is one of the easiest things a kernel-mode driver can do. Windows 2000 doesn't pro-
vide an error recovery mechanism for drivers going berserk—even the faintest
attempt to perform an illegal operation isimmediately answered with a Blue Screen.
Of course, the simplest and least dangerous violation of the rules is reading from an
invalid memory address. Because the system explicitly catches all memory accesses
through a NULL pointer, which is probably one of the most common errorsin C pro-
gramming, a NULL pointer read is the ideal operation to force a benign system crash.
Thisis exactly what the w2k_ki11. sys driver on the sample CD does. This very sim-
ple piece of software will aso be one of the first kernel-mode driver projects pre-
sented in this book.

SETTING UP A DEBUGGING ENVIRONMENT 7

Listing 1-1 isatiny excerpt fromw2k_ki11.c, containing nothing but the bad
code that triggers the Blue Screen. When writing senseless code such asthis, be aware
that the brilliant optimizer built into Visual C/C++ might counteract your efforts. It
tracks all code and tends to eliminate any instructions that don't have permanent side
effects. In the example below, the optimizer's hands are tied because the DriverEntry ()
function insists on returning the value found at address zero as its return value. This
means that this val ue has to be moved to CPU register EAX, and the easiest way to
dothisisby meansof theMQOV rax, [0] instruction, whichwill throw the exception
we have been waiting for.

The w2k_1oad. exe application presented in Chapter 3 can be used to load and
start thew2k_xi11. sys driver. If you are mentally ready to kill your Windows 2000
system, proceed as follows:

» Close al applications.
* Insert the accompanying sample CD.
e Choose Run... from the Start menu.

» Enter d: \bin\w2k _load w2k_ki11. sys into the edit box, replacing d:
with the drive letter of your CD-ROM drive, and click OK.

After this click, w2k_load. exe will attempt to load the w2k _ki11. sysfile located
in the CD's \bin directory. As soon as the DriverEntry () routine is executed, the Blue
Screen will appear, with a message similar to the one shown in Figure 1-3, and you
will see a counter on the screen being incremented from 0 to 100 (or so) while the
memory contents are dumped to the page file storage. If you have checked the Auto-
matically reboot option in the Startup and Recovery dialog (see Figure 1-2), the sys-
tem will reboot immediately after the crash dump is finished. When the system is
ready for logon, wait for some time until the disk LED is no longer flashing. It takes
some time to copy the crash dump image from the page file storage to the target disk
file defined in the Startup and Recovery options (see Figure 1-2), especialy if you have
plenty of physical memory. Disturbing the system in this phase, for example, by shut-
ting it down too early, might yield an invalid crash dump file that will be refused by
the Kernel Debugger.

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,
PUNICODE_STRING puRegi stryPat h)
(

return *((NTSTATUS *) 0); // read through NULL pointer

}

LISTING 1-1 A NULL Pointer Read Operation in Kernel-Mode Crashes the System

8 WINDOWS 2000 DEBUGGING SUPPORT

wen STOP: OxPOBEORGLE (AxCHPBBOES, BxBECCINEG, @xHARBROBD,. Ox00000006>
KMODE_EXCEPTION_NOT_HANDLED

llxx fiddress BxBECC3BPB base at BxBECC20808, Date Stamp 389dh915 - w2k _kill.sys

Beginning dunp of physical memory
(Dumping physical memory to disk: 99

FIGURE 1-3. Execution of w2k_ki11.8ys Yieldsa Nice Blue Screen

In Figure 1-3, the system displays the name of the modul e that contains the
offending code (w2k_kill.sys), aswell asthe address of the instruction that caused
the exception (0xBECC3000) . This address will probably be different on your system,
because it varies with the hardware configuration. Driver load addresses generally are
not deterministic, similar to DLL load addresses. Please write down the indicated
address—you will need it later after installing and configuring the Kernel Debugger.

A short note of caution is appropriate here: Crashing the system intentionally
is not something you should do every day. Although the offending w2k_ki11.sys
code itself is benign, the time of its execution might be unfortunate. If the NULL
pointer read occurs while another thread is in the course of doing something
important, the system might shut down before this thread has a chance to clean
up. For example, the active desktop tends to complain after the reboot that some-
thing horrible has happened and that it needs to be restored. Therefore, carefully
check that the machine isn't working on precious data and that all cached data has
been flushed to disk before you crash the system. The best time is when the disk
has calmed down after a bootstrap. Note that neither the author nor the publisher
of this book shall be liable for any damages resulting from system crashes forced
by the w2k_ki11. sys driver.

INSTALLING THE SYMBOL FILES

After rebooting, you have a snapshot of a Windows 2000 system, including a bad
kernel-mode driver, caught in the course of a NULL pointer read. Peeking into this
file is as good as examining the memory of alive system. Of course, this snapshot is

SETTING UP A DEBUGGING ENVIRONMENT 9

like a dead animal body—it can't react anymore to external stimuli, but that shouldn't
worry you now. What comes next is the setup of the symbol files that shall be used by
the Kernel Debugger while you are dissecting the crash dump.

MSDN subscribers have to look for the symbol files on the CD named
Windows 2000 Customer Support—Diagnostic Tools, which is part of the dark
green Development Platform (English) CD set. Inserting the CD into the drive will
start the Windows 2000 Internet Explorer with a file named \pec. 1. Here you can
click on various setup options. If you are running the free build of Windows 2000,
Install retail symbols is the correct choice. For the checked build, choose Install
debug symbols instead. Y ou can also use the classic symbol file setup by opening
the Explorer and double-clicking the files \ svMBOLS\ 1386 \RETATL\ SYMBOLSX . EXE
(Figure 1-4) or \syMBOLS\ 1386 \DERUG\ sYMBOLSX. ExE, Which are exactly the actions
attached to the setup hyperlinks embedded in the \pzc . arw file. The setup utility will
copy several . dbgand . pdb files from the SYMBOLS . CAB archive to various subdirecto-
ries of the system's symbol root, which is named %systemroot%:\ symbo1s by default.
The ssystenroot% token symbolizes the value of the environment variable systemroot,
indicating the installation directory of the Windows 2000 system. In the example
below, it is the D : \wrwwT directory.

On startup, the Windows 2000 Kernel Debugger will try to locate the symbol
files by evaluating the environment variable T _svmeor_paTu (note the leading
underscore), so it is a good idea to define this variable right now. Again, you have to
start the System applet from the Control Panel and select the Advanced tab, this time
clicking the Environment Variables... button. Next, click the New... button in the
System variables frame, and enter the Variable Name: and Variable Vaue: as shown
in Figure 1-5, replacing D : \winnt by the ¢systemroot% path of your system. After
confirming all dialogs, symbol setup is complete.

= &2 W2PSEL_EN (Y1) 3SYMBOLS.CAB
] SETUP EHSYMBOLS.CAT
=] SYMBOLS 5] SYMBOLS.INF
- 11386
_1 DEBUG Copying Files...
| - RETAIL

] TOOLS b

‘ % [#] Control Panel ,j _j |
| B8 My Network Places comstiap. pdb |
‘ "4 Recycle Bin To D:AWINNT\Symbols\dl

@& Internet Explorer e

FIGURE 14 Installing the Windows 2000 Retail Symbols

10 WINDOWS 2000 DEBUGGING SUPPORT

Environment Vaﬂablas

s

‘ New aystem Variahle HE |

\. Variable Name: | _NT_SYMBOL_PATH ‘
| |
| Variable Value: | DiYwINNT]

|
|
| . = |

|--5ystem variables

| Warlable | Malue 5 |~ l
| ComSpec DWINNT System32icmd. exe
| | |NUMBER_OF _PR... 1

[os Windows_NT
| | oszipath D\Wﬂwﬁ,systetnaz'l.oszﬁ,dl,
‘ Path D:AWINNT|system3z;Di \WINNT,DI\WIN...]
NewJ Edit,.. | Delete |
I 3 !
ok | cancel | .|
FIGURE 1-5. Defining the Environment Variable nt_symBor,_paTa

The Microsoft documentation is somewhat unclear about which directory path
must be assigned to the _wr_svueor,_pats variable. The kernel-mode debugging
chapters of the DDK say that the symbo1s subdirectory has to be included, yielding a
value of d: \winnt\symbols or equivalent. In the Platform Software Development Kit
(SDK) documentation of the abghe1p.d11 library, the symbol path setup is described
a bit differently:

"The library uses the symbol search path to locate debug symbols (.dbg file)
for .dll, .exe, and . sysfiles by appending "\symbols" and “\a11”or “\exe”
or “\sys” to the path. For example, the typical location of symbol files for

.dil filesisce. \mysymbols\symbols\dll. For .exe files, thelocation is
c:\mysymbols\symbols\exe.”

[..] “Ifyou set the NT_syMBOL_PAT®I _NT_ALT_SYMBOL_PATH environment
variable, the symbol handler searches for symboal files in the following order:

SETTING UP A DEBUGGING ENVIRONMENT 11

1. The current working directory of the application.

2. The nt_symBor_paTH environment variable.

3. The_wt_anT_syMBOL_PATH environment variable.

4. The SYSTEMROOT environment variable.”

(MSDN Library - April 2000 \ Platform SDK \ Base Services \
Debugging and Error Handling \ Debug Help Library \ About DbgHelp \
Symbol Handling \ Symbol Paths)

This sounds more like setting _nNT_syMBoL,_PATH tO d: \winnt rather than d: \winnt
\symbols. TO find out which point of view is correct, | tried both variants and was glad
to see that it doesn't matter which one you choose. The Kernel Debugger finds the sym-
bol files one way or another. If you suspect now that the _nt_svmeor,_paTH value doesn't
matter at all, try to set it to an invalid path—the debugger will refuse to run.

SETTING UP THE KERNEL DEBUGGER

The last step in the debugging environment setup is the installation and configuration
of the Kernel Debugger. If you have already installed the Windows 2000 DDK, you
can use the debuggersfoundinthe \NTDDK\bin directory. The Kernel Debugger exe-
cutable is named i386kd. exe. An alternative way isto install the debugging tools
from the MSDN CD Windows 2000 Customer Support—Diagnostic Tools, from
which you have already taken the symbol files. Just click on the Install Debugging
Tooals link on the setup page \pec. uTM, Or start the setup in the classic way by dou-
ble-clicking \Toorns\1386\pRGPLUS. EXE in the EXplorer panel. This setup utility will
copy the tools to a directory named \program Files\Debuggers\bin.

After installing the Kernel Debugger, it is a good idea to create a shortcut that
invokes i386kd. exe With the parameters you need. If you want to examine the crash
dump file generated after the w2k_ki11. sys Blue Screen, you can use the -z com-
mand line switch to specify the path of thisfile, directing the debugger to load this
memory image at startup. Figure 1-6 illustrates typical shortcut properties.

Now everything is set up for the first debugging session. If you double-click the
debugger's shortcut, you should see a console window like the one shown in Figure 1-7.
The kd> prompt in front of the flashing cursor indicates that the Kernel Debugger is
ready to accept commands. Before doing anything else, please check that the symbol
search path displayed below the copyright banner is set to the correct location. If not,
there is probably a typo in the environment variable specifying this path (see Figure 1-5).
The start message also shows that the debugger has loaded three extension DLLSs.
i386ka. exe features a powerful extension mechanism that allows the basic command
set to be augmented by custom commands implemented in a separate DLL. Because
these additional commands have to be preceded by the "bang" character “!” to distin-
guish them from the built-in set, they usually are called bang commands. Some of them
are extremely useful, as you will see later.

12 WINDOWS 2000 DEBUGGING SUPPORT

Shortcut to i386kd.exe Properties [71 %]

General Shortcul ‘Clptirmal Font | Layout| Colots | Secuity |

| '; 3 Shorteut Lo 1386kd axe

‘ Tage! type: Application

Targe! location: bin

Target KA\binhi386kd exe -z DAWINNTAMEMORY. DMH
|

¥ Bupinsegarate metton cpgce [Runy as different Gger
| Start i [DANTDDKAbin

Shortout key: |None

| Bun | Normal window ;]

| Comment:]

Find Target...] Change Icon, |

‘ oK I Cancel l Apply l

FIGURE 1-6. Creating a Kernel Debugger Shortcut

In Figure 1-7, I have entered one of the built-in commands: u becc3000. Theu
mnemonic means, of course, "unassemble,” and becc3000 is the hexadecimal start
address where disassembly begins. By default, the number radix is 16, but you can
change this setting with the n command, for example, n 10 if you prefer decimal nota-
tion. You can always force a number to be interpreted as a hexadecimal by using the
Ox prefix borrowed from the C language. The address becc3000 isthe memory loca-
tion where thew2k_ki11. sys crash dump occurred (see Figure 1-3). Please try the u
command with the address reported by your system after crashing. You should get a
mov eax, [00000000] instruction, too, asshownin Figure 1-7, although the addressis
probably different. Otherwise, you are probably peeking into the wrong crash dump
file—please check your Kernel Debugger shortcut in this case (see Figure 1-6). The
mov eax, [00000000] instruction, loads a 32-bit value from the virtual address
0x00000000 to CPU register EAX, s0 it is obviously the implementation of the C
expression return * ((NTSTATUS *) o) in Listing 1-1, and constitutes a NULL-pointer
read operation. There is no specia exception handler installed for this type of error,
therefore, the system reports a kMoDE_EXCEPTION NOT_HANDLED efror on the Blue
Screen, as demonstrated by Figure 1-3. If you want, you can learn more about this
common error code in The NT Insider (Open Systems Resources 1999b).

SETTING UP A DEBUGGING ENVIRONMENT 13

°\ Kernel Debugger

FIGURE 1-7. Initiating a Kernel Debugger Session

KERNEL DEBUGGER COMMANDS

Although the debugger commands are intended to be mnemonic, it is sometimes hard
to recall them at theright time. Therefore, | have collected them in Appendix A,
Table A-1, asa quick reference. Thistableis an edited version of the debugger's help
output generated by the ? command. The various types of arguments required for the
commands are compiled in Table A-2.

As aready mentioned, the Kernel Debugger can execute external commands
known as bang commands that are implemented in one or more associated extension
DLLs. Whenever acommand name is prefixed by an exclamation mark (the so-called
bang character), this name is looked up in the export lists of the loaded extension
DLLs. If amatch is found, the command is handed over to the DLL. Figure 1-7 shows
that the Kernel Debugger loads the extensions kdextx86.d11, userkdx.dll, and

14 WINDOWS 2000 DEBUGGING SUPPORT

dbghelp.dll, inthisorder. Thelatter islocated in the same directory asthe
i386kd.exe application; the former pair is availablein four versions: free versus
checked build for Windows NT 4.0 (subdirectories nt4fre and nt4chk), and free
versus checked build for Windows 2000 (subdirectories w2k fre and w2kchk), respec-
tively. Normally, the debugger will use adefault search order when locating the han-
dler of a bang command. However, you can override the default by specifying a
module name before the command name, separated by a dot. For example, both the
kdextx86.d11 and userkdx.dall extensons export ahelp command. Typing 'help
will yidd the help screen of the kdextxg6. a11 module by default. To execute the help
command of userkdx.dll, you have to type luserkdx.help (Or !userkdx.help -V
if you need more verbose help). By the way, you can write your own debugger exten-
sions if you know the rules. An excellent how-to article can be found in The NT
Insider (Open Systems Resources 1999a). It is targeting winbbg . exe rather than
i386kd. exe, but because both debuggers use the same extension DLLs, most of the
informationis applicableto i386kd.exe aswell.

Tables A-3 and A-4 in Appendix A show the output generated by the help com-
mands of xaextx86. dll and userkdx. a11, respectively, dightly corrected and heav-
ily edited for better readability. You will notice that these tables ligt far more
commands than documented in the Microsoft DDK, and some commands obviousy
have additional optional parameters not mentioned in the DDK documentation.

THE TOP TEN DEBUGGING COMMANDS

Tables A-1 to A-4 demonstrate in an impressive way that the Kernel Debugger and its
standard extensions offer a large number of commands. Therefore, | will discussin
detail some of the commands that are most useful for the exploration of Windows
2000 internals.

u: UnassembleMachine Code
Y ou have already used the u command after starting the Kernel Debugger to check
whether the loaded crash dump file is OK. The u command has three forms:

1. u <from> disassembles eight machine instructions, starting at
address <from>.
2. u <from> <to> starts disassembly at address <from>, and continues until

reaching or transcending address <to>. Theinstruction at this address, if
any, is not included in the listing.

3. u (without arguments) restarts disassembly from the address where a
previous u command stopped (no matter whether it had arguments
or not).

SETTING UP A DEBUGGING ENVIRONMENT 15

Of course, disassembling large code portions with this command is quite annoy-
ing, but it comesin handy if youjust need to know what is occurring at a specific
address. Perhaps the most interesting feature of the u command is its ability to
resolve symbols referenced by the code—even internal symbols not exported by the
target module. However, in disassembling complete Windows 2000 executables,
using the Multi-Format visual Disassembler on the companion CD is much more
fun. More on this product will follow later in this chapter.

db, dw, and dd: DumpMemory BYTEs, WORDs, and DWORDs
If the memory contents you are currently interested in are binary data rather than
machine code, the debugger's hex dump commands do a great job. Depending on the
data types you are expecting at the source address, one of the variants db (for BY TES),
dw (for WORDS), or dd (for DWORDS) applies.

 db dumps a memory range in two panels. On the |left-hand side, the
contents are displayed as two-digit 8-bit hexadecimal quantities; the right-
hand panel shows the same data in ASCII format.

* dw displays the contents of a memory range as four-digit 16-bit
hexadecimal quantities. An ASCII panel is not included.

* dd displays the contents of a memory range as eight-digit 32-bit
hexadecimal quantities. An ASCII panel is not included.

For this command set, the same arguments as for the u command can be used.
Note, however, that the data located at the <to> address are always included in the
hex dump listing. If no arguments are specified, the next 128-byte block is displayed.

x: Examine Symbols
The x command is very important. It can create lists of symbols compiled from the
installed symbol files. It istypically used in one of the following three forms:

1. x * I * digplays alig of al modules for which symbols can be browsed. After
startup, only the ntoskrn1 . exe symbols are available by default. The symbols
of other modules can be added by issuing the . reload command.

2. X <module>! <filter> displays alist of symbols found in the symbol file
of <module>, applying a <filter> that may contain the wildcards ? and
* . The <module> name must be one of the list yielded by thex *: *
command. For example, X nt! * lists al symbols found in the kernel's
symbol filentoskrnl.dbg, and X win32k! * liststhe symbols provided by
win32k.dbg. |f the debugger reports "Couldn't resolve ‘x ...””, try the
command again after reloading al symbols by means of the . reload
command.

16 WINDOWS 2000 DEBUGGING SUPPORT

3. x <filter> displays a subset of all available symbols, matched against a
<filter> expression. Essentially, thisis a variant of the x
<module>! <filter> command, in which the <module>! part has
been omitted.

Along with the symbol names, the associated virtual addresses are shown. For
function names, thisis the function's entry point. For variables, it is a pointer to the base
address of the variable. The mogt hotabl e thing about this command isthat its output
includes many internal symbols, not just those found in the executable's export table.

1n: ListNearest Symbols
The 1n command is certainly my favorite, because it gives quick and easy access to
the installed symbol files. It is the ideal complement to the x command. Whereas the
latter is great if you need an address listing of various operating system symbols, the
1n command is used to look up individual symbols by address or name.

* 1n <address> displays the name of the symbol found at or preceding
the given <address>, aswell as the next known symbol following
this address.

e 1n <symbol> resolves the given <symbol> nameto itsvirtual address and
then proceeds like the 1n <address> command.

Like with the x command, the debugger is aware of al exported and severa
nonexported internal symbols. Therefore, it is an important aid for anyone who tries
to make sense of unknown pointers occurring somewhere in a disassembly listing or
hex dump. Note that theu, db, dw, and dd commands also accept symbols where
addresses are expected.

Iprocessfields: List EPROCESS Members
As the bang character preceding the name imples, this is a command from a debugger
extension module—kdextx86.d11, inthiscase. Thiscommand displays the names
and offsets of dl members of the—formally undocumented—grrocrss structure
used by the kernel to represent processes, as shown in Example 1-1.

kd> | processfields
Iprocessfields

EPROCESS structure offsets:

Pcb: 0x0

Exi t St at us: x6C

LockEvent : 0x70 LockCount : 0x80
O eat eTi ne: 0x88

ExitTime: 0x90

SETTING UPA DEBUGGING ENVIRONMENT 17

LockOnner : 0x98

UniqueProcessId: x9c

ActiveProcessLinks : a0

QuotaPeakPoolUsage[0] : xa8

QuotaPoolUsage[0] : xbO

PagefileUsage: xb8

CommitCharge: Oxbc

PeakPagefileUsage: xcO

PeakVirtualSize : xca

Mirtual S ze: xc8

Vm 0xdo

DebugPort : 0x120
ExceptionPort : 0x124
(hj ect Tabl e: 0x128
Token: Xl 2¢
WorkingSetLock: 0x130
WorkingSetPage: 0x150
ProcessOutswapEnabled: 0x154
ProcessOutswapped: 0x155
AddressSpaceInitialized: 0x156
AddressSpaceDeleted: 0x157
AddressCreationLock: 0x158
ForkInProgress: 0x17c
Vimper at i on: 0x180
VmOperationEvent : 0x184
PageDirectoryPte: 0x1£0
LastFaultCount: 0x18c
VadRoot : 0x194
VadHint : 0x198
d oneRoot : x| 9¢
NumberOf PrivatePages : 0xl1la0
NumberOf LockedPages : Xl a4
ForkWasSuccessful: 0x182
Exi t ProcessCal | ed: Oxlaa
O eat ePr ocessRepor t ed: 0xlab
SectionHandle: Oxlac
Peb: 0x1b0
SectionBaseAddress : I b4
Quot aBl ock: 0x1b8
LastThreadExitStatus : 0x1bc
WorkingSetWatch: 0x1cO
InheritedFromUniqueProcessId: 0x1c8
GrantedAccess : * Oxlcc
DefaultHardErrorProcessing 0x1d0
LdtInformation: | d4
VadFr eeH nt: 0x1d8
vdmObjects: Oxi de
Devi ceMap: 0x1e0
ImageFileName[0] : 0x1fc
VmTrimFaultvValue: 0x2 ¢
Win32Process: 0x214
Win32WindowStation: Xl c4

EXAMPLE 1-1 Cracking the EPROCESS Structure

18 WINDOWS 2000 DEBUGGING SUPPORT

Although this command shows the members' offsets only, you can easily guess
the corresponding types. For example, the Lockevent member is located at offset
0x70, and the next member follows at offset 0x80, so this member requires 16 bytes,
which looks rather like a xevenT structure. Don't worry if you don't know what a
keveNT is—I will discuss kernel object structures in Chapter 7.

lthreadfields : ListETHREAD Members
This command is another great option offered by the kaextxge . dll debugger exten-
sion. Like the !processields command, it displays the member names and offsets
of yet another formally undocumented structure named etureaD, which represents
threads. Example 1-2 shows a sample output.

tdrivers: ListLoadedDrivers

The kdextx86. dll goodie ." drivers shows detailed information about al currently
running kernel and file system modules. If a crash dump image is examined, thislist
reflects the system state at the time of the crash. Example 1-3 is an excerpt of a sam-
ple run on my machine. Note that the last line before the summary shows our bad
Windows 2000 killer device at base address oxerecc2000, which is obviously one of
the hexadecimal numbers reported on the Blue Screen after the w2k_ki11. Sys crash
(see Figure 1-3).

kd> ! threadfields
threadf ields
ETHREAD st ruct ure of f set s:

Teb: 0x0

CreateTime: 0x1b0
ExitTime: 0x1b8
ExitStatus: 0x1c0
PostBlockList: Xl ca
TerminationPortList: Oxlcc
Act iveTimerListLock: I d4
ActiveTimerListHead: 0x1d8
ad 0x1lel
LpcReplySemaphore : 0x1le8
LpcReplyMessage : 0%l fc
LpcReplyMessagelId: 0x200
ImpersonationInfo : 0x208
IrpList: x20c
TopLevellrp: 0x214

ReadClusterSize: 21c

SETTING UP A DEBUGGING ENVIRONMENT 19

Forwar dd ust erOnl y: 0x220

DisablePageFaultClustering : 0x221

DeadThread: 0x222

HasTerminated: 0x224

GrantedAccess : 0x228

ThreadsProcess: x22¢

0x230

Win32StartAddress: 0x234

LpcExitThreadCalled: 0x238

Har dEr r or sAr eD sabl ed: 0x239

EXAMPLE 1-2. Cracking the ETHREAD Structure

kd> ! drivers
ldrivers
Loaded System Driver Sunmary
Base Code Si ze Dat a Si ze Driver Name Qeation Time
80400000 142dcO (1291 kh) 4d680 (309 kb) ntoskrnl . exe Wed Dec 08 00:41 :11 1999
80062000 13c40 (794k 34e0 (13 kb) hal.dll Sun Cct 31 00:48 14 1999
£0810000 1760 (5kei 1000 (4kb) BOOVI D .pLL 1hu Nov 04 02:24 33 1999
f 0400000 bdcO (47k 22a0 (8kb) pci .sys Thu Cct 28 01:11 08 1999
£0410000 99cO (38kbi 18e0 (6 kb) isapnp.sys Sat Oct 02 22:00 35 1999
£09c8000 760 (1 kin 520 (1kb) intelide.sys Fri Cct 29 01:20 03 1999
£0680000 42e0 (16 kb) e80 (3kp) PAIDEX.sys Thu Cct 28 01:02 19 1999
£0688000 64a0 (25 kb) a20 (2kb) MountMgr .sys Sai Cct 23 00:48 06 1999
bf f 3000 192cO (100 kb) 2b00 (10 kb) ftdisk .sys Mon Nov 22 20:36 23 1999
£0900000 12e0 (4 kb) 640 (1kb) Diskperf .sys Fri Gt 01 02:30 40 1999
[...]
b£255000 fcd0 (63 kb) 2120 (8k wdmaud . sys Wed Qct 27 20:40 45 1999
£0670000 9520 (37 kni 1£40 (7k sysaudio .sys Mn ot 25 21:28 14 1999
f094c000 d40 (3 ki 860 (2kb) parvdm.svs Tue Sep 28 05:28 16 1999
£0958000 a00 (2kb) 480 (1kb) PfModNT .sys Thu Dec 16 05:14 08 1999
bf Odd 000 35520 (213 kb) 59e0 (22 kb) rv.sys Tue Nov 30 08:38 21 1999
b£191000 d820 (54 kh) 1280 (4ol Cdfs .sys Mon ot 25 21:23 52 1999
bed9a000 11£20 (71 Kkb) 2acO (10 kb) ipsec .sys Tue Nov 30 08:08 54 1999
beaaf 000 0 (0kb) 0 (0kb) ATMFD .DLL Header Paged Qut
be9eb000O 16£60 (91 kb) cccO (51 kb) kmixer .sys Wed Nov 10 07:52 30 1999
becc2000 200 (Okb) a00 (2kb) w2k kill.sys Sun Feb 06 19:10 29 2000
TOTAL : 79c660 (7793 kb) 15cl 60 (1392 kb) (0 kb 0 kb

EXAMPLE 1-3. Displaying Information about System Modules

20 WINDOWS 2000 DEBUGGING SUPPORT

Isel: ExamineSeectorValues
If issued without arguments, the ! sel command implemented by kdextx86. d11
dumps the parameters of 16 consecutive memory selectors in ascending order. Y ou
can issue this command repeatedly until "Sdector isinvalid” isreported to get alist
of al valid selectors (Example 1-4). Memory selector handlingwill be covered exten-
sively in Chapter 4, and | will present sample code there that demonstrates how you

can crack selectors in your own applications.

kd> sel

tsel

0000 Bas=00000000 Lim=00000000 Bytes DPL=0 N

0008 Bas=00000000 Lim=000fffff Pages DPL=0 '@ Code +~E A

0010 Bas=00000000 Lim=000fffff Pages DPL=0 Data RuW A

0018 Bas=00000000 Lim=000fffff Pages DPL=3 : Code RE A

0020 Bas=00000000 Lim=000fffff Pages DPL=3 p Data RWA

0028 Bas=80244000 Lim=000020ab Bytes DPL=0 P TSS32 B

0030 Bas=ffdff000 Lim=00000001 Pages DPL=0 » Data «ri A

0038 Bas=00000000 Lim=00000fff Bytes DPL=3 ~ Data RWA

0040 Bas=00000400 Lim=0000£££f Bytes DPL=3 p Data RW

0048 00000000 Lim=00000000 Bytes DPL=0 NI

0050 Bas=80470040 Lim=00000068 Bytes DPL=0 TSS32 A

0058 Bas=804700a8 Lim=00000068 Bytes DPL=0 TSS32 A

0060 Bas=00022ab0 Lim=0000ffff Bytes DPL=0 Data RWA

0068 Bas=000b8000 Lim=00003fff Bytes DPL=0 Data Rw

0070 Bas=ffff7000 Lim=000003ff Bytes DPL=0 Data RW

0078 Bas=80400000 Lim=0000ffff Bytes DPL=0 | Code RE

kd> sel

lsel

0080 Bas=80400000 Lim=0000ffff Bytes DPL=0 ~ Data RW

0088 Bas=00000000 Li 00000000 Bytes DPL=0 ; Data RW

0090 Bas=00000000 Lim=00000000 Bytes DPL=0 NI

0098 Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00RO Bas=814985a8 Lim=00000068 Bytes DPL=0 P TSS32 A

00a8 Bas=00000000 Lim=00000000 Bytes DPL=0 NP

ObO Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00b8 Bas=00000000 Lim=00000000 Bytes DPL=0 N

00cO Bas=00000000 Lim=00000000 Bytes DPL=0 NI

00c8 Bas=00000000 Lim=00000000 Bytes DPL=0 NI

00dO Bas=00000000 Lim=00000000 Bytes DPL=0 NP

00d8 Bas=00000000 Lim=00000000 Bytes ppL=0 (IP

00e0 Bas=f 0430000 Lim=0000ffff Bytes DPL=0 P Code & A

00e8 Bas=00000000 Lim=0000£££f Bytes DP | Data RW

0O0f O Bas=8042dce8 Lim=000003b7 Bytes DP 1 Code EO

00f8 Bas=00000000 Lim=0000ffff Bytes DPL=0 | Data RV
EXAMPLE 1-4. Displaying Selector Parameters

MORE DEBUGGING TOOLS 21

SHUTTING DOWN THE DEBUGGER

Y ou can kick the Kernel Debugger out of the system by simply closing the console
window it is running in. However, the clean way to shut it down is using its g com-
mand, where "q" stands for—you guessed it—“quit.”

MORE DEBUGGING TOOLS

On the book's companion CD, you will find another pair of valuable debugging tools
contributed by two “e-friends” of mine. | am very glad that they allowed me to put
fully functional versions of their great tools onto the CD. Wayne J. Radburn's PE and
COFF File Viewer (PEview) isa specia FreeWare edition for the readers of this book.
Jean-Louis Seigne's Multi-Format Visual Disassembler (MFVDasm) comesin an
uncrippled but timed demo version. This section is a short introduction to both tools.

MFVDASM: THE MULTI-FORMAT VISUAL DISASSEMBLER

MFVDasm is not just a simple assembly listing generator. In fact, it is more an assem-
bly code browser with several nice navigation features. Figure 1-8 shows a snapshot
of an MFVDasm session in which | examined the Windows 2000 I/O Manager func-
tion ropetachpevice () . Figure 1-8 does not show the color you would see on the
screen. For example, al function labels, aswell asjumps and callsto named destina-
tions, are displayed red. Jumps and calls to anonymous addresses (i.e., addresses that
are not associated with an exported symbol) are blue, and references to symbols
dynamically imported from other modules are violet. All reachable destinations are
underlined, indicating that you can click on them to scroll the code pane to the
address. Using the Back and Forward buttons on the toolbar, you can navigate
through the history of branches, much like flipping through the visited pagesin an
Internet browser.

In the right-hand pane, you can randomly select a symbol or target address to
which you can jump. Of course, thislist can be sorted by clicking on the column
header buttons. On the lower edge of this pane, MFVDasm has tabs that alow
switching between Symbols, HexDump, and Relocations. The hex dump view can be
quite useful if you are disassembling a code section that contains embedded strings.
MFVDasm doesn't choke on very large files such asntoskrnl . exe, as some other
popular disassemblers do, and, of course, the assembly code can be saved to atext
file. Many more options are accessible via the main menu and the context menus that
appear if you right-click on one of the window panes. If you need more information,
visit Jean-Louis Seignes MFVDasm home Ste at http:/redirect.to/MFVDasm.

22 WINDOWS 2000 DEBUGGING SUPPORT

a1 MV DS - [NTOSERNL EXE - text]

|
|k o
™ Elln Ldlt GQoto View \Wlldnw 1lvlp N o =181 x|
| = | [» » 1
} M ‘ ﬂflsl |, l'l Ihl ey A‘ ﬂ”;!_ !rlnl m ’w
ToDetachDevice: | |
HORRHAREG 5“5 d ffaat32 1 13 W alirmar u::::‘mrn 2
CALL r r [offset32 HAL.KeRaiselrqlToDpclLeve Y ¥ :
MOV ECX, [P§P+£00€l 08] ::c':"""'"'"" '““m:g
sy EDX, LanaleteDovice udisanen
| MOV ESI, mnounoam
| MoV ECX il Caaliliebiers MOTE LA
| TEST g Er [ESI-I-&WW] 03 totamphntaRequaat BOLTIRGE
| g{.Jz Sl 900047, ESK IoFrenCantrofine B0 IFIC
| y L0 T e BOLLLFSA
LA0111E20 ¥ &
| :SE;;J"Z EAX l::':‘-::':m.h-mm ﬁ:::‘;ﬁ
| PUSH Ecx uGuth ¥ AL LI
| TG et o B0112050
| ﬁ‘;‘- f% TudmBweicaToverity WILIFOEA
| |L8OLLIF20: MOV ECX, EAX o] iaceenthsatocacs e eias
l CALL dword ptr [offset32 HAL.KfLowerIrql] InGetRalatndDevice Object HOLIRO M
| |LBU111F28: POP ESI Tt Bequestorroess P01 IZ0AC
| RET I Stockyinits 00} $2ABE
| s (G Toptwveling P01120C4
TR e e RO
- ol ! 1212
MoV sei, [eses00000908]) b wor1z15m
L8OL11F34: PUSH EsT ey et
CALL ;m.nnam nn::nu
;E?;Z EAX, EAX TR whardE mror Bil1 12300
ath it BELITASA
H 5% i +00000014 TuRleaveCanculBging nok 80132084
| ﬁn - aggr [EAX: 1 hulessevpapirLoch tay1Evae
: o ' Tty "OLIZTED
;U‘:H g‘;tdo&g&)&?:x 0‘0000020] hauutmﬁrrmmm anLatray
PUSH EAX Tanscropiaveny T s
CALL dword ggf o&mm&om] IoRtarNatPachot 1127
P EAX, 00000002 oMo Na K Packe By BHLIAIEE
| e 5 ga{;z 4 m:mvm BuLITR4S
11152+ Ioftart Thmne nIaTaLe
I . RET 5534 TSt weTimer 80117940
: I hr P W [T
I Sl e !nﬂ‘:_vﬂl'l'uﬁrlu:-n i DO112ALA
: PUSH EDI 1nierity W alims) DO1ATATE
, MOV ESI, [ESP+0000000c] e e ot
% :::) &ESINWWUZ?] Inkirvawr OLIPAPE
! - Isprint (TR
| 3E/32).ﬁmJ%Em isspace 00130002
| TEST AL, O Isupper DOINNE4E
INE/INZ bm isfign 00189600
P byte pr [£51400000022 o s
oy BEesass duta 80140050 i it s
h mj-u-ﬁe RIS ke SMap EOAAIBSE
MOV et32 .data:8014pncO COuiru iU ALDREL 4
L80111F77: INC dword pt Bm«omwum SR ey P S
MW ax, [gnr_ Kaloost Evrrant Thimard Mt 15F 7E
m:; FeRagCheck AL b
18 Jngnc Lﬂﬂm?s nebiugihess e 101 1636
K e Vi BI116750
r snmuuooom i iy natsguc <l
fa S g 0 C= =y
Hlor g - fr i, ool thel on o st 1 theen e (9L ey w

FIGURE 18

PEview—Tne PEAND COFFFILEVIEWER

MFVDasmDisassembling ntoskrnl. to DetachDevice()

Although MFVDasm shows lots of details about the internal structure of a Portable
Executable (PE) file, its strength is code browsing. On the other hand, PEview doesn't
show you more than a hex dump of acodefile section, but is considerably more
detailed about the file structure. Figure 1-9is a snapshot of PEview displaying the
various parts of ntoskrnl. exein tree form. If you click on aleaf nodein the left-hand

MORE DEBUGGING TOOLS 23

pane, the right-hand pane displays everything there is to know about the binary con-
tents of thisitem. In Figure 1-9, I have selected the TMAGE_opTTONAT_HEADER Structure,
which is a member of the TMacE_nT _HEADERS Structure located near the beginning of
the executable.

If you take a closer ook to the PEview toolbar, you see navigation arrows that
allow scrolling through the file structure (vertical arrows) and the navigation history
(horizontal arrows). The main menu and the toolbar offer many more display
options that make using this tool a pleasure. Besides applications and DLLs, PEview
can dissect several other file formats commonly encountered in debugging situations,
such as object files, import libraries, and symbol files. More information is available
atWayneJ. Radburn'sWeb siteat http://www.magma.ca/~wijr/.

e -
gl lrissmrgililmiee ‘

1 ntoskrn, axe = pFila Data Dascription TVaTue =
IMAGE_DOS_HEADER ODDOUOED 010B Magic
| MS-DOS Stub Frogram 00000082 0s Major Linker Version
« IMAGE_NT_HEADERS 00000083 oc Minor Linker varsion [
signature 00Q0NUE4 001420C0 Size of Code
IMAGE_FILE _HEADER 0D0000ES O004DEBO S1ze of Initialized Dara
IMAGE_SECTIOM_HERDER. ,text 00000DF0 00000120 Address of Emtry Potnt

000000F4 00000400 Base of Code
TUAGE_SECTTON NEADER Pooiu || 090000FS 00067380 Base of Duta
; 000000FC Image Base
DUGE_SECTION HEADER WISYSPTS (0000100 0000004D Saction Aligment
3 00000104 00000040 File Alignmant
mu:gum;: PAGELK |i00000108 0005 Major 0/S version
THAGESECTION REAGER FACE 00000104 0000 Minor 05 versien
IMAGE_SECTION_HEADER PAGEVRFY ||ngo0oi0c 0005 Major Image Version
IMAGE_SECTION_MEADER PAGEKD 0000010E 0000 Minor Imbge version
IMAGE_SECTION_HEADER PAGEHYDR 100000110 0005 Major Subsystem Version
IMAGE_SECTION_HEADER PACESPEC | 00000112 0000 Miror Subsystem Version
IMAGE_SECTION HEADER ,edata 00000114 00000000 Wind2 Varsion value
IMAGE_SECTION_HEADER PAGE 000001LE 00190900 Size of Image
IMAGE_SECTION_HEADER PAGEVRFY |/000001lc 000004c0 Size of Headers
TMAGE_SECTION_HEADER PAGEKD 00000120 00198984 Checksum
IMAGE_SECTTON_HEADER PAGELK 00000124 0001 Subsystem
‘ IMAGE_SECTION_HEADER INIT 00000126 0000 DLL characteristics

‘ TMAGE_OFTIONAL _HEADER 000000ES 00000000 Size of Uninitialized pata |
|

IMAGE_SECTION_HEADER .rarc 00000128 00040000 Size of Stack Reserve
IMAGE_SECTION_HEADER .reloc OD00OE2C 00001000 Size of Stack Commit
. SECTION .Text 00000130 00100000 Size of Heap Reserve
‘ IMPORT Address Table mnm-ﬁ 00001000 Su: of I_'llnp Commit
IMAG ECTORY M:;sa Loader Flags
SWW‘D’I‘R C 00000010 Number of Directories)
e mWava EXPORT Directory
SECTION MISYSPTE 00000144 00009107 Size
‘ SECTTON .dat oo0 00, RA IHPORT DFrectory ‘
Sl i %« 00000050 Size s i)
O EAGELR i 50 00169040 RVA RESOURCE DI ractory
SEGLR oL 00000154 00014090 Siza y
SECTION PAGEVRFY 00000158 00000000 fvA EXCEFTION Diractary [
| SECTION PAGEKD Lgmaoﬁc 00000000 51ze e L] |
| SECTION PAGEHYDR 0 0OGOBHOD AVA SECURTTY Diractory
SECTION PAGESPEC 00000164 00000000 Siza J
+ SECTION .edata | 00000168 OOLAYEDD Ava BASE RELOCATION TabTe
- IMAGE,_EXPORT_DIRECTORY |0000015C_ 0000CACS 51ze |
EXPORT Address Table 0000170 0006A8AS RvA DEBUG Diractory
EXPORT ordinal Table 00000174 0000001C Size =1
EXPORT Name Pointer Table RVA' COPYRIGHT String
EXPORT Mames 00000L7C 00000000 Size L .
SECTION PAGE ~TD00DO1LS0 DODOONO0 RVA GLOBAL POINTER Virtual Address
SECTION PAGEVRFY 00000184 00000000 S4ze |
SECTION PAGEKD - b RVA TLS Directory
! 000018C Size o e
b fm ::f:"“ > =i [(ODO01S0 OO0OBO00 AVA ST ~ LOAD CONFIGURATION Directory .z |

FIGURE 1-9. PEview Dissecting the PE File Sructure of ntoskrnl. exe

24 WINDOWS 2000 DEBUGGING SUPPORT

As mentioned in the Preface, Wayne writes his Win32 software in assembly lan-
guage (ASM). Yes, thisis not only possible but aso quite easy if you have the neces-
sary tools. In fact, ASM programming is much easier on the Win32 platform than it
wasin the old DOS and Windows 3.x days, because you can take full advantage of
the CPU's 32-bit instruction set. Wayne actively supports Win32 ASM by providing
extensive sample code on hisWeb site. | have been adie-hard ASM programmer
myself, but | retired from it after discovering that the Microsoft Visual C optimizer
does a much better job than ahuman ASM coder, because it can use al sorts of tricks
that an ASM programmer should never use—the code would be unreadable and
almost impossible to maintain. The results of my ASM efforts are publicly available
in the form of a FreeWare package for the Microsoft Macro Assembler (MASM). Itis
called Win32 Assembly Language Kit (WAL K32)and can be downloaded from my
Web site. Just go to http://www.orgon.com/pub/asm/ and get dl files that contain the
letters "walk" in thefile name. However, be aware that | have abandoned WALK 32,
and will not support or update it anymore.

WINDOWS 2000 DEBUGGING INTERFACES

The Kernel Debugger is a powerful tool for everyone interested in exploring the
internals of the system. However, its user interface is somewhat poor, and sometimes
you might wish to have even more powerful commands. Fortunately, Windows 2000
offers two fully documented debugging interfaces that enable you to add debugging
functionality to your applications. Theseinterfaces arefar from luxurious, but they
have the blessing of official documentation by Microsoft. In this section, | will take
you on a short tour of these debugging interfaces, showing what they can do for you
and how you can get the most out of them.

psapi.dil, imagenhip.dil, and doghdp.dil

For a long time, Windows NT had been criticized for its lack of support for the
Windows 95 ToolHelp32 interface. Some of the critics were possibly not aware that
Windows NT 4.0 came with an alternative debugging interface of its own, buried
inside a system component named psapi . d11, distributed with the Win32 SDK.
This DLL, together with imagenhip. dll and dbghelp. dai1, comprise the officially
documented debugging interfaces of Windows NT and 2000. Thefive letters PSAPI
are the acronym of Process Status Application Programming Interface, and this
interface comprises a set of 14 functions providing system information about device
drivers, processes, memory usage and modules of a process, working sets, and mem-
ory-mapped files. psapi . dll supports both ANSI and Unicode strings.

The other pair of debugging DLLS, imagehip. dll and dgbhelp.dll, COver a
different range of tasks. Both export a similar set of functions, with the major differ-

WINDOWS 2000 DEBUGGING INTERFACES 25

ence that imagehlp.d11 offers more functions, whereas dbghelp.dil is aredistrib-
utable component. This means that Microsoft allows you to put dbghelp. d11 into
the setup package of your applications if it relies on that DLL. If you choose to use
imagehlp.dll instead, you must take the one that is currently installed on the target
system. Both DLLs provide arich set of functions for parsing and manipulating PE
files. However, their most outstanding feature probably is their ability to extract sym-
bols from the symbol files you have installed for use with the Kernel Debugger. To
guide your decision as to which DLL you should choose, | have compiled al func-
tions exported by imagehlp.d11 and dgbhelp.dil in Table 1-1, where the middle
and right-hand columns show which functions are not supported by which compo-
nent. An entry of N/A means "not available."

TABLE 11 Comparison of imagehlp.dll and dbghelp.dll

NAME imagehlp.dll dbghelp.dll
BindImage N/A
BindImageEx N/A
CheckSumMappedFile N/A

EnumerateLoadedModules
EnumerateLoadedModules64
ExtensionApiVersion N/A
FindDebuglInfoFile

FindDebuglInfoFileEx

FindExecutableImage

FindExecutableImageEx

FindFileInSearchPath

GetlmageConfigInformation N/A
GetlmageUnusedHeaderBytes N/A
GetTimestampForLoadedLibrary

ImageAddCertificate N/A

ImageDirectoryEntryToData
ImageDirectoryEntry ToDataEx

ImageEnumerateCertificates N/A
ImageGetCertificateData N/A
ImageGetCertificateHeader N/A
ImageGetDigestStream N/A

ImagehlpApiVersion
ImagehlpApiVersionEx

(continued)

26 WINDOWS 2000 DEBUGGING SUPPORT

TABLE 1-1. (continued)

NAME imagehlp.dll dbghelp.dll
Imageload N/A
ImageNtHeader
ImageRemoveCertificate N/A
ImageRvaT 0Section
ImageRvaToVa
ImageUnload N/A
MakeSureDirectoryPathExists
MapAndLoad N/A
MapDebugInformation
MapFileAndCheckSumA N/A
MapFileAndCheckSumW N/A
ReBaselmage N/A
ReBaselmage64 N/A
RemovePrivateCvSymbolic N/A
RemovePrivateCvSymbolicEx N/A
RemoveRelocations N/A
SearchTreeForFile
SetImageConfigInformation N/A
SplitSymbols N/A
StackWalk
StackWalk64
sym N/A
SymCleanup
SymEnumerateM odules
SymEnumerateM odul es64
SymEnumerateSymbols

SymEnumerateSymbols64
SymEnumerateSymbolsW
SymFunctionTableAccess
SymFunctionTable Accesst4
SymGetLineFromAddr
SymGetLineFromAddr64
SymGetLineFromName
SymGetLineFromName64

WINDOWS 2000 DEBUGGING INTERFACES 27

TABLE 11 (continued)

NAME imagehlp.dll dbghelp.dll

SymGetLineNext
SymGetLineNext64
SymGetLinePrev
SymGetLinePrev64
SymGetModuleBase
SymGetModuleBase64
SymGetModulelnfo
SymGetM odul el nfo64
SymGetModulelnfo Ex
SymGetM odulelnfoEx64
SymGetModulelnfoW
SymGetModulelnfoWw 64
SymGetOptions
SymGetSearchPath
SymGetSymbolinfo
SymGetSymbolInfo64
SymGetSymFromAddr
SymGetSymFromAddr64
SymGetSymFromName
SymGetSymFromName64
SymGetSymNext
SymGetSymNext64
SymGetSymPrev
SymGetSymPrev64
Symlnitialize
SymLoadModule
SymLoadModule64
SymMatchFileName
SymEnumerateSymbolsWé64
SymRegisterCallback
SymRegisterCallback64
SymRegi sterFunctionEntryCallback
SymRegisterFunctionEntryCallback64
SymSetOptions

(continued)

28 WINDOWS 2000 DEBUGGING SUPPORT

TABLE 1-1. (continued)

NAME

SymSetSearchPath
SymUnDName
SymUnDName64
SymUnloadModule
SymUnloadM odule64
TouchFileTimes
UnDecorateSymbolName
UnMapAndLoad
UnmapDebuglnformation
UpdateDebuglnfoFile
UpdateDebugInfoFileEx
WinDbgExtensionDllInit

imagehlp.dll

N/A

dbghelp.dll

N/A

N/A

N/A
N/A

In the sample source code following in this section, | will demonstrate how
psapi.dll and imagehlp.d11 are used for the following programming tasks:

» Enumeration of all kernel components and drivers

» Enumeration of all processes currently managed by the system
» Enumeration of all modules loaded inside aprocess’ virtual address space
* Enumeration of all symbols of a given component, if available

The psapi .a11 interface is not particularly well designed. It provides a mini-
mum of functionality, although it would have been easy to add a bit more conve-
nience. Also, this DLL queries quite a bit of information from the kernel and then

throws away most of it, leaving only tiny bits and pieces.

Because the psapi. dll and imagenhlp. dll functions are not part of the stan-
dard Win32 API, their header files and import libraries are not automatically
included in your Visual C/C++ projects. Therefore, the four directivesin Listing 1-2
should show up somewhere in your source files. The first pair pullsin the required
header files, and the latter pair establishes the dynamic links to the API functions

exported by both DLLSs.

WINDOWS 2000 DEBUGGING INTERFACES 29

#include <imagehlp.h>

#include <psapi . h>

ttpragnacoment (linker, “/defaultlib:imagehlp.lib”)
#pragna conment (linker, " /defaultlib:psapi . 1ib”)

LISTING 1-2. Addlng psapi.dll and imagehlp.dll to a Visual C/C++ Project

SAMPLE CODE ON THE CD

On the CD accompanying this book, two sample projects are included that are built
on psapi.dll and imagehlp.dll. One of them is w2k_sym.exe—aWindows 2000
symbol browser that extracts symbol names from an arbitrary symbol file, provided
you haveinstalled it (see Setting Up a Debugging Environment). The symbol table
can be sorted by name, address, and data size, and awildcard filter can be applied as
well. As an additional bonus, w2kx_sym. exe aso lists active system module/driver
names, running processes, and modules loaded inside any process. The other sample
project is the debugging support library w2k _dng. a11, which contains several conve-
nient wrappers around psapi .d11 and imagenlp.d11 functions. w2k_sym. exerelies
entirely on thisDLL. The source code of these projects islocated in the CD directo-
ries\src\w2k_dbg and \src\w2k_sym, respectively.

Table 1-2 lists the functions that are used by w2k_dbg.a11. The column A/W
indicates for al functions involving strings whether ANSl (A) or 16-bit wide Unicode
characters (W) are supported. As noted earlier, psapi . dll supports both ANSI and
Unicode. Unfortunately, imagenip. dll and abghe1p. dll aren't that clever and
require 8-bit ANSI strings for several functions. Thisis somewhat annoying because
a Windows 2000 debugging application usually will not run on Windows 9x and
therefore could use Unicode characters without reservation. With imagehlp.d1l
included in your project, you will either have to use ANSI or occasionaly convert
Unicode strings back and forth. Because | definitely hate to work with 8-bit strings
on a system capable of handling 16-bit characters, | have opted for the | atter
approach. All functions exported by w2x_ang. dll that involve strings expect Uni-
code characters, so you don't need to be concerned about character Size issues if you
are reusing this DLL in your own Windows 2000 projects.

On the other hand, imagenip. a1l and anghelp. dll have an interesting feature
that psapi . dIl lacks: They are already fit for Win64—the 64-bit Windows every
devel oper isfrightened of, because nobody really knows how difficult it will beto
port Win32 applications to Win64. These DLLs export Win64 APl functions, and
that's OK—maybe we will be able to use them someday.

30 WINDOWS 2000 DEBUGGING SUPPORT

TABLE 1-2 Debugging Functions Used by w2k_dbg.dl|

NAME AIW LIBRARY
EnumDeviceDrivers psapi.dil
EnumProcesses psapi.dil
EnumProcessModules psapi.dil
GetDeviceDriverFileName A/W psapi.dil
GetModuleFileNameEx AW psapi.dil
GetModuleInformation psapi.dil
Imagel oad A imagehlp.dIl
ImageUnload imagehlp.dil
SymCleanup imagehlp.dil
SymEnumerateSymbols A/ imagehlp.dil
Symlnitialize A imagehlp.dll
SymLoadModule A imagehlp.dil
SymUnloadModule imagehlp.dil

| don't go into psapi.dil and imagehlp.dil in depth. This book focuseson
undocumented interfaces, and the interfaces of both DLLs are satisfactorily docu-
mented in the Platform SDK. However, | don't want to bypass them completely because
they are closdly related to the Windows 2000 Native API, discussed in Chapter 2.
Moreover, psapi .d11 isagood example of why an undocumented interface might be
preferable to a documented one. Itsinterface is not only spartan and clumsy—it might
even return inconsistent datain certain situations. If | had to write and sell a profes-
siona debugging tool, | would not build it on this DLL. The Windows 2000 kernel
offers powerful, versatile, and much better-suited debugging API functions. However,
they are amost completely undocumented. Fortunately, many system utilities provided
by Microsoft make extensive use of this API, so it has undergone only slight changes
across Windows NT versions. Yes, you have to revise and carefully test your software
on every new NT release if you are using this API, but its benefits more than outweigh
this drawback.

Most of the following code samples are taken from the source code of
w2k_dbg.dl1, foundinthe CD accompanying this book in thefile \src\w2k_dbg\
w2k_dbg. c. Thislibrary encapsulates several steps that you would have to take sepa-
rately in convenient opaque functions that return rich information sets. The datais
returned in properly sized, linked lists, with optional indexes imposed on them for sort-
ing and other such functions. Table 1-3 lists the API functions exported by thisDLL.
Itisalonglist, and discussing each function is beyond the scope of this chapter, so you
are encouraged to consult the source code of the companion application w2k_sym. exe
for details about the typical usage (see \src\w2k_sym\w2k_sym. C on the CD).

TABLE 13

WINDOWS 2000 DEBUGGING INTERFACES 31

w2k_dbg.d11l APl Function Set

FUNCTION NAME

dbgBaseDriver
dbgBaseModule
dbgCrc32Block
dbgCrc32Byte
dbgCrc32Start
dbgCrc32Stop
dbgDriverAdd
dbgDriverAddresses
dbgDriverIndex
dbgDriverList
dbgFileClose
dbgFileL oad
dbgFileNew
dbgFileOpen
dbgFileRoot
dbgFileSave
dbgFileUnload
dbgIndexCompare
dbgIndexCreate
dbgIndexCreateEx
dbglndexDestroy
dbglndexDestroyEx

dbgIndexList
dbglndexListEx
dbgIndexReverse
dbgIndexSave
dbgIndexSaveEx
dbgIndexSort
dbgListCreate
dbgListCreateEx
dbgListDestroy
dbgListFinish
dbgListIndex

DESCRIPTION

Return the base address and size of a driver, given its path

Return the base address and size of a DLL module

Compute the CRC32 of a memory block

Bytewise computation of a CRC32

CRC32 preconditioning

CRC32 postconditioning

Add adriver entry to alist of drivers

Return an array of driver addresses (EnumbeviceDrivers () Wrapper)
Create an indexed (and optionally sorted) driver list
Create aflat driver list

Close adisk file

Load the contents of a disk file to a memory block
Create a new disk file

Open an existing disk file

Get the offset of the root token in afile path
Save amemory block to a disk file

Free a memory block created by dbgFileLoad ()

Compare two entries referenced by an index (used by dbgIndexsort ())
Create a pointer index on an object list

Create a sorted pointer index on an object list

Free the memory used by an index and its associated list

Free the memory used by a two-dimensional index and its associated
lists

Create a flat copy of alist from its index

Create aflat copy of atwo-dimensional list from its index

Reverse the order of the list entries referenced by an index

Save the memory image of an indexed list to a disk file
Save the memory image of atwo-dimensional indexed list to a disk file
Sort the list entries referenced by an index by address, size, 1D, or name
Create an empty list

Create an empty list with reserved space

Free the memory used by alist

Terminate a sequentially built list and trim any unused memory
Create a pointer index on an object list

(continued)

32 WINDOWS 2000 DEBUGGING SUPPORT

TABLE 13 (continued)

FUNCTION NAME

dbgListLoad
dbgListNext
dbgListResize
dbgListSave

DESCRIPTION

Create alist from a disk file image

Update the list header after adding an entry
Reserve memory for additional list entries
Save the memory image of alist to a disk file

dbgMemory Align Round up a byte count to the next 64-bit boundary

dbgMemoryAlignEx
dbgMemoryBase
dbgMemoryBaseEx

dbgMemoryCreate
dbgMemoryCreateEx
dbgMemoryDestroy
dbgMemoryDestroyEx
dbgMemoryReset
dbgMemoryResize
dbgMemoryResizeEx

dbgMemoryStatus

Round up a string character count to the next 64-bit boundary
Query the internal base address of a heap memory block

Query the internal base address of an individually tagged heap
memory block

Allocate a memory block from the heap
Allocate an individually tagged memory block from the heap
Return a memory block to the heap
Return an individually tagged memory block to the heap
Reset the memory usage statistics
Change the allocated size of a heap memory block
Change the alocated sze of an individualy tagged heap memory block
Query the memory usage statistics

dbgMemory Track Update the memory usage statistics

dbgModulelndex
dbgModuleList
dbgPathDriver
dbgPathFile
dbgPrivilegeDebug
dbgPrivilegeSet
dbgProcessAdd
dbgProcessGuess
dbgProcesslds
dbgProcessindex
dbgProcess| ndexEx

dbgProcessList
dbgProcessModules

dbgSizeDivide

Create an indexed (and optionally sorted) process module sub-list
Create aflat process module sub-list
Build a default driver path specification
Get the offset of the file name token in a file path
Request the debug privilege for the calling process
Request the specified privilege for the calling process
Add a process entry to a list of processes
Guess the default display name of an anonymous system process
Return an array of process IDS (numpProcesses () Wrapper)
Create an indexed (and optionally sorted) process list

Create a two-dimensional indexed (and optionally sorted)
process/module list

Create aflat process list

Return alist of process module handles (EnumprocessModules ()
wrapper)

Divide a byte count by a power of two, optionally rounding up
or down

WINDOWS 2000 DEBUGGING INTERFACES 33

TABLE 13 (continued)

FUNCTIONNAME DESCRIPTION
dbgSizeKB Convert bytes to KB, optionally rounding up or down
dbgSizeMB Convert bytes to MB, optionally rounding up or down
dbgStringAnsi Convert a Unicode string to ANS|
dbgStringDay Get the name of a day given a day-of-week number
dbgStringMatch Apply awildcard filter to a string
dbgSymbol Callback Add a symbol entry to alist of symbols (called by

SymEnumerateSymbols())

dbgSymbollndex Create an indexed (and optionally sorted) symbol list
dbgSymbolList Create a flat symbol list
dbgSymbol L oad Load a module's symbol table
dbgSymbol L ookup Look up a symbol name and optional offset given a memory address
dbgSymbolUnload Unload a module's symbol table

ENUMERATING SYSTEM MODULES AND DRIVERS

psapi. dll can beinstructed to return alist of active kernel modules currently residing
inmemory. Thisisafairly ssimpletask. Thepsapi . dll function EnumDeviceDriversi)
receives an array of pvorp slots, which it fills with the image base addresses of the
active kernel-mode drivers, including the basic kernel modulesntaii. aii,
ntoskrnl.exe, WiN32K.Sys, hal.dll, andbootvid.dll. Thereported values
are the virtual memory addresses where the contents of the respective executable
files have been mapped. If you examine the first few bytes at these addresses with the
Kernel Debugger or some other debugging tool, you will clearly recognize the good
old DOS stub program, starting with Mark Zbikowski's famous initials “MZ,” and
containing the message text, "This program cannot be run in DOS mode" or some-
thing similar. Listing 1-3 shows a sample invocation of EnumDeviceDrivers()
including this function's prototype at the top for your convenience.
EnumDeviceDrivers() expectsthree arguments: an array pointer, an input size
value, and a pointer to an output size variable of type DWORD . The second argument
specifies the size of the supplied image address array in bytes (!), and the third argu-
ment receives the number of bytes copied to the array. Therefore, you haveto divide
the resulting size by sizeof (PVOID) to abtain the number of addresses copied to the
array. Unfortunately, this function doesn't help you to find out how large the output
array should be, although it actually knows how many drivers are running. It just tells
you how many bytes were returned, and, if the buffer istoo small, it conceals the num-
ber of bytes that didn't fit in. Therefore, you have to employ a dull trial-and-error loop
to determine the correct size, as demonstrated in Listing 1-3, assuming that the

34 WINDOWS 2000 DEBUGGING SUPPORT

BOOL WINAPI EnumDeviceDrivers (PVOID *1lpImageBase,
DWORD ch,
PDWORD lpcbNeeded) ;

PPVA D WNAPI dbgDri ver Addr esses (PDMRD pdCount)
{
DWRD dSize;
DAMRD dCount = O;
PPVA D ppLi st = NULL;

dSi ze = SIzZE_MINIMUM * sizeof (PVOID);
while ((ppList= dbgMemoryCreate (dSize)) != NULL)

if (BwnbeviceDivers (ppList, dSze, «dCount) &&
(dQount < dsize))

{
dCount /= sizeof (pPvVOID);
break;
}
dCount = 0;
ppLi st = dbgMemoryDestroy (ppList) ;
if ((ddze <<=1) > (s1zE _MAXIMUM* sizeof (pvOID))) break;

¥
if (pdGunt = NJALL) *pdCount = dCount;

return ppLi st;

}

LISTING 13 Enumerating System Module Addresses

dataareincompletewhenever thereturned sizeisequal to thesize of thearray. The
code starts out with a reasonable minimum size of 256 entries, represented by the
constant stze_minimum. Thisis usually enough, but, if not, the buffer sizeis doubled
on every new trial until al pointers are retrieved or the maximum size of 65,536
entries (stze_maximum) would be exceeded. The memory buffer is allocated and freed
by the helper functions dbgMemoryCreate () and dbgMemorybestroy (), which are
just fancy wrappers around the standard Win32 functions t.ocaialioc () and
LocalFree (), andthereforearen't reprinted here.

Listing 1-4 shows a possible implementation of EnumDeviceDrivers() . Note
that thisis not the original source codefrom psapi .411. Itisarandom sequence of
characters that happens to yield equivalent binary code if fed to a C compiler. To
keep things clear and simple, | have omitted some distracting detailsfound in the
original code, such as Structured Exception Handling (SEH) clauses, for example. At

WINDOWS 2000 DEBUGGING INTERFACES 35

BOOL winart EnunDevi ceDrivers (PVOID *lpimageBase,
DWORD cb,
DWORD *1pchNeeded)

{
SYSTEM_MODULE_INFORMATION_N (1) sm ;
PSYSTEM_MODULE__INFORMATION psmi ;

DWCRD dsi ze, i;

NTSTATUS ns ;

BOOL fOk = FALSE;

ns = NtQuerySystemInformation temModuleInformation,

&smi, sizeof (sm), NULL);

if ((ns== STATUS SUCCESS) |
(ns == STATUS_INFO_LENGTH_MISMATCH))
{
dSi ze = sizeof (SYSTEM MODULE_INFORMATION) +
(smi.dCount* si zeof (¢ EM_MODULE)) :

if ((psmi= Local Aloc (LMEMFI XED, dsize)) != NALL)
{

ns - NtQuerySystemInformation (SystemModuleInformation,

psmi, dSize, NULL) ;

if (ns == STATDS SUCCESS)
{
for (i =0; (i < psmi->dCount) &&
(i <cb/ sizeof (DWORD)); i++)

{
lpImageBase [i] = psmi->aModules [i] .pImageBase;
}

*| pcbNeeded = i * sizeof (DWORD);

fOk = TRUE;

}

Local Free (psmi);

if (MfQk) setpastiError (RIN StatusToDosError (ns));

}
}

el se

{
SetlLastError (RN StatusToDosError (ns)) ;

}

return £ok;

}

LISTING 1-4. Sample Implementation of EnumDeviceDrivers ()

36 WINDOWS 2000 DEBUGGING SUPPORT

the heart of Listing 1-4, you can see the ntouerysystemtntormation () call that does
the hard work. Thisis one of my favorite Windows 2000 functions, because it gives
access to various kinds of important data structures, such as driver, process, thread,
handle, and LPC port ligts, plus many more. The internals of this powerful function
and itsfriend ntsetsysteminformation () have been documented for thefirst time
in my article "Inside Windows NT System Data," published in the November 1999
issue of Dr. Dobb'sJournal (Schreiber 1999). Another comprehensive description of
these functions can be looked up in Gary Nebbett's indispensable Windows N'T/ 2000
Native APl Reference (Nebbett 2000).

Don't worry too much about the various implementation details of the
EnumbDeviceDrivers() functioninListing 1-4. I have added this code snippet
just to illustrate an interesting aspect of this function that runs like a red thread
throughpsapi . d11. After obtaining the completelist of driversin the second
NtQuerysystemlnformation) call by specifying the information class
SystemModuleInformation, the code loops through the driver module array and
copiesal prmageBase membersto the caler's pointer array named 1pimagerase|] .
This might seem OK, as long as you aren't aware of the other data contained in the
modul e array supplied by NtQuerysystemInformation() . Thisdata structureis
undocumented, but | can tell you right now that it also specifies the sizes of the mod-
ules in memory, their paths and names, load counts, and some flags. Even the offset
of thefilenametoken insidethe pathisreadily available! EnumDeviceDrivers() is
mercilessly throwing away all of thisvaluable information, retaining nothing but the
bare image base addresses.

This drama gets even weirder if you try to obtain more information about the
modules referenced by the returned pointers. Guess what psapi . d11 doesif you are
caling its API function cetbevicenriverrilename () t0 Obtain theimage file path
corresponding to an image base address. It runs through a code sequence similar to
the one in Listing 1-4, again requesting the complete driver list, and again looping
through its entries in search of the given address. If it finds a matching entry, it copies
the path stored there to the caller's buffer. That's very efficient, isn't it? Why didn't
EnumDeviceDrivers() copy the pathswhileit was scanningthe driver list for the
firsttime? It wouldn't have been very difficult to implement the function in thisway.
Besides the efficiency consideration, this design has another potential problem:

What if the module in question has been unloaded right before the invocation of
GetDeviceDriverFileName () ? Thisentry would be missing from the second driver
ligt, and GetDeviceDriverFileName () would fail. | don't understand why Microsoft
has released a DLL that cripples the data returned by a powerful API function until it
isalmost useless.

WINDOWS 2000 DEBUGGING INTERFACES 37

ENUMERATING ACTIVE PROCESSES

Another typical task for psapi . a11 isthe enumeration of processes currently run-
ninginthe system. To thisend, the Enumprocesses() functionisprovided. It works
quitesimilar to Enumbevicenrivers (), but returnsprocess|Dsinstead of virtual
addresses. Again, thereisno indication of therequired buffer sizeif the output
buffer is too smal, so the usual trial-and-error loop must be used, as demonstrated
inListing 1-5. Actually, thiscode is nearly identical to Listing 1-3, except for slightly
different symbol and type names.

A process|D isaglobal numeric tag that uniquely identifiesaprocesswithin
theentire system. Process and thread IDs are drawn from the same pool of numbers,
starting at zero with the so-caled Idle process. None of the running processes and
threads have the same | Ds at the same time. However, after aprocessterminates, itis
possiblethat another process reuses some of the IDs previously assigned to the ceased

BOCOL WINAPI EnumProcesses (DMRD *lpidProcess,
DMRD cb,
DWORD *1pcbNeeded) ;

PDWORD WNAPI dbgProcessIds (PDNRD pdCount)

{

DWRD dSi ze;

DWNRD dcount = 0;
PDNRD pdLi st = NULL;

dSi ze - SIZE_MINIMUM * sizeof (DWORD);

while ((pdList = dbgMemoryCreate (dsSize)) != NULL)
f
if (EnunProcesses (pdList, dSize, &dCount) &&
(dQount < dsize))
{
dCount /= sizeof (DWORD);
br eak;
}
dGount = 0 ;
pdLi st = dbgMemoryDestroy (pdList);
if ((dSze <<= 1) > (SIZE_MAXIMUM* sizeof (DWORD))) break;
}

if (pdCount != NUL) *pdCount = dCount;
return pdList;

}

LISTING 1-5. Enumerating Process IDs

38 WINDOWS 2000 DEBUGGING SUPPORT

process and its threads. Therefore, a process ID obtained at time X might refer to a
completely different process at timeY. It also might be undefined at thetimeitis
used, or it might be assigned to athread. Thus, aplain list of process IDs as returned
by Enumprocesses () does not represent a faithful snapshot of the process activity
in the system. This design flaw is even less pardonable if the implementation of this
function is considered. Listing 1-6 is another psapi . a11 function clone, outlining
the basic actionstaken by enumprocesses (). Like EnumDeviceDrivers(), itrelies
oNn NtQuerySystemInformation () , but specifies the information class SystemPro-
cessInformationinstead of systemModuleInformation. Please note the |00p in
the middle of Listing 1-6, wherethe 1pidarrocess [] array isfilled with datafrom
a SYSTEM_PROCESS_TNFORMATION Structure. Itis not surprising that this structure is
undocumented.

After having seen how wasteful EnumDeviceDrivers() iswith thedatait
receives fromutouerysysteminformation (), odds are that EnumProcesses() is
of asimilar kind. In fact, it is even worse! The available process information is much
more exhaustive than the driver module information, because along with process
data it also includes details about every thread in the system. While | am writing this
text, my system runs 37 processes, and calling ntouerysystemIntormation () yields
a data block of no less than 24,488 bytes! All that is left after EnumProcesses () has
finished processing the data are 148 bytes, required for the 37 process IDs.

BOCOL WINAPI EnumProcesses (PDWORD lpidProcess,
DWCRD cb,
PDNRD lpcbNeeded)

{

PSYSTEM_PROCESS_INFORMATION pspi, pspi Next;
DWRD dsize, i;
NTSTATUS ns ;

BOOL fOk = FALSE;

for (dSze = 0x8000;

((pspi = Local All OC (LMEM_FIXED, dSize)) != NULL) ;
dSi ze += 0x8000)
{
ns = NtQuerySystemInformation (SystemProcessInformation,
pspi, dSize, NULL) ;
if (ns == STATUS_SUCCESS)

{
pspi Next - pspi;

for (i = 0; i <cb/ sizeof (DWORD); i++)

{

WINDOWS 2000 DEBUGGING INTERFACES 39

lpidProcess [i] = pspiNext->dUniqueProcessId;

pSpi Next = (PSYSTEM_PROCESS_INFORMATION)
((PBYTE) pspi Next +pspiNext->dNext) ;

*| pcbNeeded = i * sizeof (DWORD) ;
fOk = TRUE;
}
LocalFree (pspi);
if (f&k || (ns !'= STATUS_INFO_LENGTH_MISMATCH))
{
if (!1fok) SetLastError (RIN StatusToDosError (ns)) ;
break;
}

return £0k;

}

LISTING 1-6. Sample Implementation of EnumProcesses|()

AIthough EnumDeviceDrivers () makes me somewhat sad, EnunProcesses ()
really breaks my heart. If you need justification for usng undocumented API functions,
these two functions are the best arguments. Why use less efficient functions such as these
if the real thing isjust one step away? Why not call ntouerysystemInformation () your-
sdf and get dl that interesting system information for free? Many system administration
utilities supplied by Microsoft rely on ntouerysystemInformation () rather than
psapi . d11 functions, so why settle for less?

ENUMERATING PROCESS MODULES

Once you have found a process ID of interest in the process list returned by
EnumProcesses (), you might want to know which modules are currently |oaded
into its virtual address space. psapi . d11 providesyet another API function for this
purpose, called Enumprocessmodules () . Unlike EnumDeviceDrivers() and
EnumProcesses () , this function requires four arguments (see top of Listing 1-7).
Whereas these two functions return global system lists, EnumProcessModules)
retrieves a process-specific list, so the process must be uniquely identified by an
additional argument. However, instead of a process ID, this function requires a
process sanpLe. T0 Obtain aprocess handlegiven an 1D, the openProcess () func-
tion must be called.

40 WINDOWS 2000 DEBUGGING SUPPORT

BOOL WNAPI EnumProcessModules (HANDLE hProcess,
HVODULE *1phModule,
DWORD chb,
DWRD *1lpcbNeeded) ;

PHMODULE W NAPI dbgProcessMbdul es (HANDLE hProcess,
PDWORD pdCount)
{
DWORD dsSi ze;
DWRD dCount = O;
PHVCDULE phList = NULL;

if (hProcess != NULL)
{

dSi ze = SIZE_MINIMUM * sjzeof (HMODULE);

while ((phList = dbgMemoryCreate (dSize)) != NUL)
{
if (EnumProcessModules (hProcess, phList, dSize,
&dCount))
{
if (dGount <= dSize)
{
dCount /= sizeof (HMODULE);
break;
)
}
el se
{
dCount = O;
}
phLi st = dbgMenoryDestroy (phList);
if (! (dsize= dCount)) break;
}
}

if (pdGount != NULL) *pdCount = dCount;
return phList;

)

LISTING 1-7. Enumerating Process Modules

EnumProcessM odules() returnsreferencesto the modul es of aprocess by speci-
fying their module handles. On Windows 2000, an HMODULE is simply the image base
address of a module. In the Platform SDK header file windef.h, it is defined as an
dlias for nznsTance, which in turnis a HANDLE type. Microsoft has probably chosen
this type assignment to point out that a module handle is an opaque quantity, and no
assumptions should be made about its value. However, an HMODULE is not a handle
in the grict sense. Usually, handles are indexes into a table managed by the system,
where properties of objects are looked up. Each handl e returned by the system

WINDOWS 2000 DEBUGGING INTERFACES 41

increments an object-specific handle count, and an object instance cannot be removed
from memory until al handles have been returned to the system. The Win32 API pro-
vides the closeHandle () function for the latter purpose. Its equivalent in the context
of the Native APl iscalled ntclose () . The important thing about HMoDULES is that
these "handles’ need not be closed.

Another confusing thing is the fact that module handles are not generally guar-
anteed to remain valid. The remarks on the cetModuleHandle () functionin the
Platform SDK documentation state clearly that special care must be taken in multi-
threaded applications, because one thread might invalidate an zvMopuLE used by
another thread by unloading the module to which this handle refers. The sameis
true in a multitasking environment in which an application (e.g., a debugger) wants
to use a module handle of another application. This makes HMODULES appear fairly
useless, doesn't it? However, there are two situations in which an HMODULE remains
valid long enough:

1. A HMODULE returned by LoadLibrary () or LoadLibraryEx () remains valid
until the process calls FreeLibrary (), because these functionsinvolve a
module reference count. This prevents the module from being unloaded
unexpectedly even in a multithreaded application design.

2. An HMODULE from a different process remains valid if it refers to a module that
is permanently loaded. For example, al Windows 2000 kernel components
(not including kernel-mode device drivers) are mapped to the same fixed
addresses in each process and remain there for the lifetime of the process.

Unfortunately, neither of these situations applies to the module handles
returned by the psapi . dll function EnumprocessModules (), at least not generally.
The HMODULE values copied to the caller's buffer reflect the image base addresses that
were in effect at the time the process snapshot was taken. A second later, the process
might have called FreeLibrary () for one of the modules, removing it from memory
and invalidating its handle. It is even possible that the process calls LoadLibrary ()
for adifferent DLL immediately afterward, and the new module is mapped to the
address that has just been freed. If this |ooks familiar, you are right. Thisis the same
problem encountered with the Enumbevicebdrivers () pointer array and the
EnumProcesses () 1D array. However, this problem is not inevitable. The undocu-
mented API functions called by psapi . d11 to collect the data work around these data
integrity issues by returning a complete snapshot of the requested objects, including
all properties of interest. It is not necessary to call other functions at a later time to
obtain additional information. In my opinion, the design of psapi . dll is poor
because of its ignorance of data integrity, which is why | would not use thisDLL as a
basis for a professional debugging application.

42 WINDOWS 2000 DEBUGGING SUPPORT

The Enumprocessiodules () function is abetter citizen than Enumbevicedrivers ()
and EnumProcesses (), because it indicates exactly how many bytes are missing
if the output data doesn't fit into the caller's array. Note that Listing 1-7 doesn't
contain a loop where the buffer size isincreased until it is large enough. However,
atrial-and error loop is still required because the required size reported by
EnumProcessModules () might beinvalid at the next call if the processin question
has loaded another module in the meantime. Therefore, the code in Listing 1-7
keeps on enumerating modules until EnumProcessM odules() reportsthat the
required buffer size isless than or equal to the available size or an error occurs.

| won't describe an equivalent implementation of EnumProcessModules() ,
because this function is slightly more complex than EnumDeviceDrivers() and
EnumProcesses () and involves several undocumented data structures. Basically,
it calsntoueryInformationProcess () (itisundocumented, of course) to get the
address of the target Process Environment Block (PEB), where it retrieves a pointer
to amodule information list. Because neither the PEB nor thislist are "visible"
in the caller's address space, EnumProcessM odules) callsthe Win32 API function
ReadProcessMemory () (thisoneis documented) to take apeek at the target address
space. By the way, the layout of the PEB structure is discussed later in Chapter 7, and
also appears in the structure definition section of Appendix C.

ADJUSTING PROCESS PriviLEGES

Recall the earlier discussion about the process handle required by EnumProcess
Modules () . Usually, you will begin with a process ID—probably one of those
returned by EnumProcesses () . The Win32 API provides the OpenProcess () func-
tion to get a handle to aprocessif its ID is known. This function expects an access
flag mask as its first argument. Assuming that the process ID is stored in the DWORD
variable arda, and you are caling OpenProcess (PROCESS_ALL_ACCESS, FALSE,
drd) to obtain a handle with maximum access rights, you will get an error code for
several processes with low ID numbers. Thisis not a bug—it is a security feature!
These processes are system services that keep the system alive. A normal user
process is not allowed to execute all possible operations on system services. For
example, it is not a good idea to allow all processes to kill any other process in the
system. If an application accidentally terminates a system service, the entire system
crashes. Therefore, certain access rights can only be used by a process that has the
appropriate privileges.

Y ou can always bump up the privilege level of an application by claiming that it
is a debugger. For obvious reasons, a debugger must have a large number of access
rightsto do itsjob. Changing the privileges of a processis essentially a straightfor-
ward sequence of three steps:

WINDOWS 2000 DEBUGGING INTERFACES 43

1. Firgt, the so-called access token of the process must be opened, using the
Win32 advapi32 . dll function OpenProcessToken () .

2. Ifthis call succeeds, the next step isto prepare a TOKEN_PRIVILEGES
structure that contains information about the requested privilege.
Thistask is facilitated by another advapi32.a11 function named
LookupPrivilegevalue () . The privilege is specified by name. The
Platform SDK filewinnt .h defines 27 privilege names and assigns symbols
to them. For example, the debugging privilege has the symbol
SE_DEBUG_NAME, which evaluates to the string “SeDebugPrivilege”.

3. If this call succeeds as well, AdjustTokenPrivileges () can be caled with
the token handle of the process and the initialized ToxEN_PRIVILEGES
structure. Again, this function is exported by advapi32.dil.

Remember to close the token handle afterward if OpenProcessToken () succeeds.
w2k_dbg . dll contains the API function dbgprivilegeset () that combines these steps,
asshownin Listing 1-8. At the bottom of this listing, another w2k _dbg. a11 function is
included. abgprivilegeDebug () iSasimple but convenient dbgprivilegeset () Wrap-
per that specifically requests the debugging privilege. By the way, thistrick isaso
employed by the wonderful xi11. exe utility contained in Microsoft's Windows NT
Server Resource Kit. ki11. exe needs the debugging privilege to be able to kick starved
sarvices from memory. Thisis an indispensable tool for NT server administrators who
want to restart a dead system service that doesn't respond to service control cdls any-
more, circumventing a full reboot. Anyone who runs Microsoft Internet Information
Server (11S) on the Web or in an intranet or extranet probably has this nifty tool in the
emergency toolbox and issues akill inetinfo. exe command every now and then.

BOCL WINAPI dbgPrivilegeSet (PWORD pwName)
HANDLE hToken;
TOKEN_PRIVILEGES tp;

BOCL fok = FALSE

it ((pwnane != NULL)
&b
OpenProcessToken (GetCurrentProcess (),
TOKEN_ADJUST_PRIVILEGES,
&hToken))
{
if (LookupPrivilegeValue (nULL, pwNane,
&tp.Privileges->Luid))
{
tp.Privileges->Attributes = SE_PRIVILEGE_ENABLED;

tp.PrivilegeCount = 1;

(continued)

44 WINDOWS 2000 DEBUGGING SUPPORT

fCk = AdjustTokenPrivileges (hToken, FALSE, &tp,
0, NULL, NULL)

&&

(GetLastError () == ERROR_SUCCESS) ;
Clos i[(dndle‘;v (hToken) ;
}
return fok;
/1
BOOL WINAPI dbgPrivilegeDebug (Vvoid)
r{et urn dbgPrivilegeSet (SE_DEBUG_NAME) ;

}

LISTING 18 Requesting a Privilege for a Process

ENUMERATING SYMBOLS

After having bashed psapi . a11 without mercy, it's time for a few more positive
words. psapi.di1 might be aflop, but on the other hand, imagehip.dll isatrue
pearl! | came across this fine piece of software while searching for more information
about the internal structure of Windows 2000 symbol files. Finally, a 3-year-old
article of the world's best Windows surgeon Matt Pietrek (Pietrek 1997b) convinced
me—at least for now—that it is absolutely unnecessary to know the layout of sym-
bol files, because imagenip. dll readily dissects them for me. This magic is done by
its API function symenumeratesymbols (), Whose prototype is shown in the upper
half of Listing 1-9. Meanwhile, | have learned a lot about the most essential inter-
nals of the Windows NT 4.0 and Windows 2000 symbol files, so | no longer depend
oNn imagehlp.dil. | will cover thisinformation in the next section of this chapter.

The hProcess argument is usually a handle to the calling process, so it can be
st to the result of GetCurrentProcess() . Note that GetCurrentProcess () doesn't
returnareal processhandle. Instead, it returnsaconstant value of OX FFFFFFFF called
apseudo handle, whichis accepted by all API functions that expect a process handle.
OXFFFFFFFE is another pseudo handle that is interpreted as a handle to the current
thread and is analogously returned by the API function cetcurrentThread() .

Baseof n11 is defined as a pworn, athough it is actually sort of a smopure or
HINSTANCE . | guess Microsoft has chosen this data type to express that this value
need not be a valid HMODULE, although it frequently is. SymEnumerateSymbols () ca-
cul ates the base addresses of al enumerated symbolsrelativeto thisvalue. Itis
absolutely OK to query the symbols of a DLL that isn't currently loaded into any
process address space, so easeofn11 can be chosen arbitrarily.

W NDOWS5 2000 DEBUGAE NG| NTERFACES 45

BOOL IMAGEAPISymEnumerateSymbols
(HANDLE hPr ocess,
DWCRD BaseO'Dl |,
PSYM_ENUMSYMBOLS_ CALLBACK Cal | back,
PVOID User Context) ;
typedef BOOL (CALLBACK *PSYM_ENUMSYMBOLS_CALLBACK)
(PTSTR SymbolName,
DWRD SymbolAddress,
DWCRD SymbolSize,
PVvaQ D UserContext) ;

LISTING 1-9. SymEnumerateSymbols() and its Callback Function

The Callback argument is a pointer to a user-defined callback function that
isinvoked for every symbol. The lower half of Listing 1-9 provides information
about its arguments. The callback function receives a zero-terminated symbol name
string, the base address of the symbol with respect to the Baseofn11 argument of
symEnumerateSymbols () and the estimated size of the item tagged by the symbol.
SymbolNameisdefinedasaPTSTR, which meansthat itsactual typedependson
whether the ANSI or Unicode version of SymEnumerateSymbols() has been called.
The Platform SDK documentation explicitly statesthat SymbolSize is a "best-guess
value," and can be zero. | have found that Symbol Address might be zero as well,
and that Symbol Size can assume the two's complement of symboladdress, that is,
adding both values yields zero. It isagood ideato filter out these special casesif you
areonly interested in symbols that refer to real code or data.

UserContext is an arbitrary pointer that can be used by the caller to keep
track of the enumeration sequence. For example, it might point to a memory block
where the symbol information has accumulated. This pointer isidentical to the
UserContext argument passed to the Callback function. The callback function
can cancel the enumeration any time by returning the value FALSE . This actionis
typically taken when an unrecoverable error occurs or the caller has received the
information for which it was waiting.

Listing 1-10 demonstrates atypical application of SymEnumerateSymbolsi),
again taken from the source code of w2k_dbg. d11. To enumerate the symbols of a
specified module, the following steps have to be taken:

1. Before anything else, syminitialize () must be called toinitialize the
symbol handler. Listing 1-11 shows the prototypes of this and other
functions discussed here. The hProcess argument can be a handle to any
active process in the system. Debuggers that maintain symbolic
information for several processes use this parameter to identify the target
process. Applications that simply wish to enumerate symbols offline may

46 WINDOWS 2000 DEBUGGING SUPPORT

PDBG_LIST WINAPI dbgSymbolList (PWORD pwPat h,
PVOID pBase)

{
PLOADED_IMAGE pl i ;
HANDLE hProcess = GetQurrentProcess () ;
PDBG_LIST pdl = NULL;
if ((pwPath !=NUL) &&
symInitialize (hProcess, NULL, FALSE))
{
if ((pli= dbgSymbolLoad (pwPath, pBase, hprocess)) !=NJLL)
{
if ((pdl= dbgListCreate ()) !'= NUL)
{

SymEnumerateSymbols (hProcess, (DWORD_PTR) pBase,
dbgSymbolcCallback,fcpdl);
)
dbgSymbolUnload (pli, pBase, hProcess);
}

SymCleanup (hProcess);

}

return dbgListFinish (pdl);

LISTING 1-10. Creating a SymbolList

pass in the value of GetCurrentProcess () . The resources alocated by
Syminitialize () must be freed later by calling symcleanup() .

2. To obtain accurate information about the module for which symbols will
be enumerated, it is advisable to call 1mageLoad () now. Note that this
function is specific to imagehlp.dl1—it isnot exported by the
redistributable component dbghelp.dll. Imagel oad() returnsapointer
to a LoaDpED_IMAGE structure containing very detailed information about
the loaded module (see Listing 1-11). This structure must be deallocated
later using ImageUnload() .

3. Thelast step before symEnumeratesymbols () can be caled isto load
the symbol table of the target module by invoking symroadmodule() .
If imageLoad () has been called before, thenhrile and sizeof image
members of the returned LoADED_TMAGE Structure can be passed in as the
respective arguments. Otherwise, you haveto set hFileto NULL and
sizeofimageto zero. Inthiscase, SymL oadM odule() attemptsto obtainthe
image sze from the symbol file, which is not guaranteed to be accurate.
The symbol table must be unloaded later by calling symunloadModule() .

WINDOWS 2000 DEBUGGING INTERFACES 47

BOOL IMAGEAPI SymInitialize (HANDLE hProcess,
PSTR UserSearchPath,
BOOL fInvadeProcess) ;

BOOL | MAGEAPI symCleanup (HANDLE hProcess) ;

DWRD | MAGEAPI symLoadModule (HANDLE hProcess,
HANDLE hrile,
PSTR ImageName,
PSTR ModuleName,
DNCRD BaseO'D |,
DWRD SizeOfD1l) ;

BOOL | MAGEAPI symUnloadModule (HANDLE hProcess,
DWORD BaseOfD11) ;

PLQADED | MAGE | MAGEAPI | mageLoad (PSTR DllName,
PSTR D11Path) ;

BOOL | MAGEAPI ImageUnload (PLOADED_IMAGE LoadedImage) ;

typedef struct _LQADED | MAGE

{

PSTR Modul eNane;
HANDLE hFi | e;

PUCHAR MappedAddress;
PI MAGE_NT_HEADERS FileHeader;

Pl MAGE_SECTI ON_ HEADER LastRvaSection;
ULONG NumberOf Sections;
Pl MAGE_SECTI ON_ HEADER Sections;

ULONG Characteristics;
BOOLEAN fSystemImage;
BOCLEAN fDOSImage;

LI ST_ENTRY Links;

ULONG SizeOfImage;

}

LOADED_IMAGE, * PLOADED_IMAGE;

LISTING 111 Various imagehip. a11 APl Prototypes

InListing 1-10, the Syminitialize(), symEnumeratesymbols(), and
SymCleanup() callsareclearly discernible. PleaseignorethedbgL istCreate()
and abgListFinish() calls—they refer tow2k_dbg. a11 API functions that help
build object lists in memory. The other imagenip.d11 function references mentioned
above are hiddeninsde the w2x_dog. a11 API functions abgsymbolroad() and
dbgsymbolUnload (), shownin Listing 1-12. Notethat dbgsymbolLoad () USES
dbgstringAnsi () to convert the modul e path string from Unicodeto ANS!,
because imagehlp.d11 doesn't exportaUnicodevariant of Imagel oad() .

48 WINDOWS 2000 DEBUGGING SUPPORT

PLOADED_IMAGE WINAPI dbgSymbolLoad (PWORD pwPath,
PVOID pBase,
HANDLE hPr ocess)

[
1

WORD awPath [MAX_PATH] ;
PBYTE pbPat h;
DNRD dpath;

PLOADED_IMAGE pli = NUL;

if ((pbPath= dbgStringAnsi (pwPath, NULL)) != NUL)
{
if (((pli= InageLoad (pbPath, NULL)) == NUL) &&
(dPat h = dbgPathDriver (pwPath, awPath, MAX PATH)) &&
(dPat h < MAX_PATH))

{

dbgMemoryDestroy (pbPath);

if ((pbrPath= dbgStringAnsi (awPath, NULL)) != NULL)
{
pli = InmagelLoad (pbPath, wULL) ;
}
}
if ((pli!=NJLL)
&&

(I symLoadModule (hProcess, pli->hFile, pbPath, NULL,
(DWORD_PTR) pBase, pli->SizeOfImage)))

{
I mageUnl oad (pli);
pli = NULL;
}
dbgMenoryDestroy (pbPath) ;
)
return pli;

}
1

PLOADED_IMAGE WNAPI dbgSymbolUnload (PLOADED_IMAGE pl i,

Pva D pBase,
HANDLE hPr ocess)

{
if (pli !'= NUL)

SymUnloadModule (hProcess, (DWORD_PTR) pBase) ;

| mageUnl oad (pli);

}
return NULL;
}

1 -

WINDOWS 2000 DEBUGGING INTERFACES 49

PDBG_LIST WINAPI dbgSymbolList (PWORDpwPat h,

PVOID pBase)
PLOADED | MAGE pl i ;
HANDLE hProcess = GetCurrentProcess () ;
PDBG_LIST pdl = NULL;

if ((pwPath !'= NULL) &&
SymInitialize (hProcess, NULL, FALSE))

{

if ((pli= dbgSymbolLoad (pwPath, pBase, hProcess)) != NULL)
{
if ((pdl= dbgListCreate ()) != NULL)
{
SymEnumerateSymbols (hProcess, (DWORD_PTR) pBase,
dbgSymbolCallback, &pdl) ;
}
dbgSymbolUnload (pli, pBase, hProcess);
}
SymCleanup (hProcess);
}

return dbgListFinish (pdl);

}

LISTING 1-12 Loading and Unloading Symzbol Information

ImageLoad () does avery good job locating the specified module, even if only its
name is given, without any path information. However, it fails on kernel-mode drivers
residing inthe \winnt\system32\drivers directory, becauseit is usually not part of
the system's search path list. In this case, dbgsymbolLoad () asksthe dbgPathDriver ()
function for help and retries the Loadrmage () call. dbgPathDriver () simply prefixes
the specified path with the string “driver\” if the path consists of a bare file name
only. If either of the imagelL oad () calls returns avalid LoADED_IMAGE pointer,
dbgSymbolLoad () fulfillsits mission by loading the modul€'s symbol table via
symLoadModule () and returns the LOADED_IMAGE structure if successful. Its counter-
part dogSymbolUnload () is almost trivial—it unloads the symbol table and then
destroys the LoADED_IMAGE structure.

In Listing 1-10, SymEnumerateSymbols() isinstructed to use the w2k_dbg.d11
function dbgsymbolcallback () for the callbacks. | am not including its source code
here because it isn't relevant to imagehlp.dll. It just usesthe symbol information it
receives (see the definition of psyM_ENUMSYMBOLS_CALLBACK in Listing 1-9) and adds
it to a memory block passed in as its usercontext pointer. Although the list, index,
and sorting functions featured by w2k_dbg.d11 are interesting in their own right,
they are beyond the scope of this book. Please consult the source files of
w2k_dbg.d11 and w2k_sym.exe on the CD if you need more information.

50 WINDOWS 2000 DEBUGGING SUPPORT

A WINDOWS 2000 SYMBOL BROWSER

w2k_sym.exe IS a sample client application of w2k_dbg.d11 running in Win32 console
mode. If youinvokeit without arguments, it identifiesitself asthe Windows 2000
Symbol Browser and displaysthehelp screen shownin Example 1-5. Theprogram
recognizesseveral command lineswitchesthat determinetheactionsit shouldtake.
The four basic options are /o (list processes), /m (list process modules), /a (list drivers
and system modul es), or the path of amodul efor which symbol informationis
requested. The default behavior can be altered by adding various display mode, sort-
ing, and filtering switches. For example, if youwantto seealist of al ntoskrni . exe

/] w2k_sym.exe
// SBS Wndows 2000 Synbol Browser V1. 00
// 08-27-2000 Sven B. schreiber

// sbs@orgon. com
Usage : w2k_sym { <mode> [/f | /F <filter>] <operation>)
<mode> is a series of options for the next <operation>:

/a : sort by address

/s : sort by size

/i : sort by ID (process/nodul e lists only)
In : sort by name

/c : sort by name (case-sensitive)

/r : reverse order

/1 : load checkpoint file (see bel ow)

/w : wite checkpoint file (see bel ow)

/e : display end address instead of size
/v : verbose node

/£ <filter> applies a case-insensitive search pattern.
/B <filter> works anal ogous, but case-sensitive.

In <filter> the wildcards * and ? are all owed.

<operation> is one of the follow ng:

/p : display processes - checkpoint : processes . dbgl
/m : display nodul es - checkpoint : modules .dbgl
/d : display drivers - checkpoint : drivers . dbgl

<file>: display <file> synbols - checkpoint: symbols.dbgl

<file>is a file name, a relative path, or a fully qualified path.
Checkpoint files are |oaded fromand witten to the current directory.
A checkpoint is an on-disk inmage of a DBG_LIST structure (see w2k _dbg.h) .

EXAMPLE 1.5. The Command Help of w2k_sym. exe

MICROSOFT SYMBOL FILEINTERNALS 51

symbols sorted by name, issue the command w2k_sym /n/V ntoskrnl.exe. The /n
switch selects sort-by-name mode, and /v tells the program to be verbose, displaying
the complete symbol list—otherwise, only summary information would be visible.

As an additional option, w2k_sym. exe allows reading and writing checkpoint
files. A checkpoint is simply a one-to-one copy of an object list written to a disk file.
Y ou can use checkpoints to save the state of your system for later comparison. A
checkpoint file contains a CRC32 field that is used to validate the contents of the file
when it is loaded. w2k_sym. exe maintains four checkpoints in the current directory,
corresponding to the four basic program options mentioned earlier, that is, process,
module, driver, and symbol lists.

MICROSOFT SYMBOL FLE INTERNALS

It is great that Microsoft provides a standard interface to access the Windows 2000
symbol files, no matter what internal format they are using. Sometimes, however, you
may wish to have direct access to their internals, just to gain more control of the
data. This section shows you how the data in symboal files of type . dbg and . pdb are
structured, and presents a DLL with a sample client application that allows you to
look up and browse symbolic information buried inside them. Yes, thisis going to be
another symbol browser application, but don't worry—I won't bore you with a sim-
ple rehash of familiar code. The alternative symbol browser is quite different from
the one discussed in the previous section.

SYMBOL DECORATION

Microsoft symbol files store the nhames of symbols in their so-called decorated form,
which means that the symbol name might be prefixed and postfixed by additional
character sequences that carry information about the type and usage of the symbol.
Table 1-4 lists the most common forms of decorations. Symbols generated by C code
usually have a leading underscore or @ character, depending on the calling conven-
tion. An @ characterindicatesa ___ fastcall function, and an underscore indicates
__stdcall and__cdec1functions. Becausethe _ fastcall and___ stdcall conven-
tions leave the task of cleaning up the argument stack to the called function, the sym-
bols assigned to functions of this type also include the number of argument bytes put
on the stack by the caller. Thisinformation is appended to the symbol name in deci-
mal notation, separated by an @ character. In this scenario, global variables are
treated like___cdecl functions—thatis, their symbols start with an underscore and
have no trailing argument stack information.

52 WINDOWS 2000 DEBUGGING SUPPORT

TABLE 14 Symbol Decoration Categories

EXAMPLE DESCRIPTION
symbol Undecorated symbol (might have been declared in an
ASM module)
_symbol cdecl function or global variable
_symbol@N stdcall function with N argument bytes
@symbol@N fastcall function with N argument bytes
__imp__symbol import thunk of a__ cdecl function or variable
__imp__symbol@N import thunk of a__stdcall function with N argument bytes
__imp_@symbol@N import thunk of a__fastcall function with N argument bytes
2symbol C++ symbol with embedded argument type information
__ @@_PchSym_symbol PCH symbol

Some symbol names have aprefix of__imp__or__imp_e. These symbols are
assigned to import thunks, which are pointers to functions or variables in other mod-
ules. Import thunks facilitate dynamic linking to symbols exported by other compo-
nents at runtime, regardless of the actual load address of the target module. When a
module is loaded, the loader mechanism fixes up the thunk pointers to refer to the
actual entry point addresses. The benefit of import thunks is that the fixup for each
imported function or variable has to be done only once per symbol—all references to
this external symbol are routed through its thunk. It should be noted that import
thunks are not a requirement. It is up to the compiler to decide whether it wants to
minimize fixups by adding thunks or minimize memory usage by saving the space
required for the thunks. As Table 1-4 shows, the same prefix/postfix rules apply to
loca and imported symbols, except that import thunks have an additional__ imp_
prefix (with two leading underscores!).

The undecoration problems of imagehlp. d1l can easily be demonstrated
with the help of thew2x_sym. exe sample application from the previous section,
because it ultimately relieson the imagehlp.d11l APl viathew2k_dbg. dll library. If
you issue the command w2k_sym /v/n/f___* ntoskrnl.exe, Instructing w2k_sym.exe
to display a sorted list of names starting with two underscore characters, you will see
something that should look like the list in Example 1-6. What's strange is the pile of ___
symbols at the top of the table. Entering acommand such as 1n 8047F798 in the Ker-
nel Debugger yieldstheresult ntoskrnl !, which isn't any better. The original deco-
rated name of the symbol at address Ox8047F798 is actually __@e_pchsym_@oo0@
UmgUkirezgvUmglhUlyUfkUlyqUrDIGUlykolyg@ob, SO it seemsthat imagehlp.dll
simply has stripped al characters except for two of the three leading underscores.

MICROSOFT SYMBOL FILE INTERNALS

53

ADDRESS Sl ZE NAME
6870 8047F798 4
6871 80480B8C 14
6872 8047E724 4
6873 B0471FE0 4
6874 804733B8 28
6875 804721D0 20
6876 804759A4 4
6877 80480004 1Cc
6878 8047DA3C 14
6879: 8047238C 4
6880 8047E6DA 4
6881 8047554 4
6882: 80471700 4 decimal_point
6883 80471704 4 decimal_point_length

6884 80471FCO 8 fastflag

EXAMPLE 1-6. Results of the Command w2k_sym /v/n/f * ntoskrnl.exe

An even better example is the command w2k_sym /v/in/f _inp_*
ntoskrnl. exe that displays al symbols starting with the character sequence
imp. The resulting list, excerpted in Example 1-7, comprises the import thunks
of ntoskrnl. exe. Again, the list starts with a long sequence of ambiguous names,
and again the Kernel Debugger isn't helpful, because it reports the same names for
these addresses. If | tell you now that the original name of the symbol at address
Ox804005A4 is__imp_eExReleaseFastMutex@4, What do you think? Obvioudly,
one leading underscore has gotten lost, and the entiretail string starting at the first
@ character ismissing. It seemsthat the undecoration algorithminside
imagehlp.dll hasaproblemwith @ characters. Thereason for this strange behav-
ior isthat e is not only the prefix of___ fastcall function names but also the sepa-
rator for the argument stack size trailer of ___fastcall and___ stdcal1 functions.
Obviously, the applied undecoration algorithmis satisfied to find aleading under-
scoreand an @ character, erroneously assumingthat theremainingtrailer specifies
the number of bytes on the caller's argument stack. Therefore, the lengthy PCH
symbols are stripped down to two underscores, and the__ fastcall import thunks
arereducedto _imp_. In both cases, the first leading underscore is removed and
thefirst @ plusall charactersfollowing it are discarded aswell.

54 WINDOWS 2000 DEBUGGING SUPPORT

ADDRESS Sl ZE NAME

6761: 80400524 4
6762: 80400584 4
6763: 80400594 4
6764: 80400524 4 np_
6765: 8040059C 4
6766: 80400534 4
6767: 80400590 4
6768: 804004EC 4
6769: 80400554 4
6770: 80400598 4
6771: 80400520 4
6772 80400400 4
6773: 804004E8 4

[
338435848

HalAllocateAdapterChannel

HalAllocateCo 3uffer

np HalAllProcessorsStarted

EXAMPLE 1-7. Results ofthe Command w2k_sym /v/n/f _imp_* ntoskrnl.exe

The above examples are two potential reasons why you might lose patience and
say: "Hey, I'm going to do it my own way!” The problem is that the internals of the
Microsoft symbol file format are only scarcely documented, and some parts of the
symbolic information—most notably the structure of Program Database (PDB)
files—are completely undocumented. The Microsoft Knowledge Base even contains
an articlethat clearly states:

"The Program Database File Format also known as PDB fileformat is not
documented. This information is Microsoftproprietary.” (Microsoft 2000d.)

This sounds as if any attempts to roll your own symbol information parser
must fail. However, you can bet that I'd never dare to add a section to this book that
would end with the words "... but unfortunately, | can't tell you more because the
internals of PDB files are unknown to me.” Of course, | will tell you how PDB files
are structured. But first, we will have to examine to the internals of . dbg files,
because thisiswhere the entire story starts.

THE INTERNAL STRUCTURE OF .dbg FILES

The symbalic information of the Windows NT 4.0 components is packed into files
whose names end with a . dbg extension. The file names and the subdirectories hogting
these files can be immediately derived from the component file name. Assuming that the

MICROSOFT SYMBOL FILE INTERNALS 55

symbol root directory of asystemisd: \winnt\symbols, thefull path of the symbol file
of the component filename.extisd: \winnt\symbols\ext\filename.dbg. FOr exam-
ple, the kernel symbols can be found in the file d: \winnt\ symbols\exe\ntoskrnl .dbg.
Windows 2000 comeswith . dbg files, too. However, the symbolic information has been
moved to separate . pdb files. Therefore, each Windows 2000 component has an associ-
ated ext\ filename.dbg and an additiona ext\ filename .pdb filein the symbol root
directory. Asidefromthisdifference, the contents of the WindowsNT 4.0 and 2000
.dbg files are quite similar.

Fortunately, theinternals of . dbg files are at least partially documented. The
Win32 Platform SDK header filewinnt . h providesimportant constant and type
definitions of the core parts, and the Microsoft Developer Network (MSDN)
Library contains somevery hel pful articlesabout thisfile format. Certainly the
most enlightening article is Matt Pietrek's March 1999 edition of his "Under the
Hood" column in Microsoft Systems Journal (MS]),renamed MSDN Magazine
(Pietrek 1999). Basically, a . abg fil e consists of a header and a data section. Both
sections have variablesize and are further subdivided. The header part comprises
four major subsections:

1. An IMAGE_SEPARATE_DEBUG_HEADER Structure, starting with the two-letter
signature “DI” (top section of Listing 1-13).

2. An array of TMAGE_sECTTON_HEADER Structures, one for each section in the
component's PE file (middle section of Listing 1-13). The number of
entries is specified by the numberofsections member of the
IMAGE_SEPARATE_DEBUG_HEADER.

3. A sequence of zero-terminated 8-bit ANSI strings, comprising al exported
symbols in undecorated form. The Sze of this subsection is specified by the
ExportedNamesSize member of the IMAGE_SEPARATE_DEBUG_HEADER . |f the
modul e doesn't export any symbols, the ExportedNamesSizeis zero, and
the subsection is not present.

4. An array of TMAGE_DEBUG_DTRECTORY Structures, describing the locations
and formats of the subsequent data in the file (bottom
section of Listing 1-13). The size of this subsection is specified by the
DebugDirectorySize member of the IMAGE SEPARATE_DEBUG_HEADER.

56 WINDOWS 2000 DEBUGGING SUPPORT

#define IMAGE_SEPARATE_DEBUG_SIGNATURE 0x4944 // ~DI”
typedef Struct _IMAGE_SEPARATE_DEBUG_HEADER

{

WRD Signature;

WORD Flags;

WORD Machi ne;

WORD Characteristics;

DWIRD TimeDateStamp;

DWORD Checksum

DWRD ImageBase;

DWRD SizeOfImage;

DWORD NumberOf Sections ;

DWRD ExportedNamesSize ;

DWIRD DebugDirectorySize;

DWRD SectionAlignment ;

DANORD Reserved [2] ;

}

IMAGE_SEPARATE_DEBUG_HEADER, *PIMAGE_SEPARATE_DEBUG_HEADER;

1

#def i ne IMAGE_SIZEOF_SHORT_NAME 8
typedef struct _IMAGE_SECTION_HEADER

BYTE Name [IMAGE_SIZEOF_SHORT_NAME] ;
uni on

ISNFD PhysicalAddress;
DWRD VirtualSize;
} Misc;
DWRD VvirtualAddress;
DWRD sizeOfRawData;
DWRD PointerToRawData;
DWRD PointerToRelocations;
DWIRD PointerToLinenumbers ;
WIRD NumberOfRelocations;
WORD Nunmber O Linenumbers ;
DWRD Characteristics;

}

IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

#define IMAGE_DEBUG_TYPE_UNKNOWN
#def i ne IMAGE_DEBUG_TYPE_COFF
#defi ne IMAGE_DEBUG_TYPE_CODEVIEW
#def i ne IMAGE_DEBUG_TYPE_FPO
#define IMAGE_DEBUG_TYPE_MISC
#defi ne IMAGE_DEBUG_TYPE_EXCEPTION
#define IMAGE_DEBUG_TYPE_FIXUP

o U WN R O

MICROSOFT SYMBOL FILE INTERNALS 57

#define IMAGE_DEBUG_TYPE_OMAP_TO_SRC 7
#define IMAGE_DEBUG_TYPE_OMAP_FROM_SRC 8

tf def i ne IMAGE_DEBUG_TYPE_BORLAND 9
#def i ne IMAGE_DEBUG_TYPE_ RESERVED10 10
tfdefi ne IMAGE_DEBUG_TYPE_CLSID 11

typedef struct _IMAGE_DEBUG_DIRECTORY
{
DWIRD Char acteri stics;
DWRD TimeDateStamp;
WRD MajorVersion;
WRD MinorVersion;
DWORD Type;
DWRD sizeOfData;
DWRD AddressOfRawData;
DWRD PointerToRawData;

IMAGE_DEBUG_DIRECTORY, * PIMAGE_DEBUG_DIRECTORY;

LISTING 1-13. Header Sructures ofa . dbg File

Because of the variabl e size of the header subsections, their absol ute positions
within the . dbg file must be computed from the size of the preceding subsections,
respectively. A . dbgfileparser usually appliesthefollowing algorithm:

* The IMAGE_SEPARATE_DEBUG_HEADER IS always located at the beginning of
the file.

* The first tMace_secTION_HEADER iImmediately follows the
IMAGE_SEPARATE_DEBUG_HEADER, SO it isaways found at file offset 0x30.

» The offset of the first exported name is determined by multiplying the size
of the TMAGE_sEcTION_HEADER Structure by the number of sections and
adding it to the offset of the first section header. Thus, the first string is
located at offset 0x30 + (NumberOfSections * 0x28).

* Thelocation of the first tMaGE_DEBUG_DIRECTORY entry is determined by
adding the exportednamessize t0 the offset of the exported-names
subsection.

» The offsets of the remaining data items in the . dbg file are determined by
the TMAGE_DEBUG_DIRECTORY entries. The offsets and sizes of the
associated databl ocksarespecified by thePointerToRawDataand
SizeOf Data members, respectively.

58 WINDOWS 2000 DEBUGGING SUPPORT

The rvace_pesuc_Type_* definitionsin Listing 1-13 reflect the various data
formatsa . dbg file can comprise. However, the Windows NT 4.0 symbol files typically
contain only four of them: TMAGE_DEBUG_TYPE_COFF, TMAGE_DEBUG_TYPE_CODEVIEW,
IMAGE_DEBRUG_TYPE_FPO, and IMAGE_DEBUG_TYPE MISC. The Windows 2000 .dbg
files usually add T1MAGE_DEBUG_TYPE_OMAP_TO_SRC, IMAGE_DEBUG_TYPE_OMAP_FROM
_src, and an undocumented typewith ID 0x1000 to thislit. If you areinterested
only in resolving or browsing symbols, the only required directory entries are TvaGE_
DEBUG_TYPE_CODEVIEW, IMAGE_DEBUG_TYPE_OMAP_TO_SRC, and IMAGE_DEBUG_
TYPE_OMAP_FROM_SRC.

The companion CD of this book contains a sample DLL named w2k_ing. d11
that parses . dbg and . pdb files and exports several interesting functions for devel opers
of debugging tools. The source code of thisDLL isfound inthe \src\w2k_img tree of
the CD. One important property ofw2k_img. dll isthat it is designed to run on all
Win32 platforms. This not only includes Windows 2000 and Windows NT 4.0 but
aso Windows 95 and 98. Like al good citizens in the Win32 world, this DLL comes
with separate entry pointsfor ANSI and Unicode strings. By default, aclient applica-
tion uses the ANSI functions. If the application includes the line #def ine UNICODE in
its source code, the Unicode entry points are sdected transparently. Client applications
that run on Win32 platforms should use ANSI exclusively. Applications specific to
Windows 2000/NT can switch to Unicode for better performance.

The sample CD dso contains an example application called SBS Windows 2000
CodeView Decompiler, whose Microsoft Visual C/C++ project files are found in the
\src\w2k_cv tree. Itisavery smple application that dissects . abg and .pan files and
dumps the contents of their sectionsto a console window. Y ou can useit whileread-
ing this section to see live examples of the data structures discussed here. w2k_cv. exe
makes heavy use of several w2k_img. dll API functions.

Ligting 1-14 shows one of the basic data structures defined in w2k_img.h. The
TMG_DRG Structure is essentially a concatenation of the first two . dbg file header sec-
tions, that is, the fixed-size basic header and the array of PE section headers. The
actual size of the structure, given the number of sections, is computed by the macro
IMG DBG__ () . Itsresult specifies the file offset of the exported-names subsection.

Severad w2k_img. dll API functions expect a pointer to an initialized tvc_prc
structure. The imgDbgLoad () function (not reprinted here) allocates and returns a
properly initialized tvc_pgc structure containing the data of the specified . dbg file.
imgDbgLoad () performsvery gsrict sanity checks on the datato verify that thefileis
valid and complete. The returned tvc_prc structure can be passed to severa parsing
functions that return the linear addresses of the most frequently used . dbg file compo-
nents. For example, the imgbbgExports () function in Listing 1-15 computes the linear
address of the sequence of exported names following the TMAGE_sECTION_HEADER
array. It dso counts the number of available names by scanning the string sequence up
to the end of the subsection and optionally writes this value to the variabl e pointed to
by the pdcount argument.

MICROSOFT SYMBOL FILE INTERNALS

59

typedef struct _IMG_DBG
{

IMAGE_SEPARATE_DEBUG_HEADER Header ;
IMAGE_SECTION_HEADER aSections [] ;

}

IMG_DBG, *PIMG_DBG, **PPIMG_DBG ;

(define 1MG_DBG_ sizeof (IMG_DBG)
#define IMG_DBG__(_n) (IMGDBG_ + ((_n) * IMAGE_SECTION_HEADER_))

#define IMG_DBG_DATA(_p,_d) \
((PVOID) ((PBYTE) (_p) + (_d)->PointerToRawData))

LISTING 1-14. The tvMc_pBce Structure and Related Macros

PBYTE wiNaPI i ngDbgExports (PIMG_DBG pid,
PDWORD pdCount)
t
DWORD i, j ;
DWRD dCount = 0;
PBYTE pbExports = NULL;

if (pid !'= NULL)
{
pbExports = (PBYTE) pid->aSections
+ (pid->Header.NumberOfSections
* IMAGE_SECTION_HEADER_) ;

for (i =0; i < pid->Header .ExportedNamesSize; i =])

{

if (!pbExports [j = i]) break;

while ((j < pid->Header .ExportedNamesSize) &&
pbExports [j++]);

if ((7>1) && (!pbExports [j-1])) dCount++;

}

}
if (pdCount != NULL) *pdCount = dCount;

return pbExports ;

LISTING 1-15. The imgDbgExports () API Function

60 WINDOWS 2000 DEBUGGING SUPPORT

Listing 1-16 definestwo more API functionsthat | ocate debug directory
entries by their tMace_pesuc_TvpE_* IDS. imgDbgDirectories () returns the base
address of the TMaGE_DEBUG_DIRECTORY array, whereas imgDbgDirectory () returns
a pointer to the first directory entry with the specified type ID or returns NULL if no
such entry exists.

PIMAGE_DEBUG_DIRECTORY WINAPI ingDbgDirectories (Pl MsDBGpid,
PDWORD pdCount)

{
DWRD dCount = O0;
PIMAGE_DEBUG_DIRECTORY pidd = NULL;
if (pid !'= NUL)
{
pidd = (PIMAGE_DEBUG_DIRECTORY)
((PBYTE) pid
+ IMG_DBG (pid->Header.NumberOfSections)

+ pid->Header .ExportedNamesSize) ;

dCount = pid->Header .DebugDirectorySize
| IMAGE_DEBUG_DIRECTORY_;
}
if (pdGount !'= NULL) *pdCount = dCount;
return pidd;
}

11 - -

PIMAGE_DERUG DIRECTORY WNAPI ingDbgD rectory (P M5 DBG pid,
DWCRD dType)
{
DWORD dCount, 1i;
PIMAGE_DEBUG_DIRECTORY pi dd = NULL;

if ((pidd= ingDbgDrectories (pid, &dCount)) != NUL)
{
for (i =0; i <dCount; i++, pidd++)
t
if (pidd->Type == dType) break;

}
if (i == dCount) pidd = NULL;
}
return pidd;

}

LISTING 1-16. The imgDbgDirectories () and imgDbgDirectory () APl Functions

MICROSOFT SYMBOL FILE INTERNALS 61

The imgbbgbirectory () function can be used to look up the CodeView datain
the . dbgfile. Thisisdoneby the imgobgev () functioninListing 1-17. It cals
imgDbgDirectory () with the tvace_peEBUG_TYPE cODEVIEW type ID, and invokes the
IMG_DBG_DATA () macro shown in Listing 1-14 to convert the data offset supplied by
the IMAGE_DEBUG_DIRECTORY entry to an absolute linear address. This macro simply
adds the offset to the base address of the tvc_bpse structure and typecasts it to a pvorn
pointer. imgDbgCv () copiesthesize of the CodeView subsectionto * pdsizeif the
pdsize argument isnot NULL . The internals of the CodeView data are discussed below.

The API functions for the other data subsections look quite similar. Listing 1-18
shows the imgbbgomapTosre () and imgbbgomapFromsre () functions along with the
oMAP_TO_SRC and oMaP_FROM_SRC Structures on which they operate. Later, we will
need these structures to compute the linear addresses of a symbol from its CodeView
data. Becausethe OMAP dataare an array of fixed-length structures, both API func-
tions don't return the plain subsection size, but compute the number of entriesin the
array by simply dividing the overall size by the size of an entry. Theresult is copiedto
*pdcount if the pdcount argument is not NULL .

PCV_DATA WINAPI ingDbgQv (PIMG_DBG pid,
PDWORD pdSi ze)

{

PIMAGE_DEBUG_DIRECTORY pi dd;

DWORD dSize = 0

PCV_DATA pcd = NULL;

if ((pidd= ingDbgD rectory (pid, IMAGE_DEBUG_TYPE_CODEVIEW))
= NULL)
{
pcd = | M5 DBGDATA (pid, pidd) ;

dSi ze = pidd->SizeOfData;

)
if (pdSze != NALL) *pdS ze = dS ze;

return pcd;

}

LISTING 1-17. The imgDbgCv () API Function

typedef struct _OMAP_TO_SRC
{
DWRD dTarget;
DWRD dSource;

}

OMAP_TO_SRC, *POMAP_TO_SRC, * * PPOMAP_TO_SRC;

#define OMAP_TO_SRC_ si zeof (OMAP_TO_SRC)

(continued)

62 WINDOWS 2000 DEBUGGING SUPPORT

[

typedef struct _OMAP_FROM_SRC
{
DWRD dsSource;
DWORD dTarget;

OMAP_FROM_SRC, * POMAP_FROM_SRC, **PPOMAP_FROM_SRC;

#define OMAP_FROM_SRC_ si zeof (OMAP_FROM_SRC)

POMAP_TO_SRC WNAPI imgDbgOmapToSrc (Pl M5 DBG pid,
PDWRD pdCount)

PIMAGE_DEBUG_DIRECTORY pi dd;
DWORD dCount = 0;

POMAP_TO_SRC pots = NULL;

if ((pidd= ingDbgDirectory (pid,
IMAGE_DEBUG_TYPE_OMAP_TO_SRC))

I'= NULL)

{

pots = | M5 DBG DATA (pid, pidd) ;:

dCount = pidd->Si ze(f Data / OMAP_TO_SRC_;
}

if (pdGount != NULL) *pdCount = dCount;
return pots;

}

11

POMAP_FROM_SRC WNAPI imgDbgOmapFromSrc (PIMG_DBG pi d,
PDWORD pdCount)

{

PIMAGE_DEBUG_DIRECTORY pi dd;

DWORD dCount = O0;
POMAP_FROM_SRC pof s = NULL;

if ((pidd= ingDbgD rectory (pid,
IMAGE_DEBUG_TYPE_OMAP_FROM_SRC))

I'= NULL)

{

pofs = IMG_DBG_DATA (pid, pidd) :

dCount = pidd->Si zeOfData / OMAP_FROM_SRC_;
}

if (pdQunt !=NJLL) *pdCount = dCount;
return pofs;

}

LISTING 1-18. The imgDbgomapTosrc () and imgDbgOmapFromSrc() APl Function

MICROSOFT SYMBOL FILEINTERNALS 63

CODEVIEW SUBSECTIONS

CodeView is Microsoft's own debugging information format. It has undergone vari-
ous metamorphoses through the years of the evolution of the Microsoft C/C++ com-
piler and linker. The internals of some CodeView versions differ radically from each
other. However, all CodeView versions share a 32-bit signature at the beginning of
the data that uniquely identifies the data format. The Windows NT 4.0 symbol files
use the NB09 format, which has been introduced by CodeView 4.10. The Windows
2000 files contain ne10 CodeView data, which is merely areferral to a separate . pdb
file, asl will demonstrate later.

nB09 CodeView datais subdivided into a directory and subordinate entries. As
Matt Pietrek points out in his MS/article about . dbg files, most of the basic Code-
View structures are defined in a set of sample header files coming with the Platform
SDK. If you have installed the SDK samples, you will find a group of highly interest-
ing filesinthe directory \program riles\Microsoft Platform SDK\Samples\
SdkTools\Image\Include. The filesyou need for CodeView parsing are named
cvexefmt .h and cvinfo.h. Unfortunately, these files haven't been updated for along
time, as their file date 09-07-1994 indicates. It is striking that all structure names
defined in cvexefmt . h start with the letters OMF, which is the acronym for Object
Module Format. OMF is the standard file format used by 16-bit DOS and Windows
.obj and .1ib files. Starting with the Win32 versions of Microsoft's devel opment
toals, this format has been superseded by the Common Object File Format (COFF,
see Gircys 1988 for details).

Although the origind OMF format is obsolete today, it must be acknowledged
that it was a clever file format. One of its objectivesis to waste as little memory and
disk space as possible. Another important property is that this format can be success-
fully parsed by applications even if they do not fully understand dl parts of the file.
The basic OMF data structure is the tagged record, starting with a tag byte identifying
the type of data contained in the record, and a 16-bit length word specifying the num-
ber of subsequent bytes. This design makes it possble for an OMF reader to skip from
record to record, picking out the record types in which it is interested. Microsoft has
adopted this paradigm for its CodeView format, which explains the OMF prefix of
the CodeView structure names in cvexef mt .. Although the CodeView records have
very few things in common with the original OMF records, the basic property that the
format can be read without understanding all contents till remains.

Ligting 1-19 comprises the definitions of various basic CodeView structures,
taken from w2k_img.h. Some of them loosely correspond to structures foundin
cvexefmt .h and cvinfo.h, but are tweaked to the requirements of the w2k_img. d11
API functions. The CV_HEADER structure is present in al CodeView data, regardless of
the format version. The signature is a 32-bit format version ID, like CV_SIGNA-
TURE_NBO09 or cv_stenaTure_NB10. The 1offset member specifies the offset of the
CodeView directory relative to the header address. In n209-formatted Windows NT

64 WINDOWS 2000 DEBUGGING SUPPORT

4.0 symboal files, itsvalue seemsto be alwaysequal to eight, indicating that the direc-
tory followsimmediately after theheader. The Windows 2000 symbol filescontain
nB10 datawith lof fset set to zero. This dataformat will be discussed in detail later

in thischapter.

tfdefi ne CV_SIGNATURE_NB ‘BN’
#define CV_SIGNATURE_NB09 ‘90BN’
#define CV_SIGNATURE_NB1Q ‘01BN’

typedef uni on _CV_SIGNATURE
{
WRD wMagic; /BN’
DWRD dversion; /1 " xxBN
BYTE abText [4]); // “NBxx”

}

CV_SIGNATURE, *PCV_SIGNATURE, **PPCV_SIGNATURE;

#define CV_SIGNATURE_ sizeof (CV_SIGNATURE)

typedef struct _CV_HEADER

{

CV_SIGNATURE Si gnature;
LONG loffset;
}

CV_HEADER *PCV_HEADER **PPCV_HEADER;

#defi ne CV_HEADER si zeof (CV_HEADER

’

typedef struct _CV_D RECTCRY
{
WRD wsSize; I/ in bytes, including this nenber
WRD wEntrySize; [/ in bytes
DNRD dEntries;
LONG 10ffset;
DNRD drlags;
}

CV_DIRECTORY , * PCV_DIRECTORY, * * PPCV_DIRECTORY ;

#define C/_D RECTCRY_ sizeof (CV_D RECTCRY)

MICROSOFT SYMBOL FILE INTERNALS 65

fdefine sstModul e 0x0120 // CV_MODULE
#define sst @ obal Pub x012A // CV_PUBSYM
#define sst SegMap 012D // SV_SEGMAP

i

typedef struct _CV_ENTRY
{
WRD wSubSectionType; /] sst*
WRD wModuleIndex; /1 -1 if not applicable
LONG 1SubSectionOffset; // relative to CV_HEADER
DNRD dSubSectionSize; /1 in bytes, not including padding

}
CV_ENTRY, *PCV_ENTRY, **PPCV_ENTRY ;

#define CV_ENTRY_ sizeof (CV_ENTRY)

11

typedef struct _CV_NBO9 // CodeView 4.10
t
CV_HEADER Header ;
CV_D RECTCRY Directory;
CV_ENTRY Entries [];

}
CV_NB09, *PCV_NB0O9, **PPCV_NB0I;

#define CV_NBO09_ sizeof (CV_NB09)

LISTING 1-19. CodeView Data Structures

The CodeView nBo9 directory consists of a single CV_DIRECTORY structure
followed by an array of CV_ENTRY items. This is reflected by the cv_neo9 structure
defined at the end of Listing 1-19. 1t comprises the CodeView header, directory,
and entry array. The size of the Entries[] array is determined by the dEntries
member of the CV_DIRECTORY . Each CV_ENTRY refers to a CodeView subsection of
thetype specified by thewSubSectionType member. cvexe fnt . hdefinesno fewer
than 21 subsection types. However, the Windows NT 4.0 symbol files make use of
only 3 of them: sstModule (0x0120), sstGlobalPub (Ox012A), and sstsegMap
(0x0I2D) . You will usually see several sstModule subsectionsin a symbol file, but
the sstGlobal Pub and sstSegM ap subsections are unique. As the name suggests,
sstGlobal Pub iswhere we will find the global public symbol information of the

corresponding module.

66 WINDOWS 2000 DEBUGGING SUPPORT

The w2k_img. d11 APl function imgcvEntry () shown in Listing 1-20 alows
easy look up of CodeView directory entries by type. Itspco9 argument pointsto a
Ccv_NBO09 structure, that is, to theneoo signature of the CodeView data block inside a
.dbg file. Thearype argument specifies one of the CodeView subsection type IDs
sst*, andthedindex value selects a specific subsectioninstancein cases of multiple
subsections of the sametype. Therefore, setting dindex to aval ue other than zero
makessenseonly if dTypeindicatessstiodule.

PCV_ENTRY WINAPI inmgCvEntry (PCV_NB09 pcO09,
DWRD dType,
DWORD dIndex)
{
DWORD i, 3
PCV_ENTRY pce = NULL;

if ((pc09 !=NUL) &&
(pc09->Header .Signature. dVersion == CV_SIGNATURE_NB09))

{
for (i=j =0; i <pcO9->Directory.dEntries; i++)
{
if ((pc09->Entries [i] .wSubSectionType == dType) &&
(j++ == dIndex))
{
pce = pc09->Entries + i;
break;
}
}
}
return pce;

}

11

PCV_PUBSYM WNAP imgCvSymbols (PCV_NB09 pc09,
PDWRD pdCount,
PDICRD pdsize)
{
PCV_ENTRY pce;
PCV_PUBSYM pcpl;

DWRD i;

DWORD dCount = O;

DWORD dsize = 0;

PCV_PUBSYM pcp = NULL;

if ((pce=ingQuEntry (pc09, sst@obal Pub, 0)) !=NULL)
{

pcp = CV_PUBSYM_DATA ((PBYTE) pc09
+ pce->1SubSectionOffset) ;
dsi ze = pce->dSubSectionSize;

MICROSOFT SYMBOL FILE INTERNALS 67

for (i = 0; dSize - i >= CV_PUBSYM ;
i += CV_PUBSYM_SIZE (pcpl))
{
pcpl = (PCV_PUBSYM) ((PBYTE) pcp + i) ;
if (dSize - i < CV_PUES ZE (pcepl)) break;

if (pcpl->Header.wRecordType == CV_PUB32) dCount++;
I YE

}

}
if (pdCount != NULL) *pdCount

if (pdSize != NULL) *pdSize
return pcp;

}

dCount ;

dSi ze;

LISTING 1-20. The imgCvEntry () and imgCvsymbols () APl Functions

CODEVIEW SYMBOLS

The lower half of Listing 1-20 shows the imgCvSymbols () function that returns
apointer to the first CodeView symbol record. The sstGlobal Pub subsection
consists of a fixed-length cv_svymuash header, followed by a sequence of variable-
length CV_PUBSYM records. The definitions of both types are included in Listing 1-21.
First, imgCvSymbols () calls imgCvEntry () to find the CV_ENTRY that has its
wSubSectionType member set to sstclobalpub. If available, it uses the
cv_PUBSYM_DATA () macro included at the bottom of Listing 1-4 to skip over

the leading CV_SYMHASH structure. Finally, imgCvSymbols() counts the number of
symbols by walking through the list of cv_pussym records, using the cv_ruBsyM _STZE ()
macro in Listing 1-21 to compute the size of each record.

The cv_ruBsym sequence bears some resemblance to the contents of an OMF
object file. As already noted, an OMF data stream consists of variable-length records,
each starting with a tag byte and a length word. cv_russvu records are similar. They
start with an onr_nEADER that comprises wRecordsize and wrecordType members.
Thisisjust a variant of the OMF principle, different only in that the length word
comes first and the tag byte has been extended to 16 bits. The last part of the
CV_PUBSYM structure is the symbol name, specified in PASCAL format, asis usual in
an OMF record. A PASCAL string consists of a leading length byte, followed by 0 to
255 8-hit characters. Contrary to C strings, nho terminating zero byte is appended.
The CV_PUBSYM record ends after the last Name character. However, the record is
stuffed with filler bytes up to the next 32-hit boundary. This padding is accounted for
by the wRecordsize value in the ovr_neaDER . Note that the wRecordsize specifies
the size of the CV_PUBSYM record, excluding the wRecordsize member itself. That's
why the CV_PUBSYM_SIZE () macro in Listing 1-21 adds sizeof (WORD) to the

wRecordsize value to yield the total record size.

68 WINDOWS 2000 DEBUGGING SUPPORT

typedef struct _CV_SYMHASH
{
WRD wSymbolHashIndex;
WRD wAddressHashIndex;
DWIRD dSymbolInfoSize;
DWORD dSymbolHashSize;
DWRD dAddressHashSize;
}

CV_SYMHASH, *PCV_SYMHASH, **PPCV_SYMHASH;

#define CV_SYMHASH_ sizeof (CV_SYMHASH)

typedef struct _OVF_HEADER
(

WORD wRecordSize; // in bytes, not including this menber
WCRD wRecordType ;

}
OMF_HEADER, * POMF_HEADER, * * PPOMF_HEADER;

#define OMF_HEADER_ si zeof (OMF_HEADER)

11

typedef struct _OMF_NAME

{
BYTE bLength; /1 in bytes, not including this nenber

BYTE abNare [] ;
>

OMF_NAME, *POMF_NAME, **PPOMF_NAME;

#defi ne OMF_NAME_ sizeof (OMF_NAME)

#define S PUB32 0x0203
#define S_ALIGN 0x0402

#define CV_PUB32 S PDB32

11

typedef struct _CV_PUBSYM
{
OMF_HEADER Header;
DWORD doffset;

MICROSOFT SYMBOL FILE INTERNALS 69

WORD wSegment ; /1 1-based section index WRD wlypeIndex; [/ 0
OMF_NAME Narre; /1 zero-padded to next DWNRD
}

CV_PUBSYM, *PCV_PUBSYM **PPCV_PUBSYM;
ttdefine CV_PUBSYM sizeof (CV_PUBSYM)

fldefi necv_PUBSYM DATA(_p) \
((PCV_PUBSYM) ((PBYTE) (_p) +CV_SYMHASH))

#define CV_PUBSYM_SIZE (_p) \

((DWORD) (_p)->Header .wRecordSize + sizeof (WORD))
#define CV_PUBSYM_NEXT (_p) \
((PCV_PUBSYM) ((PBYTE) (_p) +CV_PUBSYM _SIZE (_p)))

LISTING 1-21 The CV_SYMHASH and cv_rursvu Structures

If you are scanning the cv_pussvu stream, you typically will encounter two
record types. s_pus32 (0x0203) or s_aLien (0x0402). The latter can be safely
ignored becauseit is only padding. The s_prur32 records carry the real symbol
information. Besides the symbol name, the wSegment and dof f set members
areof interest. wSegment specifiesaone-based index that identifiesthe PE file
section that contains the symbol. This value minus one can be used as an index into
the IMAGE_SECTION_HEADER array at the beginning of the . dbg file. dof f set
isthe symbol's address relative to the beginning of its PE section. In this context,
asymbol address is the entry point of the function or the base address of the
global variable associated with the symbol. Normally, the dof f set value can
simply be added to the virtual Address of the corresponding rMAGE SECTION_
HEADER to yield the address of the symbol relative to the module's base address.
However, if the . dbg file includes tmMaceE _DEBUG_TYPE _OMAP_TO_sSrC and
IMAGE_DEBUG_TYPE_OMAP_FROM_SRC SUDSections, the doffset must pass
through an additional conversion layer. The usage of OMAP tables will be
discussed later, after introduction of the PDB file format.

The order of the symbols in a CodeView sstclobalrub Subsection appears
somewhat random. | don't know what principle underlies it. However, | can say for
sure that the symbols are not sorted by section number, offset, or name. Don't rely
on assumptions about the order—ifyour applications need a specific sorting
sequence, you have to sort the symbol records yourself. Thew2k_img.d11 sample
library found on the companion CD providesthree default symbol orders: by
address, by name with case sensitivity, and by name ignoring the character case.

70 WINDOWS 2000 DEBUGGING SUPPORT

THE INTERNAL STRUCTURE OF .pdb FILES

After installing the Windows 2000 symbol files, thefirst striking observationis usu-
ally that each module now has two associated files: one with the . dbg extension, as
usual, and an additional one with an extension of .pdab. Peekinginto one of the
.pdb files reveals the string "Microsoft C/C++ program database 2.00" at its very
beginning. So PDB is obviously the acronym of Program Database. Searching for
details about the internal PDB structure in the MSDN Library or on the Internet
doesn't reveal anything useful, except for a Microsoft Knowledge Base article that
classifies this format as Microsoft proprietary (Microsoft Corporation, 2000d).
Even Windows guru Matt Pietrek admits:

"The format of PDB symbol tables isn't publicly documented. (Even | don't
know the exact format, especially as it continues to evolve with
each new release of Visual C++.)” (Pietrek 1997a)

WEell, it might evolve with each Visual C/C++ release, but for the current version |
of Windows 2000, I can tell you exactly how its PDB symbol files are structured.
This is probably the first time the PDB format has been publicly documented. But
first, let's examine how the . dbg and . pdb files are linked together.

One remarkable property of the Windows 2000 . dbg files is that they contain
just a very tiny, amost negligible CodeView subsection. Example 1-8 shows the
entire CodeView data included in the ntoskrnl . abg file, generated by the w2i_dump.
exe utility in the \src\w2k_dump directory tree of the sample CD. That's all—just
those 32 bytes. As usual, the subsection starts with a CV_HEADER structure containing
the CodeView version signature. Thistime, itisne10. The MSDN Library
(Microsoft 2000a) really doesn't tell us much about this special version:

“NB10The signature for an executable with the debug information stored in a
separate PDB file. Corresponds with the formats set forth in NBO9 or NB11.”
(MSDN Library—April 2000 \ Specifications \ Technologies and Languages \
Visual C++ 5.0 Symbolic Debug Information Specification \ Debug Information
Format).

| don't know the internals of thens11 format, but the PDB format has almost
nothing in common with the NB09 format discussed above! The first sentence clearly
states why the ne10 data block is that small. All relevant information is moved to a
separate file, so the main purpose of this CodeView section isto provide alink to the
real data. As Example 1-8 suggests, the symbol information must be sought in the
ntoskrnl .pab file in the Windows 2000 symbol setup.

MICROSOFT SYMBOL FILE INTERNALS 71

\ Address | 00 01 02 03-04 05 06 07 : 08 09 QA OB-OC (D CE OF | 0123456789ABCDEF
I : I

00006590 | 4E 42 31 30-00 00 00 00 : 20 7D 23 38-54 00 00 00 | NEID.... }#8T...

000065A0 | 6E 74 6F 73-6B 72 6E 6C : 2E 70 64 62-00 00 00 00 | ntoskrnl.pdb

EXAMPLE 1-8 Hex Dump of a PDB CodeView Subsection

If you are wondering what purpose the remaining data in Example 1-8 serves,
Listing 1-22 should satisfy your curiosity. The CV_HEADER is self-explanatory. The
next two members at of f set 0x8 and Oxc are named asignature and dAge and play
an important role in the linkage of .dabg and .pav files. dsignature is a 32-bit
UNIX-gtyle time stamp, specifying the build date and time of the debug information
in seconds since 01-01-1970. Thew2k_img.d11 samplelibrary provides the API func-
tions imgTimeUnpack () and imgTimePack () to convert this Windows-untypical
date/time format back and forth. The purpose of the dAge member isn't entirely clear
tome. However, it appearsthat its valueisinitially set to one and incremented each
timethe PDB dataisrewritten. The dsignature and dAge valuestogether constitute
a 64-bit ID that can be used by debuggersto verify that a given PDB file matches the
. dbg file referring to it. The PDB file contains duplicates of both values in one of its
data streams, so a debugger can refuse processing a . dbg/ . pdb pair of fileswith

unmatched dsignature and dAge information.
Whenever you are faced with an unknown data format, the first thing to do is

to run some examples of it through a hex dump viewer. The w2k_dump. exe utility on
this book's companion CD does a good job in this respect. Examining the hex dump
of aWindows 2000 PDB file such as ntoskrnl . pdb or ntf s. pdb reveal's some

interesting properties:

» Thefile seemsto be divided into blocks of fixed size—typically
0x400 bytes.

» Some blocks consist of long runs of 1-bits, occasionally interrupted by
shorter sequences of 0-bits.

» The information in the file is not necessarily contiguous. Sometimes, the
data end abruptly at a block boundary, but continue somewhere elsein

the file.
» Some data blocks appear repeatedly within the file.

72 WINDOWS 2000 DEBUGGING SUPPORT

typedef struct _Cv_NB10 // PDB reference

(
CV_HEADER Header;

DWRD dSignature; /1 seconds since 01-01-1970
DWRD dage; Il 1++
BYTE abPdbNarme [] ; // zero-termi nated

)
CV_NB10, *PCV_NB10, **PPCV_NBI10;

#define CV_NB1O_ sizeof (CV_NB10)

LISTING 1-22. The CodeView NB10 Subsection

It took some time for me to finally realize that these are typical properties of a
compound file. A compound file is a small file system packaged into a single file. The
"file system" metaphor readily explains some of the above observations:

A file system subdivides a disk into sectors of fixed size and groups the
sectorsinto files of variable size. The sectors representing afile can be
located anywhere on the disk and don't need to be contiguous—the
file/sector assignments are defined in afile directory.

» A compound file subdivides a raw disk file into pages of fixed size and
groups the pages into streams of variable size. The pages representing a
file can be located anywhere in the raw disk file and don't need to be
contiguous—the stream/page assignments are defined in a stream
directory.

Obviously, aimost any assertions about file systems can be mapped to com-
pound files by simply replacing "sector" by "page,” and "file" by "stream." The file
system metaphor explains why a PDB file is organized in fixed-size blocks. It also
explains why the blocks are not necessarily contiguous. What about the pages with
the masses of 1-bits? Actually, this type of datais something very common in file sys-
tems. To keep track of used and unused sectors on the disk, many file systems main-
tain an allocation bit array that provides one bit for each sector (or sector cluster). If
a sector isunused, its bit is set. Whenever the file system allocates space for afile, it
searches for unused sectors by scanning the allocation bits. After adding a sector to a
file, its allocation bit is set to zero. The same procedure is applied to the pages and
streams of a compound file. The long runs of 1-bits represent unused pages, and the
0-bits are assigned to existing streams.

The only thing that remains is the observation that some data blocks reoccur
within a PDB file. The same thing happens with sectors on adisk. When afilein afile
system is rewritten a couple of times, each write operation may use different sectors to

MICROSOFT SYMBOL FILE INTERNALS 73

dore the data. Thus, it can happen that the disk contains free sectors with older dupli-
cates of the file information. This doesn't constitute a problem for the file system. If
the sector is marked free in the dlocation bit array, it is unimportant what datait con-
tains. As soon as the sector is reclaimed for another file, the data will be overwritten
anyway. Applying thefile system metaphor once more to compound files, thismeans
that the observed duplicate pages are usually left over from earlier versions of a stream
that has been rewritten to different pages in the compound file. They can be safely
ignored; all we have to care for are the pages that are referred to by the stream
directory. The remaining unassigned pages should be regarded as garbage.

With the basic paradigm of PDB files being introduced now, we can step to the
more interesting task of examining their basic building blocks. Listing 1-23 shows
thelayout of the PDB header. The PDB_HEADER starts with a lengthy signature that
specifies the PDB version as a text string. The text is terminated with an end-of-file
(EOF) character (ASCII code 0x12) and supplemented with the magic number
0x0000474a, or “ge\0\0~ if interpreted as a string. Maybe these are the initials of
the designer of the PDB format. The embedded EOF character has the nice effect
that an unknowledgeable user can issue a command such as type ntoskrnl .pab in a
consolewindow without getting garbage on the screen. The only thing that will be
displayedisthemessageMicrosoft C/C++ program database 2. 00\r\n. All
Windows 2000 symbol files are shipped as PDB 2.00 files. Apparently, a PDB 1.00
format exists aswell, but it seemsto be structured quite differently.

#define PDB_SIGNATURE_200 \
"M crosoft C C++ programdat abase 2 . 00\r\n\=x1AJG\0"

#define PDB_SI GNATURE TEXT 40

typedef struct _PDB Sl GNATURE
{

BYTE abSi gnature [PDB_SIGNATURE_TEXT+4]; // PDB_SIGNATURE nnn
}
PDB S| GNATURE, *PPDB_SIGNATURE, * *PPPDB_SIGNATURE;

tfdefine PDB_SI GNATURE _ si zeof (PDB_SIGNATURE)

11

ttdefi ne PDB_STREAM FREE -1

11

(continued)

74 WINDOWS 2000 DEBUGGING SUPPORT

typedef struct _PDB_STREAM

1
DWRD dStreamSize; /! in bytes, -1 = free stream
PWORD pwStreamPages ; [/ array of page nunbers

}
PDB_STREAM, *PPDB_STREAM, **PPPDB_STREAM;

#define PDB_STREAM si zeof (PDB_STREAM)

/11

#define PDB_PACGE SI ZE 1K 0x0400 // bytes per page
#defi ne PDB_PAGE_SIZE_2K 0x0800
#define PDB PAGE Sl ZE 4K 0x1000

#define PDB_PAGE SH FT_1K 10 /! log2 (PDB_PAGE_SIZE_*)
#define PDB_PAGE SH FT_2K 11
#define PDB_PACGE_SH FT_4K 12

tfdefine PDBR_PAGE_COUNT_1K

OxFFFF // page nunber < PDB_PAGE_COUNT _*

#define PDB_PAGE_COUNT_2K XFFFF

#define PDB PAGE_COUNT 4K 0x7FFF

typedef struct _PDB HEADER
{
PDB_SIGNATURE Si gnature; /! PDB_SIGNATURE_200
DWORD drPageSize; /1 0x0400, 0x0800, 0x1000
WORD wStartPage; // 0x0009, 0x0005, 0x0002
WORD wFilePages; /1 file size | dPageSize
PDB_STREAM RootStream; I/l streamdirectory
WORD awRootPages [] ; // pages containing PDB ROOT
}

PDB_HEADER, *PPDB_HEADER, **PPPDB_HEADER;

#define PDB HEADER sizeof (PDB HEADER)

LISTING 1-23 The PDB File Header

Following the signature at offset Ox2c is a DWORD named dPageSi ze that specifies
the size of the compound file pages in bytes. Legal values are 0x0400 (1 KB), 0x0800
(2 KB), and 0x1000 (4 KB). The wFilePages member reflects the total number of pages
used by the PDB file image. The result of multiplying this value by the page size should
always exactly match the file size in bytes. wStartPage is a zero-based page number
that pointsto thefirst datapage. The byte offset of thispage can be computed by multi-
plying the page number by the page size. Typical values are 9 for 1-KB pages (byte
offset 0x2400), 5 for 2-KB pages (byte offset 0x2800), or 2 for 4-KB pages (byte offset

(]]
mar

descr
the Pl

MICROSOFT SYMBOL FILE INTERNALS 75

0x2000). The pages between the PDB_HEADER and the first data page are reserved for the
allocation bit array of the compound file, always starting at the beginning of the second
page. This means that the PDB file maintains 0x2000 bytes with 0x10000 alocation bits
ifthepagesizeis 1 or 2KB, and 0x1000 byteswith 0xsoo0 allocation bitsif the page
Szeis4 KB. In turn, thisimplies that the maximum amount of data a PDB file can
manageis 64 MB in 1-KB page mode, and 128 MB in 2-KB or 4-KB page mode.

The Rootstream and awRootPages []| members concluding the PDB_HEADER
describe the location of the stream directory within the PDB file. Asalready noted,
the PDB fileis conceptually a collection of variable-length streams that carry the
actual data. The locations and compositions of the streams are managed in a single
stream directory. Odd as it may seem, the stream directory itself is stored in a stream.
| have called this special stream the "root stream.” The root stream holding the
stream directory can be located anywhere in the PDB file. Itslocation and size are
supplied by the Rootstream and awRootPages [| members of the ppe_HEADER. The
dstreamsize member of the poe_sTrEAM Substructure specifies the number of pages
occupied by the stream directory, and the entriesin the awRootPages[] array point to
the pages containing the data.

Let'sillustrate this with a simple example. The hex dump excerpt in Example 1-9
shows the PDB_HEADER of the ntoskrnl .pdb file. The values referenced are underlined.
Obvioudly, this PDB file uses a page size of 0x0400 bytes and comprises Ox02DI pages,
resulting in a file size of OxB4400 (738, 304 in decimal notation). A quick check with
the dir command shows that this value is correct. The root stream sizeis 0x580 bytes.
With a page size of 0x400 bytes, this meansthat the awRootPages[] array contains
two entries, found at the file offsets Ox3c and 0x3=. The values in these dots are page
numbers that need to be multiplied by the page size to yield the corresponding byte
offsets. In this case, the results are OxB2000 and 0x22800.

The bottom line of this computation is that the stream directory of the
ntoskrnl. exe PDB file is located in two file pages, extending from 0xe2000 to
0xB23rF and 0xB2800 t0 OXB29AF, respectively. Parts of these ranges are shown in

Example 1-10.

Addr ess 00 01 02 03-04 05 06 07 : 08 09 QA OB-OC (D CE CF | 0123456789ABCDEF

00000000 | 4D 69 63 72-6F 73 6F 66 : 74 20 43 2F-43 2B 2B 20 | Mcrosoft C C++
00000010 | 70 72 6F 67-72 61 6D 20 : 64 61 74 61-62 61 73 65 | program database
00000020 | 20 32 2E 30-30 CD QA 1A : 4A 47 00 00-00 04 00 00 2.00.. .JG

00000030 | 09 00 D1 02-BO 05 00 00 : 5C 00 78 00-C8 02 CA 02 | ..N.°...\.x.E.E.

EXAMPLE 19, A Sample PDB Header

76 WINDOWS 2000 DEBUGGING SUPPORT

Addr ess 00 01 02 03-04 05 06 07 08 09 A OB-OC OO CE COF 0123456789ABCDEF
000B2000 08 00 00 00-BO 05 00 00 98 22 28 00-3A 00 00 00 B P2 ot wns
000B2010 88 57 26 00-38 00 00 00 78 57 26 00-A9 02 04 00 PW&.8.. . XW&.O©.. .
000B2020 F8 BA E9 00-00 00 00 00 68 57 26 00-04 40 00 00 Oce hWs. .@..
000B2030 C3 29 28 00-B4 9E 01 00 08 90 ED 00-3C DF 04 00 B) [L79...0L.<R.
00082040 | 08 BD E9 00-12 00 C 02 | C7 02 13 00-c6 02 G5 01 .Y2é.. \E.C.. .B.E.
00082050 | C7 01 C8 01-C9 01 CAO1 | (B0O1 CC 01-cD 01 CEO1 | ¢.B.E.8.8.1.1.%.
O00B23A0 | BD 00 BE 00-BF 00 GO 00 1 00 @ 00-C3 00 ¢4 00 Y2.3/s.¢ .A.A.A.A.A.
000B23BO | G5 00 G5 00-C7 00 CG8 00 C9 00 CA 00-CB 00 CC 00 A.R.c.E.E.R.E.I
000B23C0 CD 00 CE 00-CF 00 DO 00 D1 00 D2 00-D3 00 D4 00 £.1.1.9.8.0.6.06.
000B23DO | D6 00 D6 00-D7 00 D8 00 D9 00 DA 00-DB 00 DC 00 0.0.x.0.U0.0.0.0.
OO0B23EO | DD 00 DE 00-DF 00 EO 00 H 00 E2 00-E3 00 E4 00 _.p.R.a.a.a.3.4.
O00B23FO | BE5 00 E6 00-E7 00 E3 00 E9 00 EA 00-EB 00 EC 00 d.m.¢.e.é.8.8.1.
000B2800 ED 00 EE 00-EF 00 FO 00 F1 00 F2 00-F3 00 F4 00 i.1.1.8.ft.5.6.0.
000B2810 F5 00 F6 00-F7 00 F8 00 F9 00 FA 00-FB 00 FC 00 [T A T8 B 5 B + 8
000B2820 | FD 00 FE 00-FF 00 00 O1 | 01 01 02 01-03 01 04 01 | v.Db.¥

000B2830 | 05 01 06 01-07 01 08 01 | 09 01 QA 01-0B 01 CC 01

000B2840 | D 01 CE 01-0F 01 10 01 | 11 01 12 01-13 01 14 01

00082850 | 15 01 16 01-17 01 18 01 | 19 01 1A 01-1B 01 1C 01

000B2950 | 95 01 96 01-97 01 98 01 | 99 01 9A 01-9B 01 9C 01

000B2960 | 9D 01 9E 01-9F 01 AO 01 | A1 01 A2 01-a3 01 A4 01 | * .27 .j.c.e.1 .
00082970 | A5 01 A6 01-A7 01 A8 01 | A9 01 AA 01-AB 01 AC 01 | ¥./.§.".@.% .«.~
D00B2980 | AD O1 AE 01-AF 01 BOO1 | B1 01 B2 01-B3 01 B4 01 | =.®. .,°.+.%2.%. " |
000B2990 | B5 01 B 01-B7 01 BS 01 01 BA 01-BB 01 BC Ol | u. q.+.,.% 2 » V4.
000B29A0 | BDO1 BE 01-BF 01 GO 01 | d 01 & 01-C3 01 G4 O1 | Y2.%/a.¢ A A A A A.

EXAMPLE 1-10. Excerptsfroma Sample PDB Stream Directory

The stream directory is composed of two sections: a header part in the form of a
PDB_ROOT structure, as defined in Listing 1-24, and a data part consisting of an array
of 16-bit page numbers. The wcount member of the PDB_ROOT section specifies the
number of streams stored in the PDB compound file. The astreams [] array contains
arpB_sTREAM entry (see Listing 1-23) for each stream, and the page number dots fol-
low immediately after the last astreams [] entry. In Example 1-10, the number of
streamsiseight, asthe underlined valueat offset OxB 2000 indicates. The subsequent
eight ppe_sTrEAM Structures define streams of Size 0x580, Ox3A, 0x38, 0x402A9,
0x0, 0x4004, OxI9EB4, and Ox4DF3c, respectively. These values are underlined in
Example 1-10, too. Expressed in 1-KB pages, the stream sizes are 0x2, 0x1, 0x1,
0x101, Ox0, ox11, 0x68, and 0x138, yielding atotal of Ox2B6 pages used by the
streams. The first underlined value after the poe_sTrREAM array is the first dot of the
page number list. Counting two bytes per page number, and taking into account that
the page directory is interrupted by one page that belongs somewhere else, the next
offset after the page numbers should be oxz2044 + 0x400 + (Ox2B6 * 2}
0xB2980, Which fits perfectly into the picture.

MICROSOFT SYMBOL FILE INTERNALS 77

#define PDB_STREAM DIRECTORY 0
#define PDB_STREAM_PDB 1
#define PDB_STREAM_PUBSYM 7

typedef struct _PDB_ROOT
{

WORD wCount ; /| < PDB_STREAM_MAX
WORD wReserved; /Il O
PDBE_STREAM aStreams []; // stream #0 reserved for stream table

)
PDB_ROOT, *PPDB_ROOT, **PPPDE_ROOT;

(define PDB_ROOT_ sizeof (PDB_ROOT)

LISTING 1-24. The PDB Sream Directory

Finding the page number block associated with a given stream is somewhat
tricky, because the page directory does not provide any cues except the stream size. If
you areinterested in stream 3, you have to compute the number of pages occupied by
streams 1 and 2 to get the desired start index within the page number array. Once the
stream's page number list is located, reading the stream datais simple. Just walk
through the list and multiply each page number by the page size to yield the file off-
set, and read pages from the computed offsets until the end of the stream is reached.
On first look, parsing a PDB file seemed rather tough. But it turns out that it is actu-
aly quite simple—probably much simpler than parsing a . dbg file. The compound-
file nature of the PDB format with its clear-cut random access to stream pages
reduces the task of reading a stream to a mere concatenation of fixed-sized pages.

I'm amazed at this elegant data access mechanism!

An even greater benefit of the PDB format becomes apparent when updating an
existing PDB file. Inserting data into a file with a sequential structure usually means
reshuffling large portions of the contents. The PDB file's random-access structure
borrowed from file systems alows addition and deletion of data with minimal effort,
just asfiles can be modified with ease on afile system media. Only the stream direc-
tory has to be reshuffled when a stream grows or shrinks across a page boundary.
This important property facilitates incremental updating of PDB files. Microsoft
states the following in a Knowledge Base article titled "INFO: PDB and DBG Files—

What They Are and How They Work™:

"The .PDB extension stands for ‘program database.’ It holds the new format
for storing debugging information that was introduced in Visual C++ version
1.0. In the future, the .PDB file will also hold other project state information.

78 WINDOWS 2000 DEBUGGING SUPPORT

One of the most important motivations for the change in format was to allow
incremental linking of debug versions of programs, a change first introducedin
Visual C++ version 2.0" (Microsoft Corporation 2000e).

Now that theinternal format of PDB filesis clear, the next problemisto iden-
tify the contents of their streams. After examining various PDB files, | have cometo
the conclusion that each stream number serves a predefined purpose. The first stream
seems to always contain a stream directory, and the second one contains information
about the PDB file that can be used to verify that the file matches an associated . dbg
file. For example, the latter stream contains dSignature and dAge members that
should have the same values as the corresponding members of annz10 CodeView
section, as outlined in Listing 1-22. The eighth stream is most interesting in the con-
text of this chapter because it hosts the CodeView symbol information we have been
seeking. The meaning of the other streamsis still unclear to me and is another area
for future research.

I am not going to include PDB reader sample code here because this would
exceed the scope of this chapter. Instead, | encourage you to peek into the
w2k_img. C and w2k_img.h source files on the sample CD. Look for functions
named imgpdb* () and data items called PDB_* for extensive code and data. By the
way, the CD contains a ready-to-run PDB stream reader with full source code.

Y ou already know this program—it is the w2k_dump . exe utility that | have used to
create some of the hex dump examples above. This simple console-mode utility
provides a +p command line option that enables PDB stream decomposition. If
the specified file is not a valid PDB file, the program falls back to sequential hex
dump mode. The Visual C/C++ project files of w2k_dump . exe are found on the
CD inthe \src\w2k_dump directory tree.

PDB SYMBOLS

After thislong but hopefully interesting detour through the PDB format, it is time to
return to our initiad mission: the extraction of CodeView symbol information. Fortu-
nately, this task is quite similar to the enumeration of public symbolsin an NB09
CodeView subsection. Once the stream containing the symbolsis located, we are
again faced with a sequence of OMF-like records of variable sze. Unfortunately, the
NB09 and ne10 record formats differ somewhat, but the deviations are only marginal.
Listing 1-25 shows the layout of the rpe_rursvu structure. Compared with the corre-
sponding cv_rursyu structure of the NB0O9 format, included in Listing 1-21, the
dof f set and wsegment members have moved a bit toward the end. This and the fact
that thetag value of PDB symbolsis 0x1009 instead of 0x0202 arethe most remark-
able differences.

80 WINDOWS 2000 DEBUGGING SUPPORT

typedef uni on _IMG_PUBSYM
OMF_HEADER Header; /! CV_PUB32 or PDB_PUB32
CV_PUBSYM CvPubSym;
PDB_PUBSYM PdbPubSym;
IMG_PUBSYM, *PIM5 PUBSYM **PPIMG_PUBSYM;

#define IMG_PUBSYM_ si zeof (IMG_PUBSYM)

#define IMG_PUBSYM_SIZE (_p) \

((DWORD) (_p)->Header .wRecordSize + sizeof (WORD))
fdefine IMG_PUBSYM_NEXT (_p) \
((PIMG_PUBSYM) ((PBYTE) (_p) +IMG_PUBSYM_SIZE (_p)))

LISTING 1-26. The tvc_russyum Union

doesn't contain any OMAP data in the form of TMAGE_DEBUG_TYPE_OMAP_TO_SRC
and 1MAGE_DEBUG_TYPE_OMAP_FROM_SRC subsections, the address computation
algorithm is straightforward:

* Read thewsegment value of the symbol record and decrement it by one.

* Usetheresulting index to look up the 1vAGe_secTrON_HEADER Of the
target section where the symbol resides.

e Retrievethevirtualaddress Of thiSIMAGE_SECTION_HEADER.

* Add the doffset value of the symbol record.

In case theload address of the moduleisknown, the absolute linear address
of the symbol can be determined by simply adding the computed relative address to
the base address. The TnageBase member of the TMAGE _SEPARATE DEBUG_HEADER at
the very beginning of the . dbg file specifies the modul€'s preferred |oad address.
Unfortunately, this addressisn't very helpful because many kernel modules are actu-
ally loaded to completely different addresses. For example, ntoskrnl . dbg reports a
preferred load address of 0x00400000, which is certainly wrong because this address
isfar outside the kernel memory range. Therefore, thew2k_img. dll provides the
imgModuleBase () API function that attempts to locate kernel modules in memory.
It uses the undocumented wtQuerysSystemInformation () function exported by
ntdll.dlltoretrievealist of modulescurrently foundin memory. However,
this function works on Windows 2000/N'T only. For Windows 9x compatibility,
imgModuleBase () loadsntail. dll dynamicaly, sow2k_img. dll won't blow up imme-
diately with a dynalink error whileit is being loaded. Therefore, it ways returns a
NULL pointer on Windows 9x. Thisis the same value that you will get on Windows
2000 and Windows NT 4.0 if the specified module is not present in memory.

1 #define PDB_PUB32 0x1009

typedef struct _PDB_PUBSYM

{

OMF_HEADER Header;

DWORD dReserved;

DWRD dOffset;

WORD wSegment ; /] 1-based section index
OMF_NAME Nane; Il zero-padded to next DWIRD
)

PDB_PUBSYM, *PPDB_PUBSYM, **PPPDB_PUBSYM;
#define PDB_PUBSYM_ sizeof (PDB_PUBSYM)

#define PDB_PUBSYM_SIZE(_p) \
((DWORD) (_p) ->Header .wRecordSize + si zeof (WORD))

#define PDB_PUBSYM NEXT (_p) \
((PPDB_PUBSYM) ((PBYTE) (_p) + PDB_PUBSYM SIZE (_p)))

LISTING 1-25. The ppe_rursym Sructure

The tvMc_puBsym union in Listing 1-26 is a convenient means to reference sym-
bol records regardless of their type. This union can be interpreted in three ways.

1. omr_nEADER: This point of view should be assumed unless the symbal type
is known. The header provides just enough information to identify the
symbol type or to skip to the next record.

2. cv_russyM: Thisinterpretation isvalid only if the wrecorarype of the
OMF HEADER is Set to CV_PUB32 (0x0203) .

3. ppB_PUBSYM: Thisinterpretation isvalid only if the wRecordType of the
OMF _HEADER isSetto PDE_PUB32 (0x1009) .

The mvc_puBsymM_s1zE () and Mc_puBsyM_NEXT () macros found at the end of
Listing 1-26 alow type-independent determination of the size of the current record
and the address of the subsequent one, respectively.

SYMBOL ADDRESS COMPUTATION

The wSegment and dof f set members of the cv_pussym and pps_rursym Symbol
records, together with the IMAGE_SECTION_HEADER array at the beginning of the
.dbg file, supply necessary information for the computation of the address of a
symbol relative to the beginning of the modul€'s base address. If the . dbg file

80 WINDOWS 2000 DEBUGGING SUPPORT

typedef uni on _IMG_PUBSYM
{
OMF_HEADER Header ; /! CV_PUB32 or PDB_PUB32
CV_PUBSYM CvPubSym;
PDB_PUBSYM PdbPubSym;
}
IMG_PUBSYM, *PIMG_PUBSYM, **PPIMG_PUBSYM;

#define IMG_PUBSYM_ sizeof (IMG_PUBSYM)

#define IMG_PUBSYM_SIZE (_p) \
((DWORD) (_p)->Header .wRecordSize + Sizeof (WORD))

#define IMG_PUBSYM_NEXT (_p) \
((pIMG_PUBSYM) ((PBYTE) (_p) + IMG_PUBSYM_SIZE (_p)))

LISTING 1-26. The tvc_pussyum Union

doesn't contain any OMAP data in the form of IMAGE_DEBUG_TYPE_OMAP_TO_SRC
and IMAGE_DEBUG_TYPE_OMAP_FROM_SRC Subsections, the address computation
algorithm is straightforward:

Read thewsegment value of the symbol record and decrement it by one.

Use the resulting index to look up the 1vaceE_secTION_HEADER Of the
target section where the symbol resides.

e Retrievethevirtualaddress of thiSTMAGE SECTION HEADER.

Add the dof fset value of the symbol record.

In case theload address of the modul e is known, the absolute linear address
of the symbol can be determined by simply adding the computed rel ative addressto
the base address. The tmageBase member of the TMAGE_SEPARATE_DEBUG_HEADER at
the very beginning of the . dbg file specifiesthe modul €'s preferred |oad address.
Unfortunately, thisaddressisn't very hel pful because many kernel modul es areactu-
ally loaded to completely different addresses. For example, ntoskrnl. dbg reports a
preferred load address of 0x00400000, which is certainly wrong because this address
is far outside the kernel memory range. Therefore, the w2k_img. d11 provides the
imgModuleBase () APl function that attempts to locate kernel modules in memory.
It uses the undocumented ntouerysystemInformation () function exported by
ntdll.d1l toretrievealist of modules currently found in memory. However,
this function works on Windows 2000/NT only. For Windows 9x compatibility,
imgModuleBase () loads ntaii. dll dynamically, so w2k _img.d11 won't blow up imme-
diately withadynalink error whileitisbeing loaded. Therefore, it dlwaysreturnsa
NULL pointer on Windows 9x. Thisis the same value that you will get on Windows
2000 and Windows NT 4.0 if the specified modul e is not present in memory.

MICROSOFT SYMBOL FILE INTERNALS 81

OMAPADDRESS CONVERSION

Severd Windows 2000 symbol files contain OMAP subsections, identified by
I[MAGE_DEBUG_DIRECTORY entries with Type IDS Of IMAGE_DEBUG_TYPE_OMAP_TO_SRC
and rvaceE_DEBUG_TYPE_OMAP_FROM_SRC. OMAP isyet another undocumented fea-
ture of the Microsoft development tools, so the reasons for its existence are still
somewhat speculative. The OMAP datainside a . dbg file consist of two arrays of
oMAP_TO_SRC and oMap_FROM_SRC Structures, as outlined in Listing 1-27, and this
information is used in the computation of symbol addresses from the offset values
stored in cv_puBSYM OF PDE_PUBSYM records.

In one of hisfine MS/ "Under the Hood" articles about Microsoft debug
information, Matt Pietrek writes his thoughts about OMAP:

Yetanother form of debug information is relatively new and undocumented,
except for a few obscure references ink WINNT.Fand the Win32 SDK help. This
type of informationis known as OMAP. Apparently, as part of Microsoft's
internal build procedure, small fragments of code in EXEs and DLLs are moved
around to put the most commonly used code at the beginning of the code section.
This presumably keeps the process memory working set as small as possible.
However, when shifting around the blocks of code, the corresponding debug
information isn't updated. Instead, OMAP information is created. /7 lets symbol
table code translate between the original addressin a symbol table and the
modified address where the variable or line of code really exists in memory.

(Pietrek 1997 a)

typedef struct _OMAP_TO_SRC
(
DWRD dTar get ;
DWIRD dSour ce;

}

OMAP_TO_SRC, *POMAP_TO_SRC, **PPOMAP_TO_SRC;

ttdefine OMAP_TO_SRC_ sizeof (OMAP_TO_SRC)

typedef struct _OMAP FROM_SRC
{
DWORD dSour ce;
DINCRD dTar get ;
}

OMAP_FROM_SRC, *POMAP_FROM_SRC, ** PPOMAP_FROM_SRC;

#define OMAP_FROM_SRC_ sizeof (OMAP_FROM_SRC)

LISTING 1-27. The ovap_to_src and omap_rFroM_srRC Table Entries

82 WINDOWS 2000 DEBUGGING SUPPORT

And more than 2 years later, MS columnist John Robbins elaborates on this
assumption in the October 1997 “Bugslayer”:

The undocumented O M A Pinformation is interesting because it appears to have
something to do with basic block relocations. (Fellow MSJ colleague Matt
Pietrek briefly discussed thisin the May 1997 "Under the Hood" column.) My
guess is that Microsoft has some sort ofinternal tool that packs the binary so
that the most common code is pushed up to the front and the rest is put in the
rear so that the working set is much smaller. Consequently, this binary
rearrangement makes the program faster because it will not have to page in as
much of the program. (Robbins 1999)

Although the working set argument is striking, the fact that the ntoskrni. exe
module makes heavy use of OMAP seems to be at odds with it. As | will show in
Chapter 4, the entirentoskrnl . exe module is mapped to a single 4-MB memory
page that is always present in memory, so splitting the code into more frequently
and more rarely used fractions shouldn't be of benefit with respect to paging. My
assumption is that this split is supposed to aid the processor's instruction prefetch.
Examination of the OMAP tables reveals that the addresses they contain typically
point to the beginning of a function, to an instruction that immediately follows a
jump or call, or to unused filler code. This suggests that the OMAP datais used to
reshuffle the branches of i £/e1seinstructions. Obviously, the Windows 2000 kernel
developers at Microsoft can somehow tell the compiler whether the if or else
branch is executed more frequently, so the code fraction that isrun lessfrequently
can be moved out of the way. Normally, a compiler tends to keep the code of a func-
tion in a monolithic block, and doesn't split up if/else branches. In the Windows
2000 kernel modules, however, it can be easily observed that large functions with
numerous i f/else clauses are heavily fragmented. The fact that the OMAP code
atoms correspond to conditional branches leads me to the assumption that OMAP
has something to do with branch prediction. If less frequently executed branches are
separated from the more frequently used ones, the CPU can perform more effective
instruction prefetch.

The omap_To_src table converts areal instruction offset to a source offset, for
example, thereal offset of the exinterlockedaddrargeinteger () APl function
relative to the base address of ntoskrnl. exeis 0x0000231e. To verify this, enter the
command u ExinterlockedAddLargeinteger at the Kernel Debugger prompt—it
will unassemble a couple of lines, starting at the linear address 0x8040231E.
Subtracting the ntoskrnl . exeload addressOx80400000yieldsOx000023IE, as
expected. If you scan the ovar_To_src table inside ntoskrnl . dbg, you will find an
entry whose dTarget member is set to this offset, and the corresponding dSource
offset is OXO005E7E4 . The ExinterlockedAddLargeinteger () function is located in
the . text section, and the offset of this section relative to the image base address is

MICROSOFT SYMBOL FILE INTERNALS 83

0Ox000004co according to its TMaGE_sEcTTON_HEADER. Subtracting the section offset
from the source offset yields a raw symbol offset of 0x0005e324, and thisis exactly
the doffset value of the PDB_PUBSYM record that defines the Extnterlockedadd-
LargeInteger Symbol. That's easy, isn't it? Well, not really.

The omMap_To_src entries are always sorted in ascending order with respect
to the target address. Thisis a good idea, because it facilitates the lookup of
addresses by binary searching. The omar_rrom_src tableis essentially areplica
of the OMAP_TO_SRC table, but with all source and target addresses swapped and
resorted by source address. This dual -table approach allows easy address transla-
tion in both directions.

An OMAP problem that puzzled me for several days is that you cannot make
immediate use of the virtualaddress values stored in the 1MAGE_SECTTON_HEADER
array of the . dbg file while converting from source to target addresses via the
OMAP_FROM_SRC table. In all PE sections except for the first one, this will result in
target addresses that are too high. The reason for this strange effect is that the
virtuai Address values are valid in the target address world only. On the source
address side, different section addresses apply. The main problem is now to find
out the source addresses of the PE sections. After scanning the . apg and .pdb files
repeatedly—but without success—for any tables that might perform this transla-
tion, | eventually ended up with a trick that works fine, although I'm not sure
whether itislegal. To determine the source address of a section, | simply enumer-
ate all OMAP_TO_SRC entries that belong to this section and compute the minimum
of their source addresses. This procedure is based on the assumption that OMAP
isjust a permutation of code fractions, so minimizing the source addresses of a
section means finding the snippet that has been bumped to the top of the section.
This address should correspond to the source address of the section. | have
applied this technique to numerous Windows 2000 symbol files, and thus far, it
has not failed.

If it sounds appealing to implement a symbol file parser based on the
above information, just do it! Or, you can use thew2k_img.d11 on the sample
CD asis or rip out code from it. This DLL contains everything you need to take
.dbg and .pdb files apart and much more. The most powerful API function
set it exportsisthe imgrable* () group. It comprises the three functions listed
in Table 1-5, whose prototypes are shown in Listing 1-28. They are intended for
use by debugger or disassembler writers. With the imgrablenookup () API func-
tion, an application can display symbols instead of raw addresses, and the
imgTableResolve () function can be used as a basis for a symbol search option.
Both functions are carefully optimized for speed, which is of great benefit to
applications that browse large amounts of symbol information. The sample
symbol browser presented below is based on w2k_img.d11 and is able to dump
asorted list of all ntoskrnl. exe symbols with lots of additional information to a
filein less than 2 seconds.

84 WINDOWS 2000 DEBUGGING SUPPORT

TABLE 15 Symbol Table Management Functions Exported by w2k _img. dil
NAME DESCRIPTION
imgTableL oad() Builds an tvc_taBrLE symbol table from a . dog or . pdb file
imgTableLookup() Finds an tvc_enTry Symbol table entry matching a symbol address
imgTableResolve() Findsan IMG_ENTRY symbol tableentry matching asymbol name
PIMG_TABLE WINAPI imgTableLoad (PTBYTE pt Pat h,

PVOID pBase) ;

Pl M5 ENTRY WNAPI i ngTabl eLookup (PIMG_TABLEpit,

PVa D pAddress ,
PDWORD doffset);
PI M5 ENTRY WNAPI ingTabl eResol ve (PIMG TABLE pit,
PBYTE pbSymbol) ;

LISTING 1-28. Prototypes of the Symbol Tzble Management Functions

Listing 1-29 is a compilation of the structures on which the imgrable* () func-
tions operate. Apparently, they don't resemble the CodeView and PDB structures dis-
cussed above. In fact, the symbol table management functionsinside w2k_img. dll
completely rearrange the information found in the symbol files, allowing easier and
faster processing. The most fundamental structure is the rvc_taeLe, which comprises
the entire symbol information. It is composed of a fixed-size header, an array of
IMG_ENTRY structures, and three tvc_1nDEX arrays. Because the arrays are of variable
size depending on the number of symbols, the 1vMc_TaBLE @S0 contains three pointers
to the tvc_1npEX base addresses. Asindicated by the comments in Listing 1-29, the
indexes are sorted by address, by name considering character case, and by name ignor-
ing character case. These indexes are not only convenient for applications that output
symbol lists, but also for the imgTableLookup () and imgTableresolve () functions
because they alow them to perform fast binary searches for addresses and names.

One particularly nice feature of the tmc_enTrY structure is that it specifies the
calling convention assigned to a symbol. Thisinformation is derived directly from the
symbol decoration, based on the rules in Table 1-4. This nontrivial task is done by
the imgsymbolundecorate () function shown in Listing 1-30. First, it tries to identify
one of the common prefixes, listed in the apbPrefixes[] array. In the next step, the
code looks for a stack size trailer consisting of an e character and a decimal number.
The calling convention is detected along the way by testing for specia prefix/trailer
combinations. w2k_img.d11 undecorates symbolswith high reliability. Actually, it
correctly handlesal__fastcall import thunksthat imagenip.ail isunable to man-
age. imgSymbolundecorate () , however, does not attempt to undecorate C++ and
PCH symbols. Maybe | will add this featurein afuture version of w2k_img.d11.

MICROSOFT SYMBOL FILE INTERNALS

85

#define IMG_CONVENTION_UNDEFINED 0
#define IMG_CONVENTION_STDCALL 1
#define IMG_CONVENTION_CDECL 2
#define IMG_CONVENTION_FASTCALL 3
1
typedef struct _I| M5 ENTRY
(
DWRD dSection; /1l 1-based section nunber
PVOID pAddress; /1 synbol address
DWIRD dConvention; /1 calling convention IMG _CONVENTION_*
DWRD dstack; /1 nunber of argunent stack bytes
BOOL fExported; /1 TRUE if exported synbol
BOOL fSpecial; /1 TRUE if special synbol
BYTE abSection [IMAGE_SIZEOF_SHORT_NAME+4]; // section nane
BYTE abSymbol [256]; // undecorated synbol nane
BYTE abDecorated [256]; // decorated synbol nare
}

IMG_ENTRY, *PIMG_ENTRY, * * PPIMG_ENTRY;

#define IMG_ENTRY_ sizeof (IMG_ENTRY)

typedef struct _| M5 | NDEX

(
Pl M5 ENTRY apEntries [1];

}

IMG_INDEX, *PIMG_INDEX, **PPIMG_INDEX;

fdefine | M5 | NDEX_ si zeof (I M5 | NDEX)
fdefine IMSINDEX__ (_n) ((_n) * I M5_INDEX)

typedef struct _| M5 TABLE

{

DWORD dsize; // table size in bytes

DWORD dsections; [/ nunber of sections

DWRD dSymbols; /1 nunber of synbols

DWORD dTimeStamp; // mnodule tine stanp (sec since 1-1-1970)
DWCRD dChecksum; // nodul e checksum

Pva D pBase; /1 nodul e base address

PIMG_INDEX piiAddress; // entries sorted by address

Pl M5 | NDEX piiName; /1 entries sorted by nane

Pl M5 | NDEX piiNameIC; // entries sorted by name (ignore case)
BOCL fUnicode; /1 character fornat

uni on

{

(continued)

86 WINDOWS 2000 DEBUGGING SUPPORT

TBYTE at Path [MAX PATH]; // .dbgfile path
BYTE abPath [mMax paTH]; // .dbgfile path (ANS)
WORD awPath [max paTH]; [/ .dbgfile path (Unicode)

IMG_ENTRY aEntries [] ; // synbol info array
}
IMG_TABLE, *Pl MG TABLE, **PPIMG_TABLE;

#define 1MG_TABLE_ sizeof (IMs TABLE)

#define IMG_TABLE (_n) \
(IMG_TABLE_+ ((_n) * IMGENTRY_) + (3 * IMG_INDEX (_n)))

LISTING 1-29. Symbol Table Management Structures

DWRD WINAPI imgSymbolUndecorate (PBYTE pbSymbol,
PBYTE pbBuffer,
PDWORD pdConvent i on)

{

PBYTE apbPrefixes [] = {* inp_ ", “ dmp_@”, * dimp_ ",
w_m,ov@r, “\x7F”,
NULL} ;

BYTE abBuffer [256] = “";

DMRDi, j, k, 1;

DWORD dConvention = IMG_CONVENTION_ UNDEFINED;

DWORD dSt ack = -1

if (pbSynbol = NUL)
t
/1 skip common prefixes
for (i =j = 0; apbPrefixes [i] !=NUL; i++)

{

for (j = 0; apbPrefixes [i] [j];]++)
{
if (apbPrefixes [i] [j] != pbSynbol [j]) break;
}

if (tapbpPrefixes [i] [J]) break;

i =0

)

// test for multiple ‘@’
for (k=j, 1 =0; (1<2) &&pbSynbol [k]; k++)
{
if (pbSynbol [k] == ‘'@’) 1++;
}

MICROSOFT SYMBOL FILEINTERNALS 87

/1l don't undecorate if multiple ‘@, or G+ symbol

if ((1==2) || (pbSymbol [0] == ‘2'))
{
j =0 Il keep prefix
k = maxpworD; //. keep length
}
el se
{
/1 search for next ‘e’
for (k =j; pbSynbol [k && (pbSynbol [k] != ‘@’'); k++);
/1 read nunber of argument stack bytes if ‘e’ found
if (pbSynbol [K == ‘@’
{
dStack = O;

for (1 =k + 1; (pbSynbol [1] >= ‘0') &&
(pbSynbol [1] <= '97); 1++)

{

dStack *= 10;

dStack += pbSynbol [1] - 0

}
/1 don't undecorate if non-nunmeric or enpty trailer
if (pbSynbol [1] | | (1 ==k + 1))

{

dStack - -1; // no stack size info

j = 0; /'l keep prefix
k = maxpworD; // keep length
}

}
/1 determne calling convention if single-char prefix
it (. =1
{
switch (pbSynbol [01)
{
case ‘@’ :
{
dConvention = IMG_CONVENTION_FASTCALL;
break;
}
case '_':

((continued)

88 WINDOWS 2000 DEBUGGING SUPPORT

dConvention = (dStack != -1
? IMG_CONVENTION_ STDCALL
. IMG_CONVENTION_CDECL) ;

break;

}
}

/1 copy sel ected name portion
k=mn (k - 7, sizeof {abBuffer} - 1);
lstrcpynA (abBuffer, pbSymbol + j, k + 1);

}
if (pbBuffer != NULL)
{
lstrcpyA (pbBuffer, abBuffer) ;
}

if (pdConvention != NULL) *pdConvention = dConventi on;
return dstack;

}

LISTING 1-30. The imgsymbolUndecorate () APl Function

Note that the imgTableResolve () functionignores all symbolswith undefined
calling convention. This restriction safely excludes all import thunk, C++, and PCH
symbols. Unfortunately, it also excludes some of the "good" symbols that don't have
standard decorations. | don't think, however, that thisis a big problem, because these
symbols are not among those most frequently used.

The basic framework of aw2k_img.d11 client application is outlined in
Listing 1-31. The application first loads the symbol table from the . dbg file
specified by the ptPath argument, using the imgTableroad () API function. If the
file contains an ns10 CodeView subsection, the associated PDB file is |loaded
seamlesdy. If the returned pointer is valid, the symbol entries can be enumerated in
four ways, described by the commentsinside the for() loop. Basically, the client
can use the original order of the symbols as they appear in the . dbg or . pdb file, or
it can choose one of the predefined sort indexes. When the symbol processing is
finished, the application has to destroy the symbol table by calling imgMemory
Destroy () . That's al! The application doesn't need any intimate knowledge about
the internals of symbol files. All information it needs is stored in the tvMc_TaABLE
and 1MG_ENTRY structures set up by imgTableLoad() .

MICROSOFT SYMBOL FILE INTERNALS 89

VOID WINAPI SymbolProcessor (PTBYTE ptPath)
{

PIMG_TABLE pit;
PIMG_ENTRY pi€
PVOID pBase;
DWORD i;

pBase = imgModuleBase (ptPath); // get current module load address

if ((pit = imgTableLoad (ptPath, pBase)) != NULL)

{

for (i = j = 0; i < pit->dsymbols; i++)
{
/l Option #1: default symbol order
/l pie = pit->aEntries + i;

// Option #2: symbols sorted by address
/l pie = pit->piiAddress->apEntries [i] ;

/l Option #3: symbols sorted by name (case sensitive)
/I pie = pit->piiName->apEntries [i];

/I Option #4: symbols sorted by name (ignore case)
/| pie = pit->piiNameIC->apEntries [i];

/I Now, pie points to the IMG_ENTRY of the next symbol!
// Do something useful with it ...

}

imgMemoryDestroy (pit):

}

return;

}

LISTING 1-31. Using the Symbol Table Management Functions

A typical client application of w2k_img. a11 will be presented in the next sub-
section. Note that | will return to this powerful utility DLL in Chapter 6, where it
serves a rather unusual purpose: It looks up addresses of internal ntoskrnl. exe
symbols that are neither documented nor exported, and a companion DLL uses
this information to call into or read from these addresses. This trick sounds odd,
but it works fine and can solve some tough programming and debugging problems.
Stay tuned!

90 WINDOWS 2000 DEBUGGING SUPPORT

ANOTHER WINDOWS 2000 SYMBOL BROWSER

The sample application that shall demonstrate the usage of w2k_img.d11isan alterna-
tive version of the symbol browser presented in the previous section. It is named
w2k_sym2 . exe, but despite the name similarity, it is not just a rehash of w2k_sym. exe.
The sample applications have quite different features and command options—just com-
pare their command help screens, shown in Examples 1-5 and 1-11. The source code
ofw2k_sym2 . exe is found on the CD accompanying this book in the \src\w2k_sym2
directory tree.

Example 1-12 shows some sample output, generated by the command
w2k_sym2 +NU beep. sys. The +n option selects sorting by name without considera-
tion of the character case, and the +u option forces inclusion of symbols with
unknown calling convention. The symbols with CDECL or stpcart in the ARGUMENTS
column refer to addresses of functions or global variables. The remaining rowsin
Example 1-12 are mostly import thunks into ntoskrnl. exe or hal. dil.

// w2k_sym2.exe
/1 SBS Wndows 2000 Synbol Browser v1. 00
/1 08-27-2000 Sven B. Schreiber

/| sbs@orgon.com
Wsage: w2k_sym2 { [+-anNiprdxusz] [:<sections>] [/<symbols>] <path> }

+ enabl e subsequent options

di sabl e subsequent option
sort by address

sort by nane

sort by name (case sensitive)
ignore case in filter strings
force preferred | oad address
display relative addresses

di spl ay decorated synbol s

di spl ay exported synbols only
include synbols with unknown calling convention
include special synbols

i nclude zero-address synbol s

N nw © X o ~T —2Z3 9

<sections> and <symbols> are filter expressions,
optional ly contai ning the wildcards * and ?.

EXAMPLE 1-11. The Command Help of w2k_sym2 . exe

MICROSOFT SYMBOL FILE INTERNALS 91

/] w2k_sym2 .exe

/1 SBS Wndows 2000 Synbol Browser v1.00
/1 08-27-2000 Sven B. Schreiber

/| sbs@orgon.com

Modul e name : beep . sys
Time stanp: \Wdnesday, 10-20-1999, 22:18:59
Base address: OxFO9CFOOO
Check sum Ox O000C54F
Synbol file: E: \WINNT\Symbols\sys\beep dbg
Synbol table: 23520 bytes
Synbol filter: *
Secti ons: *
| NDEX ADDRESS SECTI QN ARGUMENTS X NAME
1 0 FO9CF70C 2 .rdata _all mul
2 1 FO9CF6B2 1 .text CDECL _allmul
3 2 FOOCF7B4 3 INT CDECL _IMPORT_DESCRIPTOR_HAL
4 3 FO9CF7AO 3 INT CDECL _IMPORT_DESCRIPTOR_ntoskrnl
5 4 FOOCF7C8 3 INT CDECL _NULL_IMPORT_DESCRIPTOR
6 5 FO9CF34C 1 .text 8 STDCALL BeepCancel
7 6 FO9CF39E 1 .text 8 STDCALL Beepd eanup
8 7 FO9CF50E 1 .text 8 STDCALL Beepd ose
9 8 FO9CF456 1 .text 8 SIDCALL BeepDevi ceControl
10 9 FO9CF4CO 1 .text 8 STDCALL BeepOpen
11 10 FO9CF572 1 .text 8 SIDCALL BeepStartIo
12 11 FO9CF660 1 .text 10 STDCALL BeepTi meQut
13 12 FO9CF67E 1 .text 4 STDCALL BeepUnl oad
14 13 FO9CF29A 1 .text 8 SIDCALL DriverEntry
15 14 FO9CF6CO 2 .rdata 4 ExAcquireFastMutex
16 15 FO9CF6C4 2 .rdata 4 ExReleaseFastMutex
17 16 FO9CF6D4 2 .rdata HAL_NULL_THUNK_DATA
18 17 FO9CF6DO 2 .rdata 4 HalMakeBeep
19 18 FO9CF724 2 .rdata 4 InterlockedDecrement
20 19 FO9CF6EO 2 .rdata 8 InterlockedExchange
21 20 FO9CF708 2 .rdata 4 InterlockedIncrement
22 21 FO9CF6E8 2 .rdata 4 IoAcquireCancelSpinLock
23 22 FO9CF714 2 .rdata 1C IoCreateDevice
24 23 FO9CF710 2 .rdata 4 IoDeleteDevice
25 24 FO9CF6F4 2 .rdata 8 IofCompleteRequest
26 25 FO9CF6F8 2 .rdata 4 IoReleaseCancelSpinLock
27 26 FO9CF700 2 .rdata 8 IoStartNextPacket
28 27 FO9CF6EC 2 .rdata 10 IoStartPacket
29 28 FO9CF728 2 .rdata 4 KeCancelTimer
30 29 FO9CF718 2 .rdata C KeInitializeDpc

(continued)

92 WINDOWS 2000 DEBUGGING SUPPORT

31 30 FO9CF720 . .rdata C KeInitializeEvent
32 31 FO9CF71C .rdata 4 KeInitializeTimer
33 32 FO9CF6E4 2 .rdata 4 KeRemoveDeviceQueue
34 J3 FOOCF6DC 2 .rdata 8 KeRemoveEntryDeviceQueue
35 34 FOOCF704 2 .rdata 10 KeSet Ti mer
36 15 FO9CF6CC . .rdata 4 KfLowerIrgl
37 16 FOOCF6C8 © .rdata 4 KfRaiseIrqgl
38 37 FO9CF6FO : .rdata 4 MmLockPagableDataSection
39 38 FO9CF6FC | .rdata 4 MmUnlockPagableImageSection
40 39 FO9CF72C 2 .rdata ntoskrnl_NULL_THUNK_DATA
41 40 FO9CF6D8 .rdata a Rt1lInitUnicodeString
13 non-NULL synbol s

0 exported synbols

EXAMPLE 1-12 Sample Output of w2k_sym2.exe

Note that the _allmul symbol appearstwice in thelist. Thefirst oneis an
import thunk for the _a11mu1 () function exported by ntoskrnl. exe; the other one
isasimple function call forwarder that jumps through thisthunk. If you add the +d
switch to the command to view the symbolswith full decoration, you can see that the
_allmul import thunk isreally called_imp__a11mul, whereasthe original name of
the forwarder is__a11mul. Obviously, those decorations do serve some useful pur-
pose, even though they are sometimes quite distracting.

This chapter has presented extensive information. Maybe you didn't expect that
thereis so much to say about Windows 2000 debuggers, debugging APIs, and symbol
files. Most Windows programming books don't dedicate much space to this kind of
information. However, | believethat thisessential background knowledgewill help
you in writing your own debugging utilities.

CHAPTER 2

The Windows
2000 Native API

his introductory chapter about the Windows 2000 Native API focuses on the rela-

tionships among the operating system modules that form the environment of this
basic programming interface. Emphasisis on the central interrupt gate mechanism
employed by Windows 2000 to route kernel service requests from user-mode to
kernel-mode and back. Additionally, the Win32K interface and some of the major
runtime libraries associated with the Native API will be presented, along with some
of the most frequently used data types. The chapter closes with hints for those who
want to write applicationsthat interface to the Native APl viathentai1. ai1 library.

The architecture of Windows 2000 has been described in detail elsewhere. Many

things written about Windows NT also apply to Windows 2000, so both editions of
Inside Windows NT (Custer 1993, Solomon 1998) are good introductory books, as is
the follow-up volume Inside Windows 2000 (Solomon and Russinovich 2000).

THE NT*() AND ZW*() FUNCTION SETS

One of the most interesting facts about the architecture of Windows 2000 is that it
can emulate various operating systems. Windows 2000 comes with three built-in sub-
systems for Win32, POSIX, and OS2 applications. The Win32 subsystem is clearly
the mogt popular, and therefore it is frequently regarded by application developers as
the operating system itself. They cannot really be blamed for this misconception—this
point of view is correct for legacy operating systems such as Windows 95 or 98, with
which the Win32 interface implementation is actually afundamental part of the
system. However, Windows 2000 is designed quite differently. Although the Win32
subsystem contains a system module named kerne132 . 411, thisis actually not the
real operating system kernel. Instead, it is just one of the basic components of the
Win32 subsystem. In many programming books, software development for Windows

93

94 THE WINDOWS 2000 NATIVE API

NT and 2000 is reduced to the task of interfacing to the Win32 Application Program-
ming Interface (API), concealing the fact that the NT platform exposes yet another
more basic interface called the Native API. Devel opers writing kernel-mode device or
file system drivers are already familiar with the Native API, because kernel-mode
modules are located on alow system level where the subsystems are invisible. How-
ever, you don't have to go down to the driver level to accessthis interface—even ordi-
nary Win32 applications can call down to the Native API at any time. There's no
technical restriction—it’s just that Microsoft doesn't support this kind of application
development. Thus, little information has been available on thistopic, and neither the
Windows Platform Software Development Kit (SDK) nor the Windows 2000 Device
DriveKit (DDK) makethe Native API available to Win32 applications. So thiswork
has been left to others, and this book is another piece of the puzzle.

LEVELS OF “UNDOCUMENTEDNESS”

Much of the material presented in this book refers to so-called undocumented infor-
mation. In its global sense, this means that this information isn't published by
Microsoft. However, there are several grades of “undocumentedness” because of the
large amount of information that could possibly be published about a huge operating
system such as Windows 2000. My personal category system looks as follows:

« Officially documented: The information is available in one of Microsoft's
books, papers, or development kits. The most prominent information
sources are the SDK, DDK, and the Microsoft Developer Network
(MSDN)Library.

» Semidocumented: Although not officially documented, the information
can be extracted from files officially distributed by Microsoft. For
example, many Windows 2000 functions and structures aren't mentioned
in the SDK or DDK documentation, but appear in some header files or
sample programs. For Windows 2000, the most important sources of
semidocumentation are the header filesntddk.h and ntdef.nh, which are
part of the DDK.

» Undocumented, but not hidden: The information in question is neither
found in the official documentation nor included in any form in the
developer products, but parts of it are available for debugging tools. All
symbolic information contained in executable or symbol files belongsto
this category. The best examplesarethe ! processfields and

I threadfie1ds commands of the Kernel Debugger, which dump the
names and offsets of the undocumented EPROCESS and ETHREAD structures

(see Chapter 1).

THE NT*() AND ZW*() FUNCTION SETS 95

» Completely undocumented: Some information bits are so well hidden by
Microsoft, that they can be unveiled only by reverse engineering and
inference. Thisclass contains many implementati on-specific detailsthat
nobody except the Windows 2000 devel opers should care about, but it dso
includes information that might be invaluable for system programmers,
particularly devel opers of debugging software. Unveiling systeminternals
such asthisisextremely difficult, but also incredibly interesting, for
someone who loves puzzles of a million pieces.

The Windows 2000 internals discussed in this book are equally distributed on
levels two, three, and four of this category system, so there should be something

foreveryone.

THE SYSTEM SERVICE DISPATCHER

Therelationship between the Win32 subsystem API and the Native API is best
explained by showing the dependencies between the Win32 core modules and the Win-
dows 2000 kernel. Figure 2-1 illustrates the modul e rel ationshi ps, using boxes for mod-
ulesand arrows for dependencies. If an arrow points from module A to module B, this
means that A depends on B, that is, module A calls functions inside module B. Modules
connected by double arrows are mutually dependent on each other. In Figure 2-1, the
modules user32.d11, advapi32.dll, gdi 32.dl1 , rpcrt4.dll, and kernel32.d11
represent the basic Win32 API providers. Of course, there are other DLLSs that con-
tributeto thisAPI, such asversion.dll, shel132.d11, and comct132.d11, but for
clarity, I have omitted them. An interesting property illustrated in Figure 2-1 isthat all
Win32 API calls are ultimately routed throughntaii. ai1, which forwards them to
ntoskrnl.exe.

Thentaii. a1l module is the operating system component that hosts the Native
API. To be more exact, ntdai1. d11 isthe user-mode front end of the Native API. The
"real" interface is implemented in ntoskrnl. exe. The file name already suggests
that thisis the NT Operating System Kernel. In fact, kernel mode drivers call into
this module most of the time if they require operating system services. The main role
of ntd11. a11isto makeacertain subset of kernel functions availableto applications
running in user mode, including the Win32 subsystem DLLs. In Figure 2-1, the arrow
pointing fromntdi1.dll tontoskrnl. exeislabeled INT 2Eh to indicate that Win-
dows 2000 uses an interrupt gate to switch the CPU's privilege level from user mode
to kernel mode. Kernel-mode programmers view user-mode code as offensive, buggy,
and dangerous. Therefore, this kind of code must be kept away from kernel func-
tions. Switching the privilege level from user mode to kernel mode and back in the
course of an API call is one way to handle this problem in a controlled manner. The
calling application never really touches any kernel bytes—it can only look at them.

96 THEWINDOWS 2000 NATIVE API

I' user32.dll advapi32.dil] ‘

gdia2.dil rpcrtd.dil |

v v ‘

kernel32.dll

ke
¥ ntdll.dil e
INT 2Eh User Mode
h 4 Kernel Mode ‘
ntoskrnl.exe

- »

‘ L 4 L 4 ‘

‘ hal.dll & bootvid.dll ‘

FIGURE 2-1 System Module Dependencies

For example, the Win32 API function beviceTocontrol () exported by
kernel32.d11 eventually calls the ntd11.4d11 export NtDeviceIoControlFile() .
Disassembling thisfunction reveal s a surprisingly simpleimplementation, shownin
Example 2-1. First, CPU register EAX isloaded with the magic number 0x38, whichis
adispatch ID. Next, register EDX is set up to point into the stack. The target address
isthe current value of the stack pointer ESP plusfour, so EDX will point right behind
the stack slot of the return address that has been saved on the stack immediately
before entering NtpeviceTIocontrolFile () . Of course, thisisthe place where the
arguments passed to the function are temporarily stored. The next instruction is a
simple INT 2eh, which branches to the interrupt handler stored in dot 0x2E of the
Interrupt Descriptor Table (IDT). Doesn't that look familiar? In fact, this code looks
quiteabitlikean old DOSINT 21h API call. However, the INT 2enh interface of
Windows 2000 is much more than asimple API call dispatcher — it serves asthe main
gate from user mode to kernel mode. Please note that this implementation of the
mode switch is Intel 1386 CPU specific. On the Alphaplatform, different tricks are
employed to achieve this transition.

THE NT*() AND ZW*() FUNCTION SETS 97

NEDeviceIoControlFile:

mov eax, 38h
lea edx, [esp+4]
int 2Eh
ret 28h
EXAMPLE 2-1. Impl ementation of ntdll.NtDeviceIoControlFile ()

The Windows 2000 Native API comprises 248 functions that are handled this
way. That's 37 more than in Windows NT 4.0. Y ou can easily recognize them by the
function name prefix Nt inthentaii. ai1 export list. There are 249 symbols of this
kind exported by ntda11. a11. The reason for this mismatch is that one of the func-
tions, NtCurrentTeb (), isapure user-mode function and thereforeisn't passed to
thekernel. Table B-1 in Appendix B lists all available Native API functions, along
with their INT 2&n dispatch IDs, if any. The table also indicates which functions are
exported by ntoskrnl. exe. Surprisingly, only asubset of the Native API can be
called from kernel-mode modules. On the other hand, ntoskrn1 . exe exports two nt
symbols not provided by ntd11.d11, namely ntBuildNumber andNtGlobalFlag.
Neither symbol refersto afunction. Instead, they are pointersto ntoskrnl . exevari-
ablesthat can be imported by a driver module using the C compiler's extern key-
word. The Windows 2000 kernel exports many more variables in this manner, and
the sample code following later will make use of some of them.

Y ou may wonder why Table B-1 provides two columns for ntai1. dll and
ntoskrnl.exe, respectively, labeled ntdll .nt*, ntdll.zw*, ntoskrnl.Nt*, and
ntoskrnl.zZW* . Thereason isthat both modules export two sets of related Native
API symbols. One of them comprises all names involving the Nt prefix, as listed in
the leftmost column of Table B-1. The other set contains similar names, but with Nt
replaced by zw. Disassembly of ntd11. a11 shows that each pair of symbols refersto
exactly the same code. This may appear to be a waste of memory. However, if you
disassemblentoskrnl. exe, youwill find that thent* symbols point to real code and
the zw* variantsrefer to INT 2Eh stubs such as the one shown in Example 2-1. This
means that the zw* function set is routed through the user-to-kernel-mode gate, and
theNt* symbols point directly to the code that is executed after the mode transition.

Two more thingsin Table B-1 should be noted. First, thefunction NtCurrentTeb ()
doesn't have a zw* counterpart. Thisisnot abig problem because thent* and zw*
functions exported by ntdi1. a1l arethe same anyway. Second, ntoskrnl. exe does-
Nn't consistently export nt /zw function pairs. Some of them come in either Nt* or zw*
versions only. | do not know the reason for this—I suppose that ntoskrnl. exe
exports only the functions documented in the Windows 2000 DDK plus those

98 THE WINDOWS 2000 NATIVE API

required by other operating system modules. Note that the remaining Native API
functions are neverthelessimplemented insidentoskrnl. exe. They don't feature a
public entry point, but of course they may be reached from outside through the
INT 2Eh gate.

THE SERVICE DESCRIPTOR TABLES

The disassembled code in Example 2-1 has shown that INT 2Eh isinvoked with
two parameters passed in the CPU registersEAX and EDX . | have already mentioned
that the magic number in EAX isadispatch ID. Because all Native API calls except
NtcurrentTeb () are squeezed through the same hole, the code handling the INT
2Eh must determine which call should be dispatched to which function. That's why
the dispatch ID is provided. Theinterrupt handler inside ntoskrnl . exe uses the
valuein EAX asan index into alookup table, where it finds the information required
to route the call to its ultimate destination. Thistableis caled a System Service
Table (SST), and the corresponding C structure systev_service_TarBLE IS defined
inListing 2-1. Thislisting also comprises the definition of a structure named
SERVICE_DESCRIPTOR_TABLE, Which is a four-member array of SSTs the first two
of which serve specia purposes.

Although both tables are fundamental data types, they are not documented in
the Windows 2000 DDK, which leads to the following important statement: Many
code snippets reprinted in this book contain undocumented data types and functions.
Therefore, there's no guarantee that thisinformation is authentic. Thisistrue for al
symbolic information, such as structure names, structure members, and arguments.
When creating symbols, | attempt to use appropriate names, based on the naming
scheme apparent through the small subset of known symbols (including those avail-
able from the symbol files). However, this heuristic approach islikely to fail on many
occasions. Only the origina source code contains the full information, but I don't
have access to it. Actualy, | don't want to see the source code, because thiswould
require a Non-Disclosure Agreement (NDA) with Microsoft, and the ties of an NDA
would make it quite difficult to write a book about undocumented information.

So let's return to the secrets of the Service Descriptor Table (SDT). Its definition
in Listing 2-1 shows that the first pair of slotsisreserved for ntoskrnl. exe
and the kernel-mode part of the Win32 subsystem buried inside the win32k. sys
module. The calls dispatched through thewin32k SST originate from gdi32 . a11
and user32.d11. ntoskrnl. €xe exports a pointer to itsmain SDT via the symbol
KeServiceDescriptorTable. The kernel maintains an alternative SDT named
KeServiceDescriptorTableshadow, butthisoneis not exported. It isvery smpleto
access the main SDT from a kernel-mode module—you need only two C instructions,
as shown in Listing 2-2. Thefirst is a simple variable declaration preceded by the
extern keyword, which tells the linker that this variable is not part of the module

THE NT*() AND ZW*() FUNCTION SETS 99

andthecorrespondingsymbol cannotberesolvedatlinktime. All referencestothis
symbol are linked dynamically as soon as the modul e is |oaded into the address space
bfaprocess. The second C instruction in Listing 2-2 is such areference. Assigning
K@SetviceDescriptorTable t0 avariable of type PSERVICE_DESCRIPTOR_TABLE
causes the creation of adynamic link tontoskrni. exe, Similar toan APl cal into a

DLL module.

typedef NTSTATUS (NTAPI*NTPROC) ()
typedef NTPROC *PNTPROC;
fdefine NTPROC_ si zeof (NTPROO

typedef struct _SYSTEM SERVICE_TABLE

{

PNTPROC ServiceTable; /1 array of entry points
PDWRD CounterTable; /1 array of usage counters
DWRD ServiceLimit; /1 nunber of table entries
PBYTE ArgumentTable; /1 array of byte counts

)

SYSTEM_SERVICE_TABLE,
* PSYSTEM_SERVICE_TABLE,
* * PPSYSTEM_SERVICE_TABLE

typedef struct _SERVICE_DESCRIPTOR_TABLE

{
SYSTEM_SERVICE_TABLE ntoskrnl; [/ ntoskrnl.exe (native api)
SYSTEM_SERVICE_TABLE win32k; /!l win32k.sys (gdi/user support)
SYSTEM_SERVICE_TABLE Table3; /1l not used
SYSTEM_SERVICE_TABLE Table4; /1 not used

}

SERVICE_DESCRIPTOR_TABLE,
* PSERVICE_DESCRIPTOR_TABLE,
* * PPSERVICE_DESCRIPTOR_TABLE

LISTING 2-1. Structure of the Service Descriptor Table

/1 1nport SDT pointer
extern PSERVICE DESCRIPTOR_TABLE KeServi ceDescri ptor Tabl e;

/1 Create SDT reference
PSERVICE_DESCRIPTOR_TABLE psdt = KeServiceDescriptorTable;

LISTING 2-2. Accessing rhe Service Descriptor Table

100 THE WINDOWS 2000 NATIVE API

The serviceTable member of each SST contained in an SDT points to an array
of function pointers of type nteroc, which is a convenient placeholder for the Native
API functions, similar to the PROC type used in Win32 programming. NTPROC is
defined at the top of Listing 2-1. Native API functions typically return an NTSTATUS
code and use the nTapr1 calling convention, which is synonymousto_ stdcail. The
ServiceLimit member holds the number of entries found in the ServiceTable array.
On Windows 2000, its default value is 248. The ArgumentTableis an array of
BYyTEs, €ach one corresponding to a ServiceTable slot and indicating the number of
argument bytes (!) available on the caller's stack. Thisinformation, along with the
pointer supplied in register epx, isrequired by the kernel when it copies the argu-
ments from the caller's stack to its own, as described below. The CounterTable mem-
ber is not used in the free build of Windows 2000. In the debug build, this member
points to an array of DWORDS that represent usage counters for each function. This
information can be used for profiling purposes.

It is easy to display the contents of the SDT using the Windows 2000 Kernel
Debugger. Please refer to Chapter 1 if you haven't yet set up this very useful applica-
tion. In Example 2-2, I have first issued the command aa KeServiceDescrip-
torTable. The debugger resolves this public symbol to 0xso046ar80 and displays a
hex dump of the next 32 DWORDS at this address. Only the first four rows are signifi-
cant, corresponding to the four SDT membersin Listing 2-1. For better readability,
they are printed in boldface. If you take a closer look, you will see that the fifth row
looks exactly like the first—could this be another SDT? Thisis a great occasion for a
test of the Kernel Debugger's 1n command (List Nearest Symbols). In Example 2-2.
right after the hex dump of keservicepescriptorrable, | have entered the com-
mand1n 8046abcO. Obviously, thedebugger knowstheaddressOx8046abcOwell and
converts it to the symbol xeservicebescriptorTableshadow, proving that thisis
indeed the second SDT maintained by the kernel. The obvious difference between the
PDTs is that the latter contains entries for win32k. sys, whereas the former doesn't. In
both tables, the members Tabie3 and Tabled are empty. ntoskrnl. exe provides a
convenient APl function named keaddsystemserviceTable () to fill these dots.

kd> dd KeServiceDescriptorTable

dd KeServi ceDescri ptorTabl e

8046ab80 804704d8 00000000 000000£8 804708bc
8046ab90 00000000 00000000 00000000 00000000
8046aba0l 00000000 00000000 00000000 00000000
8046abb0 00000000 00000000 00000000 00000000
8046abcO 804704d8 00000000 000000£8 804708bc
8046abdO a01859f O 00000000 0000027f a0186670

THE NT*() AND ZW*() FUNCTICN SETS 101

8046abeO 00000000 00000000 00000000 00000000

B046abf0 00000000 00000000 00000000 00000000

kd> 1n 8046abcO

In 8046abcO

(8047b3a0) nt oskrnl !KeServiceDescriptorTableShadow

kd> 1n 80470448
In 80470448
(8046cd00) ntoskrnl! KiServiceTable

kd> 1n 804708bc
1n 804708bc
(8046dCe4) ntoskrnl !KiArgumentTable

kd> 1n a01859f O
1n a01859f O
(a016d8c0) win32k!W32pServiceTable

kd> 1n a0186670
1n a0186670
(a016e544) win32k!W32pArgumentTable

kd> dd Ki Servi ceTabl e

dd Ki ServiceTabl e

804704d8 804ab3bf 804ae86b 804bdef 3 8050b034
804704e8 804cl | f4 80459214 8050c2ff 8050c33f
804704f8 804b581c 80508874 8049860a 804fc7e2
80470508 804955f7 8049c8a6 80448472 804a8d50
80470518 804b6bfb 804f Ccef 804f ch95 8040189a
80470528 804d06cbh 80418f 66 804f 69d4 8049eCcc
80470538 8044c422 80496f58 804ab849 804aa9da
80470548 80465250 804f 4bd5 8049bc80 804ca7ab5

kd> db Ki Argunent Tabl e

db Ki Argunent Tabl e

804708bc 18 20 2c 2c 40 2c 40 44-0c 18 18 08 04 04 Cc 10 . , ,@,@D
804708cc 18 08 08 Cr 08 08 04 04-04 Oc 04 20 08 & 14 ¢

804708dc 2c 10 Cc 1c 20 10 38 10-14 20 24 1c 14 10 20 10 8..%. ..
804708ec 34 14 08 04 04 04 O 08-28 04 1c 18 18 18 08 18 4 (
804708fc Cc 08 O 04 10 00 Cc 10-28 08 08 10 00 1c 04 08 (
8047090C Cc 04 10 00 08 04 08 Oc-28 10 04 Oc Oc 28 24 28 (oo (3(
8047091C 30 O Oc O 18 & O Oc-Oc 30 10 & & G C 10 O 0
8047092C 10 & O 14 Cc 14 18 14-08 14 08 08 04 2c 1lc 24 ,. 8

kd> 1n 8044C422
1n 8044C422
(80449c90) ntoskrnl!NtClose

EXAMPLE 2-2. Examination of the Service Descriptor Tables

102 THE WINDOWS 2000 NATIVE AP

Note that | have truncated the output lines of the 1» command, to demonstrate
only the essentia information.

At address Ox8046AB88 of the KeServiceDescriptorTable hex dump, where
the servicerimit member should be located, the value 0xr8—248 in decimal
notation—shows up, as expected. The values of ServiceTable and ArgumentTable
arepointersto theaddressesoxs04704a8 and Ox804708bc, respectively. Thisis
another case for the 1n command, revealing the names KiserviceTable and
KiargumentTable, respectively. None of these symbolsis exported by
ntoskrnl.exe, but the debugger recognizes them by looking into the Windows
2000 symbol files. The 1n command can aso be applied to the pointers in the
win32k SST. For the ServiceTable and ArgumentTable members, the debugger
reportsw32pServiceTable and w32pargumentTable, respectively. Both symbols
aretaken from the symbol file of win32k.sys . If the debugger refuses to resolve
these addresses, issue the . reload command to force a reload of al available
symbol files and try again.

The remaining parts of Example 2-2 are hex dumps of the first 128 bytes of
KiserviceTable and xiar gumentTable. If the things | said about the Native API
so far are correct, then thentciose () function should be addressed by sot 24 of
KiserviceTable, located at address oxs80470538. The value found there is
0x8044c422, marked boldface in the results of the dd KiserviceTable command.
Applying the 1n command to this addressyields Ntciose() . Asafinal test, let's
examinedot 24 of KiArgumentTableat addressOx804708d4. IntheWindows
2000 DDK, zwClose() isdocumented as receiving a single argument of type
HANDLE, so the number of argument bytes on the caller's stack should amount to
four. It doesn't come as a big surprise that this is exactly the value found in the argu-
ment table, marked boldface intheresults of the db KiArgumentTable command.

THE INT 2Eh SYSTEM SERVICE HANDLER

Theinterrupt handler lurking at the kernel-mode side of the INT 2Eh gateis
labeled KisystemService() . Again, thisis an internal symbol not exported by
ntoskrnl . exe, but contained in the Windows 2000 symbol files. Therefore, the
Kernel Debugger canresolveit without problem. Essentially, KisystemService()
performs the following steps:

1. Retrieve the SDT pointer from the current thread's control block.

2. Determinewhich one of the four SSTsinthe SDT should be used. Thisis
done by testing bits 12 and 13 of thedispatch ID in register EAX and
selecting the corresponding SDT member. IDs in the range 0x0000-0x0FFF
are mapped to the ntoskrnl table; the range 0x1000-0x1rrr iS assigned to

THE WIN32 KERNEL-MODE INTERFACE 103

thewin32k table. Theremainingranges Ox2000-Ox 2FFF and Ox3000-Ox3FFF
are reserved for the additional SDT members tabie3 and Tabies . Ifan 1D
exceeds 0x3FFF, the unwanted bits are masked off before dispatching.

3. Check bits0to 11 of the dispatch ID in register EAX against the
serviceLimit member of the selected SST. If the ID is out of range, an error
code of sSTATUS_INVALID_SYSTEM_SERVICE IS returned. In an unused SST,
this member is zero, yielding an error code for al possible dispatch IDs.

4. Check the argument stack pointer in register EDX against the val ue of
MmUserProbeAddress. Thisisapublic variable exported from
ntoskrnl . exe and usually evaluatesto ox7rrr0000. If the argument
pointer is not below this address, staTus_access_vIoLATION IS returned.

5. Look up the number of argument stack bytes in the ArgumentTable
referenced by the SST, and copy al function arguments from the caller's
stack to the current kernel-mode stack.

6. Look up the service function pointer in the serviceTable referenced by
the SST, and call thisfunction.

7. Transfer control to the internal function KiserviceExit « after returning
from the service call.

It isinteresting to seethat the INT 2 Eh handler doesn't use the global SDT
addressed by xeservicebescriptorTable, but usesathread-specific pointer
instead. Obviously, threads can have different SDTs associated to them. On thread
initialization, keTnitializeThread () Writes the KeServiceDescriptorTable
pointer to the thread control block. However, this default setting may be changed
later to adifferent value, such as KeServiceDescriptorTableShadow, for example.

THE WIN32 KERNEL-MODE INTERFACE

The discussion of the SDT in the previous section has shown that a second main kernel-
mode interface exists along with the Native API. Thisinterface connects the Graphics
Device Interface (GDI) and the Window Manager (USER) of the Win32 subsystemto a
kernel-mode component called Win32K, introduced with Windows NT 4.0, and resid-
inginthefilewin32k. sys. Thiscomponent has been added to overcome an inherent
performance limit of the Win32 display engine, caused by the original Windows NT
subsystem design. On Windows NT 3.x, the client-server model imposed on the Win32
subsystem and the kernel involved frequent switches from user-mode to kernel-mode
and back. By moving considerable parts of the display engine to the kernel-mode mod-
ulewin32k. sys, much of this overhead could be eliminated.

104 THE WINDOWS 2000 NATIVE API

Win32K DISPATCH IDs

Now that win32k. Sys has entered the scene, it's time for an update of Figure 2-1.
Figure 2-2 is based on the original drawing, but with awin32k. sys box added to the
left of ntoskrnl. exe. | have also added arrows pointing from gdiz2 . ai1 and
user32 .a11towin32k.sys. Of course, thisisnot 100 percent correct, because the
INT 2Ehcallsinsidethesemodulesareactually directedtontoskrnl . exe, which
ownstheinterrupt handler. However, the callsare ultimatel y handled by

win32k. sys, and thisis what the arrows should indicate.

Aspointed out earlier, the Win32K interface is also based on the INT 2Eh dis-
patcher, much like the Native API. The only difference is that Win32K uses a differ-
ent range of dispatch IDs. Although all Native API calls involve dispatch IDs that
range from 0x0000 to oxorrr, Win32K dispatch IDs are numbers between 0x1000
and ox1rrr. As Figure 2-2 demonstrates, the primary Win32K clients are gdi32 .a11
and user32.a11. Therefore, it should be possible to find out the symbolic names
associated to the Win32K dispatch I1Ds by disassembling these modules. Asit turns
out, only asmall subset of INT 2Eh callshas public namesin their export sections, so
itisagain timefor aKernel Debugger session. In Example 2-3, I have issued the com-
manddd w32pserviceTable. TObesurethat thewin32k. syssymbolsareavailable,
itispreceded by a . reload command.

f user3d2.dll advapi32.dll ‘[.
|

gdia2,dil rpertd. dil |

v 4 ‘
kernel32.dll |

|

| L A ¢
2 ntdil.dll »
INT 2Eh INT 2Eh INT 2Eh) User Mode |
4 A 4) Kernel Mode

win32k.sys ntoskrnl.exe

|
r 3 r 1 |

v v v

hal.dll * bootvid.dli

FIGURE 2-2. System Module Dependencies, including win32k. sys

THE WIN32 KERNEL-MODE INTERFACE 105

k@ .reload

lreload

Loading Kernel symbols. ..

tnable to read image header for fdc.sys at £0798000 - status c¢000000l
Unable to read image header for aTvrD.DLL at beaafOOO - status c¢000000I
Loading User symbols. . .

Unable to read selector for PCR for Processor O

PPEB is NULL (aAddr= 0000018c)

k@ dd w32pServiceTable

ddw32pServiceTable

a01859f0 a01077f0 a011f59e a000788a a01141lel
a0185a00 a0121264 a0107e05 a01084df a010520b
a0185al0 a0120a6f a008c9eb aOObefa2 a007ch5c
a0185a20 a0085c9b a00lede7 a0120fdl a0122d19
a0185a30 a0085d0c a0l22e73 a0027671 a006dIfO
a0185a40 a0043feO a009baeb a007eb9b a009eb05
a0185a50 a0043392 a007c14f a01229cc a0027470
a0185a60 a001ad09 aOOaf751 a004e9f5 a004ef53

kd> 1n a01077f0

1n a01077f0
(aO0b316e) win32k!NtGdiabortDoc | (a00bal73) win32k! IsRectEmpty

EXAMPLE 2-3. Examination ofthe Win32K System Services

Inthe last three lines of Example 2-3, T have applied the 1n command to the
firs entry inthe w32pserviceTable hex dump. So the Win32K function with digpatch
ID zero is obvioudy cdled ntcdiabortpoc () . You can repest this procedure for dl
639 dispatch IDs, but it is better to automate the symbol lookup. | have done this
for you, and the results are collected in Appendix B, Table B-2. The symbol mapping
fromgaiz2.a11 anduser32. ai11towin32k. sys issmple: A GDI symbol is converted
to a Win32K symbol by adding the prefix nteai, and a USER symbol is converted by
adding ntuser. However, there are some minor exceptions. For example, if a GDI
symbol starts out with cai, the prefix isreduced to nt, probably to avoid the character
sequencentcdicdi . [nsome other instances, the character caseisdifferent (e.g.,
EnableEUDC () andNtGdiEnableEudc()), or atrailing W markingaUnicodefunctionis
missing (e.g., CcopyaAcceleratorTablew () and NtUserCopyAcceleratorTable()) .
Documenting the complete Win32K APl in detail would be atremendous effort.
The function set is amost three times larger than the Native API. Maybe someday
someone will pick up the pieces and write a great reference handbook, like Gary
Nebbett did for the Native APl (Nebbett 2000). For the scope of this book, the above
information should suffice, however.

106 THE WINDOWS 2000 NATIVE API

THE WINDOWS 2000 RUNTIME LIBRARY

Thewt+ () and zw* () functions making up the Native APl are an essential, but never-
theless minor, part of the code found insidentai1. a11. This DLL exports no fewer
than 1179 symbols. 249/248 of them belong to the Nt* () /zw* () sets, so there are
still 682 functions left that are not routed through the INT 2&en gate. Obviously, this
large group of functions doesn't rely on the Windows 2000 kernel. So what purpose
dothey serve?

THE C RUNTIME LIBRARY

If you study the symbols in the export section of nta11. a11, you will find many
lowercase function names that look quite familiar to a C programmer. These well-
known names, such as memcpy (), sprintf(), and qsort (), are members of the

C Runtime Library incorporated intontai1.di1. The sameistrue for ntoskrnl. exe,
which features a similar set of C Runtime functions, although these sets are not iden-
tical. Table B-3 in Appendix B lists the union of both sets and points out which ones
are available from which module.

Y ou can link to these functions by simply adding the filentai1. lib from the
Windows 2000 DDK to the list of import libraries that should be scanned by the linker
during symbol resolution. If you prefer using dialogs, you can choose the Settings...
entry from the Project menu of Visual C/C++, click the Link tab, sdlect the category
General, and append ntd1l. d11 to the Object/library modules list. Alternatively, you
can add theline #pragma comment (linker, “/defaultlib:ntdll.1ib”} somewhere
to your source code. This has the same effect, but has the advantage that other develop-
ers can rebuild your project with default Visua C/C++ settings.

Disassembling the code of some of the C Runtime functions available from
bothntaii.dll andntoskrnl. exe showsthat ntaii. dll doesnotrely on
ntoskrnl. exe here, like it did with respect to the Native API functions. Instead,
both modules implement the functions separately. The same applies to all other
functions presented in this section. Note that some of these functionsin Table B-3
aren't intended for import by name. For example, if you are using the shift opera-
tors >> and << on 64-bit LarRcGE_1NTEGER NUumMbersin akernel-mode driver, the com:
piler and linker will automatically import the _allshr () and _a11sh1 () functions
fromntoskrnl. exe, respectively.

THE EXTENDED RUNTIME LIBRARY

Along with the standard C Runtime, Windows 2000 provides an extended set of run-
time functions. Again, both ntdil. dll and ntoskrnl. exe implement them separately,
and, again, the implemented sets overlap, but don't match exactly. The functions

THE WINDOWS 2000 RUNTIME LIBRARY 107

belonging to this group share the common name prefix rt1 (for Runtime Library).
Table B-4 in Appendix B lists them all, using the same layout as Table B-3. The Win-
dows 2000 Runtime Library contains helper functions for common tasks that go
beyondthe capabilities of C Runtime. For example, some of them handl e security
issues, others mani pulate Windows 2000-specific data structures, and still others
support memory management. It ishardto understand why Microsoft documentsjust
115 out of these 406 extremely useful functions in the Windows 2000 DDK.

THE FLOATING-POINT EMULATOR

I'll conclude this gallery of API functions with another function set provided by
ntdll.dll, just to show how many interesting functions are buried inside this
goldmine. Table 2-1 lists a set of names that should look somewhat familiar to
assembly language programmers. Take one of the names startingwith___e and
strip this prefix—you get an assembly language mnemonic of the floating-point
unit (FPU) built into the i386-compatible CPUs. In fact, ntdll .4a11 contains a full-
fledged floating-point emulator, represented by thefunctionsin Table2-1. This
proves again that this DLL is an immense repository of code and almost invites

a system spelunker to disassembly.

TABLE 2-1. The Floating Point Emulator Interface of ntdll. dll

FUNCTION NAMES
_ eCommonExceptions _eFIST32 __eFLD64 _eFSTP32
__eEmulatorlnit _eFISTP16 __eFLDS80 __eFSTP64
__eF2XM1 _eFISTP32 __eFLDCW _eFSTP30
_eFABS _eFISTP64 __eFLDENV __eFSTSW
_eFADD32 __eFISUB16 - eFLDL2E _eFSuUB32
_eFADD64 _eFIsuB32 __eFLDLN2 _eFsuB64
_eFADDPreg __eFISUBR16 __eFLDPI _eFSUBPreg
_eFADDreg _eFISUBR32 __eFLDZ _eFSUBR32
__eFADDtop _eFLDI __eFMUL32 _eFSUBR64
_eFCHS _eFIDIVR16 _ eFMUL64 _eFSUBreg
_eFCOM _eFIDIVR32 __eFMULPreg _eFSUBRPreg
__ eFCOM32 __eFILD16 _eFMULreg __eFSUBRreg
_eFCOM©64 _eFILD32 __eFMULtop _eFSUBRtop
__eFCOMP _eFILD64 __eFPATAN _eFSUBtop
_eFCOMP32 __eFIMUL16 __eFPREM _eFTST

(continued)

108 THE WINDOWS 2000 NATIVE API

TABLE 2-1. (continued)

FUNCTION NAMES

_eFCOMP64 _eFIMUL32 __eFPREM1 _eFUCOM
_eFCOMPP _eFINCSTP _eFPTAN _eFUCOMP
_eFCOs eFINIT _eFRNDINT eFUCOMPP
_eFDECSTP __eFIST16 _eFRSTOR __eFXAM
__eFIDIVR16 _eFIST32 _eFSAVE _eFXCH
_eFIDIVR32 _eFISTP16 _eFSCALE _eFXTRACT
__eFILD16 _eFISTP32 _eFSIN _eFYL2X
_eFILD32 _eFISTP64 _eFSQRT _eFYL2XPI
_eFILD64 __eFISUB16 _eFSsT __eGetStatusWord
__eFIMUL16 _eFISUB32 _eFST32 NPXEMULATORTABLE
__eFIMUL32 _eFISUBR16 _eFST6e4 RestoreEm87Context
_eFINCSTP _eFISUBR32 __eFSTCW SaveEm 8 7Context
_eFINIT _eFLDI __eFSTENV

__eFIST16 _eFLD32 __eFSTP

For more information about the floating-point instruction set, please
consult the original documentation of the Intel CPUs 80386 and up. For example,
the Pentium manual s can be downloaded in PDF format from Intel's Web site at
http://developer.intel.com/design/pentium/manuals/. The manual explaining the machine
code instruction set is called Intel Architecture Software Developer's Manual.
Volume 2: Instruction Set Reference (Intel 1999b). Another great reference book with
detailed FPU information is Robert L. HummePs aged but still applicable i486 hand-
book (Hummel 1992).

OTHER API FUNCTION CATEGORIES

Along with the functions listed explicitly in Appendix B and Table 2-1, ntai1. dll
and ntoskrnl. exe export numerous other functions specific to various components
of the kernel. Rather than add more lengthy tables to this book, I'm including a short
one that lists the available function name prefixes with their associated categories
(Table2-2). Thentaii. dll andntoskrnl. exe columns contain the entry N/A (not
applicable) for modules that do not export functions of this category.

THE WINDOWS 2000 RUNTIME LIBRARY 109

TABLE 2-2. Function Prefix to Function Category Mapping
PREFIX ntdll.d1l ntoskrnl.exe CATEGORY
_e N/A Floating-point emul ator
Ce N/A Cache manager
Cy N/A Client-server runtime library
Dhg Debugging support
Ex N/A Executive support
FsRtl N/A File system runtime library
Hal N/A Hardware Abstraction Layer (HAL)
dispatcher
Inbv N/A System initialization/VGA boot
driver (bootvid.dll)
Init N/A System initialization
Interlocked N/A Thread-safe variable manipulation
lo N/A [/O manager
Kd N/A Kernel Debugger support
Ke N/A Kernel routines
Ki Kernel interrupt handling
Ldr Image |oader
Lpc N/A Local Procedure Call (LPC) facility
Lsa N/A Local Security Authority (LSA)
Mm N/A Memory manager
Nls National Language Support (NLS)
Nt NT Native AP
Ob N/A Object manager
Pfx Prefix handling
Po "N/A Power manager
Ps N/A Process support
READ_REGISTER_ N/A Read from register address
Rtl Windows 2000 runtime library
Se N/A Security handling
WRITE_REGISTER_ N/A Write to register address
Zw Alternative Native API
<other> Helper functions and C runtime
library

N/A, Not applicable.

110 THEWINDOWS 2000 NATIVE API

Many kernel functions use a uniform naming scheme of type prefix
OperationObject () . For example, the function ntQueryInformationFile ()
belongs to the Native API because of its Nt prefix, and obviously it executes a
oQueryInformation operation on a File object. Not al functions obey this
rule, but many do, so it is usually easy to guess what a function does by simply
parsing its name.

FREQUENTLY USED DATA TYPES

When writing software that interacts with the Windows 2000 kernel—whether in
user-modeviantdll. dail orinkernel-modeviantoskrnl . exe—you will have to
deal with a couple of basic data types that are rarely seen in the Win32 world.
Many of them appear repeatedly in this book. The following section outlines the
most frequently used types.

INTEGRAL TYPES

Traditionally, integral data types come in several different variations. Neither the
Win32 Platform SDK header filesnor the SDK documentation commit themselves
to a specia nomenclature—they mix fundamental C/C++ types with several
derived types. Table 2-3 lists the commonly used integral types, showing their
equivalence relationships. In the “MASM” column, the assembly language type
names expected by the Microsoft Macro Assembler (MASM) are shown. The
Win32 Platform SDK defines svTe, worp, and DWORD as aliases for the correspond-
ing fundamental C/C++ data types. The columns "Alias #1” and "Alias #2" con-
tain other frequently used aliases. For example, WCHAR represents the basic Unicode
character type. The last column, "Signed," lists the usual aliases of the correspond-
ing signed data types. It isimportant to keep in mind that ANSI characters of type
CHAR are signed quantities, whereas the Unicode WCHAR is unsigned. This inconsis-
tency can lead to unexpected side effects when the compiler converts these types to
other integral valuesin arithmetic or logical expressions.

The MASM TBYTE type (read “10-byte”) in the last row of Table 2-3 is an
80-bit floating-point number used in high-precision floating-point unit (FPU) oper-
ations. Microsoft Visual C/C++ doesn't offer an appropriate fundamental data type
to Win32 programs—the 80-bit long double type featured by Microsoft's 16-bit
compilersis now treated like a double, that is, i.e. a signed 64-bit number with an
11-bit exponent and a 52-hit mantissa, according to the IEEE rea1+8 specification.
Please note that the MASM TBYTE type has nothing to do with the Win32 TBYTE
(read "text byte"), which is a convenient macro that can define a CHAR or WCHAR
type, depending on the absence or presence of a #define UNICODE linein the
source code.

FREQUENTLY USED DATA TYPES 111

TABLE 2-3. Equivalent Integral Data Types

BITS MASM FUNDAMENTAL ALIAS #1 ALIAS #2 SIGNED
8 BYTE unsigned char UCHAR CHAR
16 WORD unsigned short USHORT WCHAR SHORT
32 DWORD unsigned long ULONG LONG
32 DWORD unsigned int UINT INT

64 QWORD wunsigned__int64 ULONGLONG DWORDLONG LONGLONG
80 TBYTE N/A

The Windows 2000 Device Driver Kit (DDK) ismore consistent in its use of
aliases. Y ou will usually come across the type names in the "Alias #1” and "Signed"
columns throughout the header files and documentation. As along-term assembly
language programmer, |'ve grown accustomed to using the MASM types. Therefore,
youwill frequently find the names listed in the "MASM" column in the header files
on the companion CD of this book.

Because 64-bit integer handling is somewhat awkward in a 32-bit programming
environment, Windows 2000 usually does not employ the fundamental___int64 type
anditsderivatives. Instead, the DDK header filentdef . h defines aneat union/struc-
ture combination that allows different interpretations of a 64-bit quantity as either a
pair of 32-bit chunks or a 64-bit monolith. Listing 2-3 shows the definition of the
LARGE_INTEGER and ULARGE_INTEGER types, representing signed and unsigned inte-
gers, respectively. The sign is controlled by using rowcronc/unoncLone for the 64-bit
QuadPart member or LONG/ULONG for the 32-bit HighPart member.

STRINGS

In Win32 programming, the basic types PSTR and pwsTr are commonly used for
ANS| and Unicode strings. PSTR is defined as CHAR* , and PWSTR is a WCHAR* (see
Table 2-3). Depending on the absence or presence of the #define UNICODE directive
in the source code, the additional PTSTR pseudo-type evaluates to PSTR or rusTr,
respectively, allowing maintenance of ANSI and Unicode versions of an application
with asingle set of source files. Basically, these strings are simply pointers to zero-
terminated CHAR or WCHAR arrays. If you are working with the Windows 2000 kernel,
you have to deal with quite different string representations. The most common type
isthe UNICODE_STRING, which is athree-part structure defined in Listing 2-4.

112 THE WINDOWS 2000 NATIVE AP

typedef union _LARGE | NTEGER

{

struct
{
UWLONG LowPart;
LONG Hi ghPart;

}i
LONGLONG QuadPart ;

}

LARGE_INTEGER, * PULARGE_INTEGER;

typedef union _ULARGE_INTEGER

{
struct
{
WLONG LowPart;

ULONG H ghPart ;
}i
ULONGLONG QuadPart ;

}
U LARGE_| NTEGER, *PULARGE_INTEGER;

LISTING 2-3. LARGE_INTEGER and ULARGE_INTEGER

typedef struct _UNICODE_STRING
{
USHORT Lengt h;
USHORT MaximumLength;
PWSTR Buffer;

}

UNICODE_STRING, * PUNICODE_STRING;
typedef struct _STRI NG

USHORT Lengt h;
USHCRT Maxi muniengt h;
PCHAR Buffer;

}
STRING *PSTRING;

typedef STRNG ANSI_STRING, *PANSI STRING;
typedef STR NG CEM STR NG *POEM_STRING;

LISTING 2-4. Structured String Types

FREQUENTLY USED DATA TYPES 113

The Length member specifies the current length of the string in bytes—not charac-
ters! The Maximumrength member indicates the size of the memory block addressed by
the Buf fer member where the string data resides, again in bytes, not characters. Because
Unicode characters are 16 bitswide, the Lengthis aways twice the number of string
characters. Usually, the string pointed to by the Buf fer member is zero-terminated.
However, some kernel-mode modules might rely entirely on the Length value and won't
take care of adding the terminating zero character, so be careful in case of doubt.

The ANSI version of the Windows 2000 string structure is simply called
STRING, as shown in Listing 2-4. For convenience, ntdef . h aso defines the
ansT_sTRING and oeM_sTRING aliases to distinguish 8-byte strings containing charac-
ters of different code pages (default ANSI code page: 1252; default OEM code page:
437). However, the predominant string type of the Windows 2000 kernel is the unt-
copeE_sTRING. You will come across 8-bit strings only occasionally.

InFigure 2-3, I have drawn two typical untcope_sTrRING examples. The sample
on theleft-hand side consists of two independent memory blocks. a unIcoDE_STRING

structure and an array of 16-bit PWCHAR Unicode characters. Thisis probably the
most common string type found inside the Windows 2000 data areas. On the right-
hand side, | have added a frequently occurring specia case, in which both the
pnzcope_sTrING and the PNCHAR are part of the same memory block. Several kernel
functions, including someinside the Native API, return structured systeminforma-
tionin contiguous memory blocks. If the dataincludes strings, they are often stored
as embedded unzcope_sTrINGs, asshown in the right half of Figure 2-3. For exam-
ple, thentQuerysysteminformation () function used in the sample code of Chapter 1
makes heavy use of this specid string representation.

These string structures don't need to be manipulated manually. ntai1. 411
andntoskrnl . exe export arich set of runtime API functions such as RtlCreat
PnicodeString (), RtlInitUnicodeString (), RtlCopyUnicodeString(),
and the like. Usually, an equivalent function is available for the STRING and
mvsT_sSTRING types as well. Many of these functions are officially documented in
the DDK, but some are not. However, it is usually easy to guess what the undocu-
mented string functions do and what arguments they take. The main advantage of
UNICODE _STRING and its siblings is the implicit specification of the size of the
buffer containing the string. If you are passing a UNICODE_STRING to a function
that converts its value in place, possibly increasing its length, this function simply
hasto examine the M aximumL ength member to find out whether enough spaceis
|eft for the result.

114 THEWINDOWS2000NATIVE API

| UNICODE_STRING
| | USHORT Length

1] 2*n UNICODE_STRING

|

.' USHORT MaximumLength Length

[2*(n+1+m) WCHAR] 2'n

PWSTR Buffer > MaximumLength

2*(n+1)
Buffer

| n Characters

|

|

|

- WCHAR []

i

0

n Characters

m Characters

\0

FIGURE 2-3. Examples of untcopE_sTRINGS

STRUCTURES

Severd kernel API functions that work with objects expect them to be specified by
an appropriately filled oBsecT _ATTRIBUTES structure, outlined in Listing 2-5. For
example, the NtopenFile () function doesn't have a PWsTR OF PUNTICODE_STRING
argument for the path of the file to be opened. Instead, the obj ectname member of
an oBJECT ATTRIBUTES Structure indicates the path. Usually, the setup of this structure
istrivial. Alongwiththe Obj ectName, theL ength and Attributesmembersare
required. The Length must be set to sizeof (oBJECcT ATTRIBUTES) , and the
Attributes are acombination of OBJ * valuesfromntdef.h, for example,

OBJ CASE _INSENSITIVEIiftheobject nameshould bematched without regardto
character case. Of course, the obj ectName iS a UNTCODE_STRING pointer, not aplain
PWSTR. The remaining members can be set to NULL aslong asthey aren't needed.

|

FREQUENTLY USED DATA TYPes 115

Whereas the osgecT _aTTrRIBUTES Structure specifies details about the input data
of an API function, the To_sTaTus_srock structure in Listing 2-6 provides information
about the outcome of the requested operation. This structure is quite simple—the
status member contains an NTSTATUS code, which can assume the value STATUS
SUCCESS or any of the error codes defined in the DDK header file ntstatus. h. The
Information member provides additional request-specific datain case of success. For
example, if the function hasreturned a data block, this member istypically set to the
size of thisblock.

Another ubiquitous Windows 2000 data type is the n.TsT_rnTRY Structure,
shown in Listing 2-7. The kernel uses this simple structure to arrange objects in
doubly linked lists. It is quite common that one object is part of several lists,
resultinginmultipleLIST_ENTRY structuresusedintheobject'sdefinition. The
Flink member is the forward link, pointing to the next item, and the Blink mem-
ber is the backward link, addressing the previous one. The links always point to
another n.zsT_rnTRY, Not to the owner object itself. Usually, the linked lists are
circular, that is, the last Flink points to the first LtsT_rmnTrRY in the chain, and the
first B1ink points to the end of the list. This makes it easy to traverse a linked list
in both directions from either end or even from a list item somewhere in the mid-
dle. If a program walks down a list of objects, it has to save the address of the
starting point to find out when it is time to stop. If alist contains just a single
entry, its Ltst_enTRY must reference itself—thatis, both the Flink and Blink
members point to their own nrsT_ENTRY.

typedef struct _OBJECT_ATTR BUTES

{

ULONG Lengt h;

HANDLE RootDirectory;

PUNICODE_STRING ObjectName;

ULONG Attributes;

PVOID SecurityDescriptor;

PVOID SecurityQualityOfService;

}

CBIECT_ATTR BDITES, *POBJECT ATTRIBUTES;

LISTING 2-5. The OBJECT ATTRIBUTES structure

typedef struct _IO_STATUS_BLOCK

{

NTSTATDS sStatus;

ULONG I nf ormation;

}

I0_STATUS_BLOCK, * PIO_STATUS_BLOCK;

LISTING 2-6. The ro_sTaTUS_BLOCK Structure

116 THE WINDOWS 2000 NATIVE API

typedef struct _LIST_ENTRY
{

Struct _LIST_ENTRY *Flink;
Struct _LIST_ENTRY *Blink;

}

LIST_ENTRY, *PLIST_ENTRY;

LISTING 2-7. The nrsT EnTRY Sructure

Figure 2-4 illustrates the rel ationships between the members of object lists.
Objects Al, A2, and A3 are part of athree-item list. Note how A3 . F1ink points
back to Al and Al .B1ink points to A3. Object Bl on the right-hand side is the only
member of an orphaned list. Hence, its Flink and Blink members point to the
same address inside Object Bl. Typical examples of doubly linked lists are process
and thread lists. Theinternal variable PsActiveProcessHead isavrIsT_ENTRY
structure inside the . data section of ntoskrnl . exe that addresses the first (and—
by virtue of its Blink pointer—also the last) member of the system's process list.
You can walk down thislist in a Kernel Debugger console window by first issuing
the command dd PsActiveProcessHead, and then using copy and paste to set up
subsequent dd commands for the F1ink or B1ink values. Of course, thisis an
annoying way of exploring Windows 2000 processes, but it might help gaining
insight into the basic system architecture. The Windows 2000 Native API
features much more convenient ways of enumerating processes, such as

NTQuerySystemInformation () function.

‘ Object A1 Object A2 Object A3
I LIST_ENTRY LIST_ENTRY LIST_ENTRY
Flink Flink R

Flink .
Blink I~ B (T ~5imnx

L AL

|-

FIGURE 2-4. Examples of Doubly Linked Lists

Object B1

LIST_ENTRY

Flink s —|
Blink \

INTERFACING TO THE NATIVE APl 117

API functions operating on processes and threads, such as NtopenProcess ()
andntopenThread (), UsethecrrenT 1D structure shownin Listing 2-8 tojointly spec-
ify process and thread 1Ds. Although defined as HANDLE types, the uniqueprocess and
uniqueThread members aren't handles in the strict sense. Instead, they are integral
process and thread IDs, as returned by the standard Win32 API functions GetCurrent-
processId() and GetCurrentThreadrd (), Which have DWORD return values.

The curenT 1D Structure is also used by the Windows 2000 Executive to
globally identify athread in the system. For example, if you areissuing the Kernel
Debugger's ! thread command to display the parameters of the current thread, it
will list its cLrent_1D in the first output line as " Cid ppp.ttt," where "ppp" is the
value of the UniqueProcess member, and "tet" is the UniqueThread ID.

INTERFACING TO THE NATIVE API

For kernel-mode drivers, interfacing to the Native API is normal, just as calling
Win32 API functionsisin auser-mode application. The header and library files
provided by the Windows 2000 DDK contain everything needed to call into the
Native APl exposed by ntoskrnl. exe. Onthe other hand, the Win32 Platform

SDK contains aimost no support for applications that want to use Native API func-
tions exported by ntdll .a11. | say "almost" because one important item is actu-

aly included: It isthe import library ntai1. lib, suppliedinthe \rprogram Files\
vicrosoft Platform sox\rib directory. Without the library, it would be difficult

to cal functions exported by ntdai1.d11.

ADDING THE NTDLL.DLL IMPORT LIBRARY TO A PROJECT

Before you can successfully compile and link user-mode code that uses ntdi1. di1
API functions, you must consider the following four important points:

1. The Platform SDK header files don't contain prototypes for these functions.

2. Several basic data structures used by these functions are missing from the
SDK files.

typedef struct _CLIENT_ ID
HANDLE UniqueProcess;
HANDLE UniqueThread;

)
CLIENT_ID, *PCLIENT_ID;

LISTING 2-8. The CLIENT_ID Sructure

118 THE WINDOWS 2000 NATIVE API

3. The SDK and DDK header files are incompatible—you cannot add
#include <ntdak.nh> to your Win32 C source files.

4. ntall. libisnot included in the default list of import libraries offered by
Visual C/C++.

The last problem is easily solved. Just edit the project settings of your applica-
tion, or add the line #pragma comment (linker, “/defaultlib:ntdll.lib”) tO
your source code, as explained in the section The Windows 200 Runtime Library ear-
lier in this chapter. Thislinker pragmaaddsntdii. libto the /default1ib settings
of the linker command at compile time. The problem with the missing definitionsis
much more difficult. Because it is not possible to merge the SDK and DDK header
filesin programswritten in plain C, the least expensive solution isto write a custom
header file that containsjust as many definitions as needed to call the required
ntdll .a11 API functions. Fortunately, you don't have to start from scratch. The
w2k _def .nfileinthe\src\common\include directory of the sample CD contains
much of the basic information you may need. This header file will play an important
role in Chapters 6 and 7. Because it is designed to be compatible to both user-mode
and kernel-mode projects, you must insert the line #define _user_mope_ somewhere
beforethe #inciude <w2k_def.h>linein user-mode code to enable the definitions
that are present in the DDK but missing from the SDK.

Considerable information about Native APl programming has aready been
published elsewhere. Three good sources of detailed information on this topic are
listed below in chronological order of publication:

» Mark Russinovich has published an article titled "Inside the Native API"
on the sysinternals.com Web site, available for download at
http://www.sysinternals.com/ntdll.htm (Russinovich 1998).

» The November 1999 issue ofDr. Dobb's Journal (DDJ) contains my article
"Inside Windows NT System Data," which details, among other things,
how to interfaceto ntdil. d11 and provides|ots of sample code that
facilitates this task (Schreiber 1999). The sample code can be downloaded
from the DDJ Web site at http:/www.ddi.com/ftp/1999/1999 11/ntinfo.zip.
Please note that this article targets Windows NT 4.0 only.

» Gary Nebbett's recently published Native APl bible, Windows NT/2000
Native APl Reference (Nebbett 2000), doesn't contain much sample code,
but it does feature complete coverage of al Native API functions available in
Windows NT 4.0 and Windows 2000, including the data structures and
other definitionsthey require. It is an ideal complement to the above articles.

INTERFACING TO THE NATIVE APl 119

Thew2k_call.d1ll samplelibrary, introduced in Chapter 6, demonstrates the
typical usage of w2k_def.h. Chapter 6 also discusses an alternative method to call
into the Windows 2000 kernel from user-mode that isn't restricted to the Native API
function set. Actually, this trick is not restricted to ntoskrnl . exe—it is applicable to
any moduleloaded into kernel memory that either exports API functions or comes
with matching . dbg or . pdb symbol files. Asyou seg, there is plenty of interesting
material waiting for you in the remaining chapters of this book. But, before we get
there, well discuss some fundamental concepts and techniques.

CHAPTER 3

Writing
Kernel-Mode
Drivers

n the next chapters, we will frequently have to access system resources that are avail-

ablein kernel-mode only. Large portions of the sample code are designed as kernel -
mode driver routines. Therefore, some basic knowledge about the development of this
type of softwareis required. Because | cannot assumethat all readers already havethis
expertise, | will insert here a short introduction to kernel-mode programming that
focuses on the usage of a driver wizard found on the accompanying CD.

This chapter also discusses the basics of the Windows 2000 Service Control
Manager that allow loading, controlling, and unloading drivers at runtime, resulting
inwonderfully short change-build-test turnaround cycles. Thetitle of this chapter
might be a bit misleading—the word driver is usually associated with low-level soft-
ware that controls some piece of hardware. In fact, many kernel-mode programmers
do just that al day long. However, the layered driver model of Windows 2000 allows
much more than this. Kernel-mode drivers can do arbitrary complex tasks and might
even act like high-level user-mode DLLSs, except that they are running on a higher
CPU privilege level and use a different programming interface. In this book, the dri-
ver paradigm will not be applied to any hardware. Instead, we will use this powerful
programming technique to spy on Windows 2000 internals, using kernel-mode dri-
vers as a shuttle to fly from the small world of user-mode to the outer space of the
Windows 2000 kernel.

CREATING A DRIVER SKELETON

Even devel opers who have been writing Win32 applications or libraries for along
time tend to fed like absolute beginners as soon as they have to write their first ker-
nel-mode driver. The reason for thisis that kernel-mode code runs in a completely

121

122 WRITINGKERNEL-MODEDRIVERS

different operating system environment. A Win32 programmer works exclusively
with a set of system components that belong to a subsystem of Windows 2000,
named Win32. Other programmers might prefer to write POSIX or OS2 applica-
tions, which are aso supported by Windows 2000 by means of additional subsys-
tems. Thanksto its subsystem concept, Windows 2000 acts like a chameleon—it can
emulate various operating systems by exposing their application interfaces in the
form of subsystems. Contrary to this, kernel-mode modules are |ocated somewhere
below this layer, using a more basic operating system interface. Because there are no
more subsystems on this system level, kernel-mode code can "seg' the real Windows
2000 operating system. The interface they are talking to is the "final frontier." Of
course, it is not absolutely correct that the kernel-mode zone is free of subsystems. In
Chapter 2, we saw that thewin32k. sys module is a kernel-mode branch of the
Win32 GUI and Window Manager, installed there for performance reasons. How-
ever, only a small part of the APl functions exposed by win3 2k . Sys reappear in
gdi32.a11 and user32.a11 asWin32 API functions, so Win32K is more than just a
Win32 foot on kernel-mode soil. It could be regarded as a high-performance display
engine kernel aswell.

THE WINDOWS 2000 DEVICE DRIVER KIT

Because kernel-mode programming works on a different system interface, the usual
header and import library files used in Win32 programming aren't of use here. For
Win32 development, Microsoft provides the Platform Software Devel opment Kit
(SDK). For kernel-mode drivers, the Windows 2000 Device Driver Kit (DDK) is
required. Along with documentation, the DDK provides specia header files and
import libraries needed to interface the Windows 2000 kernel modules. After
installing the DDK, your next step should be to open Microsoft Visual C to add the
DDK file paths to the directory lists of the compiler and linker. From the main menu,
select Tools and Options..., then click on the Directories tab. From the Show directo-
ries for: drop-down list, select Include files and add the appropriate DDK path to the
list, as shown in Figure 3-1. By default, the DDK is instaled into a base directory
named \NTDDK, and the included files are located in the \nTDDk\ inc subdirectory.
After entering the path, use the up arrow to move it to the position of your
choice—preferably on Top Two right after the Platform SDK. Always keep the origi-
nal Microsoft Visual Studio files at the end of the list, because many of them are
superseded by more recent SDK and DDK files.

After adding the base directory of the DDK header files, do the same for the
import libraries. The DDK comes with two sets of files, one for free (release)
builds, and another one for checked (debug) builds. The corresponding subdirecto-
riesare \NTDDK\Ilibfre\i386 and \nTppk\1ibchk\i386, respectively. Figure 3-2

CREATING A DRIVER SKELETON 123

Options T S

Edior | Tabs | Debug | Competbity | Buld Diectoies | | (]3]

Platform: Show directories for:
JWwin32 > Jinclude files ~]
Dirsclories; i O i 2

E:\Program Files\Micrasoft Platform SDKSInclude

E:\Program Files\Microsoft Visual Studio\CIBVNCLUDE
E:\Pragram Fles\Microsoft Vizual StudioWCSSAMFCAINCLUDE
E:\Program Files\Microsoft Visual 5ludio\WCSBMTLMNCLUDE
Di\sbs_sdidinclude

| i

[ok | Ccancel

FIGURE 3L Adding the DDK Header File Path

- B _

Editor | Tebs | Debug | Compaibity | Buid Diectoiies | |]3]

Platform: Show directories for
[z =] [ty | |
Ditectories: MX* 4

E\Proaram Files\Microsoft Platform SDEALID

E:\Program Files\Miciosoft Visual Studio\VCI8\LIB

E*\Program FilesiMiciosoft Visual Studic\WCIS\MFCALIE
D:\sbs_sdkMib
s :

|

FIGURE 3-2. Adding the DDK Import Library Path

124 WRITING KERNEL-MODE DRIVERS

shows an example. To enter the path, select Library files from the Show directories
for: list first. After you are done, move this entry to an appropriate position using
theup arrow.

The programming environment of the DDK differs somewhat from the Win32
model. The following list points out some of the most obvious differences:

» For Win32 programs, the main header file that has to be included is
windows . h. Inkernel-mode driver code, thisfileisnot applicable. Itis
replaced by ntddk.h.

» The main entry point function is called DriverEntry () , notwinvain () or
main () . ltsprototypeis shownin Listing 3-1.

» Be aware that some of the common Win32 data types, such asevrE,
WORD, and pworp, are not available. The DDK prefers UCHAR, USHORT,
urone, and the like. However, it is easy to define your favorite types, as
done exemplary in Listing 3-2.

Three important differences between the Windows NT 4.0 and Windows 2000
versions of the DDK should be noted as well:

* Although the base directory of the Windows NT 4.0 DDK iscaled \DDK
by default, the Windows 2000 DDK now uses the default name \NTDDK .

* Inthe Windows NT 4.0 DDK, the main header filentadk. h resides in the
base directory. In the Windows 2000 DDK, thisfile has moved to the
subdirectory ddk of the base directory.

* The paths of the import library files have changed as well: lib\i386\free
has become 1ibfre\i386, and 1ib\i386\checked has been replaced by
1libchk\i386.

I am not sure whether this reshuffling and renaming was really necessary, but
we do have to live with it now.

NTSTATUS DriverEntry (PDRIVER _OBJECT pDriverObject,

PUNICODE_STRING pusRegistryPath) ;

LISTING 3-1. Prototype ofthe priverentry () Function

CREATING A DRIVER SKELETON 125

typedef UCHAR BYTE, *PBYTE;
typedef USHORT WORD, *PWORD;
typedef ULONG DWIRD, *PDWORD;

LISTING 3-2. Defining Common Win32 Data Types

A CUSTOMIZABLE DRIVER WIZARD

The main problem with kernel-mode driversis that Visual C/C++ doesn't provide a
wizard for projects of this kind. None of the various project types offered by the
File/New dialog is suited for drivers. Fortunately, the Microsoft Developer Network
(MSDN) Library contains a series of great articles about Windows NT kernel-mode
driver development, written between 1994 and 1995 by Ruediger R. Asche. Two of
them give detailed instructions on how to add a custom driver wizard to Visual
C/C++, with sample code and application notes (Asche 1995a, 1995b). These articles
have been of immense help to me, and although the output of the original wizard did-
n't fit all my needs, it was an ideal starting point. The kernel-mode driver wizard | will
present now is based on output files generated by Ruediger Asche’s original wizard.

My driver wizard is included with full source code on the companion CD of this
book in the directory tree \src\w2k_wiz . By reading the source files, you will find
that its readl title is “SBS Windows 2000 Code Wizard." In fact, thisis a general-
purpose Windows 2000 program skeleton generator that can produce severa pro-
gram types, including Win32 DLLs and applications. However, the configuration
files on the CD aretailored to kernel-mode driver development. Essentially, my wiz-
ardis afile converter that reads in a set of files, converts them by applying some sim-
plerules, and writes the results back to another set of files. The input files are
templates, and the output files are C project files. By modifying the templates, the
driver wizard can be turned into a DLL wizard, and so on. Up to seven templates can
be supplied (if one is missing, a noncritical error isreported):

* Files with the extension . tw are workspace templates and will be saved as
Microsoft Developer Studio Workspace Files with extension . dsw. You
probably know this file type from the File/Open Workspace... menu
command of Visual C/C++, which requests a . dsw file to be specified.

* Fileswith the extension . tp are project templates and will be saved as
Microsoft Developer Studio Project Files with extension . dsp. Project files
are referenced by the associated workspace files and contain all build
settings of the project for al configurations (e.g., Release and Debug).

126 WRITING KERNEL-MODE DRIVERS

* Fileswith the extensions . tc, .th, .tr, and .td are C source files and
will becomefilesof type ., .h, .rc, and .det. | am sure that everyone
knows the purpose of these files.

* Files with the extension . ti are icon files and are saved unchanged with
extension . ico. Thistemplateisjust a dummy icon included with the
wizard to prevent the resource compiler from reporting an error. You
should edit or replace it by your own creation after running the wizard.

This seven-piece set of files is the minimum requirement of a new project. The
.def fileis a somewhat old-fashioned way of exporting API functions from aDLL,

but | like it more than the__decispec (dllexport) method. Because drivers usually

don't export functions, | have omitted the . td template, which results in a benign
error reported by the wizard. | also could have omitted the resource script and the

icon, but experience shows that both are nice to have. Moreover, the default . - file

output by the wizard contains a full-featured personalized version resource, con-
structed from your individual configuration settings. The applied conversion rules

are smple, consisting of a short list of string substitutions. While scanning a template

file, the converter looks for escape sequences consisting of character pairs in which

the first one is a percent sign. If it detects one, it decides which action to take by eval-

uating the second character. Table 3-1 lists the recognized escape sequences.

TABLE 31 The Wizard's Sring Substitution Rules
INPUT OUTPUT
%n Project name (original notation)
%N Project name (uppercase notation)
%s Fully qualified path of the w2k_wiz.inifile
%d Current day (always two digits)
%m Current month (always two digits)
%y Current year (always four digits)
%t Default project description, as defined in w2k_wiz.ini
%c Author's company name, as defined in w2k_wiz.ini
%a Author's name, as defined in w2k_wiz.ini
%e Author's email address, as defined in w2k _wiz.ini
%p Default ProgID prefix, as defined in w2k_wiz.ini
%i DDK header file path, as defined in w2k _wiz.ini
%l DDK import library path (release configuration), asdefined in w2k _wiz.ini
%L DDK import library path (debug configuration), as defined in w2k _wiz.ini
% % % (escapement for a single percent character)
%<other> Copied unchanged to the output file

CREATING A DRIVER SKELETON 127

Table 3-1 contains several references to the configuration file w2k _wiz. ini. Its
default contents are shown in Example 3-1. Before using the wizard, you should copy
w2k _wiz.exe, w2k _wiz.ini, and all w2k_wiz.t* template files from the CD's
lsre\w2k_wiz\release directory to your hard disk and edit the configuration file,
replacing the values in angular brackets with your personal settings. Y ou should also
setthe include, Free, and checked valuesto match your DDK setup configuration.
If you are using Visua C/C++ Version 6.0, the Root entry can remain unchanged. If
not, set itsvalueto the registry key where the base directory of your projectsis stored.
If thisvalue ends with abackslash, it isinterpreted as the default value of the specified
registry key. Otherwise, the token following the last backslash should denote a named
value of the key specified by the remaining character sequence. In Example 3-1, the
key ISHKEY_ CURRENT USER\Software\Microsoft\DevStudio\6.0\Directories, and
itsvalueorkspaceDdir storesthe basic workspace directory.

Invocation of the wizard is: Just typew?2k _wiz mypriver, and it will generate a
project folder named MyDriver in the current directory, containing the files
MyDriver.dsw, MyDriver.dsp, MyDriver.c, MyDriver.h, MyDriver.rc, and
Mypriver. ico. If you specify the project name with a preceding path, the project
folder will be created at the specified location. Another legal command option is the
asterisk, suchasinw2k_wiz *MyDriver. In this case, the wizard will not create the
project folder in the current directory, but queries the registry for the default base
directory maintained by Visual C/C++, usingthe Root entry inw2k_wiz.ini. Thisis
probably the most convenient command variant and is the one | usually use.

; W2K_Wi Z. i ni
; 08-27-2000 Sven B. Schreiber

; sbs@orgon.com

[Settings]

Text = <SBS Wndows 2000 Code W zard Project>
Conpany - <MyCompany>
Aut hor - <MyName>

Enai | - <my@email>

Prefix - <MPrefix>

I ncl ude = E:\NTDDK\inc

Free = E:\NTDDK\1libfre\i386
Checked = E:\NTDDK\1libchk\i386
Root = HKEY_CURRENT_ USER\Software\Microsoft\DevStudio\6.0\Directories\WorkspaceDix

EXAMPLE 31 Personal Settings Supported by the Wizard

128 WRITING KERNEL-MODE DRIVERS

Thewizard alwayslooksfor itsconfiguration and templatefilesinthe direc-
tory of the executable. Therefore, you can keep several copies of thewizard with
different settingsonyour disk, provided that they resideinindividual directoriesor
have different base names. The files on the CD are preset for simple kernel-mode
driver projects. Y ou can customize all filesto fit your needs, keeping separate copies
for drivers, Win32 applications, DLLs, or whatever type of Windows 2000 code
you write.

RUNNING THE DRIVER WIZARD

Now it is time to try the driver wizard. The example below resulted from the com-
mand w2k_wiz * TestDrv entered at a Windows 2000 console prompt. This should
createaproject named TestDrv inthedefault workspacefol der of Visual C/C++.
Example 3-2 shows the status messages displayed by the program on the screen while
it is converting files.

D:\>w2k_wiz *TestDrv

Il W2k_wi z. exe

// SBS Wndows 2000 Code Wzard vi. 00
// 08-27-2000 Sven B. Schrei ber

/] sbs@orgon.com

Project D:\Program Fil es\DevStudi o\ M/Proj ect s\ Test Dr v\

Loadi ng D:\etc32\w2k_wiz.tc ... CK
Witing D\ProgramFiles\DevStudio\MyProjects\TestDrv\TestDrv.c ... K

Loadi ng D: \etc32\w2k wiz.td ... ERRCOR

Loadi ng D:\etc32\w2k _wiz.th ... &K
Witing D\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.h ... K

Loading D:\etc32\w2k_wiz.ti ... K
Witing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv. ico ... &K

Loadi ng D:\etc32\w2k_wiz.tp ... K
Witing D\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.dsp ... K

Loadi ng D: \etc32\w2k_wiz.tr ... K
Witing D:\Program Files\DevStudio\MyProjects\TestDrv\TestDrv.rc ... K

Loadi ng D:\etc32\w2k_wiz.tw ... K
Witing D\ Program Files\DevStudio\MyProjects\TestDrv\TestDrv.dsw ... K

EXAMPLE3-2. Running the Windows 2000 Code Wizard

CREATING A DRIVER SKELETON 129

Obviously, all operations were completed without error except for the . td to

@ef conversion, which is a benign error condition. The driver skeleton produced by
thewizard doesn't require a . def file, so thereisno need for a . td template. Now it
should be possible to open the new workspace in Visual C/C++, using the File/Open
Workspace... menu command. Indeed, thereisanew folder named Testprv, and it
containsaworkspacefile named TestDrv. dsw that can be opened without problem.
Next, you should select the active configuration for your builds. The . dsp file gener-
ated by the driver wizard defines the following two configurations:

1. Win2K kernel-modedriver (debug)
2. Win2K kernel-modedriver (release)

By default, the debug configuration is selected, but you can switch configurations
at any time by choosing Build/Set Active Configuration... from the Visual C/C++ menu.
Next, you should copy the file \src\common\ include\Drvinfo.h from the CD to one
ofyour header file directories, and openthe TestDrv. c, Testprv.h, and TestDrv. rc
filesfor editing. When opening Testbrv. rc, be sureto openit asatext file (Figure 3-3),
because it uses complex macros from nrvinfo . h that cause the resource editor to die
with an exception. This nasty problem was introduced with Visual C/C++ 5.0, asfar as
| remember, and has not yet been fixed. Contrary to the editor, the resource compiler
doesn't have problems with complex resource macros.

; E—
2] %]

Open
I Look in: l_j TastDry L’ S i R g

‘ _1Debug

File name: l“TealDrv.rc" "TestDrv b "'TestDrv.c" Open I

Cancel

| Files of type: IC++ Files [.c.cpp;csx: b thzint.] j
I Open as (sad-only

| Openze [T -

FIGURE 3-3. Opening the Driver Source Files in TextMode

130 WRITING KERNEL-MODE DRIVERS

Now everything should be set up for the first build. In Example 3-3, I have
attempted to build a release version of the new driver by selecting Build/Rebuild All
from the Visual C/C++ menu, and it seems that everything works fine. By the way,
the elipses ending the first two lines of the build command output indicate that |
have truncated them.

The linker creates an executable file named Testprv. sys in the Debug or
Release subdirectory of the project folder, depending on the chosen build configura-
tion. The release version of the test driver is 5.5 KB in size, and the debug version is
8 KB. You can use the Multi-Format Visual Disassembler (MFV Dasm) or the PE
and COFF File Viewer (PEview) on the companion CD to verify that the resulting
TestDrv. sys file contains valid code and data.

Deleting intermediate files and output files for project 'TestDv - win2k . . .
e- Configuration: TestDrv - Win2K kernel -rmode driver (release)

Conpi | i ng resources. . .

Compiling.. .

TestDrv.c

Linking.. .

TestDrv. sys - 0 error(s), O warning(s)

EXAMPLE 3-3. Building the Release Version of the Test Driver

INSIDE THE DRIVER SKELETON

Listing 3-3 shows the TestDrv. ¢ file emitted by the wizard. The associated header
file restprv.his shown in Listing 3-4. In Listing 3-3, please note the <Mywame> and
<MyCompany> tags in the heading and in the fourth line of the disclaimer. If the
Author and Company entriesinw2k_wiz. ini are set appropriately, your own name
and company strings will go here. Also note that the current date appears in the
heading, aswell asin therevision history. (Listing 3-3 was generated on August 27,
2000, so the date is correct.) More values from the wizard's configuration file are
found in the PROGRAM IDENTIFICATION section of Listing 3-4.

CREATING A DRIVER SKELETON 131

/] TestDrv.c
/1 08-27- 2000 <MyNane>
/1 Copyright © 2000 <MyCompany>

#define _TESTDRV_SYS_
#include <ddk\ntddk.h>
#include “TestDrv.h”

/1 D SQLAI MER

1*

This software is provided "as is" and any express or inplied
warranties, including, but not limted to, the inplied warranties of
merchantability and fitness for a particul ar purpose are discl ai nmed.
In no event shall the author <M/Nane> be liable for any direct,
indirect, incidental, special, exenplary, or consequenti al

damages (including, but not limted to, procurenment of substitute
goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether
incontract, strict liability, or tort (including negligence

or otherwise) arising in any way out of the use of this software,
even if advised of the possibility of such damage.

A\

/1 REM S| ON H STCRY

/*
/1 08-27-2000 V1. 00 Original version.

*

// GQLCBAL DATA

PRESET_UNICODE_STRING (usDeviceName, CSTRING (DRV_DEVICE)) ;
PRESET_UNICODE_STRING (usSymbolicLinkName, CSTR NG (DRV_LINK)) ;

PDEVI CE_BJECT gpDeviceObject = NULL;
PDEVICE_CONTEXT gpDevi ceContext = NULL;

Il
/1 DI SCARDABLE FUNCTI ONS

(continued)

132 WRITING KERNEL-MODE DRIVERS

NTSTATUS DriverInitialize (PDRIVER_OBJECT pDriverObject,
PUNICODE_STRING pusRegistryPath) ;

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriver (bj ect,
PUNICODE_STRING pusRegistryPath) ;

#ifdef ALLOC_PRAGMA

ttpragnaal l oc_text (INIT, Driverinitialize)
#pragma alloc_text (INT, DriverEntry)

#endif

/1 DEM CE REQUEST HANDLER

NTSTATUS Devi ceDi spat cher (PDEVICE CONTEXT pDeviceContext,

PIRP pIrp)
{
PIO_STACK_LOCATION pisl;
DWRD dinfo = 0;
NTSTATUS ns = STATUS_NOT_IMPLEMENTED;
pi sl = IoGetCurrentIrpStackLocation (pIrp);

switch (pisl->MajorFunction)
{
case IRP_MJ_CREATE:
case IRP_MJ_CLEANUP :
case IRP_MJ_CLOSE:
{
ns = STATUS_SUCCESS;
br eak;

)
}
pIrp->IoStatus. Status = ns;
pIrp->IoStatus. Information = dl nfo;

IoCompleteRequest (pIrp, IO_NO_INCREMENT) ;
return ns;

}

/1 DR VER REQUEST HANDLER

NISTATUS DriverD spatcher (PDEVICE OBJECT pDeviceObject ,
P RP pirp)

CREATING A DRIVER SKELETON

133

return (pDeviceObject == gpDeviceObject
? DeviceDi spatcher (gpbeviceContext, pIrp)
! STATUS_INVALID_PARAMETER_ 1) ;

11

voi d DriverUnload (PDRIVER_OBJECT pDriverObject)

{

IoDeleteSymbolicLink (&usSymbolicLinkName);
IoDeleteDevice (gpDeviceObject) ;
return,

}

/1 DRVER INTIALI ZATI (N
I

NISTATUS DriverInitialize (PDRIVER_OBJECT pDriverObject,
PUNICODE_STRING pusRegi stryPat h)

{
PDEVI CE_BJECT pDeviceObject = NULL;
NTSTATUS ns = STATUS_DEVICE_CONFIGURATION_ERROR;
if ((ns= IoCreateDevice (pDriverObject, DEVICE_CONTEXT ,
s&usbDeviceName, FlILE_DEVI CE_CQUSTOM
0, FALSE, &pDeviceObject))
== STATUS_SUCCESS)
t
if ((ns = IoCreateSymbolicLink (&usSymbolicLinkName,
&usDeviceName))
== STATUS SUCCESS)
{
gpDevi ce(pj ect = pheviceObject;
gpDevi ceCont ext = pDeviceObject->DeviceExtension;
gpDevi ceCont ext - >pDri ver Gbj ect = pDriverObject;
gpDeviceContext->pDeviceObject = pDeviceObject;
}
el se
{
| oDel et eDevi ce (pDeviceObject) ;
}
}
return ns;
}

NTSTATUS DriverEntry (PDRIVER OBJECT pDriverObject,
PUN GCCE_STR NG pusRegi st ryPat h)

(continued)

134 WRITING KERNEL-MODE DRIVERS

PDR VER D SPATCH *ppdd ;
NTSTATUS ns = STATUS_DEVICE_CONFIGURATION_ERROR;

if ((ns = DriverInitialize (pDriverObject, pusRegistryPath))
== STATUS_SUCCESS)

{

ppdd = pDriverObject->MajorFunction;

ppdd [IRP_MJ_CREATE

ppdd [IRP_MJ_CREATE_NAMED_PIPE
ppdd [IRP_MJ_CLOSE

ppdd [RP_MI_READ

ppdd [IRP_MJ_WRITE

ppdd [IRP_MJ_QUERY_INFORMATION
ppdd [IRP_MJ_SET_INFORMATION
ppdd [IRP_MJ_QUERY_EA

ppdd [| RP_MJ_SET_EA

ppdd [IRP_MJ_FLUSH_BUFFERS
ppdd [IRP_MJ_QUERY_VOLUME_INFORMATION] =
ppdd [IRP_MJ_SET_VOLUME_INFORMATION] =

e e e e e e
1]

ppdd [IRP_MJ_DIRECTORY_CONTROL 1 =
ppdd [IRP_MJ_FILE_SYSTEM_CONTROL 1 =
ppdd [IRP_MJ_DEVICE_CONTROL 1 =

ppdd [IRP_MJ_INTERNAL_DEVICE_CONTROL] =
ppdd [IRP_MJ_SHUTDOWN

ppdd [IRP_MJ_LOCK_CONTROL
ppdd [IRP_MJ_CLEANUP

ppdd [IRP_MJ_CREATE_MAILSLOT
ppdd [IRP_MJ_QUERY_ SECURITY
ppdd [IRP_MJ_SET_SECURITY
ppdd [IRP_MJ_POWER

ppdd [IRP_MJ_SYSTEM_CONTROL
ppdd [IRP_MJ_DEVICE_CHANGE
ppdd [IRP_MJ_QUERY_QUOTA
ppdd [IRP_MJ_SET_QUOTA

ppdd [IRP_MJ_PNP

pDri ver Qbj ect - >Dri ver Unl oad = DriverUnload;

—
|

= DriverDispatcher;

return ns;

// END OF PROGRAM

LISTING 3-3. The Source Code of the Driver Skeleton

The C code of the driver skeleton in Listings 3-3 and 3-4 contains some com-
mon boilerplate codethat is shared by all kernel-modedrivers| havewritten sofar. |
have designed the wizard to be as customizable as possible. Fedl free to change the

CREATING A DRIVER SKELETON 135

/] TestDrv.h
/I 08-27-2000 <MyName>
/I Copyright © 2000 <MyCompany>

/I PROGRAM IDENTIFICATION

#define DRV_BUILD
#define DRV_VERSION_HIGH 1

(define DRV_VERSION_LOW 0

11

#define DRV_DAY 27
#define DRV_MONTH 08
#define DRV_YEAR 2000

// Customize these settings by editing the configuration file

/l D:\etc32\w2k_wiz.ini

#define DRV_MODULE TestDrv

(define DRV_NAME <SBS Windows 2000 Code Wizard Project>
(define DRV_COMPANY <MyCompany>

#define DRV_AUTHOR <MyName>

#define DRV_EMAIL <my@email>

#define DRV_PREFIX <MyPrefix>

/I HEADER FILES

(include <drvinfo.h> // defines more DRV_*

items

R NNy,

#ifndef _RC_PASS_

LEPTELITELT LI n i i i ri i rrrrri

/I CONSTANTS

fldefine FILE_DEVICE_CUSTOM

0x8000

I —-=
/I STRUCTURES

typedef struct _DEVICE_CONTEXT

(continued)

136 WRITING KERNEL-MODE DRIVERS

PDRI VER_CBJECT pDriverObject ;
PDEVICE_OBJECT pDeviceObject ;

}

DEVI CE_CONTEXT, *PDEVI CE_OONTEXT, **PPDEVICE_CONTEXT;

#define DEVI CE_OONTEXT_ sizeof (DEVICE_CONTEXT)

fendif // #ifndef _RC _PASS_

/1 END CF FILE

LISTING 3-4. The Header File ofthe Driver Skeleton

wizard's templates. For those who want to keep the code for now, the following sec-
tion is a short description of itsinternals.

The main entry point of the driver module is DriverEntry () . Like all Windows
2000 module entry points, this name is not a requirement. Y ou can choose any
symbol you like, but you must tell the linker the name of the entry point by adding
the /entry switch to its command line. For thistest driver, the wizard has aready
taken care of this task. Inside the w2k_wiz . tp template or the resulting Testprv. dsp
file, you will find two occurrences of the string /entry: "DriverEntry@s” inthe
linker command line, one for each build configuration. The @8 suffix indicatesthat
DriverEntry () receives eight argument bytes on the stack, which isin perfect con-
gruence with its prototype definition in Listing 3-1: two pointer arguments, each of
them 32 bitswide, yield 64 bits, or 8 bytes.

Thefirst thing DriverEntry () doesiscall priverinitialize (), which
will create a device object and a symbolic link that you will probably need later to
communicate with the device from user-mode applications. It is a bit difficult to find
out which names are used in the ToCreatebevice () and ToCreatesymbolicLink ()
calls, because they are constructed by macros defined in the common header file
prvinfo.h, foundinthe \src\common\include directory of the CD. Thisfileisa
header file that compiles various sorts of program information from a couple of basic
customizable strings. If you want to know more about this trick, go to the PROGRAM
IDENTIFICATION section in Testbrv. h (see top of Listing 3-4) and trace the DRV _*
definitions as they are grouped in various ways inside brvinfo.h. For example, a
full-fledgedV ERSIONINFOresourcei sconstructedfromseveral pieces. Amongother
things, the constants DRV_DEVICE and prv_r1nk are defined, which evaluate to

CREATING A DRIVER SKELETON 137

\Device\TestDrv and \DosDevices\TestDrv here, respectively. Note that many
kernel API fUﬂCtiOﬂS, such as IoCreateDevice () and IoCreateSymbolicLink() ,
don't accept strings as plain zero-terminated character sequences, but rather expect
them to be packed into a specia unzcope_sTrRING Structure, introduced in Chapter 2
and repeated in Listing 3-5. The macro preseET unTcoDE_sTRING, definedin
prvInfo. h and applied in the GLOBAL DATA section of Testprv. € in Listing 3-3,
creates a static untcope_sTRING Structure from asimple Unicode string literal. Thisis
a convenient shorthand notation for the definition of unrcope_strIines that remain
unchanged throughout thelifetime of aprograminstance.

After successfully creating the device object and itssymboliclink, Driver
initialize () stores pointers to the device object and the device context in static
global variables. The device context isa private structure of the device that can have
arbitrary size and shape. The driver skeleton attaches a ssimple DEVICE_CONTEXT struc-
ture, definedin restbrv.h, toitsdevice. This structure contains nothing but pointers
to the device and driver objects. Y ou can extend this structure if you need persistent
device-specific storage for any private data of your driver. The device context will be
supplied by the system with every I/0 Request Packet (IRP) the driver receives.

After briverInitialize () returns and reports SUCCESS, DriverEntry () SEAS UP
an important array, passed in by the system as part of the driver object structure
pbriverobject. This array contains dots for al IRPs the driver can expect, and
DriverEntry () hasto write callback function pointersto the dots of all request
typesitwishesto handle. Thedriver skeleton defersthis decision and savesasingle
DriverDispatcher () pointer to al 28 available dots, listed in Table 3-2. Later on,
DriverDispatcher () Will decide which IRP types are of interest, returning
status_vot_1mpLEMENTED for all unhandled IRPs. Note that there are subtle differ-
ences between the Windows NT 4.0 and Windows 2000 layouts of the IRP handler
array. In Table 3-2, the differing dots are marked boldface.

typedef struct _UNICODE_STRING
{
WORD Lengt h;
WRD MaximumLength;
PWORD Buf f er;

}

UNICODE_STRING, * PUNICODE_STRING;

LISTING 3-5. An Ubiquitous Windows 2000 Structure; untcope_STRING

138 WRITING KERNEL-MODE DRIVERS

TABLE 32 I/O Request Packet Sots Compared
SLOT WINDOWS NT 40 WINDOWS 2000
0x00 IRP_M]_CREATE IRP_M]J_CREATE
0x01 IRP_M]_CREATE_NAMED_PIPE IRP_M]_CREATE_NAMED_PIPE
0x02 IRP_M]_CLOSE IRP_M]J_CLOSE
0x03 IRP_MJ READ IRP_MJ_READ
0x04 IRP_M]_WRITE IRP_M]_WRITE
0x05 IRP_M]_QUERY_INFORMATION IRP_M]_QUERY_INFORMATION
0x06 IRP_M]J_SET_INFORMATION IRP_M]J_SET_INFORMATION
0x07 IRP_M]_QUERY_EA IRP_M]_QUERY_EA
0x08 IRP_M]J_SET_EA IRP_MJ_SET_EA
0x09 IRP_M]J_FLUSH_BUFFERS IRP_MJ_FLUSH_BUFFERS
OxOA IRP_M]_QUERY_VOLUME_INFORMATION IRP_MJ_QUERY_VOLUME_INFORMATION
0x0B IRP_M]_SET_VOLUME_INFORMATION IRP_M]J_SET_VOLUME_INFORMATION
0Ox0C IRP_M]J_DIRECTORY_CONTROL IRP_M]J_DIRECTORY_CONTROL
Ox0D IRP_M]_FILE_SYSTEM_CONTROL IRP_M]_FILE_SYSTEM_CONTROL
OxOE IRP_MJ_DEVICE_CONTROL IRP_MJ_DEVICE_CONTROL
OxOF IRP_M]_INTERNAL_DEVICE_CONTROL IRP_M]_INTERNAL_DEVICE_CONTROL
0x10 IRP_M]J_SHUTDOWN IRP_M]J_SHUTDOWN
0x11 IRP_M]J_LOCK_CONTROL JRP_M]J_LOCK_CONTROL
0x12 IRP_M]_CLEANUP IRP_M]_CLEANUP
0x13 IRP_M]J_CREATE_MAILSLOT IRP_M]J_CREATE_MAILSLOT
0x14 IRP_MJ_QUERY_SECURITY IRP_M]J_QUERY_SECURITY
0x15 IRP_M]J_SET_SECURITY IRP_M]J_SET_SECURITY
0x16 IRP_M]J_QUERY_POWER IRP_M]J_POWER
ox17 IRP_M]_SET_POWER IRP_M]J_SYSTEM_CONTROL
0x18 IRP_M]J_DEVICE_CHANGE IRP_M]_DEVICE_CHANGE
0x19 IRP_MJ_QUERY_QUOTA IRP_MJ_QUERY_QUOTA
0x1A IRP_MJ SET_QUOTA IRP_MJ_SET_QUOTA
0x1B IRP_M]J_PNP_POWER IRP_M]_PNP

Assoon asthe IRP array is complete, DriverEntry () writes a pointer to its
Driverunload () callback function to the driver object structure. This alows the dri-
ver to be unloaded at runtime. Driverunload () simply destroys al objects created by
DriverInitialize (), thatis, the symbolic link and the device. After that, the driver
can be safely removed from the system.

CREATING A DRIVER SKELETON 139

The priverpispatcher () function isinvoked whenever a module requests a
response from the driver. Because a driver can host several devices, the dispatcher
first checks which device should handle the request. The driver skeleton maintains
just a single device, so the only thing needed is a sanity check to verify that the device
object pointer isidentical to the one received from rocreatepevice () during initial-
ization. If it is, DriverDispatcher () forwards the received IRP to the Device
Dispatcher () function, along with the device context prepared by Driver
initialize () . When you extend the skeleton to a multidevice driver, you may have
to write digtinct IRP dispatchers for each device. The pevicenispatcher () in Listing
3-3isatrivial implementation that recognizes only three very common requests:
IRP_MJ_CREATE, IRP_MJ_CLEANUP, and IRP_MJ_crLosE. These requests are handled
by returning a STATUS SUCCESS code. This is the minimum requirement to allow the
device to be opened and closed without error. Other requests cause a
STATUS_NOT_IMPLEMENTED tO be reported.

Y ou may wonder about the purpose of the ttpragma a11loc_text linesin the
DISCARDABLE FUNCTIONS section of Listing 3-3. #pragma directives are a powerful
means to send commands to the compiler and linker while they are building a
module. The alloc_text command instructs them to write the code of the
specified function to a nondefault section inside the executable file. By default, dl
code goes into the . text section. However, the directive ttpragmaalloc_text
(znzT, DriverEntry) causesthe DriverEntry () code to be saved to a new file sec-
tioncaled INIT. Thedriver loader recognizes this specia section and discards it
after initialization. DriverEntry () and its helper function priverinitialize () are
called only once while the driver starts up; therefore, they can be safely removed
from memory after having done their work.

The remaining ingredient of the driver skeleton is the resource script
restDrv.rc, shownin Listing 3-6. Thisfileistrivial because it consists of references
to macros from prvinfo.honly. prv_rc verston creates aVERSIONINFO resource
with various items compiled from data contributed by the wizard, and prv_rc_1con
evaluates to a simple ICON resource statement that adds TestDrv. ico to the resource

section of TestDrv. sys.

DEVICE I/0 CONTROL

As mentioned in the introductory remarks of this chapter, we won't build hardware
drivers in this book. Instead, we will use the powerful capabilities of kernel-mode
drivers to investigate Windows 2000 secrets. The power of the drivers results from
the fact that these modules run at the highest possible CPU privilege level. This
means that a kernel-mode driver has access to al system resources, can read al mem-
ory, and is allowed to execute privileged CPU instructions, such as reading the

140 WRITING KERNEL-MODE DRIVERS

/] TestDrv.rc
/1 08-27-2000 <MyName>
/1 Copyright © 2000 <M/ Conpany>

#define _RC_PASS

#define _TESTDRV_SYS

#include “TestDrv.h”

/1 END CF FILE

LISTING 3-6. The Resource Script ofthe Driver Skeleton

current values of the CPU's control registers. User-mode applications will be aborted
immediately if they try to read a single byte from kernel memory or try to execute an
assemblylanguageinstructionsuchasMOV EAX, CR3. However, thedownsideof this
power is that a driver can trash the entire system with a snap. Even the smallest error
is answered by the system with a Blue Screen, so a kernel-mode programmer must be
far more concerned about bugs than is a Win32 application or DLL developer.
Remember the Windows 2000 killer device we used in Chapter 1 to get a crash dump
of the system? All it did was touch the virtual memory address 0x00000000—and
boom! Be aware that you will boot your machine much more frequently when devel-
oping kernel-mode drivers.

The driver code | will present in the following chapters will employ a technique
caled Device I/O Control (IOCTL) to alow user-mode code some degree of "remote
control.” If an application needs access to some system resources that are unreach-
able from user-mode, a kernel-mode driver will do the job, and IOCTL will be the
bridge between the two. Actually, IOCTL is neither new nor specific to Windows
2000. Even ancient operating systems such as DOS 2.11 had this capability—
Function 0x44 with its various subfunctions has been the IOCTL workhorse of
DOS. Basically, IOCTL is ameans to communicate with adevice on a control chan-
nel, which islogically separated from its data channel. Imagine a hard disk device
that transfers disk sector contents through its main data channel. If a client wants
information about the media currently used by the device, it hasto use adifferent

CREATING A DRIVER SKELETON 141

channel. For example, DOS function ox44, subfunction OxOD, sub-subfunction 0x66
isthe DOSIOCTL call that reads the 32-bit serial number of a disk drive (see Brown
and Kyle 1991, 1993).

Device I/O Control can be implemented in various ways, depending on the
device to be controlled. In its general form, IOCTL has the following characteristics:

« A client controls a device through a specia entry point. On DOS, this has
been INT 21n, function ox44. On Windows 2000, it isthe Win32
DeviceToControl () function exported by kerne132.d11.

» The client provides a device identifier, a control code, an input data buffer,
and an output data buffer upon calling the IOCTL entry point. On
Windows 2000, the device identifier is a HANDLE to a successfully opened

device.

» The control code tells the target device's IOCTL dispatcher which control
functionisrequested by theclient.

» Theinput buffer contains any additional data that the device might need
to fulfill the request.

« |f therequest generates any data, it is returned in the client's output buffer.

» The overall result of the IOCTL operation is reported to the client by
means of a status code.

It is obvious that this is a powerful general-purpose mechanism that can cover
awide range of control requests. For example, an application might want to have
access to forbidden kernel memory. Because the application would throw an excep-
tion as soon as it touched the first byte, it could work around this problem by load-
ing a kernel-mode driver to delegate this task. Both modules would have to agree on
an |OCTL protocol to manage the data transfer. For example, the application might
send the control code 0x80002000 to the driver if it wanted to read memory or
0x80002001if it wanted towritetoit. In aread request, the IOCTL input buffer
would probably specify the base address and the number of bytes to read. The ker-
nel-mode driver could pick up requests and distinguish read and write operations by
evaluating the control code. In a read request, it would copy the requested memory
rangeto the caller's output buffer and report successif the output buffer islarge
enough to hold the data. In a write request, the driver would copy data from the
input buffer to amemory location that has been specified in the input buffer aswell.
In Chapter 4, I will provide sample code for such a memory spy.

142 WRITING KERNEL-MODE DRIVERS

By now, it should be obvious that IOCTL is a sort of backdoor that Win32 appli-
cations can use to perform amost any action that is usualy alowed to privileged
modules only. Of course, thisinvolveswriting such a privileged modulein the first
place, but once you have such a oy module running in the system, everything dse is
easy. Two aims of this book are to demonstrate in detail how to write such code and
to provide a sample driver that is capable of doing lots of amazing things.

THE WINDOWS 2000 KILLER DEVICE

Before stepping to more advanced driver projects, let's take alook at a very smple
driver. In Chapter 1, I introduced the Windows 2000 killer device w2k _ki11.sys,
which is designed to cause a benign system crash. This driver doesn't require most of
the code in Listing 3-3 because it will tear down the system before it had an opportu-
nity to receive thefirst I/O request packet. Listing 3-7 shows its apparently trivial
implementation. The filew2k_ki11.hisnot reprinted here because it doesn't contain
any code of interest.

The code in Listing 3-7 does not attempt to perform initialization inside its
DriverEntry () function. The system will stop before DriverEntry () returns, so
extra work is unnecessary.

LOADING AND UNLOADING DRIVERS

After writing a kernel-mode driver, you probably want to run it immediately. How
isthis done? Typicaly, drivers are loaded and started at system boot time, so do you
have to reboot the system every time you have updated your driver? Fortunately,
thisis not necessary. Windows 2000 features a Win32 interface that allows loading
and unloading drivers at runtime. This is done by the Service Control (SC) Manager,
and the following section details its use.

THE SERVICE CONTROL MANAGER

The name "Service Control Manager" is a bit misleading because it suggests that this
component manages services only. Services are a class of powerful Windows 2000
modules well suited to run applications in the background, independent of the user
interface shell. That is, a service is a Win32 process that can keep running in the sys-
tem even if no user islogged in. Although service development is an exciting topic, it
is beyond the scope of this book. For further reading on service development, refer to
Paula Tomlinson's excellent tutorial in Windows Developer's Journal (WD])(Tom-
linson 19964), as well as her follow-up treatises on services in her WDJ column
"Understanding NT" (Tomlinson 1996b and follow-up articles).

LOADING AND UNLOADING DRIVERS 143

ttdefine _W2K_KILL_SYS_
#include <ddk\ntddk.h>
ttinclude“w2k _kill.h”

/1 D SCARDABLE FUNCTI ONS

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,
PUNICODE_STRING pusRegistryPath) ;

#ifdef ALLOC_PRAGMA
#pragma alloc_text (INIT, DriverEntry)
#endif

// DRIVER I N Tl ALI ZATI ON

|| zz=z======z===========z======================a================s=======

NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject,
PUNICODE_STRING pusRegistryPath)

{

return *((NTSTATUS *) 0);

}

// END CF PROGRAM

LISTING 3-7. A Tiny System Crasher

The SC Manager can handle both services and drivers. For reasons of simplicity,
| will use the term "service" here to refer to al objects controlled by the SC Manager,
including servicesin the strict sense of the word and kernel-mode drivers. The SC
interface is made avail able to Win32 applications by the Win32 subsystem compo-
nent advapi32 . a11, which hosts an interesting collection of API functions. The
names of the main API functions required to load, control, and unload services are
liged in Table 3-3, along with short descriptions. Before you can load or access any
services, you must obtain ahandl e to the SC Manager by calling OpenSCManager () .
In the following discussion, thiswill be called a manager handle. This handle is
reguired in all CreateService() and OpenService() cals. In turn, these functions
return handles that will be called service handles here. This type of handle can be
specified in all callsthat refer to aspecific service, such ascontrolservice(),
DeleteService () , and startservice () . Both types of SC handles are released
by thecloseservicenandle () function.

144 WRITING KERNEL-MODE DRIVERS

TABLE 33 Essential Service Control APl Functions
NAME DESCRIPTION
CloseServiceHandle Close handle obtained from openscmanager (), Createservice(), or
OpenService ()
Control Service Stop, pause, continue, interrogate, or notify a loaded service/driver
CreateService Load a service/driver
DeleteService Unload a service/driver
OpenSCManager Obtain a handle to the SC Manager
OpenService Obtain a handle to aloaded service/driver
QueryServiceStatus Query the properties and the current state of a service/driver
StartService Start a loaded service/driver

Loading and running a service involves the following typical sequence of steps.

Call OpenSCManager () to obtain a manager handle.
Call CreateService () to add the service to the system.
Cadll StartService() to set the service to the running state.

P W DN

Call CloseServiceHandle () to release the manager and service handles.

Be sure to rewind all previous successful actions if an error occurs somewhere
in this sequence. For example, you should call DeleteService) if the SC Manager
reports an error on StartService () . Otherwise, the service will remain loaded in
an undesired state. Another stumbling stone of the SC Manager API is that the
CreateService () function insists on receiving a fully qualified path to the executable
file. If you specify arelative path, the function will fail—it will not be looking for
the file in the current directory. Therefore, you should normalize al file specifications
passed to CreateService () using the Win32 function cetFullrathName () unless
they are guaranteed to be fully qualified.

HIGH-LEVEL DRIVER MANAGEMENT FUNCTIONS

To makeinteraction with the SC Manager easer, the CD accompanying this book
contains high-level wrapper functions that hide most of its peculiarities. These func-
tions are part of the large Windows 2000 Utility Library found on the CD inthe
directory tree \src\w2k_1ib. All functions exported by w2k_1ib.da11 have a global
name prefix of w2k, and the service and driver management functions are discernible
by the group name prefix w2kservice. Listing 3-8 shows the implementation of the
library functions that load, control, and unload services and drivers.

LOADING AND UNLOADING DRIVERS

145

SC_HANDLE WINAPI w2kServi ceConnect (void)
{
return QpenSCvanager (NULL, NOLL, SC_MANAGER_ALL_ACCESS) ;

}

sc_HANDLE W NAPI w2kServi ceDi sconnect (SC_HANDLE hManager)
{

if (hManager !=NJL) CloseServiceHandle (hManager);
return NULL;

}

1/

SC_HANDLE W NAPI w2kServiceManager (SC_HANDLE hManager,

PSC_HANDLE phManager,

BOCL fOpen)
{
sc_HANDLE hManager 1 = NULL;
if (phManager = NULL)
if (fOpen)
if (hManager == NULL)
{
*phManager = w2kServiceConnect () ;
}
el se
{
*phManager = hManager ;
}
el se
if (hManager == NULL)
(
*phManager = W2kSer vi ceDi sconnect (*phManager) ;
}
)
hManagerl = *phManager;
}
return hManagerl ;

}

///

sc_HANDLE W NAPI w2kServi ceCpen (SC_HANDLE hManager,
PWCRD pwName)

{

SC_HANDLE hManager| ;

(conti nued)

146 WRITING KERNEL-MODE DRIVERS

SC_HANDLE hService = NULL;
w2kSer vi ceManager (hManager, &hManagerl, TRUE);

if ((hManagerl != NULL) && (pwName != NULL))
{
hServi ce = Openservice (hManagerl, pwNane,
SERVICE_ALL_ACCESS);
}
w2kServiceManager (hMwnager, &hManagerl, FALSE);
return hServi ce;

}
1

BOOL wINAPI w2kServi ced ose (SC_HANDLE hService)

{

return (hService ! = NJUL) && CloseServiceHandle (hService);

}

BOOL WNAPI w2kServiceAdd (SC_HANDLE hManager,
PWORD pwName ,
PWORD pwInfo,
PWRD pwPat h)
{
sC_HANDLE hManager!|, hServi ce;
PWRD pwFile;

WORD awPath [MAX_PATH] ;
DWORD n;
BOOL fOk = FALSE;

w2kServiceManager (hMinager, s&hManagerl, TRUE) ;

if ((hManagerl!= NUL) && (pwNane != NULL) &&
(pw nfo = NLL) && (pwPath = NULL) &«
(n = GetFul | PathNane (pwPath, MAX PATH awPath, fcpwFile)) &&
(n< MAX_PATH))
{
if ((hservice= (reateService (hManagerl, pwNane, pw nfo,
SERVICE_ALL_ACCESS,
SERVICE_KERNEL_DRIVER,
SERVICE_DEMAND_START,
SERVICE_ERROR_NORMAL,
awPat h, NULL, NULL,
NULL, NULL, NULL))
I'= NULL)
{
w2kServi ced ose (hservice);
fok = TRUE

LOADING AND UNLOADING DRIVERS 147

}

el se

{
fk = (GetLastError () ==

ERROR_SERVICE_EXISTS) ;

}

w2kServiceManager (hManager,
return f£ok;

)

&hManagerl, FALSE):

I

BOOL winapI w2kServiceRenove (sSC_HANDLE hManager,

PWORD pwName)
(
SC_HANDLE hServi ce;
BOCL fOk = FALSE;
if ((hService= w2kServiceOpen (hManager, pwName)) !=NULL)
{
if (DeleteService (hService))
{
fok = TRUE
}
el se
{
fCk = (GetLastError () ==
ERROR_SERVICE_MARKED_FOR_DELET) ;
}
w2kServiceClose (hService);
}
return fok;
}
BOOL WNAPI w2kServiceStart (sSc_HANDLE hManager,
PWRD pwName)
(
SC_HANDLE hService;
BOOL fok = FALSE;
if ((hservice- w2kServiceQpen (hManager, pwiName)) != NULL)
{
if (StartService (hService, 1, &pwName))
{
fOk = TRUE;
}
el se
{

(conti nued)

148 WRITING KERNEL-MODE DRIVERS

fok = (CGetLastError () ==
ERROR_SERVICE_ALREADY_RUNNING) ;

}

W2kSer vi ced ose (hService);

}

return fok;

}
1

BOOL WINAPI w2kServiceControl (SC_HANDLE hManager,
PWORD pwName ,
DWORD dControl)

{
SC_HANDLE hServi ce;
SERVI CE_STATUS ServiceStatus;
BOOL fok = FALSE;
if ((hservice = w2kServi ceQpen (hManager, pwName)) != NULL)
{
if (QueryServiceStatus (hService, &ServiceStatus))
{
switch (ServiceStatus. dwCurrentState)
{
case SERVICE_STOP_PENDING :
case SERVICE_STOPPED :
{
fCk = (dControl == SERVICE_CONTROL_STOP) ;
br eak;
}
case SERVICE_PAUSE_PENDING:
case SERVI CE_PAUSED:
{
fCk = (dControl == SERVICE_CONTROL_PAUSE) ;
break;
}
case SERVI CE_START_PENDI NG
case SERVICE_CONTINUE_PENDING :
case SERVICE_RUNNING :
{
f&k = (dControl == SERVICE_CONTROL_CONTINUE) ;
break;
}
}
}
fk=fCk | |

Gontrol Service (hService, dGontrol, &ServiceStatus) ;

w2kServiceClose (hService);

}

LOADING AND UNLOADING DRIVERS

149

i

return fok;

}

BOOL WINAPTI w2kServiceStop (SC_HANDLE hManager,
PWORD pwName)
{
return w2kServiceControl (hManager, pwN\ane,
SERVICE_CONTROL_STOP) ;

BOOL WNAPI w2kServi cePause (SC_HANDLE hManager,
PWCRD pwName)
{
return w2kServiceControl (hManager, pwNarre,
SERVICE_CONTROL_PAUSE) ;

BOOL WNAPl w2kServiceContinue (SC_HANDLE hManager,
PWRD pwName)
{
return w2kServi ceControl (hManager, pw\ane,
SERVICE_CONTROL_CONTINUE);

sc_HANDLE WNAPI w2kServiceLoad (PWRD pwNane,

PWRD pwinfo,
PWRD pwpath,
BOOL fstart)

{

BOOL £0k;

sc_HANDLE hManager = NULL;

if ((hManager = w2kServiceConnect ()) != NULL)

t
fk = w2kserviceadd (hManager, pwNanme, pw nfo, pwPath);

if (f&k s& fstart)

i{f (! (fok = w2kServi ceStart (hManager, pwhName)))
{
w2kServiceRemove (hManager, pwName) ;
}

}

(continued)

150 WRITING KERNEL-MODEDRIVERS

it (1faK)
{

hManager = w2kServiceDisconnect (hManager) ;

}
}

return hManager;

}

SC_HANDLE WINAPI w2kServiceLoadEx (PWORD pwPath,
BOOL fstart)

{
PVS VERSI ONDATA pwd;

PWRD pwPathl, pwInfo;
WRD awName [MAX_PATH] ;
DWORD dvame, dExtension;
SC_HANDLE hManager = NULL;

if (pwPath != wuLL)
{

dNanme = w2kPathName (pwPath, &dExtension) ;

lstrcpyn (awNarme, pwPath + dNane,
mn (Max_PATH, dExtension - dName + 1)) ;

pwPat hl = w2kPat hEval uate (pwPath, NULL) ;
pwd = w2kVersionData (pwPathl, -1);

pwinfo = ((pvvd!= NUL) && pwd->awFileDescription [0]
? pvvd->awFileDescription

. awName) ;
hManager = w2kServi ceLoad (awNanme, pw nfo, pwPathl, fstart);

w2kMemoryDestroy (pwd) ;
w2kMemoryDestroy (pwPathl) ;

}

return hManager;

}
1

BOOL WNAPI w2kServi ceUnl oad (PWIRD pwName,
sc_HANDLE hManager)

{
SC_HANDLE hManagerl = hManager;
BOOL fok = FALSE;

if (pwNane != NULL)
{

LOADING AND UNLOADING DRIVERS

if (hManagerl == NUL)

{
hManager| = w2kServi ceConnect () ;
}
if (hManagerl != NULL)
{

w2kServicestop (hManagerl, pwName) ;
f&k - w2kServiceRemove (hManagerl, pwName) ;

}
}
w2kServiceDisconnect (hManagerl);
return fok;
)
”
BOOL WINAPI w2kServiceUnloadEx (PWORD pwPat h,

SC_HANDLE hManager)
{

DWRD dname, dExtension;
WRD awName [MAX_PATH] ;
PWRD pwNane = NULL;

if (pwPath 1= NULL)
{

dName = w2kPathName (pwPath, &dExtension) ;

lstrcpyn (pwName = awName, pwPath + dNane,
mn (MAX_PATH dExtension - dName + 1)) ;
}
return w2kServi celnl oad (pwNane, hManager) ;

}

151

LISTING 3-8. Service and Driver Management Library Functions

In Table 3-4, the functions defined in Listing 3-8 arelisted, along with
short descriptions. Some function names, such as w2kservicestart () and
i2kservicecontrol (), are similar to certain SC Manager API functions —
startservice() and Control Service(), inthiscase. Thisisn't coincidence — the
respective functions are in fact found at the heart of these wrappers. The main
difference is that startservice() and Control Service () operate on service
handles, whereas w2kservicestart () and w2kServiceControl () accept service
names. The names are seamlessly converted to handles by internally calling

w2kServiceOpen() and w2kServiceClose(), which inturn call OpenService()
fid closeServiceHandle() .

152 WRITING KERNEL-MODE DRIVERS

TABLE 34 SC Manager Wrappers Provided by w2k _1ib. a1l

NAME

DESCRIPTION

w2kServiceAdd
w2kServiceClose
w2kServiceConnect
w2kServiceContinue
w2kServiceControl
w2kServiceDisconnect
w2kServicel oad

w2k Servicel oadEx
w2k ServiceManager
w2kServiceOpen
w2kServicePause
w2kServiceRemove
w2kServiceStart
w2kServiceStop
w2kServiceUnload
w2k ServiceUnl oadEx

Add a service/driver to the system

Closeaservicehandle

Connect to the Service Control Manager

Resumeapaused service/driver

Stop, pause, continue, interrogate, or notify aloaded service/driver
Disconnect from the Service Control Manager

Load and optionally start a service/driver

Load and optionally start a service/driver (automatic name generation)
Open/close atemporary Service Control Manager handle

Obtain ahandle to aloaded service/driver

Pause a running service/driver

Removeaservice/driver from the system

Start a loaded service/driver

Stoparunningservice/driver

Stop and unload a service/driver

Stop and unload aservice/driver (automatic name generation)

The typica usage of the library functions in Table 3-4 is along the

following guidelines:

» Toload a service, cal w2kserviceLoad () Of w2kServiceLoadEx() . The
latter generates the service and display names automatically from the file's
path and version resource. The Boolean f start argument decides whether
the service should be started automatically after a successful load. On
success, the function returns a manager handle for further requests. No
error is reported if the service is already loaded or if fstart is TRUE and
the service is already running. If an error occurs, the serviceis
automatically unloaded, if necessary.

* To unload a service, cal w2kserviceunload () Of w2kServiceUnloadEx () ,
using the manager handle returned by w2kservicelLoad () or
w2kServiceLoadEx () . w2kServiceUnloadEx () generates the service name
automatically from the file's path. If you have already closed this handle,

LOADING AND UNLOADINGDRIVERS 153

obtain a new one from w2kServiceConnect () or simply passinNULL to
work with atemporary handle. The manager handle will be closed
automatically by w2kserviceunload () . No error isreported if the serviceis
already marked for deletion but cannot be deleted because open device
handles are still existing.

» To control a service, call w2kservicestart() , w2kservicestop() ,
w2kServicePause () , Or w2ksServiceContinue (), Using a manager handle
returned by w2kserviceLoad () or w2kServiceConnect () . If you supply
NULL for the manager handle, atemporary handle is used. No error is
reported if the service is already in the requested state.

 To close amanager handle, call w2kServiceDisconnect() . You can
reguest another manager handle at any time by calling

w2kServiceConnect () .

w2kserviceLoadEx () iSavery powerful function. It builds all parameters
needed to load the service automatically, expecting nothing but the path of the
executable file. The service name requested by the SC Manager's CreateService()
functionisderived from the file name by stripping the extension. To build an
appropriate display namefor anewly created service, w2k Servicel oadEx () attempts
to read the value of the FileDescription string from the file version information.
If no version resource is included in the executable, or the FileDescription string
isnot availabl e, the service nameisused by default. Unlikew2kServicelL oad(),
i2kserviceLoadEx () evaluates environment variables embedded in the path. That
is, if the path string contains substrings such as ¢systemroot% or %TEMP%, they are
replaced by the current values of the corresponding environment variables. w2k
ServiceUnloadEx () isthecounterpart of w2k Servicel oadEx ()—itextractsthe
savice name from the supplied path, as explained above, and passes it to w2k
gerviceUnload () . Both functions are ideally suited for applications that have to
load and unload third-party device drivers on behalf of the user, knowing nothing
about them but their executable paths. A sample application of thiskind isincluded
on the CD accompanying this book. The console-mode utility w2k_load. exeisa
general-purpose kernel-mode device driver (un)loader that provides a simple com-
mand line interface for w2kserviceLoadEx () and w2kServiceUnloadEx () . The
source files can be found on the CD in the directory tree \src\w2k_load. The
relevant codeis shown in Listing 3-9, proving that this utility is aimost trivial because
all the hard work is done inside w2k_1ib.d11 by thew2kserviceLoadex () and
kserviceUnloadEx () functions.

154 WRITING KERNEL-MODE DRIVERS

/1 GCBAL STR NG

WORD awUsage [] =
L”"\r\n”
L”Usage: “ SW(MAIN_MODULE) L” <driver path>\r\n”
L" " SW(MAIN_MODULE) L" <driver path> %s\r\n”
L" “ SW(MAIN_MODULE) L" <driver name> %s\r\n”;

WORD awUnload [] = L”/unload”;
WRD awOk [1 = L"OR\r\n";

WRD awError [] = L”ERROR\r\n”;

// COMVAND HANDLERS

BOOL WNAPI DriverLoad (PWIRD pwPath)

{
SC_HANDLE hManager ;
BOCL fOk = FALSE;
_printf (L”\r\nLoading \”%$s\” ... “, pwPath) ;
if ((hManager = w2kServi ceLoadEx (pwPath, TRUE)) != NULL)
{
w2kServiceDisconnect (hManager):
fOk = TRUE;
}
_printf (fk ? awX : awError) ;
return f£0k;
}

/11

BOOL WNAPI DriverUnload (PWIRD pwPat h)

{
BOOL fOk = FALSE;

_printf (L“\r\nUnloading \“%s\“ ... “, pwPath) ;
fCk = w2kServi celhl oadEx (pwPath, NULL) ;

_printf (f&k ? awk : awError) ;
return £ok;

LOADING AND UNLOADING DRIVERS 155

DWORD Mai n (DWRD argc, PTBYTE *argv, PTBYTE *argp)
{
if (argc == 2)
{
DriverLoad {argv [1]);
}
el se
{
if ((argc==3) && (! lstrcmpi (argv [2], awUnload)))
{
DriverUnload (argv [1]);
}

el se

{
_printf (awdkage, awlload, awUnload);
)

}

return 0;

}

2
/1 END CF PROGRAM

LISTING 3-9. Loading and Unloading Device Drivers

Theremaining library functionslisted in Table 3-4 are working on alower level and
areusedinternally by w2k_1ib.a11. Of course, you can call them from your applica-
tions, if you like. Their usage should be obvious from the source code in Listing 3-8.

ENUMERATING SERVICES AND DRIVERS

From time to time it might be necessary to know which services and drivers are
currently loaded inside the system and what state they are in. For this purpose, the
SC Manager providesanother powerful function named Enumservicesstatus() .
This function requires a manager handle, as usual, and fills an array of Enum_
SERVICE_STATUS structures with information about each currently loaded service or
driver. The list can be filtered by service/driver type and state. If the buffer supplied
by the caller isn't large enough to hold all entries at once, the function can be called
repeatedly until all items have beenretrieved. It isdifficult to compute the required
huffer size in advance because the buffer has to provide extra space of unknown size
for the stringsthat are referenced by the members of the Exum_sErRvVICE_sTATUS
structures. Fortunately, EnumServicesStatus () returnsthe number of bytes needed
toreturn the remaining entries, so the correct buffer size can be determined by trial
and error. Listing 3-10 shows the definitions of the SERVICE_STATUS and enum_
SERVICE_STATUS structures, which are declared in the Win32 header file winsve .h.

156 WRITING KERNEL-MODE DRIVERS

typedef struct _SERVICE_STATUS
I{JM)‘{) dwServiceType;
DWIRD dwCurrent S 5
DWRD dwControlsAccepted;
DWRD dwWin32ExitCode;
DWCRD dwServiceSpecificExitCode;
DWORD dwCheckPoint ;
DWRD dwWaitHint;
}

SERVICE_STATUS, *LPSERVICE_STANTUS:

typedef struct _ENUM_SERVICE_STATUS

LPTSTR 1lpServiceName;
LPTSTR lpDisplayName;
SERVICE_STATUS ServiceStatus;

ENUM_SERVICE_STATUS;

LISTING 3-10. Definition of EnuM_servIcE_staTus and sERVICE_STATUS

Thew?2kserviceList () functioninListing 3-11 is another goodie from the
w2k_1ib. a1l utility library on the companion CD. It hides the required actions
mentioned above and returns a ready-to-use structure with all requested data
plus a couple of extras. It returns a pointer to aw2x_services structure, defined in
w2k _lib.h and included at the top of Listing 3-11. Along with the exum_
SERVICE_STATUS array aessi1, this structure contains four additional members.
dEntriesindicates how many entries have been copied to the status array, and
deytes Specifies the total size of the returned w2x_serviceg structure. dpisplay-
name and dServiceName are set to the maximum lengths of the 1ppisplayname
and IpServiceName stringsin aess[] , respectively. These values are very conve-
nient if you are writing a console-mode application that outputs a service/driver
list to the screen with proper alignment of the name columns.

To report an accurate snapshot of the system, w2kservicenist () attemptsto
retrieve dl entriesin asingle cal to Enumservicesstatus () . To thisend, it starts out
with a zero-length buffer, which will usually yield an error_more_paTa status. In this
case, EnumServicesStatus () returns the required buffer sze. After alocating an
appropriately sized buffer, wokserviceList () triesagain. Thistime, enumservices
Status () should succeed. However, a smal probability exists that another entry has
been added to thelist in the meantime, so this procedure is repeated in a loop until
everythingiscorrect or an error other than error more_para isreturned.

LOADING AND UNLOADINGDRIVERS 157

typedef struct _W2K_SERVICES

{

DWORD dEntries; /!l nunber of entries in aess []
DWORD dBytes; /1 overall nunber of bytes
DWORD dDisplayName; [/ maxi numdisplay name |ength
DWORD dServiceName; // maxi mum service nane |ength
ENUM_SERVICE_STATUS aess [] : /1 servicel/driver status array
)

W2K_SERVICES, *PW2K_SERVICES, * *PPW2K_SERVICES;
fdefine WK SERVI CES sizeof (W2K_SERVICES)

PV2K_SERVI CES WNAPI w2kserviceList (B3 fDriver,
BOQL £ win32,
BOL £ Active,
BOOL fInactive)

<

SC_HANDLE hManager ;

DWRD dType, dState, dBytes, dResune, dName, i;
PW2K_SERVI CES pws = NULL;

if ((pws= w2kMemoryCreate (W2K_SERVICES_)) != NULL)

{

pws->dEntri es = 0;

pws->dBytes = 0;

pws->dDisplayName - O;

pws->dServiceName = O;

if ((fDriver || fWin32) && (fActive || fInactive))
{
if ((hManager = w2kServiceConnect ()) !'= NULL)

{
dType = (fDriver ? SERICEDRIVER : 0) |
(fwin32 ? SERVICE_WIN32 : 0) ;

dState = (factive && flnactive
? SERVI CE_STATE ALL
. (f£Active
? SERVI CE_ACTI VE
! SERVICE_INACTIVE)) ;

dBytes = pws->dBytes ;
while (pws !=NUL)

{
pws->dEntri es = 0;
pws- >dByt es = dBytes;

pws->dDisplayName

0;

pws->dServiceName = 0;

dResune - 0 ;
(cont i nued)

158 WRITING KERNEL-MODE DRIVERS

if (EnumServicesStatus (Manager, dType, dState,
pws->aess, pws->dBytes,
&dBytes, &pws->dEntries,
&dResume))

break;

dByt es += pws->dBytes;
pws = w2kMemoryDestroy (pws) ;

if (GetLastError () !=ERROR MORE DATA) break;

pwWs = w2kMemoryCreate (W2K_SERVICES_+ dBytes);

}

w2kServiceDisconnect (hManager);
}

el se
{
pwWs = w2kMemoryDestroy (pws) ;
}

)

if (pws !'= NULL)

(

for (i =0; i < pws->dEntries; |++)
{
dName = lstrlen (pws->aess (i] . lpDisplayName) ;
pws->dD spl ayNane = max (pws->dD spl ayNane, dvame) ;
dNane = Istrlen (pws->aess [i]. 1lpServiceName) ;
pws- >dSer vi ceNane = nax (pws->dServiceName, dName) ;
}

}

}
return pws;

}

LISTING 3-11. Enumerating Services and Drivers

w2kserviceList () expectsfour Boolean arguments determining the contents of
the returned list. With the f Driver and f win32 arguments, you can choose the inclu-
sion of drivers and services, respectively. If both flags are s, the list will contain
both drivers and services. The fActive and finactive flags impose a state filter onto
the ligt. If factiveis sat, the list contains all modules that currently are in the run-
ning or paused state. The finactive parameter selects the remaining modules, that
is, those that are currently loaded but stopped. If all four arguments are FALSE, the
function returns aw2k_services structure with an empty status array. The sample
code CD contains a simple service and driver browser, designed as a Win32 console-
mode application and based on the w2kservicernist () function of w2k _1ib.a11. It
uses the dpisplayName and dserviceName members of the returned w2x_servIcES

LOADING AND UNLOADING DRIVERS 159

structure (see Listing 3-11) for proper horizontal alignment of al names. Y ou can
find the source code of this utility in the CD's directory tree \src\w2k_svc. The pro-
gram can be run from the CD by executing \bin\w2k_svc. exe. Example 3-4
resulted from running it on my machine, requesting a list of all active kernel-mode
drivers by specifying the command switches /drivers /active.

D\ > w2k_svc /drivers /active

Il w2k_svc . exe

/1 SBS Wndows 2000 Service List V1.00
/1 08-27-2000 Sven B. Schrei ber

/| sbs@orgon.com

Found 29 active drivers:

1. Alerter

2 . Conputer Browser

3. Oreative Service for CDROM Access
4. DHCP dient

5. Logical D sk Manager

6. DN\S dient

7. BEvent Log

8. com+ Event System

9 Server

10 Wrkstation

11. TCP/IP NetBl G5 Hel per Service

12 . Messenger

13 . Network Connections

14. Renovabl e Storage

15. Pug and P ay

16. 1PSEC Policy Agent

17. Protected Storage

18. Renote Access Connection Manager
19 . Renote Registry Service

20. Renote Procedure Call (RPC)

21. Security Accounts Manager

22 . Task Schedul er

23 . RunAs Service

24. System Event Notification

25. Print Spooler

26. Tel ephony

27 . Distributed Link Tracking dient
28. Wndows Managenent |nstrunentation

29. Wndows Managerrent |nstrunentation Driver Extensions .

Aerter

Br owser

Creative Service
Dhcp

dmserver
Dnscache
Eventlog

Event System
lanmanserver
lanmanworkstation
LmHosts
Messenger

Netman

Nt nsSvc

Pl ugP ay

Pol i cyAgent

Pr ot ect edSt or age
Rasvan

Renot eRegi stry
RpcSs

SamSs

Schedul e

secl ogon

SENS

Spool er

Tapi Srv

TrkWks

WinMgmt

Whi

EXAMPLE 3-4. Running the Service List Utility w2k_svc. exe

160 WRITING KERNEL-MODE DRIVERS

In the next chapter, we will start developing areal-world kernel-mode driver
that spies on kernel memory and cracks essential memory management data struc-
tures. This project accompanies you while reading Chapters 4, 5, and 6, and the
driver is enhanced incrementally in each chapter. The final result is aversatile
Windows 2000 kernel spy, complemented by several nice client applications.

CHAPTER 4

Exploring
Windows 2000
Memory

emory management is one of the most important and most difficult duties of an

operating system. This chapter presents a comprehensive overview of Windows
2000 memory management and the structure of the 4-GB linear address space. In this
context, the virtual memory addressing and paging capabilities of the Intel 1386 CPU
family are explained, focusing on how the Windows 2000 kernel exploits them. To
aid the exploration of memory, this chapter features a pair of sample programs: a
kernel-mode device driver that collects information about the system, and a user-
mode client application that queries this data from the driver via device I/O control
and displaysit in a console window. The "spy driver" module will be reused in the
remaining chapters for several other interesting tasks that require execution of ker-
nel-mode code. This chapter—especially the first section—is tough reading because
it putsyour hands directly on the CPU hardware. Nevertheless | hope you won't skip it,
because virtual memory management is an exciting topic, and understanding how
it works provides insight into the mechanics of a complex operating system such as
Windows2000.

INTEL 386 MEMORY MANAGEMENT

TheWindows 2000 kernel makes heavy use of the protected-mode virtual memory
management mechanisms of the Intel i386 CPU class. To get a better understanding
of how Windows 2000 manages its main memory, it isimportant to be at least mini-
mally familiar with some architectural issues of the i386 CPU. The term 7386 might
look somewhat anachronistic because the 80386 CPU dates back to the early days of
Windows computing. Windows 2000 is designed for Pentium CPUs and above.
However, even these newer processors rely on the memory management model origi-
nally designed for the 80386 CPU, with some important enhancements, of course.
Therefore, Microsoft usually labels the Windows NT and 2000 versions built for

161

162 EXPLORING WINDOWS 2000 MEMORY

Intel processors “i386” or even “x86.” Don't be confused about that—whenever you
read the numbers 86 or 386 in this book, keep in mind that the correspondinginfor-
mation refers to a specific CPU architecture, not a specific processor release.

BASICMEMORY LAYOUT

Windows 2000 uses a very straightforward memory layout for application and sys-
tem code. The 4-GB virtual memory space offered by the 32-bit Intel CPUsisdivided
into two equal parts. Memory addresses bel ow 0x80000000 are assigned to user-
mode modules, including the Win32 subsystem, and the remaining 2 GB arereserved
for the kernel. Windows 2000 Advanced Server also supports an alternative memory
model commonly called 4GT RAM Tuning, which has been introduced with Win-
dows NT 4.0 Server Enterprise Edition. Thismodel features 3-GB address space for
user processes, and 1-GB space for the kernel. 1t is enabled by adding the /3cs switch
to the bootstrap command linein the boot manager configurationfileboot . ini.
The Advanced Server and Datacenter variants of Windows 2000 support yet
another memory option named Physical Address Extension (PAE) enabled by the
boot . ini switch /pae. This option exploits afeature of some Intel CPUs
(e.g., the Pentium Pro processor) that alows physical memory larger than 4 GB to
be mapped into the 32-bit address space. In this Chapter, | will ignore these special
configurations. Y ou can read more about them in Microsoft's Knowledge Base
article Q171793 (Microsoft 2000c), Intel's Pentium manuals (Intel 1999a, 1999b,
1999¢), and the Windows 2000 Device Driver Kit (DDK) documentation
(Microsoft 2000f).

MEMORY SEGMENTATION AND DEMAND PAGING

Before delving into the technical details of the 1386 architecture, let'stravel back in
time to the year 1978, when Intel released the mother of all PC processors: the 8086.
| want to restrict this discussion to the most significant milestones. If you want to
know more, Robert L. Hummel's 80486 programmer'sreferenceis an excellent start-
ing point (Hummel 1992). It is a bit outdated now because it doesn't cover the new
features of the Pentium family; however, this leaves more space for important infor-
mation about the basic 1386 architecture. Although the 8086 was able to address 1
MB of Random Access Memory (RAM), an application could never "see" the entire
physical address space because of the restriction of the CPU's address registers to 16
bits. This meansthat applications were able to access a contiguouslinear address
space of only 64 KB, but this memory window could be shifted up and down in the
physical space with the help of a set of 16-bit segment registers. Each segment regis-
ter defined a base addressin 16-byteincrements, and thelinear addressesin the
64-KB logica spacewere added as offsets to this base, effectively resulting in 20-bit

INTEL i386 MEMORY MANAGEMENT 163

addresses. This archaic memory model is still supported even by the latest Pentium
CPUs, and it is called Real-Address Mode, commonly referred to as Real Mode.

An alternative mode was introduced with the 80286 CPU, referred to as
Protected Virtual Address Mode, or simply Protected Mode. It featured a memory
model where physical addresses were not generated by simply adding a linear address
to a segment base. To retain backward compatibility with the 8086 and 80186, the
80286 till used segment registers, but they did not contain physical segment addresses
after the CPU had been switched to Protected Mode. Instead, they provided a selector,
comprising an index into a descriptor table. The target entry defined a 24-bit physical
base address, allowing accessto 16 MB of RAM, which seemed like an incredible
amount then. However, the 80286 was till a 16-bit CPU, so the limitation of the
linear address spaceto 64 KB tiles still applied.

The breakthrough came in 1985 with the 80386 CPU. This chip finally cut the
ties of 16-bit addressing, pushing up the linear address space to 4 GB by introducing
32-bit linear addresses while retaining the basic selector/descriptor architecture of its
predecessor. Fortunately, the 80286 descriptor structure contained some spare bits that
could be reclaimed. While moving from 16- to 32-bit addresses, the size of the CPU's
dataregisterswas doubled aswell, and new powerful addressing modeswere added.
Thisradical shift to 32-bit data and addresseswas areal benefit for programmers—
at least theoretically. Practically, it took several years longer before the Microsoft
Windows platform was ready to fully support the 32-bit model. The first version of
Windows NT was released on July 26th, 1993, constituting the very first incarnation
of the Win32 API. Whereas Windows 3.x programmers still had to deal with mem-
ory tiles of 64 KB with separate code and data segments, Windows NT provided a
flat linear address space of 4 GB, where all code and data could be addressed by
simple 32-bit pointers, without segmentation. Internally, of course, segmentation
was dill active, as | will show later in this chapter, but the entire responsibility for
managing segments finally had been moved to the operating system.

Another essential new 80386 feature was the hardware support for paging, or,
more precisely, demand-paged virtual memory. Thisis atechnique that allows mem-
ory to be backed up by a storage medium other than RAM-—a hard disk, for exam-
ple. With paging enabled, the CPU can access more memory than physically available
by swapping out the least recently accessed memory contents to backup storage,
making space for new data. Theoretically, up to 4 GB of contiguous linear memory
can be accessed this way, provided that the backup mediaislarge enough—even if
theinstalled physical RAM amountsto just a small fraction of the memory. Of
course, paging is not the fastest way to access memory. It is always good to have as
much physical RAM as possible. But it is an excellent way to work with large
amounts of data that would otherwise exceed the available memory. For example,
graphics and database applications require alarge amount of working memory, and
somewouldn't be able to run on alow-end PC system if paging weren't available.

164 EXPLORING WINDOWS 2000 MEMORY

In the paging scheme of the 80386, memory is subdivided into pages of 4-KB
or 4-MB size. The operating system designer is free to choose between these two
options, and it is even possible to mix pages of both sizes. Later | will show that
Windows 2000 uses such a mixed page design, keeping the operating systemin
4-MB pages and using 4-KB pages for the remaining code and data. The pages are
managed by means of a hierarchically structured page-table tree that indicates for
each page where it is currently located in physical memory. This management
structure aso contains information on whether the page is actualy in physical
memory in the first place. If a page has been swapped out to the hard disk, and
some module touches an address within this page, the CPU generates a page fault,
similar to an interrupt generated by a peripheral hardware device. Next, the page
fault handler inside the operating system kernel will attempt to swap back this
page to physical memory, possibly writing other memory contents to disk to make
space. Usually, the systemwill apply aleast-recently-used (L RU) scheduleto decide
which pages qualify to be swapped out. By now it should be clear why this proce-
dure is sometimes referred to as demand paging: Physical memory contents are
moved to the backup storage and back on software demand, based on statistics of
the memory usage of the operating system and its applications.

The address indirection layer represented by the page-tables has two interest-
ing implications. First, there is no predetermined relationship between the addresses
used by a program and the addresses found on the physical address bus of the CPU
chip. If you know that a data structure of your application is located at the address,
say, 0x00140000, you still don't know anything about the physical address of your
data unless you examine the page-table tree. Itis up to the operating system to
decide what this address mapping looks like. Even more, the address translation
currently in effect is unpredictable, in part because of the probabilistic nature of the
paging mechanism. Fortunately, knowledge of physical addressesisn't required in
most application cases. Thisis something left for devel opers of hardware drivers.
The second implication of paging is that the address space is not necessarily contigu-
ous. Depending on the page-table contents, the 4-GB space can comprise large
"holes" where neither physical nor backup memory is mapped. If an application
tries to read to or write from such an address, it will be aborted immediately by the
system. Later in this chapter, | will show in detail how Windows 2000 spreadsits
available memory over the 4-GB address space.

The 80486 and Pentium CPUs use the very same i386 segmentation and paging
mechanisms introduced with the 80386, except for some exotic addressing features
such as the Physical Address Extension (PAE) of the Pentium Pro. Along with higher
clock frequencies, these newer models contain optimizationsin other areas. For
example, the Pentium features a dual instruction pipeline that enables it to execute

INTEL 386 MEMORY MANAGEMENT 165

two operations at the same time, as long as these instructions don't depend on each
other. For example, if instruction A modifies a register value, and the consecutive
instruction B uses the modified value for a computation, B cannot be executed
before A has finished. But if instruction B involves a different register, the CPU can
execute A and B simultaneously without adverse effects. This and other Pentium
optimizations have opened awide field for compiler optimization. If this topic looks
interesting, see Rick Booth's Inner Loops (Booth 1997).

In the context of 1386 memory management, three sorts of addresses must be
distinguished, termed logical, linear, andphysical addressesin Intel's system pro-
gramming manual for the Pentium (Intel 1999c).

1. Logical addresses: Thisisthe most precise specification of a memory
location, usually written in hexadecimal form as xxxx: YYYYYYYY, where
xXxxX is a selector, and YYYYYYYY is a linear offset into the segment addressed
by the selector. Instead of a numeric xxxx value, it is aso possible to
specify the name of a segment register holding the selector, such as cs
(code segment), DS (datasegment), ES (extrasegment), FS (additional data
segment #1), GS (additional data segment #2), and ss (stack segment). This
notation is borrowed from the old “segment:offset” style of specifying "far
pointers' in 8086 Rea-Maode.

2. Linear addresses. Most applications and many kernel-mode drivers
disregard virtual addresses. More precisely, they are just interested in the
offset part of avirtual address, which isreferred to as alinear address. An
address of this type assumes a default segmentation model, determined by
the current values of the CPU's segment registers. Windows 2000 uses flat
segmentation, withthecs, DS, ES, and ssregisters pointing to the same
linear address space; therefore, programs can safely assume that all code,
data, and stack pointers can be cast among one another. For example, a
stack location can be cast to a data pointer at any time without concern
about the values of the corresponding segment registers.

8. Physical addresses: This address typeis of interest only if the CPU
works in paging mode. Basically, a physical address is the voltage pattern
measurabl e at the address bus pins of the CPU chip. The operating system
maps linear addresses to physical addresses by setting up page-tables. The
layout of the Windows 2000 page-tables, which has some very interesting
properties for debugging software developers, will be discussed later in
this chapter.

166 EXPLORING WINDOWS 2000 MEMORY

The distinction between virtual and linear addresses is somewhat artificial, and
some documentation uses both terms interchangeably. | will do my best to use this
nomenclature consistently. It isimportant to note that Windows 2000 assumes physi-
cal addresses to be 64 bits wide. This might seem odd on Intel i386 systems, which
usually have a 32-bit address bus. However, some Pentium systems can address more
than 4 GB of physical memory. For example, the Physical Address Extension (PAE)
mode of the Pentium Pro CPU extends the physical address space to 36 bits, allowing
access to 64 GB of RAM (Intel 1999c). Therefore, the Windows 2000 API functions
involving physical addresses usually rely on the data type prvsIcaL_apbress, which
isjust an alias name for the Larce_1nTEGER Structure, as shown in Listing 4-1. Both
types are defined in the DDK header file ntaef.h. The LARGE_INTEGER is a structural
representation of a 64-bit signed integer, alowing interpretation as a concatenation of
two 32-bit quantities (Lowpart and Highpart) or a single 64-bit number (QuadPart).
The LoncLone typeis equivalent to the native Visual C/C++ type__int64. ItS
unsigned sibling is called ur.oncrone or pworpLone and is based on the native
unsigned___int64 type.

Figure 4-1 outlines the 1386 memory segmentation model, showing the relation-
ship between logical and linear addresses. For clarity, | have drawn the descriptor
table and the segment as small, nonoverlapping boxes. However, thisisn't arequire-
ment. Actually, a 32-bit operating system usually applies a segmentation layout as
shown in Figure 4-2. This so-called flat memory model is based on segments that
span the entire 4-GB address space. As a Sde effect, the descriptor table becomes part
of the segment and can be accessed by all code that has sufficient access rights.

typedef LARGE_INTEGER PHYSICAL_ADDRESS, *PPHYSICAL_ADDRESS;

typedef union _LARGE_INTEGER
{
struct
{
WONG LowPart;
LONG HighPart ;
}:
LONGLONG QuadPart;

}
LARGE | NTEGER * PLARGE_INTEGER;

LISTING 4-1. Definition of pHYSTCAL_ADDRESS and LARGE_INTEGER

INTEL i386 MEMORY MANAGEMENT 167

0x00000000

Linear Address
Space

| Address

OXFFFFFFFF

FIGURE 4-1. i386 Memory Segmentation

The memory model in Figure 4-2 is adopted by Windows 2000 for the standard
code, data, and stack segments, that is, al logical addressesthat involvethecs, DS,
£s, and ss segment registers. The FS and GS segments aretreated differently. GSis
not used by Windows 2000, and FS addresses special system data areasinside the
linear address space. Therefore, its base address is greater than zero and its size is less
than 4 GB. Interestingly, Windows 2000 maintains different FS segmentsin user-
mode and kernel-mode. More on this topic follows later in this chapter.

168 EXPLORING WINDOWS 2000 MEMORY

0x00000000

Logical Address

OXFFFFFFFF

FIGURE 4-2. Flat 4-GB Memory Segmentation

In Figures 4-1 and 4-2, the selector portion of the logical address is shown to
point into a descriptor table determined by a register termed GDTR. Thisis the CPU's
Global Descriptor Table Register, which can be set by the operating system to any
suitable linear address. The first entry of the Global Descriptor Table (GDT) is
reserved, and the corresponding selector called "null segment selector” is intended
as an initial value for unused segment registers. Windows 2000 keeps its GDT at
address 0x80036000 . The GDT can hold up to 8,192 64-bit entries, resulting in a
maximum size of 64 KB. Windows 2000 uses only the first 128 entries, restricting
the GDT size to 1,024 bytes. Along with the GDT, the i386 CPU provides a Loca
Descriptor Table (LDT) and an Interrupt Descriptor Table (IDT), addressed by the
LDTR and IDTR registers, respectively. Whereas the GDTR and IDTR values are unique
and apply to al tasks executed by the CPU, the LDTR value is task-specific, and, if
used, contains a 16-bit GDT sdlector.

INTEL i386 MEMORY MANAGEMENT 169

Figure 4-3 demonstrates the complex mechanism of linear-to-physical address
translation applied by the i386 memory management unit if demand paging is
enabled in 4-KB page mode. The Page-Directory Base Register (PDBR) in the upper
left corner contains the physical base address of the page-directory. The PDBR is
identical to thei386 CR3 register. Only the upper 20 bits are used for addressing.
Therefore, the page-directory isawayslocated on apage boundary. The remaining
PDBR bits are either flags or reserved for future extensions. The page-directory occu-
pies exactly one 4-KB page, structured as an array of 1,024 32-bit page-directory
entries (PDES). Similar to the PDBR, each PDE can be divided into a 20-bit page-frame
number (PFN) addressing a page-table, and an array of bit flags. Each page-tableis
page-aligned and spans4 KB, comprising 1,024 page-table entries (PTEs). Again, the

0x00000000 Physical
Address
Space

20Bits |
31 [1211 0

[[Page-Frame Number | Flags |

Paga-Diractory Base Register (PDBR) / CR3

10 Bits

20 Bits

10 Bits

20 Bits

12 Bits

31 22 21 12 11 { 0
[(Directory | Table | Offset |

Linear Address

FIGURE 4-3. Double-Layered Paging with 4-KB Pages

170 EXPLORING WINDOWS 2000 MEMORY

upper 20 bits are extracted from a PTE to form a pointer to a 4-KB data page.
Address translation takes place by breaking alinear address into three parts. The
upper 10 bits select a PDE out of the page-directory, the next lower 10 bits select a
PTE out of the page-tabl e addressed by the PDE, and, finally, the lower 12 bits spec-
ify an offset into the data page addressed by the PTE.

In the 4-KB paging scheme, the 4-GB linear address space is addressable by
means of a double-layered indirection mechanism. In the worst case, 1,048576 PTES
are required to cover the entire range. Because each page-table holds 1,024 PTEs, this
amounts to 1,024 page-tables, which is the number of PDEs the page-directory con-
tains. With the page-directory and each page-table consuming 4 KB, the maximum
memory management overhead in this paging model is4 KB plus4 MB, or 4,100 KB.
That's a reasonabl e price for a subdivision of the entire 4-GB space into 4-KB tiles
that can be mapped to any linear address.

In 4-MB paging mode, things are much simpler because one indirection layer is
eliminated, as shown in Figure 4-4. Again, the PDBR points to the page-directory,
but now only the upper 10 bits of the PDE are used, resulting in 4-MB alignment of
the target address. Because no page-tables are used, this address is already the base
address of a 4-MB data page. Consequently, the linear address now consists of two
parts only: 10 bits for PDE selection and 22 offset bits. The 4-MB memory scheme
requires no more than 4 KB overhead, because only the page-directory consumes
additional memory. Each of its 1,024 PDEs can address one 4-MB page. Thisisjust
enough to cover the entire 4-GB address space. Thus, 4-MB pages have the advan-
tage of keeping the memory management overhead low, but for the price of a more
coarse addressing granularity.

Both the 4-KB and 4-M B paging modes have advantages and disadvantages.
Fortunately, operating system designers don't have to decide for one of them, but can
run the CPU in mixed mode. For example, Windows 2000 works with 4-MB pagesin
the memory range 0x80000000 to oxorrrrrrr, Where the kernel modules na1 .ai1
and ntoskrnl. exe are loaded. The remaining linear address blocks are managed in
4-KB tiles. Thismixed design is recommended by Intel for improved system perfor-
mance, because 4-KB and 4-MB page entries are cached in different Trandation
Lookaside Buffers (TLBs) inside the 1386 CPU (Intel 1999c, pp. 3-22f). The operating
system kernel is usually large and is aways resident in memory, so storing it in sev-
eral 4-KB pages would permanently use up valuable TLB space.

Note that all address translation steps are carried out in physical memory. The
PDBR and al PDEs and PTEs contain physical address pointers. The only linear address
found in Figures 4-3 and 4-4 is the box in the lower | eft corner specifying the address to
be convertedto an offsetingde aphysical page. On the other hand, applications Must
work with linear addresses and are ignorant of physical addresses. However, it is
possible to fill this gap by mapping the page-directory and all of its subordinate page-
tables into the linear address space. On Windows 2000 and Windows NT 4.0, all

INTEL i386 MEMORY MANAGEMENT 171

0x00000000

Physical
Address
Space
20 Bits
31 | 12 11 0

Page-Directory Base Register (PDBR) / CR3

10 Bits

10 Bits

22 Bits

31

Linear Address

FIGURE 4-4. Sngle-Layered Paging with 4-MB Pages

PDEs and PTEs are accessible in the address range 0xC0000000 to 0xc03FFFFF. Thisis
alinear memory area of 4-MB size. Thisis obviously the maximum amount of memory
consumed by the page-table layer in 4-KB paging mode. The PTE associated to a linear
address can be looked up by smply using its most significant 20 bits as an index into
the array of 32-bit PTEs starting at 0xco000000. For example, the PTE of address
0x00000000 is located at 0xco000000. The PTE index of address 0x80000000 is
computed by shifting it right by 12 bits to get at the upper 20 bits, yielding 0x80000.
Because each PTE takes four bytes, the target PTE is found at 0xCO000000 +

(4 * 0x80000) = Oxc0200000. Thisresultlooksinteresting—obviously, the
address that divides the 4-GB address space in two equal halves is mapped to a

PTE address that divides the PTE array in two equal halves.

172 EXPLORING WINDOWS 2000 MEMORY

Now let's go one more step ahead and compute the entry address of the PTE
array itself. The general mapping formulais ((Linearaddress >> 12) * 4) +
0xC0000000. Setting LinearAddress to 0xC0000000 yields OxC0300000. Let's pause
for a moment: The entry at linear address 0xc0300000 points to the beginning of the
PTE array in physical memory. Now look back to Figure 4-3. The 1,024 entries start-
ing at address 0xco0300000 must be the page-directory! This special PDE and PTE
arrangement is exploited by various memory management functions implemented in
ntoskrnl. exe. FOr example, the (documented) APl functions Mm1saddressvalid()
and umGetPhysicaladdress () take a 32-bit linear address, look up its PDE and, if
applicable, its PTE, and examine their contents. MmIsAddressvalid () simply checks
out whether the target page is currently present in physical memory. If the test fails,
the linear address is either invalid or it refers to a page that has been flushed to
backup storage, represented by the set of system pagefiles. MmGetPhysical Addressi)
first extracts the page-frame number (PFN) corresponding to a linear address, which
is the base address of its associated physical page divided by the page size. Next, it
computes the offset into this page by extracting the least significant 12 bits of thelin-
ear address, and adds the offset to the physical base address determined by the PFN.

More thorough examination of the implementation of MmGetPhysical Addressi)
reveals another interesting property of the Windows 2000 memory layout. Before any-
thing dse, the code tests whether the linear address is within the range 0x80000000 to
0x9rrFFFFFF . ASalready mentioned, thisisthehomeof hal.d1l and ntoskrnl. exe,
and it is also the address block where Windows 2000 uses 4-MB pages. The interesting
thing isthat MmGetPhysical Address() doesn't care at all for PDEsor PTEsif the
address is within this range. Instead, it simply sets the top three bits to zero, adds the
byte offset, as usual, and returns the result as the physical address. This means that
the physical address range 000000000 to 0x1FFFFFFF iSmapped 1:1 to the linear
addresses0x80000000to 9rrrrrrF | Knowingthat ntoskrnl . exeisalwaysloadedto
the linear address 0x80400000, this means that the Windows 2000 kernel is always
found at physical address 0x00400000, which happens to be the base address of the
second 4-MB page in physical memory. In fact, examination of these memory regions
proves that the above assumptions are correct. You will have the opportunity to see
this with the memory spy presented in this chapter.

DATA STRUCTURES

Some portions of the sample code following in this chapter are concerned with low-
level memory management and peek inside the mechanisms outlined above. For con-
venience, | have defined several C data structures that make thistask easier. Because
many data items inside the 1386 CPU are concatenations of single bits or bit groups,
C bit-fields comein handy. Bit-fields are an efficient way to accessindividual bits of
or extract contiguous bit groups from larger data words. Microsoft Visual C/C++

INTEL 386 MEMORY MANAGEMENT 173

generates quite clever code for bit-field operations. Listing 4-2 is part one of a series
of CPU data type definitions, containing the following items:

» X86_REGI STERIisabasicunsigned 32-bitintegral typethat canrepresent
various CPU registers. Thiscomprisesall general -purpose, index, pointer,
control, debug, and test registers.

* X86_SELECTOR represents a 16-bit segment selector, as stored in the
segment registerscs, DS, ES, FS, GS, andss. InFigures4-1 and 4-2,
selectors are depicted as the upper third of alogica 4 8-bit address, serving
as an index into a descriptor table. For computational convenience, the
16-bit selector value is extended to 32 bits, with the upper half marked
"reserved." Note that the x86_serecTOR Structure is a union of two
structures. The first one specifies the selector value as a packed 16-bit WORD
named wvalue, andthe second breaksit up into bit-fields. TherrL field
specifies the Requested Privilege Leve, which is either O (kernel-mode) or
3 (user-mode) on Windows 2000. The T bit switches between the Global
and Loca Descriptor Tables (GDT/LDT).

» x86_DESCRIPTOR defines the format of a table entry pointed to by a
sdlector. It is a 64-bit quantity with a very convoluted structure resulting
from its historic evolution. The linear base address defining the start
location of the associated segment is scattered among three bit-fields
named Base1, Base2, dndease3, with Basel being the least significant
part. The segment limit specifying the segment size minus oneisdivided
into the pair Limit1 and Limit2, with the former representing the least
significant half. The remaining bit-fields store various segment
properties (cf. Intel 1999c¢, pp. 3-11). For example, the G bit defines
the segment granularity. If zero, the segment limit is specified in bytes;
otherwise, the limit value has to be multiplied by 4 KB. Like x86_sELECTOR,
the x86_pEsScrIPTOR Structure is composed of a union to alow different
interpretations of its value. The avaluerow and dvalueHigh members
are helpful if you have to copy descriptors without regard to their
internal structure.

» X86_GATE looks somewhat similar to x86_pescrrpTor. In fact, the
structures are related: x86_pescripror isa GDT entry and describes the
memory properties of a segment, and X86_caTE is an entry inside the
Interrupt Descriptor Table (IDT) and describes the memory properties of
an interrupt handler. The IDT can contain task, interrupt, and trap gates.
(No, Bill Gatesis not stored in the IDT!) The X86_GATE structure matches
al threetypes, with the Type bit-field determining theidentity. Type5

174 EXPLORING WINDOWS 2000 MEMORY

identifies a task gate; types 6 and 14, interrupt gates; and types 7 and 15,
trap gates. The most significant type bit specifies the size of the gate:
16-bit gates have this bit set to zero; otherwise it is a 32-bit gate.

x86_TABLE IS atricky structure that is used to read the values of the
GDTR or zpTr by means of the assembly language instructions SGDT
(store GDT register) and stot (store IDT register) respectively (cf. Intel
1999h, pp. 3-636). Both instructions require a 48-bit memory operand,
where the limit and base address values will be stored. To maintain
DWORD alignment for the 32-bit base address, x86_raBLE Starts out
with the 16-bit dummy member wreserved. Depending on whether
the SGDT or SIDT instruction is applied, the base address must be
interpreted as a descriptor or gate pointer, as suggested by the union

of px86_DESCRIPTOR and Px86_GATE types. The wrLimit member is the
same for both table types.

//
11

INTEL X86 STRUCTURES, PART 1 CF 3

typedef DWIRD X86_REQ STER, *PX86_REQ STER, **PPX86_REGISTER;

11

typedef struct _x86_ SELECTOR

{

uni on

{

struct
{
WRD wvalue; /1 packed val ue
WRD wReserved;
}i

struct
{
unsi gned RPL : 2; Il requested privilege |evel
unsi gned TI : 1, // table indicator: 0=gdt, |=ldt
unsi gned | ndex : 13; // index into descriptor table
unsi gned Reserved : 16;
}i

}s:

}

X86_SELECTOR, *PX86_SELECTCR **PPX86_SELECTOR;

INTEL i386 MEMORY MANAGEMENT

175

#define X86_SELECTOR_ Si zeof

11

(X86_SELECTOR)

typedef struct _X86_DESCR PTCR

{ .
uni on
{
struct
{
DWRD dvalueLow;
DWRD dvalueHigh;
}i
struct
{
unsi gned Limitl 16;
unsi gned Basel 16;
unsi gned Base2 8;
unsi gned Type 4;
unsigned S 1
unsi gned DPL 2;
unsi gned P 1;
unsi gned Limit2 4;
unsi gned AVL 1;
unsi gned Reserved 1;
unsi gned DB 1;
unsi gned G 1;
unsi gned Base3 8:
}i
}i
}

X86_DESCR PTCR
#define X86_DESCRI PTCR_ si zeof

1

*PX86_DESCR PTCR

/1 packed val ue

/1 bits 15..00

/1 bits 15..00

/1 bits 23..16

/1 segnent type

I/ type (O=system | =code/data)
/1 descriptor privilege |evel
/1 segment present

/l bits 19..16

// available to programer

/Il 0=16-bit, 1=32-bit

// granularity (1=4KB)
I/l bits 31..24

**PPX86_DESCRIPTOR;

(X86_DESCRIPTOR)

typedef struct _X86_GATE
{

uni on

{

struct
{
DWORD dVal uelLow;,
DWRD dvalueHigh;
};

struct
{
unsi gned Offsetl
unsi gned Sel ect or
unsi gned Par anet er s
unsi gned Reserved

16;
16;
5; // paraneters
3;

/1 packed val ue

/1l bits 15..00
/] segrent sel ector

(conti nued)

176 EXPLORING WINDOWS 2000 MEMORY

unsi gned Type : 4; [/l gate type and size
unsigned S 1, /1 aways O

unsi gned DPL :2; I/ descriptor privilege I|evel
unsi gned P :1; /] segment present

unsi gned Offset2 : 16; /] bits 31..16

}i
}i
)
X86_CGATE, *PX86_CGATE, **PPX86_GATE;

#define X86_GATE_ si zeof (X86_GATE)

11

typedef struct _X86_TABLE

{

WIRD wReserved; /1 force 32-bit alignnent
WRD wiimit; /] table limt
uni on
{
P¥86_DESCRIPTOR phescriptors; [/ used by sgdt instruction
PX86_CGATE pGates; /1 used by sidt instruction
}i
}

X86_TABLE, *PX86 _TABLE, **PPX86_TABLE;

#define x86_TABLE_ sizeof (X86_TABLE)

LISTING 4-2. 1386 Registers, Selectors, Descriptors, Gates, and Tables

The next set of 1386 memory management structures, collected in Listing 4-3,
relates to demand paging and contains several items illustrated in Figures 4-3 and 4-4:

* x86_PDBR IS, Of course, a structural representation of the CPU's CR3
register, also known as the page-directory base register (PDBR). The upper
20 bits contain the PFN, which is an index into the array of physical 4-KB
pages. PFN=0 corresponds to physical address 0x00000000, PrN=1 tO
0x00001000, and so forth. Twenty bits are just enough to cover the entire
4-GB address space. The PFN in the PDBR is the index of the physical
page that holds the page-directory. Most of the remaining bits are
reserved, except for bit #3, controlling page-level write-through (PWT),
and bit #4, disabling page-level caching if set.

INTEL i386 MEMORY MANAGEMENT

' X86_PDE_4M and X86 PDE_4K are alternative incarnations of page-directory
entries (PDEs) for 4-MB and 4-K B pages, respectively. A page-directory
contains a maximum of 1,024 PDEs. Again, PFN is the page-frame number,
pointing to the subordinate page. For a 4-MB PDE, the PFN bit-field is
only 10 hits wide, addressing a 4-MB data page. The 20-bit PFN of 4-KB
PDE points to a page-table that ultimately selects the physical data pages.
The remaining bits define various properties. The most interesting ones are
the "Page Size" bit rs, controlling the page size (0 = 4-KB, 1 = 4-MB), and
the "Present” bit », indicating whether the subordinate data page (4-MB
mode) or page-table (4-KB mode) is present in physica memory.

x86_pTE_4x defines the internal structure of a page-table entry

(PTE) contained in a page-table. Like a page-directory, a page-table
can contain up to 1,024 entries. The only difference between
x86_pTE_4k and x86_rpE_4x IS that the former lacks the PS bit, which
is not required because the page size must be 4-KB, as determined by
the PDE's PS bit. Note that there is no such thing as a 4-MB PTE,
because the 4-MB memory model doesn't require an intermediate
page-tablelayer.

X86_PNPE represents a "page-not-present entry” (PNPE), that is, a PDE
or PTE in which the P bit is zero. According to the Intel manuals, the
remaining 31 bits are "available to operating system or executive" (Intel
1999c, pp. 3-28). If alinear address maps to a PNPE, this means either
that this address is unused or that it points to a page that is currently
swapped out to one of the pagefiles. Windows 2000 uses the 31
unassigned bits of the PNPE to store status information of the page.
The structure of this information is undocumented, but it seems that

bit #10, named PageFile in Listing 4-3, is set if the page is swapped
out. In this case, the Reservedl and Reserved?2 bit-fields contain values
that enable the system to locate the page in the pagefiles, so it can be
swapped in as soon as one of its linear addresses is touched by a memory
read/write instruction.

x86_PE isincluded for convenience. It is merely aunion of al possible
forms a page entry can take, comprising the PDBR contents, 4-MB and
4-KB PDEs, PTEs, and PNPEs.

177

178 EXPLORING WINDOWS 2000 MEMORY

/1 INTEL x86 STRUCTURES, PART 2 CF 3

typedef struct _X86_PDBR // page-directory base register

{

uni on

{

struct
{
DWRD dvalue;
Y

struct
{
unsi gned Reser ved|
unsi gned PWT
unsi gned PCD

unsi gned Reserved2 :

unsi gned PFN
}i

}
X86_PDBR,

* PX86_PDBR,
#define X86_PDBR_ si zeof

11

(cr3)

/1 packed val ue

3

1; // page-level wite-through
1; /1 page-level cache disabled
7

20; // page-franme nunber

**PPX86_PDBR;

(X86_PDBR)

typedef struct _xg86 _pDE _4M // page-directory entry (4-MB page)

{

uni on

{

struct

{
DWRD dVal ue;
b
struct
{
unsi gned P
unsi gned RW
unsi gned US
unsi gned PWI
unsi gned PCD
unsi gned A
unsi gned D
unsi gned PS
unsi gned G
unsi gned Avai | abl e
unsi gned Reserved
unsi gned PFN
}i

/1 packed val ue

1, // present (1 = present)
1; // read/wite
1; // user/supervisor
1; [/ page-level wite-through
1; // page-level cache disabled
1; // accessed

1, // dirty
1; Il page size (1 = 4-MB page)
1; // global page

3; I/ available to programer

10; // page-frame nunber

INTEL 386 MEMORY MANAGEMENT

179

}

X86_PDE_4M, *PX86_PDE_4M, **PPX86_PDE_4M;

ttdefine X86_PDE_4M _si zeof (X86_PDE 4N

11

typedef struct _X86_PDE 4K // page-directory entry (4-KB page)

{
uni on
{
struct
{
DWRD dvalue; /1 packed val ue
}i
st ruct
{
unsi gned P 1; // present (1 = present)
unsi gned RwW 1, // read/wite
unsi gned US 1; // user/supervisor
unsi gned PWT 1; // page-level wite-through
unsi gned PCD 1; /1 page-level cache disabled
unsi gned A 1; // accessed
unsi gned Reserved 1; /I dirty
unsi gned PS 1; // page size (0 - 4-KB page)
unsi gned G 1; // global page
unsi gned Avai l abl e 3; // available to progranmer
unsi gned PFN 20; /! page- frame nunber
}i
}i
)

X86_PDE 4K, *PX86_PDE 4K, * *ppx86_PDE_A4K;

ttdefine X86_PDE_4K_ si zeof (X86_PDE _4K)

typedef struct _X86_PTE 4K // page-table entry (4-KB page)

{
uni on
{
st ruct
{
DWRD dval ue; I/ packed val ue
}i
st ruct
{
unsi gned P :1; // present (1 = present)
unsi gned RW : o 1; /] read/wite
unsi gned US :1; /] wuser/supervisor

(continued)

180 EXPLORING WINDOWS 2000 MEMORY

unsi gned pPwT :1; // page-level wite-through
unsi gned PCD 1; // page-level cache disabled
unsi gned A 1; /Il accessed

unsi gned D 1, // dirty

unsi gned Reserved 1;

unsi gned G 1; // global page

unsi gned Avai |l abl e 3; // available to progranmer
unsi gned PFN 20; // page-frame nunber

}i

}

X86_PTE_4K, *PX86_PTE 4K, **PPX86_PTE_4K;

#define X86_PTE 4K_ sizeof (X86_PTE 4K)

typedef struct _x86_PNPE // page not present entry

{
uni on
{
struct
{
DWORD dval ue; // packed val ue
e
struct
{
unsi gned P 1, // present (0 = not present)
unsi gned Reservedl : 9;
unsigned PageFile : 1; // page swapped to pagefile
unsi gned Reserved2 : 21;
}:
}

X86_PNPE, *PX86_PNPE, **PPX86_PNPE;
#define X86_PNPE_ sizeof (X86_PNPE)

11

typedef struct _X86_PE // general page entry

{
uni on
{
DWORD dvalue; // packed val ue

X86_PDBR pdbr; /1 page-directory Base Register
X86_PDE_4M pdedy; /] page-directory entry (4-MB page)
X86_PDE 4K pde4k; [/ page-directory entry (4-KB page)
X86_PTE 4K ptedk; [/ page-table entry (4-KB page)
X86_PNPE pnpe; /1 page not present entry

}:

INTEL 386 MEMORY MANAGEMENT 181

}
X86_PE, *PX86_PE, **PPx86_ PE;

#define x86_PE_ sizeof (X86_PE)

LISTING 4-3. i386 PDBR, PDE, PTE, and PNPE Values

In Listing 4-4, I have added structural representations of linear addresses.
These structures areformal definitions of the "Linear Address’ boxesin Figures4-3
and 4-4:

» x86_LINEAR_4M IS the format of linear addresses that point into a 4-MB
data page, as shown in Figure 4-4. The page-directory index PDI is an
index into the page-directory currently addressed by the PDBR, selecting
one of its PDEs. The 22-hit of fset member points to the target address
within the corresponding 4-MB physical page.

* x86_LINEAR_4K iSthe 4-KB variant of alinear address. As outlinedin
Figure4-3, itiscomposed of threebit-fields: Likein a4-MB address, the
upper 10 PDI bits sdect a PDE. The page-tableindex PTI hasasimilar
duty, pointing to a PTE inside the page-table addressed by this PDE. The
remaining 12 bits are the offset into the resulting 4-KB physical page.

* x86_LINEAR IS another convenience structure that smply unites
x86_LINEAR_4M and x86_LINEAR_ 4K in a Sngle datatype.

MACROS AND CONSTANTS

The definitionsin Listing 4-5 are supplementsto the structuresin Listings 4-2 to 4-4
and make thework with i386 memory management easier. They can be subdivided
into three main groups. The first group handleslinear addresses:

1. X86_PAGE_MASK, X86_pDI_MASK, and X86_PTI_MASK are bit masks that
isolate the constituent parts of linear addresses. They are based on the
Constants PAGE_SHIFT (12), PDI-SHIFT (22), and PTI-SHIFT (12),
defined in the Windows 2000 DDK header file ntddk.h. X86_PAGE_MASK
evaluates to 0xrFFFFF000, effectively masking off the 4-KB offset part of a
linear address (cf. x86_LINEAR 4K). X86_PDI_MASK isequal to OXFFCO0000
and obviousdly extractsthe 10 topmost PDI bits of alinear address (cf.
X86_LINEAR_4M and X86_LINEAR_4K). X86_PTI_MASK evaluates to
0x003FF0000 and masks off all bits except for the page-table index (PTI)
bits of alinear address (cf. X86_LINEAR 4K).

182 BEXPLCR NGW NDOAS 2000 MEMORY

/1 INTEL x86 STRUCTURES, PART 3 CF 3

typedef struct _X86_LINEAR_4M // linear address (4-MB page)

{
uni on
{
struct
{
PVOID pAddress; /1 packed address
struct

{

unsi gned O f set
unsi gned PDI

/1 offset into page
/1 page-directory index

22;
10;

X86_LINEAR_4M, *PX86_LINEAR_4M, **PPX86_LINEAR_4AM;

#define X86_LINEAR_4M_ sizeof (X86_LINEAR_4M)

typedef struct _x86 LINEAR_4K // linear address (4-KB page)

{
uni on
{
struct
{
PVA D pAddress; /1 packed address
¥
struct
{
unsi gned O f set 12; // offset into page
unsi gned PTI 10; // page-table index
unsi gned PO 10; // page-directory index
}i
}i
}

X86_LINEAR_4K,

#define X86_LINEAR_4K_ Si zeof

typedef struct _x86_LINEAR // general

{

uni on

{

*PX86_LINEAR_4K,

**PPX86_LINEAR_4K;

(X86_LINEAR_4K)

l'i near address

INTEL 386 MEMORY MANAGEMENT 183

PVOID pAddress; [/ packed address
X86_LINEAR_4M linear4dM // linear address (4-MB page)
X86_LINEAR_4K linear4k; // linear address (4-KB page)

}

X86_LINEAR, *PX86_LINEAR, * *PPX86_LINEAR;

#define X86_LINEAR_ sizeof (X86_LINEAR)

LISTING 4-4. 1386 Linear Addresses

2. X86_PAGE (), x86_pDI(), and x86_PTI () use the above constants
to compute the page index, PDI, or PTI of agiven linear address.
x86_PAGE () istypically used to read a PTE from the Windows 2000 PTE
array starting at address Oxc0000000. x86_pDI () and x86_pTI () Simply
apply x86_prpI_MASK OF x86_pPTI_ MASK to the supplied pointer and shift
the resulting index to the rightmost bit position.

3. x86_OFFSET_4M() and X86_OFFSET_4K () extract the offset portion of a
4-MB or 4-KB linear address, respectively.

4. x86_pAGE_4M and x86_PAGE_4k compute the sizes of 4-MB and 4-KB
pages from the DDK constants PDI_SHIFT and pr1_suIrT, resulting
inx86_paceE_4aM = 4,194,304 and X86_PAGE_4K = 4,096. Note that
X86_PAGE_4K is equivalent to the DDK constant PAGE_SIZE, aso
defined inntddk.n.

5. x86_pracEs_4m and X86_PAGES 4K state the number of 4-MB or 4-KB
pages fitting into the 4-GB linear address space. x86_racEs_4M evaluates
to 1,024, and x86_racEs_4k to 1,048,576.

The second group of macros and constants relates to the Windows 2000 PDE
and PTE arrays. Unlike several other system addresses, the base addresses of these
arrays are not available as global variables set up at boot time, but are defined as
constants. This can be proved easily by disassembling the memory manager API
functionsvmGet Physicaladdress () OF MmIsAddressvalid(), wherethese addresses
appear as "magic numbers." These constants are not included in the DDK header
files, but Listing 4-5 shows how they might have been defined.

» X86 PAGES is a hard-coded address and points, of course, to 0xc0000000,
where the Windows 2000 PTE array starts.

184

EXPLORING WINDOWS 2000 MEMORY

x86_PTE_ARRAY IS equal to x86_racEs, but typecasts the value to px86_pE,
thatis, apointer to anarray of X86_PE pageentry structures, asdefinedin
Listing4-2.

x86_PDE_ARRAY iSatricky definition that computes the base address of the
PDE array from the PTE array location, using the PTI_SHIFT constant. As
explained earlier, the general formulafor mapping alinear addressto aPTE
addressis ((Linearaddress >> 12) * 4) + 0xC0000000, and the page-
directory islocated by setting LinearAddressto 0xco000000. Nothing elseis
done by the definition of x86_rpE_ARRAY.

/1 INTEL x86 MACROS & CONSTANTS

#def i ne X86_PAGE_MASK (0 - (1 << PAGE_SHIFT))

#define X86_PAGE(_p) (((DWORD) (_p) & X86_PAGE_MASK) >> PAGE SH FT)
#define X86_PDI_MASK (0 - (1 << PDI_SHIFT))

#def i ne X86_PDI (_p) (((DWORD) (_p) & X86_PDI_MASK) >> PD _SH PT)
#define X86_PTI_MASK ((0- (1 << PTI_SHIFT)) & ~X86_PDI_MASK)
#define X86_PTI(_p) (((DWORD) (_p) & X86_PTI_MASK) >> PTI_SHFT)
ttdefine Xx86_OFFSET_4M(_p) ((_p) & ~ (X8 6_PDI_MASK))
#define X86_OFFSET_4K(_p) ((_p) & ~ (X86_PDI_MASK| X86_PTI_MASK))

#define X86_PAGE 4M (1 << PDI_SHIFT)
#define X86_PAGE 4K (1 << PTI_SHFT)

#define X86_PAGES 4M (1 << (32 - PDI_SHFT))
#define X86_PACGES 4K (1 << (32 - PTI_SHIFT))

I

ttdefine X86_PACES 0xC0000000

#define X86_PTE_ARRAY ((PX86_PE) X86_PAGES)

#defi ne X8 6_PDE_ARRAY (X86_PTE_ARRAY + (X86_PAGES >> PTI_SHIFT))
//

#define X86_SELECTOR_RPL 0x0003

#defi ne X86_SELECTOR_TI 0x0004

#define X86_SELECTOR_INDEX 0xFFF8

#define X86_SELECTOR_SHIFT 3

INTEL i386 MEMORY MANAGEMENT

#defi ne X86_SELECTOR_LIMIT (X86_SELECTOR_INDEX >> \
x86_SHELECTCR SH FT)

#define X86_DESCRI PTOR _SYS TSS16A ol

#defi ne X86_DESCRIPTOR_SYS_LDT 0x2

#define X86_DESCR PTCR_SYS TSS16B 0x3

#define X86_DESCRIPTOR_SYS_CALL16 ox4

#def i ne X86_DESCRIPTOR_SYS_TASK 0x5

#tdefine X86_DESCR PTCR _SYS | NT16 0x6

#def i ne X86_DESCR PTOR_SYS_TRAP16 ox7

#def i ne X86_DESCR PTOR_SYS_TSS32A 0x9

#define X86_DESCR PTOR SYS_TSS32B B
#defineX86_DESCRIPTOR_SYS_CALL32 xC

#define X86_DESCR PTOR SYS | NT32 XE

#define X86_DESCRIPTOR_SYS_TRAP32 XF

——

#define X86_DESCR PTDR_APP_ACCESSED (e}

#define X86_DESCRIPTOR_APP_READ WRITE 0ox2

tt def i neX86_DESCR PTCR_APP_EXECUTE_READ 0x2

#define X86_DESCRIPTOR_APP_EXPAND_DOWN Ox4
#define X86_DESCRIPTOR_APP_CONFORMING Ox4
tt def i neX86_DESCR PTCR_APP_CCDE 0x8

LISTING 4-5. Additional i386 Memory Management Definitions

Thelast two sections of Listing 4-5 handle selectors and specia types of
descriptors, and are complementary to Listing 4-2:

e X86_SELECTOR_RPL, X86_SELECTOR_TI, and x8 6_SELECTOR_INDEX
are bit masks corresponding to the rpr.,, T1, and index members of the

X86_

® X86_

SELECTOR Structures defined in Listing 4-2.
SELECTOR_SHIFT iS a right-shift factor that right-aligns the value of

thesal ector'sindex member.

* X86_

seELEcTOR_LIMIT defines the maximum index value a selector can

hold and is equal to 8,191. Thisvalue determines the maximum size of a
descriptor table. Each sdlector index points to a descriptor, and each
descriptor consists of 64 hits or 8 bytes (cf. x86_pEscrIpTOR in Listing 4-2),
S0 the maximum descriptor table size amountsto 8,192 * 8 = 64 KB.

186 EXPLORING WINDOWS 2000 MEMORY

» Thelistof X86_DESCRIPTOR_SY S * constantsdefinevaluesof a
descriptor's Type member if its s-bitis zero, identifying it as a system
descriptor. Pleaserefer to Listing 4-2 for the bit-field layout of a descriptor,
determined by the structure x86_prscripTorR. The system descriptor types
are described in detail in the Intel manuals (Intel 1999c, pp. 3-15f) and
summarized in Table 4-1.

The x86_pescrIpTOR_APP_* constants concluding Listing 4-5 apply to a
descriptor's Type member if it is an application descriptor referring to a code or
data segment, identified by a nonzero s-bit. Because application descriptor types
can be characterized by independent properties reflected by the four type bits, the
X86_DESCRIPTOR_APP_* constantsaredefined assingle-bit masks,inwhichsome
bits are interpreted differently for data and code segments:

* X86_DESCRIPTOR_APP_ACCESSED iS St if the segment has been accessed.

* X86_DESCRIPTOR_APP_READ WRITE decides whether a data segment alows
read-only or read/write access.

e X86 DESCRIPTOR_APP EXECUTE READ decides whether a code segment
allows execute-only or execute/read access.

* X86_DESCRIPTOR_APP_DOWN IS Set for expand-down data segments, which
is a property commonly exposed by stack segments.

* X86_DESCRTPTOR_APP_CONFORMING indicates whether a code segment is
conforming, that is, whether it can be called by less privileged code
(cf. Intel 1999c¢, pp. 4-13ff).

» X86 _DESCRIPTOR_APP_CODE distinguishes code and data segments. Note
that stack segments belong to the data segment category and must always
bewritable.

We will revisit system descriptors later when the memory spy application pre-
sented in the next sectionsis up and running. Table 4-1 aso concludes a short intro-
duction to 1386 memory management. For more information on this topic, please
refer to the original Intel Pentium manuals (Intel 1999a, 1999b, 1999¢) or one of the
secondary readings, such as Robert L. Hummel's great 80486 reference handbook
(Hummel 1992).

A SAMPLE MEMORY SPY DEVICE 187

TABLE 4-1. System Descriptor Types

NAME VALUE DESCRIPTION
X86_DESCRIPTOR_SYS_TSS16A 0x1 16-bit Task State Segment (Available)
X86_DESCRIPTOR_SYS_LDT 0x2 Local Descriptor Table
X86_DESCRIPTOR_SYS_TSS16B ox3 16-bit Task State Segment (Busy)
X86_DESCRIPTOR_SYS_CALLI16 0x4 16-bit Call Gate
X86_DESCRIPTOR_SYS TASK 0xX5 Task Gate
X86_DESCRIPTOR_SYS_INT16 0x6 16-bit Interrupt Gate
X86_DESCRIPTOR_SYS_TRAP16 ox7 16-bit Trap Gate
X86_DESCRIPTOR_SYS_TSS32A 0x9 32-hit Task State Segment (Available)
X86_DESCRIPTOR_SYS_TSS32B OxB 32-hit Task State Segment (Busy)
X86_DESCRIPTOR_SYS_CALL32 OoxC 32-bit Call Gate
X86_DESCRIPTOR_SYS_INT32 OxE 32-bit Interrupt Gate
X86_DESCRIPTOR_SYS_TRAP32 OxF 32-bit Trap Gate

A SAMPLE MEMORY SPY DEVICE

One of the frequently recurring Microsoft statements about Windows NT and 2000 is
that it is a secure operating system. Along with user authentication issues in network-
ing environments, this aso includes robustness against bad applications that might
compromise the system'sintegrity by misusing pointers or writing outside the bounds
of amemory data structure. This has aways been a nasty problem on Windows 3.,
in which the system and all applications shared a single memory space. Windows NT
has introduced a clear separation between system and application memory and
between concurrent processes. Each process gets its own 4-GB address space, as
depicted in Figure 4-2. Whenever a task switch occurs, the current address space is
switched out and another one is mapped in by selecting different values for the seg-
ment registers, page tables, and other memory management data specific to a
process. This design prevents applications from inadvertently tampering with
memory of other applications. Each process also requires access to system
resources, so the 4-GB space always contains some system code and data. To
protect these memory regions from being overwritten by hostile application code, a
different trick is employed.

188 EXPLORING WINDOWS 2000 MEMORY

WINDOWS 2000 MEMORY SEGMENTATION

Windows 2000 has inherited the basic memory segmentation scheme of Windows
NT 4.0, which divides the 4-GB process address space in two equal parts by default.
The lower half, comprising the range 0x00000000 to ox7rrrrrrr, contains applica-
tion data and code running in user-mode, which is equivalent to Privilege Level 3 or
"Ring 3" in Intel's terminology (Intel 1999a, pp. 4-8ff; Intel 1999c¢, pp. 4-8ff). The
upper half, ranging from 0x80000000 t0 0xFrEFFFFF, IS reserved for the system,
which is running in kernel-mode, also known as Intel's Privilege Level 0 or "Ring 0."
The privilege level determines what operations may be executed and which memory
locations can be accessed by the code. Especially, this means that certain CPU
instructions are forbidden and certain memory regions are inaccessible, for low-
privileged code. For example, if a user-mode application touches any addressin

the upper half of the 4-GB address space, the system will throw an exception and
terminate the application process without giving it another chance.

Figure 4-5 demonstrates what happens if an application attempts to read from
address 0x80000000 . This dtrict access limitation is good for the integrity of the sys-
tem but bad for debugging tools that should be able to show the contents
of al valid memory regions. Fortunately, an easy workaround exists: Like the sys
tem itself, kernel-mode drivers run on the highest privilege level and therefore are
allowed to execute all CPU instructions and to see all memory locations. Thetrick is
to inject a spy driver into the system that reads the requested memory and sends the
contents to a companion application waiting in user-mode. Of course, even a kernel-
mode driver cannot read from virtual memory addresses that aren't backed up by
physical or page file memory. Therefore, such adriver must check all addresses care-
fully before accessing them in order to avoid the dreaded Blue Screen Of Death
(BSOD). Contrary to an application exception, which terminates the problem appli-
cation only, a driver exception stops the entire system and forces a full reboot.
| ek Windowis 2000 Info Center V1.00: w2k_info.exe - Application Errar = | l

The instruction at "0x00401af0" referenced memory at "0x80000000%. The memory could not be “read”, |

Click on OK to terminate the program
Click on CANCEL to debug the program

Cancel

FIGURE 4-5. Addresses Sarting at 0x80000000 Are Not Accessible in User-mode

THE DEVICE 170 CONTROL DISPATCHER

The companion CD of this book contains the source code of a versatile spy device
implemented as a kernel-mode driver, which can be found in the \src\w2k_spy
directory tree. This device is based on a driver skeleton generated by the driver

A SAMPLEMEMORY SPY DEVICE 189

wizard introduced in Chapter 3. The user-mode interface of w2k_spy. Sysis based on
Win32 Device I/O Control (IOCTL), briefly described in the same chapter. The spy
driver defines a device named \Device\w2k_spy and a symbolic ink, \Dosbevices\
w2k_spy, reguired to make the device reachable from user-mode. It is funny that the
namespace of symbolic linksis called \pospevices. We are certainly not working
with DOS device drivers here. This name has historic roots and is now set in stone.
With the symbolic link installed, the driver can be opened by any user-mode module
via the standard Win32 API function createFile () , using the path \\ . \w2k_spy.
The character sequence \\ . \ is a general escagpe for loca devices. For example,
\\.\c: refersto hard disk c¢: of the local system. See the CreateFile () documen-
tation in the Microsoft Platform SDK for more details.

Parts of the driver's header file w2k_spy.h are included above as Listings 4-2
to 4-5. Thisfileis somewhat similar to aDLL header file: It contains definitions
required by the module itself during compilation, but it also provides enough infor-
mation for a client application that needs to interface to it. Both the DLL/driver
and the client application include the same header file, and each module picks out
the definitions it needs for proper operation. However, this Janus-headed nature
of the header file creates many more problems for a kernel-mode driver than for
aDLL because of the special development environment Microsoft provides for dri-
vers. Unfortunately, the header files contained in the DDK are not compatible with
the Win32 files in the Platform SDK. The header files cannot be mixed, at least not
in C language projects, resulting in a deadlocked situation in which the kernel -
mode driver has access to constants, macros, and data types not available to the
client application, and vice versa. Therefore, w2k_spy . ¢ defines a flag constant
named _w2xk_spv_svs_, and w2k_spy.h checks the presence or absence of this con-
stant to define items that are missing in one or the other environment, using
tifdef.. . ttelse. . . #endif clauses. Thismeansthat all definitionsfound inthe
#ifdef w2k _spv_svs_ branch are "seen" by the driver code only, whereas the defini-
tionsinthe #e1se branch are evaluated exclusively by the client application. All parts
of w2k_spy .h outside these conditional clauses apply to both modules.

In Chapter 3, in the discussion of my driver wizard, | presented the driver skeleton
code provided by the wizard in Ligting 3-3. The starting point of any new driver project
created by thiswizard is usually the DeviceDispatcher () function. It receives adevice
context pointer and a pointer to the /O Request Packet (IRP) that is to be dispatched.
Thewizard's boilerplate code already handlesthe basic I/O requests TrRp_MJ_CREATE,
TRP_MJ_CLEANUP, and rrp_MJ_crose, Sent to the device when it is opened or closed by
aclient. TheDeviceDispatcher() simplyreturnsSTATUS_SUCCESSfortheserequests,
so the device can be opened and closed without error. For some devices, this behavior is
sufficient, but others require more or less complex initialization and cleanup code here.
All remaining requests return status_not_1tMpLEMENTED. Thefirst.step in the extension
of the code is to change this default behavior by handling more requests. As aready

190 EXPLORING WINDOWS 2000 MEMORY

noted, one of themaintasksof w2k_spy . sysisto send dataunavailablein user-mode
to aWin32 application by means of IOCTL calls, so thework startswith the addition
of an Trp_MJ_DEVICE_conTROIL Case to the DeviceDispatcher () function. Listing 4-6
showsthe updated code, asit appearsinw2k_spy. c.

NTSTATUS Devi ceD spat cher (PDEVICE_CONTEXT pDeviceContext,

PIRP pIrp)
{
Pl O STACK_LOCATI ON pi sl ;
DWNRD dinfo = O;
NTSTATUS ns = STATUS_NOT IMPLEMENTED;
pi sl = IoGetCurrentIrpStackLocation (pIrp);

switch (pisl->MyjorFunction)
{
case IRP_MJ_CREATE :
case IRP_MJ_CLEANUP :
case IRP_MJ_CLOSE:
{
ns = STATUS_SUCCESS;
break;
}

case IRP_MJ_DEVICE_CONTROL :

{

ns = SpyD spatcher (pbeviceContext,

pisl->Parameters. DeviceIoControl
.IoControlCode,

plrp->AssociatedIrp. SystemBuffer,
pisl->Parameters. DeviceIoControl
.InputBufferLength,

plrp->AssociatedIrp.SystemBuffer,
pisl->Parameters. Devi cel oControl
. OutputBuff erLength,

&dInfo);
br eak;
}
)
pIrp->IoStatus . Status = ns;

pIrp->IoStatus. Information = dl nfo;

IoCompleteRequest (pIrp, IO_NO_INCREMENT) ;
return ns;

}

LISTING 4-6. Adding an IRP_MJ_DEVICE_CONTROL Case to the Dispatcher

A SAMPLEMEMORY SPY DEVICE 191

The IOCTL handler in Listing 4-6 isfairly simple—itjust calls spyDispatcher ()
with parameters it extracts from the IRP structure and the current I/O stack location
embedded in it. The SpyDispatcher (), shown in Listing 4-7, requires the following
arguments:

» pDeviceContext is the driver's device context. The basic Device Context
structure provided by the driver wizard containsthe driver and device object
pointers only (see Listing 3-4). The spy driver adds a couple of membersto it
for private use.

* dcode specifiesthe IOCTL code that determines the command to be
executed by the spy device. An IOCTL code is a 32-bit integer consisting
of 4 bit-fields, as illustrated by Figure 4-6.

 pInput pointsto the buffer providing the IOCTL input data.
e drnput iSthe size of theinput buffer.

* poutput points to the buffer receiving the IOCTL output data.
» doutput isthe size of the output buffer.

* pdInfo pointsto a DWORD variable that should receive the number of bytes
written to the output buffer.

Depending on the IOCTL method used, the input and output buffers are
passed differently from the system to the driver. The spy device uses buffered 1/0,
directing the system to copy the input datato a safe buffer allocated automatically
by the system, and to copy a specified amount of data from the same system buffer
to the caller's output buffer on return. It isimportant to keep in mind that the input
and output buffers overlap in this case, so the IOCTL handler must save any input
datait might need later before it writes any output datato the buffer. The pointer to
this I/O buffer is stored in the systemButfer member of the associatedrrp union
insidethe IRP structure (cf. ntdadk.n). Theinput and output buffer sizes are stored
inacompletely different location of the trp—they are part of the bevicerocontrol
member of the Parameters union inside the IRP' s current stack |ocation, named
InputBufferLength and outputBufferLength, respectively. The DeviceioControl
substructure also providesthe IOCTL code viaits rocontrolcode member. More
information about the Windows NT/2000 IOCTL methods and how they pass data
in and out can be found in my article "A Spy Filter Driver for Windows NT" in
Windows Developer's Journal (Schreiber 1997).

192 BXPLAR NG W NDOAB 2000 MEMORY

NTSTATUS SpyDispatcher (PDEVICE_CONTEXT pDeviceContext,

DWORD dCode,
PVOID pInput ,
DWORD dInput,
PVa D pOutput,
DWORD dOutput,
PDWCRD pdInfo)

SPY_MEMORY_BLOCK smb;

SPY_PACE ENTRY spe;

SPY CALL_INPUTSCI ;

PHYSICAL_ADDRESS pa,;

DWORD dVval ue, dCount;

BOCL fReset, fPause, fFilter, fLine;

PVa D pAddress;

PBYTE pbName ;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch);
*pdInfo = O;
swi tch (dGCode)

{

case SPY_IO_VERSION_INFO:

ns = SpyOutputVersionInfo (pQutput, dQutput,
break;

case SPY_IO_OS_INFO:

pdInfo);

ns = SpyOutputOsInfo (pOutput, dQutput, pdInfo);

break;
}
case SPY_IO_SEGMENT :
{
if ((ns= SpyInputDword (&dValue,
pl nput, dInput))
== STATUS_SUCCESS)
{

ns = SpyQut put Segrent (dVal ue,
pCQut put, dQut put,

}
break;
}
case SPY_| O | NTERRUPT:
{
if ((ns= SpylnputDaord (&dvalue,

pl nput, dInput))

pdInfo) ;

A SAMPLE MEMORY SPY DEVICE

ns = SpyOutputInterrupt (dval ue,
pQut put, doutput, pdInfo);

}
br eak;
}
case SPY_IO_PHYSICAL:
{
if ((ns= spyInputPointer (&pAddress,
pInput, dInput))
== STATUS_SUCCESS)
{
pa = MmGetPhysicalAddress (pAddress);
ns = SpyQutputBinary (&pa, PHYSICAL_ADDRESS_,
poutput, dQutput, pdInfo) ;
}
br eak;
}
case SPY_IO_CPU_INFO:
{
ns = SpyOutputCpulnfo (pQutput, dQutput, pdInfo);
br eak;
)
case SPY_IO_PDE_ARRAY:
{

ns = SpyQutputBinary (x86_PDE_ARRAY, SPY_PDE_ARRAY_,
pQut put, dQutput, pdinfo);

br eak;
)
case SPY_IO_PAGE_ENTRY :
{
if ((ns= SpylnputPointer (&pAddress,
pInput, dInput))

== STATUS_SUCCESS)
{

SpyMenor yPageEntry (pAddress, &spe) ;

ns = SpyQut put Bi nary (&pe, S P Y_PAGE_ENTRY_ ,
pQut put, dQutput, pdinfo);

}
break;
}
case SPY_| O MEMORY_DATA:
{
if ((ns= SpyInputMemory (&smb,
pl nput, dInput))
== STATUS_SUCCESS)
{

ns - SpyQutputMenory (&smb,
pQut put, dQutput, pdinfo) ;

(conti nued)

193

194 EXPLORING WINDOWS 2000 MEMORY

break;

}

case SPY_IO_MEMORY_BLOCK:

{

if ((ns= SpyInputMemory (&smb,
pInput, dInput))

== STATUS_SUCCESS)

{
ns = SpyQutputBlock (&smb,

pOutput, dOutput, pdInfo);

}

break;

)

case SPY_TIO_HANDLE_INFO:
{
if ((ns= SpyInputHandle (&hObject,
pl nput, dInput))
== STATUS_SUCCESS)
{
ns = SpyOutputHandleInfo (hObject,
pQut put, dQutput, pdinfo);

}

break;

case SPY_| O HOOK | NFQ

{
ns = spyOutputHookInfo (pQutput, dQutput, pdinfo);
br eak;
}
case SPY_TO_HOOK_INSTALL:
{
if (((ns= spyInputBool (&fReset,
pInput, dInput))
== STATUS_SUGCCESS)
8&&
((ns =gpyHookInstall (fReset, &dCount))
== STATUS_SUCCESS))
{
ns = SpyOutputbDword (dCount,
pOutput, dQutput, pdinfo);
}
break;

}
case SPY_IO_HOOK_REMOVE :
{
if (((ns= SpylnputBool (&fReset,
pInput, dInput))

== STATUS_SUCCESS)
&b
((ns= SpyHookRenove (fReset, &dCount))
== STATUS_SUCCESS))

{

A SAMPLE MEMORY SPY DEVICE 195

ns = SpyOutputDword (dCount,
poutput, dQutput, pdlnfo);
}
break;
}
case SPY_TIO_HOOK_PAUSE :
t
if ((ns= SpyInputBool (&fPause,
pInput, dInput))
== STATUS_SUCCESS)

{

frause = SpyHookPause (fPause);

ns = SpyQut put Bool (f pause,
pQut put, doutput, pdInfo) ;

}

break;

}

case SPY_IO_HOOK_FILTER:
{
if ((ns= SpylnputBool (&fFilter,
pl nput, dInput))
== STATUS_SUCCESS)
{
fFilter = SpyHookFilter (fFilter);

ns = SpyQutputBool (fFilter,

pQut put, dQutput, pdinfo);
}

break;

)

case SPY_IO_HOOK_RESET :
{
SpyHookReset () ;
ns = STATUS_SUCCESS;
break;
}
case SPY_IO_HOOK_READ:
{
if ((ns= SpylnputBool (&fLine,
pInput, dInput))
== STATUS_SUCCESS)

ns = SpyQut put HokRead (fLine,

pQut put, dQutput, pdinfo) ;
}

break;

}

case SPY_TIO_HOOK_WRITE:

{

SpyHookWrite (pl nput, dInput) ;

(conti nued)

196 EXPLORING WINDOWS 2000 MEMORY

ns = STATUS_SUCCESS;

break;
}
case SPY_TIO_MODULE_INFO:
{
if ((ns= SpyInputPointer (&pbName,
pInput, dInput))

== STATUS_SUCCESS)
{

NS = SpyOutputModuleInfo (pbName,

pQut put, dQutput, pdInfo);
}

break;

}

case SPY_IO_PE_HEADER:
{
if ((ns = SpylnputPointer (&pAddress,

pInput, dInput)
== STATUS_SUCCESS)

{
ns = SpyQut put PeHeader (pAddress,

pQut put, dQutput, pdInfo) ;

}
break;
}
case SPY_IO_PE_EXPORT :
{
if ((ns= SpylnputPointer (&pAddress,
pl nput, dinput))
== STATUS SUCCESS)
{
ns = SpyCQut put PeExport (pAddress,
pQut put, dQutput, pdinfo);
}
break;
}
case SPY_IO_PE_SYMBOL :
(
if ((ns= SpylnputPointer (&pbName,
pl nput, dInput))
== STATUS_SUCCESS)
{
ns = SpyOutputPesymbol (pbNane,
pQutput, dQutput, pdinfo);
}
break;

case SPY_| O CALL:
{
if (| (ns = SpyInputBinary (&sci, SPY_CALL_INPUT_,

pInput, dInput))
== STATUS_SUCCESS)

A SAMPLEMEMORY SPY DEVICE 197

ns = SpyQutputCall (&sci,
pQut put, doutput, pdinfo) ;

break;

}
}

MUTEX_RELEASE (pDeviceContext->kmDispatch);
return ns;

LISTING 4-7. The Spy Driver's Internal Command Dispatcher

The main DDK header filentdak.n, aswell asthe Win32 filewinioctl .hin
the Platform SDK, define the simple but highly convenient cTr._cope () macro shown
in Listing 4-8 to build IOCTL codes according to the diagram in Figure 4-6. The four
parts serve the following purposes:

1. peviceType iSa 16-bit device type ID. ntddk.h lists a couple of predefined
types, symbolized by the constants r1r.e_peviceE_* . Microsoft reserves the
range 0x0000 to ox7rrF for internal use, while the range 0xg8000 to OXFFFF
is available to developers. The spy driver defines its own device ID
FILE_DEVICE_SPY and sdts it to 0x8000.

2. Access specifies the 2-bit access check value determining the required
access rights for the IOCTL operation. Possible values are FILE_ANY_
ACCESS (0, FILE_READ_ACCESS (1), FILE_WRITE_ACCESS (2, andt he
combination of the latter two, FILE_READ_ACCESS | FILE WRITE_
ACCESS (3). See ntddk.h for more details.

3. Function is a 12-bit ID that selects the operation to be performed by the
device. Microsoft reserves the values 0x000 to ox7rF for internal use, and
leaves range 0x800 to OXFFF for developers. The IOCTL function IDs
recognized by the spy device are drawn from the latter number poal.

4. Method consists of 2 bits, selecting one of four available I/O transfer
methods named meTHOD_BUFFERED (0), METHOD_IN_DIRECT (1), METHOD_
our_pirecT (2), and verHop_neETTHER (3), found in ntadk.h. The spy
device uses veTHOD_RUFFERED fOr al requests, which is a highly secure but
also somewhat sluggish method because of the data copying between the
client and system buffers. Because the I/O of the memory spy is not time-
critical, it is a good idea to opt for security. If you want to know more
about the other methods, please refer to my spy filter article mentioned on
p.191. (Schreiber 1997).

198 EXPLORING WINDOWS 2000 MEMORY

#define CTL_OODE (DeviceType, Function, Method, Access) \
(((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2} (Method))

LISTING 4-8. The CTL_CODE () Macro Builds I/0O Control Codes

— S
31 16 15 14 13 210

| Device Type Access Function Method

FIGURE 4-6. Structure ofa Device 1/0O Control Code

Table 4-2 summarizes all IOCTL functions supported by w2k_spy . sys. The
functionswith IDs in the range 0 to 10 are memory exploration primitives that are
sufficient to cover awide range of tasks; they are discussed later in this chapter. The
remaining functionswith IDs of 11 and up belong to different IOCTL groups that
will be described in detail in the next chapters, where Native APl hooks and kernel
calls from user-mode are discussed. Note that some IOCTL codes require the write
access right, indicated by bit #15 being set (see Figure 4-6). That is, al IOCTL com-
mands with a code of 0x80006nnn can be issued via aread-only device handle, and a
code of 0x8000Ennn requires a read/write handle. The access rights are typically
requested in the createFile() call that opens the device by specifying a combination
of the GENERIC_READ and cenertc_wriTE flags for the awbesiredaccess argument.

Thefunction namesin the leftmost column of Table 4-2 a so appear as cases of the
large switch/case statement of the SpyDispatcher () functionin Listing 4-7. Thisfunc-
tion first obtains the devices dispatcher mutex to guarantee that only a single request is
executed at atime if more than one client or amultithreaded application communicates
with the device. vuTex_watT () iSawrapper macro for kewaitForMutexobject (),
which takes no less than five arguments. xewaitForMutexobject () iSamacro itsdf,
forwarding its arguments to KewaitForsingleObject () . MUTEX_WATIT (), adlongwith
its friends vuTEx_RELEASE () and MUTEX_INTTIALIZE (), iSshown in Listing 4-9. After
the mutex object becomes signaled, SpyDispatcher () branchesto various short code
sequences, depending on the received IOCTL code. At the end, it releases the mutex and
returns a status code to the cdler.

The SpyDispatcher () uses a couple of helper functions to read input parame-
ters, obtain the requested data, and write the data to the caller's output buffer. As
already mentioned, a kernel-mode driver must be overly fussy with any user-mode

TABLE 4-2.

A SAMPLE MEMORY SPY DEVICE 199

JOCTL Functions Supported by the Spy Device

FUNCTION NAME ID

IOCTL CODE DESCRIPTION

SPY_IO_VERSION_INFO 0
SPY_IO_OS_INFO 1
SPY_10_SEGMENT 2
SPY_IO_INTERRUPT 3
SPY_IO_PHYSICAL 4
SPY_IO_CPU_INFO 5
SPY_IO_PDE_ARRAY 6
SPY_IO_PAGE_ENTRY 7
SPY_IO_MEMORY_DATA 8
SPY_IO_MEMORY_BLOCK 9
SPY_IO_HANDLE_INFO 10
SPY_IO_HOOK_INFO n
SPY_IO_HOOK_INSTALL 12
SPY_IO_HOOK_REMOVE I3
SPY |10 _HOOK_PAUSE 14
SPY_IO_HOOK_FILTER 15
SPY_IO_HOOK_RESET 16
SPY_IO_HOOK_READ 17
SPY_IO_HOOK_WRITE 18
SPY_IO_MODULE_INFO 19

SPY_IO_PE_HEADER 20
SPY_IO_PE_EXPORT 21
SPY_IO_PE_SYMBOL 22
SPY_IO_CALL 23

0x80006000
0x80006004

0x80006008
Ox8000600C

0x80006010

0x80006014
0x80006018
0Ox8000601C
0x80006020
0x80006024
0x80006028

0Ox8000602C
Ox8000E030
Ox8000E034
Ox8000E038

Ox8000E03C
Ox8000E040
0x80006044
Ox8000E048
0Ox8000604C

0x80006050
0x80006054
0x80006058

Ox8000E05C

Returns spy version information

Returns operating system information
Returns the properties of a segment
Returns the properties of an interrupt gate
Linear-to-physical address translation
Returns the values of specid CPU regigers
Returns the PDE array at OxC0300000
Returns the PDE or PTE of alinear address
Returns the contents of a memory block
Returns the contents of a memory block
Looks up object properties from a handle
Returns info about Native APl hooks
Installs Native API hooks
RemovesNative APl hooks
Pauses/resumes the hook protocol
Enables/disables the hook protocol filter
Clears the hook protocol

Reads data from the hook protocol
Writes data to the hook protocol

Returns information about |oaded
system modules

Returns rvace_NT HEADERS data
Returns tMaGE_EXPORT DIRECTORY data

Returns the address of an exported
systemsymbol

Calls a function inside a loaded module

parameters it receives. From a driver's perspective, al user-mode code is evil and has
no other thing on its mind but to trash the system. This somewhat paranoid view is
not absurd—just the dightest dlip brings the whole system to an immediate stop, with
the appearance of a BlueScreen. So, if a client application says: "Here's my buffer—it
can take up to 4,096 bytes," the driver does not accept it—neither that the buffer

200 EXPLORING WINDOWS 2000 MEMORY

#define MUTEX_INITIALIZE (_mutex) \
KeInitializeMutex \
(& (_mutex), 0)

#def i ne MUTEX_WAIT (_mutex) \
KeWaitForMutexObject \
(& (_mutex), Executive, KernelMode, FALSE, NULL)

#def i ne MUTEX_RELEASE (_mutex) \
KeRel easeMut ex \
(& (_mutex), FALSE)

LISTING 4-9. Kernel-Mutex Management Macros

points to valid memory, nor that the buffer sizeis correct. In an IOCTL situation
with buffered 1/O (i.e., if the Method portion of the IOCTL code indicates meTHOD
BUFFERED), the system takes care of the sanity checks and allocates a buffer that

is large enough to hold both the input and output data. However, the other 1/O
transfer methods, most notably veTHOD_NETTHER, Where the driver receives original
user-mode buffer pointers, require more foresight.

Although the spy device uses buffered I/O, it hasto check the input and output
parametersfor validity. It might be that the client application passesin lessdatathanis
required or provides an output buffer that is not large enough for the output data. The
system cannot catch these semantic problems, because it doesn't know what kind of
dataistransferred in an IOCTL transaction. Therefore, SpyDispatcher () calsthe
spyInput* () and spyoutput* () helper functions to copy data from or to the /O
buffers. Thesefunctions execute the requested operation only if the buffer size
matches the requirements of the operation. Listing 4-10 shows the basic input
functions, and Listing4-11 shows the basic output functions. spyInputBinary() and
SpyoutputBinary() aretheworkhorses. They test the buffer size, and, ifitis OK, they
copy the requested amount of data using the Windows 2000 Runtime Library function
Rt1CopyMemory () . Theremaining functionsare simplewrappersfor the common data
types pworp, BOOL, pvorD, and HANDLE. Additionaly, spyoutputBlock () copiesthe
data block specified by the caller in a spy_meMORY_BLOCK Structure after verifying that
all bytesintheindicated range are readable. The spyInput* () functionsreturn STATUS
INVALID_BUFFER_SIZE if incomplete input datais passed in, and the spyoutput* ()
functions return STATUS eurrer_Too_sMaLL if the output buffer is smaller
than required.

A SAMPLE MEMORY SPY DEVICE 201

NTSTATUS sSpyInputBinary (PVOID pDat a,
DWORD dDat a,
PVO D pInput,
DWRD dInput)
{

NTSTATUS ns = STATUS_OBJECT_TYPE_MISMATCH;

if (dbData <= dl nput)
{
RtlCopyMemory (pData, pl nput, dpata);
Nns = STATUS_SUCCESS;
}

return ns;

}

Il -

NTSTATUS spyInputbword (PDWORD pdVal ue,
PMAD pInput,
DWRD dInput)
{
return Spyl nput Bi nary (pdval ue, DwORD_, plnput, dInput) ;

}

NTSTATUS sSpyInputBool (PBOOL pfVal ue,
PVO D pl nput,
DWORD dI nput)
{
return Spyl nput Binary (pfValue, BOOL_, plnput, dinput) ;
}

Il - -

NTSTATUS sSpyInputPointer (PPVMAD ppAddress,
P/ D pl nput,
DWORD dl nput)
{
return Spyl nputBinary (ppAddress, PVO D, plnput, dInput);
}

NTSTATUS SpyInputHandle (PHANDLEphQHject,
PVOD piInput,
DWORD dl nput)
{
return Spyl nputBinary (phObject, HANDLE_, pl nput, dInput) ;

}

LISTING 4-10. Reading Input Data from an 10 CTL Buffer

202 EXPLORING WINDOWS 2000 MEMORY

NTSTATUS SpyQutputBinary (pPvoID pData,
DWRD dpata,
PVO D poOutput,
DWORD doutput,
PDWORD pdInfo)

{

NTSTATUS ns = STATUS_BUFFER_TOO_SMALL ;
*pdInfo = O;

if (dData <= dQutput)

{
R | CopyMenory (pQutput, pData, *pdinfo = dbData);

ns = STATUS_SUCCESS;

}

return ns;

NTSTATUS spyOutputBlock (PSPY_MEMORY_BLOCK psmb,

Pva D pOutput ,
DWORD dQut put,
PDWRD pdl nf o)

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if (SpyMemoryTestBlock (psmb->pAddress, psmb->dBytes))
{
ns = SpyQutputBinary (psmb->pAddress, psmb->dBytes,
pOutput, dQutput, pdiInfo);

}

return ns;

}

NTSTATUS spyOutputDword (DAORD dVal ue,
PVAO D pOutput,
DWRD doOutput,
{ PDWCORD pdl nf 0)
return SpyQutputBinary (&dvalue, DWORD_,
pQut put, dQutput, pdinfo) ;

/7

NTSTATUS SpyQut pUtBool (BGOL fVal ue,
PMAD pOutput,
DWRD doOutput,
PDWRD pdl nf 0)

A SAMPLE MEMORY SPY DEVICE 203

return SpyOutputBinary (&fValue, BOOL_,
pOutput, dQutput, pdInfo) ;

NTSTATUS SpyOutputPointer (PVOID pValue,
PVOID pOutput,
DWRD doutput,
PDWORD pdl nf o)
{
return SpyQutputBinary (&pvalue, PVOID_,
pQut put, doutput, pdInfo) ;

}

LISTING 4-11. Writing Output Data to an IOCTL Buffer

Y ou might have noticed that the SpyDispatcher () in Listing 4-7 contains
referencesto afew more spyrnput+ () and SpyOutput* () functions. Although
ultimately based on spyInputBinary() and spyoutputBinary() , they areslightly
more complex than the basic functions in Listings 4-10 and 4-11 and, therefore,
are discussed separately a little later in this chapter. So let's start at the beginning
of SpyDispatcher () and work through the switch/case statement step by step.

THE IOCTL FUNCTION SPY_IO_VERSION_INFO

The IOCTL spy_ro_versron_znro function fills a caller-supplied SPY _
VERSION_INFO structure with data about the spy driver itself. It doesn't require
input parameters and usesthe spyoutputversioninfo() helper function. This
function, includedinListing4-12together withtheSPY VERSION_INFOstructure,
istrivial. It setsthe aversion member to the constant SPY_VERSION (currently
100, indicating V1.00) defined in w2k_spy .h, and copies the driver's name
symbolized by the string constant orv_name (“SBS Windows 2000 Spy Device")
to the awname member. The major version number is obtained by dividing
aversion by 100. The remainder yields the minor version number.

typedef struct _SPY_VERSI ON_| NFO

{
DNRD aver si on;

WRD awName [SPY_NAME_];
SPY_VERSI ON_I NFQ *PSPY_VERSION_INFO, **PPSPY_VERSION_INFO;

(conti nued)

204 EXPLORING WINDOWS 2000 MEMORY

#define SPY_VERSI ON_I NFO_ sizeof (SPY_VERSION_INFO)

NTSTATUS SpyOutputVersionInfo (PVOID pOutput,
DWIRD doOutput,
PDWORD pdInfo)
SPY_VERSI ON_| NFO svi ;
svi.dVersion = SPY_VERSION;

wcscpyn (svi. awName, USTRING (CSTR NG (DRV_NAME)) , SPY_NAME_) ;

return SpyOutputBinary (&vi, SPY_VERSION_INFO_,
pCQut put, dQutput, pdInfo);

}

LISTING 4-12. Obtaining Version Information About the Spy Driver

THEIOCTL FUNCTIONSPY_|0_OS INFO

ThelOCTL SPY_1O_OS_INFOfunctionismuch moreinteresting thanthe preceding
one. It is another output-only function, expecting no input arguments and filling a
caller-supplied SPY _OS_INFOstructurewiththevaluesof several internal operating
system parameters. Listing 4-13 shows the definition of this structure and the helper
function spyoutputosinfo() called by the dispatcher. Some of the structure mem-
bers are simply set to constants drawn from the DDK header files and w2k _spy.h;
others receive "live" values read out from several internal kernel variables and struc-
tures. In Chapter 2, you became acquainted with the variables ntrui1dnumber and
NtGlobalFlag, exported by ntoskrni. exe (see Table B-1 in Appendix B). Other
than the other exported nt* symbols, these don't point to API functions, but to vari-
ablesin the kernel's . data section. In the Win32 world, it is quite uncommon to
export variables. However, several Windows 2000 kernel modules make use of this
technique. ntoskrnl. exe exports no fewer than 55 variables, ntdai1. a11 provides 4,
and hal.di1 provides 1. Of the st of ntoskrnl.exe variabl €S, SpyOutputOosInfO ()
COpieS MmHighestUserAddress, MmUserProbeAddress, MmSystemRangeStart,
NtGlobal Fl ag, KeI386MachineType, KeNumberProcessors, and NtBuildNumber
to the output buffer.

A SAMPLE MEMORY SPY DEVICE 205

When a module imports data from another module, it has to instruct the com-
piler and linker accordingly by using the extern keyword. This will cause the linker
to generate an entry in the module's import section instead of trying to resolve the
symbol to a fixed address. Some extern declarations are already included in
ntddk.h. Thosethat are missing are included in Listing 4-13.

typedef struct _SPY_CS_| NFO

DANRD dPageSi ze;

DWRD drageShift;

DWORD drptishift;

DNRD dpdishift;

DWCRD dPageMask;

DWRD dPti Mask;

DWRD drdiMask;

PX86_PE pteArray;

PX86_PE pdearray;

PVOID pLowestUserAddress ;
PVOID pThreadEnvironmentBlock;
PVOD ©pHighestUserAddress;
PMOD pUserProbeAddress;

PMOD pSystemRangeStart ;

PMOD pLowestSystemAddress;
PMOD pSharedUserData;

PMOD pProcessorControlRegion;
PMa D pPr ocessor Gont r ol Bl ock;
DNRD dGlobalFlag;

DWRD dI386MachineType;

DWRD dNumberProcessors;

DWRD dProductType;

DNRD dBuildNumber;

DWNRD dNtMajorVersion;

DWRD dNtMinorVersion;

WRD awNtSystemRoot [MAX_PATH];

SPY B8 INFQ *PSPY_CB INFQ **PPSPY_OS_INFO;
#define SPY_CB INFO_ sizeof (SPY_C5 INFOQ

11

(continued)

206 EXPLORING WINDOWS 2000 MEMORY

extern PWORD NlsAnsiCodePage;
extern PANCRD NlsOemCodePage;
extern PWORD NtBuildNumber ;
extern PDWORD NtGlobalFlag;

extern PDMRD KeI3g86MachineType;

NTSTATUS spyOutputOsInfo

(pvoID pQutput,

DWORD doutput,
PDNRD pdinfo)

{
SPY_SEGMENT ss;
SPY_OS_INFO soi ;

NT_PRODUCT_TYPE NtProductType;

PKPCR pkpcr ;

Nt Product Type =

(SharedUserData->ProductTypeIsValid

? SharedUserData->NtProductType

0);

SpySegnent (X86_SEGMENT FS, O,
pkpcr = ss.pBase;

i.dPageSize
.dPagesShift =
soi.dpPtishift =
i.dPdishift =

. dPageMask =
soi.dPtiMask =
.dPdiMask =
PteArray =

soi

SOi

soi
soi.
.PdeArray =
.pLowestUserAddress

soi
soi
.pThreadEnvironmentBlock =
.pHighestUserAddress =
.pUserProbeAddress =

soi
soi
soi
SOi .pSystemRangeStart -
.pLowestSystemAddress
.pSharedUserData =

.pProcessorControlRegion =

soi
soi
soi

soi .pProcessorControlBlock =
soi .dd obal H ag =
soi.dI386MachineType
.dNumberProcessors =
soi.dProductType =
.dBuildNumber =
soi.dNtMajorVersion =
soi

soi

soi

.dNtMinorVersion =

&ss) ;

PAGE_SIZE;

PAGE_SH FT;

PTI_SHIFT;

PDI_SHIFT;

X86_PAGE_MASK;

X86_PTI_MASK;

X86_PDI_MASK;

X86_PTE_ARRAY;

X8 6_PDE_ARRAY ;
MM_LOWEST_USER_ADDRESS;
pkpcr->NtTib. Self;
*MmHighestUserAddress;

(PMOD *MmUserProbeAddress;
*MmSystemRangeStart;
MM_LOWEST_SYSTEM_ADDRESS;

SharedUserData;

pkpcr;

pkpcr->Prcb;
*NtGlobalFlag;
*KeI386MachineType;
*KeNumberProcessors;

N Pr oduct Type;
*NtBuildNumber;

SharedUserData->NtMajorVersion;

SharedUserData->NtMinorVersion;

A SAMPLE MEMORY SPY LEM CE 207

wcscpyn (soi. awNtSystemRoot, SharedUserData->NtSystemRoot,
MAX_PATH) ;

return SpyQutputBinary (&soi, SPY_CS_INFO,
pOutput, doutput, pdInfo) ;

}

LISTING 4-13. Obtaining Information About the Operating System

The remaining members of the spv_os_1nro structure are filled with
valuesfrom system datastructures lying around in memory. For example,
SpyOutputOsInfO () assigns the base address of the Kernel's Processor Control
Region (KPCR) to the pprocessorcontrol Region member. Thisis avery important
data structure that contains lots of frequently used thread-specific data items, and
thereforeisplaced inits own memory segment addressed by the CPU's FSregister.
Both Windows NT 4.0 and Windows 2000 sst up FS to point to the linear address
OXFFDFFOQO0 in kernel-mode. spyoutputosinfo () calsthe spysegment () function
discussed later to query the base address of the FS segment in the linear address
space. This segment also comprises the Kerndl's Processor Control Block (KPRCB),
pointed to by the Prcb member of the kecr, immediately followed by a CONTEXT
structure containing low-level CPU status information of the current thread. The
definitions of the KPCR, KPRCB, and CONTEXT structures can be looked up in the
ntddk.nh header file. More on this topic follows later in this chapter.

Anocther internal data structure referenced in Listing 4-13 iS sharedUserData.
Itisactually nothing but a "well-known address," typecast to a structure
pointer. Listing 4-14 shows the definition as it appears in ntddk.h. Well-known
addresses are locations within the linear address space that are set at compile
time, and hence do not vary over time or with the configuration. Obviously,
ShareduserData is a pointer to a KUSER SHARED DATA structure found at the
fixed linear address oxrrpro000. This memory areais shared by the user-mode
application and the system, and it contains such interesting things as the
operating system'sversion number, which SpyOutputOsinfo() copiestothe
dNtMajorvVersion and dvtMinorversion members of the caller's SPY_OS_INFO
structure. As| will show later, the kuser_sHARED_DATA Structureis mirrored to
address 0x7rrE0000, Where user-mode code can access it.

Following the explanation of the spy devices IOCTL functions is a demo
application that displaysthe returned data on the screen.

ttdefi ne KI_USER_SHARED_DATA 0xffdf0000
#define SharedUserData ((KUSER_SHARED_DATA * const) KI_USER_SHARED_DATA)

LISTING 4-14. Definition of ShareduserData

208 EXPLORING WINDOWS 2000 MEMORY

THE I0CTL FUNCTION SPY_IO_SEGMENT

Now this discussion becomes really interesting. The spy_10_secmenT function does
some very-low-level operationsto query the properties of a segment, given asdector.
SpyDispatcher () first cals spyinputbword() to get the seector value passed in by
the calling application. You might recall that sdlectors are 16-bit quantities. However,
| try to avoid 16-bit data types whenever possible because the native word size of the
1386 CPUsin 32-bit mode is the 32-bit pworp. Therefore, | have extended the selector
argument to a DWORD where the upper 16 bits are always zero. If SpyinputDword ()
reports success, the spyoutputsegment () function shownin Listing 4-15iscalled.
Thisfunction ssimply returnsto the caller whatever the spysegment () helper function,
included in Listing 4-15, returns. Basically, spysegment () fillsa spy_seeMENT Struc-
ture, defined at the top of Listing 4-15. It comprises the selector's value in the form

of ax86_sELECTOR Structure (see Ligting 4-2), along with its 64-bit x86_DESCRIPTOR
(Listing 4-2, again), the corresponding segment's linear base address, the segment limit
(i.e, the segment size minus one), and aflag named f ok indicating whether the data
inthe spy_secMeNT Structureisvalid. The latter isrequired in the context of other
functions (e.g., SPY_10O_CPU_INFO) that return the properties of several segments at
once. Inthiscase, the fok member enablesthe caller to sort out any invalid segments
contained in the output data.

typedef struct _SPY_ SEGMENT

X86_SELECTOR Sel ector;
X86_DESCR PTOR Descriptor;

PVOID pBase;
DWORD dLimit;
BOCL fOk;

}

SPY_SEGMENT, *PSPY_SEGMENT, **PPSPY_SEGMENT;
#define SPY_SEGMENT_ sizeof (SPY_SEGMENT)

1 ———-

NTSTATUS spyOutputSegment (DMRD dSel ector,
PVQD pQutput,
DWRD doutput,
PDWRD pdinfo)
{

SPY_SEGMENT ss;

SpySegment (X86_SEGMENT OTHER, dSel ector, &ss):

A SAMPLE MEMORY SPY DEVICE 209

return SpyOutputBinary (&ss, SPY_SEGMENT_,
pQut put, doutput, pdiInfo);

BOOL spySegment (DNRD dSegnent ,
DWORD dSel ect or,
PSPY_SEGMENT pSegment)
{
BOOL f0k = FALSE;

if (pSegrent = NULL)

E()k = TRUE;
if (1!cpyselector (dSegnent, dSelector,
&pSegment->Selector))
{
fok = FALSE;
if (!SpyDescriptor (&pSegment->Selector,
&pSegment->Descriptor))
{
fOk = FALSE;
}

pSegment->pBase =
SpyDescri ptorBase (&pSegment->Descriptor) ;

pSegment->dLimit -
i im &pSegment->Descriptor) ;
DescriptorLimt ¢ D)

pSegment->f0k - f£Ok;

)

return £Ok;

}

LISTING 4-15. Querying Segment Properties

SpySegment () relies on several other helper functions that provide the parts that
make up the resulting spy_secMeNT Structure. First, SpySelector () copies a selector
value to the passed-in X86_SELECTOR structure (Listing 4-16). If the first argument,
dsegment, IS Set to x86_sEcMENT OTHER, the dSelector argument is assumed to spec-
ify avaid sdlector value, so thisvalue is simply assigned to the wval ue member of the
output structure. Otherwise, dSelector is ignored, and dSegment is used in a switch/
case construct that selects one of the CPU's segment registers or itstask register TR.
Note that this requires a little bit of inline assembly—the C language doesn't provide a
standard meansfor accessing processor-specific features such as segment registers.

210 EXPLORING WINDOWS 2000 MEMORY

#define X8 6_SEGMENT_ OTHER
#define X86_SEGMENT_CS
#define X86_SEGMENT_DS
tfdefine X8 6_sEGMENT ES
#def i ne X86_SEGMENT_FS
#defi ne X86_SEQVENT_GS
#define X86_SEGMENT_SS
#def i ne X86_SEQVENT_TSS

~NOoO O WNE O

11

BOOL SpySel ector (DWRD dSegment,
DWCRD dSel ector,
PX86_SELECTCR pSel ect or)

{

X86_SELECTOR Sel ector = {0, 01} ;
BOCL fOk = FALSE;

if (pSelector !'= NUL)
fOk = TRUE;
switch (dSegment)

{
case X86_SEGVENT_OTHER

if (f&k = ((dselector >> X86_SELECTOR_SHIFT)
<= X86_SELECTOR_LIMIT))
{
selector.wvalue = (WRD) dSel ector;
)
break;
}
case X86_SEGMENT_CS:
{
__asmmov Selector .wValue, CS
break:
}
case X86_SEGMENT_DS:
{
__asmnov Selector .wvalue, ds
break:
}
case X86_SEGMENT_ES:
{
__asmnov selector .wValue, €S
break;
}
case X86_SEGMENT_FS:
{

__asmnov Selector .wvalue, fs
break;

A SAMPLE MEMORY SPY DEVICE 211

case X86 SEQVENT Gs :
{

__asmnov Sel ector .wvalue, gs

break;

case X86_SEGMENT SS:
__asmnov selector .wvalue, SS
break;

case X86_SEGMENT_TSS:

__asmstr Selector .wvalue
break;
}
default:
{
fOk = FALSE;
break;
}
}
R | CopyMenory (pSel ector, &Selector, X86_SELECTOR_) ;
}

return fCk;

}

LISTING 4-16. Obtaining Selector Values

SpyDescriptor () reads in the 64-bit descriptor pointed to by the segment selec-
tor (Listing 4-17). As you might recall, al selectors contain a Table Indicator (1) bit
that decides whether the selector refers to a descriptor in the Global Descriptor Table
(GDT, t1=0) or Local Descriptor Table (LDT, T1=1). The upper half of Listing 4-17
handles the LDT case. Firdt, the assembly language instructions sr.ot and SGDT are used
to read the LDT selector value and the segment limit and base address of the GDT,
respectively. Remember that the linear base address of the GDT is specified explicitly,
whereasthe LDT isreferenced indirectly via a selector that pointsinto the GDT. There-
fore, SpyDescriptor () first validates the LDT sdector value. If it is not the null seg-
ment selector and does not point beyond the GDT limit, the SpyDescriptorType() ,
spyDescriptorLimit (), and SpyDescriptorBase () functions attached to the
bottom of Listing 4-17 are called to obtain the basic properties of the LDT:

» SpyDescriptorType() returns the values of a descriptor's Type and S bit-
fields (cf. Listing 4-2). The LDT selector must point to a system descriptor
of type X86_DESCRIPTOR_SYS_LDT (9.

212 EXPLORING WINDOWS 2000 MEMORY

» SpyDescriptorLimit() compilesthe segment limit from therimit1 and
Limit2 bit-fields of adescriptor. If its G flag indicates agranularity of
4-KB, the value is shifted left by 12 bits, shiftingin 1-bits from the
right end.

e SpyDescriptorBase() simply arrangestherase1, Base2, andBrase3
bit-fields of a descriptor properly toyield a 32-bit linear address.

BOCL SpyDescriptor (Px86_SELECTOR pSel ector,

PX86_DESCR PTCR pDescri ptor)

{

X8 6_SELECTOR ldt ;

X86_TABLE gdt;

DWORD dType, dLimt;

BOOL fSystem;

PX86_DESCR PTCR pDescriptors

BOCOL £0k

NULL,;
FALSE;,

if (pDescriptor !'= NUL)

if (pSelector != NUL)
{

if (pselector->T1) // 1dt descriptor

{
__asm
{
sldt 1ldt.wValue
sgdt gdt.wLimit
}
if ((11dt.TI) && ldt. Index &&
((ldt.wValue & X86_SELECTOR_INDEX)
<= gdt.wLimit))

{

dType = SpyDescriptorType (gdt .pDescriptors +
ldt.Index,
&fSystem);

dLimt = SpyDescriptorLinit (gdt.pbDescriptors +
1dt. Index);

if ((dType == X86_DESCRIPTOR_SYS_LDT)
&&
((DworD) (pSel ect or - >wval ue
& X86_SELECTOR_INDEX)
<=dLimit))

{
pDescriptors =

ASAMPLE MEMORY SPY DEM CE 213

SpyDescri ptorBase (gdt.pDescriptors +
1dt.Index);

)

else // gdt descriptor

{
if (pSel ector->l ndex)

{
__asm
{
sgdt gdt.wLimit
}
if ((pSelector->wValue & X86_SELECTOR_INDEX)
<= gdt.wLimt)
{
pDescriptors = gdt .pDescriptors;
}

}
}
if (pDescriptors !=NULL)
{
RtlCopyMemory (pDescriptor,
pDescriptors + pSel ector- >l ndex,
X86_DESCRIPTOR_) ;
fok = TRUE
)
el se
{
RtlZeroMemory (pDescriptor,
X86_DESCRIPTOR_) ;
)
}

return fok;

}

pvOID SpyDescriptorBase (Px86_DESCRIPTOR pDescriptor)

return (PMOD ((pDescriptor->Basel) |
(pDescri ptor->Base2 << 16) |
(pDescriptor->Base3 << 24)) ;

DNRD spypescriptorLimit (PX86_DESCRIPTORpDescriptor)
{
return (pDescriptor->G ? (pbDescriptor->Limitl << 12) |
(pDescriptor->Limit2 << 28) | OFFF

214 EXPLORING WINDOWS 2000 MEMORY

: (pDescriptor->Limtl) |

(pDescriptor->Limit2 << 16));

11

DWRD spyDescriptorType (PX86_DESCR PTCR pDescri ptor,
PBOOL pfSystem)
{
if (pfSystem!= NUL) *pfSystem= !pDescriptor->S;
return pDescriptor->Type;

}

LISTING 4-17. Obtaining Descriptor Values

If the selector's T1 bit indicates a GDT descriptor, things are much simpler.
Again, the SGDT instruction is used to get the size and location of the GDT in linear
memory, and if the descriptor index specified by the selector is within the proper
range, the pDescriptors variable is set to point to the GDT base address. In both the
LDT and GDT cases, the pDescriptor variable is non-NULL if the caler has passed
in avalid selector. In this case, the 64-bit descriptor value is copied to the caller's
X86_DESCRIPTOR Structure. Otherwise, all members of this structure are set to zero
with the kind help of rt1zeroMemory () .

We are still in the discussion of the spysegment () function shown in
Listing 4-15. The SpySelector () and SpyDescriptor () cals have been handled.
Only the concluding spyDescriptorBase () and spybescriptorLimit () invoca
tions are left, but you already know what these functions do (see Listing 4-17). If
SpySelector () and SpyDescriptor () succeed, the data returned in the SPY_
SEGMENT Structure is valid. SpyDescriptorBase () and SpyDescriptorLimit ()
don't return error flags because they cannot fail—they just might return meaning-
less data if the supplied descriptor is invalid.

THE IOCTL FUNCTION SPY_IO_INTERRUPT

SPY_TO_INTERRUPT IS Similar to spy_10_srEcMENT, except that thisfunction works on
interrupt descriptors stored in the system's Interrupt Descriptor Table (IDT), rather
than on LDT or GDT descriptors. The IDT contains up to 256 descriptors that can rep-
resent task, interrupt, or trap gates (cf. Intel 1999c, pp. 5-1 1ff). By the way, interrupts
and traps are quite similar in nature, differing in atiny detail only: Aninterrupt handler
is always entered with interrupts disabled, whereas the interrupt flag is left unchanged
upon entering atraphandler. TheSPY _|O_INTERRUPT caller suppliesaninterrupt num-
ber between 0 and 256 initsinput buffer and a SPY _INTERRUPT structure as output
buffer, which will contain the properties of the corresponding interrupt handler on suc-

A SAMPLE MEMORY SPY DEVICE 215

cessful return. The spyoutputInterrupt() helper function invoked by the dispatcher is
asmplewrapper that cals spyinterrupt () and copiesthe returned datato the output
buffer. Both functions, aswell asthe SPY _INTERRUPT structure they operate on, are
shown in Listing 4-18. The latter is filled by Spyinterrupt () with the following items:

» selector specifies the selector of a Task-State Segment (TSS, see Intel
1999c, pp. 6-4ff) or a code segment. A code segment selector determines
the segment where an interrupt or trap handler is located.

» Gate is the 64-hit task, interrupt, or trap gate descriptor addressed by
the sdlector.

» Segment contains the properties of the segment addressed by the gate.

» pOf f set specifies the offset of the interrupt or trap handler's entry point
relative to the base address of the surrounding code segment. Because task
gates don't comprise an offset value, this member must be ignored if the
input selector refersto a TSS.

 fok is aflag that indicates whether the data in the SPY_INTERRUPT
structure is valid.

A TSSistypically used to guarantee that an error situation is handled by a
valid task. It is a specia system segment type that holds 104 bytes of processor state
information needed to restore atask after atask switch has occurred, as outlined in
Table 4-3. The CPU always forces atask switch and saves al CPU registers to the
TSSwhen an interrupt associated with a TSS occurs. Windows 2000 storestask gates
intheinterrupt slots 0x02 (Nonmaskabl e Interrupt [NMI]), 0x08 (Double Fault), and
0x12 (Stack-Segment Fault). The remaining entries point to interrupt handlers. Unused
interrupts are handled by dummy routines named xiUnexpectedInterruptNNN () ,
where *mnn~ isadecimal ordinal number. These handlers branch to the internal
function kiEndunexpectedrange (), which in turn branchesto kiunexpected
InterruptTail(), passinginthe number of the unhandled interrupt.

typedef struct _SPY_| NTERRUPT
t
X86_SELECTCR Sel ector;

X86_CGATE CGate
SPY_SEGMENT Segnent ;
PVOID pOffset;

BOOL £0k;
}

SPY_INTERRUPT, *PSPY_INTERRUPT, **PPSPY_INTERRUPT;

(continued)

216 EXPLORING WINDOWS 2000 MEMORY

#define SPY_I NTERRUPT_ sizeof (SPY_INTERRUPT)

NTSTATUS SpyOutputInterrupt (DWMRD dInterrupt,
PVOID pOutput,
DWRD dQut put,
PDWORD pdInfo)

{
SPY_I NTERRUPT si ;

SpyInterrupt (dinterrupt, &si);

return SpyQutputBinary (&i, SPY_INTERRUPT_,
pQut put, dQutput, pdinfo);

BOOL Spyl nterrupt (DNMRD dl nterrupt,
PSPY _INTERRUPTpInterrupt)

<
BOOL fOk = FALSE;
if (plnterrupt != NULL)

if (dinterrupt <= X86_SELECTOR_LIMIT)

{
fok = TRUE
if (!SpySelector (X86_SEGMENT_OTHER,
dinterrupt << X86_SELECTOR_SHIFT,
&pInterrupt->Selector))
{
fOk = FALSE;
}
if (!SpyIdtGate (&pInterrupt->Selector,

&pInterrupt->Gate))

fOk = FALSE;
}
if (!SpySegment (X86_SEQVENT_OTHER
pInterrupt->Gate Selector,
&pInterrupt->Segment))

<
fOk = FALSE;

}

pInterrupt->pOf fset = SpyGateOffset (&pInterrupt->Gate);

}

el se

{

A SAMPLE MEMORY 5PY DEVICE 217

RtlZeroMemory (pInterrupt, SPY_INTERRUPT_) ;

}

pInterrupt->fOk = fOk;

}

return fok;

pvOID SpyGat eX f set (PX86_CATE pGat e)
{

return (PVOID) (pGate->Offsetl | (pGate->0ffset2 << 16));

}

LISTING 4-18. Querying Interrupt Properties

TABLE 43 CPU Status Fields in the Task State Segment (TSS
OFFSET BITS 1D DESCRIPTION
0x00 16 Previous Task Link
0x04 32 ESPO Stack Pointer Register for Privilege Level 0
0x08 16 SO Stack Segment Register for Privilege Level 0
0x0C 32 ESP1 Stack Pointer Register for Privilege Level 1
0x10 16 SS1 Stack Segment Register for Privilege Level 1
Ox14 32 ESP2 Stack Pointer Register for Privilege Level 2
0x18 16 S2 Stack Segment Register for Privilege Level 2
0x1C 32 CR3 Page-Directory Base Register (PDBR)
0x20 32 EIP Instruction Pointer Register
0x24 32 EFLAGS Processor Flags Register
0x28 32 EAX General-Purpose Register EAX
Ox2C 32 ECX General-Purpose Register ECX
0x30 32 EDX General-Purpose Register EDX
0x34 32 EBX General-Purpose Register EDX
0x38 32 ESP Stack Pointer Register
Ox3C 32 EBP Base Pointer Register
0x40 32 ES Source Index Register
0x44 32 EDI Destination Index Register
0x48 16 ES Extra Segment Register
Ox4ac 16 CS Code Segment Register
0x50 16 S Stack Segment Register

(continued)

218 EXPLORING WINDOWS 2000 MEMORY

TABLE 43 (continued)

OFFSET BITS 1D DESCRIPTION
0x54 16 DS Data Segment Register
0x58 16 FS Additional Data Segment Register #1
Ox5C 16 GS Additional Data Segment Register #2
0x60 16 LDT Local Descriptor Table Segment Selector
0x64 I I Debug Trap Flag
0x66 16 1/0 Map Base Address
0x68 — End of CPU State Information

The spysegment () and spyselector() functionscalled by spyTnterrupt()
have already been presented in Listings 4-15 and 4-16. SpyGateOffset () ,
included at the end of Listing 4-18, works analogous to SpyDescriptorBase ()
and spybescriptorLimit (), picking up the Of fset1 and of fset2 bit-fields of an
x86_GATE structure and arranging them properly to yield a 32-bit address.
spyTdtcate () is defined in Listing 4-19. It bears a strong similarity to
SpyDescriptor () in Listing 4-17 if the LDT clause would be omitted. The
assembly language instruction stoT stores the 48-bit contents of the CPU's IDT
register, comprising the 16-bit table limit and the 32-bit linear base address of
the IDT. The remaining code in Listing 4-19 compares the descriptor index of the
supplied selector to the IDT limit, and, if it is valid, the corresponding interrupt
descriptor is copied to the caller's X86_GATE structure. Otherwise, all gate structure
members are set to zero.

BOOL SpyidtGate (Px86_SELECTOR pSelector,
PX86_GATE pGat e)

{

X86_TABLE idt;

PX86_GATE pGates = NULL;
BOCL £0k = FALSE;

if (pGate !'= NULL)

if (pSelector !'= NULL)
{

__asm

{

sidt idt.wLimit

}

if ((pSelector->wvalue& X86_SELECTOR_INDEX)

A SAMPLE MEMORY SPY DEVICE

<= idt .wLimit)
{
pGates = idt.pGates;

}

if (;&tes 1= NULL)
{
RtlCopyMemory (pGate,
pGates + pSelector->Index,
X86_GATE_) ;
fOk = TRUE;

}

el se
{
RtlZeroMemory (pGate, X86_GATE_) ;
)

}

return £Ok;

LISTING 4-19. Obtaining IDT Gate Values

THEIOCTL FUNCTION SPY_IO_PHYSICAL

ThelOCTL SPY _IO_PHY SICAL functionissimple, becauseitreliesentirely onthe
MmGetPhysicaladdress () function exported by ntoskrnl. exe. The |OCTL func-
tionhandler ssimply calls spytnputrointer() (see Listing 4-10) to get thelinear
addresstobeconverted, letsM mGetPhysical Address() look upthecorresponding
physical address, and returnstheresulting puvstcan_appress valueto the caller.
Note that PHYSICAL_ADDRESS is a 64-bit LarceE_INTEGER. On most 1386 systems,
the upper 32 bitswill be aways zero. However, on systemswith Physical Address
Extension (PAE) enabled and morethan 4 GB of memory installed, these bits can
assume nonzero values.

MmGetPhysical Address() usesthePTE array startingat linear address
0xc0000000 to find out the physical address. The basic mechanism works
asfollows:

* If thelinear addressiswithintherange 0x80000000 to 0x9rrFrrrrF, the
three most significant bits are set to zero, yielding aphysical addressin the
range OX00000000 t0 0x1FFFFFFF .

» Otherwise, the upper 20 bits are used as an index into the PTE array at
address 0xc0000000.

220 EXPLORING WINDOWS 2000 MEMORY

« If the P bit of the target PTE is set, indicating that the corresponding page
is present in physical memory, all PTE bits except for the 20-bit PFN are
stripped, and the least significant 12 bits of the linear address are added,
resulting in a proper 32-bit physical address.

* Ifthephysical pageisnot present, MmGetPhysical Address() returns zero.

Itisinteresting to seethat MmGetPhysical Address() assumes4-KB pagesfor al
linear addresses outside the kernel memory range 0x80000000 to 0x9FFFFFFF. Other
functions, such asvmIsaddressvalid(), firstload the PDE of the linear address and
check its PS bit to find out whether the page sizeis4 KB or 4 MB. Thisisamuch
more general approach that can cope with arbitrary memory configurations. Both
functions return correct results, because Windows 2000 happens to use 4-MB pages
intheOx80000000to Ox9FFFFFFFmemory areaonly. Somekernel API functions,
however, are apparently designed to be more flexible than others.

THEIOCTL FUNCTION SPY_|O_CPU_INFO

Several CPU instructions are available only to code running on privilege level zero,
which is the most privileged of the four available levels. In Windows 2000 terminol -
ogy, this means kernel-mode. Among the forbidden instructions are those that read
the contents of the control registers CRO, cr2, and CR3. Becausetheseregisters
contain interesting information, an application might wish to find away to access
them, and the SPY_1O_CPU_INFO function is the solution. As Listing 4-20 shows, the
spyoutputCpuInfo () function invoked by the IOCTL handler uses some ASM inline
code to read the control registers, along with other valuable information, such as the
contents of the IDT, GDT, and LDT registers and the segment selectors stored in the
registers ¢S, DS, ES, FS, GS, ss, and TR. The Task Register Tr contains a selector
that refers to the TSS of the current task.

typedef struct _SPY_CPU_INFO

t

X86_REQ STER cr0;
X86_REQ STER cr2;
X86_REQ STER cr3;
SPY_SEGMENT cs:
SPY_SEGMENT ds;
SPY_SEGMENT es;
SPY_SEQVENT fs;
SPY_SEGMENT gs:

\ SPY_SEGMENT st
SPY_SEGMENT tss;
X86_TABLE idt;
XB86_TABLE gdt;

A SAMPLE MEMORY SPY DEVICE

221

X86_SELECTOR 1dt;

)

SPY_CPU_I NFQ *PSPY_CPU_INFO, **PPSPY_CPU_INFO;

ttdefi ne SPY_CPU_INFO_ sizeof (SPY_CPU_INFO)

NTSTATUS SpyOutputCpuInfo (PVOID pOutput,
DWORD dOutput,

PDWORD pdInfo)

{
SPY_CPU_ I NFO sci;
PSPY_CPU_INFO psci = &sci;
__asm

{

push eax

push ebx

mov ebx, psci

mov eax, crO

nov febx.cr0], eax

nmov eax, cr2

nov [ebx.cr2] , eax

nmov eax, cr3

mov [ebx.cr3], eax

si dt [ebx.idt .wLimit]

nmov [ebx.idt .wReserved], O

sgdt [ebx.gdt .wLimit]

nov [ebx.gdt .wReserved], O

sldt [ebx.1ldt.wValuel

nmov [ebx.1ldt .wReserved], O

pop ebx

pop eax

}
SpySegnent (X86_SEGMENT_CS, 0, &sci.cs)
SpySegment (X86_SEGMENT_DS, 0, &sci.ds)
SpySegnent (X86_SEGMENT ES, 0, &sci.es)
SpySegnent (X86_SEGMENT_FS, 0, &sci.fs)
SpySegnent (X86_SEGMENT_GS, 0, &sci.gs)
SpySegnent (X86_SEGMENT _SS, 0, &sci.ss)
SpySegrent (X86_SEGMENT _TSS, 0, &sci.tss);

return SpyQutputBinary (&sci, SPY_CPU_I NFO_,

pQut put, dQutput, pdInfo);

LISTING 4-20. Querying CPU Sate Information

222 EXPLORING WINDOWS 2000 MEMORY

The segment selectors are obtained with the help of the spysegment () function
discussed earlier. See Listing 4-15 for details.

THEIOCTL FUNCTION SPY_IO_PDE_ARRAY

spy_To_pDE_ARRAY IS another trivial function that simply copies the entire page-
directory from address 0xc0300000 to the caller's output buffer. This buffer hasto
take the form of a spv_ppE_array structure shown in Listing 4-21. Asyou might
have guessed, this structure's sizeis exactly 4 KB, and it comprises 1,024 32-bit PDE
values. The xs6_pE structure used here, which represents a generalized page entry,
can be found in Listing 4-3, and the constant x86_races_4u is defined in Listing 4-5.
Because theitemsin a spy_ppE_arrav are always page-directory entries, the embed-
ded x86_pE structures are either of type x86_pDE_4M Or x86_PDE_4K, depending on
the value of the page size bit PS.

It usually is not a good idea to copy memory contents without ensuring that the
source page is currently present in physical memory. However, the page-directory is
one of the few exceptions. The page-directory of the current task is always present in
physical memory while the task is running (Intel 1999, pp. 3-23). It cannot be
swapped out to a pagefile unless another task is switched in. That's why the CPU's
Page-Directory Base Register (PDBR) doesn't have aP (present) bit, like the PDES
and PTEs. Please refer to the definition of the x86_rpEr structure in Listing 4-3 to
verifythis.

typedef struct _SPY_PDE_ARRAY

{
X86_PE apde [X86_PAGES_4M] ;

}

SPY_PDE_ARRAY, *PSPY_PDE_ARRAY, **PPSPY_PDE_ARRAY;

#define SPY_PDE_ARRAY_ sizeof (SPY_PDE_ARRAY)

LISTING 4-21. Definition of spy_ppE_arRrRAY

THEIOCTLFUNCTIONSPY_IO_PAGE_ENTRY

If you are interested in the page entry of a given linear address, thisis the function
of choice. Listing 4-22 shows the internals of the spyvemoryprageEntry () function
that handles this IOCTL request. The SPY_PAGE_ENTRY structure it returnsis basi-
cally aX86_PE page entry, as defined in Listing 4-3, plus two convenient additions:
The asize member indicates the page size in bytes, which is either x86_race_4x

A SAMPLE MEMORY SPY DEVICE 223

(4,096 bytes) or xg6_race_4m (4,194,304 bytes), and the f Present member indi-
cates whether the page is present in physical memory. This flag must be contrasted
to the return value of spyMemorypageEntry () itself, which can be TRUE even if
fPresent isFaLse. In this case, the supplied linear address is valid, but points to
apage currently swapped out to a pagefile. This situation is indicated by bit #10
of the page entry—referred to as pageFile in Listing 4-22—being set while the

P bit is clear. Please refer to the introduction to the xse6_rnre structure earlier in
this chapter for details. x86_pnPE represents a page-not-present entry and is
defined in Listing 4-3.

SpyMemorypageEntry () first assumesthat the target pageisa4-MB page, and,
therefore, copies the PDE of the specified linear address from the system's PDE array
at address 0xc0300000 to the pe member of the spv_paGE_ENTRY Structure. If the
Phitis set, the subordinate page or page-tableis present, so the next test checks
the PS bit for the page size. If it is s, the PDE addresses a 4-MB page, and the work
is done—spyMemoryPageEntry () returns True, and the f Present member of the
SPY_PAGE_ENTRY structure is set to TRUE aswell. If the PS hit is zero, the PDE refers
to a PTE, so the code extracts this PTE from the array at address 0xc0000000 and
checks its P bit. If sat, the 4-KB page comprising the linear address is present, and both
SpyMemorypageEntry () and f Present report TRUE. Otherwise, the retrieved value
must be a page-not-present entry, so tPresent isranse, and SpyMemorypageEntry ()
returns TRUE only if the PageFile bit of the page entry is set.

!

typedef struct _SPY_PAGE_ENTRY
{
X86_PE pe;
DNRD dSize;
BOOL f Present;
}

SPY_PAGE_ENTRY, *PSPY_PAGE_ENTRY, **PPSPY_PAGE_ENTRY;

ttdefine SPY_PAGE ENTRY_ sizeof (SPY_PAGE_ENTRY)

BOOL SpyMenorypageEntry (pvoID pVirtual,
PSPY_PAGE_ENTRY pspe)

{
SPY_PACE _ENTRY spe;

BOOL fok = FALSE;
spe.pe = X86_PDE_ARRAY [X86 PO (pvirtual)];
spe.dSize = X86_PAGE_4M;

spe.fPresent = FALSE;

(continued)

224 EXPLORING WINDOWS 2000 MEMORY

if (spe.pe.pdedM P)

if (spe.pe.pdedM.PS)
{
fOk = spe . fPresent = TRUE
}

el se

{

spe.pe = X86_PTE_ARRAY [X86_PACE (pVirtual)] ;
spe.dSize = X86_PAGE_A4K;

if (spe.pe.ptedK.P)

{

fCk = spe. f Present = TRUE;

}
f{
}

el se

&k = (spe.pe.pnpe.PageFile != 0);

}
}
if (pspe !'= NULL) *pspe = spe;
return fok;

}

LISTING 4-22. Querying PDEs and PTEs

Note that spyMemoryrageEntry () does not identify swapped-out 4-MB pages.
If a4-MB PDE refersto an absent page, there is no indication whether the linear
addressisinvalid or the pageis currently kept in apagefile. 4-MB pages are used in
the kernel memory range 0x80000000 to 0x9rrrrrEF ONly. | have never seen one of
these pages swapped out, even in extreme low-memory situations, so | was not able
to examine any associated page-not-present entries.

THE IOCTL FUNCTION SPY_IO_MEMORY_DATA

The spy_10_meMory_paTa function is certainly one of the most important ones,
because it copies arbitrary amounts of memory data to a buffer supplied by the caller.
Asyou might recall, user-mode applications are readily passed in invalid addresses.
Therefore, thisfunction isvery cautious and verifies the validity of al source
addresses before touching them. Remember, the Blue Screenislurking everywhere

in kernel-mode.

The calling application requests the contents of a memory block by passing in a
SPY_MEMORY_BLOCK structure—shown at the top of Listing 4-23—that specifies its
address and size. For convenience, the addressis defined as a union, alowing interpre-
tation as a byte array (PBYTE pbaddress) Or an arbitrary pointer (pvorp paddress) .

A SAMPLE MEMORY SPY DEVICE 225

The spyInputMemory () functionin Listing 4-23 copiesthisstructurefromthe OCTL
input buffer. The companion function spyoutputMenmory () , concluding Listing 4-23,
isawrapper around spyMemoryReadBlock(), Whichisshown in Listing 4-24. The
main duty of SpyOutputMemory () is to return the appropriate nrstaTus values while
SpyMemoryReadBlock () providesthedata.

SpyMemoryReadBlock () returnsthe memory contentsin a spy_MEMORY_DATA
structure, definedinListing4-25. I havechosenadifferent approachthaninthepre-
vious definitions because spy_MEMORY_DATA is a data type of variable size. Essentially,
it consists of a spy_MEMORY_BLOCK Structure named smb, followed by an array of
WORDS called awData[] . The length of the array is determined by the dBytes member
of smb. To allow easy definition of spy_meEMorY DaTA instances as global or local
variables of a predetermined size, this structure's definition is based on the macro
SPY_MEMORY_DATA_N() . The single argument of this macro specifies the size of the
awData[] array. The actual structure definition follows the macro definition, provid-
ing SPY_MEMORY_DATA with azero-length awData[] array. The spy_MEMORY_DATA__ ()
macro computes the overall size of a spvy_meMORY_DATA Structure given the size of its
dataarray, and the remaining definitions allow packing and unpacking the data
WORDS in the array. Obvioudly, the lower half of each WORD contains the memory data
byte and the upper half specifies flags. Currently, only bit #8 has a meaning, indicat-
ingwhether thedatabytein bits#0to#7isvalid.

typedef struct _SPY MEMORY_BLOCK
{
uni on
{
PBYTE pbAddress;
PVOID pAddress;
h:
DWRD dBytes;
}

SPY_MEMORY_BLOCK, *PSPY_MEMORY_BLOCK, **PPSPY_MEMORY_BLOCK;

#define SPY_MEMORY_BLOCK_ sizeof (SPY_MEMORY_BLOCK)

NTSTATUS Spyi nput Menory (PSPY MEMORY BLOCK psmb,
Pva D pInput,
DWORD dInput)

{

return SpyInputBinary (psnb, SPY_MEMORY_BLOCK_, pl nput, dInput);

}

(continued)

226 EXPLORING WINDOWS 2000 MEMORY

NTSTATUS SpyOQutputMemory (PSPY_MEMORY_BLOCK psmb,

PVOID pOutput ,
DWORD doutput ,
PDWORD pdInfo)

{
NTSTATUS ns = STATUS_BUFFER_TOO_SMALL;

if (*pdInfo= SpyMemoryReadBlock (psnb, pQutput, doutput))

{

ns = STATUS_SUCCESS;

}

return ns;

}

LISTING 4-23. Handling Memory Blocks

DWORD SpyMenor yReadBl ock (PSPY_MEMORY_BLOCK psnb,
PSPY_MEMORY_DATA psnhd,
DWRD dsize)
{
DWRD i;
DWRD n = SPY_MEMORY_DATA _ (psmb->dByteg ;

if (dSze >=n)
{

psmd->smb = *psmb;
for (i =0; i < psmb->dBytes; i++)

psmd->awData [i] =
(SpyMenor yTest Address (psmb->pbAddress + i)
? SPY_MEMORY_DATA_VALUE (psmb->pbaAddress [i], TRUE)
SPY_MEMORY_DATA_VALUE (0, FALSE));

}
}
el se
{
if (dsize>= SPY_MEMORY_DATA)
{
psmd->smb.pbAddress = NULL;
psmd->smb.dBytes = 0;
}
n=0;
}
return n;

}

A SAMPLE MEMORY SPY DEVICE 227

11 -

BOOL SpyMenoryTest Address (PvOID pvirtual)

{
return SpyMenoryPageEntry (pMirtual, NULL) ;

BOOL SpyMenoryTest Bl ock (PvAD pVirtual,
DICRD dByt es)

{

PBYTE pbbDat a;
DWIRD dDat a;

BOOL fok = TRUE

if (dBytes)
pbData = (PBYTE) ((DworRD_PTR) pVirtual & %86 PAGE MASK) ;
dData = (((dBytes + X86_OFFSET_4K (pVirtual) - 1)
| PAGE_SIZE) + 1} * PAGE_SIZE;
do {

fok = SpyMenoryTest Address (pbbata) ;
pbData += PAGE_SIZE;
dData -= PAGE_SIZE;

while (f&k && dpata);
}

return f£ok;

}

LISTING 4-24. Copying Memory Block Contents

The validity of a data byte is determined by the function spyMemoryTest
Address(), whichiscalled by spyMenoryreadBlock () for the address of each byte
beforeit iscopied to the buffer. spyMemoryTestaddress (), includedinthe lower
half of Listing 4-24, simply calls SpyMemoryPageEntry () with the second argument
set to NULL . The latter function hasjust been introduced in the course of the
discussion of the IOCTL function SPY_IO_PAGE_ENTRY (Listing 4-22). Setting its
PSPY_PAGE_ENTRY pointer argument to NULL means that the caller is not interested
in the page entry of the supplied linear address, so all that remainsisthe function's
return value, which is TRUE if the linear address is valid. In the context of
SpyMemoryPageEntry (), an addressisvalidif thepageitiscontainediniseither
present in physical memory or resident in one of the system's pagefiles. Note that this
behavior isnot compatiblewith thentoskrni. exe APl function vmrsaddressvalid(),
which will alwaysreturn FALSE if the pageisnot present, evenifitisavalid page
currently kept in a pagefile. Also included in Listing 4-24 isthe function

228 EXPLORING WINDOWS 2000 MEMORY

#define SPY_MEMORY_DATA_N(_n) \
struct _SPY_MEMORY_DATA ## n \

{\
SPY_MEMORY_BLOCK smb; \
WORD awbata [_n]; \

}

typedef SPY_MEMORY DATA N (0)
SPY_MEMORY_DATA, *PSPY_MEMORY_DATA, **PPSPY_MEMORY_DATA;

ttdefi ne SPY_MEMORY_DATA_ si zeof (SPY_MEMORY_DATA)
ttdefine SPY_MEMORY_DATA (_n) (S P Y_MEMORY _DATA_+ ((_n)* WORD_))

#defi ne spyY_MEMORY DATA_BYTE OxOOFF
#define SPY MEMORY DATA_VALID 0x0100

#define SPY_MEMORY_DATA_VALUE (_b,_v) \
((WRD) (((_b) & sPY_MEMORY_DATA_BYTE)

[\
((_v) ? SPY_MEMORY_DATA_VALID : 0)))

LISTING 4-25. Definition of spy_mEMORY_DATA

SpyMemoryTestBlock() , which is an enhanced version of SpyMemoryTestAddress|()
It tests a memory range for validity by walking across the specified block in
4,096-byte steps, testing whether all pages it spans are accessible.

Accepting swapped-out pages as valid address ranges has the important
advantage that the page will be pulled back into physical memory as soon as
spyMemoryReadBlock () triesto access one of its bytes. The sample memory dump
utility presented later would not be quite useful if it relied on Mmrsaddressvalid()
It would sometimes refuse to display the contents of certain address ranges, even if i
was able to display them 5 minutes before, because the underlying page recently
would have been transferred to a pagefile.

THEIOCTL FUNCTIONSPY_1O_MEMORY_BLOCK

The spy_10_mEMORY_BLOCK function is related to spy_To_mEMORY_DaTa in that it
also copies data blocks from arbitrary addresses to a caller-supplied buffer. The main
difference isthat spy_1o_mEMORY_DATA attempts to copy al bytes that are accessible,
whereas spv_10_meMOrRY_BLOCK fals if the requested range comprises any invalid
addresses. This function will be needed in Chapter 6 to deliver the contents of data
structures living in kernel memory to a user-mode application. It is obvious that this
function must be very restrictive. A structure that contains inaccessible bytes cannot
be copied safely—the copy would be lacking parts of the data.

A SAMPLE MEMORY SPY DEVICE 229

Like spy_to_mEmMORY DATA, the spv_T1o_MEMORY_BLOCK function expects input
inthe form of a spy_meEMORY_Br.OCK Structure that specifies the base address and size
of thememory rangeto be copied. Thereturned copy isafaithful 1:1 reproduction of
theoriginal data. The output buffer must be large enough to hold the entire copy.
Otherwise, an error isreported, and no datais sent back.

THE IOCTL FUNCTION SPY_IO_HANDLE_INFO

Likethe spy_10_prrYSICAL function introduced above, this function dlows a user-mode
application to cdl kernel-mode API functions that are otherwise unreachable. A kernel-
mode driver can alwaysget apointer to an object represented by ahandle by simply call-
ingthentoskrnl . exefunction 0bRef erenceobjectBytandle(). Thereisnoequivalent
functionintheWin32 API. However, the application caninstruct the spy deviceto
execute the function call on its behalf and to return the object pointer afterward. List-
ing 4-26 showsthe spyoutputHandletnfO () function called by the SpyDispatcher ()
after obtaining the input handlevia spyinputtandie(), definedin Listing 4-10.

The spy_nanprLe_1nrFo structure at the beginning of Listing 4-26 receives the
pointer to the body of the object associated with the handle and the handle attrib-
utes, both returned by obreferenceobjectByHandle() . Itisimportant to call
ObDeref erenceobject () if ObRef erenceon; ectByHandle () reports success to reset
the object'spointer reference count to itspreviousvalue. Failing to do so constitutes
an "object reference leak."

typedef struct _SPY HANDLE_INFO
(
PVOID pObjectBody;
DWIRD dHandleAttributes;

}

SPY_HANDLE_INFO, *PSPY_HANDLE_INFO, **PPSPY_HANDLE_INFO;

#define SPY_HANDLE_INFO_ sizeof (SPY_HANDLE_INFO)

NTSTATUS spyOutputHandleInfo (HANDLE hobj ect,
PVO D pQutput,
DNRD doutput,
PDWORD pdInfo)
(

SPY_HANDLE_INFO shi ;
OBJECT_HANDLE_INFORMATION ohi ;
NTSTATUS NS = STATUS_INVALID_PARAMETER;

(conti nued)

230 EXPLORING WINDOWS 2000 MEMORY

if (hobject I'= NULL)
{
ns = ObReferenceObjectByHandle (hQbject,
STANDARD_RIGHTS_READ,
NULL, KernelMode,
&shi .pObjectBody, &ohi);

if (ns == STATUS SUCCESS)

<
shi.dHandleAttributes = ohi .HandleAttributes;

ns = SpyQutputBinary (&shi, SPY_HANDLE_INFO_,
pQut put, doutput, pdInfo) ;

ObDereferenceObject (shi.pObjectBody)

return ns;

}

LISTING 4-26. Referencing an Object by Its Handle

A SAMPLE MEMORY DUMP UTILITY

Now that you have worked through the complex and possibly confusing IOCTL
function handler code of the memory spy device driver, you probably want to see
these functionsin action. Therefore, | have created a sample console-mode utility
named “SBS Windows 2000 Memory Spy" that loads the spy driver and calls various
IOCTL functions, depending on the parameters passed in on the command line. This
application resides in the executable file w2k _mem. exe, and its source code is
included on the CD accompanying this book, in the directory \src\w2k_mem.

COMMAND LINE FORMAT

You can run the memory spy utility from the CD by invoking d: \bin\w2k_mem. €xe,
where a: should be replaced by the drive letter of your CD-ROM drive. If w2k_mem. exe
is started without arguments, the lengthy command info screen shown in Example 4-1
isdisplayed. The basic command philosophy of w2k_memisthat acommand consistsof
one or more data requests, each providing at least alinear base address where the mem-
ory dump should start. Optionally, the memory block size can be specified as well—
otherwise, the default size 256 is used. The memory sSze must be prefixed by the “#”
character. Severa option switches may be added that modify the default behavior of the
command. An option consists of a single-character option ID and a “+” or “~” prefix
that determines whether the option is switched on or off. By default, all optionsare
turned off.

A SAMPLEMEMORY SPY DEVICE 231

// w2k_mem . exe
// sBs Wndows 2000 Menory Spy vi. 00
// 08-27-2000 Sven B. Schreiber

| | sbs@orgon. com
Usage: w2k_mem ({ [+option|-option] [/<path>]} [#[[0lx]<size>] [[0]lx]<base>}
<pat h> specifies a nmodule to be |oaded into memory.
Use the +x/-x switch to enable/disable its startup code.
If <size>is missing, the default size is 256 bytes.
Di splay address options (nmutually exclusive):
+z -z zer o- based di spl ay on /| OFF

+r -r physical RAM addresses on /| COFF

D spl ay node options (mutually exclusive) :

+w -w WORD data formatting on /| OFF
+d -d DWRD data formatting on /| OFF
+q -g QAMRD data formatting on /| CFF

Addressing options (mutually exclusive) :

+H -t TEB-relative addressing on CFF
+H -f FS-relative addressing on CFF
+u -u user-node FS:[<base>] on CFF
+k -k kernel -node FS [<base>] on

+h -h handl e/ obj ect resolution on
+a -a add bias to last base on
+s -s sub bias fromlast base on
+p -p pointer fromlast block on

~— — — o~~~
M

System status options (cumulative):

+0 -0 display G5 infornation on /| CFF
+c -c display CPU infornation on /| CFF
+g -g display cpT information on /| COFF
+ -i display IDI information on /| COFF
+b -b display contiguous blocks on / COFF

G her options (cumulative):
+x -x execute DLL startup code on / COFF

Exanpl e: The follow ng command displays the first 64
bytes of the current Process Environnent Bl ock (PEB)
in zero-based DANORD format, assuning that a pointer to
the PEB is located at offset 0x30 inside the current
Thread Environnent Bl ock (TEB) :

w2k_mem +t #0 O +pzd #64 0x30

Note: Specifying #0 after + causes the TEB to be
addressed without displaying its contents.

EXAMPLE 4-1. Help Screen of the Memory Sy Utility

232 EXPLORING WINDOWS 2000 MEMORY

A datarequest is executed for each command line token that cannot be identi-
fied as an option, adata block size specification, apath, or any other command
modifier. Each plain number on the command line is assumed to specify a linear
address and triggers a hex dump, starting at this address. Numbers are interpreted
as decimal by default or hexadecimal if prefixed by "Ox" or smply “x.”

Complex command line option models like the one employed by
w2k_mem. €Xe are much easier to grasp if some simple examples are provided.
Here is a short compilation:

* w2k _mem 0x80400000 displays the first 256 bytes of memory at linear
address 0x80400000, yielding something that should look similar to
Example 4-2. By the way, thisis the DOS header of the ntoskrnl . exe
module (notethe “MZ” ID at the beginning).

* w2k mem #0x40 0x80400000 displaysthe samedatablock, but stopsafter
64 bytes, as demanded by the block size specification #0x40.

* w2k _mem +d #0Xx40 0x80400000 iS another variant, this time packing the
bytes into 32-bit DWORD chunks because of the +d option. This option
remains in effect until reset by —a or overridden by a competing
optionsuchas+w or +q.

* w2k_mem +wz #0x40 0x10000 +d -z ox20000 contains two data
requests. First, the linear address range 0x10000 to 0x1003F is shown in
16-bit WORD format, followed by the range 0x20000 to 0x2003F in DWORD
format (Example 4-3). The first request also includes the +z switch,
which forces the numbersin the "Address" column to start at zero. In
the second request, the zero-based display mode is turned off by adding
a -z switch.

* w2k_mem +rd #4096 OxC0300000 displays the system’s page-directory at
address 0xc0300000 in DWORD format. The +r option enables the display of
physical RAM addressesin the "Address' column instead of linear ones.

By now, you should have a basic understanding of how the command line
format works. In the following subsections, some of the more exotic options and
features are discussed in more detail. Most of them alter the interpretation of the
address parameter they precede. In default mode, the specified addressisalinear
base address where the memory dump starts. The options +t, +f, +u, +k, +h,
+a, +s, and +p changethis default interpretation in various ways.

A SAMPLE MEMORY DUMP UTILITY

233

E:\>w2k_mem 0x80400000

/] w2k_mem.exe
/1 SBS Wndows 2000 Memory Spy V1. 00
// 08-27-2000 Sven B. Schreiber

/] sbs@orgon.com

Loadi ng "SBS Wndows 2000 Spy Device" (w2k_spy)

Driver: "D:\Program Files\DevStudio\MyProjects\w2k_mem\Release\w2k_spy .sys”
Qoeni ng “\\. \w2k_spy” . . .

SBS Wndows 2000 Spy Device v1. 00 ready

80400000. .804000FF: 256 val i d bytes

Addr ess 00 01 02 03-04 05 06 07 08 09 QA OB-OC (D CE &OF 0123456789ABCDEF

80400000 | 4D 5A 90 00-03 00 00 OO 04 00 00 00-FF FF 00 00 Mz« yy..
80400010 B8 00 00 00-00 OO OO OO 40 00 00 00-00 00 00 00 -
80400020 00 00 00 00-00 OO OO OO 0O OO 0O 00-00 OO 0O 00

80400030 |00 00 00 00-00 00O OO OO 0O 00 OO 0OO-C8 00 00 OO0 Bacs
80400040 CE IFBAC5-00 B4 09 OO 21 B8 01 4c-CcDh 21 54 68 .2, Curt JnfrTh

80400050 69 73 20 70-72 6F 67 72 61 6D 20 63-61 6E 6E 6F i's program canno
80400060 74 20 62 65-20 72 75 6E 20 69 6E 20-44 4F 53 20 t be run in DB
80400070 6D 6F 64 65-2E CD (D QA 24 00 00 00-00 00 00 OO0 mode....$
80400080 50 7A G4 CE-14 1B AA 9D 14 1B AA 9D 14 1B AA 9D
80400090 14 1B AB 9D-53 12 AA 9D 18 3B A 9D-5B 1B AA 9D . : .

804000A0 |42 13 AC 9D 15 1B AA9D 14 1B AA 9D 1A 19 AA 9D B ~e..%e. . 2e. . %e
804000BO 4D 38 B9 9D-12 1B AA 9D 52 69 63 68-14 1B AA 9D MB'e. . ®eRich. ®e

80400000 |00 00 00O 00-00 OO0 00 OO 50 45 00 00-4c 01 13 00 PE..L...
80400000 |17 9B 4D 38-00 00 00 OO 00 00 00 00-EO 00 CE 03 . ?M8 a. ..
804000EO |(B 01 05 OC-CO 2D 14 00 80 D6 04 00-00 00 00 0O A-. .?0

804000FO |20 D1 00 00-C0O 04 00 OO 80 73 06 00-00 00 40 00 | WN..A...?s....@.

256 bytes requested
256 byt es recei ved

d osing the spy device

EXAMPLE 4-2. A Sample Data Request

E:\>w2k_mem +wz #0x40 0x10000 +d -z 0x20000

Il w2k_mem.exe

/I SBS Windows 2000 Memory Spy V1. 00
// 08-27-2000 Sven B. Schreiber

/] sbs@orgon.com

Loading "SBS Windows 2000 Spy Device" (w2k_spy)
(continued)

234 EXPLORING WINDOWS 2000 MEMORY

Driver: “D:\Program Files\DevStudio\MyProjects\w2k_mem\Release\ w2k_spy.sys”
pening “\\.\w2k_spy”
SBS Wndows 2000 Spy Device V1. 00 ready

00010000. .0001003F: 64 valid bytes
Addr ess 0000 0002-0004 0006 0008 OOOA- OOOC OOOE | 00 02 04 06 08 QA CC CE
00000000 003D 0044-003A 003D 0044 003A-005C 0050 .= .D.: .= P
00000010 0072 006F- 0067 0072 0061 006D- 0020 0046 .r .0 .g .r .m . .F
00000020 0069 006C- 0065 0073 005C 0044- 0065 0076 .i .1 .e .s .\ .D.e .v
00000030 0053 0074-0075 0064 0069 006F-005C 004D | .S .t .u .d .i .0 M
00020000. 0002003F: 64 valid bytes
Addr ess 00000000 - 00000004 00000008 - OOOOOOOC | 0000 0004 0008 OOOC
00020000 00001000 - 00000880 00000001 - 00000000
00020010 02B20001 - 00000000 00000003 - 00000007
00020020 00000008 - 0208006C 00020290 - 00000018
00020030 02A0029E - 00020498 00840082 - 00020738 LL? L2 2.? 8
128 bytes requested
128 bytes received
A osing the spy device . . .

EXAMPLE 4-3. Displaying Data in Special Formats

TEB-RELATIVEADDRESSING

Eachthread in aprocess hasitsown Thread Environment Block (TEB) wherethe
system keepsfrequently used thread-specific data. In user-mode, the TEB of the
current thread islocated in aseparate 4-KB segment accessible viathe processor's
FSregister. Inkernel-mode, FSpointsto adifferent segment, aswill be explained
below. All TEBS of aprocess are stacked up inlinear memory at linear address
Ox7FFDEOOO, expanding down in 4-KB steps as needed. That is, the TEB of the
second thread is found at address ox7rFppooo, the TEB of the third thread at
0x7FFDC000, and so on. The contents of the TEBS and the Process Environment
Block (PEB) address ox7rrprooo will be discussed in more detail in Chapter 7
(see Listings 7-18 and 7-19). Here it should suffice to take note that TEBS exist
and that they are addressed by the FS register.

If the +t switch precedes an address on the command line, w2k_mem. exe adds
the base address of the FS segment to it, effectively applying a bias of 0x7rrpE000
bytes. Example 4-4 shows the output of the command w2x_mem +at #0x38 0 on
my system. Thistime | have omitted the banner and status messages issued by
w2k_mem. exe. The omissions are marked by [..].

A SAMPLE MEMORY DUMP UTILITY 235

BE:\>w2k_mem +dt #0x38 0O

7FFDEO00. .7FFDE037: 56 valid bytes

Addr ess 00000000 - 00000004 00000008 - OOOOOOOC 0000 0004 0008 OOOC

7FFDE0QOQ 0012FA58 - 00130000 0012ECOO - 00000000 . JUX R -
7FFDEO10 00001EQCO - 00000000 7FFDECOO - 00000000 . -
7TFFDEO20 000002CO - 000002C8 00000000 - 00000000 .. .A ...E

7FFDEO30 7FFDFQCOO - 00000000 . yo

[]

EXAMPLE 4-4. Displaying the first Thread Environment Block (TEB)

FS-ReraTive ADDRESSING

| have already mentioned that the FSrefersto different segmentsin user- and kernel-
mode. Whereasthe +t switch sdectsthe user-mode FS address asthe reference point, the
+f switch usesthe FS base addressthat isin effect in kernel-mode. Of course, aWin32
gpplication has no way to get at this value, so once again the spy device is required.
w2k_mem. exe callsthe IOCTL function spv_10_cru_1nro, introduced in the previous
section, to read CPU statusinformation that includesthe kernel-mode values of all seg-
ment registers. From there, everything goes on just the same as with the +t switch.
Thekernel-mode FS pointsto another thread-specific structurefrequently
accessed by the Windows 2000 kernel, named the Kernel's Processor Control Region
(KPCR). This structure has aready been mentioned in the course of the discussion of the
IOCTL functionSPY _1O_OS_INFOandwill berevisitedinChapter 7 (seeListing 7-16).
Again, suffice it to note for now that this structure exists at linear address 0xFFDFF000 ,
and that the +f switch gives easy access to it. In Example 4-5, I have issued the com-
mand w2k _mem +df #0x54 0 to demonstrate that the +£ switch in fact applies abias
of 0xFFDEF000 bytes to the specified memory address.

e o

EXAMPLE 4-5. Displaying the Kernel's Processor Control Region (KPCR)

236 EXPLORING WINDOWS 2000 MEMORY

FS[<bASE>] ADDRESSING

When examining Windows 2000 kernel code, you will frequently come across
instructionssuchasMOV Eax, rs: [18h]. Theseinstructionsretrieve member values
of the TeB, xpcr, or other structures contained in the FS segment. Many of them are
pointersto other internal structures. The command line switches +u and +k allow you
to follow thisindirection with ease. +u retrieves a pointer from the user-mode FS
segment; +k does the same in kernel-mode. For example, the command w2k_mem +du
#ox1E8 Ox30 (see Example 4-6) dumps 488 bytes of the memory block addressed by
FS: 130n7 in user-mode, which happens to be a pointer to the Process Environment
Block (PEB) of w2k mem.exe. The command w2k_mem +dk #0x1c 0x20 (see Example
4-7) displaysthefirst 28 bytes of memory pointed to by FS: [20h] in kernel-mode,
which is a pointer to the Kernd's Processor Control Block (kercB), briefly mentioned
earlierinthediscussionof thelOCTL functionSPY_1O_OS INFOand alsodiscussedin
Chapter 7 (see Listing 7-15). Don't worry if you don't know what a PEB or KPRCB is—
you will know it after having read this book.

‘ E:\>w2k_mem +du #0x1E8 0x30

[+4¢5]
| JFFDFO00..7FFDF1E7: 488 valid bytes

| Addr | 00000000 - 00000004 : 00D00ODB = 000000OC | 0000 D004 0ODOB 0DOOC
| e e b e oo YO B e s PRt i | S Lt ot A e e
| 7rFDFO00 | 00000000 - FFFFFFFF : 00400000 - 00131E90 | ¥¥¥¥ .8.. ...
| TJFFDFO10 | 00020000 — 00000000 : 00130000 = TT7FCDLIT0 | covee asss snsa wilNp
| JFFDF020 | 77F8AA4C - 77FBAATD : 00000001 - 77E33ES58 | woll wed} wa>X
JFFDFO30 | 00000000 - 00000000 : 00000000 - 00000000
JFFDF040 | 77FCD1A8 - 0000007F : 00000000 - 7FE6F0000 | wil” <v.. .0..
7FFDF050 | 7F6F0000 - 7F6F0688 : 7FFBO0O0O0 - TFFCL000 | .0.. .0.7 .@.. .H..
TFFDFO60 | TFFD2000 - 00000001 : 00000000 - 00000000 | .§
7FFDF070 | 079B8000 - FFFFEB6D : 00100000 - 00002000 | .?7. y§ém
7FFDFO80 | 00010000 - 00001000 : 00000003 - 00000010 | .evv wuve sens wuns
JFFDF090 | 77FCE3B0 - 00410000 : 00000000 - 00000014 | wii&? .A..
TFFDFOAQD | 77FCD348 - 00000005 : 00000000 - 00000893 | WUOH ..ve sens sas 4
JFFDFOBO | 00000002 - 00000003 : 00000004 — 00000000 | weve wuve suns wuss
7FFDFOCO | 00000000 - 00000000 : 00000000 — 00000000 | veer weve sann snns
7FFDFODO | 00000000 - 00000000 : 00000000 - 00000000 | weve wees cevn wues
JFFDFOEO | 00000000 - 00000000 : 00000000 - 00000000 | vove suve wuen sunue
JFFDFOF0 | 00000000 — 00000000 : 00000000 - 00000000 | +eve sues sues sanne
JFFDF100 | 00000000 - 00000000 : 00000000 - OQOOOCOOOO | veee waas
JFFDF110 | 00000000 - 00000000 : 00000000 - 00000000 | +eve suve snee sane

7FFDF120 00000000 - 00000000 : 00000000 - 00000COO |

7FFDF130 00000000 - 00000000 ¢ 00000000 - 00000000 | vovws sovs sees
JFFDF140 00000000 - 00000000 : 00000000 - 00000000
7FFDF150 77FCDCCO - 00000000 : 0DOOOOOO - 00000000 willlh
7FFDF160 | 00000000 - 0OOOOOOO ¢ QOCOOOOD - QOOOOO0OD |

A SAMPLE MEMORY DUMP UTILITY 237

EXAMPLE 4-6. Displaying the Process Environment Block (PEB)

E:\>wik_mem +dk #0x1C 0x20 |
‘ FFDFF120..FFDFF138: 28 valid bytes
Address 1000000¢ 10000004 @ 0OOOOOOR gooooooc f000 0004 0008 000C

EXAMPLE 4-7. Displaying the Kernel's Processor Control Block (KPRCB)

HANDLE/OBJECT RESOLUTION

Suppose you have an object HANDLE and want to see what the corresponding object
looks like in memory. Thisis an almost trivial task if you use the +h switch, which sm-
ply cals the spy device's spy_1o_nanore_1nro function (Listing 4-26) to look up the
object body of the given handle. The world of Windows 2000 objects is an amazing
topic that will be treated in depth in Chapter 7. So let's forget about it for now.

RELATIVEADDRESSING

Sometimes it might be useful to display a series of memory blocks that are spaced out
by the same number of bytes. This might be, for example, an array of structures, like
the stack of TEBS in a multithreaded application. The +a and +s switches enable this
kind of relative addressing by changing the interpretation of the specified address to

an offset. The difference between these optionsisthat +a(“add bias”) yields apositive
offset, whereas +s ("subtract bias") yields a negative one. Example 4-8 showsthe out-
put of the command w2k_mem +a #32 0xc0000000 +a 4096 4096 on my system.

It samplesthe first 32 bytes of three consecutive 4-KB pages, starting at address
0xc0000000, where the system's page-tables are located. Note the +a switch near the
end of the command. It causes the following "4096" tokens to be interpreted as offsets

238 EXPLORING WINDOWS 2000 MEMORY

EXAMPLE 4-8. Sampling Page-Tables

to be added to the previous base address. The +aand +s switchesremain in effect
until switched off explicitly by specifying -a or -s or overridden by any of the other
switches that change the interpretation of the address parameter.

Example 4-8 also shows what happens if an invalid linear address is passed
in. Obvioudly, the first pair of page-tables referring to the 4-MB address ranges
0x00000000 to 0x003F0000 and 0x00400000 to oxoo7r0000 were valid, and the
third one was not. w2k_mem. exe reflects this fact by displaying an empty hex
dump table. The program knows which address ranges are valid because the spy
device's spy_t1o_meEMORY_DATA function puts this information into the resulting
sPY_MEMORY_DATA Structure (cf. Listing 4-25).

INDIRECT ADDRESSING

One of my favorite command options is +p, because it saved a lot of typing while
| was preparing this book. This option works similar to +u and +k, but doesn't
use the FS segment as reference, but rather uses the previously displayed data

A SAMPLE MEMORY DUMP UTILITY 239

block. Thisis agreat feature if you want to chase down alinked list of objects, for
example. Instead of displaying the first list member, reading out the address of the
next member, typing a new command with this address, and so on, simply append
+p to the command and a series of offsets that specify where the link to the next
object islocated in the previous hex dump panel.

In Example 4-9, 1 have used this option to walk down the list of active
processes. First, | have asked the Kernel Debugger to give me the address of the
internal variablePsActiveProcessHead, whichisalL IST _ENTRY structuremark-
ing the beginning of the process list. A LisT_gnTRY consists of ar1ink (forward
link) member at offset 0 and a Blink (backward link) member at offset 4 (cf.
Listing 2-7). The command w2k_mem #8 +a Ox8046al80 +p 0 0 0 O first dumps
the LrsT_enTRY Of PSActiveProcessHead, and then it switches to indirect
addressing on behalf of the +p switch. The four zeros tell w2k_mem. exe to extract
the value at offset zero of the previous data block, which is, of course, the Flink
member of each r.1st_rnTrY. Note that the Blink members in Example 4-9,
located at offset 4, do in fact point back to the previous .T1sT_ENTRY, as expected.

If enough zero-vaued parameters would be appended to the command, the hex
dump would eventualy return to PsActiveProcessHead, which marks the beginning
and the end of the process lit. As explained in Chapter 2, the doubly-linked lists main-
tained by Windows 2000 are usually circular; that is, the r1ink of the last list member
points to the first one, and the B1ink of the first lis member points to the last one.

0p00D0O04 : QOOODODOOS gooooooc | oooo oooda DOOB QOQOC

(continied)

240 EXPLORING WINDOWS 2000 MEMORY

1

|

|

| i

| 812FA460 | B12ZE3OCO J12FFDED : | *.0A o/¥a
|

L

i IR IR

EXAMPLE 4-9. Walking Down the Active-Process List

LOADING MODULESON THE FLY

Sometimes you might want to dump the memory image of a module, but the module
is not mapped into the linear address space of thew2k_mem. exe process. This prob-
lem can be solved by loading the module explicitly using the /<path> and +x com-
mand options. Every command token prefixed by aslash character isinterpreted asa
module path, and w2k_mem. exe attempts to load this module from this path using the
Win32 API function LoadnibraryEx () . By default, the load option ponT_RESOLVE_
DLL_REFERENCES iS used, causing the module to be loaded without initializing it. For
aDLL, thismeansthatitspilimain () entry pointisnot caled. Also, none of the
dependent modul es specified in the import section is loaded. However, if you specify
the +x switch before the path, the moduleisloaded and fully initialized. Note that
some modules might refuse initialization in the context of the w2k_men. exe process.
For example, kernel-mode device drivers should not be loaded with this option
turned on.

L oading and displaying amoduleistypically atwo-step operation, as shownin
Example 4-10. First you should load the module without displaying any data, to find
out the base address assigned to it by the system. Fortunately, load addresses are
deterministic as long as no other modul es are added to the process in the meantime,
s0 the next attempt to load the module will yield the same base address. In Example
4-10, I haveloaded the kernel-modedevicedriver nwrdr . sys, whichisthe
Microsoft's NetWare redirector. I'm not using IPX/SPX on my machine, so this driver
isnot yet loaded. Obviously, LoadL ibraryEXx () succeeds, and the hex dumps of the
reported load address 0x00720000 preceding and following this API cal prove that
thismemory regionisinitially unused but contains a DOS header afterward.

E: \>w2k_mem /e: \winnt\system32\drivers\nwrdr.sys
[sond
You didn’t request any data!

A SAMPLE MEMORY DUMP UTILITY 241

LoadLibrary {e:\winnt\system32\drivers\nwrdr.sys) = 0x007A0000

filg's,0:]

E:\>w2k_mem 0x007A0000 /e:\winntisystem32\drivers\nwrdr.sys O0x00T7A0000
fened

007A0000..007A00FF: 0 valid bytes

| |
| |
007A0000 | |
007A0010 | |
00720020 | |
00740030 | |
007A0040 | |
007A0050 | |
Q07A00ED | s |
007A0070 | - : = |
| : |

| |

| |

| |

| |

| |

| |

| |

. 007A0080
| 00780090
007A00A0
007A00BO
007AQ0CO
007A00DO
007A00E0
0O7TRO0FO

LoadLibrary {(e:\winnt\systemi2\drivers\nwrdr.sys) = 0xD07A0000
00720000, .007A00FF; 256 valid bytes

00 01 02 03-04 05 06 07 : 08 09 0OA OB-0C OD OE OF 0123456789ABCDEF
007A0000

007A0010

0720020

00740030

‘00720040

00740050

—— e

po op 00 00-00 00 00 00 : 00 OO0 00 00-D0 00 00 00 | v.vuvreunn Co o
P O (2 R 05

|
|
|
|
|
J
| |
| | is program canno
00TAQ06C | | £ be run in DOS
00780070 | | mede. caliiian o
0o7a0080 ! 61 14 4B Cl-25 75 25 92 : 25 75 25 82-25 75 25 92] a.KARUR?%uE 73us?
| |
| |
| |
I
|
|
|

© D07A0090 | 29 55 2B 92-27 75 25 92 : 7C 56 36 92-22 75 25 92 |)U+2’uk?|V6?ruR?
ID07A00A0 | 25 75 24 92-BF 75 25 92 : OF 7D 23 92-24 75 25 92 | BuS?iu%?.)#?sus?
'00TA00BO | 25 75 25 92-14 75 25 92 : 52 69 63 68-25 75 25 92 | Hub?.uS?RICHIUL?
\007A00C0 | 00 00 00 00-00 00 00 G0 : 00 00 00 00-00 00 00 00 | wouvvvevercannaes
007A00D0 | 50 45 00 00-4c 01 09 00 : 66 EC 08 38-00 00 00 00 | PE..L...fi.8
DO7A00EC | 00 00 00 00-EO 00 DE 03 : OE 01 05 0C-00 2D 02 00 | A -
© 0O7ACOFO | 40 3A 00 00-00 00 00 00 : 3E 14 01 00-40 03 00 00 | Bi...... >...8

EXAMPLE 4-10. Loading and Displaying a Module Image

242 EXPLORING WINDOWS 2000 MEMORY

Oddly, you can even load the . exe file of another application into memory
using the /<path> option. However, this modul e probably will be loaded to an
unusual address, becauseits preferred |oad addressis usually occupied by
w2k_mem. exe. Moreover, you cannot get the loaded application to run—the +x
switch appliesto DLLs only and has no effect on other module types.

DEMAND-PAGINGINACTION

In the discussion of the spy device function spy_to_meMORY_DaTa, | mentioned that
thisfunctionis able to read the contents of memory pagesthat are flushed out to a
pagefile. Now is the time to prove this claim. First, it is necessary to maneuver the
system into a severelow-memory situation, forcing it to swap to the pagefiles any-
thing that isn't urgently needed. My favorite method goes as follows:

1. Copy the Windows 2000 desktop to the clipboard by pressing the
Printkey.

2. Paste this bitmap into a graphics application.
3. Inflate the bitmap to an enormous size.

Now watch out what the command w2k _mem +a #16 OxC0280000
0XA0000000 0xA0001000 0xA0002000 0xc0280000 Yields on the screen. You might
wonder what this command is supposed to do. Well, it simply takes a snapshot of
some PTEs before and after touching the pages they refer to. The four PTEs found
at address 0xc0280000 are associated with the linear address range 0xA0000000 to 1
0xa0003FFF, Which is part of the image of the kernel module win32k. sys. As
Example 4-11 shows, this address range has been swapped out because of the
bitmap operation | had performed just before. How do | know? Because the four
DWORDS at address 0xc0280000 are even numbers, meaning that their least signifi-
cant bit—the P bit of aPTE—is zero, indicating a nonpresent page. The next three
hex dump panels belong to the command parameters 0xAOoooo000, OxAO0Oo01000,
and 0x20002000, requesting data from three of the four pages currently under
examination. As it turns out, w2k_mem. exe has no problems accessing these
pages—the system simply swaps them in on demand. However, the final test is il
to come: What do the four PTEs look like afterward? The answer is given by the
last panel of Example 4-11: The first three PTES have the P bit set, and the fourth
still indicates "not present."

A SAMPLE MEMORY DUMP UTILITY 243

E:\>w2k_mem +d #16 OxCOZH0000

L ey

c0280000.

0x20000000

.CO28000F: 16 valid bytes

Address oodooooo - 00000004 : 00QOO0O0B

CO280000 056A14E0 056A14EZ : (056A14E4

ADOOOOOD. .ADQCGOO0F: 16 wvalid bytes

Address | 00000000 - 00000004 : DOOODOOS

ADDDOOOO 00805840 -

cooooond

oooooooes3

AD0D1000. .ADDO100F: 18 wvalid bytes

Address | 00000000 - 00000004 :

AQDQLOOO | 0ODOQOAS - FFOCTSEF

A0002000. .AD00200F: 16 wvalid bytes

| 00000000 - 00000004 : CQO00CQUODEB

0 | BI9AOLIBEQ F&E85D8

£0280000. .C028000F:

16 valid bytes

Qooooooon

- Gooooo0d - 0DOQOCOO008

Address

OxAGO0L000

0ooooooe -

1738B415 -

75 : 46BD1AT4

0opoo00c | 0000 0004

D56

00oo0noc

FE45HBAD

nO0e0o0e

O5B6A14ES6

EXAMPLE 4-11.

Watching PTEs Change Their Sates

Al4EG

OxA0002000 O0xCOZBO000

gooe oooc

| 0000 0004 0008 Q0o0C

?o.da G7¢u Fe.L E«P

| ool oood 0008 DODC

[S e R B

Before stepping to the next section, please study the first hex dump panel of
Example 4-11 once more. The four PTEs at address OxC0280000 all look quite
smilar. In fact, they differ only in the three least-significant bits. If you examine
more of these PNPES that refer to pages in the pagefiles, you find that they all have
bit #10 set. That's why | assigned the name pageFile to this bit in Listing 4-3. If it
isset, theremaining bits—except for the Pflag, of course—apparently specify the

location of this page in the pagefiles.

244 EXPLORING WINDOWS 2000 MEMORY

MORE COMMAND OPTIONS

Some of the most interesting command options listed in Example 4-1 have not yet
been explained. For example the "System status options” +o, +c¢, +g, +i, and
+b are missing, although they sound promising. | will return to them in the last
section of this chapter, where several secrets of the Windows 2000 memory system
will be revealed.

INTERFACING TO THE SPY DEVICE

Now that you know how w2k_mem. exe is used, it's time to see how it works. Rather
than discuss command line parsing and dispatching, let's see how this application
communicates with the spy device inside w2k_spy . sys.

DEVICE I/0 CONTROL REVISITED

The kernel-mode side of IOCTL communication has already been shown in Listings
4-6 and 4-7. The spy device simply sits waiting for I/O Request Packets (IRPs) and
handlessomeofthem,especiallythosetaggedlRP_MJ _DEVICE_CONTROL ,which
request some forbidden actions to be executed, at least forbidden in the context of
the user-mode application that sends these requests. It does so by calling the Win32
API function pevicerocontrol (), prototyped in Listing 4-27. The awIocontrolcode,
lpInBuffer, nInBufferSize, lpOutBuffer, nOutBufferSize, and 1pBytesReturned
arguments should look familiar to you. In fact, they correspond 1:1 to the dcode,
pInput, dInput, pOutput, dOutput, and pdInfO arguments of the SpyDispaIcher ()
function in Listing 4-7. The remaining arguments are explained quickly. hpevice is
the handle to the spy device, and 1poverlapped optionally points to an OVERLAPPED
structure required for asynchronous IOCTL. We are not going to send asynchronous
requests, so this argument will always be NULL .

Listing 4-28 is a collection of wrapper functions that perform basic IOCTL
operations. The most basic function is rocontrol (), which calls DeviceioControl ()
and tests the reported output data size. Because w2k_mem. exe sizes its output buffers
accurately, the number of output bytes should always be equal to the buffer size.
ReadBinary () is a simplified version of locontrol () for IOCTL functions that don't
requi re input data. ReadCpuInfO (), ReadSegment () , and ReadPhysical () dre
specifically tailored to the spy functions SPY_|O_CPU_INFO, spv_10_secMenT, and
spy_T10_PHYSICAL, because these are the most frequently used IOCTL functions.
Encapsulating them in C functions makes the code much more readable.

A SAMPLE MEMORY DUMP UTILITY

245

BOOL WNAPI DeviceloControl (HANDLE hDevi ce,
DWRD dwIoControlCode,
PVOID lpInBuffer,
DWORD nInBuf ferSize,
PVa D lpoutBuffer,
DWIRD noutBuf ferSize,
PDWORD lpBytesReturned,

POVERLAPPED lpOverlapped) ;

LISTING4-27. Prototype of DeviceloControl ()

BOOL WNAPI ToControl (HANDLE hDevi ce,
DWRD dCode,
PO D pInput,
DWRD dInput,
PVAO D poutput,
DWORD doutput)

{
DWRD dData = 0;

return Devicel oControl (hDevice, dCode,
pl nput, dl nput,
pOutput, dOutput,
&dbata, NULL)
&&
(dData == dQut put) ;

1

BOOL W NAPI ReadBi nary (HANDLE hDevi ce,
DWRD dCode,
PVO D poOutput,
DWORD doutput)
{
return loControl (hDevice, dCode, NULL, 0, pCQutput,
)

BOOL WNAPI ReadCpul nfo (HANDLE hDevi ce,
PSPY_CPU_INFO psci)
{
return loControl (hDevice, SPY_TIO_CPU_INFO,
NULL , 0,
psci, SPY_CPU_INFO_) ;
}

dOutput) ;

(continued)

246 EXPLORING WINDOWS 2000 MEMORY

BOOL WINAPI ReadSegment (HANDLE hDevice,
DWORD dSelector,
PSPY_SEGMENT pssS)

return ToControl (hDevice, SPY_IO_SEGMENT,
&dSelector, DWORD._,
pss, SPY SEQVENT i i
}
// AN EEEEEEEEEEE NN EEEEEEEEEEEEEEE IIIIII
BOOL WNAPI ReadPhysi cal (HANDLE hDevi ce,
PVOID plinear,

PPHYSI CAL_ADDRESS ppa)
{
return loControl (hDevice, SPY _I0_PHYSICAL,
&pLinear, PVA D,
ppa, PHYSI CAL_ADDRESS)
&&
(ppa->LowPart | | ppa->Highpart) ;
}

LISTING 4-28. Various IOCTL Wrappers

All functions shown so far in this section require a spy device handle. It'stime
that | show how to obtain it. It is actually a quite smple Win32 operation, similar to
opening afile. Listing 4-29 shows the implementation of the command handler inside
w2k_mem. exe. This code uses the API functions w2kFilePath (), w2kserviceLoad(),
and w2kserviceunload(), exported by the “SBS Windows 2000 Utility Library"
w2k_1ib.d11, included on the companion CD of this book. If you have read the
section about the Windows 2000 Service Control Manager in Chapter 3, you already
know w2kserviceLoad() and w2kServiceUnload () from Listing 3-8. These power-
ful functions load and unload kernel-mode device drivers on the fly and handle
benign error situations, such as gracefully loading adriver that is already |oaded.
w2kFilePath () isahelpful utility function that derives afile path from a base path,
given a file name or file extension. w2k_mem.exe cals it to obtain a fully qualified
path to the spy driver executable that matches its own path.

WORD awSpyFile [1 = SW(DRV_FILENAME) ;
WRD awSpyDevice [] = SW(DRV_MODULE) ;
WORD awSpy Display [] = SW (DRV_NAME) ;

WORD awSpyPath [1 = SW(DRV_PATH) ;

A SAMPLE MEMORY DUMP UTILITY

247

1

voi d WNAPI Execute (PPWORD ppwArguments ,
DWRD dArguments)

{

SPY VERSION I NFO svi;

DWORD doptions, dRequest, dReceive;
WORD awPath [MAX_PATH] = L"?";
SC_HANDLE hControl = NULL;
HANDLE hDevice = NULL;
_printf (L”\r\nLoading \”%s\” (%) .. .\r\n”,

awSpyDisplay, awSpyDevice) ;

if (WkFilePath (NLLL, awSpyFile, awPath, MAX PATH))
{

_printf (L”Driver: \”%s\”\r\n”,
awPath) ;

hGontrol = w2kServiceLoad (awSpyDevice, awSpyD spl ay,
awPath, TRUE) ;

}
if (hGontrol !=NUL)
_printf (L”Opening\”%s\” .. . \r\n”,
awSpyPath) ;

hDevice = CreateFile (awSpyPath, GENER C READ,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, CPEN EX STING
FILE_ATTRIBUTE_NORMAL, NULL) ;
}
if (hDevice != INVALID_HANDLE_ VALUE)
(
if (ReadB nary (hDevice, SPY_|OVERS ONINQ
&svi, SPY_VERSION_INFO_))
{
_printf (L”\r\n%s V%lu.%021lu ready\r\n”,
svi. awName,
svi.dVersion / 100, svi.dVersion % 100);
)
dOpti ons = COMMAND_OPTION_NONE ;
dRequest = CommandParse (hDevice, ppwArguments, dArgunents,
TRUE, &doOptions) ;

dQpti ons = COMMAND_OPTION_NONE;
dRecei ve = CommandParse (hDevice, ppwArguments, dArgunents,
FALSE, &doptions) ;
if (dRequest)
{
_printf (awSummary,
dRequest, (dRequest == 1 ? awByte : awBytes) ,

(continued)

248 EXPLORING WINDOWS 2000 MEMORY

dRecei ve, (dReceive==1 ? awByte . awBytes));
}
_printf (L”\r\nClosing the spy device ...\r\n”);
Q oseHandl e (hDevice) ;

el se

{

_printf (L”Spydevice not available. \r\n”);
}
if ((hControl !=NJL) && gf SpyUnl oad)
{
_printf (L”Unloading the spy device ...\r\n”);
w2kServiceUnload (hControl, awSpyDevice);
}

return;

}

LISTING 4-29. Controlling the Spy Device

Please note the four global string definitions at the top of Listing 4-29. The con-
stants DrRV_FILENAME, DRV_MODULE, DRV_NAME, and DRV_PATH are drawn from the
header file of the spy device driver, w2k_spy.h. Table 4-4 lists their current values.
You will not find device-specific definitions in the source files of w2k_mem. exe.
w2k_spy . h provides everything aclient application needs. Thisisvery important: If
any device-specific definitions change in the future, there is no need to update any
application files. Just rebuild the application with the updated spy header file, and
everythingwill fall into place.

Thew2krilerath () call near the beginning of Listing 4-29 guarantees that
thew2k_spy . sysfile specified by the global string awSpyFile (cf. Table 4-4) is
always loaded from the directory where w2k_mem. exe resides. Next, the code in
Listing 4-29 passesthe global strings awSpyDevice and awSpyDisplay (cf. Table4-4)
tow2kserviceLoad (), attempting to load and start the spy device driver. If the
driver was not loaded yet, these strings will be stored in the driver's property list and
can be retrieved by other applications; otherwise, the current property settings are
retained. Although the w2kserviceroad () cal in Listing 4-29 returns a handle, this
is not a handle that can be used in any IOCTL calls. To get a handle to the spy device,
the Win32 multipurpose function createFile () must be used. This function opens
or creates almost anything that can be opened or created on Windows 2000. Y ou cer-
tainly have called this function amillion times to get afile handle. CreateFile() can
also open kernel-mode devicesif the symbolic link name of the deviceis suppliedin
theformat \\ . \<symbolicLink> for the 1prilename argument. The symbolic link of
the spy device is named w2k _spy, so thefirst CreateFile() argument must be
\\.\w2k_spy, whichisthevalue of the global string variable awSpyPath according
to Table 4-4.

A SAMPLE MEMORY DUMP UTILITY 249

TABLE 44 Device-pecific Sring Definitions
{02k_spy CONSTANT w2k_mem VARIABLE VALUE
DRV_FILENAME awSpyFile w2k_spy.sys
DRV_MODULE awSpyDevice w2k_spy
DRV_NAME awSpyDisplay SBSWindows 2000 Spy Device
DRV_PATH awSpyPath \\w2k_spy

If CreateFile () succeeds, it returns a device handle that can be passed to
peviceIoControl () . The Execute() function in Listing 4-29 uses this handle imme-
diately to query the version information of the spy device, which it displays on the
screen if the IOCTL call succeeds. Next, the commandrarse () function is invoked
twice with a different BOOL value for the fourth argument. The first call smply checks
thecommand line for invalid parameters and displays any errors, and the second call
actually executes al commands. | do not want to discuss in detail the command parser.
Theremaining codein Listing 4-29 is cleanup code that closes handles and optionally
unloads the spy drives. The source code of w2x_mem. exe contains other interesting code
snippets, but | will not discuss them here. Please see the files w2k_mem. ¢ and w2k_mem. h
inthe \src\w2x_mem directory on the sample CD for further details.

The only notable thing left is the gf spyunioaa flag tested before unloading the
spy driver. | have set this global flag to FALSE, so the driver will not be unloaded
automatically. This enhances the performance of w2k_memn. exe and other w2k_spy .
sys clients because loading a driver takes some time. The first client has to take the
loading overhead, but all successorswill benefit from having thedriver already in
memory. This setting also avoids conflict situations involving competitive clients, in
which one client attempts to unload the driver while another one is still using it. Of
course, Windows 2000 will not unload the driver unless all handles to its devices are
closed, but it will put it into a STOP_PENDING state that will not alow new clients to
access the device. However, if you don't run w2k_spy . Sys in @ multiclient environ-
ment, and you are updating the device driver frequently, you should probably set the
of SpyUnload flag to TruE.

WINDOWS 2000 MEMORY INTERNALS

Along with the global separation of the 4-GB address space into user-mode and
kernel-mode portions, these two halves are subdivided into various smaller blocks.
Asyou might have guessed, most of them contain undocumented structures that
serve undocumented purposes. It would be easy to forget about them if they were
uninteresting. However, that's not the case—some of them are a real gold mine for
anyonedevel oping system diagnosisor debugging software.

250 EXPLORING WINDOWS 2000 MEMORY

BASIC OPERATING SYSTEM INFORMATION

Now the time has come to introduce one of the postponed command line options of
the memory spy application w2k_mem. exe. If you take alook at the lower half of the
program's help screen in Example 4-1, you will see a section titled "System Status
Options." Let'stry the option +o, named "display OS information." Example 4-12
shows a sample run on my machine. The data displayed here are the contents of the
SPY_OS _INFO structure, defined in Listing 4-13 and set up by the spy device function
SpyOutputOsInfo (), asoincluded in Listing 4-13. In Example 4-12, you can
already see some characteristic addresses within the 4-GB linear memory space of a
process. For example, the valid user address range is reported to be 0x00010000 to
0x7FFEFFFF. Y OU have probably read in other programming books about Windows
NT or Windows 2000 that the first and last 64 KB of the user-mode half of linear
memory are "no-access regions’ that are there to catch wild pointers produced by
common programming errors (cf. Solomon 1998, Chapter 5). The output of
w2k_mem. €xe proves that thisis correct.

INTERFACING TO THE SPY DEVICE 251

dobal flag 0x00000000

i386 nachi ne type 0

Nunber of processors 1

Product type Wndows NI Wirkstation (1)
Version & Build nunber 5. 00. 2195

System r oot “E: \WINNT”

i<

EXAMPLE 4-12. Displaying Operating System Information

The last three lines of Example 4-12 contain interesting information about the
system, mostly extracted from the shareduserpata area at address OXFFDFO000 . The
data structure maintained there by the system is called xkuser_suarED_DATA and is
defined in the DDK header file ntdadk. h.

WINDOWS 2000 SEGMENTSAND DESCRIPTORS

Another fine option of w2k_mem. exe is +c, which displays and interprets the contents
of the processor's segment registers and descriptor tables. Example 4-13 shows the
typical output. The contents of thecs, DS, and ES segment registers clearly demon-
strate that Windows 2000 provides each process with a flat 4-GB address space:
These basic segments start at offset 0x00000000 and have a limit of 0xFFFFFFFF.

The flag characters in the rightmost column indicate the segment type as
defined by its descriptor's Type member. The type attributes of code and data segments
are symbolized by combinations of the characters “cra” and “ewa,” respectively. A
dash means that the corresponding attribute is not set. A Task State Segment (TSS)
can havethe attributes "a"' (available) and “b” (busy) only. All applicable attributes
are summarized in Table 4-5. Example 4-13 shows that the Windows 2000 cs seg-
ments are nonconforming and allow execute/read access, whereasthe DS, ES, FS,
and ss segments are of expand-up type and allow read/write access. Another incon-
spicuous but important detail is the different DPL of thecs, FS, and ss segmentsin
user- and kernel-mode. DPL is the Descriptor Privilege Level. For nonconforming
code segments, the DPL specifies the privilege level acaller must be on in order to be
able to call into this segment (cf. Intel 1999c¢, pp. 4-8f). In user-mode, the required
level is three; in kernel-mode, it is zero. For data segments, the DPL is the lowest
privilege level required to be able to access the segment. This meansthat the FS and
ss segments are accessible from dl privilege levels in user-mode, whereas only level-0
accesses are allowed in kernel-mode.

252 EXPLORING WINDOWS 2000 MEMORY

User mode segments:

Kernel mode segments:

GDT : Limit

EXAMPLE 4-13. Displaying CPU Information

The contents of the IDT and GDT registers show that the GDT spans from lin-
ear address 0x80036000 to 800363FF, immediately followed by the IDT, occupying
the address range 0x80036400 to 0x80036BFF. With each descriptor taking 64 bits,
the GDT and IDT contain 128 and 256 entries, respectively. Note that the GDT
could comprise as many as 8,192 entries, but Windows 2000 uses only a small frac-
tion of them.

The w2k_mem. exe utility features two more options—+g and +i—that display
more details about the GDT and IDT. Example 4-14 demonstrates the output of the
+g option. It is similar to the "kernel-mode segments:” section of Example 4-13, but
lists all segment selectors available in kernel-mode, not just those that are stored in
segment registers. w2k_mem. exe compiles this list by looping through the entire GDT,

INTERFACING TO THE SPY DEVICE 253

TABLE 4-5. Code and Data Segment TypeAttributes

SEGMENT ATTRIBUTE DESCRIPTION

CODE
CODE
CODE
DATA
DATA
DATA
TSS32
TSS32

c Conformingsegment (may beentered by lessprivileged code)
Read-access allowed (as opposed to execute-only access)
Segment has been accessed

Expand-down segment (typical attribute for stack segments)
Write-access allowed (asopposed to read-only access)
Segment has been accessed

Task State Segment is available

Task State Segment is busy

-

oo o s O

querying the spy device for segment information by means of the IOCTL function

EBY_-TO._.

seeMeENT . Only valid selectors are displayed. It is interesting to compare

Examples 4-13 and 4-14 with the GDT sdlector definitions inntadk.h, summarized
inTable4-6. Obviously, they are in accordance with the detail sreported by

w2k_mem. exe.

[eood

E: \>W2k_mem+g

QT i nformati on:

001

007

Sel ector = 0008, Base 00000000, Limt = FFFFFFFF, DPLQ Type = QCDE -ra

Sel ect or = 0010, Base = 00000000, Linit = FFFFFFFF, DPLO, Type = DATA -wa
Sel ector = 0018, Base = 00000000, Limt = FFFFFFFF, DpL3, Type = OCDE -ra
Sel ector = 0020, Base = 00000000, Limt = FFFFFFFF, DprL3, Type = DATA -wa
Sel ector = 0028, Base = 80244000, Linit = 000020AB, DrLO, Type = TSS32 b
Sel ector = 0030, Base = FFDFFOOO, Linit = 00001FFF, DrLO, Type = DATA -wa
Sel ector = 0038, Base = 7FFDEOCOO, Limt - OOOOOFFF, ppL3, Type = DATA -wa
Sel ector = 0040, Base = 00000400, Linit = OOOOFFFF, DrL3, Type = DATA -wa
Sel ector = 0048, Base = E2E6AQ00, Linmit = 00000177, DppLO, Type = LDT

Sel ector = 0050, Base = 80470040, Limt = 00000068, DrLO, Type = TSS32 a
Sel ector = 0058, Base = 804700A8, Limt = 00000068, DrLO, Type = TSS32 a
Sel ector = 0060, Base = 00022ABO, Linmit = OOOOFFFF, DpPLO, Type = DATA -wa
Sel ector = 0068, Base = OOOB8000, Linit = O00003FFF, DrLO, Type = DATA -w-
Sel ector = 0070, Base = FFFF7000, Limt = O000003FF, DPLO, Type = DATA -w-
Sel ector = 0078, Base = 80400000, Limt = OOOOFFFF, prLO, Type = CODE -r-
Sel ector = 0080, Base = 80400000, Linmit = OOOOFFFF, DpPLO, Type = DATA -w-
Sel ector = 0088, Base = 00000000, Limit = 00000000, DPLO, Type = DATA -w-

(conti nued)

254 EXPLORING WINDOWS 2000 MEMORY

014 | Selector = OOAO, Base = 814985A8, Linmit = 00000068, DrLO, Type = TSS32 a
01c Sel ector = OOEO, Base = F0430000, Limt = OOOOFFFF, DPLO, Type = CODE cra
01D Sel ector = OOE8, Base = 00000000, Limt = OOOOFFFF, DPLO, Type = DATA -w-
01E | Selector = OOFO, Base = 8042DCE8, Linit = 000003B7, DPLO, Type = COCDE
01F | Selector = OOF8, Base = 00000000, Limit = OOOOFFFF, DPLO, Type = DATA -w-
020 Sel ector = 0100, Base = F0440000, Linit = OOOOFFFF, DPLO, Type = DATA -wa
021 Sel ector = 0108, Base = F0440000, Limt = OOOOFFFF, DPLO, Type = DATA -wa
022 Sel ector = 0110, Base = F0440000, Linit = OOOOFFFF, DPLO, Type = DATA -wa
[...

EXAMPLE 4-14. Displaying GDT Descriptors

TABLE 46. GDT Sdectors Defined in ntddk.h
SYMBOL VALUE COMMENTS
KGDT_NULL 0x0000 Null segment selector (invalid)

KGDT_RO_CODE 0x0008 CSregister in kernel-mode
KGDT_RO_DATA 0x0010 SSregister in kernel-mode
KGDT_R3 CODE 0x0018 CSregister in user-mode
KGDT_R3 DATA 0x0020 DS, ES and SSregister in user-mode, DSand ESregister in kernel-mode
KGDT_TSS 0x0028 Task State Segment in user- and kernel-mode
KGDT_RO_PCR 0x0030 FSregister in kernel-mode (Processor Control Region)
KGDT_R3 TEB 0x0038 FSregister in user-mode (Thread Environment Block)
KGDT_VDM_TILE 0x0040 Base 0x00000400, limit OXOOOOFFFF (Virtual DOS Machine)
KGDT_LDT 0x0048 Local Descriptor Table
KGDT_DF _TSS 0x0050 ntoskrnl.exevariable KiDoubleFault TSS
KGDT NMI TSS 0x0058 ntoskrnl.exe variable KiINMITSS

The selectors in Example 4-14 that are not listed in Table 4-6 can in part be
identified by looking for familiar base addresses or memory contents, and by using
the Kernel Debugger to look up the symbols for some of the base addresses. Table 4-7
comprises the selectors that | have identified so far.

The +i option of w2k_mem. exe dumps the gate descriptors stored in the IDT.
Example 4-15 is an excerpt from this rather long list, comprising only the first
20 entries that have a predefined meaning assigned by Intel (Intel 1999c, pp. 5-6).
Interrupts 0x14 to ox1F are reserved for Intel; the remaining range 0x20 to OXFF is
available to the operating system.

In Table 4-8, I have summarized al interrupts that refer to identifiable and non-
trivial interrupt, trap, and task gates. Most of the user defined interrupts point to
dummy handlers named kiUnexpectedInterruptNNN (), asexplained earlier in this
chapter. Some interrupt handlers are located at addresses that can't be resolved to
symbols by the Kernel Debugger. .

INTERFACING TO THE SPY DEVICE 255

TABLE 47 More GDT Sdlectors
VALUE BASE DESCRIPTION

0x0078 0x80400000 ntoskrnl.exe code segment

(0x0080 0x80400000 ntoskrnl.exe data segment

0x00A0 Ox814985A8 TSS (EIP member points to HalpMcaExceptionHandler Wrapper)
0xOOEQ OxF0430000 ROM BIOS code segment

0x00F0 Ox8042DCE8 ntoskrnl.exe function Kil386CallAbios

0x0100 OxF0440000 ROM BIOS datasegment

0x0108 OxF0440000 ROM BIOS data segment

0x0110 OxF0440000 ROM BIOS data segment

E: \>w2k_mem+1i
[.. 1

10T information:

o
(=]

Poi nter = 0008: 804625E6, Base = 00000000, Limit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80462736, Base 00000000, Limit = FFFFFFFF, Type = INT32
TSS = 0058, Base 804700A8, Limit = 00000068, Type = TASK
Poi nter = 0008: 80462ACE, Base = 00000000, Limit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80462B72, Base 00000000, Limt = FFFFFFFF, Type = INT32
Poi nter = 0008: 80462CB6, Base = 00000000, Linit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80462E1A, Base = 00000000, Linit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80463350, Base = 00000000, Linit = FFFFFFFF, Type = INT32
TSS = 0050, Base = 80470040, Limit = 00000068, Type = TASK
Poi nter = 0008: 8046370C, Base = 00000000, Linit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80463814, Base = 00000000, Linmit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80463940, Base = 00000000, Linmit = FFFFFFFF, Type = INT32
Poi nter = 0008: 80463C44, Base = 00000000, Linit - FFFFFFFF, Type = INT32
Poi nter = 0008: 80463E50, Base = 00000000, Limit = FFFFFFFF, Type = INT32
Poi nter = 0008: 804648A4, Base = 00000000, Limt = FFFFFFFF, Type = INT32
Poi nter = 0008: 80464C3F, Base = 00000000, Limt = FFFFFFFF, Type = INT32
Pointer = 0008: 8046447, Base = 00000000, Linit - FFFFFFFF, Type = INT32
Poi nter = 0008: 80464E6B, Base = 00000000, Limt = FFFFFFFF, Type = INT32
TSS = 00AQ, Base = 814985A8, Limit = 00000068, Type = TASK
Poi nter = 0008: 80464C3F, Base = 00000000, Limil = FFFFFFFF, Type = INT32

o
=y

[=}
[}

o
a5}

THEREERAMRB8YRREEISIR

EXAMPLE 4-15. Displaying IDT Gate Descriptors

256 EXPLORING WINDOWS 2000 MEMORY

TABLE 4-8. Windows 2000 Interrupt, Trap, and Task Gates
INT INTEL DESCRIPTION OWNER HANDLER/TSS
0x00 Divide Error (DE) ntoskrnl.exe KiTrapOO
0x01 Debug (DB) ntoskrnl.exe KiTrapOl
0x02 NMI Interrupt ntoskrnl.exe KiNMITSS
0x03 Breakpoint (BP) ntoskrnl.exe KiTrap03
0x04 Overflow (OF) ntoskrnl.exe KiTrap04
0x05 BOUND Range Exceeded (BR) ntoskrnl.exe KiTrap05
0x06 Undefined Opcode (UD) ntoskrnl.exe KiTrap06
0x07 No Math Coprocessor (NM) ntoskrnl.exe KiTrap07
0x08 Double Fault (DF) ntoskrnl.exe KiDouble
0x09 Coprocessor Segment Overrun ntoskrnl.exe KiTrap09
OxOA InvalidTSS(TS) ntoskrnl.exe KiTrapOA
0x0B Segment Not Present (NP) ntoskrnl.exe KiTrapOB
0x0C Stack-SegmentFault(SS) ntoskrnl.exe KiTrapOC
OxOD General Protection (GP) ntoskrnl.exe KiTrapOD
OxOE Page Fault (PF) ntoskrnl.exe KiTrapOE
OxOF (Intel reserved) ntoskrnl.exe KiTrapOF
0x10 Math Fault (MF) ntoskrnl.exe KiTraplO
0x11 Alignment Check (AC) ntoskrnl.exe KiTrapll
0x12 Machine Check (MC) ? ?
0x13 Streaming SIMD Extensions ntoskrnl.exe KiTrapOF
Oxl4-OxIF (Intel reserved) ntoskrnl.exe KiTrapOF
Ox2A User Defined ntoskrnl.exe KiGetTickCount
Ox2B User Defined ntoskrnl.exe KiCallbackReturn
Ox2C User Defined ntoskrnl.exe KiSetLowWaitHighThread
Ox2D User Defined ntoskrnl.exe KiDebugService
Ox2E User Defined ntoskrnl.exe KiSystemService
Ox2F User Defined ntoskrnl.exe KiTrapOF
0x30 User Defined hal.dll HalpClockInterrupt
0x38 User Defined hal.dll HalpProfileInterrupt
WINDOWS 2000 MEMORY AREAS

The last w2k_mem. exe option that remains to be discussed is the +b switch. It gener-
ates an enormously long list of contiguous memory regions within the 4-GB linear
address space. w2k_mem. exe builds this list by walking through the entire PTE array
at address 0xc0000000, using the spy device's IOCTL function spv_T10_PAGE_ENTRY.

WINDOWS 2000 MEMORY INTERNALS 257

The asize member contained in each resulting SPY_PAGE ENTRY structure is added to
the linear address associated with the PTE to get the linear address of the next PTE to
be retrieved. Listing 4-30 shows the implementation of this option.

DWCRD WINAPI DisplayMemoryBlocks (HANDLE hDevice)

{

SPY_PAGE_ENTRY spe;

PBYTE pbPage, pbBase ;

DWORD dBlock, dpPresent, dTotal;
DWORD n = 0;

pbPage = 0;

pbBase = INVALID_ADDRESS;

dBlock = 0;

dPresent = 0;

dTot al = 0;

n += _printf (L”\r\nContiguous nenory blocks:”

Lexzhn --\EXAAEYRT)s

do {
if (!ToControl (hDevice, SPY_IO_PAGE_ENTRY,
&pbPage, PVA D,
&spe, SPY_PAGE_ENTRY_))
f
n += _printf (L" 1! Device I/O error !!!\r\n”);
break;

}

if (spe.fPresent)
{
dPresent += spe.dsize;
}

if (spe.pe.dvalue)

{

dTotal += spe.dSize;

if (pbBase == INVALID ADDRESS)
t
n += printf (L7%51u: XX98LX ->~,
++dBlock, pbPage) ;

pbBase = pbPage;
}
}

el se

if (pbBase != INVALID_ADDRESS)

{
n += _printf (L" OX%81X (XWWBLX bytes) \r\n”,
pbPage-1, pbPage-pbBase) ;

(conti nued)

258 EXPLORING WINDOWS 2000 MEMORY

pbBase = INVALID_ADDRESS;

}
}
}
whil e (pbPage += spe.Size);
if (pbBase != INVALID ADDRESS)
{
n += _printf (L”0x%081X\r\n”, pbPage-1) ;
}

n += _printf (L”\r\n”
L" Present bytes: 0x%081X\r\n”
L" Total bytes: 0x%081X\r\n”,
dPresent, dTotal);

return n;

}

LISTING 4-30. Finding Contiguous Linear Memory Blocks

Example 4-16 is an excerpt from a sample run on my machine, showing some
of themoreinteresting regions. Somevery obvious addressesare 0x00400000, where
the image of w2k_mem. exe Starts (block #13), and 0x10000000, where the image of
w2k_1ib.d11islocated (block #23). The TEB and PEB pages also are clearly dis-
cernible (block #104), asarethe hal.dll, ntoskrnl.exe, andwin32k.sys areas
(blocks#105 and 106). Blocks #340 to 350 are, of course, the valid fragments of the
system's PTE array, featuring the page-directory as part of block #347. Block #2122
contains the sharedUserData area, and #2123 comprises the kecr, KPRCB, and
CONTEXT structures containing thread and processor status information.

E: \>w2k_mem +b
[aasd
Cont i guous nenory blocks:

0x00010000 -> OxOOO OFFF (0x00001000 bytes)
0x00020000 -> Ox00020FFF (0x00001000 byt es)
0OX0012DO0O - > OX00138FFF (OxOOOOCOOO byt es)
0x00230000 -> OX00230FFF (0x00001000 bytes)
0x00240000 -> QOX00241FFF (0x00002000 byt es)
0x00247000 -> X00247FFF (0x00001000 bytes)
OX0024FOQ0 -> Ox00250FFF (0x00002000 bytes)

N o O WN

WINDOWS 2000 MEMORY INTERNALS 259

10
11
12
13
14
15
16
17

18
19

20
21 :
22 :
23
24
25 :
26 :

103
104 :
105 :
106
107
108 :
109
110

340
341
342
343
344 :
345
346

347
348

349

350

r 2
L .J

2121
2122
2123
Le-vd

Present bytes:

Tot al
L]

0x00260000 -> Ox00260FFF
0x00290000 -> Ox00290FFF
Ox002E0000 -> Ox002ECFFF
Ox002E2000 -> Ox002E3FFF
0x003B0000 -> Ox003Bl FFF
0x00400000 -> X00404FFF
0x00406000 -> Ox00406FFF
0x00410000 -> Ox00410FFF
0x00419000 -> x00419FFF
x0041BOXO -> OX0041BFFF
0x%Q0450000 -> OxQ0ASQFFF
0x00760000 -> OXO0760FFF
0x00770000 -> Ox00770FFF
0x00780000 -> Ox00783FFF
0x00790000 -> Ox00791FFF
0x10000000 -> Oxl 0003FFF
0x10005000 -> 0x10005FFF
Ox| OOOEOCOO -> kI 0016FFF
Ox759B0O000 -> OX759B1FFF
X7FFD2000 -> Ox7FFD3FFF
0x7FFDEO0O -> OX7FFECFFF
0x80000000 -> 0xA0LASFFF
OxAQl BOOOO -> OXAO1F2FFF
OxA0200000 -> OXA02C7FFF
OxA02FO000 -> OXAO3FFFFF
xA4000000 -> OXA4001FFF
OxBE63BO00 - > OXBE63CFFF
Ox COO00000 -> OxCOOA FFF
x0D040000 -> OxCDO40FFF
xC01D6000 -> OXQO1D6FFF
OxCO DAOCOO -> xCO DAFFF
OxCO DDOOO -> OxCO EOFFF
OxCOl FDOOO -> OxCA FDFFF
OxCO FFOOO -> OxCD280FFF
x(00290000 -> OXCO301FFF
x(C0303000 -> OxCO386FFF
x(00389000 -> OXCD38CFFF
OxCO039EQQCO -> OXCO3FFFFF
OxFFCOO000 - > OxFFDOFFFF
OxFFDFOOOO - > OxFFDFOFFF
OxFFDFFOOO -> OXFFDFFFFF
x22AA9000

bytes: Ox2B8BAOCOO

(0x00001000
(0x00001000
(0x00001000
(0x00002000
(0x00002000
(000005000
(0x00001000
(0x00001000
(0x00001000
(0x00001000
(0%00001000
(0x00001000
(0x00001000
(000004000
(0x00002000
(0x00004000
(0x00001000
(0x00009000
(0x00002000

(0x00002000
(0x00003000
(X201A6000
(0x00043000
(0x000C8000
(000110000
(0x00002000
(0x00002000

(0x00002000
(0x00001000
(0x00001000
(0x00001000
(0x00004000
(0x00001000
(0x00082000
(0x00072000
(0x00084000
(0x00004000
(0x00062000

(0x00110000
(0x00001000
(0x00001000

bytes)
bytes)
bytes)
bytes)
bytes)
byt es)
byt es)
byt es)
bytes)
bytes)
bytes)
byt es)
byt es)
bytes)
bytes)
byt es)
bytes)
byt es)
byt es)

bytes)
bytes)
bytes)
bytes)
bytes)
byt es)
byt es)
bytes)

bytes)
bytes)
byt es)
bytes)
bytes)

byt es)
bytes)
bytes)

EXAMPLE 4-16.

A Sample List of Contiguous Memory Blocks

260 EXPLORING WINDOWS 2000 MEMORY

The odd thing about the +b option of w2k_mem. exe is that it reports an
amount of used memory that is far beyond any reasonable value. Note the
summary lines at the end of Example 4-16. Am | really using 700 MB of memory
now? The Windows 2000 Task Manager indicates 150 MB-—so what's going on
here? This strange effect comes from memory block #105, which isreportedto
range from 0x80000000 to oxa01a5FFF, Spanning 0x201a6000 bytes, which
equals 538,599,424 bytes. This is obviously nonsense. The problem is that the
entire linear address range from 0x80000000 to OX9FFFFFFF is mapped to the
physical address range 0x00000000 t0 0x1FrFFFFFF, as already noted earlier intlig
chapter. All 4-MB pagesin thisrange have valid PDEs in the page-directory at
address 0xc0300000, which can be proved by issuing the command w2k _men #
#0x200 oxco3o00800 (Example 4-17). Because all PDEsin the resulting list are o
numbers, the corresponding pages must be present; however, they are not neces:
sarily backed up by physical memory. In fact, large portions of this memory rangt
are really "holes" and seem to be filled with OXFF bytes if copied to a buffer.
Therefore, you shouldn't take the memory usage summary displayed by
w2k_mem.exe 100 serioudly.

E:\>w2k_mem +d #0x200 OxC0D300800
T..'3
€0300800. .CO3009FF: 512 valid bytes

Addr ess 00000000 - 00000004 | 00000008 - 0OOOOOOOC | 0000 0004 0008 OOOC
Q0300800 000001E3 - 004001E3 | O008001E3 - OOCO01E3 .8 .@.ad .?.& .A.&
Q0300810 010001E3 - 014001E3 018001E3 - 01CD01E3 .4 .6.S .7.d .A&
0300820 020001E3 - 024001E3 028001E3 - 02Q001E3 .8 .@.& .7.8 .A.&
Q0300830 030001E3 - 034001E3 038001E3 - 03Q001E3 .a .@.& .?.8 .A.&
Q0300840 040001E3 - 044001E3 | 048001E3 - 04C001E3 ...a.e.a.?a .aa
Q0300850 050001E3 - 054001E3 058001E3 - 05C001E3 ...a.6.d.2.4a .A.a
0300860 060001E3 - 064001E3 068001E3 - 06C0D01E3 ...a.@.& .72.8 .A.a
Q0300870 070001E3 - 074001E3 078001E3 - 07C001E3 ..a.@.d .?.8 .A.%
Q0300880 080001E3 - 084001E3 | 088001E3 - 08CDO1E3 ..3.e.a.2.a .a4
Q0300890 090001E3 - 094001E3 098001E3 - 09C001E3 ..3.e.a.?.a .Aa
Q03008A0 | QAO001E3 - QA4001E3 QAB001E3 - QACDO1E3 .a .@.3 .?.48 .A.8&
Q03008BO | CBOO01E3 - OB4001E3 OB8001E3 - OBQOO1E3 .8 .@.8 .?.8 .A.&
Q03008CO | OM001E3 - OCA001E3 | OCB8001E3 - OCQO01E3 .8 .e.5 .2.a .A.ag
Q0300800 | (DO001E3 - (MM001E3 | (DBOO01E3 - C(DADO1E3 .8 .e.d .?.8 A&
Q03008EO | OE0001E3 - CE4001E3 OE8001E3 - CEQOO1E3 .8 .@.& .?.8 .A4
C03008FO | OFO001E3 - OF4001E3 OF8001E3 - CFQO01E3 .8 .. .7.8 .A.&
Q0300900 100001E3 - 104001E3 108001E3 - 10Q001E3 .4 .83 .7.8 .A.4

W NDOAS 2000 MEMORY | NTERNALS 261

C0300910 110001E3 - 114001E3

3 - 11Q001E3 ...a .@.d .?.a .A.3
€0300920 120001E3 - 124001E3 128001E3 - 12CO001E3 ...a .@.3 .?.a .A.&
C0300930 130001E3 - 134001E3 138001E3 - 13C0O01E3 ...a .@.d .?.& .A.a
£€0300940 140001E3 - 144001E3 148001E3 - 14Q001E3 A.

Q0300950 150001E3 - 154001E3 158001E3 - 15Q001E3
€0300960 160001E3 - 164001E3 168001E3 - 16C001E3

€0300970 170001E3 - 174001E3 178001E3 - 17C001E3
€0300980 180001E3 - 184001E3 188001E3 - 18(001E3
C0300990 190001E3 - 194001E3 198001E3 - 19C001E3
C03009A0 IA0001E3 - 1A4001E3 1A8001E3 - 1ACD01E3
C03009B0 1BO001E3 - 1B4001E3 1B8001E3 - 1BMO01E3
€03009C0 1C0001E3 - 1C4001E3 1C8001E3 - 10M001E3
€03009D0 1D0001E3 - 1D4001E3 1D8001E3 - 1DO001E3
C03009E0 1E0001E3 - 1E4001E3 1E8001E3 - 1ECO01E3
C03009F0 1FO001E3 - 1F4001E3 1FRNNTR3 = TFCONTRI

[

EXAVMPLE4-17. The PDEs of t he Addr ess Range oxsoooooo0t 0 OKOFFFFFFF

THEWINDOWS 2000 MEMORY MAP

Thelast part of this chapter is dedicated to the general layout of the 4-GB linear
address space as it is "seen” by a Windows 2000 process. Table 4-9 lists the address
ranges of various essential data structures. The big holes between them are used for
several purposes, such asload areas for process modul es and device drivers, memory
pools, working set lists, and the like. Note that some addresses and block sizes might
vary considerably from system to system, depending on the memory and hardware
configuration, the process properties, and several other variables. Therefore, usethis
lig only as a rough sketch, not as an accurate roadmap.

Some physical memory blocks appear twice or more in the linear address space.
For example, the sharedUserData area at linear address OXFFDFOO0O0 ismirrored at
address 0x7rrE0000 . Both refer to the same page in physical memory—writing a byte
to 0xFFDF0000+n Mysteriously changes the value of the byte at Ox7FFEQO00O0+n. Thisis
theworld of virtual memory—a physical address can be mapped anywhereinto the
linear address space, even to several addresses at the sametime. It'sjust amatter of
setting up the page-directory and page-tablesappropriately. Pleaserecall Figures4-3
and 4-4, which clearly show that linear addresses are fake. Their pirectory and
Table bit fieldsarejust pointersto structuresthat determinethereal location of the
data. And if the PFNs of two PTEs happen to be identical, the corresponding linear
addresses refer to the same physical memory location.

262 EXPLORING WINDOWS 2000 MEMORY

TABLE 49 I dentifiable Memory Regions in the Address Space of a Process

START END HEX SIZE TYPE/DESCRIPTION
0x00000000 OXOOOOFFFF 10000 Lower guard block
0x00010000 0x000 1FFFF 10000 WCHAR(]/Environment strings, allocated in 4-K B pages
0x00020000 0x0002FFFF 10000 PROCESS_PARAMETERS/allocated in 4-K B pages
0x00030000 Ox0012FFFF 100000 DWORD [4000]/Process stack (default: 1 MB)
Ox7FFDDOOO Ox7FFDDFFF 1000 TEB/Thread Environment Block of thread #2
Ox7FFDEOOO Ox7FFDEFFF 1000 TEB/Thread Environment Block of thread #1
Ox7FFDFOO0 Ox7FFDFFFF 1000 PEB/Process Environment Block
Ox7FFEOCOQO Ox7FFEO02D7 2D8 KUSER_SHARED_DATA/SharedUserData in user-mode
Ox7FFFOO00 OX7FFFFFFF 10000 Upper guard block
0x80000000 Ox800003FF 400 [VT/Interrupt Vector Table
0x80036000 Ox800363FF 400 KGDTENTRY[80]/Global Descriptor Table
0x80036400 Ox80036BFF 800 KIDTENTRY[100]/Interrupt Descriptor Table
0x800C0000 0x800FFFFF 40000 VGA/ROM BIOS
0x80244000 Ox802460AA 20AB KTSS/user/kernel Task State Segment (busy)
Ox8046AB80 Ox8046ABBF 40 KeServiceDescriptorTable
Ox8046ABCO Ox8046ABFF 40 KeServiceDescriptorTableShadow
0x80470040 Ox804700A7 68 KTSS/KiDoubleFaultTSS
Ox804700A8 0Ox8047010F 68 KTSS/KiNMITSS
0Ox804704D8 0Ox804708B7 3EO PROC[F8]/KiServiceTable
Ox804708B8 0Ox804708BB 4 DWORD/KiServiceLimit
0Ox804708BC 0x804709B3 F8 BYTE[F8}/KiArgumentTable
0x814C6000 Ox82CC5FFF 1800000 PFN[100000]/MmPfnDatabase (max. for 4 GB)
OxA01859FO OxA01863EB 9FC PROC[27F]/W32pServiceTable
0xA0186670 OxAO01868EE 27F BYTE[27F]/W32pArgumentTable
0xCO000000 OxCO3FFFFF 400000 X86_PE[100000]/page-directory and page-tables
0xCl000000 OXEOFFFFFF 20000000 System Cache (MmSystemCacheStart, MmSystemCacheEnd)
OxEIOO0000 OXE77FFFFF 6800000 Paged Pool (MmPagedPool Start, MmPagedPoolEnd)
OxF0430000 OxFO43FFFF 10000 ROM BIOS code segment

OxF0440000 OxFO44FFFF 10000 ROM BIOS data segment

WINDOWS 2000 MEMORY INTERNALS 263

TABLE 4-9. (continued)

START END HEX SIZE TYPE/DESCRIPTION
OxFFDFOO00 OxFFDF02D7 2D8 KUSER_SHARED_DATA/SharedUserData in kernel-mode
OxFFDFFOOO OxFFDFF053 54 KPCR/Processor Control Region (kernel-mode FS segment)
0xFFDFF120 0xFFDFF13B 1C KPRCB/Processor Control Block
OXFFDEF3C OxFFDYFFAQT 2CC CONTEXT/Thread Context (CPU state)
OxFFDFF620 OxFFDFF71F 100 Lookaside list directories

CHAPRPTER b5

Monitoring
Native API Calls

ntercepting operating system calls is an all-time favorite of programmers every-
where. The motivationsfor this public interest are numerous. code profiling and
optimization, reverseengineering, user activity logging, andthelike. All of these
share a common intention: to pass control to a specia piece of code whenever an
application cals a system service, making it possible to find out which service was
cdled, what parameters it received, what results it returned, and how long it took to
execute, Based on atechnigue originally proposed by Mark Russinovich and Bryce
Cogswell (Russinovich and Cogswell 1997), this chapter presentsageneral frame-
work for implanting hooks into arbitrary Native API functions. The approach used
hereis completely data-driven, so it can be easily extended and adapted to other
Windows 2000/NT versions. The datagathered from the API calls of al processesin
the system are writtento acircular buffer that can be read by a client application via
device I/O control. The protocol data are formatted as a smple line-oriented ANS|
text stream that obeys strict formatting rules, making automated postprocessing by
an application easy. To demonstrate the basic outline of such aclient application, this
chapter a so presents a sample protocol data viewer running in a console window.

PATCHING THE SERVICE DESCRIPTOR TABLE

Whereas "primitive" operating systems such as DOS or Windows 3.xx offered little
resistance to programmers who wanted to apply hooks to their Application Program-
ming Interfaces (APIs), Win32 systems such as Windows 2000, Windows NT, and
Windows 9x are much harder to handle, because they use clever protection mecha-
nisms to separate unrelated pieces of code from each other. Setting a system-wide
hook onaWin32 API isnot asmall task. Fortunately, we haveWin32 wizardssuch
asMatt Pietrek (Pietrek 1996€) and Jeffrey Richter (Richter 1997), who have put
much work into showing us how it can be done, despite the fact that there's no

265

266 MONITORING NATIVE API CALLS

simple and elegant solution. In 1997, Russinovich and Cogswell presented acompletely
different approach to system-wide hooks for Windows NT, intercepting the system at aj
much lower level (Russinovich and Cogswell 1997). They proposed to inject the log-
ging mechanism into the Native API dispatcher, just below the frontier between user-
mode and kernel-mode, where Windows NT exposes a “bottleneck” that al user-mode
threads must pass through to be serviced by the operating system kernel.

SERVICE AND ARGUMENT TABLES

As discussed in Chapter 2, the doorway through which al Native AP cals originat-
ing in user-mode must passisthe INT 2Eh interface that provides an i386 interrupt
gatefor the privilege level change. You might recall aswell that all INT 2Eh callsare
handled in kernel-mode by theinternal function KiSystemService(), which uses
the system's Service Descriptor Table (SDT) to look up the entry points of the Native
API handlers. In Figure 5-1, the interrelations of the basic components of this
dispatching mechanism are outlined. Theformal definitions of the SERVICE _
DESCRIPTOR_TABLE structure and its subtypes from Chapter 2 (Listing 2-1) are
repeated in Listing 5-1.

KiSystemService() iscaled with two arguments, passed in by the INT 2Eh
callerinthe CPU registersEAX and EDX . EAX containsazero-basedindex intoan
array of API handler function pointers, and EDX pointsto the caller's argument stack.
KiSystemService () retrieves the base address of the function array by reading the
value of the ServiceTable member of apublic ntoskrnl . exe data structure named
KeServiceDescriptorTable, shown on the left-hand side of Figure 5-1. Actually,
KeServiceDescriptorTable pointsto an array of four service table parameter struc-
tures, but only the first one contains valid entries by default. KiSystemService()
looks up the address of the function that should handle the API call by using EAX as
an index into the internal KiServiceTable structure. Before calling the target func-
tion, KiSystemService() queriesthe KiArgumentTabl e Structurein much the same
way to find out how many bytes were passed in by the caller on the argument stack,
and uses this value to copy the arguments to the current kernel-mode stack. After
that, a simple assembly language CALL instruction isrequired to invoke the APl han-
dier. Everything isthen set up asanormal___stdca1l C function would expect.

Windows 2000 provides another service descriptor table parameter block named
KeServiceDescriptorTableshadow. Whereas KeServiceDescriptorTable
ispublicly exported by ntoskrnl . exe so kernel-mode drivers can readily accessiit,

K eServiceDescriptor TableShadow is not. On Windows 2000, KeService
DescriptorTableShadow followsimmediately after keservicebescriptorTable, but
you should not count on that—this rule does not hold on Windows NT 4.0, and it is
possible that it won't hold on future updates of Windows 2000. The difference between
both parameter blocks is that in KeServiceDescriptorTableShadow the second dot

PATCHING THE SERVICE DESCRIPTOR TABLE 267

KeServiceDescriptorTable KiServiceTable

Service Table P NtAcceptConnectPort 0x00
CounterTable = NULL NtAccessCheck Ox01
ServiceLimit = 0OxF8 KiArgumentTable NtAccessCheckAndAuditAlarm 0x02
ArgumentTable > ox18 |ox00 | NtAccessCheckByType 0x03
ServiceTable — NULL 0x20 0x01 NtAccessCheckBy TypeAndAuditAlarm |0x04
CounterTable = NULL 0x2C___ |0x02 | NtAccessCheckByTypeResultList 0x05
Servicelimit = 0 0x2C___|0x03

ArgumentTable = NULL g::g g"g;

X

ServiceTable = NULL NtOpenChannel OxF3
Cour?ter'ltab‘Ie = NULL NtReplyWaitSendChannel OxF4
ServiceLimit___= 0 NtSendWaitReplyChannel OxF5
ArgumentTable = NULL 0x08 | 0xF3 [NtSetContextChannel 0xF6
ServiceTable = NULL 0x0C O0xF4 | NtYieldExecution OxF7
CounterTable = NULL 0x10 0xF5

ServiceLimit = 0 0x04 OxF6

ArgumentTable = NULL _0x00 OxF7

FIGURE 51 Structure of the KeServiceDescriptorTable

typedef NISTATUS (NTAPI *NTPROD) () ;
typedef NIPROC *PNTPROC;
#define NTPROC_ sizeof (NTPROC)

1

typedef struct _SYSTEM_SERVICE_TABLE

{

PNTPRCC ServiceTable; /1l array of entry points
PDWORD CounterTable; /1l array of usage counters
DWRD ServiceLimit; /1 nunber of table entries
PBYTE ArgumentTable; I/ array of byte counts

}

SYSTEM_SERVICE_TABLE,
* PSYSTEM_SERVICE_TABLE,
**PPSYSTEM_SERVICE_TABLE;

typedef struct _SERVICE_DESCRIPTOR_TABLE

{

SYSTEM SERVICE TABLE ntoskrnl; // ntoskrnl.exe (native api)

(conti nued)

268 MONITORING NATIVE API CALLS

SYSTEM SERVI CE_TABLE win32k; /1l win32k.sys (gdi/user support)
SYSTEM_SERVICE_TABLE Table3; /1 not used
SYSTEM_SERVICE_TABLE Table4; /1 not used

VICE_DESCRIPTOR_TABLE,
H ;CRIPTOR_TABLE,
* * PPSERVICE_DESCRIPTOR_TABLE;

LISTING 5-1. Definition of the servicE pEScrRIPTOR_TARLE STUCtUrE

is used by the system, too. It contains references to the internal w32pServiceTable
and w32pArgumentTable Structures that are used by the Win32 kernel-mode compo-
nent win32k. sys to dispatch its own API calls, as shown in Figure 5-2. Kisystem
Service () knows that it is handling a win32k. sys API call by examining bits #12
and 13 of the function index inregister EAX . If both bits are zero, itisaNative API
cdl handled by ntoskrnl. exe, so KiSystemService () usesthefirst SDT dot. If bit
#12 is set and bit #13 is zero, KiSystemService () uses the second slot. The remain-
ing two bit combinations are assigned to the last pair of dots, which are currently not
used by the system. This means that the index numbers of Native APl calls poten-
tially range from 0x0000 to 0x0FFF, and win32k. sys calsinvolve index numbersin
the range 0x1000 to ox1rrr. Consequently, the ranges 0x2000 to Ox2FFF and 0x3000
to 0x3FFF are assigned to the reserved tables. On Windows 2000, the Native API
service table contains 248 entries and the win32k. Sys table contains 639 entries.

The ingenious idea of Russinovich and Cogswell was to hook API calls by
simply putting a different handler into the KiServiceTable array. This handler
would ultimately call the original handler inside ntoskrnl. exe, but it had the
opportunity to take a peek at the input and output parameters of the called function.
This approach is extremely powerful but also very simple. Because al user-mode
threads have to pass through this needl€'s eye in order to get their Native API
requests serviced, a simple exchange of function pointers installs a globa hook that
continues to work reliably even after new processes and threads have been started.
There is no need for a notification mechanism that signals the addition or removal of
processes and threads.

Unfortunately, the system service pointer tables are subject to nontrivial
changes across Windows NT versions. Table 51 compares the KiServiceTable
entries of Windows 2000 and Windows NT 4.0. It is obvious that not only has the
number of handlers been increased from 211 to 248 but the new handlers haven't
been appended to the end of the list. They were inserted somewhere in between!
Thus, a service function index of, say, 0x20 refersto NtCreateFile () on Windows
2000 but is associated with NtCreateProfi1e () on Windows NT 4.0. Consequently,

PATCHING THE SERVICE DESCRIPTOR TABLE 269

—

KeServiceDescriptorTableShadow

FIGURE 5-2.

Structure of KeServiceDescriptorTableShadow

ServiceTable ¥ KiServiceTable
CounterTable = NULL
ServiceLimit = OxF8
ArgumentTable [—> KiArgumentTable \yuoogerviceTable
ServiceTable »| NiGdiAbortDoc 0x000|
CounterTable = NULL NtGdiAbortPath 0x001 |
Servicelimit = Ox27F W32pArgumentTable | NtGdiAddFontResourceW 0x002
ArgumentTable —» 0x04 0x000 | NtGdiAddRemoteFontToDC 0x003
ServiceTable = NULL 0x04 0x001 | NtGdiAddFontMemResourceEx 0x004
CounterTable — NULL 0x18 0x002 | NtGdiRemoveMergeFont 0x005
ServiceLimit__ = 0 0x10__10x003 .
ArgumentTable = NULL Ox14 0x004
- 0x08 0x005
ServiceTable = NULL NiGdiGetDhpdev 0x27A
prteriabia = NULL NiGdIEngCheckAbort 0x27B
ServiceLimit = 0 NIGOIHT_Get8BPPFormatPalette 0x27C
ArgumentTable = NULL 0x04 | 0x27A | NIGAIHT_Get8BPPMaskPalette 0x27D |
0x04 0x27B | NtGdiUpdateTransform 0x27E
0x10 0x27C
0x18 0x27D
0x04 0x27E

an APl call monitor that installs a hook by manipulating the entries in the service
function table must carefully check the Windows NT versionitisrunningon. This

can be done in severa ways:

* One possihility is to check the public ntBuildnumber variable exported by

ntoskrnl. exe, asS Russinovich and Cogswell did in their original article
(Russinovich and Cogswell 1997). Windows NT 4.0 exposes a build
number of 1,381 for al service packs. The build number of Windows
2000 is currently 2,195. Hopefully, this number will remain as stable
asit did in the previous Windows NT versions.

Another possibility is to check thentmajorversion and NtMinorversion
members of the shareduserData structure defined in the Windows 2000
header filentddk.h. All WindowsNT 4.0 service packs set SharedUserData-

>NtMajorVersionto four and shareduserbata->NtMinorvVersion tO Zero.

Windows 2000 currently indicates a Windows NT version of 5.0.

270 MONITORING NATIVE API CALLS

» The code presented in this chapter uses yet another alternative—it tests
whether the servicerimit member of the SDT entry matches its
expectations, which is 211 (0xD3) for Windows NT 4.0 and 248 (OxF8)
for Windows 2000.

TABLE 51 Windows 2000 and NT 4.0 Service Table Comparison

WINDOWS 2000 INDEX WINDOWS NT 4.0
NtA cceptConnectPort 0x00 NtA cceptConnectPort
NtAccessCheck 0x01 NtAccessCheck
NtAccessCheckAndAuditAlarm 0x02 NtAccessCheckAndAuditAlarm
NtAccessCheckByType 0x03 NtAddAtom
NtAccessCheckByTypeAndAuditAlarm 0x04 NtAdjustGroupsToken
NtAccessCheckBy TypeResultList 0x05 NtAdjustPrivilegesToken
NtAccessCheckBy TypeResultListAndAuditAlarm 0x06 NtAlertResumeThread
NtAccessCheckBy TypeResultListAndAuditAlarmByHandle ~ 0x07 NtAlertThread
NtAddAtom 0x08 NtAllocatel ocallyUniqueld
NtAdjustGroupsToken 0x09 NtAllocateUuids
NtAdjustPrivilegesToken OxOA NtAllocateVirtualMemory
NtAlertResumeThread OxOB NtCallbackReturn
NtAlertThread Ox0C NtCancelloFile
NtAllocateLocallyUniqueld OxOD NtCancel Timer
NtAllocateUserPhysicalPages OxOE NtClearEvent
NtAllocateUuids OxOF NtClose
NtAllocateVirtualMemory 0x10 NtCloseObjectAuditAlarm
NtAreMappedFilesTheSame 0x11 NtCompleteConnectPort
NtAssignProcessToJobObject 0x12 NtConnectPort
NtCallbackReturn 0x13 NtContinue
NtCancelloFile 0x14 NtCreateDirectoryObject
NtCancel Ti mer 0x15 NtCreateEvent
NtCancel DeviceWakeupRequest 0x16 NtCreateEventPair
NtClearEvent 0x17 NtCreateFile
NtClose 0x18 NtCreateloCompletion
NtCloseObjectAuditAlarm 0x19 NtCreateKey
NtCompleteConnectPort 0x1A NtCreateMailslotFile
NtConnectPort 0x1B NtCreateMutant
NtContinue 0x1C NtCreateNamedPipeFile
NtCreateDirectoryObject 0x1D NtCreatePagingFile
NtCreateEvent 0x1E NtCreatePort
NtCreateEventPair 0x1F NtCreateProcess
NtCreateFile 0x20 NtCreateProfile

NtCreateloCompletion 0x21 NtCreateSection

PATCHING THE SERVICE DESCRIPTORTABLE 271

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0
NtCreateJobObject 0x22 NtCreateSemaphore
NtCreateKey 0x23 NtCreateSymbolicLinkObject
NtCreateMailslotFile 0x24 NtCreateThread
NtCreateM utant 0x25 NtCreateTimer
NtCreateNamedPipeFile 0x26 NtCreateToken
NtCreatePagingFile 0x27 NtDelayExecution
NtCreatePort 0x28 NtDeleteAtom
NtCreateProcess 0x29 NtDeleteFile
NtCreateProfile Ox2A NtDeleteKey
NtCreateSection Ox2B NtDeleteObjectAuditAlarm
NtCreateSemaphore Ox2C NtDeleteVaueK ey
NtCreateSymbolicLinkObject Ox2D NtDeviceloControlFile
NtCreateThread Ox2E NtDisplayString
NtCreateTimer Ox2F NtDuplicateObject
NtCreateToken 0x30 NtDuplicateToken
NtCreateWaitablePort 0x31 NtEnumerateK ey
NtDelayExecution 0x32 NtEnumerateValueK ey
NtDeleteAtom 0x33 NtExtendSection
NtDeleteFile 0x34 NtFindAtom
NtDeleteK ey 0x35 NtFlushBuffersFile
NtDeleteObj ectAuditAlarm 0x36 NtFlushinstructionCache
NtDeleteVaueKey 0x37 NtFlushKey
NtDeviceloControlFile 0x38 NtFlushVirtualMemory
NtDisplayString 0x39 NtFlushWriteBuffer
NtDuplicateObject Ox3A NtFreeVirtuaMemory
NtDuplicateToken Ox3B NtFsControlFile
NtEnumerateK ey Ox3C NtGetContextThread
NtEnumerateValueK ey Ox3D NtGetPlugPlayEvent
NtExtendSection Ox3E NtGetTickCount
NtFilterToken Ox3F NtImpersonateClientOfPort
NtFindAtom 0x40 NtImpersonateThread
NtFlushBuffersFile Ox41 NtInitializeRegistry
NtFlushInstructionCache 0x42 NtListenPort
NtFlushKey 0x43 NtLoadDriver
NtFlushVirtualMemory 0x44 NtLoadKey
NtFlushWriteBuffer 0x45 NtL oadKey?2
NtFreeUserPhysicalPages 0x46 NtLockFile
NtFreeVirtualMemory 0x47 NtLockVirtualMemory
NtFsControlFile 0x48 NtMakeTemporaryObject

(continued)

272 MONITORING NATIVE API CALLS

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0
NtGetContextThread 0x49 NtMapViewOf Section
NtGetDevicePowerState Ox4A NtNotifyChangeDirectoryFile
NtGetPlugPlayEvent Ox4B NtNotifyChangeK ey
NtGetTickCount Ox4C NtOpenDirectoryObject
NtGetWriteWatch Ox4D NtOpenEvent
NtImpersonateAnonymousToken Ox4E NtOpenEventPair
NtIlmpersonateClientOfPort Ox4F NtOpenFile
NtImpersonateThread 0x50 NtOpenloCompl etion
NtlnitializeRegistry 0x51 NtOpenKey
NtlnitiatePowerAction 0x52 NtOpenM utant
NtlsSystemResumeAutomatic 0x53 NtOpenObjectAuditAlarm
NtListenPort 0x54 NtOpenProcess
NtLoadDriver 0x55 NtOpenProcessToken
NtLoadK ey 0x56 NtOpenSection
NtLoadKey2 Ox57 NtOpenSemaphore
NtLockFile 0x58 NtOpenSymbolicLinkObject
NtLockVirtualMemory 0x59 NtOpenThread
NtMakeTemporaryObject Ox5A NtOpenThreadToken
NtMapUserPhysicalPages Ox5B NtOpenTimer
NtMapUserPhysicalPagesScatter Ox5C NtPlugPlayControl
NtMapViewOfSection Ox5D NtPrivilegeCheck
NtNotifyChangeDirectoryFile Ox5E NtPrivilegedServiceAuditAlarm
NtNotifyChangeKey Ox5F NtPrivilegeObjectAuditAlarm
NtNotifyChangeMultipleK eys 0x60 NtProtectVirtualMemory
NtOpenDirectoryObject Ox61 NtPulseEvent
NtOpenEvent 0x62 NtQueryInformationAtom
NtOpenEventPair 0x63 NtQueryAttributesFile
NtOpenFile 0x64 NtQueryDefaultLocale
NtOpenloCompletion 0x65 NtQueryDirectoryFile
NtOpenJobObject 0x66 NtQueryDirectoryObject
NtOpenKey 0x67 NtQueryEaFile
NtOpenMutant 0x68 NtQueryEvent
NtOpenObjectAuditAlarm 0x69 NtQueryFullAttributesFile
NtOpenProcess Ox6A NtQueryInformationFile
NtOpenProcessToken Ox6B NtQueryloCompletion
NtOpenSection Ox6C NtQueryInformationPort
NtOpenSemaphore Ox6D NtQueryInformationProcess
NtOpenSymbolicLink Object Ox6E NtQueryInformationThread

PATCHING THE SERVICE DESCRIPTOR TABLE 273

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0
NtOpenThread Ox6F NtQuerylnformationToken
NtOpenThreadToken 0x70 NtQueryInterval Profile
NtOpenTimer 0x71 NtQueryKey
NtPlugPlayControl 0x72 NtQueryMultipleVaueKey
NtPowerInformation 0x73 NtQueryMutant
NtPrivilegeCheck 0x74 NtQueryObject
NtPrivilegedServiceAuditAlarm 0x75 NtQueryOleDirectoryFile
NtPrivilegeObjectAuditAlarm 0x76 NtQueryPerformanceCounter
NtProtectVirtualMemory ox77 NtQuerySection
NtPulseEvent 0x78 NtQuerySecurityObject
NtQueryInformationAtom 0x79 NtQuery Semaphore
NtQueryAttributesFile Ox7A NtQuerySymbolicLinkObject
NtQueryDefaultLocale Ox7B NtQuerySystemEnvironmentVaue
NtQueryDefaultUILanguage Ox7C NtQuerySystemInformation
NtQueryDirectoryFile Ox7D NtQuerySystemTime
NtQueryDirectoryObject OX7E NtQuery Timer
NtQueryEaFile OX7F NtQueryTimerResolution
NtQueryEvent 0x80 NtQuery VaueKey
NtQueryFullAttributesFile 0x81 NtQuery VirtualMemory
NtQuerylnformationFile 0x82 NtQuery VolumelnformationFile
NtQueryInformationJobObject 0x83 NtQueueApcThread
NtQueryloCompletion 0x84 NtRaiseException
NtQueryInformationPort 0x85 NtRaiseHardError
NtQueryInformationProcess 0x86 NtReadFile
NtQuerylnformationThread 0x87 NtReadFileScatter
NtQueryInformationToken 0x88 NtReadRequestData
NtQuerylnstallUILanguage 0x89 NtReadVirtualMemory
NtQuerylntervalProfile Ox8A NtRegister ThreadTerminatePort
NtQueryKey 0Ox8B NtRel easeM utant
NtQueryMultipleValueKey Ox8C NtRel easeSemaphore
NtQueryMutant Ox8D NtRemoveloCompletion
NtQueryObject Ox8E NtReplaceK ey
NtQueryOpenSubKeys Ox8F NtReplyPort
NtQueryPerformanceCounter 0x90 NtReplyWaitReceivePort
NtQueryQuotalnformationFile 0x91 NtReplyWaitReplyPort
NtQuerySection 0x92 NtRequestPort
NtQuerySecurityObject 0x93 NtRequestWaitReplyPort
NtQuery Semaphore 0x94 NtResetEvent

(continued)

274 MONITORING NATIVE API CALLS

TABLE 51 (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0
NtQuerySymbolicLinkObject 0x95 NtRestoreK ey
NtQuerySystemEnvironmentValue 0x96 NtResumeT hread
NtQuerySystemInformation 0x97 NtSaveK ey
NtQuerySystemTime 0x98 NtSetloCompletion
NtQuery Timer 0x99 NtSetContextThread
NtQueryTimerResolution Ox9A NtSetDefaultHardErrorPort
NtQueryValueKey Ox9B NtSetDefaultLocale
NtQueryVirtual Memory Ox9C NtSetEaFile
NtQueryVolumelnformationFile Ox9D NtSetEvent
NtQueueApcThread Ox9E NtSetHighEventPair
NtRaiseException Ox9F NtSetHighWaitL owEventPair
NtRaiseHardError OxAO NtSetHighWaitLowThread
NtReadFile 0xA1 NtSetInformationFile
NtReadFileScatter OxA2 NtSetInformationKey
NtReadRequestData OxA3 NtSetInformationObject
NtReadVirtual Memory OxA4 NtSetInformationProcess
NtRegisterThreadTerminatePort OxA5 NtSetInformationThread
NtReleaseMutant OxA6 NtSetInformationToken
NtReleaseSemaphore OxA7 NtSetIntervalProfile
NtRemoveloCompletion OxA8 NtSetLdtEntries
NtReplaceKey OxA9 NtSetL owEventPair
NtReplyPort OxAA NtSetLowWaitHighEventPair
NtReplyWaitReceivePort OxAB NtSetL owWaitHighThread
NtReplyWaitReceivePortEx OxAC NtSetSecurity Object
NtReplyWaitRepiyPort OxAD NtSetSystemEnvironmentValue
NtRequestDeviceWakeup OxAE NtSetSystemInformation
NtRequestPort OxAF NtSetSystemPower State
NtRequestWaitReplyPort OxBO NtSetSystemTime
NtRequestWakeupL atency 0xB1 NtSetTimer
NtResetEvent OxB2 NtSetTimerResolution
NtResetWriteWatch OxB3 NtSetValueK ey
NtRestoreK ey OxB4 NtSetVolumelnformationFile
NtResumeThread OxB5 NtShutdownSystem
NtSaveKey OxB6 NtSignal AndWaitForSingleObject
NtSaveMergedK eys OxB7 NtStartProfile
NtSecureConnectPort OxB8 NtStopProfile
NtSetloCompletion OxB9 NtSuspendThread
NtSetContextThread OxBA NtSystemDebugControl

NtSetDefaultHardErrorPort OxBB NtTerminateProcess

PATCHING THE SERVICE DESCRIPTOR TABLE

275

TABLE 5-1. (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0
NtSetDefaultL ocale OxBC NtTerminateThread
NtSetDefaultUILanguage OxBD NtTestAlert
NtSetEaFile OxBE NtUnloadDriver
NtSetEvent OxBF NtUnloadKey
NtSetHighEventPair OxCO NtUnlockFile
NtSetHighWaitLowEventPair 0xC1 NtUnlockVirtualMemory
NtSetInformationFile OxC2 NtUnmapViewOf Section
NtSetInformationJobObject OxC3 NtV dmControl
NtSetInformationKey OxC4 NtWaitForMultipleObjects
NtSetInformationObject OxC5 NtWaitForSingleObject
NtSetInformationProcess OxC6 NtWaitHighEventPair
NtSetInformationThread OxC7 NtWaitLowEventPair
NtSetInformationToken OxC8 NtWriteFile
NtSetIntervalProfile OxC9 NtWriteFileGather
NtSetLdtEntries OxCA NtWriteRequestData
NtSetLowEventPair OxCB NtWriteVirtualMemory
NtSetLowWaitHighEventPair OxCC NtCreateChannel
NtSetQuotalnformationFile OxCD NtListenChannel
NtSetSecurity Obj ect OxCE NtOpenChannel
NtSetSystemEnvironmentValue OXCF NtReplyWaitSendChannel
NtSetSystemInformation OxDO NtSendWaitReplyChannel
NtSetSystemPowerSrate 0xD1 NtSetContextChannel
NtSetSystemTime OxD2 NtYieldExecution
NtSetThreadExecutionState OxD3 N/A
NtSetTimer OxD4 N/A
NtSetTimerResol ution OxD5 N/A
NtSetUuidSeed OxD6 N/A
NtSetValueKey OxD7 N/A
NtSetVolumelnformationFile 0xD8 N/A
NtShutdownSystem OxD9 N/A
NtSignal AndWaitForSingleObject OxDA N/A
NtStartProfile OxDB N/A
NtStopProfile OoxDC N/A
NtSuspend Thread OxDD N/A
NtSystemDebugControl OxDE N/A
NtTerminateJobObject OxDF N/A
NtTerminateProcess OXEO N/A
NtTerminateThread 0xE1 N/A
NtTestAlert OxE2 N/A

(continued)

276 MONITORING NATIVE APl CALLS

TABLE 51 (continued)

WINDOWS 2000 INDEX WINDOWS NT 4.0 "
NtUnloadDriver OXE3 N/A
NtUnloadK ey OxE4 N/A
NtUnlockFile OXE5 N/A
NtUnlockVirtual Memory OxE6 N/A
NtUnmap ViewOfSection OxE7 N/A
NtVdmControl OxE8 N/A
NtWaitForMultipleObjects OxE9 N/A
NtWaitForSingleObject OxEA N/A
NtWaitHighEventPair OxEB N/A
NtWaitLowEventPair OxEC N/A
NtWriteFile OxED N/A
NtWriteFileGather OXEE N/A
NtWriteRequestData OxEF N/A
NtWriteVirtualMemory OxFO N/A
NtCreateChannel 0xF1 N/A
NtListenChannel OxF2 N/A
NtOpenChannel OxF3 N/A
NtReplyWaitSendChannel OxF4 N/A
NtSendWaitReplyChannel OxF5 N/A
NtSetContextChannel OxF6 N/A
NtYieldExecution OxF7 N/A

The most important step taken by Russinovich and Cogswell was to write aker-
nel-mode device driver that installs and maintains the Native APl hooks, because user-
mode modules do not have the appropriate privileges to modify the system at thislow
system level. Like the spy driver in Chapter 4, thisis a somewhat unusual driver,
because it does not perform the usual I/O request processing. It just exposes asimple
Device I/O Control (IOCTL) interface to give user-mode code access to the dataiit col-
lects. The main task of this driver is to manipulate the KiServiceTable and intercept
and log selected calls to the Windows 2000 Native API. Although this method is sim-
ple and elegant, it is aso somewhat alarming. Its simplicity reminds me of the old
DOS days when hooking a system service was as simple as modifying a pointer in the
processor's interrupt vector table. Anyone who knows how to write a basic Windows
2000 kernel-mode driver can hook any NT system service without much effort.

Russinovich and Cogswell used their technique to develop avery useful Windows
NT registry monitor. While adapting their code for other spying tasks, | quickly became
annoyed by the requirement of writing an individual hook function for each API func-
tion on which | wanted to spy. To avoid having to write extensive stereotypic code, |

PATCHING THE SERVICE DESCRIPTOR TABLE 277

wanted to find away to force all API functions | was interested in through a single
hook function. Thisturned out to be atask that took considerabl e time and showed me
al possiblevariantsof Blue Screens. However, thisresultedinageneral -purposesolu-
tionthat enabled metovary the set of hooked API functionswith minimum effort.

ASSEMBLY LANGUAGE TO THE RESCUE

Themain obstacleto ageneral -purpose solutionwasthetypical parameter passing
mechanism of the C language. Asyou may know, C usually passesfunction argu-
ments on the CPU stack before calling the function's entry point. Depending on the
number of argumentsafunction requires, the size of the argument stack variescon-
siderably. The 248 Native API functions of Windows 2000 involve argument stack
Szes between zero and 68 bytes. Given the diligent type checking of C, this makes
writing a unique hook function atough job. Microsoft Visual C/C++ comeswith a
versatile integrated assembly language (ASM) compiler that is capable of processing
moderately complex code. Ironically, the advantage of ASM inthis situation is
exactly what is commonly regarded as one of its biggest drawbacks: ASM doesn't
provide a strict type checking mechanism. Aslong as the number of bitsis OK, you
can store almost anything in any register and you can call any address without con-
cernfor what is currently on the stack. Although thisis a dangerous feature in appli-
cation programming, it comesin quite handy here: In ASM, itiseasy tocdl a
common entry point with different arguments on the stack, and this feature will be
exploited in the APl hook dispatcher introduced in a moment.

The Microsoft Visual C/C++ inline assembler isinvoked by putting ASM code
into delimited blockstagged by the keyword___asm. It lacks the macro definition and
evaluation capabilities of Microsoft's big Macro Assembler (MASM), but this doesn't
severely redtrict its usefulness. The best feature of theinline assembler isthat it has
accessto all C variablesand type definitions, so it is quite easy to mix C and ASM code.
However, when ASM codeisincludedinaCfunction, someimportant basic conven-
tionsof the C compiler must be obeyed to avoidinterferencewiththe compiled C code;

» Thecaller of aC function assumesthat the CPU registerseer, EBX, ESI,
andEDI arepreserved.

« If the ASM code is mixed with C code in a single function, be careful
to preserve all intermediate values the C code might hold in registers.
It is always a good idea to save and restore al registers used inside an
__asm clause.

» 8-hit function results (CHAR, svrE, etc.) arereturnedin register a1, .
* 16-bit function results (SHORT, WORD, etc.) arereturned inregister AX.

278

MONITORING NATIVEAPI CALLS

32-bit function results (1nT, roNG, DWORD, pointers, etc.) arereturnedin
register EAX.

64-bit function results (__int64, r.oNGLONG, DWORDLONG, €fC.) are
returned in register pair epx: Eax. Register EAX contains bits #0 to 31, and
EDX holds bits#32 to 63.

Functions with a fixed number of arguments usually pass arguments
according to the___stdcall convention. From the caller's perspective,
this means that the arguments must be pushed onto the stack in reverse
order before the call, and the callee is responsible for removing them
from the stack before returning. From the perspective of the called
function, this means that the stack pointer ESP points to the caller's
return address, followed by the arguments in their original order. The
original order is retained because the stack grows downward, from high
linear addresses to lower ones. Therefore, the argument pushed last by
the caller (i.e., argument #1) appears as the first argument in the array
pointed to by Esp.

Some API functions with fixed arguments, most notably the C Runtime
Library functions exported by ntdai1.d11 and ntoskrnl .exe,
traditionally employ the _ cdec1 calling convention, which involves
the same argument ordering as__stdcal1, but forces the caller to clean
up the argument stack.

Functions with avariable number of arguments are always of the _cdec1
type, because only the caller knows exactly how many arguments were
passed to the callee. Therefore, the responsibility of removing the
arguments from the stack is left to the caller.

Functions declared with the _ fastca11 modifier expect the first two
argumentsinthe CPU registerseCX andEDX . If moreargumentsare
required, they are passed in on the stack in reverse order, and the callee
cleansupthestack, asinthe___ stdcall scheme.

Many C compilers build a stack frame for the function arguments
immediately after entering the function, using the CPU's base pointer
register EBP. This code, shown in Listing 5-2, isfrequently referred to as
a function's "prologue” and "epilogue." Some compilers use the more
elegant i386 ENTER and LEAVE operations that integrate this EBP/ESP
shuffling into single instructions (cf. Intel 1999b). After the prologue has

SomeFunction:

PATCHING THE SERVICE DESCRIPTOR TABLE

279

; this is the function’ s prol ogue

push ebp ; save current value of ebp
nov ebp, esp ; set stack frame base address
sub esp, SizeOfLocalStorage ; create |local storage area

; this is the function’ s epil ogue

nmov esp, ebp ; destroy local storage area
pop ebp ; restore value of ebp

ret

LISTING 5-2. Sack frame, prologue, and epilogue

been executed, the stack appears as shown in Figure 5-3. The value of
the EBP register is the unique point of reference that splits the function's
parameter stack into (1) the local storage area containing all local
variables defined within the scope of the function and (2) the caller's
argument stack, including the EBP backup slot and the return address.
Note that the latest versions of Microsoft Visual C/C++ don't use stack
frames by default. Instead, the code accesses the values on the stack
through register esp, specifying the offset of the variable relative to the
current top of the stack. Code of this kind is extremely difficult to read,
because each PUSH and POP instruction affects the ESP value and,
consequently, all parameter offsets. Because EBP isn't required in this
scenario, it is used as an additional general-purpose register.

» Be extremey careful when accessing C variables. One of the most frequent
inline ASM bugs is that you are loading the address of avariableto a
register instead of its value, and vice versa. In case of potential ambiguity,
use the ptr and of fset address operators. For example, the instruction
mov €aX, dword Pir somevariable |loadsthe DWORD-type value of
SomeVariabletoregister EAX, whereasmov eax, offset SomeVariable
loads its linear address (i.e., a pointer to its value) to Eax.

THE HOOK DISPATCHER

The code that follows is extremely difficult. It took many hours to write, and pro-
duced an incredible number of Blue Screens in the process. My original approach
involved a separate module, written in native ASM language and assembled with
Microsoft's MASM. However, this design created problems on the linker level,

so0 | changed to inline ASM inserted into the main C module. Instead of creating
another kernel-mode driver, | decided to integrate the hook code into the spy device

280 MONITORING NATIVE API CALLS

Stack Segment

0010:00000000

| ESP —p [EBP - X]

‘ Local Storage Area

(X Bytes)
[EBP — 0x4]
EBP —— Caller's EBP Value [EBP]
Caller's Return Address [EBP + 0x4]
Function Argument #1 [EBP + 0x8]
Function Argument #2 [EBP + 0xC]
‘ Function Argument #N [EBP + (N+1)4]

| 0010:FFFFFFFF

FIGURE 53, Typical Layout ofa Sack Frame

introduced in Chapter 4. Remember the spy_10_nook_* IOCTL functions listed at
the bottom of Table 4-2? Now is the time to take a closer look at them. The next
section of sample code is taken from the source filesw2k_spy. ¢c and w2k_spy.h,
found on the CD accompanying this book, in the \src\w2k_spy directory.

In Listing 5-3, the core parts of the Native APl hook mechanism are shown.
The listing starts with a couple of constant and structure definitions referenced by the
code and isfollowed by the definition of the array aSpyHooks[] . Following this
array is a macro that evaluates to three important lines of inline assembly language
that will be investigated in a moment. The last part of Listing 5-3 is made up of the
function spyHookInitializeEx() . Onfirst sight, itisdifficult to grasp what this
function is supposed to do. This function is a combination of two functions:

PATCHING THE SERVICE DESCRIPTOR TABLE

1. The "outer" part of spyHookInitializerx () consists of C code that
simply populatesthe aSpyHooks [] array with pointersto the spy device's
hook functions and their associated protocol format strings. Thisfunction
is gplit in two sections. The first ends inside the first__asm clause at the
jmp SpyHook9 instruction. It isobviousthat the second section must start
at an ASM label named spytook9, which can be found near the end of the

second__asm block.

The "inner" part of spyHookInitializeEx () COMPrises everything

between the two C sections of the code. It starts with an extensive
repetition of spyHook macroinvocationsand isfollowed by alarge and
complex ASM code section. Asyou may have guessed, thiscodeisthe
common hook handler mentioned earlier.

281

ttdefine spy_CALLS 0x00000100 // max api call nesting |evel
#define SDT_SYMBOLS_NT4 D3

tfdefi ne SDT_SYMBOLS_NT5 0XF8

ttdefine SDT_SYMBOLS_MAX SDT_SYMBOLS_NT5

1

typedef struct _SPY_ HOOK_ENTRY
{
NTPROC Handl er;
PBYTE pbFormat;
}

SPY_HOOK_ENTRY, *PSPY_HOOK_ENTRY,

**PPSPY_HOOK_ENTRY ;

ttdefine SpPy_HOOK_ENTRY__ Si zeof (SPY_HOOK_ENTRY)

’

typedef struct _spy_CALL

(

BOCL fInUse;

HANDLE hThread;
PSPY_HOOK_ENTRY pshe;

PVOID pCaller;

DWRD dParameters;

DWRD adParameters [1+256];
}

SPY_CALL, *PSPY_CALL, **PPSPY_CALL;

#define SPY _CALL_ sizeof (SPY_CALL)

I

/1
/1
/1
/1
11
/1

set if used entry

id of calling thread
associ ated hook entry
caller's return address
nunber of paraneters
result and paraneters

(conti nued)

282 MONITORING NATIVE APl CALLS

SPY_HOOK_ENTRY aSpyHooks

SDT_SYMBOLS_MAX] ;

11

/1 The SpyHook macro defines a hook entry point in inline assenbly
// 1anguage. The common entry point SpyHook2 is entered by a call
/1 instruction, allow ng the hook to be identified by its return

// address on the stack. The call is executed through a register to
/1 rermove any degrees of freedomfromthe encoding of the call.

#define SpyHook \

~_asm push eax \

__asm nov eax, offset SpyHook2 \

~_asm call eax
/1 The spyHookInitializeEx() functioninitializes the aspyHooks []
// array with the hook entry points and format strings. It also

/1 hosts the hook entry points and the hook di spatcher.

voi d SpyHookInitializeEx (PPBYTE ppbSymbols,
PPBYTE ppbFor mat s)
{
DWORD dHooksl , dHooks2, i, j, n;
__asm
{
jmp SpyHook9
ALIGN 8
SpyHookl : ; start of hook entry point section
}

/1 the nunber of entry points defined in this section
/1 must be equal to sDT _syMBOLS MAX (i.e. OXF8)

SpyHook SpyHbok SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //08
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //10
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //18
Spytbok SpyHook SpyHook Spyhbok SpyHook SpyHook SpyHook SpyHbok //20
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //28
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //30
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //38
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //40
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //48
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //50
SpyHook SpyHook SpyHook Spyhbok SpyHook SpyHbok SpyHook SpyHook //58
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //60
Spytbok Spyhbok SpyHbok Spyhbok SpyHook SpyHbok SpyHbok SpyHbok //68
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //70
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //78
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //80
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //88

PATCHING THE SERVICE DESCRIPTOR TABLE 283

SpyHook SpyHook SpyHook SpyHook SpyHook spyHook SpyHook SpyHook //90
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //98
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook / /A0
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook / /A8
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook / /B0
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //E8
SpyHook Spyhbok SpyHbok Spyhbok SpyHbok SpyHook SpyHook Spyrbok //¢o
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //cg
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook / /Do
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook / /D8
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook // EO
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook //ES
SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook // FO
SpyHbok SpyHook SpyHook SpyHook SpyHook SpyHook SpyHook Spyhbok /8

__asm
{
SpyHook2 : ; end of hook entry point section
pop eax ; get stub return address
pushfd
push ebx
push ecx
push edx
push ebp
push esi
push edi
sub eax, offset SpyHookl ; conpute entry point index
nmov ecx, SDT_SYMBOLS_MAX
mul ecx

nmov ecx, offset SpyHook2
sub ecx, offset SpyHookl

div ecx

dec eax

nmov ecx, gfSpyHookPause ; test pause flag

add ecx, -1

sbb ecx, ecx

not ecx

l ea edx, [aSpyhtboks + eax * Sl ZE spy_HOOK_ENTRY]

t est ecx, [edx.pbFormat] ; format string == NULL?
jz SpyHook5

push eax

push edx

cal | PsGetCurrentThreadId ; get thread id

mov ebx, eax

pop edx

pop eax

cnp ebx, ghSpyHookThread ; ignore hook installer

jz SpyHook5

nmov edi, gpDevi ceCont ext

| ea edi, [edi.sSpyCalls] ; get call context array
nmov esi, SPY_CALLS ; get nunber of entries

(continued)

284 MONITORING NATIVE API CALLS

SpyHook3:
mov
xchg
j ecxz
add
dec
jnz
nov
inc
jmp

SpyHook4 :

nov
novzx
shr
inc
nov
lea
xor
st osd
dec
iz
l ea
rep

SpyHookS5 :
nov
pop
pop
pop
pop
pop
pop
popf d
xchg
ret

SpyHook6 :
push
pushfd
push
push
push
push
push
push
push

ecx, 1

ecx, [edi. fInUse]
SpyHook4

edi, SIZE spPYy_CALL
esi

set in-use flag

unused entry found
try next entry

SpyHook3
edi, gpDevi ceCont ext
[edi.dMisses] ; count m sses
SpyHook5 ; array overflow
esi, gpDevi ceCont ext
[esi. dLevel] ; set nesting |evel
[edi.hThread] , ebx ; save thread id
[edi.pshe], edx ; save PSPY_HOOK_ENTRY
ecx, offset SpyHooké6 ; set new return address
ecx, [esp+20h]
[edi.pCaller], ecx ; save old return address
ecXx, KeServiceDescriptorTable
ecx, [ecx] .ntoskrnl. ArgumentTable
ecx, byte ptr [ecx+eax] ; get argunent stack size
ecx, 2
ecx ; add 1 for result slot
[edi. dParameters] , ecx ; save nunber of paraneters
edi, [edi.adParameters]
eax, eax ; initialize result slot
ecx
SpyHook5 ; no argunents
esi, [esp+24h] ; save argunent stack
novsd
eax, [edx.Handler] ; get original handl er
edi
esi
ebp
edx
ecx
ebx
eax, [esp] ; restore eax and.
; ...junp to handl er
eax
ebx
ecx
edx
ebp
esi
edi
eax

PATCHING THE SERVICE DESCRIPTOR TABLE 285

call PsGetCurrentThreadId ; get thread id

nmv ebx, eax

pop eax

nov edi, gpDevi ceContext

| ea edi, [edi. SpyCalls] ; get call context array

nmov esi, SPY_CALLS ; get nunber of entries
SpyHook7:

cnp ebx, [edi.hThread] ; find matching thread id

jz SpyHook8

add edi, SIZE spvy_CALL ; try next entry

dec esi

jnz SpyHook7

push ebx ; entry not found ? ! ?

call KeBugCheck
SpyHook8:

push edi ; save SPY_CALL pointer

nmov [edi .adParameters], eax ; store NISTATUS

push edi

call SpyHookPr ot ocol

pop edi ; restore SPY_CALL pointer

nov eax, [edi.pCaller]

nov [edi.hThread] , 0 ; clear thread id

nov esi, gpDevi ceCont ext

dec [esi.dLevel] ; reset nesting |evel

dec [edi.fInUse] ; clear in-use flag

pop edi

pop esi

pop ebp

pop edx

pop ecx

pop ebx

popfd

xchg eax, [esp] ; restore eax and. . .

ret ; ...return to caller
SpyHook9 :

nmv dHooksl, of fset spyHookl

nov dHooks2, of fset SpyHook2

n = (dHooks2 - dHooksl) / sSDT_SYMBOLS_MAX ;

for (i =j =0; i < sDT_SYMBOLS_MAX; i++, dHooksl += n)
{
if ((ppbSymbols 1= NULL) && (ppbFormats != NULL) &&
(ppbSymbols [j] != NULL))

{
aSpyHooks [i] .Handler = (NTPROD dHooksl ;
aSpyHooks [i] .pbFormat =

SpySear chFor mat (ppbSymbols [j++], ppbFormats) ;

el se

(continued)

286 MONITORING NATIVE API CALLS

aSpyHooks [i] .Handler = NULL
aSpyHooks [i] .pbFormat = NULL;
}
}
return;
}
LISTING 5-3. Implementation of the Hook Dispatcher

Sowhat isthe SpyHook macro all about? Inside spyHookInitializeEx (), this
macro is repeated exactly 248 (0xr8) times, which matches the number of Windows
2000 Native API functions. At the top of Listing 5-3, this number is assigned to the
constant spT_symBoLs_mMax, which is the maximum of spT_symBoLs_nT4 and
SDT_SYMBOLS_NT5 . Yes, that's right—I am going to support Windows NT 4.0 as
well! Back to the SpyHook macro: This sequence of invocations produces the ASM
code shown in Listing 5-4. Each SpyHook entry produces three lines of code:

1. First, the current contents of the EAX register are saved on the stack.
2. Next, thelinear address of the label SpyHook?2 is stored in Eax.
3. Findly, aCALL to the addressin EAX is performed.

Y ou might wonder what will happen when this CALL returns. Would the next
group of SpyHook code lines be invoked? No—this CALL is not supposed to return,
because the return address of this call is removed immediately from the stack after
reaching the destination label spyHook2, asthe POP EAX instruction at theend of List-
ing 5-4 proves. This apparently senseless code is atrick of the old ASM programming
daysthat hasfallen into disuse in today's world of high-level object-oriented applica-
tion development. This trick was applied by ASM gurus when they had to build an
array of homogenous entry points to be dispatched to individual functions. Using
almost identical code for all entry points guarantees equal spacing, so the index of
the entry point used by a client could easily be calculated from the return address of
the CALL instruction, the base address and total size of the array, and the number of
entries, using asimplerule of three.

SpyHook1:
push eax
nmov eax, offset SpyHook2
cal l eax
push eax
nmov eax, offset SpyHook2
cal | eax

; 244 boring repetitions onitted
push eax

PATCHING THE SERVICE DESCRIPTOR TABLE 287

mov eax, offset SpyHook2
call eax
push eax
mov eax, offset SpyHook2
call eax
SpyHook2 :
pop eax
LISTING 5-4. Expansion of the SpyHookMacro Invocations

For example, the return address of the first CALL EAX instruction in Listing 5-4
isthe address of the second entry point. Generally, the return address of the N-th
CALL EAX isegual to the address of entry w+1, except for the last one, which, of
course, would returnto SpyHook2 . Thus, the zero-based array index of al entry
points can be computed by the general formulain Figure 5-4. The underlying rule
of threeis asfollows: sor_svmeons_max entry points fit into the memory block
SpyHook2—SpyHook1 . HOW many entry points fit into Returnaddress—spyHookl?
Because the result of this computation is a number between one and spT_svMBOLS
vax, it must be decremented by one to get the zero-based index.

The implementation of the formula in Figure 5-4 can be found in Ligting 5-3,
right after the ASM label spyHook2 . It is aso included in the lower left corner
of Figure 5-5, which presents the basic mechanics of the hook dispatch mechanism.
Notethat thei386 vur instructionyields a64-bit result in registers EDX : eax, while
the prv instruction expects a 64-bit dividend in epx: ax, so thereis no danger
of an integer overflow. Inthe upper left corner, the KiServiceTable is depicted,
which will be patched with the addresses of the entry points generated by the
SpyHook macro. The middle section shows again the expanded macro code from
Listing 5-4. The linear addresses of the entry points are shown on the right-hand
side. By pure coincidence, the size of each entry point is 8 bytes, so the addressis
computed by multiplying the KiServiceTable index of each function by 8 and
adding it to the address of spytookl.

Actualy, | wasjust kidding—it’s not pure coincidence that each entry is 8 bytes
long. Inreality, | spent a considerable amount of time figuring out the ideal imple-
mentation of the hook entries. Although not grictly necessary, aligning code on 32-bit
boundaries is never a bad idea, because it speeds up performance. Of course, the per-
formance gain is marginal here. Y ou may wonder why | perform an indirect CALL
to label spyHook?2 through register z2x—wouldn’t asimple middle-of -the-road
CALL SpyHook2 instruction have been much more efficient? Right! However, the
problem with the i386 call (and jump) instructions is that they can be implemented
insevera waysthat havethe sameeffect butyield differentinstruction sizes. Just
consult Intel's Instruction Set Reference of the Pentium CPU family (Intel 1999b).

288 MONITORING NATIVEAPI CALLS

‘ (ReturnAddress — SpyHook1) * SDT_SYMBOLS_MAX

Index =

SpyHook2 — SpyHook1

-1

FIGURE 5-4.

Address = SpyHook1 + (0x00 *

Address = SpyHook1 + (0x86 *

Address = SpyHook1 + (0x87 *

Address = SpyHook1 + (0xF7 *

Address = SpyHook1 + (OxFB *

Identifying Hook Entry Points by their Return Addresses
KiServiceTable SpyHooklinitializeEx()
0x00: NtAcceptConnectPort »| SpyHook1:
push eax
mov eax, offset SpyHook2
call eax
0xB6: NtQueryinformationProcess
OxB7: NtQuerylnformationThread
push eax
mov eax, offset SpyHook2
call eax
. i push eax
OxF7: NtYieldExecution mov eax, offset SpyHook2
call eax
Service Table Index Determination: push eax
mov eax, offset SpyHook2
pop eax ; get return address call eax
sub eax, offset SpyHook1 SovHook2:
mov ecx, SDT_SYMBOLS_MAX il pop eax;get return address
mul ecx
mov ecx, offset SpyHook2 call SpyHookProtocol
sub ecx, offset SpyHook1 'x'éhg eax, [esp]
div ecx ret
dec eax
FIGURE 5-5. Functional Principle of the Hook Dispatcher

g)

8)

8)

8)

8)

Because the choice of variant used is up to the compiler/assembler, there would be no
guarantee that all entry points would end up in the same encoding. On the other
hand, aMOV EAX with aconstant 32-bit operand is always encoded in the sameway,
and so is the CALL EAX instruction.
Other pointsin Listing 5-3 should be clarified. Let's start with the final C code
section starting after the label spyHook9. The ASM code at this label has preset the C
variables dHookl and dnook2 with the linear addresses of the labels SpyHook! and
spyHook?2 . Next, the variable nis set to the size of each hook entry point by dividing

PATCHING THE SERVICE DESCRIPTOR TABLE 289

the size of the entry point array by the number of entries. Of course, thiswill yield
eight. The remaining part of Listing 5-3 is aloop that initializes all entries of the
global aSpyHooks [] array. This array consists of spy_HOOK_ENTRY Structures

defined in the top half of Listing 5-3, and each entry is associated with a Native

API function. To understand how their Handler and pbFormat members are set up,
itisnecessary to know more about the arguments ppbsymbols and ppbFormats
passed to spyHookInitializeEx (). Listing 5-5 showsthewrapper function
SpyHookInitialize () that calls spyHookInitializeEx () with arguments appropri-
ate for the operating system (OS) version currently running. As noted earlier, the
code doesn't test the OS version or the build number directly, but rather compares
the servicerLimit member of the SDT entry assigned tontoskrnl . exe with the con-
stants spT_symMBOLS_NT4 and spT_syMBoLS_NTS. If none of them matches, the spy
device will initialize all aSpyHooks|[] entries with NULL pointers, effectively disabling
the entire Native API hook mechanism.

BOOL SpyHookinitialize (void)

{
BOOL fok = TRUE

swi tch (KeServiceDescriptorTable->ntoskrnl. ServiceLimit)
{
case SDT_SYMBOLS_NT4:
{
SpyHooki ni tial i zeEx (apbsSdtSymbolsNT4, apbsSdtFormats);
break;

}

case SDT_SYMBOLS_NT5:
{
SpyHooki ni ti al i zeBEx (apbSdtSymbolsNT5, apbSdtFormats) ;
break;
}
default:
{
SpyHooki ni tial i zeEx (NULL, NULL) ;
fOk = FALSE;
br eak;

}

return fok;

}

LISTING 5-5. SpyHookInitialize() Chooses the Symbol Table Matching the OS Version

290 MONITORING NATIVE API CALLS

The global arrays apbsdtsymbolsnT4 [] @and apbsdtsymbolsnTs [] passed into
SpyHookInitializeEx () &S first argument ppbsymbols are simply string tables that
contain al WindowsNT 4.0 and Windows 2000 Native API function names, sorted
by their KiServiceTable index, and terminated by a NULL pointer. The string array
apbSdtFormats|[] isshownin Listing 5-6. Thisformat string list is one of the most
important parts of the hook mechanism because it determines which Native API cals
are logged and the appearance of each log entry. Obviously, the structure of these
strings is borrowed from the printf () function of the C Runtime Library but
specifically tailored to the most frequently used argument types of the Native API.
Table 5-2 isacompletelist of format |Ds recognized by the API logger.

PBYTE apbSdt Formats [] =

{

“$s=NtCancelIoFile(%!,%1i)",

“$s=NtClose(%-)"

“%s=NtCreateFile(%+, %n, %0, %1, %1, %n, %n, %n, %n, %p, %n) ",

“$s=NtCreateKey (%+,%n, %0, %n, %u, ¥n, %d) ”,

“¢s=NtDeleteFile(%o0)",

“$s=NtDeleteKey (%-)",

“$s=NtDeleteValueKey (%!, %u)”,

“$s=NtDeviceIoControlFile (%!, %p, %p, %p, %1, %n, %p, %n, %p, %n) ",

“$s=NtEnumerateKey (%!, %n, %n, %p, %$n, %d) ",

“%s=NtEnumerateValueKey(%!,b %n, %n, $p, %n, %d) ",

“$s=NtFlushBuffersFile (%!, %1i)",

“$s=NtFlushKey (%!) ",

“$s=NtFsControlFile (%!, %p, %p, %p, %1, %n, %p, %n, %p, 3n) ",

“$s=NtLoadKey (%0, %0) ",

“$s=NtLoadKey2 (%0,%0, %n) "

“%$s=NtNotifyChangeKey (%!, %p, %$p, %$p, %1, %n, b, $p, %n, 3b) ",

“$s=NtNotifyChangeMultipleKeys (%!, %n, %o, %$p, %p, %p, %1, %n, %b, $p, %n, %b) ",

“$s=NtOpenFile (%+,%n, %0, %i, %n, %n) ",

“%$s=NtOpenKey (%+,%n, %0) ",

“$s=NtOpenProcess (%+,%n, %0, %c) ",

“$s=NtOpenThread (%+,%n, %o, %c) ",

“%s=NtQueryDirectoryFile (%!, %p, %p, %p, %1, %p, %n, %n, $b, 3u, ¥b) ",
“¥s=NtQueryInformationFile (%!, %1, %p, %n, %n) ",
“$s=NtQueryInformationProcess (%!, %n, %p, %n, %d) ",
“$s=NtQueryInformationThread (%!, %n, $p, %n, %d) ",
“%s=NtQueryKey (%!, %n, $p, ¥n, %d) ",
“$s=NtQueryMultipleValueKey (%!, %p, %n, %p, %d, %d) ",
“$s=NtQueryOpenSubKeys (%0,%d) ",
“¥s=NtQuerySystemInformation (%n, %p, %n, %d) ",
“$s=NtQuerySystemTime (%1) ",

“$s=NtQueryValueKey (%!, %u, %n, $p, %n, %$d) ",
“%s=NtQueryVolumeInformationFile (%!, %i,%p, %n,%n)",
“$s=NtReadFile (%!, %p, %p, %¥p, %1, %p, %n, %1, %d) ",
“$s=NtReplaceKey (%0, %!,%0)",
“¥s=NtSetInformationKey (%!, %n, %p, %n) ",

PATCHING THE SERVICE DESCRIPTOR TABLE 291

“$s=NtSetInformationFile(%!,%1i, %p,%n, %n) ",

“¥s=NtSetInformationProcess (5 n,%p,%n) ",

“%s=NtSetInformationThread (%!, % %$p, %n) ",
“$s=NtSetSystemInformation(%p, %n) ”
“¥s=NtSetSystemTime (%1,%1)",

NtSetValueKey (%!, %u,%n, %$n, %p, %n) ",

NtSetVolumeInformationFile (%!, %$i,%p, %n, %n) ",
“¥s=NtUnloadKey (%0) ",

“$s=NtWriteFile (%!, %p, %p, %D, %1, %p, %n, %1,%d) ",
NULL
b
LISTING 5-6. Format Srings Used by the Native API Logger

It's important to note that each format string must contain the function
correctly spdled. spyrHookInitializerx () walks though the ligt of Native AP
symbolsit receivesviaits ppbsymbols argument and attemptsto find aformat
string in the pporormats list that contains a matching function name. The compari-
sonisperformed by the helper function spysearchrormat (), invokedinthe it
clause at the end of Listing 5-3. Because many string search operations must be
performed for all aSpyHooks|[] entriesto be set up, | am using a highly optimized
search engine based on the ingenious " Shift/And Search Algorithm.” If you want to
learn more about itsimplementation, please check out the SpySearch* () function
group in the source file \src\w2k_spy\w2k_spy. C on the companion CD. As soon as
spyHookTInitializerx() eXitstheloop, all Handler membersin the aSpyHooks|]
array point to the appropriate hook entry points, and the pbrormat members provide
the matching format string, if any. With Windows NT 4.0, both members of the
entries in the index range OxD3 to OxF8 are set to NULL, because they are undefined
for thisversion.

TABLE 5-2. Recognized Format Control IDs

ID NAME DESCRIPTION

%+ Handle (register) Logs a handle and object name and adds them to the handle
table

%! Handle (retrieve) Logs a handle and retrieves its object name from the
handletable

%- Handle (unregister) Logs a handle and object name and removes them from the
handletable

%a ANSI string Logs a string of 8-hit ANSI characters

%b BOOLEAN Logs an 8-bit BOOLEAN value

%c CLIENT_ID * Logs the members of a CLIENT _ID structure

(continued)

292 MONITORING NATIVE APl CALLS

TABLE 52 (continued)
ID NAME DESCRIPTION
%d DWORD * Logs the value of the addressed DWORD
%1 |O_STATUS BLOCK * Logs the members of an 10_STATUS_BLOCK structure
%] LARGE_INTEGER * Logsthevalue of aLARGE_INTEGER structure
%n Number (DWORD) Logs the value of an unsigned 32-bit number
%o OBJECT_ATTRIBUTES * Logs the ObjectNameof an object
%p Pointer Logs the target address of a pointer
%s Status (NTSTATUS) Logs a NT status code
%u UNICODE_STRING * Logs the Buffer member of an UNICODE_STRING
structure
%w Wide character string Logs astring of 16-bit Unicode characters
%% Percent escape Logs asingle ‘%’ character .

The most notable property of this hook mechanism design is that it is com-
pletely data driven. The hook dispatcher can be adapted to a new Windows 2000
release by simply adding anew APl symbol table. Moreover, thelogging of addi-
tional API functionscan be enabled at any time by adding new format stringsto the]
apbsdtrormats[] array. Thereisno need to write any additional code—the actions]
of the API spy are completely determined by a set of character strings! However, cae |
must be taken while defining format strings. Never forget that w2k _spy . Sysrunsasal
kernel-mode driver. On this system level, errors are not handled very gracefully.
Giving an invalid argument to a Win32 API is not a problem—you will get an error]
window, and the application will be terminated. In kernel-mode, the tiniest access
violation will cause a Blue Screen. So be careful—animproper or missing format
control ID at the right place can easily tear down your system. Even a simple charac-
ter string sometimes can be deadly!

The only thing left to discussis the large ASM block inside SpyHook
Initializegx (), enclosed by the ASM labels SpyHook2 and spyHooks. One inter-
esting property of this code is that it is never executed when spytookInitializerx()
iscaled. On entry, the function code simply jumps across this entire section and
resumes execution at the label spyHooke, shortly before the C section containing
the aspytiooks [] array initiaization starts. This code can only be entered via the
Handler membersof thisarray. Later, | will show how these entry pointsarelinked
to the SDT.

One of my foremost aims in designing this code was to make it absolutely non-
intrusive. Intercepting operating system calls is dangerous because you never know
whether the called code relies on some unknown properties of the calling context.
Theoreticdly, it should suffice to obey the stacai1 convention, but it is possible

PATCHING THE SERVICE DESCRIPTOR TABLE 293

that problems may occur. 1 have chosen to put the original Native API function han-
dler into almost exactly the same environment it would find if no hooks were pre-
sent. This means that the function should run on the original argument stack and see
all CPU registers asthey are passed in by the caller. Of course, a minimal degree of
intrusion must be accepted—otherwise, N0 monitoring would be possible. Here, the
most significant intervention is the manipulation of the return address on the stack.
If you flip back to Figure 5-3, you see that the caller's return address is on top of

the argument stack on entry of the function. The hook dispatcher inside spy
HookInitializeEx () grabsthis address and putsits own spytooke label address
there. Thus, the original Native API function handler will branch to thislocation
after terminating, enabling the hook dispatcher to inspect its arguments and

returned values.

Before calling the original handler, the dispatcher sets up a spy_carr, control
block (see top section of Ligting 5-3) containing parameters it needs later. Some of
them arerequired for proper API call logging, whereas others provide information
about the caler so the dispatcher can return control to it after writing the log entry,
just as if nothing had happened. The spy device maintains an array of spy_cary
structuresinitsglobal DEVICE_CONTEXT block, accessibleviatheglobal variable
gpDeviceContext inw2k_spy. c. The hook dispatcher searches for a free spy_cart,
dot by examining their f itnuse members. It uses the CPU's XCHG instruction to load
and set this member in a single operation. Thisisvery important because this code
runsin amultithreaded environment, where read/write accesses to global data must
be protected against race conditions. If afree dot isavailable, the dispatcher stores
thecaller'sthread ID obtained from pscetcurrentThreadid (), the address of the
spy_HOoOK_ ENTRY associated with the current API function, the return address of the
caler, and the entire argument stack. The number of argument bytes to be copied is
taken from the xiargumentrable array stored in the system's SDT. If al spv_caLw
entriesare in use, the original API function handler isinvoked without logging it.

The necessity of a spy_cart array comes again from the multithreading nature
of Windows 2000. It happens quite frequently that a Native API function is sus-
pended, and another thread gains control, invoking another Native API function dur-
ing itstime dice. This means that the spy device's hook dispatcher can be reentered at
any time and at any execution point. If the hook dispatcher would have a single
global spv_carL storage area, it would be overwritten by the running thread before
thewaiting thread has finished using it. This situationis an ideal candidate for a
Blue Screen. To gain a better sense of the nesting level typically occurring within the
Native API, | have added the darevel and davisses membersto the spy's DEVICE
CONTEXT structure. Whenever the hook dispatcher is reentered (i.e., whenever a new
gev_carr dot is occupied) dLevel isincreased by one. If the maximum nesting level
isexceeded (i.e., if no more spv_carr structures are available), dMisses is increased,
indicating that alog entry is missing. My observations have shown that in practical

294 MONITORING NATIVE APl CALLS

situations, nesting levels of up to four are easily observable. Itis possible that the
Native APl isreentered even more frequently in heavy-load situations, so | set the
upper limit generously to 256.

Beforeinvoking the original API handler, the hook dispatcher restores all CPU
registersincluding the erracs, and branches to the function's entry point. Thisis
done immediately before the spytooks label in Listing 5-3. At thistime, spyHooks IS
on top of the stack, followed by the caller's arguments. As soon as the APl handler
exits, control is passed back to the hook dispatcher at the spyHooke label. The code
executed from there on is also designed to be as nonintrusive as possible. Thistime,
the main objective isto allow the caller to see the call context almost exactly as it was
set up by the original API function handler. The main problem of the dispatcher is
now to find the spy_carr entry where it has stored the information about the current
API cdl. The only reliable cue it has is the caller's thread ID, which has been saved to
the hThread member of the spv_carw structure. Therefore, the dispatcher loops
through the entire spy_carr array trying to find a matching thread ID. Note that the
code is not concerned about the value of the f muse flag; thisis not necessary
because al unused entries have hThread set to zero, which is the thread ID of the
system idle thread. The loop should always terminate before the end of the array is
reached. Otherwise, the dispatcher cannot return control to the caller, which is fatal.
In this case, the code has few options, so it runs into a keBugcCheck () that resultsina
controlled system shutdown. This situation should never occur, but if it does, some-
thing terrible must have happened to the system, so the shutdown is probably the
best solution.

If the matching spy_carr dot can be found, the hook dispatcher has almost
finished its job. The last major action is the invocation of the logging function
SpyHookProtocol (), passing in apointer to the spy_carr structure. Everything
the logger needs is stored there. After SpyHookProtocol () returns, the dispatcher
freesits spy_carn dlot, restores al CPU registers, and returns to the caler.

THE APl HOOK PROTOCOL

A good API spy should look at the arguments after the original function has been
called, because the function might return additional data in buffers passed in by ref-
erence. Therefore, the main logging function SpyHookProtocol () iscalled at the end
of the hook handler, just before the API function returnsto the caller. Before discussing
secrets of its implementation, examine the following two sample protocols for a
foretaste of what's to come. Figure 5-6 is a snapshot of the logged file operations
performed in the context of the console command dir c)\.

PATCHING THE SERVICE DESCRIPTOR TABLE 295

Please compare the log entries listed in Figure 5-6 with the protocol format
strings contained in Listing 5-6. In Example 5-1, the format strings of NtopenFile()
andutciose () arecontrasted to the first and fourth protocol linesin Figure 5-6,
respectively. The smilarities are striking; for each format control ID preceded by a per-
cent character (cf. Table 5-2), an associated parameter value entry isgenerated in the
protocol. However, the protocol obvioudly contains some additional information that is
not part of the format strings. I'll reveal the reason for this discrepancy in a moment.

The general format of a protocol entry is shown in Example 5-2. Each entry
consists of a fixed number of fields with intermittent separators. The separators
alow the entries to be easly parsed by a program. The fields are constructed on the

basis of the following set of smplerules:

 All numeric quantities are stated in hexadecimal notation without leading
zeros and without the usual leading “0x.”

Function arguments are separated by commas.
String arguments are enclosed in double quotes.

« If apointer argument isNULL , its value is omitted.

The values of structure members are separated by dots.

FIGURE 5-6. Sample Protocol of the Command dir ¢\

296 MONITORING NATIVE APl CALLS

“$s=NtOpenFile(%+,%n,%0,%i,%n,%n) "

18:s0=NtOpenFile (+46C.18,n100001,0”\??\C:\”,10.1,n3,n4021) 1BFEESAE05B6710,278,2

“$s=NtClose(%~-)"
1B:s0=NtClose(-46C.18="\??\C:\"”)1BFEE5AE05B6710,278,1

EXAMPLE 5-1. Comparing Format Strings to Protocol Entries

<#>:<status>=<function> (<arguments>)<time>, <thread>, <handles>

EXAMPLE 5-2. General Protocol Entry Format

» Object names associated with a handl e are appended to the handl€'s value
with a separating “=" character.

+ The date/time stamp is specified in /10 microsecond since 01-01-1601—
the basic system time format of Windows 2000.

» The thread ID indicates the unique numeric identifier of the thread that
called the API function.

» The handle count states the number of handles currently registered in the
spy device's handle list. Thislist allows the protocol function to look up
the object names associated with handles.

Figure 5-7 is another API spy protocol resulting from the command
type c:\boot.ini issued in a console window. The following is the semantic interpreta-
tion of some selected log entries:

* In line 0x31, NtcreateFile() is called to open the file\?2\c: \boot . ini .
(o”\??\c: \boot. ini”) The function returned an NTSTATUS code of zero
(s0), thatis, staTus_success, and allocated a new file handle with value
0x18, owned by process ox46c (+46c.18) . Consequently, the handle
count rises from one to two.

* Inline 0x36, the type command reads in the first 512 bytes (n200) from
file\22\c: \boot. ini to a buffer at the linear address OxO0I2F5B4
(p12F5B4), passing the handle obtained from NtcreateFile ()
(146C.18="\??\c:\boot.ini”) toNtReadFile(). Thesystem
successfullyreturns 512 bytes (i10.200).

PATCHING THE SERVICE DESCRIPTOR TABLE 297

2D:50=NtOpenFila(+46C.18,1100001.0"\?7\c:\".10.1,13,04021) | BFEESBO75EEB90,278,2 y
2E:50=NiQueryDirectoryFile(146C.18="22\c:\" p,p,p,i0.6E,p12F4DC,1268,13,bTRUE,u'boot. ni* bFALSE) 1BFEESBO75EERS0,278,2
2F:880000006=NtQueryDiractoryFile(46C. 18=177\c:\",p,p,0I80000006.0,p1389F0,11000,13 bFALSE, u bFALSE) 1 BFEESBO7B06FC0,278,2 |
90:50=NIClose(-46C.18="177\c:\")} BFEESBO7B06FCO,278,1

81:50=NICreatarFile(+46C. 18,1B0100080,0"\?Pic:\bootinl" 10.1,1,180,13,11n60,p,n0) 1BFEESBO7606FC0,278,2
32:50=NiQueryVolumelnformationFila(148C. 18="77ic:book inf*0.8,p12E728,08,n4) 1BFEE5B07606FC0,278.2
33:50=NIQuaryVolumelnformationFile(146G, 18="17%\c:boot.ini* i0.8,p12E778,08,14) | BFEE5B07606F C0,278,2
a4:50=NIQuerylnformationFle(146C.18="27\0:bootIni", 0, 18,p12E758,118,n5) 1BFEESB07606FG0,278,2
35:50=NiSetinformationFle{146C.18="77\c:\boot Ini",10.0,p12E780,18,0E) 1 BFEESB07606FC0.278,2
36:50=NiFeadFile(146C, 18="27\c:\boot.Ini",p.p,p,10.200,012F 5B4,0200,1,§) | BFEESBOTB06F C0,278,2
37:50=NQuerylnformationFile(146C.18="?7\c:\bootini" 10,8, 12E780,n18,nE) | BREESBO7B50550,278,2
a8:60-NiSetlnformationFile(1460.18="77\c:boot.ini"10.0 p12E780,08,nE) 1 BFEE5B07650550,278,2
39:80=NiReadFile(146C. 18="27\cbaot Ini" p,p,p.i0.4B,p1 2F584,n200,1,d) | BEEESBO7R50550,278,2
3As0=NiQueryinformationFile(146C.18="27\c:\boot.ini",i0.8,p12E780,8,nE) 1BFEESBO7650550,278,2
38:50=NiSalinformationFle{l46C. 18="77\c:\boat ini,10.0,p12E780,8,nE) 1BFEESBO7650550,278,2
30:50=N(Close(~46C. 18="1?7\c:\hoot ini"} | BFEESB07650550,278, 1

FIGURE 5-7. Sample Protocol of the Command type c: \boot. ini

* Inlineox39, another file block of 512 bytesis ordered (n200). Thistime,
however, the end of the fileisreached, so NtReadFile() returns 75 bytes
only (io.4s). Obvioudly, the size of my boot. ini fileis 512 + 75 = 587
bytes, which is correct.

* Inlineox3c, thefilehandleto\22\c: \boot . ini is successfully released
by ntclose() (-46C.18="\?2?\c:\boot.ini"), SO the handle count drops
from two to one.

By now, you should have an idea of how the API spy protocal is structured,
whichwill help you grasp the details of the protocol generation mechanism, to
be discussed next. As aready noted, the main APl cal logging function is cdled
SpyHookProtocol () . Thisfunction, shown in Listing 5-7, usesthe datain the
gpy_caLt Structure it receives from the hook dispatcher to write a protocol record
for each API function call to acircular buffer. A spy device client can read this proto-
col vialOCTL calls. Eachrecord is atext line terminated by a single line-feed charac-
ter (*\n in C notation). Access to the protocol buffer is seridized by means of the
kernel mutex kMuTEX kmProtocol, located inthe global pevice conTeExT structure
of the spy device. The functions spytookwait () and SpyHookRelease() in Listing
5-7 acquire and rel ease this mutex object. All accesses to the protocol buffer must be
preceded by SpyHookWait () and followed SpyHookRelease(), asdemonstrated by
the SpyHookProtocol () function.

298 MONITORING NATIVE API CALLS

NTSTATUS spyHookwait (void)
{

return MUTEX_WAIT (gpDeviceContext->kmProtocol);

}

I -

LONG SpyHookRel ease (voi d)
{

“2turn MUTEX RELEASE (gpDeviceContext->kmProtocol) ;
}

s, --

/] <#>:<status>=<function>(<arguments>)<time>,<thread>, <handles>

voi d SpyHookProtocol (PsPY_CALL psc)
{
LARGE_INTEGER liTime;
PSPY PROTOOOL psp = &gpDeviceContext->SpyProtocol;

KeQuerySystemTime (&1iTime) ;
SpyHookWi t () ;

if (SpyWwriteFilter (pSp, psc->pshe->pbFormat,
pscC - >adParametes ,
psc->dParameters))
{
SpyWriteNumber (psp, 0, ++ (psp-»sh.dCalls)) ; [/ <#>:
SpyWriteChar (psp, 0, * : ')
/] <status>=
SpyWriteFormat (psp, psc->pshe->pbFormat, // <function>
psc->adParameters) ; [/ (<arguments>)

SpyWriteLarge (psp, 0, &liTime) ; Il <time>,
SpyWiteChar (psp, O, ', ")

SpyWiteNunber (psp, O, (DMRD psc->hThread) ; // <thread>,
SpyWiteChar (psp, 0, ', ")

SpyWiteNunber (psp, O, psp->sh.dHandles) ; /1 <handl es>
SpyWi t eChar (psp, 0, *\n’);

>
SpyHbokRel ease () ;
return;

)

LISTING 5-7. The Main Hook Protocol Function SpyHookProtocol()

PATCHING THE SERVICE DESCRIPTOR TABLE 299

If you compare the main body of SpyHookProtocoal () in Listing 5-7 with the
general protocol entry layout in Example 5-2, it is obvious which statement generates
which entry field. It also becomes clear why the protocol stringsin Listing 5-6 don't
account for the entire entry data—some function-independent data are added by
SpyHookProtocol () without the hel p of theformat string. It'sthe spywiriteFormat ()
cdl at the heart of SpyHookProtocol () that generates the <status>=<function>
(<arguments>) part, based on the format string associated with the currently logged
API function. Consult the sourcefilesw2k_spy . ¢ andw2k_spy . h in directory
\src\w2k_spy Of the accompanying sample CD for more information about the
implementation of thevarious spywrite* () functionsinside the spy device driver.

Note that this code is somewhat critical. This code was written in 1997 for Win-
dowsNT 4.0, and it worked like a charm then. After porting the program to Windows
2000, occasiona Blue Screens occurred when the hooks remained installed for alonger
timeinterval. Worseyet, some special operationsreliably produced an instant Blue
Screen, for example, navigating to "My Computer” in the Fle\ Open dialog of my
favoritetext editor. Analyzing numerous crash dumps, | found that the crasheswere
the result of invalid non-nurL pointers passed to some APl functions. As soon as
the spy device attempted to follow one of these pointers in order to log the data it
referenced, the system crashed. Typica candidates were pointersto ro_staTus_BLOCK
structures, and invalid string pointersinside untcope_strine and OBJECT ATTRIBUTES
structures. | also found some untcope_sTrRINGs With Buf fer members that were not
zero-terminated. Therefore, | emphasize again that you should not assume that all
UNICODE_STRINGs are zero-terminated. In case of doubt, the Length member always
tellsthe number of valid bytesyou can expect at the Buf fer address.

To remedy this problem, | have added pointer validation to all logging functions
that have to follow client pointers. To thisend, | usethe spyMemoryTestaddress ()
function discussed in Chapter 4 that checks out whether a linear address pointsto a
valid page-table entry (PTE). See Listings 4-22 and 4-24 for details. Another alterna-
tive possibility would have been the addition of Structured Exception Handling
(SEH) clauses (__try/___except).

HANDLING HANDLES

It isimportant to note that SpyHookProtocol () logs an API function call only if the
spyliriteFilter () functioninitsif clause condition returns rrue. Thisisatrick

that helps to suppress garbage in the hook protocol. For example, moving the mouse
acrossthe screen triggers a distracting series of NtReadFile() calls. Another source of
garbage has an interesting equivalent in physics: If you are measuring aphysical effect
in an experimental situation, the act of measurement itself interferes with the mea-
sured effect and leads to distortion of the results. This also can happen in API logging.
Note that the ntpeviceTocontrolFile () functionisaso included in the format string

300 MONITORING NATIVE API CALLS

array in Listing 5-6. However, aclient of the spy device uses device I/O control callsto
read the APl hook protocol. This means that the client will find its own NtpeviceTo-
controlrile() callsinthe protocol data. Depending on the frequency of the IOCTL
transactions, the desired data might easily get lost in self-made noise. The spy device
works around this problem by remembering the ID of the thread that installed the AP
hooks to be able to ignore dl API cdls originating from this thread.
spyWriterilter() eliminates garbage by ignoring all API callsinvolving han-
diesif the call that generated the handle has not been logged. If the spy device
observes that a handle is closed or otherwise returned to the system, any subsequent
functions using this handle value are discarded aswell. Effectively, thistrick sup-
presses dl API cals that involve long-term handles created by the system or other
processes before the start of the APl hook protocol. Of course, filtering can be
enabled or disabled on behalf of the client by means of IOCTL. You can easily test
the usefulness of the filter mechanism with the sample client application introduced
later in this chapter. You will be surprised how great this simple "noise filter" works!

In Listing 5-6, the functions that generate handles are NtcreateFile() ,
NtCreateKey (), NtOpenFile(), NtOpenKey (), NtOpenProcess(), and
NtopenThread () . All of these functions contain a %+ control token in their format
strings, which isidentified as "Handle (register)” in Table 5-2. Functions that close
or invalidate handlesarentciose () and NtDeleteKey () . Both include a %- tokenin
their format strings, labeled "Handle (unregister)” in Table 5-2. Other functions that
simply use a handle without creating or releasing it feature a = : format control 1D.
Basically, a handleis a number that uniquely identifies an object in the context of a
process. Physically, it provides an index into a handle table that contains the proper-
ties of the associated object. When a new handle isissued by an API function, the
client usually has to pass in an oBJECT ATTRIBUTES Structure that contains, among
other things, the name of the object it wishes to access. Later, this name is no longer
required because the system can look up all object properties it needs using the object
handle and the handle table. Thisis unfortunate for the user of an APl spy because it
necessitates wading through countless protocol entries containing meaningless num-
bers instead of symbolic names. Therefore, my spy device registers al object names
together with the respective handle values and the I1Ds of the owning processes,
updating this lig whenever a new handle appears. When one of the registered han-
dle/process pairs reappears later, the API logger retrieves the original symbolic name
from the list and adds it to the protocol.

A handle remains registered until it is explicitly closed by an API function or
reappears in an APl call that generates a new handle. With Windows 2000, I fre-
quently observed that the same handle value is returned severa times by the system,
although the protocol doesn't contain any call that has closed this handle before. |
don't remember having seen this with Windows NT 4.0. A registered handle that
reappears with different object attributes has obviously been closed somehow, so it
must be unregistered. Otherwise, the handle directory of the spy device eventually

PATCHING THE SERVICE DESCRIPTOR TABLE 301

wouldruninto anoverflow situation.
The spyuriterilter() functioncalled by SpyHookProtocol ()inListing5-7is
an essential part of this handle tracking mechanism. Every call to any of the hooked

API functions hasto pass through it. The implementation is shown in Listing 5-8.
BOOL SpyWiteFilter (pPspy_PROTOCOL psp,

PBYTE pbFormat,
PVOID pPar aneters,
DWRD dParameters)

{

PHANDLE phObject = NULL

HANDLE hObject = NULL

PCBIECT_ATTR BUTES poa = NULL;

PDWORD pdNext ;

DWORD i, 93

pdNext = pParareters ;
i =j =0;

while (pbFormat [i])

{
while (pbFormat [i] && (pbFormat [i] != "%')) i ++;

if (pbFormat [i] && pbFormat [++1])
t

J++;

swtch (pbFornat [(i++])

{
case '
case
case
case
case 'n’
case '
case
case
case
case
case '

{

break;

}
case ‘o’ :

{

if (poa == NULL)

{
poa = (PCBIECT_ATTR BUTES) *pdNext;

= c <0 T

T a0 e w

(conti nued)

302 MONITORING NATIVE APl CALLS

}

br eak;
}
case ‘+':

(

if (phOobject == NULL)

phObject = (PHANDLE) *pdNext;
}
br eak;
}
case ' !’ :
case '-':
{
if (hobject == NULL)
{

hobject = (HANDLE) *pdNext ;

break;

}

default:
{
8
break;
}
}
pdNext++;

}

return // nunber of arguments ok
(j == dParameters)
&&
/1 no handl es invol ved
(((phObject == NULL) && (hobject == NULL))
Il
/1 new handle, successfully registered
((phObject !'= NULL) &&
SpyHandl eRegi ster (psp, PsGetQurrent Processld (),
*phObject, OBJECT_NAME (poa)))
I
/'l registered handl e
SpyHandl eSl ot (psp, PsGet Qurrent Processld () , hObject)

[
/1 filter disabled
(gfSpyHookFilter)) ;

LISTING 5-8. spyWriterilter () Excludes UndesiredAPl Calls from the Protocol

PATCHING THE SERVICE DESCRIPTOR TABLE 303

Basicaly, spywriterilter() scansaprotocol format string for occurrences of
%0 (obj ect attributes), %+ (new handle), %! (openhandle), and %- (closed handle) and
takes special actions for certain combinations, as follows:

¢ If no handles are involved, the API call is always logged. This concerns all
API functions with format strings that don't contain the format control
IDs %+, %!, and %-.

* If %+ isincluded in the format string, indicating that this function
allocates a new handle, this handle is registered and associated with
the name of the first %0 item in the format string using the helper

function spyHandleregister () . If no such item exists, the handle is
registered with an empty string. If the registration succeeds, the call
is logged.

» If %1 or %- occur inthe format string, the called function uses or closes an
open handle. In this case, SpyWriteFiiter () tests whether this handle is
registered by querying its dot number via SpyHandleSlot () . If this
function succeeds, the API call is logged.

* In all other cases, the call is logged only if the filter mechanism is disabled,
as indicated by the global Boolean variable gfspyHookFilter.

The handle directory is part of the spv_proTocoL structure, included in the
globa DEVICE_CONTEXT structure of the spy device w2k_spy . sys and defined in
Listing 5-9, along with its SPY_HEADER substructure. Following the structure defini-
tions is the source code of the four handle management functions SpyHandleSlot () ,
SpyHandleName (), SpyHandleUnregister(), and SpyHandleRegister (). A han-
dieisregistered by appending its value to the current end of the ahObj ects[] array.
At the same time, the ID of the owning process is added to the ahprocesses|]
array, the object name is copied to the awnames [] buffer, and the start offset of the
nameis stored in the advames [] array. When a handleis unregistered, these actions
are undone, shifting left al subsequent array members to ensure that none of the
arrays contains "holes." The constant definitions at the top of Listing 5-9 define the
dimensions of the handle directory: It can take up to 4,096 handles, the name data
limit is set to 1,048,576 Unicode characters (2 MB), and the protocol buffer size
amountsto 1 MB.

304 MONITORING NATIVE APl CALLS

#define SPY_ HANDLES 0x00001000 // max nunber of handl es
#defi ne SPY_NAME_BUFFER 0x00100000 // object name buffer size
#define SPY_DATA BUFFER 0x00100000 // protocol data buffer size

typedef struct _SPY_HEADER

LARCE | NTEGER liStart; [/ start tine

DWORD dRead; /1 read data index
DWORD dWrite; /1 wite data index
DWORD dcalls; /1 api usage count
DWORD dHandles; // handl e count
DWORD dName ; // object nane index
}

SPY_HEADER, *PSPY_HEADER, **PPSPY_HEADER;

#define SPY HEADER, sizeof (SPYq HEADER

typedef struct _SPY _PROTOCOL

{

SPY_HEADER sh; /1 protocol header
HANDLE ahProcesses [SpPY_HANDLES] ; /1 process id array
HANDLE ahj ect s [SPY_HANDLES] ; // handl e array
DWORD adNames [SPY_HANDLES] ; /1 nane offsets
WZRD awNames [SPY_NAME_BUFFER] ; // name strings
BYTE abDat a [SPY_DATA_BUFFER]; // protocol data

}

SPY_PROTOCQL, *PSPY_PROTOCOL, **PPSPY_PROTOCOL;

t fdefi ne SPY_PROTOCOL_ si zeof (SPY_PROTOCOL)

//

DWRD SpyHandl eSl ot (PSPY_PROTOCOL psp,
HANDLE hProcess,
HANDLE hQbj ect)

.

DWRD dslot = O;

if (hQpject !'= NUL)
{
while ((dSlot< psp->sh.dHandles)
&
((psp->ahProcesses [d9 ot] !=hProcess) | |
(psp->ahObjects [dSlot] != hCbhject))) dslot++;

PATCHING THE SERVICE DESCRIPTOR TABLE 305

dSlot = (dSlot < psp->sh.dHandles ? dSlot+l 0);
}
return dSl ot ;
)
/1
DWORD SpyHandl eNane (PSPY_PROTOCOL psp,
HANDLE hPr ocess,
HANDLE hQbj ect
PWORD pwName ,
DWORD dName)
{
WRD w;
DWRD i ;
DWRD dSl ot = SpyHandl eSl ot (psp, hProcess, hObject) ;

if ((pwName ! = NULL) && dName)

{
i =0
if (d9ot)
{
while ((i+l < dName) &&
(w = psp->awNames [psp->adNames [dSlot-1] + il)})
{
pwNane [i++] = W,
}
}
pwNarme [i] =0;
}
return dSl ot ;

}

DWIRD spyHandleUnregister (PSPY_PROTOCOL psp,

HANDLE hProcess,
HANDLE hhj ect,
PWRD pwName ,
DWCRD dName)
DAMORD i, J
DWORD dSl ot = SpyHandl eNarre (psp, hProcess, hQnject,
pwName, dName) ;
if (dSot)
if (d9ot == psp->sh.dHandles)
{
I/ rermove |ast nane entry

(continued)

306 MONITORING NATIVE API CALLS

psp->sh.dName = psp->adNames [dSlot-1];
}
el se
{
i = psp->adNames [dSlot-1];
j = psp->adNames [dSlot] ;

/1 shift left all remaining nane entries
while (j < psp->sh.dName)
{

psp->awNames [i++] = psp->awNames [j++];

}

j -= (psp->sh.dName = i);

/1 shift left all remaining handl es and name of fsets
for (i =dSot; i < psp-»>sh.dHandles; i++)
{
psp- >ahProcesses [i-1] = psp-»>ahProcesses [i];
psp->ahObjects [i-1] = psp->ahpjects [d]1:

psp->adNames [i-1] = psp->adNames [i] - 4
}
}
psp->sh.dHandles~—;
}
return dSlot;

}

/1

DWRD SpyHandl eRegi ster (PSPY_PROTOCOL psp,

HANDLE hProcess,
HANDLE hObject,
PUNICODE_STRING puName)

{

PWORD pwName ;

DWORD dName;

DWRD i;

DNRD dSiot = 0

if (hObject I'= NULL)
{

/1 unregister old handl e with same val ue
SpyHandleUnregister (psp, hProcess, hQbject, NJUL, 0);

if (psp->sh.dHandl es == SPY_HANDLES)
{

CONTROLLING THE APl HOOKS IN USER-MODE 307

/] unregister ol dest handle if overflow
SpyHandl eUnr egi ster (psp, psp->ahProcesses (0],
psp->ahObjects (0], NULL, 0);

}
pwNane = ((puName != NULL) && SpyMemoryTestAddress (pulName)
? puName->Buf fer
. NULL) ;
dName = ((pwNarme !=NULL) && SpyMenoryTest Address (pwhare)
? puName->Length [/ WORD_
Y

if (dName + 1 <= SPY_NAME BUFFER - psp->sh. dName)

{
/1 append object to end of |ist
psp->ahProcesses [psp->sh.dHandles] = hProcess;
psp- >ah(hj ect s [psp->sh.dHandles] = hObject;
psp->adNames [psp->sh.dHandles] = psp~>sh. dName ;
for (i =0; 1 <dNane; i++)
psp->awNames [psp->sh.dName++] = pwName [i];
}
psp->awNames [psp->sh.dName++] = O;

psp~->sh. dHandles++;
dSlot - psp->sh.dHandles ;

return dSlot;

}

LISTING 5-9. Handle Management Structures and Functions

CONTROLLING THE APl HOOKS IN USER-MODE

A spy device client running in user-mode can control the Native API hook mechanism
and the protocol it generates by means of aset of IOCTL functions. This set of functions
with names of type spv_10_nHook_* was mentioned in Chapter 4, where the memory
spying functions of w2k_spy . Sys were discussed (see Listing 4-7 and Table 4-2).

The relevant part of Table 4-2 is repeated below in Table 5-3. Listing 5-10 is an
excerpt from Listing 4-7, demonstrating how the hook management functions are
dispatched. Each of these functions is reviewed in the subsequent subsections.

308 MONITORING NATIVE API CALLS

TABLE 53. IOCTL Hook Management Functions Supported by the Spy Device
FUNCTION NAME ID IOCTL CODE DESCRIPTION
SPY_IO_HOOK _INFO 11 Ox8000602C Returnsinfo about Native APl hooks

SPY_10_HOOK _INSTALL 12 Ox8000E030 InstallsNativeAPl hooks
SPY_IO_HOOK_REMOVE [3 Ox8000E034 RemovesNative APl hooks
SPY_10_HOOK _PAUSE 14 OxB8000E038 Pauses/resumesthehook protocol
SPY_IO_HOOK _FILTER 15 0x8000E03C Enables/disables the hook protocol filter
SPY_10_HOOK RESET 16 Ox8000E040 Clears the hook protocol
SPY_10_HOOK _READ 17 0x80006044 Reads data from the hook protocol
SPY_10_HOOK _WRITE 18 OxB8000E048 Writesdatato thehook protocol

NTSTATUS SpyD spat cher (PDEVICE CONTEXT pDeviceContext ,

DWORD dCode,
PVOID pInput,
DWORD dInput,
Pva D pCQut put ,
DWRD dOutput,
PDWRD pdInfo)

{
SPY_MEMORY_BLOCK smb;
SPY_PAGE_ENTRY Spe

SPY_CALL_INPUT sci;

PHYS| CAL_ADDRESS pa;

DWRD dvalue, dCount;

BOOL fReset, fPause, fFilter, fLine;
PVva D pAddress ;

PBYTE pbName ;

HANDLE hOb j ect;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch);
*pdInfo = O;

switch (dCode)
{

/1 unrelated ICCTL functions omitted (cf. Listing 4-7)

case SPY_IO_HOOK_INFO:
{
ns = SpyOutputHookInfo (pQutput, dQutput, pdInfo);

break;

}

CONTROLLING THE APl HOOKS IN USER-MODE

case SPY_IO_HOOK_INSTALL :

{
if (((ns- SpyInputBool (&fReset,
pInput, dInput))
== STATUS_SUCCESS)
&&
((ns = SpyHookInstall (fReset, &dCount))
== STATUS_SUCCESS))
{
ns = SpyQutputDword (dCount,
pQut put, dQutput, pdInfo);
}
break;
}
case SPY_IO_HOOK_REMOVE :
{
if (((ns= SpylnputBool (&fReset,
pl nput, dinput))
== STATUS_SUCCESS)
&&
((ns = SpyHookRenove (fReset, &dCount))
== STATUS_SUCCESS))
{
ns = SpyQut put Daord (dQount,
pQut put, doutput, pdInfo);
}
break;
)
case SPY_IO_HOOK_PAUSE:
{
if ((ns= SpylnputBool (&fPause,
pl nput, dInput))
== STATUS_SUCCESS)
{
f Pause = SpyHookPause (fPause);
ns = SpyQutput Bool (fPause,
pQut put, dQutput, pdlnfo);
}
break;

case SPY_IO_HOOK_FILTER:

{
if ((ns= SpylnputBool (&fFilter,

pInput, dInput))
== STATUS_SUCCESS)

{
fRilter = SpytbokF lter (frilter);

ns = SpyQut putBool (fFilter,
pQut put, dQutput, pdinfo);

(continued)

310 MONITORING NATIVEAPI CALLS

break;

}

case SPY_IO_HOOK_RESET :
{
SpyHookReset () ;
ns = STATUS_SUCCESS;
br eak;

}

case SPY_TIO_HOOK_READ:
{
if ((ns= SpyInputBool (&fLine,
pInput, dInput))
== STATUS_SUCCESS)
{
ns = SpyOutputHookRead (fLine,
pQut put, dQutput, pdinfo) ;
}

break;

}
case SPY_IO_HOOK_WRITE:
{
SpyHookWrite (plnput, dInput) ;
ns = STATUS_SUCCESS ;
break;

)

/1l unrelated ICCTL functions omtted (cf. Listing 4-7)

MUTEX_RELEASE (pDeviceContext->kmDispatch);
return ns;
>

LISTING 5-10. Excerpt from the Spy Driver's Hook Command Dispatcher

THEIOCTL FUNCTION SPY_IO_HOOK_INFO

The IOCTL Function spy_1o_nooxk_1nro function fills a SPY_HOOK_INFO structure
with information about the current state of the hook mechanism, as well as the
system's SDT. This structure (Listing 5-11) contains or references various other
structures introduced earlier:

* The sErvIcE_DESCRIPTOR_TABLE iS defined in Listing 5-1.
» spy_caLrL and spy_HooK_ENTRY are defined in Listing 5-2.
» SPY HEADER and sey_rrorocor are defined in Ligting 5-9.

CONTROLLING THE APl HOOKSIN USER-MODE 311

typedef struct _SPY_HOOK_INFO

{

SPY_HEADER sh;
PSPY_CALL psc;
PSPY_PROTCOOL psp;

PSERVICE_DESCRIPTOR_TABLE psdt;
SERVICE_DESCRIPTOR_TABLE sdt;

DWORD ServicelLimit;

NTPRCC ServiceTable [SDT_SYMBOLS_MAX] ;
BYTE ArgumentTable [SDT_SYMBOLS_MAX] ;
SPY_HOK_ENTRY SpyHooks [SDT_SYMBOLS_MAX] ;
}

SPY_HOOK_INFO, *PSPY_HOOK |NFQ * *PPSPY_HOOK_INFO;

#define SPY_HOOK_INFO_ sizeof (SPY_HOOK_INFO)

LISTING 5-11. Definition of the SPY_HOOK_INFO structure

Be careful when eval uating the members of this structure. Some of them are
pointersinto kernel-mode memory that is not accessible from user-mode. However,
you can use the spy device's spy_1o_mEMORY_DATA function to examine the contents
of thesememory blocks.

THEIOCTL FUNCTION SPY_IO_HOOK_INSTALL

The IOCTL SPY_I0_HOOK_INSTALL function patches the service table of ntoskrnl.
exeinsidethe system's SDT with the hook entry points stored in the global
aSpyHooks|[] array. Thisarray isprepared by spyHookInitialize() (Listing5-5) and
SpyHookInitializeEx()(Listing5-3)duringdriverinitialization. EachaSpyHooks[]
entry comprisesahook entry point and acorresponding format string address, if
available. The spyDispatcher() callsthe spyHookInstall() helper function shownin
Listing 5-12 to install the hooks. SpyHookinstail () inturn uses spyHookExchange() ,
dso included in Ligting 5-12, to perform this task.

DNRD SpyHbokExchange (voi d)

{
PNTPROC Ser vi ceTabl g;

BOCOL f Pause;
DNMRD i ;

DMRD n = 0;

f Pause = SpyHookPause (TRUE) ;

Servi ceTabl e = KeServiceDescriptorTable->ntoskrnl .ServiceTable;

for (i =0; i < SDT_S YMBOLS_MAX ; i ++)
(conti nued)

312 MONITORING NATIVE API CALLS

if (aSpyHooks [i].pbFormat != NULL)
{
aSpyHooks [i] .Handler = (NTPROQ
I nterl ockedExchange ((PLONG) ServiceTable+i,
(LONG aSpyhHboks [i] .Handler) ;

n++;
of SpyHookState = | gfsSpyHookState;
SpyHookPause (fPrause) ;
return n;

)

NTSTATUS spyHookInstall (BOOL fReset,
PDWORD pdCount)

{
DWORD n = 0;
NTSTATUS ns = STATUS_INVALID_DEVICE_STATE;

if (!gfSpyHookState)

{

ghSpyHookThread = PsGetCurrentThreadId () ;

n = SpyHookExchange () ;
if (fReset) SpyHookReset () ;

ns = STATUS_SUCCESS;
*pdCount = n;
return ns;

}

LISTING 512. Patching the System's API Service Table

SpyHookExchange() isused bothintheinstallation and removal of hooks,
because it smply swaps the entries in the system's APl service table and the aspy
Hooks|[] array. Therefore, calling thisfunctiontwicerestoresthe servicetable and
the array to their original states. SpyHookExchange () loops through the aspy
Hooks|[] array and searchesfor entriesthat contain aformat string pointer. The
presence of such a string indicates that the function should be monitored. In
this case, the API function pointer in the service tabl e and the Handler member
of theaSpyHooks[] entry areexchanged usingthentoskrni.exefunction
InterlockedExchange (), Which guarantees that no other thread can interfere

CONTROLLINGTHEAPI HOOKSINUSER-MODE 313

in this operation. The protocol mechanism is temporarily paused until the entire ser-
vicetableispatched. spyHookInstall () iSmerely awrapper around spyHOOKEX-
change () that performs some additional actions:

» The service table is not touched if the global gf spyHookstate flag
indicates that the hooks are already installed.

* Thethread ID of the caller iswritten to the gIobaI variableghspyHookThread.
The hook dispatcher inside spytooktnitializeEx () USes thisinformation
to suppress al APl calls originating from this thread. Otherwise, the
hook protocol would be interrupted with irrelevant and distracting
material as aresult of the interaction of the spy device and its user-mode
client.

» On request of the client, the protocol is reset. This means that all buffer
contents are discarded and the handle directory isreinitialized.

The spy_10_nHook_1nsTALL function receives a Boolean input parameter from
the caler. If True, the protocol is reset after the hooks have been installed. Thisis the
most frequently used option. Passing in FALSE continues a protocol eventually left
over from aprevious hook session. The return value of the function tells you how
many service table entries were patched. On Windows 2000, spv_I10_HOOK_INSTALL
reports avalue of 44, which is the number of entriesin the format string array
apbsdtFormats [] in Liging 5-6. On Windows NT 4.0, only 42 hooks are installed,
because the API functions ntNot i fyChangeMultiplekeys () and NtQueryOpen
SubKeys () are not supported by this operating system version.

THEIOCTL FUNCTIONSPY_|IO_HOOK_REMOVE

The IOCTL spy_ro_nook_reMovE function is similar to spy_10_HOOK_INSTALL,
because it basically reverses the actions of the latter. The IOCTL input and output
argumentsareidentical. However, the SpyHookRemove!() helper function calledinside
the spybispatcher () deviatesin some important respects from SpyHookinstall () ,
as acomparison of Listing 5-12 and 5-13 reveals:

» Thecall isignored if the global gf SpyHookstate flag indicates that no
hooks are currently installed.

« After the service table has been restored to its original state, the thread
ID of the client that installed the hooks is cleared by setting the global
variableghSpyHookThreadtozero.

314 MONITORING NATIVEAPI CALLS

» The most important extra feature is the do/while loop in the middle of
Listing 5-13. Inthisloop, spyHookRemove() testswhether other threads
are currently serviced by the hook dispatcher by testing the f inuse
members of all spy_carr structuresinside the global DEVICE CONTEXT
structure. Thisis necessary because a client might attempt to unload the
spy driver immediately after uninstalling the hooks. If thishappenswhile
some other processes API calls are ill within the hook dispatcher, the
system throws an exception, followed by a Blue Screen. Thesein-usetests
areperformedin 100-msecintervalsto give the other threadstimeto exit
the spy device.

NTSTATUS SpyHookRenove (BOOL — fReset,
PDWORD pdCount)

LFARGEJNTEGER I'i Del ay;

BOOL fInUse;

DWCRD i;

DWRD n = 0;

NTSTATUS ns = STATUS_INVALID DEVICE_STATE;

if (gf SpyHookSt at e)
{
n = SpyHookExchange () ;
if (fReset) SpyHookReset () ;

do {
for (i =0; i < SPY_CALLS; i++)
{
if (flnUse = gpDevi ceContext->SpyCalls [i]. fInUse)
break;
}
liDelay. QuadpPart = - 1000000;
KeDelayExecutionThread (KernelMode, FALSE, &liDelay) ;
}

while (fInUse);
ghSpyHookThread = 0;

ns = STATUS_SUCCESS ;
}

*pdCount = n;

return ns;

}

LISTING 513. Restoring the System's APl Service Table

CONTROLLING THE APl HOOKS IN USER-MODE 315

Note that afinal 100-msec delay is added even if dl finuse flags are clear. This
precaution is required because a tiny security hole exists inside the hook dispatcher,
just between the instruction where the f inuse flag of the current spy_carr entry is
reset and the RET instruction where the dispatcher returns control to the caller (cf.
Listing 5-2 between the ASM labels spytooks and spytook9) . If dl finuse flags are
FALSE, thereisasmall probability that some threads have been suspended just before
the RET instruction could be executed. Delaying the hook removal for another 100-
msec interval should allow al threads time to leave this critical code sequence.

THEIOCTL FUNCTIONSPY _10_HOOK_PAUSE

The IOCTL spy_1o_noox_pausk function, shown in Listing 5-14, allows a client to
temporarily disable and reenable the hook protocol function. Essentialy, it sets the
global variable gf spyHookPause to the Boolean value supplied by the client and
returns its previous value, using the ntoskrni. exe APl function interlocked
Exchange() . By default, the protocol is enabled; that is, g £SpyHookPause is FaLsE.

It is important to note that spy_10_rnoox_pause works totally independent of
SPY_IO_HOOK_INSTALL and SPY_IO HOOK_REMOVE . If the protocol is paused while
hooks are installed, the hooks remain in effect, but the hook dispatcher lets al API
calls pass through without interference. You can aso disable the protocol before
installing the hooks, if you don't want the protocol to start automatically after
SPY_I0_HOOK_INSTALL has patched the APl service table. Note that the protocol is
automatically reset when the protocol is resumed.

THEIOCTL FUNCTIONSPY_I10_HOOK_FILTER

The IOCTL function spy_1o_noox_rIrTeER manipulates a global flag, as shown in
Listing 5-15. Here, the globd flag gf SpyHookFilter is set to the client-supplied
value, and the previous setting is returned. The default value is rarse; that is, the
filter is disabled.

BOOL SpyHookPause (BOOL £ pause)

{
BOCL fPausel = (BOQL)

InterlockedExchange ((PLONG) &gfSpyHookPause,
(LONG fPrause) ;
if (1frause) SpyHookReset ():
return fPausel;

}

LISTING 5-14. Switching the Protocol On and Off

316 MONITORING NATIVE APl CALLS

BOOL SpyHookFilter (BOXL fFilter)
{

return (BOL) InterlockedExchange ((PLONG) &gfSpyHookFilter,
(LONG fFilter) ;
}

LISTING 5-15. Switching the Protocol Filter On and Off

You already know the variable gf spyHookFilter from the discussion of the
spyWriteFilter () functionin Listing 5-8. If gf SpyHookFilter is TRUE, this func-
tion helps SpyHookProtocol () (seeListing 5-7) to drop al API callsthat involve
handles not previously registered by the spy device.

THEIOCTL FUNCTIONSPY_10_HOOK_RESET

The IOCTL SPY_I0 HOOK RESET function resets the protocol mechanism to its
original state, clearing the data buffer and discarding al registered handles. The Spy
HookReset () function called by the spypispatcher() ismerely awrapper around
SpyWriteReset () . Both functions areincluded in Listing 5-16. SpyHookReset ()
features additional serialization by means of the mutex cals spyHookwait () and
SpyHookRelease() (seeListing5-7).

THE IOCTL FUNCTION SPY_IO_HOOK_READ

The API hook logger writes the protocol datato the abData[] buffer inside the
global spy_prorocoL structure shown in Listing 5-9. This byte array is designed asa
circular buffer. That is, it features a pair of pointers for read and write access, respec-
tively. Whenever one of the pointers moves past the end of the buffer, it is reset to the
buffer base. The read pointer always tries to catch up with the write pointer, and if
both point to the same location, the buffer is empty.

SPY_IO_HOOK_READ IS by far the most important hook management function
offered by the spy device. It reads arbitrary amounts of data from the protocol data
buffer and adjusts the read pointer appropriately. This function should be called fre-
guently while the protocoal is enabled, to avoid buffer overflows. Listing 5-17 shows
the function set handling this IOCTL request. The basic handlers are spyreadpata ()
and spyreadrine () . The difference between them isthat the former returns the
requested amount of data, if available, whereas the latter retrieves single lines only.
Line mode can be very convenient when the read data must be filtered by a client
application. Callers of spy_10_HOOK_READ pass in a Boolean value that decides
whether block mode (FALSE) or line mode (TRUE) is requested.

CONTROLLING THE APl HOOKS IN USER-MODE 317

void SpyWiteReset (PSPY_PROTOCOL pPSp)

{

KeQuerySystemTime (&psp->sh.liStart) ;

psp->sh.dRead =
psp->sh.dWrite =
psp- >sh. dCal | s
psp- >sh. dHandl es
psp-~>sh.dName =
return;

}

I
©oo°o

/1

voi d SpyHookReset (void)
t
SpyHookWait ()
SpyWiteReset (&gpDeviceContext->SpyProtocol);
SpyHookRel ease () ;

return;

}

LISTING 5-16. Resetting the Protocol

DAWORD SpyReadData (PSPY_PROTOCOL psp,
PBYTE pbData,
DW\CRD dbat a)

{

DWRD i = psp->sh. dRead;

DAMRD n = 0;

while ((n< dData) && (i != psp-»>sh.dWrite))
(
pbData [n++] = psp->abData [i++];
if (i == SPY_DATABUFFER i = 0;

psp->sh. dRead = i;
return n;

}

DWORD SpyReadLi ne (PsSPY_PROTOCOL pPSp,
PBYTE pbDat a,
DWORD dDat a)

BYTE b = 0;

(conti nued)

318 MONITORING NATIVE API CALLS

DWRD i = psp->sh.dRead;
DARD n = O;

while ((b !'='\n’) && (i != psp->sh.dwWrite))
{
b = psp->abData [i++];
if (i == SPY_DATA_BUFFER) i = 0;
if (n < dData) pbData [n++] = b;

if (b= "\n")
{
/1l renmove current line from buffer
psp->sh.dRead = i;

}

el se

{

/1 don't return any data until full line available
n = 0;
}
if (n)
(
pbData [n-1] = 0;
}

el se

{
if (dbata) pbData [0] = O;
}

return n;

}

DWRD SpyHookRead (PBYTE pbDat a,

DWORD dDat a,
BOOL fLine)
{
DNRD n = 0;
SpyHookVWéit O ;

n = (fLine ? SpyReadLine : SpyReadData)
(&gpDeviceContext->SpyProtocol, pbData, dbata);

SpyHookRel ease () ;
return n;
}

CONTROLLING THE APl HOOKSIN USER-MODE 319

NTSTATUS SpyQut put HookRead (BOOL fLine,
PVOID pOutput,
DWRD doutput,
PDWORD pdInfo)
{
*pdInfo = SpyHookRead (pQutput, dQutput, fLine) ;
return STATUS SUCCESS,

}

LISTING 517. Reading from the Protocol Buffer

The SpyOutputHookRead () and spyHookread () functions are trividl.
SpyHookRead () adds the usual mutex serialization and chooses between
spyReadLine () and SpyReadData(), and SpyOutputHookRead () postprocesses
its results as demanded by the IOCTL framework.

THEIOCTL FUNCTION SPY_IO_HOOK_WRITE

The lOCTL spy_to_nook_wriTE function allows the client to write data to the proto-
col buffer. An application can use this feature to add separators or additiona status
information to the protocol. The implementation is shown in Listing 5-18. spyHook
Write () is yet another wrapper with additional mutex serialization. The spywrite
Data() function it cals is the basic protocol generator of the spy device. All spy
write* () helper functions (eg., the spywriteFormat (), SpyWriteNumber(), Spy
WriteChar (), and spywriteLarge () functions used by SpyHookProtocol () in
Liging 5-7) are ultimately built upon it.

DNMRD spyWriteData (PSPY_PROTOCOL PSp,

PBYTE pbDat a,
DWRD dlat)
{
BYTE b;
DNRD i = psp->sh.dRead;
DNRD j = psp->sh.dwrite;
DNRD n = O;

while (n < dData)
{
psp->abData [j++] = pbData [n++];
if (] == SPY_DATA_BUFFER) | = 0O;

it (5 =1
{

/1 renove first line frombuffer

(conti nued)

320 MONITORING NATIVE APl CALLS

do {
b = psp->abData [i++];
if (i == SPY_DATA BUFFER) i = 0;
while ((b!'= "\n") && (i '=3)):
I/ renmove half line only if single line
if ((i==1]) &&
((i += (SPY_DATA BUFFER / 2))
{
i - = SPY_DATA_BUFFER;
}
}
}
psp->sh.dRead = i;
psp->sh. dWrite = j;
return n;

}
11

>=gSPY_DATA_BUFFER))

DWRD spyHookWrite (PBYTE pbbData,
DWIRD dDat a)

{
DWRD n = O;

SpyHookWait () ;

n = SpyWiteData
(&gpDeviceContext->SpyProtocol, pbDat a,

SpyHookRel ease () ;
return n;

}

dbata) ;

LISTING 518. Writing to the Protocol Buffer

Note how spywritepata () handles overflow situations. If the read pointer
advances dowly, thewrite pointer may lap it. In this situation, two options are available:

1. Write access is disabled until the read pointer is advanced.

2. Buffered datais discarded to make space.

The spy device chooses the second option. If an overflow occurs, the entire
protocol line at the current read pointer position is dropped by advancing the read
pointer to the next line. If the buffer contains just a single line (which is highly

A SAMPLE HOOK PROTOCOL READER 321

improbable), only the first half of the line is discarded. The code handling these
situations is marked in Listing 5-18 by appropriate comments.

A SAMPLE HOOK PROTOCOL READER

To help you write your own APl hook client applications, | have added a very smple
sample application that reads the hook protocol buffer and displays it in a console
window. The pause, filter, and reset functions can be issued by pressing keys P, F,

and R on the keyboard, and the output can be filtered according to a series of user-
specified function name patterns. The applicationiscalled “SBS Windows 2000 AP
Hook Viewer," and its source code is available on the book's companion CD in the
directory tree\src\w2k _hook.

CONTROLLING THE SPY DEVICE

For convenience, thew2k_hook. exe application uses a couple of simple wrappers for
thevarious spv_to_noox_* IOCTL functions, summarized in Listing 5-19. These
utility functions make the code much more readabl e and minimize the probability of
parameter errors during the development of a spy device client application.

BOOL WINAPI SpyIoControl (HANDLE hDevice,
DWRD dcCode,
PVOID pInput,
DWRD dInput,
PVMAO D poOutput,
DAORD dQut put)

{
DWRD dInfo = O;

return DeviceIoControl (hDevice, dCode,
pl nput, dl nput,
pQut put, dQut put,
&dInfo, NULL)
&&
(dl nfo == doutput) ;

11

BOOL WNAPI spyVersionInfo (HANDLE hDevi ce,
PSPY_VERSI ON_| NFO psvi)
f
return SpyloControl (hDevice, SPY_IO VERSI ON | NFQ
NULL, O,

(continued)

322 MONITORING NATIVE API CALLS

psvi, SPY VERSION | NFO) ;

11

BOOL WNAPI sSpyHookInfo (HANDLE hDevi ce,
PSPY_HOOK_INFO pshi)

{

return SpyIoControl (hDevice, SPY_IO_HOOK_INFO,

NULL, O,
pshi, SPY_HOOK_INFO_) ;

11

BOOL WNAPI sSpyHookInstall (HANDLE hDevi ce,
BOOL fReset,
PDWORD pdCount)
{
return SpyloControl (hDevice, SPY_IO_HOOK_INSTALL,
&fReset, BOOL_,
pdCount, DWORD_) ;

Il

BOOL WNAPI SpyHookRenove (HANDLE hDevi ce,
BOCOL fReset,
PDWRD pdCount)
{
return Spyl oControl (hDevice, SPY_IO_HOOK_REMOVE,
&fReset, BOOL_,
pdCount, DWORD_) ;

Il

BOOL WNAPI spyHookPause (HANCLE hDevi ce,
BOCOL f Pause,
PBOCL pfPause)
{
return Spyl oControl (hDevice, SPY_IO_HOOK_PAUSE,
&frPause, BOOL_,
pf Pause, BOOL_) ;

Il

A SAMPLE HOOK PROTOCOL READER 323

BOOL WINAPI SpyHookFilter (HANDLE hDevi ce,
BOOL fFilter,
PBOCL pfFilter)
{
return SpyIoControl (hDevice, SPY_IO_HOOK_FILTER,
&fFilter, BOOL_,
pfFilter, BoOL_) ;

BOOL WNAPI SpyHookReset (HANDLE hDevi ce)

(

return SpyloControl (hDevice, SPY_IO_HOOK_RESET,
NULL, O,
NULL, 0) ;

}

1

DWCRD WNAPI SpyHookRead (HANDLE hDevi ce,

BOCL fLine,
PBYTE pbDat a,
DNRD dbata)
{
DWORD dI nf o;

if (!DeviceIoControl (hDevice, SPY_IO_HOOK_READ,
&fLine, BOCOL_,
pbDat a, dbDat a,
&dInfo, NULL))
{
dinfo = 0;

>
return dl nfo;

}

BOOL WNAPI SpyHookWite (HANDLE hDevi ce,
PBYTE pbDat a)

return SpyloControl (hDevice, SPY_IO_HOOK WRITE,
pbData, lstrlenA (pbData),
NULL, 0) ;

LISTING 5-19. Device 1/0 Control Utility Functions

324 MONITORING NATIVE APl CALLS

Before the functions in Listing 5-19 can be used, the spy device must be loaded
and started. This operation is much the same as that outlined in Chapter 4 in con-
junction with the memory spy application w2k_men. exe. Listing 5-20 showsthe
application's main function, Execute (), whichloads and unloads the spy device
driver, opensand closes adevice handle, and interactswith the devicevial OCTL. If
you compare Listing 5-20 to Listing 4-29, the similarities at the beginning and end
are obvious. Only the middle sections, where the application-dependent codeis
located, aredifferent.

I void WINAPT Execute (PPWORD ppwFi | ters,
DWRD drilters)
{
SPY_VERSI ON_I NFO svi ;
SPY_HOOK_| NFO shi ;

DWORD dCount, i, 3J, k, n:

BOCL fPause, fFilter, fRepeat;

BYTE abData [HOOK_MAX_DATA] ;

WORD awData [HOOK_MAX_DATA] ;

WIRD awPat h [MAX_PATH] = L"“?";

SC_HANDLE hCont r ol = NULL;

HANDLE hDevi ce = INVALID_HANDLE_VALUE;
_printf (L”\r\nLoading \”%s\” (9%) ...\r\n”,

awSpyDisplay, awSpyDevice) ;

if (wW2kFilePath (NULL, awsSpyFile, awPath, MAX PATH))
{
_printf (L"Driver: \”%s\”\r\n”,
awPath) ;

hControl = w2kServiceLoad (awspyDevice, awspyDi splay,
awPat h, TRUE) ;

}
if (hControl != NULL)
{
printf (L”Opening \”%s\” ...\r\n”,

awSpyPath) ;

hDevice = CeateFile (awSpyPath,
GENERI C_READ | GENERIC_WRITE,
FI LE_SHARE READ | FILE_SHARE_WRITE,
NULL, CPEN_EXI STI NG
FILE_ATTRIBUTE_NORMAL, NULL) ;

el se

A SAMPLE HOOK PROTOCOL READER

_printf (L”Unableto |oad the spy device driver . \r\n”);

}
if (hDevice != INVALID_HANDLE_VALUE)
{
if (SpyVersionInfo (hDevice, &svi))
{
_printf (L”\r\n”
L”%s V%1lu.%$021lu ready\r\n”,
svi . awName,
svi.dvVersion / 100, svi.dvVersion % 100);
}
if (SpyHookInfo (hDevice, &shi))
{
_printf (L"\r\n”
L”APT hook paraneters: 0x%081X\r\n”
L”SPY_PROTOCOL structure: 0x%081X\r\n”
L”SPY_PROTOCOL data buffer: 0x%081X\r\n”
L”KeServiceDescriptorTable: 0x%081lX\r\n”
L”KiServiceTable: 0x%081X\r\n”
L"KiArgumentTable : 0x%081X\r\n”
L”Service table size: % X (%1lu)\r\n”,
shi .psc,
shi .psp,
shi .psp->abData,
shi .psdt,
shi. sdt. ntoskrnl. ServiceTablge
shi. sdt.ntoskrnl. ArgumentTable,
shi .ServiceLimit, shi. ServiceLimit) ;
}

SpyHookPause (hDevice, TRUE, &frause) ; fPause = FALSE
SpyHookFi I ter (hDevice, TRUE, &frilter); fFilter = FALSE;

if (SpyHookInstall (hDevice, TRUE, &dCount))
{
_printf (L”\r\n”
L”Installed %lu APl hooks\r\n”,
dCount) ;

_printf (L”\r\n”
L” Protocol control keys:\r\n”

L”\r\n”

L"P pause ON/off\r\n”
L"F filter ON/off\r\n”
L”R reset protocol\r\n”
L”ESC exit\r\n”

LEXEARTD ;

for (frRepeat = TRUE, fRepeat;)
{

(continued)

325

326 MONITORING NATIVE API CALLS

if (n = SpyHookRead (hDevice, TRUE,
abData, HOOK_MAX_DATA))

{
if (abData [0] == ¢-°)
{
n=0;
}
el se
{
i =0;
while (abData [i] && (abData [i++] = '=7));
io=0
while (abData [j] && (abData [j] !'= ‘(') j++;
k = 0;
while (i <j) awbata [k++] = abData [i ++] ;
awbata [k] = 0;
for (i =0; i < drFilters; i++)
{
if (PatternMatcher (ppwFilters [i], awbData))
{
n=0;
break;
}
}
}
if (In) _printf (L”%hs\r\n”, abData);
Sleep (0);
}
el se
{
Sl eep (HOOK_IOCTL_DELAY) ;
}
switch (kKeyboardbata ())
{
case 'P’:
{
SpyHookPause (hDevice, fPause, &fPause) ;
spyHookwrite (hDevice, (fPause ? abPauseCff
. abPauseOn)) ;
break;
}
case ‘F’:
{

SpyHookFi | ter (hDevice, fFilter, &fFilter) ;
spyHookwWrite (hDevice, (fFilter ? abFilterOf
! abFilterOn)) ;

A SAMPLE HOOK PROTOCOL READER 327

break;

case 'R’ :
SpyHookReset (hDevice);
SpyHookWrite (hDevice, abReset);
br eak;

case VK_ESCAPE:
_printf (L”%hs\r\n”, abExit);
frRepeat = FALSE;
break;

if (SpyHookRemove (hDevice, FALSE, &dCount))

_printf (L”\r\n”
L”Removed %u APl hooks\r\n”,
dCount) ;
)
printf (L”\r\nClosingthe spy device ...\r\n”);
d oseHandl e (hpevice);
}
el se
{
_printf (L”Unableto open t he spy device . \r\n”);
}
if ((hControl != NULL) && gf SpyUnl oad)
{
_printf (L”Unloadingthe spy device ...\r\n");
w2kSer vi celnl oad (awSpyDevice, hControl);
}
return;

}

LISTING 5-20. The Main Application Framework

Note that the Execute () function in Listing 5-20 requests GENERIC_READ and
GENERIC_WRITE access in the createFile () call, whereas the function in Listing 4-29
uses only GENERIC_READ access. The reason for this discrepancy is buried in the
IOCTL codes used by these applications. Whereas the memory spy in Chapter 4 uses
read-only functions throughout, the API hook viewer discussed here calls functions
that modify system data and hence require a device handle with additional write
access. If you examine the IOCTL codes in the third column of Table 5-3, you can see
that most of them have the hex digit E at the fourth position from the right, whereas
spy_t1o_nook_1NrFo and SPY_ |10 HOOK _READ have the digit 6 there. According to
Figure 4-6 in Chapter 4, this means that the latter pair of hook management func-
tions require a device handle with read access, whereas the remaining ones require

328 MONITORING NATIVE API CALLS

read/write rights. The designer of a device driver must decide which read/write access
right combinations are demanded by the /O reguests handled by the device. Patching
the system's APl service tableis aradical write operation, so urging a client to obtain
a handle with write access is certainly appropriate.

Most of the remaining code in Listing 5-20 should be self-explaining. Following

are features that are worth noting:

The spvy_10_noox_reap function is operated in line mode, as the second
argument of the SpyHookRead () call at the beginning of the big for
loop shows.

The user of the application can specify a series of pattern strings with
embedded wildcards * <+ and ' 2’ on the command line. These patterns are
compared sequentially with the function name within each protocol line
using the helper function patternMatcher () shown in Listing 5-21.

If no pattern matches the name, the line is suppressed. To view the hook
protocol unfiltered, the command w2k_hook * must be issued.

After handling a protocol line, the application returns the rest of its time
dice to the system by calling sleep (0), sothetimeisavailable for
other processes.

If no protocol datais available, the application suspends itself for 10 msec
(HOOK _IOCTL_DELAY) before polling the spy device again. This reducesthe
CPU load considerably in times with low usage of the Native API.

In the main loop, the keyboard is polled as well. All keys except P, F, R,
and Esc are ignored. P switches the pause mode on and off (default: on),
F enables and disables filtering by handle (default: enabled), R resetsthe
protocol, and Esc terminates the application.

If one of the P, F, R, or Esc keysis pressed, a separator line iswritten to the
hook protocol buffer using the spv_t0_nook_wrrTE function. This line
indicates the state change resulting from the entered command. Writing the
separator to the buffer is better than writing it directly to the console
window because the state change might appear on the screen with some
delay. For example, if the P key is pressed to halt the display, the application
will continue to generate output until all data has been read from the
protocol buffer. The separator generated by the P command will be
appended after the last entry, so it appears at the correct location.

Just like the w2x_memn. exe application in Chapter 4, w2k _hook. exe
unloads the spy device only if the global flag gfspyuniocadis set. By
default, it is not set—for the reasons explained in Chapter 4.

A SAMPLE HOOK PROTOCOL READER 329

BOOL WINAPI PatternMatcher (PWORD pwFilter,
PWORD pwhat a)

{
DMRD i, | ;
i =j =0;
while (pwFilter [i] && pwbata [§]1)
{
if (pwilter [i] != '27)
{
if (pwrilter [i] == '*1)
{
i++;
if ((pwFilter [i] != **’) && (pwFilter [i] != "'?"))
{
if (pwhPilter [i])
{
while (pwbata [j] &&
(!PatternMatcher (pwFilter + i
pwbata +j)))
J++
}
return (pwbData [j]);
}
}
if ((WORD) CharUpperW ((PWORD) (pwFilter ([i])) !=
(WIRD) Char Upper W ((PWORD) (pwData [31)))
return FALSE
}
}
i++;
J++;
}
if (pwFilter [i] == **7) i++;
return ! (pwFilter [i] || pwData [j]);
}

LISTING 5-21. A Smple Sring Pattern Matcher

The examples shown in Figures 5-6 and 57 were generated by w2k_hook. exe
with the name patterns *file and ntclose specified on the command line. This fil-
ters out all file management function calls plus Ntclose () . Itisimportant to keep
in mind that the name patterns are applied to the protocol data after it has been gen-
erated, whereas the "garbage” filter of the spy device based on registered handles
manipulates the protocol before it is written. If you exclude protocol entries by
specifying name patterns on the w2k_hook. exe command line, this has absolutely no

330 MONITORING NATIVE API CALLS

effect on the protocol data generator. The only effect is that protocol entries are
thrown away after having been retrieved from the protocol buffer.

HIGHLIGHTSAND PITFALLS

The API hooking mechanism of Russinovich and Cogswell (Russinovich and
Cogswell 1997) adapted here is clearly ingenious and elegant. The following are
its most notabl e advantages:

* Installing and uninstalling a hook in the system's API service tableis a
simple pointer exchange operation.

» After the hook isinstalled, it receives the Native API calls of all processes
running in the system, even of new ones started after the hook installation.

» Because the hook device runsin kernel-mode, it has maximum accessto all
system resources. It is even allowed to execute privileged CPU instructions.

Thefollowing are problem areas | encountered during the devel opment of
my spy device:

» The hook device must be designed and written with extreme care.
Because al traffic occurring on the Native API level will passthroughin
the context of various application threads, it must be as stable as the
operating system kernel itself. The smallest oversight may immediately
crash the system.

» Only a smal part of the kernel's AP traffic is logged. For example, AP
calls originating from other kernel-mode modules don't pass through the
system's INT 2Eh gate and hence don't appear in the hook protocol. Also,
many important functions exported by ntd11.d11 and ntoskrnl . exe are
not part of the Native API, so they cannot be hooked in the service table.

Theincomplete API coverageis clearly more restrictive than the demand for sta-
bility. Anyway, it is amazing how much useful data can be gained about the internals
of an application by tracing its Native APl cdls. For example, | was able to gain deep
insight into the NetWare Core Protocol (NCP) operations performed by Microsoft's
NetWare redirector nwrdr . sys by simply observing its NtFsControlFile() traffic.
Therefore, this approach to APl monitoring is certainly the most proficient of the
alternatives availabl e to date for Windows 2000.

CHAPTER 6

Calling Kernel
API Functions
from User-Mode

n Chapter 2, I explained how Windows 2000 allows user-mode applications to

cdl a subset of its kernel APl functions—the Native API—by means of an interrupt
gate mechanism. Chapters 4 and 5 relied heavily on a mechanism referred to as
Device /O Control (IOCTL) to carry out additional tasks that aren't allowed in user-
mode. Both the Native APl and IOCTL are quite powerful, but think of the benefit
of being able to call amost any kernel-mode function as if it were located in a normal
user-mode DLL. Thisis generally considered impossible. However, | will demonstrate
in this chapter that it is possible with the help of a couple of wacky programming
tricks. Again, IOCTL will come to the rescue to solve a problem that seems impossi-
ble at first sight. This chapter is revolutionary because it builds a general-purpose
bridge from user-mode to kernel-mode, allowing the Win32 application to call kernel
API functions just as if they were part of the Win32 API. Even better, an application
can call internal kernel functions that are not even available to kernel-mode drivers,
with the help of the symbol files coming with the Windows 2000 debugging tools.
This "kernel call interface” works seamlessly in the background, almost completely
unnoticed by the calling application.

A GENERAL KERNEL CALL INTERFACE

In Chapter 4, we used a kernel-mode driver to call selected kernel API functions on
behalf of a user-mode program. For example, the spy_10_paystcar function offered
by the spy driver w2k_spy. sys is merely a wrapper around the memory manager's
MmGetPhysicalAddress () function. Another example is spy_10_HANDLE_INFO,
which is built upon the object manager's obreferenceobjectByHandle () and
ObDereferenceobject () functions. Although thistechnique works fine, it is quite
tedious and inefficient to design a custom IOCTL function for every kernel API
function that should be made available to user-mode code. Therefore, | have added

331

332 CALLING KERNEL API FUNCTIONS FROM USER-MODE

a general-purpose IOCTL function to the spy device inside the sample driver
w2k_spy . SySthat calls arbitrary kernel-mode functions, given a symbolic name or an
entry point plus a list of arguments. This sounds like a lot of work, but you will be
surprised how simple the necessary code actually is. The only difficulty is that again
wewill need agood deal of inline assembly language (ASM).

DESIGNING A GATE TO KERNEL-MODE

If a program running in user-mode wants to call a kernel-mode function, it has to
solve two problems. First, it must somehow jump across the barrier between user-
mode and kernel-mode, and second, it must transfer data in and out. For the subset
comprisingthe Native API, thentaii. i1 component takes over thisduty, using an
interrupt gate to accomplish the mode change and CPU registers to pass in a pointer
to the caller's argument stack and to return the function's result to the caller. For ker-
nel functions not included in the Native API, the operating system doesn't offer such
a gate mechanism. Therefore, we will have to create our own. Part one of the prob-
lem is easily solved: The w2k_spy. Sys driver introduced in Chapter 4 and extended
in Chapter 5 crosses the user-to-kernel-mode border back and forth many times dur-
ing its IOCTL transactions. And because IOCTL optionally allows passing data
blocks in both directions, the date transfer problem is solved as wdll. In the end, the
whole matter boils down to the following simple sequence of steps:

1. The user-mode application posts an IOCTL request, passing in
information about the function to be called, aswell as a pointer to its
argument stack.

2. The kernel-mode driver dispatches the request, copies the arguments onto
its own stack, calls the function, and passes the results back to the caller in
the IOCTL output buffer.

3. The caller picks up the results of the IOCTL operation and proceeds as it
would after anormal DLL function call.

The main problem with this scenario is that the kernel-mode module must cope
with various data formats and calling conventions. Following is a list of situations
the driver must be prepared for:

» The size of the argument stack depends on the target function. Because it
isimpractical to give the driver detailed knowledge about all functions
it might possibly have to call, the caller must supply the size of the
argument stack.

A GENERAL KERNEL CALL INTERFACE 333

» Windows 2000 kernel API functions use three calling conventions:
__stdecall, cdecl, and__ fastca1l1, which differ considerably in the
way arguments aretreated._ stdcall and___cdecl require al arguments
to be passed in on the stack, whereas fastcall aims at minimizing
stack fumbling overhead by passing the first two arguments in the CPU
registerseCX and EDX. Ontheother hand,___stdcall and___ rastcall
agree in the way arguments are removed from the stack, forcing the called
code to take over the responsibility._ caec1, however, leavesthistask to
the calling code. Although the stack cleanup problem can be easily solved
by saving the stack pointer before the call and resetting it to its original
position after returning, regardless of the calling convention, the driver is
helpless with respect to the_ fastcai1 convention. Therefore, the caller
must specify on every call whether the fastca1l1 conventionisin effect,
to allow thedriver to preparetheregisters ECX and EDX if necessary.

» Windows 2000 kernel functions return results in various sizes, ranging
from zero to 64 bits. The 64-bit register pair epx: EAX transports the
results back to the caller. Dataisfilled in from the least-significant end
toward the most-significant end. For example, if a function returns a 16-
bit SHORT datatype, only register AX (comprising . and AH) is significant.
Theupper half of EAX and theentire EDX contentsare undefined. Because
the driver isignorant of the called function's 1/0 data, it must assume the
worst case, which is 64-bits. Otherwise, the result may be truncated.

» The application might supply invalid arguments. In user-mode, this is
usually benign. At worst, the application process is aborted with an error
message box. Occasiondly, this error results in system damage that
requires areboot for recovery. In kernel-mode, the most frequent
programming error, known as "bad pointer,” amost instantly results in a
Blue Screen of Death, which might cause loss of user data. This problem
can be addressed to a great extent by using the operating system's
Structured Exception Handling (SEH) mechanism.

That said, let's examine how our spy driver handles function properties,
arguments, and results. Listing 6-1 shows the involved IOCTL input and output
structures, spy_carr_tneur and spv_cari_oureur. The latter is quite simple—it
consists of aurarce_TnTEGER Structure that is used by Windows 2000 to represent a
64-bit value both as a single 64-bit integer and a pair of 32-bit halves. Please consult
Listing 2-3 in Chapter 2 for the layout of this structure.

334 CALLING KERNEL API FUNCTIONS FROM USER-MODE

typedef struct _SPY CALL_INPUT

BOOL fFastCall;

DWORD dArgumentBytes ;

PVOID pArgunents ;:

PBYTE pbSymbol;

PVA D pEntryPoint;

}

SPY_CALL_INPUT, *PSPY_CALL_INPUT, **PPSPY_CALL_INPUT;

#define SPY_CALL_INPUT_ sizeof (SPY_CALL_INPUT)

typedef struct _Spy CALL_OUTPUT
{
ULARGE_INTEGER uliResult;

SPY_CALL_OUTPUT, *PSPY_CALL_OUTPUT, * *PPSPY_CALL_OUTPUT;

#defi ne SPY_CALL_OUTPUT_ si zeof (SPY_CALL_OUTPUT)

LISTING 61 Definition of spy_cart_1npur and spy_carnr_ourpur

spy_caLL_1NpUT Needs a bit more explanation. The purpose of the frastcal1l
member should be obvious. It signals to the spy driver that the function to be called
obeysthe fastcal1 convention, so the first two arguments, if any, must not be
passed in on the stack, but in CPU registers. dargumentBytes specifiesthe number of
bytes piled up on the argument stack, and parguments points to the top of this stack.
The remaining arguments, pbsymbol and pEntryPoint, are mutually exclusive, and
tell the driver which function to execute. Y ou can specify either afunction nameor a
plain entry point address. The other member should always be set to NULL . If both
values are non-nurL, pbsymbol takes precedence over pentryproint. Calling a func-
tion by name rather than by address adds an additional step, where the entry point
of the specified symbolic name is determined. If it can be retrieved, the function is
entered through this address. Passing in an entry point simply bypasses the symbol
resolution step.

Finding the linear address associated with a symbol exported by a kernel-mode
module sounds easier than it actually is. The powerful Win32 functions cetModule
Handle () and GetProcAddress () , which work fine with all components within the
Win32 subsystem, do not recognize kernel-mode system modules and drivers. Imple-
menting this part of the sample code was difficult, the detail s are covered in the next
section of this chapter. For now, let's assume that a valid entry point is available, no
matter how it has been supplied. Listing 6-2 shows the function SpyCall () that

A GENERAL KERNEL CALL INTERFACE 3%

constitutes the core part of my kernel call interface. Asyou see, it isamost 100%
assembly language. It is always unpleasant to resort to ASM in a C program, but
some tasks simply can't be donein pure C. In this case, the problem is that spy-
call () needs total control of the stack and the CPU registers, and therefore it must
bypass the C compiler and optimizer, which use the stack and registers as they seefit.
Before delving into the details of Listing 6-2, let me describe another special fea-
ture of the spyca11 () function that obscures the code. As explained in Chapter 2, the
Windows 2000 system modules export some of their variables by name. Typical
examples areNtBuildNumber and KeServicebescriptorTable. The Portable Exe-
cutable (PE) file format of Windows 2000/NT/9x provides a general -purpose mecha-
nism for attaching symbols to addresses, regardless of whether an address points to
code or data. Therefore, a Windows 2000 module is free to attach exported symbols
to its global variables at will. A client module can dynamically link to them like it
links to function symbols, and it is able to use these variables as if they were located
inits own global data section. Of course, my kernel call interface would not be com-
plete if it were not able to cope with this kind of symbol aswell, so | decided that
negative values of the dArgumentBytes member insidethe spv_cavr_1npuT Structure
should indicate that data is to be copied from the entry point instead of calling it.
Valid values range from -1 to -9, where -1 means that the entry point address itself
is copied to the spy_cavr_ourrur buffer. For the remaining values, their one's com-
plement states the number of bytes copied from the entry point, that is, -2 copies a
single BYTE or cuar; -3, a 16-bit WORD or srorT; -5, a 32-bit DWORD or Lone; and -9
a 64-bit pworbLonG or LoNcLONG . You may wonder why it should be necessary to
copy the entry point itself. Well, some kernel symbols, such as KeServiceDescriptor
Table point to structures that exceed the 64-bit return value limit, so it iswiser to
return the plain pointer rather than truncating the value to 64 hits.

void SpyCail (PSPY_CALL_INPUT pscCi,
PSPY_CALL_OUTPUT PSCO)

{

PVOID pStack;

__asm

{

pushfd

pushad

xor eax, eax

nov ebx, psco ; get output parameter block
| ea edi, [ebx.uliResult] ; get result buffer

mov [edi], eax ; clear result buffer (lo)
nov [edi+d], eax ; clear result buffer (hi)
nmov ebx, psci ; get input parameter block
nmov €ecX, [ebx.dArgumentBytes]

(continued)

336 CALLING KERNEL API FUNCTIONS FROM USER-MODE

cnp
jb
mov
not
jecxz
rep
Jmp

SpyCalll:

mov
jmp

SpyCall2:

nov
cnp
jz

rep

SpyCalld:

nov
call

SpyCalls:

popad
popf d

)
1

return;

}

ecx, -9

SpyCall2

esi, [ebx.pEntryPoint]
ecx ;
SpyCal |'|

novsb ;
SpyCallb

[edi] , esi i
SpyCalls

esi, [ebx.pArguments]
[ebx.fFastCall], eax
SpyCal | 3

ecx, 4

SpyCall3

eax, [esi] i
esi, 4 ;
ecx, 4

ecx, 4 ;
SpyCal | 3

edx, [esi] H
esi, 4 i
ecx, 4

pStack, esp ;
SpyCal | 4

esp, exX ;
edi, esp

ecx, 2

movsd

ecx, eax
[ebx.pEntryPoint]

esp, pStack i
ebx, psco P

[ebx.uliResult. LowPart],
[ebx.uliResult.HighPart],

call or store/copy?

get entry point
get nunber of bytes

0 -> store entry point
copy data fromentry point

store entry point
_ fastcall convention?
1st argurent avail abl e?

eax =
renove argunent

1st argunent
fromlist
2nd argunent avail abl e?

edx =
remove argunent

2nd ar gunent
fromlist

save stack pointer
no (nore) argunents
copy argument stack

load 1st fastcall arg
call entry point

restore stack pointer

get output paraneter bl ock
eax ; store result (lo)
edx ; store result (hi)

LISTING 6-2.

The Core Function of the Kernel Call Interface

A GENERAL KERNEL CALL INTERFACE 337

With the special case of accessing exported variables kept in mind, Listing 6-2
shouldn't be too difficult to understand. First, the 64-bit result buffer is cleared,
guaranteeing that unused bits are always zero. Next, the dargumentBytes member
of the input data is compared with -9 to find out whether the client requested a func-
tion call or a data copying operation. The function call handler starts at the label
spyCall2 . After setting register ESI to the top of the argument stack by evaluating
the pArguments member, it istime to check the calling convention. If__ fastcall is
required and there is at least one 32-bit value on the stack, spyCall () removes it and
storesit temporarily in EAX . If another 32-bit valueisavailable, it isremoved as well
and stored in EDX . Any remaining arguments remain on the stack. Meanwhile, the
label spyca113 isreached. Now the current top-of-stack address is saved to the local
variable pstack, and the argument stack (minus the arguments removed in the
_ fastcall case) is copied to the spy driver's stack using the fast i386 REP movsD
instruction. Note that the direction flag that determines whether MOVSD proceeds
upward or downward in memory can be assumed to be clear by default; that is, ESI
and EDI are incremented after each copying step. The only thing left to do before
executing the CALL instruction isto copy the first_ fastcall argument from its
preliminary location EAX toitsfinal destination ecx. SpyCall () blindly copies
EAX to ECX because this operation doesn't create havoc if the calling conventionis
_ stdcall or_cdeci. TheMOV ECX, EAX instructionissofast that executingitin
vain is much more efficient than jumping around it after testing the value of the
fFastCall member.

After the call to the function's entry point returns, SpyCall () resets the stack
pointer to the location saved off to the variable pstack. Thistakes care of the differ-
entstack cleanuppolicyof__ stdcall and _ fastcall versus cdec1. A__ cdecl
function returns to the caler, with the ESP register pointing to the top of the argu-
ment stack, whereasan___stdcall or a__ fastcall function resetsit to its original
address before the call. Forcing ESP to apreviously backed-up address always cleans
up the stack properly, no matter which calling convention is used. The last few ASM
linesof SpyCall ()storethefunctionresultreturned in EDX : EAX tothecaller's
SPY_CALL_OUTPUT structure. No attempt is made to find out the correct result size.
Thisis unnecessary because the caller knows exactly how many valid result bits it can
expect. Copying too many bits does no harm—they are simply ignored by the caller.

One thing that should be noted about the code in Listing 6-2 is that it contains
absolutely no provisions for invalid arguments. It does not even check the validity
of the stack pointer itself. In kernel-mode, thisis equivalent to playing with fire.
However, how could the spy driver verify all arguments? A 32-bit value on the stack

338 CALLING KERNEL API FUNCTIONS FROM USER-MODE

could be acounter value, a bit-field array, or maybe a pointer. Only the caller and the
called target function know the argument semantics. The SpyCall () functionis a
simple pass-through layer that has no knowledge about the type of data it forwards.
Adding context-sensitive argument checking to this function would amount to
rewriting large parts of the operating system. Fortunately, Windows 2000 offers an
easy way out of this dilemma: Structured Exception Handling (SEH).

SEH is an easy-to-use framework that enables a program to catch exceptions
that would otherwise crash the system. An exception is an abnormal situation that
forces the CPU to stop whatever it is currently doing. Typical operations that gener-
ate exceptions are reading from or writing to linear addresses that don't map to
physical or paged-out memory, writing data to a code segment, attempting to execute
instructions in a data segment, or dividing a number by zero. Some exceptions are
benign. For example, accessing a memory location that has been swapped to a page-
file generates an exception that the system can handle by bringing the target page
back to physical memory. However, most exceptions are fatal, because the operating
system has no idea how to recover from the exception, so the system simply shuts
down. This reaction might seem harsh, but sometimesi it is better to halt an imminent
catastrophe before things become worse. With SEH, the program that caused the
exception is granted a second chance. Using the Microsoft-specific C construct___try
/__except, an arbitrary sequence of instructions can be guarded against exceptions.
If an exception puts the system into a critical state, a custom handler inside the pro-
gramisinvoked, allowing the programmer to provide a more useful reaction than
just triggering a Blue Screen.

Obviously, SEH is aso able to work around the parameter validation problem
of our spy device. Listing 6-3 shows a wrapper that puts the SpyCall () function into
a SEH frame. The guarded code is enclosed in the braces of the __try clause. Of
course, not only the SpyCall () instruction is protected; all subordinate code that is
executed in the context of the call is protected as well. If an exception is thrown, the
code inside the _except clause is entered, as demanded by the filter expression
EXCEPTION_EXECUTE_HANDLER. The exception handler in Listing 6-3 istrivial. Itjust
causes spyCallEx () to return the status code STATUS ACCESS VIOLATION instead of
sTaTUus_success, whichwill inturnresult in failure of the pevicerocontrol () cal
on the user-mode side. No Blue Screen appears; the only problem remaining after the
exception isthat the results of the called function are undefined, but thisis something
the caller should be prepared for anyway.

LINKING TO SYSTEM MODULES AT RUNTIME 339

NTSTATUS SpyCal | Ex (PSPY_CALL_INPUT psSCi,
PSPY_CALL_OUTPUT pPSCO)

NTSTATUS ns = STATUS_SUCCESS;

_try
{
SpyCall (psci, psco);

}
__except (EXCEPTION_EXECUTE_HANDLER)
{
ns = STATUS_ACCESS_VIOLATION;
}

return ns;

}

LISTING 6-3. Adding Sructured Exception Handling to the Kernel Call Interface

Although SEH catches the most common parameter errors, you should not
expect it to be a remedy against any garbage a client application might possibly
deliver to akernel API function. Some bad function arguments silently wreck the
system without causing an exception. For example, a function that copies a string
can easily overwrite vital parts of system memory if the destination buffer pointer is
st to the wrong address. This kind of bug might remain undetected for along time,
until the system suddenly and unexpectedly breaks down when the program execu-
tion eventually rushesinto the modified memory area. Whiletesting the spy driver, |
occasionally managed to get the test application hung in its IOCTL call to the spy
device. The application didn't respond anymore and even refused to be removed from
memory. Even worse, the system became unable to shut down. Thisis amost as
annoying as aBlue Screen!

LINKING TO SYSTEM MODULES AT RUNTIME

After implementing the basic kernel call interface, the next problem isto resolve
symbolic function names to linear addresses required in the ASM CALL instruction in
Listing 6-2. This step is very important because you cannot be sure that the entry
points of the various kernel API functions remain unchanged over a longer period.
Whenever possible, functions should be called by name. Calling a system function by
address is certainly exceptional, typically restricted to functions that are not exported
by the target module. In most cases, it is more desirable to use the symbolic name,
which is provided somewhere in the modul€e's export section.

340 CALLING KERNEL API FUNCTIONS FROM USER-MODE

LOOKING UP NAMES EXPORTED BY A PE IMAGE

For aWin32 programmer, linking at runtime to a function exported by aDLL isan
everyday task. For example, if you want to write aDLL that uses the enhanced fea-
tures of Windows 2000, but also runs on legacy systems such as Windows 95 or 98
with reduced functionality, you should link to the special functions at runtime,
silently falling back to default behavior if these functions aren't available. In this
case, you would just call cetModulenandle () if the DLL is aready in memory and
is guaranteed to stay there long enough, or Loadribrary () if it has to be loaded or
must be protected against premature unloading. The returned module handlecanin
turn be used in a sequence of GetProcAddress () calls that retrieve the entry points
of al DLL functions the application wants to call. So it seems only logicd to try the
same with kernel functions exported by ntoskrnl.exe, hal.d1ll, or other system
modules. However, neither of the above functions works in this situation! Get
ModuleHandle () reports that no such module is loaded, and GetProcAddress ()
returnsNULL all the time if you pass in a hard-coded module handle, for example,
(mvopuLE) 0x80400000 for ntoskrnl.exe. On second thought, this seems reason-
able; these functions are designed for Win32 components that run in user-mode and
therefore are loaded into the lower half of the 4-GB linear address space. Why should
they care about kernel-mode components that are out of reach for Win32 applica-
tionsanyway?

If the Win32 subsystem is ignorant about the modules in kernel memory, the
next logical step isto let akernel-mode driver do the work—the usual strategy
applied throughout this book. The undocumented MmGetSystemRoutineAddress ()
function, exported by ntoskrnl. exe, obviously doesthejob, but, unfortunately, it
isn't available on Windows NT 4.0. Because the main premise of this book's sample
code is to remain compatible with the Windows 2000 predecessor to the greatest
extent possible, | chose to reject this specia feature looking up the function entries
without the help of the system. The Windows 2000 runtime library provides some
limited support for image file parsing, such as the undocumented rt 1 Imagent
Header () function, whose prototype is shown in Listing 6-4. This simple function
takes the base address of a module image mapped to linear memory (i.e., a pointer to
its tMAGE_DOS_HEADER Structure, as defined in the Win32 SDK header file winnt . h)
and returns a pointer to the Portable PE header referenced by the DOS header's
e_1fanew member at file offset 0x3c. Thisfunction must be used with care, because
it performs only minimal sanity checks on the input pointer. It tests it for NULL
and OXFFFFFFFF and verifiesthat the memory block it pointsto containstherz
signature at the beginning. This means that if you pass in a bogus address that is nei-
ther NULL nor oxrrrrrrrr, a Blue Screen will be triggered immediately when re1
ImageNtHeader () readsthe DOS header signature. Oddly, Windows NT 4.0 runs
this code in an SEH frame, whereas Windows 2000 doesn't.

LINKING TO SYSTEM MODULES AT RUNTIME 341

PIMAGE_NT_HEADERS NTAPI Rt |i mageMN Header (PVOIDBase) ;

LISTING 6-4. The Prototype of RtllmageNtHeader()

Listing 6-4 shows that Rt 1ITmageNtHeader () returns a pointer to an IMAGE_
NT_HEADERS structure. The entire set of PE file structures is defined in winnt . h.
Unfortunately, the DDK header files do not have them, so it is necessary to add
these definitions manually. My spy driver contains the structuresit needs for symbol
lookup (Listing 6-5) inits header filew2k_spy.h. TMAGE NT_HEADERS iSsimply a
concatenation of the PE signature “pe\0\0, ” an TMAGE_FILE_HEADER, and an
IMAGE_OPTIONAL_HEADER. The latter ends with an array of TMAGE_DATA_ DIRECTORY
structures providing fast lookup of file sections with special duties. The first array
entry, identified by the index tvace_prrECTORY_ENTRY_EXPORT defined at the very
beginning of Listing 6-5, points to the export section that contains the names and
addresses of the functions exported by the module. This is the section where we must
look up the function names passed to the kernel call interface.

#define IMAGE_DIRECTORY_ENTRY_EXPORT
#define IMAGE_DIRECTORY_ENTRY_IMPORT
#def i ne IMAGE_DIRECTORY_ENTRY_ RESOURCE

t f def i ne IMAGE_DIRECTORY_ENTRY_EXCEPTION
#define IMAGE_DIRECTORY_ENTRY_SECURITY
#define IMAGE_DIRECTORY_ENTRY_BASERELOC
ttdefi ne IMAGE_DIRECTORY_ENTRY_DEBUG
#define IMAGE_DIRECTORY_ENTRY_ COPYRIGHT
#def i ne IMAGE DIRECTORY_ENTRY_GLOBALPTR
#def i ne IMAGE_DIRECTORY_ENTRY_ TLS

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
ftdefi ne IMAGE_DIRECTORY_ENTRY_IAT

tdefi ne IMAGE DIRECTORY_ENTRY_DELAY_ IMPORT
#def i ne IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR

© 0N oA WNPRFE O

e
A WN RO

=
()

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES

typedef struct _IMAGE_FILE_HEADER
{
WORD Machine ;
WORD Nunber O sections;
DWRD TimeDateStamp;
DWRD PointerToSymbolTable;
DWRD Nunber O symbols ;
WRD SizeOfOptionalHeader;
WORD Characteristics;
}

IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

(conti nued)

342 CALLING KERNEL API FUNCTIONS FROM USER-MODE

1/
typedef struct _IMAGE_DATA_DIRECTORY

{

DWRD virtualAddress;

Size;

IMAGE_DATA_DIRECTORY, * PIMAGE_DATA_ DIRECTORY;

typedef struct _IMAGE_OPTIONAL_HEADER

\me Magi c;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;
DWCRD SizeOfCode;

DWORD SizeOfInitializedData;
DWCRD SizeOfUninitializedData;
DWRD AddressOfEntryPoint;
DWORD BaseOfCode;

DNCRD BaseOfData;

DWORD | rageBase ;

DWIRD SectionAlignment ;

DWCRD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WRD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;
WZRD MinorSubsystemVersion;
DWORD Win32VersionvValue;

DWORD SizeOfImage;

DNCRD SizeOfHeaders;

DWORD Checksum

WZRD Subsyst em

WIRD pPllCharacteristics;
DWORD SizeOfStackReserve;
DWCRD Si zer stackCommit;
DWORD SizeOfHeapReserve;

DWORD SizeOfHeapCommit ;

DWIRD LoaderFlags ;

DNCRD NumberOfRvaAndsSizes;

IMAGE_DATA_DIRECTORY DataDirectory
[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

}

IMAGE_OPTIONAL_HEADER, * PIMAGE_OPTIONAL_HEADER;

/11

typedef struct _IMAGE NT HEADERS

{

LINKING TO SYSTEM MODULES AT RUNTIME 343

DWORD Si gnat ur e;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER OptionalHeader ;
}

IMAGE_NT_HEADERS, * PIMAGE _NT_HEADERS;

typedef struct _IMAGE_EXPORT_ DIRECTORY

DWRD Characteristics;
DWRD TimeDates D

DWRD Name ;
DWRD Base;
DACRD Nunber O Functions;
DWCRD Nunber O Names ;

DWRD addres

sOfFunctions ;

DWRD AddressOfNames;
DWRD AddressOfNameOrdinals;
}

IMAGE_EXPORT_DIRECTORY, * PIMAGE_EXPORT_DIRECTORY ;

LISTING 6-5. A Subset of the Basic PE File Srructures

The layout of the export section inside a PE file is governed by the 1vace
EXPORT_DIRECTORY structure, found at the bottom of Listing 6-5. Basically, it
consists of a header composed of the members of the 1MAGE_ExPORT DIRECTORY,
plus three variable-length arrays and a sequence of zero-terminated ANSI strings.
An export item is usually identified by the following three parameters:

I. A zero-terminated symbolic name, consisting of 8-bit ANSI characters
2. A 16-bit ordinal number
3. A 32-hit target offset relative to the beginning of the file image

The export mechanism is not restricted to functions. It is merely a means to
assign a symbol to an address inside the PE image. For functions, the symbol is
attached to its entry point. For public variables, the symbol references its base
address. The assignments are achieved by filling three parallel arrayswith the charac-
teristic parameters of the symbols. In Figure 6-1, these arrays are referred to as Array
of Target Addresses, Array of Name Offsets, and Array of Ordinal Numbers. They
correspond to the TMAGE_EXPORT_DTRECTORY Members addressofFunctions,
AddressOfNames, and AddressOfNameOrdinals " r%pectively, which supply the

344 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

array offsets relative to the image base address. The Name member contains the offset
of asymbol string that names the PE fileitself. If the executable fileis renamed, this
entry can be used to retrieve its original name. Figure 6-1 isjust a common example
of an export section arrangement—the order of the arrays and the symbol string sub-
section is not fixed. A PE file writer can shuffle them around to its liking, as long as
the members of the Tmace_exporT_DIRECTORY reference them correctly. The sameis
true for the string referenced by the Name member. Although it is usually located at
the beginning of the name string sequence, thisis not a requirement. Never rely on
assumptions about the locations of the variable portions of the export section.

The numberofFunctions and nNumberofNames members of the
IMAGE_EXPORT_DIRECTORY Specify the number of entries in the Addressof Functions
and addressofNames arrays, respectively. No count is specified for the Addressof
NameOrdinals array, because it always contains as many entries as the Addressof
Names array. The maintenance of separate entry counts for addresses and names
suggests that it might be possible to build executables that export unnamed
addresses. | have never seen such afile, but it is a good idea to keep this possibility in
mind while accessing the arrays. Again, don't rely on assumptions!

The process of looking up the address of an exported function or variable by
name requires the following steps, given a module base address (i.e., an HMODULE in
Win32 lingo):

1. Cdl rtlrmageNtHeader () With the modul€'s base address to get at its
1MAGE_NT_HEADERS . If this function returns NULL , the address does not
reference avalid PE image.

2. Usethe constant TMAGE_DIRECTORY_ENTRY_ EXPORT &S an index into the
DataDirectory of the OptionalHeader member to find out the offset of
the export section.

3. Locate the name array inside the export section by evaluating the
AddressOfNames member of the tvace_rxporT DIRECTORY header.

4. Enumerate the names until a match is found or the end of the array
indicated by NumberOf Names is reached.

5. If amatching name is available, use the name array index to read the
associated ordinal number from the array of ordinals. The values in this
array are zero-based, so you can use the name's ordinal immediately as an
index into the address array.

6. Add the modul€'s base address to the offset retrieved from the address array.

LINKING TO SYSTEM MODULES AT RUNTIME 345

IMAGE_EXPORT_DIRECTORY

Name

AddressOfFunctions
AddressOfNames
AddressOfNameOrdinals

ry

Array of Target Addresses
(DWORD)

r s

Array of Name Offsets
(DWORD)

F 3

Array of Ordinal Numbers
(WORD)

F 3

|

‘ Sequence of Name Strings
| (BYTE)
|

FIGURE 6-1. Typical Layout ofa PE File's Export Section

This sequence of steps appears fairly simple. However, it contains one
unknown quantity: the module base address. Whereas the above actions basically
reflect the behavior of the Win32 GetProcAddress() function, finding the module
address means mimicking the behavior of cetmodulenandie() . If you scan the
function names exported by ntoskrni. exe, youwon't be able to find anything
that sounds even remotely like a function that might do the trick. The reason
isthat the Windows 2000 kernel provides a comprehensive function for this and
many other tasks that involve access to internal system data. This functionis
caIIed NtQuerySystemInformation() .

346 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

LOCATING SYSTEM MODULES AND DRIVERS IN MEMORY

NtQuerySystemInformation () 1S one of the most essential APl functions for Windows
2000 system programmers, and there is hardly any built-in administration utility that
does not make use of it—yet you won't find it mentioned anywhere in the Device
Driver Kit (DDK) documentation. There is a single mention in the comments to the
CONFIGURATION_INFORMATTON Structureinsidentadk.h, proving that this function
exists, but that's it. If an “undocumentedness coefficient” would exist that were defined
as the usefulness of a function divided by its frequency of occurrence in the Microsoft
documentation, ntouerysystemInformation () would certainly be ranked at the top.
Along with many other wonderful things, this function can return alist of loaded sys-
tem modules, including al system core components and kernel-mode drivers.

The spy driver source files contain the bare minimum of code and type defini-
tions required to obtain the loaded-module list from NtQuerySystemInformation () .
From the caller's point of view, it is a simple function. It expects four arguments, as
shown in Listing 6-6. The systemInformationClass IS anumeric zero-based value
that specifies the type of information to be queried. The information—which can be
of variable length, depending on the information class—is copied to the System
Information buffer supplied by the caller. The buffer length is specified by the
Systeminf ormationLength argument. On success, the actual number of bytes copied
to the buffer is written to the variable pointed to by returnrength. The problem
with this function is that it doesn't report how many bytes it wanted to copy if it
finds out that the buffer istoo small. Thus, the caller must apply atrial-and-error
heuristic until the returned status code changes from sTaTUS_INFO_LENGTH_MTSMATCH
(OX@D000004) t 0 STATUS_SUCCESS(Ox OO000000) .

Listing 6-6 doesn't show NtQuerySysteminformation () itself, but rather its
twin, zwouerysystemInformation () , which isidentical except for the function name
prefix. You might recall from Chapter 2 that the Nt* and zw* variants of the Native
API functionswork exactly the same if called from user-mode. The interface module
ntdll.d1l routes each pair through the same INT 2Eh stub. In kernel-mode, however,
things are different. In this case, Native APl calls are handled by ntoskrnil . exe, Uusing
different execution pathsfor vt = and zw* functions. The zw* variants are again routed
through the INT 2Eh interrupt gate, exactly asntaii.di11. Thewnt+ variants, however,

NTSTATUS NTAPI ZwQuerySystemInformation (DWORD SystemInformationClass,
PVOID SystemInformation,
DWRD SystemInformationLength,
PDNCRD ReturnLength) ;

LISTING 6-6. The Prototype ()thQuerf,rSystemInformation ()

bypast
follow

"A
Zu
ser
act
an
(W

Gl

LINKING TO SYSTEM MODULES AT RUNTIME 347

bypass this gate. In the glossary of the DDK documentation, Microsoft provides the
following description for the zw* function set (Microsoft 2000f):

"A set of entry points parallel to the executive's system services. A call to a
ZwXxxentry point from kernel-mode code (including calls from other system
services or drivers) supplies the corresponding system service, except the caller's
access rights and the arguments to the Zw ‘alias’are not checked for validity,
and the call does not cause the previous mode to be set to user mode.”
(Windows 2000 DDK \ Kernel-Mode Drivers\ Design Guide\ Kernel-Mode

Glossary \ Z \ Zw routines.)

The last passage about the "previous mode" is important. Peter G. Viscarola
and W. Anthony Mason put it in different, more clarifying words:

“Although either variant of the function may typically be called from Kernel
mode, the Zw variant is used in place of the Nt version to cause the previous
mode (and hence the mode in which the request was issued) to be set to Kernel

mode." (Viscarola and Mason 1999, p. 18).

The side effect of this previous-mode handling isthat calling ntouerysystem
Information() from akernel-mode driver without any additional provisions returns
an error status of STATUS ACCESS _VIOLATION (0xc0000005), whereas zwQuery
SystemInformation() succeeds or at least returns sTATUS_INFO_ LENGTH_MISMATCH.

In Listing 6-7, the constant and type definitions required for the system
ModuleInformation class are shown. Thelist of loaded modulesis returned in the
form of amopuLE_LIsT structure, composed of a 32-bit module count and an array

of MobULE_INFO Structures, one for each module.

#define SystemModuleInformation 11 // SYSTEMINFOCLASS

I
typedef struct _MODULE_INFO

DWRD dreservedl;
DWRD dReserved?2;
PVOID pBase;
DNRD dsize;
DWRD drlags;
WRD windex;
WORD wRank;

WRD wLoadCount; (conti nued)

348 CALLING KERNEL API FUNCTIONS FROM USER-MODE

WRD wNameOffset;
BYTE abPath [MAXIMUM FILENAME_LENGTH] ;

}

MODULE_INFO, * PMODULE_INFO, **PPMODULE_INFO;

#define MODULE_INFO_ sizeof (MODULE | NFO

typedef struct _MODULE LIST

{
DWCRD dModules;

MODULE_INFO aModules [];
MODULE_LIST, *PMODULE_LIST, * *PPMODULE_LIST;

#define MODULE_LIST_ sizeof (MODULE_LIST)

LISTING 6-7. SystemModuleInformation Definitions

Now everything is set up for a zwouerysystemInformation() call. Listing 6-¢
containsthe spyModulernist () function that implements the usual trial-and-error
loop required for this API function, dong with two simple memory management
functions, spyMemorycreate() and SpyMemoryDestroy () , thatinternally call the
Windows 2000 Executive functions ExallocatePoolwithTag () and ExFreePool ()
The code starts out with a 4,096-byte buffer and doublesits size if the status code
says sTaTUs_1NFO_LENGTH_MIsMATCH. All other status codes break the loop. The
optional arguments pdData and pns provide more information about the returned
value. If SpyModuleList () yieldsnury, indicating failure, the NTSTATUS buffer
pointed to by pns receives an error status code and *pdData is set to zero. On suc-

cess, “pdpata specifiesthe number of bytes copied to the buffer, and * pns reports
STATUS SUCCESS.

#define SPY_TAG ' >vYPs' [/ SPY> read backwards

PVOID SpyMenoryQeate (DWRD dSize)
{
return ExA i ocat ePool wi t hTag {PagedPool, max (dSze, 1),
SPY_TAG) ;

LINKING TO SYSTEM MODULES AT RUNTIME

349

PVOID SpyMemoryDestroy (PVOID pDat a)

if (phData != NULL) ExFreePool (pData) ;
return NULL;

}

11

PMODULE_LIST SpyModui eLi st (PDWORD pdData,
PNTSTATUS pns)

{

DWORD dsize;

DWRD dData = 0;

NTSTATUS ns STATUS_INVALID_PARAMETER;

non

PMODULE_LIST pml NULL;

for (dS ze = PAGE_SIzE; (pmh == NULL) && dSize; dSize <<= 1)

if ((pml= SpyMemoryCreate (dSize)) == NUL)
ns = STATUS_NO_MEMORY ;
break;
ns = ZwQuerySystemInformation (SystemModuleInformation,

pml, dSi ze, &dbata) ;
if (ns !'= STATUS SUCCESS)
{
pm = SpyMenoryDestroy (pm);
dData = 0;

if (ns != STATUS_INFO_LENGTH_MISMATCH) break;

}

}
if (pdData != NULL) *pdData = dDat a;

if (pns I= NULL) *pns = ns;
return pm ;

LISTING 6-8. Obtaining a module list from ZwQuerySystemInformation ()

The remaining actions to be taken to retrieve the base address of agiven

module are quite smple. Listing 6-9 defines two more functions: spytoduleFind ()
isan enhanced spyModulelist () wrapper that scans the module list returned by
ZwQuerySystemlinformation () for aspecified modulefilename, and spytodule

Base () inturnwraps spyModuleFind() , extracting just the base address of the mod-
ulein question from its mopure_1nro and discarding the rest. The spyModuleHeader ()

function concluding Listing 6-9 cals spyModulerase () and passes the result to
Rt1ImageNtHeader (). Thisfunction providesthefirst step to the export section

LINKING TO SYSTEM MODULES AT RUNTIME

349

PVOID SpyMenoryDestroy (PvOID pDat a)

{
if (pData != NULL) ExFreePool (pData) ;
return NULL;

PMODULE_LIST SpyMbdui eLi st (PDWORD pdDat a,
PNTSTATUS pns)

DWRD dsSi ze;
DWRD dbata = O0;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PMODULE_LIST pml = NULL;
for (dSize = PAGE _sIZE; (pm == NULL) && dSize; dSize <<= 1)
if ((pml= SpyMenoryQreate (dsize)) == NUL)
{
ns = STATUS_NO_MEMORY ;
break;
}
ns = ZwQuerySystemInformation (SystemModuleInformation,

pm, dSize, &dpata) ;
if (ns 1= STATUS_SUCCESS)

{
pni = SpyMenoryDestroy (pni)
dData = 0;

if (ns != STATUS | NFO LENGTH M SMATCH) br eak;

}
}
if (pdbata != NULL) *pdData = dData;
if (pns != NULL) *pns = ns;
return pml ;
}
LISTING 6-8. Obtaining a module list from zwQuerysSystemInformation ()

The remaining actions to be taken to retrieve the base address of a given
modul e are quite simple. Listing 6-9 defines two more functions: spyModuleFind ()
is an enhanced spyModuleList () wrapper that scans the module list returned by
zwQuerySystemInformation () for a specified module file name, and spyModule
Base () inturnwraps spyModuleFind (), extracting just the base address of the mod-

ule in question from its MODULE_INFO and discarding the rest. The spyModuleHeader ()

function concluding Listing 6-9 calls spyModuleBase () and passes the result to
RtlImageNtHeader () . This function provides the first step to the export section
of aloaded module.

350 CALLING KERNEL API FUNCTIONS FROM USER-MODE

PMODULE_LIST SpyModuleFind (PBYTE pbModul e,
PDWORD pdl ndex,
PNTSTATUS pns)

{
DWORD i
DWORD dIndex = -1;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PMODULE_LIST pni = NULL;
if ((pml= SpyModuleList (NUWL, &ns)) != NULL)
{
for (i = 0; i < pml->dModules; i ++)
{
if (!_stricnp (pml->aModules [i].abPath +
pml->aModules [i] .wNameOffset,
pbModule))
{
dl ndex = i;
br eak;
}
}
if (dindex == -1)
{
pm = SpyMemoryDestroy (pml);
ns = STATUS_NO_SUCH_FILE;
}
}
if (pdlndex !'= NUL) *pdiIndex = dl ndex;
if (pns 1= NULL) *pns = ns;
return pml;
}
/7
PVOID SpyMdul eBase (PBYTE pbMbdul e,
PNTSTATUS pns)
{
PMCDULE LI ST pni ;
DWORD dIndex;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PVa D pBase = NULL;
if ((pml= SpyMdul eFind (pbMdule, &dIndex, &ns)) != NUL)
{

pBase = pnl ->aMbdul es [dIndex] .pBase;
SpyMenoryDestroy (pml) ;

if (pns !'= NULL) *pns = ns;
return pBase,

}

LINKING TO SYSTEM MODULES AT RUNTIME 351

PIMAGE_NT_HEADERS SpyModul eHeader (PBYTE pbMbdul e,
PPVA D ppBase,
PNTSTATUS pns)
{
PVOID pBase = NULL;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PIMAGE_NT_HEADERS pi nh = NULL;
if (((pBase= SpyMvdul eBase (pbMddule, &ns)) !'= NUL) &&
((pinh =RtlImageNtHeader (pBase)) == NULL))
ns = STATUS_INVALID_IMAGE_FORMAT;

}
if (ppBase != NULL) *ppBase = pBase;
if (pns 1= NULL) *pns = ns;
return pinh;

}

LISTING 6-9. Looking Up Information About a Specified Module

RESOLVING SYMBOLS OF EXPORTED FUNCTIONS AND VARIABLES

The previous subsections explained how a PE file image is searched for a symbolic
name of an exported function or variable and how the base address of a loaded
system module or driver can be determined. Now it is time to put the loose ends
together. Essentially, looking up a symbol exported by a given module is athree-step
procedure:

1. Find out the linear base address of the module.
2. Search the export section of this module for the symbol.
3. Add the symbol offset to the module address.

The first step was discussed at some length above. Listing 6-10 provides
the implementation details concerning the remaining steps. spyModuleExport ()
expects afile name, such asntoskrnl.exe, hal.dll, ntfs.sys, or similar, for the
pbModule argument, and returns a pointer to the modul€'s IMAGE_EXPORT_DIRECTORY
structure, provided that the moduleis present in kernel memory and features an
export section. The optional ppBase and pns arguments return additional informa-
tion: *ppBase returns the modul e base address on success, and * pns reports a diag-
nostic error status on failure. First, SpyModuleExport () calls spyModuleHeader ()
to locate the TMaGE NT HEADERS ; then it evaluates the PE DataDirectory that con-
tains the characteristic parameters of the export section initsfirst dot. If the

352 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

Virtualaddress member of this tmace_para_prrecrory entry (cf. Listing 6-5) is
non-NULL, and the sizemember statesareasonabl e val ue, the PEimage contains
an export section. In this case, spyModuleExport () UseSthe pTr_aDD () macro
included at the top of Listing 6-10 to add the modul e base address to the virtual
address, Yielding the absolutelinear address of the vace_exporT_prrecTorY. Oth-
erwise, it returns NULL and sets the status code to sTaTus_DATA_ERROR (0xC000003E).

#define PTR_ADD (_base,_offset) \
((pvoID) ((PBYTE) (_base) + (DMRD) (_offset)))

/7

PIMAGE_EXPORT_DIRECTORY SpyMbdul eExport (PBYTE pbModule,
PPVA D ppBase,
PNTSTATUS pns)

{

PIMAGE_NT_HEADERS pi nh;

PIMAGE_DATA_DIRECTORY pidd;

PVva D pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;
PIMAGE_EXPORT_DIRECTORY pi ed = NULL;

if ((pinh= SpyModuleHeader (pbMbdule, &pBase, Sns)) !'= NULL)

{

pi dd = pinh->OptionalHeader.DataDirectory
+ IMAGE_DIRECTORY_ENTRY_EXPORT;

if (pidd->Mirtual Address &&
(pi dd- >Si ze >= IMAGE_EXPORT_DIRECTORY_))

{
pi ed = PTR ADD (pBase, pidd->VirtualAddress) ;
}
el se
{
ns = STATUS_DATA_ERROR;
}
if (ppBase != NULL) *ppBase = pBase;
if (pns t= NLL) *pns = ns;

return pi ed;

}

LINKING TO SYSTEM MODULESAT RUNTIME 353

PVOID SpyModuleSymbol (PBYTE pbModule,
PBYTE pbName ,
PPVA D ppBase,
PNTSTATUS pns)

{
PIMAGE_EXPORT_DIRECTORY pi ed;
PDWORD pdNames, pdFunctions;
PWORD pwQr di nal s;
DWRD i,
Pva D pBase = NULL;
NTSTATUS ns = STATUS_INVALID_PARAMETER;
PVQ D pAddress = NULL;
if ((pied= spyModuleExport (pbMddule, &pBase, &ns)) !=NULL)
{
pdNanes = PTR ADD (pBase, pied->AddressOfNames) ;
pdFunctions = PTR_ADD (pBase, pied->AddressOfFunctions);
pwQrdinals - PTR_ADD (pBase, pied->AddressOfNameOrdinals) ;
for (i =0; i < pied->NumberOfNames; i ++)
{
j = pwOdinals [i];
if (lstrcmp (PTRADD (pBase, pdNanmes [i]), pbName))
{
if (j <pied->NumberOf Functions)
{
pAddress = PTR ADD (pBase, pdFunctions [j]);
break;
}
}
if (pAddress == NULL)
{
ns = STATUS_PROCEDURE_NOT_FOUND;
)
}
if (ppBase != NULL) *ppBase = pBase;
if (pns I'= NULL) *pns = ns;
return pAddress;
)

LISTING 6-10. Looking Up Symbols in a Modul€'s Export Section

354 CALLING KERNEL API FUNCTIONS FROM USER-MODE

SpyModuleSymbol () does the final work. Here you find the code that accesses
the various items shown in Figure 6-1. After requesting an TMAGE_EXPORT DIRECTORY
pointer from spyModuleExport () , the linear addresses of the address, name, and
ordinal arrays are determined, again with the help of the PTR_ADD () macro. Fortu-
nately, the PE file format specifies pointersto itsinternal data structures consistently
as offsets from the base address of the image, so the PTR_ADD () macro constitutes a
convenient general -purpose shortcut whenever a linear address must be computed
from such an offset. It is important to note the role of the ordinal number array dur-
ing address lookup. If the symbol has been found in the name array, the variable i
contains the zero-based index of the array entry pointing to the symbol name. This
value cannot be used asis to retrieve the associated address—it must be converted by
means of the ordinal number array. Thecodelinej = pwordinals [i]; doesthe
trick. The resulting zero-based ordinal number j isthe index that finally selects the
correct address. Note that ordinal numbers are 16-bitquantities, whereas the other
two arrays contain 32-bit numbers. 1f the symbol passed to SpyModuleSymbol () as
its povame argument cannot be resolved, aNULL pointer is returned, along with a
status code of STATUS PROCEDURE_NOT_FOUND (0xc0000074).

Althoughit looks like SpyM oduleSymbol () provides everything we need to
call kernel functions by name, I'm putting one more wrapper around it. Listing 6-11
shows the ultimate achievement: The function spyModulesymbolEx () takes asingle
string composed of a module/symbol pair in the form “module! symbol” and resolves
it with the help of SpyModuleSymbol (). The largest part of the codeis busy parsing
the input string into a module name and a symbol. If no 1~ separator is found, Spy
ModuleSymbolEx () assumes that ntoskrnl . exeisthe target module, because thisis
certainly the most frequently used option.

PVOID SpyMdul eSynbol Ex (PBYTE pbSymbol,
PPVA D ppBase,
PNTSTATUS pns)

{

DWRD i ¢

BYTE abModule [MAXIMUM_FILENAME_LENGTH] = “ntoskrnl.exe”;
PBYTE pbNare = pbSynbol ;

PVvAQ D pBase = NULL;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

PVOID pAddreSS = NULL;
for (i = 0; pbSynbol [i] && (pbSynbol [i] !='!");i++) ;

if (pbSynbol [i++])
{

LINKING TO SYSTEM MODULES AT RUNTIME 355

if (i <= MAXIMUM_FILENAME_LENGTH)
{
strcpyn (abModule, pbSymbol, i);
pbName = pbSynbol + i;
}
el se

{

pbNane = NULL;

}
if (pbName = NULL)
{
pAddress = SpyModuleSymbol (abMbdul e, pbNanme, &«pBase, &ns) ;
}
if (ppBase !=nNULL) *ppBase = pBase;
if {pns 1= NULL) *pns = ns;
return pAddress;

}

LISTING 6-11. A Powerful Symbol Lookup Function

THE BRIDGE TO USER-MODE

Now the evolution of the kernel call interface will dowly come to an end—at least as
far as kernel-mode is concerned. Let me sum up what we have so far:

A function named spycal1Ex () (Listing 6-3) that receives a
spy_carr,_1npuT control block containing atarget address and some
function arguments. It calls the specified address and returns any resultsin
a spy_carr_output control block.

* A mechanism to look up exported system functions and variables by
name, represented by the function spyvodulesymbolex () (Listing 6-11).

So the last question is. "How do we make this stuff accessible to user-mode
applications?” The answer is, of course: "Via Device /O Control," as usua. To this
end, the spy device provides a couple of IOCTL functions, summarized in Table 6-1.
This is yet another excerpt from Table 4-2 in Chapter 4, which is a complete sum-
mary of al IOCTL functions offered by w2k_spy. sys. Listing 6-12 excerpts the rele-
vant portions of the SpyDispatcher () function, which is shown in Ligting 4-7 in
Chapter 4.

356 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

Thelast row in Table 6-1 namesthe spy_to_carn function that will serve asthe
bridge to user-mode. Theremaining functionsaretherejust for fun. | thought that
once the spy device has access to this sort of val uableinformation, it would be niceto
make it availableto applications aswell. Asin Chapters4 and 5, short descriptions
of al newly introduced IOCTL functions follow.

TABLE 6-1. IOCTL Functions Associated with the Kernel Call Interface
FUNCTION NAME ID IOCTL CODE DESCRIPTION

SPY_IO_MODULE_INFO 19 0Ox8000604C Returns information about |oaded
system modules

SPY_IO_PE_HEADER 20 0x80006050 Returns IMAGE_NT_HEADERS data
SPY_10_PE_EXPORT 21 0x80006054 Returns IMAGE_EXPORT _
DIRECTORY data
SPY_IO_PE_SYMBOL 22 0x80006058 Returnstheaddressof an exported
system symbol
SPY_10_CALL 23 Ox8000E05C Calls afunction inside a loaded
module
NTSTATUS SpyDispatcher (PDEVICE_CONTEXT pDeviceContext,
DWORD dCode,
PVOID pInput,
DWORD dInput,
PVa D pOutput ,
DWORD doutput ,
PDWORD pdiInfo)
{

SPY_MEMORY_BLOCK smb;
SPY_PAGE ENTRY spe;
SPY_CALL_INPUT SCi ;
PHYSICAL_ADDRESS pa;

DWORD dvalue, dCount;

BOOL fReset, fPause, fFilter, fLine;
PVa D pAddress;

PBYTE pbName ;

HANDLE hObject;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

MUTEX_WAIT (pDeviceContext->kmDispatch);
*pdInfo = O;

switch (dcode)

{

LINKING TO SYSTEM MODULES AT RUNTIME

357

/7
/1 unrelated IOCTL functions omtted (cf.

Listing 4-7)

case SPY_IO_MODULE_INFO :

{
if ((ns= SpyInputPointer (&pbName,
pInput, dInput))
== STATUS SUCCESS)
{
ns = SpyOutputModuleInfo (pbName,
pQut put, dQutput, pdinfo);
}
break;
}
case SPY_| O PE HEADER
{

if ((ns = SpylnputPointer (&pAddress,

pl nput, dInput))
== STATUS_SUCCESS)

{
ns = SpyQut put PeHeader (pAddress,

pOutput, dOutput, pdInfo) ;
}

r eak;

case SPY_IO_PE_EXPORT:

if ((ns= SpylnputPointer (&pAddress,

pl nput, dInput))
== STATUS_SUCCESS)

{
ns = SpyQut put PeExport (pAddress,

pCQut put, dQutput, pdinfo);
}

break;

}

case SPY_IO_PE_SYMBOL :

if ((ns= SpylnputPointer (&pbName,

pInput, dInput))
== STATUS SUCCESS)

ns = SpyOutputPeSymbol (pbName,
pQut put, dQutput, pdinfo);

break;

case SPY_TIO_CALL:

{

(continued)

358 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

if ((ns = SpyInputBinary (&sci, SPY_CALL_INPUT_,
pInput, dInput))
== STATUS_SUCCESS)
(
ns = SpyQutputCall (&sci,
pQut put, doutput, pdInfo);

break;

}

/1 unrelated IQCTL functions omtted (cf. Listing 4-7)

}

MUTEX_RELEASE (pDeviceContext->kmDispatch) ;
return ns;

}

LISTING 6-12. Excerpt from the Spy Driver's Hook Command Dispatcher

THE IOCTL FUNCTION SPY_IO_MODULE_INFO

The IOCTL spy_10_MODULE_INFO function receives a module base address and
sends back a spy_MODULE_INFO Structure if the address pointsto avalid PE image.
The definition of this structure plustherelated spyoutputModuleInfo() helper
function called by the spyDispatcher () in Listing 6-12 are shown in Listing 6-13.
SpyOutputModuleInfo () is based on spyModuleFind() (Listing 6-9), which returns
MODULE_INFO data obtained from zwQuerysSystemInformation () . The MODULE_INFO
is converted to spy_mopuLE_INFO format and sent off to the caller.

typedef struct _SPY_MODULE_INFO
{
PVOID pBase;
DWRD dsize;
DWORD dFlags;
DWRD dIndex;
DWRD dLoadCount ;
DWRD dNameOffset;
BYTE abPath [MAXIMUM_FILENAME_LENGTH] ;

}

SPY_MODULE_INFO, *PSPY_MODULE_INFO, **PPSPY_MODULE_INFO;

#define SPY_MODULE_INFO_ sizeof (SPY_MODULE_INFO)

LINKING TO SYSTEM MODULESAT RUNTIME

NTSTATUS SpyOutputModuleInfo (PBYTE pbModule,
PVOID pOutput,
DWORD doutput,
PDWORD pdInfo)

SPY_MODULE | NFO emi ;

PMODULE_LIST pml ;

PMODULE_INFO pm ;

DWORD dIndex ;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pbModule != NULL) && SpyMemoryTestAddress (pbMdule) &&

((pml = SpyModul eFi nd (pbMdul e, &dIndex, &ns)) ! = NULL))
pm - pni->aMdul es + dl ndex;

smi .pBase = pmi->pBase;

smi.dSize = pmi->dSize;

smi.dFlags = pmi->dFlags;

sm . dl ndex = pmi->wIndex;

smi . dLoadCount - pmi->wLoadCount ;

sm . dNameOf fset - pmi->wNameOff set;
str cpyn (smi.abPath, pmi->abPath, MAXIMUM_ FILENAME_LENGTH) ;

ns = SpyQutputBinary (&smi, SPY _MODULE_INFO_,
pQut put, dQutput, pdinfo);

SpyMemoryDestroy (pml) ;

}

return ns;

}

359

LISTING 6-13. Implementation of spy_10_MODULE_INFO

THE IOCTL FUNCTION SPY_IO_PE_HEADER

The IOCTL spy_10_prE_neaper function is merely an IOCTL wrapper for the
ntoskrnl.exe APl function rRt1TmageNtHeader (), asListing 6-14 proves. Like
SPY_TO_MODULE_INFO, it expects a module base address. The returned datais the
modul€'s TMAGE_NT_HEADERS Structure.

NTSTATUS SpyQut put PeHeader (PMOD pBase,
PV D pCQutput,
DWORD dQut put,
PDWORD pdl nf o)
(conti nued)

360 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

PIMAGE_NT_HEADERS pi nh;

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if ((pBase!= NUL) && SpyMemoryTestAddress (pBase) &&
((pinh = RtlImageNtHeader (pBase)) != NULL))
{
ns = SpyOutputBinary (pinh, IMAGE_NT_HEADERS_,

pQut put, dCQutput, pdinfo);

)

return ns;

}

LISTING 6-14. Implementation of sPy_10_PE_HEADER

THE IOCTL FUNCTION SPY_|O_PE_EXPORT

ThelOCTL SPY _IO_PE_EXPORT functionismoreinterestingthanthepreviousone.

In short, it returns the tMaGE_EXPORT_DIRECTORY associated with a module base
address to the caller. A close look at itsimplementation in Listing 6-15 reveals

a strong similarity to the spyModuletxport () function in Listing 6-10. However,
SpyOutputPeExport () does alot of additional work. The reason for thisis that the
IMAGE_EXPORT_DIRECTORY CONtains relative addresses throughout, as explained earlier.
The caller can't make much use of these offsets after the data has been copied to a sepa
rate buffer, because the base address to which the offsets relate has changed. Without
additional address information from the PE header, it is impossible to compute a new
matching base address. To save the caller from this excess work, SpyOutputPeExport ()
converts al offsets that point into the export section to offsets relative to the beginning
of this section by subtracting its virtual Address specified in the tvMace_paTa
DIRECTORY . The entriesin the address array must be handled differently because

they refer to other sections in the PE image. Therefore, SpyOutputPeExport ()
relocates them to absolute linear addresses by adding the image base address.

NTSTATUS SpyQut put PeExport (PVOID pBase,

PVOID pOutput,
DWRD doOutput,
PDWORD pdl nf 0)

{

PIMAGE_NT_HEADERS pi nh;

PIMAGE_DATA_DIRECTORY pidd;

PIMAGE_EXPORT_DIRECTORY pi ed;

Pva D phata;

DWORD dData, dBias, 1i;

LINKING TO SYSTEM MODULES AT RUNTIME

PDWORD pdDat a;
NTSTATUS Ns = STATUS_INVALID_PARAMETER;
if ((pBase!= NULL) && SpyMemoryTestAddress (pBase) &&
((pinh =RtlImageNtHeader (pBase)) !=NULL))
{

pi dd = pinh->OptionalHeader . DataDirectory
+ IMAGE_DIRECTORY_ENTRY_EXPORT ;

if (pidd->VirtualAddress &&
(pi dd->Si ze >= IMAGE_EXPORT_DIRECTORY_))
{
pDat a (PBYTE) pBase + pidd->VirtualAddress;
dData = pidd->Size;

if ((ns= SpyQutputBinary (pbata, dData,
pOutput, dQutput, pdinfo))
== STATUS SUCCESS)
{
pied = pCQutput;
dBi as = pidd->VirtualAddress;

pied->Name = dBi as;
pi ed- >Addr essCOf Functi ons -= dBias;
pied->AddressOfNames -= dBias;
pied->AddressOfNameOrdinals -= dBias;

pdData - PTR ADD (pied, pied->AddressOfFunctions);

for (i =0; i < pied->NumberOfFunctions; i ++)
{
pdData [i] += (DNRD) pBase;
}
pdData = PTR ADD (pied, pied->AddressOfNames) ;
for (i =0; i < pied->NumberOfNames; i++)
{
pdData [i] -= dBias;
s
}
}
el se
{
ns = STATUS_DATA_ERROR;
}
}
return ns;

}

361

LISTING 6-15. Implementation of spy_T10_PE_EXPORT

362 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

THEIOCTLFUNCTIONSPY_IO_PE _SYMBOL

The IOCTL sry_10_re_symeoL function makes the symbol lookup engine of the ker-
nel cal interface accessible to user-mode applications. Its implementation, shown in
Listing 6-16, isn't extraordinarily exciting, because it is an IOCTL wrapper for the
spyModuleSymbolEx () functionin Listing 6-11. The caller must passin a pointer to a
string in the form “module! symbol, » or Simply “symbol~ if the symbol should be
looked up in the export section of ntoskrnl . exe, and gets back a pointer to the
symbol's associated linear address, or NULL if the symbol isinvalid or an error occurs.

THEIOCTL FUNCTION SPY_IO_CALL

Finally, thisisthe IOCTL spy_1o_carr function we have been waiting for. Listing
6-17 providestheimplementation details. Thisfunction calls SpyModuleSymbol Ex ()
if the passed-in symbol string address is OK, and continues with spycal1ex() if the
symbol could beresolved. Like spy_1o_pE_svmeor, thisfunction expects the symbol
name to be specified as "module! symbol” or Simply “symbo1l, » with the latter variant
defaulting to ntoskrnl. exe. Thistime, however, the symbol string must be supplied
as part of a properly initialized SPY_CALL_INPUT structure. On success, SPY_|0_CALL
returns a sey_carr_ouTpuT Structure containing either the result of the function

call if the symbol refersto an API function or the value of the target variable if the
symbol specifies a public variable such as wtBuildanumber or KeService
DescriptorTable.

If SPY_1O_CALL fails, nodataisreturned. The caller must be prepared to
handle this situation properly. Ignoring this error would mean returning bogus data
from akernel function call. If this datais passed in turn to another kernel function,
problems may occur. If you are lucky, the faulty data is caught by the exception
handler inside SpyCallEx () . If you are not so lucky, the entire process may hang
persistently inside the spy device IOCTL call. As usual, however, there is a probabil-
ity of a Blue Screen. But don't worry—the next section shows how the kernel call
interface is properly used in user-mode applications.

NTSTATUS SpyOutputPeSymbol (PBYTE pbSymbol,
pvOID pQutput,
DWCRD dQut put ,
PDWORD pdInfo)
é’\/ﬂ D pAddress ;
NTSTATDS ns = STATUS_INVALID_PARAMETER;

if ((pbsymbol!= NUL) && SpyMenoryTest Address (pbSynbol)
&&

ENCAPSULATING THE CALL INTERFACE IN A DLL

((pAddress = SpyModuleSymbolEx (pbSymbol, NULL, &ns))
1= NULL))
{
ns = SpyQut put Poi nter (pAddress,

pQut put, doutput, pdInfo) ;
|

return ns;

}
LISTING 6-16. Implementation of spv_To_PE_SYMBOL
NTSTATUS SpyQutputCall (PSPY_CALL_TINPUT psci,

PVOID pQut put ,
DWRD doutput ,
PDWORD pdl nf o)

{

SPY_CALL_OUTPUT SCO,

NTSTATUS ns = STATUS_INVALID_PARAMETER;

if (psci->pbSymbol !'= NULL)
{
psci - >pEntryPoi nt =
(SpyMemoryTestAddress (psci->pbSymbol)
? SpyModul eSynbol Ex (psci->pbSymbol, NULL, &ns)

: NULL) ;
}
if ((psci->pEntryPoint != NULL) &&
SpyMenor yTest Address (psci->pEntryPoint) &&
((ns= SpyCal | Ex (psci, &sco)) == STATUS_SUCCESS))

<

ns = SpyOutputBinary (&sco, SPY_CALL_OUTPUT ,
pQut put, dOutput, pdInfo);

}

return ns;

)

LISTING 6-17. Implementation of spy_10_cALL

ENCAPSULATING THE CALL INTERFACE IN A DLL

Although it is good news that w2k_spy.sys exports an IOCTL call interface for
kernel functions, this interface is somewhat clumsy to operate. Suppose you want to
call asimple function such aSMmGetPhysicalAddress () Of MmIsAddressValid() .
First, you must fill a spy_carr_1nput structure with information about the function
and its arguments. Next, you must issue a Win32 pevicerocontrol () cal. If this
function reports error_success, the returned spy_carr_ourrput structure must be

364 CALLINGKERNEL APl FUNCTIONS FROM USER-MODE

evaluated. Otherwise, the error must be handled properly. Doesn't sound very
appealing, doesit? Fortunately, we have DLLs, so the solution to this problemisto
hide the IOCTL mechanism in a DLL that does the dirty work. That's the purpose of
the w2k_call. d11l project included on this book's sample CD. The code snippets
reprinted in this section are excerpts from the filesw2k_cai1. ¢ and w2k_call.h,
found on the CD in the \src\w2k_cal1 directory.

HANDLING IOCTL FUNCTION CALLS

Before anything dse, the pevicetocontrol () cals must be encapsulated in a conve-
nient way, because thisisthe bottleneck through which all kernel function calls must
pass. Listing 6-18 shows the wrapper functionw2kspycontrol (), which containsa

DeviceioControl () invocation at its heart. Altogether, thisfunction carries out the

followingtasks:

« Validatesthe input/output parameters

« Loads the spy device driver and opens the spy device, if not yet done
* InvokespeviceToControl ()

» Tests the output data for the expected size

 Sets the Win32 last-error code appropriately

If successful, the system's last-error code, to beretrieved by the application via
GetLastError(),iSSetto ERROR_succESS(o0). Otherwise, itisset accordingtothe
followingstrategy:

« If theinput or output parameters are invalid, the last-error valueis
ERROR_TNVALID_PARAMETER (87), indicating "The parameter isincorrect"
according to thewinerror . h header filein the Platform Software
Development Kit (SDK).

« If the spy device can't beinitialized, the last-error valueis
ERROR_GEN_FAILURE (31) , indicating "A device attached to the system is
not functioning.”

« |If the size of the data returned by the spy device doesn't match the cdler's
buffer sze, the last-error value is ERROR_DATATYPE_MTSMATCH, indicating
"Data supplied is of wrong type."

* In dl other cases, w2kspycontrol () preserves the last-error value set by
the DeviceioControl () function, whatever it might be. Usualy, it will be
the NTSTATUS returned by the spy device, but mapped to a more or less
appropriate Win32 status code.

ENCAPSULATING THE CALL INTERFACE IN A DLL 365

BOOL wINAPI wW2kSpyControl (DWORD dCode,
PVOID pInput,

DWORD dInput,
PVa D pQut put,
DWRD doOutput)

{

DWRD dinfo = O;

BOOL fok = FALSE

SetLastError (ERROR_INVALID_PARAMETER) ;

if (((pInput != NUL) || (!dInput)) &&
((pOutput !'=NJL) || (!doutput)))
{
if (wWkSpyStartup (FALSE, NULL))
{
if (DeviceIoControl (ghDevice, dCode,
pInput, dl nput,
pQut put, dQutput,
&dInfo, NULL))

{
if (dinfo == dQutput)

{
Set Last Error (ERROR_SUCCESS) ;
fOk = TRUE;
}
el se
{
SetLast Error (ERROR_DATATYPE_MISMATCH) ;
}
}
}
el se
{
SetLast Error (ERROR_GEN_FAILURE) ;
)
}
return £Ok;

)

LISTING 6-18. The Basic beviceIoControl () V\/I’appef

Thew2kspystartup () cal in Listing 6-18, issued immediately before pevicero
Control (), deserves some more attention. Because w2k _call .da11 relies on the ser-
vices of a kernel-mode driver, this driver must somehow be brought into memory
before the first IOCTL transaction. Moreover, a device handle must be opened, iden-
tifying the target device to be accessed viapevicerTocontrol (). To keepthe DLL as
flexible as possible, | opted for a mixed model in which the caller can either take full

366 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

control of the loading/unloading and opening/closing of the spy device or rely on a
default mechanism, leaving the device management responsibilities to the DLL. This
automatism is quite smple: Loading the driver and opening the deviceis delayed
until thefirst IOCTL transaction isrequested. As soon asthe DLL is unloaded, it
automatically closesthe device handl e, but keepsthe kernel-modedriver in memory.
The latter decison congtitutes a defensive strategy. As long as the caller doesn't sup-
ply any information as to how the driver should be handled, w2k_ca11. dll assumes
that other clients might use the driver as well, so it can't unload the driver without
impairing the operation of the other applications. As explained in Chapter 4 in the
context of the memory spy application, the problem candidates are not the processes
that still have open handles to the spy device. The Windows 2000 service control
manager will delay the driver shutdown until al handles have been closed. The prob-
lemisthat it won't allow any new device handles to be opened.

A w2k_cal1.dll client application can control the state of the spy device by
means of the API function pair w2kspystartup () and w2kspyCleanup (), sShownin
Listing 6-19. Because these functions might be called concurrently in a multithread-
ing scenario, they use a critical-section object for seridization. Only one thread at a
time can load/open or close/unload the spy device. If, for example, two threads call
w2kSpyStartup () at approximately the sametime, only one of them will be admitted
to open the device. The other oneis suspended, and will find the device up and run-
ning after resuming execution.

BOOL WINAPI w2kSpyLock (void)

{

BOOL fok = FALSE;

if (gpcs !'= NULL)
{

EnterQitical Section (gpcs);
fok = TRUE
}

return fok;

}

s —

BOOL WNAPI w2kSpyUnl ock (voi d)

{
BOOL fok = FALSE

if (gpcs != NUL)
t
LeaveCriticalSection (gpcs):

f0k = TRUE

ENCAPSULATING THE CALL INTERFACEINA DLL 367

return fok;

}

BOOL WNAPI w2kSpyStartup (BOL f Unl oad,
HINSTANCE hInstance)
{
H NSTANCE hInstancel;
SC_HANDLE hControl;

BOOL fOk = FALSE;
w2kSpyLock () ;
hl nstancel = (hinstance !=NUL ? hlnstance : ghInstance) ;
if ((ghDevice== INVALID_HANDLE_VALUE) &&
w2kFilepath (hlnstancel, awSpyFile, awDriver, MAX PATH)
&&

((hControl - w2kServiceLoad (awSpyDevice, awSpyDisplay,
awDriver, TRUE))
! =NULL))

ghDevice - CreateFile (awSpyPath,
GENERI C_READ | GENERIC_WRITE,
FILE_ SHARE READ | FILE_SHARE WRITE,
NULL, CPEN _EXI STING
FILE_ATTRIBUTE_NORMAL, NULL) ;

if ((ghDevice == INVALID_HANDLE_VALUE) && fUnl oad)

{

w2kServiceUnload (awSpyDevice, hControl);

}

el se

{

w2kSer vi ceDi sconnect (hControl) ;

}
}

fok = (ghDevice !'= INVALID_HANDLE VALUE) ;

w2kSpyunl ock () ;
return fok;

}

BOOL WNAPI w2kSpyd eanup (BGOL f Unl oad)
{

(conti nued)

368 CALLING KERNEL API FUNCTIONS FROM USER-MODE

BOOL fOk = FALSE;

w2kSpyLock () ;

if (ghDevice != INVALID_HANDLE_VALUE)
{
CloseHandle (ghDevice);
ghDevi ce = INVALID_HANDLE_VALUE;

}

if (fUnload)
{
w2kService Unl oad (awSpyDevice, NULL) ;
}

w2kSpyUnlock ();

return fCk;

}

LISTING 6-19. The Spy Device Management Functions

TYPE-SPECIFIC CALL INTERFACE FUNCTIONS

The pevicerocontrol () calsand the spy device management automatism have

now been stowed in a set of functions, with w2kSpyControl () constituting their main
entry point. The next step is to provide functions that perform spv_10_cavrLs to the
spy device. Listing 6-20 showsthe basicimplementation of the user-mode side of the
kernel call interface, represented by the functionsw2kCallExecute (), w2kCall (),
and w2kcallv() . Regarding its input arguments, the former is the user-mode equiva-
lent of SpyCallEx (), shownin Listing 6-3. Infact, the implementation of
w2kCallExecute()showsthatitcallsthespydevice'sSPY _10_CALL functionvia
w2ksSpyControl () after ensuring that the input control block contains either a
symbol name string or an entry point address. From Listing 6-12, we know that
spy_10_caLL iSimplemented by spyOutputcall () (Listing 6-17), which in turn relies
0N spyModuleSymbolEx () and spyCallEx() .

BOOL wINAPT w2kCal |l Execute (PSPY_CALL_INPUT psci,
PSPY_CALL_QUTPUT psco)

{
BOOL f0k = FALSE

Set Last Error (ERROR_INVALID_PARAMETER) ;
if (psco !'= NULL)

{

psco->uliResult .QuadPart = O;

ENCAPSULATING THE CALL INTERFACEIN A DLL

369

if ((psci 1=NUL)
&&

((psci->pbSymbol = NULL) |
(psci->pEntryPoint != NULL)))

{

fCk = w2kSpyCGontrol (SPY_| O CALL,

psci, SPY_CALL_I NPUT_,
psco, SPY_CALL_OUTPUT_) ;

}

return f£ok;

}

BOOL WINAPI w2kCall (PULARGE_INTEGER pul i Resul t,

PBYTE pbSymbol ,
PVOID pEntryPoint ,
BOCOL fFastCal |,
DWCRD dArgumentBytes ,
PV D pArguments)

{

SPY CALL_I NPUT sci;

SPY_CALL_OUTPUT sco;

BOCL fok = FALSE;

sci. fFastCall = fFastCal | ;

sci .dArgumentBytes = dArgumentBytes;

sci .pArguments = pArgunents;

sci. pbSymbol = pbSynbol ;

sci.pEntryPoint = pEntryPoint;

fCk = w2kCal | Execute (&sci, &sco) ;

if (puliResult !'= NULL) *puliResult = sco.uliResult;

return fok;

)

11

BOOL WNAPI w2kCal | V (PULARGE_INTEGER pul i Resul t,

PBYTE pbSymbol,

BOCL fFRastCal |,

DWCRD dArgumentBytes ,

)
{
return w2kCal | (puli Result, pbSynbol, NUL, fFastCall,
dArgumentBytes, &dArgumentBytes + 1) ;

}

LISTING 6-20.

The Basic Call Interface Functions

370 CALLING KERNEL API FUNCTIONS FROM USER-MODE

The spycall () and w2kca11v () functionsin Listing 6-20 are the core functions
of the kernel call interfaceinsidew2k_ca11.d11, serving asabasisfor several more
specific functions. The main purpose of wakcall () isto put the values of its argu-
mentsinto a spy_carnr_1npuT structure before calling w2kcall Execute () and to
return the resulting vrarce_1nTEGER Value. As explained earlier, not all bits of the
result must be valid, depending on the result type of the called kernel function.
w2kcallv () isasimplew2kCall () wrapper, featuring avariable argument list (hence
thetrailing v in the function name). Because the argument list of w2kCall () istai-
lored to the general case of kernel API invocations, it is overkill for many common
function types. The most common typeisthe stdcai1 (or nTart) function that
returns an NTSTATUS value. Inthis case, the frastca11 argument is always FALSE and
only the lower half of the returned 64-bit uL.ARGE_INTEGER contains valid data.
Therefore, thew2kCalINT () function in Listing 6-21 does a much better job here.
Please note how w2kca11nT () handles errors reported by w2kcall () . 1fw2kCall ()
returns rarse, this means that w2kSpyControl () failed, indicating that the result of
the function call isinvalid. In this case, it would be nonsense to retrieve the L owPart
value of the uliResult structure, because it contains unpredictable garbage. There-
fore, wokcalint () defaults to sTaTUs 1O _DEVICE_ERROR (0xCc0000185). After al, the
caller must be prepared for return values other than status_success (0X00000000),
SO reporting this error code appears to be a reasonabl e decision. Other kernel func-
tions that don't return NTSTATUS codes require a much more cautious selection of
default return valuesin case of failure.

Listing 6-22 is a collection of five additional interface functions for___stdcall
API functions that return the basic data types syTe, WORD, DWORD, DWORDLONG, and
pvorD. A trailing number in the function name indicates the number of significant
return value bits. w2kcal11p () isequivalent to w2kca1132 (), except that the 32-bit
return value is typecast to a pointer. It is not necessary to provide separate functions
for the signed versions of the basic data types or for pointers to various types,

NTSTATUS WINAPT w2kCallNT (PBYTE pbSymbol,
DWRD dArgumentBytes,
L)
{

ULARGE_INTEGER ul i Resul t;

return (w2kCall (&uliresult, pbSymbol, NULL, FALSE,
dArgumentBytes, &dArgumentBytes + 1}

? uliResult .LowPart
. STATUS_IO_DEVICE_ERROR) ;

}

LISTING 621 A Smplified Interface for nrart/nrsTarus Function Types

ENCAPSULATING THE CALL INTERFACE IN A DLL 371

because these smallish differences will be addressed by the automatic typecasting
performed by the compiler. Note that all functions in Listing 6-22 expect a default
return value to be passed in as the first argument. Thisis necessary because the call
interface has no idea what value would be best to be returned if the call into kernel-
mode fails, so this responsibility is up to the caller.

BYTE WINAPI w2kCall08 (BYTE bbDefault,
PBYTE pbSymbol,
BOOL fFastCall,
DNMRD dArgumentBytes,
)
{

ULARGE_INTEGER ul i Resul t;

return (wekGll (&uliResult, pbsymbol, NUL, fFastCall,
dArgumentBytes, &dArgumentBytes + 1)

? (BYTE) uliResult .LowPart
! bbefault) ;

WORD WNAP w2kcallle (WIRD wDefaul t,
PBYTE pbSynbol ,
BOOL fFastCall,
DNFRD dArgumentBytes,
.2)
{

ULARGE_INTEGER ul i Resul t;

return (w2kcall (&uliResult, pbSynbol, NULL, fFastCall,
dArgumentBytes, &JdArgumentBytes + l)

? (WRD uliResult .LowPart
. wbefault) ;

DARD WNAPI w2kcall32 (DARD dDefaul t,
PBYTE pbSynbol ,
BOOL fFastCall,
DWRD dArgumentBytes,
{

ULARGE_INTEGER uliResult ;

(continued)

372 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

return (wW2kCall (&uliResult, pbSymbol, NJLL, fFastCall,
dArgumentBytes, &dArgumentBytes + 1)

? uli Result . LowPart
: dDefaul t) ;

QWORD WINAPI w2kCall64 (QWORDQDefault,
PBYTE pbSymbol,
BOOL fFastCall,
DWRD dargumentBytes,

)
{

ULARGE_INTEGER ul i Result;

return (w2kCall (&uliResult, pbSymbol, NULL, fFastCall,
dArgumentBytes, &dArgumentBytes + 1)

? uliResult .QuadPart
. ghefault) ;

/1

PvOoID WNAPl w2kCallp (PVOID pDefaul t,
PBYTE pbSymbol,
BOOL fFastCall,
DWRD dArgumentBytes,

)
{

ULARCGE | NTEGER ul i Resul t;

return (w2kCall (&uliResult, pbSynbol, NULL, fFastCall,
dArgumentBytes, &dArgumentBytes + l)

? (PMOD uliResult .LowPart
. phefault) ;

}

LISTING 6-22. More Interface Functions for Common Function Types

DATA-COPYING INTERFACE FUNCTIONS

Beforewe get to themoreinteresting task of defining substitutes for acouple of real
kernel API functions, somemorelines of boilerplate code arerequired. | mentioned
earlier that the kernel call interface of the spy device can also handle public variables
exported by the kernel modules. In the description of Listing 6-2, where the

ENCAPSULATING THE CALL INTERFACE IN A DLL 373

SpyCall () function was shown, | explained that a negative value for the argument
stack size, supplied via the aargumentBytes member of the spy_carr,_1npuT structure,
isinterpreted as the one's complement of the size of an exported variable. In this case,
spycall() doesn't call the specified entry point, but copies the appropriate number of
bytes from this address to the result buffer. If dArgumentBytesis st to -1, yielding a
one's complement of zero, the entry point address itself is copied to the buffer.

Listing 6-23 shows the data-copying functions exported by w2x_ca11.d11. This
function set closaly corresponds to the set of call interface functionsin Listing 6-22.
However, these functions require fewer input arguments. Copying the value of an
exported variabl e requires no more than the name of the variable—no input parame-
tersarerequired and no calling convention applies.

BOOL WINAPI w2kCopy (PULARGE_INTEGER pul i ReSult,

PBYTE pbSymbol ,
PVOID pEnt ryPoi nt,
DWCRD dBytes)

{
return w2kcall (puliResult, pbsymbol, pEntryPoint, FALSE,
OXFFFFFFFF - dBytes, NULL);

}

/1

BYTE WNAPI w2kCopy08 (BYTE bDefault,
PBYTE pbSynbol)
{
ULARCE | NTEGER ul i Result;

return (w2kCopy (&uliResult, pbSymbol, NULL, 1)
? (BYTE) uliResult .LowPart
. bbefault) ;

WORD WNAPI w2kCopyl6 (WIRD wDe fault,
PBYTE pbSymbol)
{
ULARGE | NTEGER uliResult;

return (wW2kQpy (&uliResult, pbSymbol, NUL, 2)
? (WD) uliResult. LowPart
. wbefault) ;

(continued)

374 CALLING KERNEL API FUNCTIONS FROM USER-MODE

DWRD wINAPT wW2kCopy32 (DARD dDefaul t,
PBYTE pbSymbol)
{

ULARGE_INTEGER uliResult;

return (w2kCopy (&uliResult, pbSynbol, NULL, 4)
? uliResult .LowPart
. dDefault) ;

OWORD WNAPI w2kCopy64 (QWORD qDef aul t,
PBYTE pbSynbol)

{
ULARCGE | NTEGER ul i Resul t;

return (wW2kQopy (&uliResult, pbSynbol, NULL, 8)
? uliResult. QuadPart
. gbefault) ;

PvOTD WNAPI w2kCopyP (PVOID pDefault,
PBYTE pbSynbol)
{

ULARGE_INTEGER ul i Result;

return (w2kCopy (&uliResult, pbSynbol, NUL, 4)
? (PMOD uliResult. LowPart
. pbefault) ;

PVA D WNAPI w2kCopyEP (PVA D pDefaul t,
PBYTE pbSymbol)

{
ULARCGE | NTEGER ul i Resul t;

return (w2kCopy (&l i Result, pbSynbol, NUL, O0)
? (PMOD uliResult. LowPart
. pbefault) ;

LISTING 6-23. Data-Copying Interface Functions for #he Basic Data Types

ENCAPSULATING THE CALL INTERFACE IN A DLL 375

In Listing 6-23, w2kcopy () isthe main workhorse, much like thew?2kcall ()
function in case of a function invocation. Again, w2k_call. d11 provides separate
functions for the basic data types svyre, WORD, pworp, pworprone, and pvorp, with
atrailing number in the function name indicating the number of significant return
valuebits.w2kCopyP() returnsapointer value, and w2k CopyEP() handlesthe specia
case of querying an entry point address. Callingw2kCopyEP() isequivalent to calling
the spy device's spy_to_rr_symeor function. Yes, this is redundant, but having two
alternative ways home is always better than none at all, isn't it?

IMPLEMENTING KERNEL APl THUNKS

Meanwhile, the basic framework for the simple and easy implementation of kernel
API function substitutesis available. | call these substitutes “thunks,” whichisthe
usual term in Windows lingo for a short piece of code that serves as a front-end to a
function implemented in a different part of the system. Another common termis
"proxy," but it is too tightly associated with the Microsoft Component Object Model
(COM), so that using it here might be distracting. Let's start with two very simple
Windows 2000 Memory Manager functions that have been my primary test objects
during the development of thew?2k_call . a11 module: MmGetPhysical Address)
and MmTsaddressvalid() . Listing 6-24 shows how their thunks are implemented
with the help of w2kcall64 () and w2kca1108 () . To avoid confusion with the origi-
nal target functions, | am prefixing al thunk names with an underscore character.

PHYSICAL_ADDRESS WINAPI
_MmGetPhysicalAddress (PVOD BaseAddress)

{

PHYSICAL_ADDRESS pa,

pa.QuadPart = w2kCallé4 (0, “MmGetPhysicalAddress”, FALSE,
4, BaseAddress) ;
return pa;

}

11

BOCLEAN W NAPI
_MmIsAddressvalid (PVMOD VirtualAddress)
(
return w2kCal | 08 (FALSE, “MmIsAddressvalid”, FALSE
4, virtualAddress);

}

LISTING 6-24. Sample Thunks for MmGetPhysicalAddress () and umTsaddressvalid ()

376 CALLINGKERNEL APl FUNCTIONSFROM USER-MODE

MmGetPhysicalAddress () receivesa 32-bit linear address and returns a 64-bit
PHYSTCAL_ADDRESS Structure, which is nothing but an alias for LARGE_INTEGER.
Therefore, the thunk code callsw2kCall64 (), indicating that 4 bytes are passed in on
the argument stack, and putting the BaseAddress parameter on the list of arguments.
The default value, to be returned in case of afatal IOCTL error, is zero, which is the
valuethat the original function returns on error. Because MmGetPhysical Address ()
usesthe _stdcall convention, fFastCall is set to FaLse. The implementation of the
MmTsAddressvalid () thunk is smilar, except that only the eight least significant bits
of the spycai1ex() result, corresponding to a BOOLEAN data type, are returned. The
default return valueis set to FALSE, which is a defensive choice. mmisaddressvalid()
istypicaly caled immediately before amemory accessto avoid apotential page fault.
Therefore, returning TRUE when the actual result of the function is indeterminable
because of an IOCTL error would increase the risk of a Blue Screen.

That was easy. Now let's see how exported variabl es can be accessed in this
framework. In Ligting 6-25, two thunks, _nNtBuildnumber () and _KeService
DescriptorTable () , are shown. ntBuildnumber IS exported by ntoskrnl. exe asa
16-bit WORD type, so the appropriate w2k_call. d1l interface functionisw2kCopyl6 () .
The thunk returns zero in case of an error (if you can think of a more suitable value,
plesse let me know). The _KeServiceDescriptorTable () thunk is a bit different,
because the original KeServiceDescriptorTable address exported by ntoskrnl . exe
points to a structure that comprises more than 64 bits. In this case, the best of the avail-
able options is to return the address of the KeServiceDescriptorTable itself, rather
than reading an incomplete portion of the datait refersto. Therefore, the thunk makes
use of the w2kcopyEP () helper function included in Listing 6-23.

Y ou can imagine how excited | was when | redlized that these thunks actually
work! Then | thought: I'll try calling some very-low-level functions—thatbang directly
onto the hardware—that read and write I/O ports or thelike. Fortunately, | had designed

WORD WINAPI
_NtBuildNumber (MAD

{

return w2kCopyl6 (0O, “NtBuildNumber”);

}

PSERVICE_DESCRIPTOR_TABLE W NAPI
_KeServiceDescriptorTable (MAD

return w2kCopyEP (NUL, “KeServiceDescriptorTable”);

}

LISTING 6-25. Sample Thunks for NtBuildnumber and KeServiceDescriptorTable

ENCAPSULATING THE CALL INTERFACEIN ADLL 377

the spyModulesymbolEx () functioninListing 6-11 in away that allows resolving
symbols in any system module, including kernel-mode drivers. My next task was to
call some functions exported by the Windows 2000 Hardware Abstraction Layer
(HAL). After scanning the list of symbols contained in the export section of ha1.d1i1,

| decided to try two simple functions that are guaranteed to talk directly to the hard-
ware: HalMakeBeep () and HalQueryRealTimeClock () . The HalMakeBeep () function
reminded me of the old DOS days when it was possible to let the PC speaker squeak in
many creative ways by programming some of the hardware chips on the motherboard.
Actually, theimplementation of HalM akeBeep () looks much like one of my old assem-
bly language programs from 1987 that was able to play long sequences of music,
given an array of tone pitches and durations. Operating the PC speaker involves pro-
gramming atimer and aparallel /O (PIO) chip at the 1/O addresses 0x0042, 0x0043,
and 0x0061, so HalMakeBeep () was an ideal candidate for afirst test of athunk to a
hardware-dependent function that would also guarantee immediate audible feedback.

Listing 6-26 shows the implementation of the_ HalMakeBeep () thunk, an extra-
ordinarily simple piece of code thanks to thew?2kcall08 () helper function. Hal
MakeBeep () starts a beep tone on the speaker with the requested pitch. If the pitch
argument is set to zero, the beep is stopped. The function returns TRUE if the pitch
valueisvalid, that is, zero or greater than 18. Note that the symbol string specified in
thew2kcall08 () call includes the name of the target module, which isha1.dll in
this case. In Listings 6-24 and 6-25, no modul e was specified, because the symbols
referenced there are exported by the default module ntoskrnl. exe.

Although HalMakeBeep () isasilly function, | was extremely happy to seethe
_HalMakeBeep () thunk working. The PC speaker beeped on my request! And this
was Windows 2000, not DOS with this proof that a Win32 application can call a
HAL function that does direct hardware access. | ported my old beep sequencer
from DOS to Windows 2000, resulting in the code shown in Listing 6-27.
w2kBeep () issues a single tone of the specified pitch and duration. w2kBeepEx ()
takes an array of pitch/duration values and plays them in sequence until coming
across a zero-duration value. Both functions are exported by w2k_call .a11. Maybe
you can use them to add musical background with a classic DOS feeling to your
Win32 applications.

BOOLEAN WINAPT
_Hal MakeBeep (DNMRD Pitch)

return w2kCal108 (FALSE “hal.dll! HalMakeBeep”, FALSE,
4, Pitch) ;

}

LISTING 6-26. Thunking Down to HalMakeBeep ()

378 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

BOOL wINAPI w2kBeep (DWIRD dburation,

DWORD dPi t ch)
{
BOOL fok = TRUE
if (!_HalMakeBeep (dPitch)) fCk = FALSE;
Sl eep (dburation) ;
if (!_HalMakeBeep (0)) fCk = FALSE;
return fok;
}

11

BOOL WNAPI w2kBeepEx (D/vojo dbat a,

PDWRD pdDat a;
BOCL fOk = TRUE;

for (pdData = &dbata; pdData [0]; pdData += 2)

{
if (!w2kBeep (pdData [0], pdData [1])) fCk = FALSE
}

return £0Ok;

}

LISTING 6-27. A Smple Beep Sequencer

My next step wasto try amore useful function, such astalgueryrRealTime
clock () . | remember that accessing the on-board real-time clock in aDOS applica-
tion was at onetime considered difficult. Thisinvolvesreading and writing acouple
of hardware I/O ports. Listing 6-28 showsthe thunksto HalQueryRealTimeClock ()
and its sibling HalsetRealTimeClock (), aong with the TTve _rIELDS Structure on
which both functions operate. The rrve_rIELDs structureisdefinedinntddk. h.

typedef struct _TIME_FIELDS

SHCORT vear;

SHORT Month;

SHORT Day;

SHORT Hour;

SHORT Minute;

SHCRT Second,;

SHCRT M| seconds;

SHCRT Wekday; // 0 = Sunday

)

ENCAPSULATING THE CALL INTERFACEIN A DLL

379

TIME_FIELDS, *PTIME_FIELDS;

11

#define TIME FIELDS \
si zeof (TI ME_FI ELDS)

VA D WINAPI
_HalQueryRealTimeClock (PTIME_FIELDS TimeFields)
{
w2kCal I V (NLLL, “hal.dll!HalQueryRealTimeClock”, FALSE,
4, TimeFields) ;

return;

}

11

VO D W NAPI
_Hal Set Real Ti ned ock (pTIME_FIELDS Ti meFi el ds)
{
w2kCal | V (NULL, “hal.dll!HalSetRealTimeClock”, FALSE,
4, TimeFields) ;

return;

)

LISTING 6-28. Thunksfor HalQueryReal TimeClock () and HalsetRealTimeClock ()

Ligting 6-29 provides a typical application case of _HalQueryRealTime
clock (), displaying the current date and time in a console window.

VA D WNAPI DisplayTime (void)
{

TIME_FIELDS tf;
_HalQueryRealTimeClock (&tf) ;

printf (L”\r\nDate/Time: %02hd-%02hd-%04hd %02hd:%02hd: $02hd\r\n",
tf.Month, tf.Day, tf.Year,
tf.Hour, tf.Minute, tf. Second);

return;

}

LISTING 6-29. Displaying the Current Date and Time

380 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

Although it is great news that the kernel call interface works, it is also some-
what alarming. After al, we have been taught for years that Windows NT/2000 is a
secure operating system where an application can't do anything it likes. The average
Win32 programmer was cut off from the hardware. A more experienced NT pro-
grammer at least knew how to call Native API functionsviantdii.411. ANNT
wizard was ableto write kernel-mode driversto do things that were not allowed in
user-mode. Now, with the DLL presented here, all Win32 programmers are able to
call arbitrary kernel functionsjust like any other Win32 APl function. Isthisabig
security holein the Windows 2000 kernel ? No—the only 100% secure systemisone
that grants applications no access at all, which would be a useless system. As soon
asthereisaway to interact with the system, the system becomes vulnerable. And as
s0on as an operating system vendor allows third-party devel opers to add components
to the system, it is possible to smuggle a direct bridge into the kernel, such as the
w2k_spy.sys [w2k_call.dil pair. There is no such thing as a 100% secure system
as long as the system interacts with its environment.

DATA ACCESS SUPPORT FUNCTIONS

| have added several dozen kernel API thunkstow2k_ca11.4d11. For example, the
entire set of string management functions exposed by the Windows 2000 runtime
library ismade available by thisDLL. However, asyou experiment with these prede-
fined thunksor thunksthat you have added yourself, youwill find that calling kernel
API functions from user-mode is a bit different from calling ordinary Win32 func-
tions. The simplicity of the kernel call interfaceintroduced here tends to obscure the
fact that the calling application is till a user-mode program with limited privileges.
For example, an application might call a kernel function that returns a pointer to a
UNTCODE_STRING Structure. Most likely, this will be a pointer into kernel-mode mem-
ory, which isinvisible to the calling application. Any attempts to access the string
data will terminate the application with an exception, stating that the instruction at
an address tried to read from a forbidden address. To solve this problem | have added
support functionsto w2k_ca11. dll that provide easy access to the most common
types of datainvolved in kernel API calls.

Thew?2kspyRead () functionin Listing 6-30isageneral -purpose function that
copiesarbitrary memory data blocksto acaller-supplied buffer. Itisbased onthe
IOCTL function spy_10_meMORY_BLOCK Offered by the w2k_spy.sys spy device,
briefly described in Chapter 4. Use thisfunction to read the contents or individual
members of structures allocated in kernel memory. Itisimportant to note that
w2k SpyRead() failsif the addressrange spanned by thememory block containsinvalid
addresses. "Invalid" means that neither physical nor pagefile memory is associated
with this address. w2kspycione () isan enhanced version of w2kspyRead () that auto-
matically alocates a properly sized buffer and copies the kernel data to this buffer.

ENCAPSULATING THE CALL INTERFACE IN A DLL

381

BOOL WNAPI w2kSpyRead (pvoID pBuffer,
PVOID pAddress,
DWORD dByt es)
{
SPY_MEMORY_BLOCK snb;
BOOL fOok = FALSE;

if ((pBuffer != NULL) && (pAddress != NULL) && dBytes)
{

ZeroMemory (pBuffer, dBytes);

snb .pAddress - pAddress;
smb. dBytes = dBytes;

fk = wkSpyControl (SPY_TO MEMORY BLOCK,
&smb, SPY_MEMORY_BLOCK_,
pBuf fer, dBytes) ;
}
return fok;

)

PVMOD WNAPI w2ksSpyClone (PVAD pAddress,
DWRD dBytes)

{
PVAO D pBuffer = NULL;

if ((pAddress != NULL) && dBytes &&
((pBuffer = w2kMemoryCreate (dBytes)) != NULL) &&
(!w2kSpyRead (pBuffer, pAddress, dBytes)))

{

pBuffer = w2kMemoryDestroy (pBuffer);

}

return pBuffer;

LISTING 6-30. General-Purpose Data Access Functions

Reading strings requires a bit more work. Please recall that the most common
string type used by kernel-mode components is the UNICODE_STRING structure, com-
prising a string buffer pointer and information about the buffer size and the number

of bytes currently occupied by the string. Reading a untcope_sTrING iS usualy a

two-part task. First, the unzcope_sTrING Structure must be copied to find out the size
and address of the string buffer. In a second step, the string dataisread. To simplify
this common task, w2k_call . 411 provides the function set contained in Listing 6-31.

w2kStringAnsi () andw2kstringUnicode () alocate andinitialize empty

ANSI_STRING and UNICODE_STRING Structures, respectively, including a string buffer

382 CALLING KERNEL API FUNCTIONS FROM USER-MODE

of the specified size. For reasons of simplicity, the string header and buffer are inte-
grated into asingle memory block. These structures can be used astargetsfor string
copying, asdemonstrated by w2kstringclone () . Thisfunction createsafaithful
copy of a UNTICODE_STRING in user-mode memory. The MaximumLength of the copy is
usually equal to the original, except if the source string has inconsi stent parameters.
For exampl e, if theindicated M aximumL engthislessthan or equal totheval ue of

the Length member, it isinvalid and therefore is set to Length+2 . However, the

M aximumL ength of the copy will never be smaller than the original vaximuniength.

PANSI_STRING WINAPI W2KStringAnsi (DWRD dSize)
{

PANSI_STRING pasData = NULL;

if ((pasData= w2kMemoryCreate (ANSI_STRING_+ dSize))
1= NULL)
{
pasData->Length = 0
pasData->MaximumLength = (WIRD) dSi ze;

pasData->Buf fer PTR_ADD (pasData, ANSI_STRING) ;
if (dSze) pasbata->Buffer [0] = O;
}

return pasbDat a;

}

PUNICODE_STRING WNAPI w2kStringUnicode (DMRD dSi ze)
{
DWCRD dSizel = dSize * WORD_;
PUNICODE_STRING pusData = NULL;

if ((pusData= w2kMemoryCreate (UNICODE_STRING_+ dsizel))
= NULL)
{
pusData->Length = 0;
pusData->MaximumLength = (VWRD dS zel;
pusData->Buf fer = PTR_ ADD (pusData, UNICODE_STRING_) ;

if (d9ze) pusbata->Buffer [0] = O;
}
return pusData;

ACCESSING NONEXPORTED SYMBOLS 383

PUNICODE_STRING WINAPI w2kStringClone (PUNICODE_STRING pusSource)
{
DWRD dsize;
UNICODE_STRING usCopy;
PUNICODE_STRING pusData = NULL;

if (w2kSpyRead (&usCopy, pusSource, UNICODE_STRING_))
{
dSize = max (usCopy.Length + WORD_,
usCopy. Maxi nuniength) / WORD_;

if (((pusbData= w2kStringUnicode (dSize)) != NULL) &&
usCopy .Length && (usCopy.Buffer != NULL))
{
if (w2kSpyRead (pusData->Buffer, usCopy .Buffer,
usCopy. Length))
{
pusDat a- >Lengt h = usCopy .Length;
pusData->Buffer [usCopy.Length/ WORD_] = O;
}
el se
{
pusDat a = w2kMemoryDestroy (pusData) ;
}
}
}

return pusDat a;

}

LISTING 6-31. Sring Management Functions

Another way of copying akernel string down to the application memory space
isto use one of the kernel runtime functions. For example, you can use a combina-
tion of the _RtlInitUnicodeString () and _rticopyunicodestring () thunks pro-
vided by w2k_ca11.d11 to achieve a similar effect. However, cdling
w2kStringClone () iSusually easier, because this function automatically allocates the
memory required for the string copy.

ACCESSING NONEXPORTED SYMBOLS

What we have achieved so far is to enable an application to execute operations that
formerly were reserved to kernel-mode drivers. Can we enhance an application with
capabilities that not even akernel-mode driver has? Can we call internal functions
that are neither documented nor exported? This sounds dangerous, but, as | will
show in this section, it is not as bad as it might seem, if handled with care.

384 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

LOOKING UP INTERNAL SYMBOLS

The kernel call interface described in the previous sections delegated the task of
looking up the addresses of exported symbols to the spy device, which has full
access to the PE images of the kernel modules residing in the upper half of the
linear address space. However, if the function to be called or the global variable to
be accessed is not exported, the spy device has no chance to find out its address.
While writing this chapter and examining some disassembly listing emitted by the
Kernel Debugger, | frequently thought: "What a pity that they don't export this
nifty function!” What made me especially angry was that the Kernel Debugger
showed me the exact function name, but my application code was absolutely
ignorant of it. Of course, | could have used my kernel call interface to jump
through the plain binary entry point of the function, but that's not good program-
ming style. The next service pack might shift this entry point to a completely
different address.

| reasoned that if the Debugger can do it, my application aso should be able
to doit. A sample DLL described in Chapter 1 put me on the right track. The
w2k_img.d11 provides everything needed to look up the address of any symbol
defined by the Windows 2000 kernel modules, provided that the operating sys-
tem's symbol files are properly installed. So | extended thew2x_ca11.411 by an
API function that first resolves an internal symbol to its linear address and then
usesw2kcall () to execute it. Of course, an analogous function is provided for
global variables.

Listing 6-32 shows the complete set of extended call interface functions.
Again, a separate convenience function is provided for each major function type,
corresponding to the functionsin Listings 6-20 to 6-22. w2kxca11 () iSthemain
workhorse. It callsthe w2k_img.a11 APl function imgrableresolve () toretrieve
the address of the supplied symbol and, if successful, specifiesit in a subsequent
invocation of w2kcall () . Becausew2kCall () is supposed to call an address
instead of a symbol, aNULL pointer is passed in for its pbsymbo1 argument. The
pEntryPoint argument is set to the symbol address pie->pAddress just retrieved
from the symbol files. As explained in Chapter 1, w2k_img.a11 isableto determine
the calling conventions of most internal functions, so the fFastcall argument
can be set up automatically by testing the value of pie->dconvention for tuc
CONVENTTON_FASTCALL . The number of argument bytes and the pointer to the
arguments are forwarded as received from the caller. It would have been possible
to retrieve the number of arguments from the symbol information as well, but this
workswith___ stdcall and___ fastcall functions only._ cdec1 symbols don't
encode the argument stack size in their decoration.

ACCESSING NONEXPORTED SYMBOLS

BOOL WINAPI w2kXCall (PULARGE_INTEGER puliResult,

PBYTE pbSymbol ,
DWRD dArgumentBytes,
PVOID pArguments)
{
PIMG_TABLE pit;
Pl M5 ENTRY pi €;
BOCL fok = FALSE;
if (((pit = w2kSymbolsGlobal (NULL)) = NULL) &&
((pie = ingTabl eResol ve (pit, pbSymbol)) !'= NULL) &&
(pie->pAddress ! = NULL))
{
fCk = w2kCall (puliResult, NULL, pie->paAddress,
pi e->dConventi on == IMG_CONVENTION_ FASTCALL,
dArgumentBytes, pArguments) ;
}
el se
{
if (puliResult != NULL) puliResult->QuadPart = 0;
)
return fok;

}

11

BOOL WNAPI w2kXCal | V (PULARGE_INTEGER pul i Resul t,
PBYTE pbSymbol ,
DWORD dArgumentBytes ,
2)
{
return w2kXCal | (puli Result, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1) ;

NTSTATUS W NAPI w2kXCal | NT (PBYTE pbSynbol ,
DWRD dArgumentBytes,

2

ULARGE_| NTEGER uliResult;

return (w2kxCall (&uliResult, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1)

? uliResult .LowPart
. STATUS_IO_DEVICE_ERROR) ;

(conti nued)

38 CALLING KERNEL APl FUNCTIONS FROM USER-MODE

BYTE WINAPI w2kXCall08 (BYTE bDefault,
PBYTE pbSymbol,
DWRD dArgumentBytes,
2)
f
ULARGE_INTEGER ul i Resul t;

return (w2kXCall (&uliResult, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1)

? (BYTE uliResult. LowPart
. bbDefault) ;

WORD WNAPI w2kXCallle (WIRD wbhefault,
PBYTE pbSymbol,
DWRD dArgumentBytes,
.)

{
ULARCE | NTEGER ul i Resul t;

return (wW2kXCall (&uliResult, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1)

? (WRD uliResult .LowPart
: whefault) ;

DWORD WNAPI w2kXCall32 (DWNRD dDefaul t,
PBYTE pbSymbol,
DWIRDdArgument Byt es,
)

{
ULARGE_INTEGER ul i Resul t;

return (wW2kXCall (&uliResult, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1)

? uliResult .LowPart
. dpefault) ;

s —_ -

ACCESSING NONEXPORTED SYMBOLS 387

QWORD WINAPI w2kXCall64 (QWORD qgDefault,
PBYTE pbSymbol,
DWRD dArgumentBytes,
)

{
ULARGE | NTEGER ul i Resul t;

return (w2kxCall (&uliResult, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1)

? uliResult .Quadpart
. gbefault) ;

1

PVOID WNAPI w2kXCal | P (PvOID pDefaul t,
PBYTE pbSymbol,
DWRD dArgumentBytes,
)
{

ULARGE_INTEGER ul i Resul t;

return (w2kxCall (&uliResult, pbSynbol,
dArgumentBytes, &dArgumentBytes + 1)

? (PMOD uliResult. LowPart
. phefault) ;

}

LISTING 6-32. The Extended Call Interface

Notein Listing 6-32 that w2kxca11 () invokesw2ksymbolsGlobal () before
doing anything ese. This function is included in Listing 6-33, along with some
helpers, and its purposeisto load thentoskrnl . exe symbol as soon asthefirst
w2kxcall () isexecuted. Thetableis stored in the global p1vc_TaRLE variable named
gpit, SO subsequent callscanreuseit. With support of some hel per functions,
w2kSymbolsLoad () returnsone of the status codeslisted in Table 6-2 viathe optional
* pdstatus argument. To avoid jumping to an invalid address because of unmatched
symbol information, w2ksymbolsLoad () carefully checksthetime stamp and check
sum of the symbol files against the corresponding fieldsin the memory-resident
image of the target module using the w2kPeCheck () API function (not reprinted) and
discards the symbol table if they don't match exactly.

388 CALLING KERNEL API FUNCTIONS FROM USER-MODE

PIMG_TABLE WINAPI w2kSymbolsLoad (PBYTE pbModule,
PDWORD pdStatus)

{
PVOID pBase;
DWORD dStat us = W2K_SYMBOLS_UNDEFINED;

Pl M5 TABLE pi t = NULL;

if ((pBase= i ngMbdul eBaseA (pbModule)) == NULL)
{

dSt at us = W2K_SYMBOLS_MODULE_NOT_FOUND;
}
el se

{
if ((pit=ingTabl eLoadA (pbMdul e, pBase)) == NULL)

{

dStat us = W2K_SYMBOLS_LOAD_ERROR;
}
el se

{
if (iw2kPeCheck (pbMdul e, pit->dTi neStanp,

pit->dCheckSum))

{

dSt at us = W2K_SYMBOLS_CHECKSUM_ERROR;
pit = imgMemoryDestroy (pit);

}

el se

{

dStat us = W2K_SYMBOLS_OK;

}

}
if (pdStatus !=NULL) *pdStatus = dstatus;

returnpit;

}

Pl M5 TABLE WNAPI w2kSymbolsGlobal (PDARD pdSt at us)

{

DWRD dStatus = W2K_SYMBOLS_UNDEFINED;

Pl M5 TABLE pi t = NULL;

w2kSpyLock () ;

if ((gdStatus== W2K_SYMBOLS_OK) && (gpit == NULL))

{

ACCESSING NONEXPORTED SYMBOLS 389

gpit = w2kSymbolsLoad (NJLL, &gdStatus) ;
}

dStatus = gdStatus;

pit = gpit;

w2kSpyUnlock () ;

if (pdStatus != NULL) *pdstatus = dStatus;
return pit;

}

DWRD WINAPI w2kSymbolsStatus (MAD
DWRD dStatus = W2K_SYMBOLS_UNDEFINED;

w2kSymbolsGlobal (&dStatus);
return dStatus;

}

VA D WNAPI w2kSymbolsReset (VA D)

{
w2kSpyLock () ;

gpi t = imgMemoryDestroy (gpit) ;
gdStatus = W2K_SYMBOLS_OK;

w2kSpyUnlock () ;
return;

)

LISTING6-33. The Symbol Table Manager Functions

The w2ksymbolsStatus () and w2ksymbolsReset () functions at the bottom
of Listing 6-33 are used to load and unload the symbol table on demand. w2ksymbols
status () attemptsto load the symbol tableif it isn't already present and returnsiits
status. If w2k_call.d11 already tried to load the table without success, the function
simply returns the last error status (Table 6-2) unless the symbol tableisreset by a
w2ksymbolsReset () call. The latter function also destroys the memory block occu-
pied by the symbol table, if any, forcing a complete symbol reload on the next request
that involvesthentoskrnl . exe symbol table.

390 CALLING KERNEL API FUNCTIONS FROM USER-MODE

TABLE 6-2. w2kSymbolsLoad() Satus Codes

STATUS CODE DESCRIPTION
W2K_SYMBOLS_OK Themodul€'ssymbol tablehasbeenloaded
W2K_SYMBOLS_MODULE_ERROR The moduleisnot residentin memory
W2K_SYMBOLS_LOAD_ERROR The modul€e's symbol files couldn't be loaded
W2K_SYMBOLS_VERSION_ERROR The symbol files don't match the resident

module image

W2K_SYMBOLS_UNDEFINED The symbol table status is undefined

Thew2kxcopy* () function set making up the extended copy interfaceisshown
in Listing 6-34, which correspondsto Listing 6-23 above. w2kxcopy () Simply cals
w2kxcall () withanegative valuefor dargumentBytes, and the remaining copy
functions are merely wrappers with simplified argument lists.

BOOL WINAPI w2kXCopy (PULARGE_INTEGER puli Result,
PBYTE pbSymbol ,
DWORD dBytes)
{
return w2kxCall (puliResult, pbSynbol,
OKFFFFFFFF - dBytes, NULL) ;

}

BYTE WNAPI wW2kXCopy08 (BYTE bDefault,
PBYTE pbSynbol)
{
ULARGE_INTEGER ul i Result;

return (W2kXQopy (&iliResult, pbSynbol, 1)

? (BYTE) uliResult.LowPart
. bbefault) ;

11

VIRD WNAPI w2kXCopyl6 (VIRD wDefaul t,
PBYTE pbSynbol)
{

ULARGE_INTEGER ul i Result;

return (w2kXCopy (&uliResult, pbSynbol, 2)
? (WRD uliResult.LowPart
: whbefault) ;

ACCESSING NONEXPORTED SYMBOLS 391

DWORD wINaPI W2kXCopy32 (DWRD dpefault,
PBYTE pbSymbol)
{

ULARGE_INTEGER ul i Resul t;

return (wW2kXOopy (&uliResult, pbSynbol, 4)
? uliResult . LowPart
. dDefault) ;

QANCRD W NAPI w2k XCopy64 (QWORD gDef aul t,
PBYTE pbSymbol)

{

ULARGE_INTEGER ul i Result;

return (W2kXQopy (&uliResult, pbSynbol, 8)
? uliResult .QuadPart
. gbefault) ;

/7

PVOID WNAP w2kXCopyP (PvOID pDefaul t,
PBYTE pbSymbol)
{

ULARGE_INTEGER ul i Resul t;

return (wW2kXopy (&uliResult, pbSymbol, 4)
? (PMO D uliResult. LowPart
. pbefault) ;

PVA D WNAPI w2kxCopyEP (PVAD pDefaul t,
PBYTE pbSynbol)
{

ULARGE_INTEGER uliResult;

return (W2kXCopy (&uliResult, pbSynbol, O0)
? (PMOD uliResult. LowPart
. pbefault) ;

LISTING 6-34. The Extended Copy Interface

392 CALLING KERNEL API FUNCTIONS FROM USER-MODE

IMPLEMENTING KERNEL FUNCTION THUNKS

The same guidelines apply to the implementation of thunks for internal kernel func-
tions as for exported API functions, except that only functionsinside ntoskrnl . exe
can be called. This restriction is imposed by the symbol table manager inside
w2k_call.dll, not by thecall interfaceitself. To simplify matters, only the

ntoskrnl . exe symbol tableisloaded, because thisis the module where the most
interesting symbols are found (of course, w2k_ca11. dll could have been enhanced to
load multiple tables on request). Listing 6-35 comprises two sample thunks for inter-
nal functions of the Windows 2000 object manager that return information about
type objects (object types will be discussed in detail in Chapter 7).

Listing 6-36 shows three thunks for some very important internal data struc-
tures that will be used by the sample code in Chapter 7. Note that | have prefixed the
names of al thunks that use the extended kernel call interface with two underscores.
Thisisjust areminder that this function will work only with a proper set of symbol
files. If youinstall a service pack without also updating the symbol files, w2ksymbols
Load () will refuse to load any symbols and the thunks will fail and return default
values. On the other hand, the thunks with a single leading underscore should con-
tinue to work with unmatched symbol files, because they resolve symbols on the
basis of the memory-resident export tables of the new modules. However, they may
fail aswell after an update if the updated modules fail to export al referenced API
functions or some argument lists have been changed.

NTSTATUS WINAPI
__ ObQueryTypeInfo (POBJECT_TYPE ObjectType,
PCBJECT_TYPE | NFO Typelnfo,
/* bytes */ DWRD TypeInfoLength,
/* init to O */ PDWORD ReturnLength)
{
return w2kXCallNT (“ObQueryTypeInfo”,
16, CbjectType, Typelnfo, Typel nfolLength,
Ret urnLengt h) ;

NTSTATUS W NAPI
__ObQueryTypeName (PCBIECT oj ect,
POBJECT_NAME_INFORMATION NameString,
/* bytes */ DNRD NameStringLength,

ACCESSING NONEXPORTED SYMBOLS 393

PDWORD Ret ur nLengt h)
{
return w2kxCallNT (“ObQueryTypeName”,
16, bj ect, NameString, NameStringLength,
ReturnLength) ;

}

LISTING 6-35. Sample Thunksfor obQueryTypeInfo () and 0bQueryTypeName ()

PERESCDRCE WINAPI
~_ QopRoot DirectoryMitex (VA D
{

return w2kxCopyP (N.LL, “ObpRootDirectoryMutex”) ;

}
1

PCBIECT_DI RECTCRY W NAPI
___ObpRootDirectoryObject (MAD)

{

return w2kXCopyP (NULL, “ObpRootDirectoryObject”);

}

11

PCBJECT_DI RECTCRY W NAPI
__ ObpTypeDirectoryObject (VA D)
{

return w2kXCopyP (NULL, “ObpTypeDirectoryObject”);

)

LISTING 6-36. Sample Thunksfor Some Internal Variables

This should suffice for now. You may be a bit disappointed that | am not adding
sample code here to demonstrate the usage of the w2k_ca11.d11 API functions. Don't
worry—you Will get your sample code in the next chapter.

CHAPTER

Windows 2000
Object
Management

hereis hardly anything more fascinating in the internal s of Windows 2000 than

the world of its objects. If the memory space of an operating system is viewed as
the surface of aplanet, the objects are the creatures living on it. Several types of
objects exist—small and large ones, ssmple and complex ones—and they interact in
variousways. Windows 2000 features aclever, well-structured object management
mechanism that is almost completely undocumented. This chapter attempts to give
you a small insight into this huge, complex universe. Unfortunately, this part of
Windows 2000 is one of the best-kept secrets of Microsoft, and many questions must
be left unanswered here. However, | hope that this chapter will serve as a starting
point for others, helping them to go "where no man has gone before."

WINDOWS 2000 OBJECT STRUCTURES

The companion CD of this book contains a large header file named w2xk_def.hin
the \src\common\ include directory that makes the heart of a Windows 2000 system
programmer throb with joy. It is a large collection of constant and type definitions,
resulting from years of Windows NT/2000 spelunking. Thew2x_def . hfileis
designed to be included in Win32 applications aswell as kernel-mode drivers, using
conditional compilation to account for their different build environments. For
example, Win32 applications can't make use of the ntdef .h and ntadk. n files that
contain most of the kernel data type definitions. Therefore, w2k_def . h includes all
#define’Sand typedef’ s found inthe Device Documentation Kit (DDK) header
files that are required in the definitions of the undocumented items. To avoid
redefinition errorsin akernel-mode driver build, these definitions are put into an
#ifdef _user_mope_ clause, so they are ignored by the compiler if the _user_moDE
symbol is not defined. This means that you must put a #define _user_MODE_ line

395

3% WINDOWS 2000 OBJECT MANAGEMENT

into your source code before including w2k_def . h to enable the processing of the
DDK definitionsin aWin32 application or DLL build. The #else clause of the
#ifdef UsER_MODE_ construct contains a small number of definitions that are miss-
ing from the Windows 2000 DDK header files, such as the SECURITY _DESCRIPTOR
and SECURITY_DESCRIPTOR_CONTROL types.

BASIC OBJECT CATEGORIES

Although objects are clearly the gist of the Windows 2000 operating system, you will
find remarkably little information about their inner structure in the DDK. Out of the
21 Ob* () object manager API functions exported by ntoskrni . exe, only 6 are listed
in the DDK documentation. API functions that receive pointersto objects as argu-
ments usually define these pointers as simple pvo1p types. If you search the main DDK
header filesntaef. h and ntdak. h for occurrences of type definitions that somehow
are related to objects, you won't find much useful information. Some important object
datatypes are defined as placeholders only. For example, the orgecT_TYPE Structure
appears as typedef StruCt _OBJECT TYPE *POBJECT TYPE; just to keep the compiler
happy, without revealing anything useful about its internals.

Whenever you come across an object pointer, you should view it as alinear
address that divides a memory-resident structure into two parts: an object header
and an object body. The aobject pointer doesn't point to the base address of the
object itself, but to its body section that immediately follows the header. Therefore,
the header parts of an object must be accessed by applying negative offsets to the
object pointer. The internals of the object body are completely dependent on the type
of object and may vary considerably. The most simple object is the event object with
its 16-byte body. Among the most complex ones are thread and process objects,
which are severa hundred bytes. Basically, the object body types can be sorted into
the following three main categories:

1 Dispatcher objects reside on the lowest system level and share a
common data structure called prspaTcuER_HEADER (Listing 7-1) at the
beginning of their object bodies. This header contains an object type ID
and the length of the object body in 32-bit DWORD units. The names of
all dispatcher object structures start with a K for "kernel." The presence
of aprspaTcHER_HEADER makes an object “waitable.” This means
that the object can be passed to the synchronization functions
KeWaitForSingleObject () and KeWaitForMultipleObjects (),
which are the ones the Win32 API functions waitForsingleobject ()
and waitForMultipleObjects () are built upon.

WINDOWS 2000 OBJECT STRUCTURES 397

typedef struct _DISPATCHER_HEADER
{

/*000*/ BYTE Type; /I DISP_TYPE_*
/*001*/ BYTE Absolute;

/*002*/ BYTE Size; /I number of DWORDs
/*003*/ BYTE Inserted;

/*004*/ LONG SignalState;

/*008*/ LIST_ENTRY WaitListHead;
/*010%/ }
DISPATCHER_HEADER,
* PDISPATCHER_HEADER,
**PPDISPATCHER_HEADER;

LISTING 7-1 Definition ofthe DISPATCHER_HEADER

2. 1/0 system data structures are higher-level objects whose body starts
with a SHORT member specifying an object type ID. Usualy, thisID is
followed by another SHORT or WORD member indicating the object body
sizein 8-bit BYTE units. However, not all objects of this category follow
this guideline.

3. other objects—some objects fit into neither of the above categories.

Note that the type IDs of dispatcher objects and I/O system data structures—
named I/O objects from now on—are assigned independently and hence overlap.
Table 7-1 lists the dispatcher object types of which I'm currently aware. Some of the
structures in the "C Structure” column are defined in the DDK header filentddk.h.
Unfortunately, the most interesting ones, such as KPROCESS and KTHREAD, are miss-
ing. Don't worry, however—these special object types will be discussed in detail later
in this chapter. All undocumented structures whose internals are at least partially
known to me are included in the header file w2k_def.h on the companion CD, as
well as in Appendix C of this book.

TABLE 71 Summary of Dispatcher Objects

ID TYPE C STRUCTURE DEFINITION
0 DISP_TYPE NOTIFICATION_EVENT KEVENT ntddk.h
1 DISP_TYPE_SYNCHRONIZATION_EVENT KEVENT ntddk.h
2 DISP_TYPE_MUTANT KMUTANT, KMUTEX ntddk.h
3 DISP_TYPE PROCESS KPROCESS w2k_def.h
4 DISP_TYPE QUEUE KQUEUE w2k_def.h

(continued)

398 WINDOWS 2000 OBJECT MANAGEMENT

TABLE 7-1. (continued)

ID TYPE C STRUCTURE DEFINITION
5 DISP_TYPE_SEMAPHORE KSEMAPHORE ntddk.h
6 DISP_TYPE_THREAD KTHREAD w2k_def.h
8 DISP_TYPE_NOTIFICATION_TIMER KTIMER ntddk.h
9 DISP_TYPE_SYNCHRONIZATION_TIMER KTIMER ntddk.h

Table 7-2 summarizes the I/O objects | have identified so far. Only the first 13
IDs are defined in ntadk. h. Again, some of the structuresin the “C Structure” col-
umn can be looked up in the DDK. Some of the remaining ones are included in
w2k_def. h and in Appendix C of this book.

TABLE 72 Summary of 1/0 Objects

1D TYPE C STRUCTURE DEFINITION
1 10_TYPE_AD APTER ADAPTER_OBJECT
2 [O_TYPE_CONTROLLER CONTROLLER_OBJECT ntddk.h
3 10_TYPE_DEVICE DEVICE_OBJECT ntddk.h
4 IO_TYPE_DRIVER DRIVER_OBJECT ntddk.h
5 10_TYPEFILE FILE_OBJECT ntddk.h
6 10 TYPE IRP [RP ntddk.h
7 IO_TYPE_MASTER_ADAPTER
8 IO_TYPE_OPEN_PACKET
9 IO_TYPE_TIMER 10_TIMER w2k_def.h
10 10 TYPE VPB VPB ntddk.h
11 IO_TYPE_ERROR_LOG IO_ERROR_LOG_ENTRY w2k_def.h
12 10_TYPE_ERROR_MESSAGE IO_ERROR_LOG_MESSAGE ntddk.h
13 IO_TYPE_DEVICE_OBJECT_ EXTENSION DEVOBJ_EXTENSION ntddk.h
18 10 TYPE APC KAPC ntddk.h
19 10 TYPE DPC KDPC ntddk.h
20 10_TYPE_DEVICE_QUEUE KDEVICE_QUEUE ntddk.h
21 IO_TYPE_EVENT_PAIR KEVENT_PAIR w2k_def.h
22 IO_TYPE_INTERRUPT KINTERRUPT
23 IO_TYPE_PROFILE KPROFILE

WINDOWS 2000 OBJECT STRUCTURES 399

THE OBECT HEADER

The body of an object can assume any form suitable for the creator of the object. The
Windows 2000 object manager doesn't impose any restrictions on the size and struc-
ture of the object body. Contrary to this, there is much less freedom with the header
portion of an object. Figure 7-1 shows the memory layout of afull-featured object,
with the maximum number of header fields. Every object features at least a basic
OBJECT_HEADER structure, immediately preceding the object body, plus up to four
optional structures that supply additional information about the object. As already
noted, an object pointer aways refers to the object body, not to the header, so the
header fields are accessed via negative offsets rel ative to the object pointer. The basic
header contains information about the availability and location of additional header
fields, which are stacked up on the orgECcT_HEADER Structure in the order shown in
Figure 7-1, if present. However, this sequence isn't mandatory, and your programs
should never rely on it. The information in the OBJECT HEADER is sufficient to locate
al header fields regardless of their order, aswill be shown in a moment. The only
exception is the orgeECcT_CREATOR_INFO Structure that always precedes the
OBJECT_HEADER immediately if it is included.

OBJECT_QUOTA_CHARGES | 0x10 Bytes |

OBJECT HANDLE DB | 0x08 Bytes

OBJECT_NAME 0x10 Bytes

OBJECT_CREATOR_INFO | 0x10 Bytes

OBJECT_HEADER 0x18 Bytes

POBJECT —p

“0Omemwo

FIGURE 7-1. Memory Layout ofan Object

400 WINDOWS 2000 OBJECT MANAGEMENT

Listing 7-2 shows the definition of the OBJECT_HEADER structure. Its members
serve the following purposes:

* The PointerCount member indicates how many active pointer
references to this object currently exist. This valueis similar to the
reference count maintained by Component Object Model (COM)
objects. Thentoskrnl. exe APl functions obfreferenceObject()
ObReferenceObjectByHandle (), ObReferenceObjectByName (), and
ObReferenceObjectByPointer() increment the PointerCount, and
ObfDereferenceObject () and ObDereferenceObject () decrement it.

* TheHandlecount member indicates how many open handles currently
refer to thisobject.

#define OB_FLAG_CREATE_INFO 0x01 // has CBIECT_CREATE | NFO
#def i ne OB_FLAG_KERNEL_MODE 0x02 // created by kernel
#define OB _FLAG_CREATOR_INFO Ox04 // has COBIJECT_CREATCR | NFO

#def i ne OB_FLAG_EXCLUSIVE 0x08 // CBI_EXALUSI VE
#define OB_FLAG_PERMANENT 0x10 // OBJ_PERMANENT
#define OB_FLAG_SECURITY 0x20 // has security descriptor

#define OB_FLAG_SINGLE_PROCESS 0x40 // no HandleDBList

typedef struct _OBJECT_HEADER

{
/*000*/ DWORD PointerCount; /1 nunber of references
/*004*/ DWCRD Handl eCount ; /1 nunber of open handl es
/*008*/ PCBIECT_TYPE ObjectType;
/*00Cc*/ BYTE NameOffset; /!l -> OBJECT_NAME
/*00D*/ BYTE HandleDBOffset; /! -> OBJECT_HANDLE_DB
/*00E*/ BYTE QuotaChargesOffset; [/ -> OBJECT_QUOTA_CHARGES
/*00F*/ BYTE ObjectFlags; /1 CB_FLAG *

/*010*/ union
{ /! OB_FLAG_CREATE_INFO ? ObjectCreateInfo : QuotaBlock

/*010%*/ PQUOTA_BLOCK Quot aBl ock;
/*010%/ PCBIECT_CREATE | NFO ObjectCreatelInfo;
/*QL4*/ }s

/*014*/ PSECURITY_DESCRIPTOR SecurityDescriptor;
/*018*/ }

OBJECT_HEADER,
* POBRJECT_HEADER,
* * PPOBJECT_HEADEE

LISTING 7-2 The OBJECT_HEADER Structure

WINDOWS 2000 OBJECT STRUCTURES 401

* The objectType member points to an oegecT_TvPE Structure (described
later) representing the type object that has been used in the creation of
this object.

» Thenameoffset specifies the number of bytes to be subtracted from tne
OBJECT_HEADER address to locate the object header's ossecT navE portion.
If zero, this structure is not available.

» ThenandlepBoff set specifies the number of bytes to be subtracted from
theOBJECT_HEA DERaddresstol ocatetheobjectheader's
OBJECT_HANDLE_DB portion. If zero, this structure is not available.

» The Quotachargesof f set specifies the number of bytes to be subtracted
fromtheOBJECT_HEADERaddresstol ocatetheobjectheader's
OBJECT_QUOTA_CHARGES portion. If zero, this structure is not available.

» The obj ectFlags specify various binary properties of an object, as listed
in the top section of Listing 7-2. If the OB_FLAG_CREATOR_INFO bit is s,
the object header includes an OBJECT_CREATOR_INFO structure that
immediately precedes the ossecT_neaDER. Inwindows NT/2000 Native
API reference, Gary Nebbett mentions these flags with slightly different
names in his description of the systemobiectnformation class of the
zwQuerySystemInformation () function (Nebbett 2000, p. 24), as shown
in Table 7-3.

» The QuotaBlock and objectcreaternfo members are mutually exclusive.
If the obj ectFlags member has the or_rrac_creaTe_1nro flag s, this
member containsapointertotheOBJECT_CREATE_INFOstructure
(described later) used in the creation of this object. Otherwise, it pointsto
aouoTa_Brock that provides information about the usage of the paged
and nonpaged memory pools. Many objects have their QuotaBlock
pointer set to the internal PspDefaultQuotaBlock structure. The vaue of
this union can be NULL .

» The securityDescriptor member points to a SECURITY_DESCRIPTOR
structure if the OB_FLAG_SECURITY bit of the obj ectFlags is .
Otherwise, its valueisNULL .

In the above list, several structures have been mentioned that weren't discussed
in detail so far. Each of them will be introduced now, starting with the four optional
header parts shown in Figure 7-1.

402 WINDOWS 2000 OBJECT MANAGEMENT

TABLE 7-3. Comparison of ObjectFlags Interpretations

SCHREIBER VALUE NEBBETT
OB_FLAG_CREATE_INFO 0x01 N/A
OB_FLAG_KERNEL_MODE 0x02 KERNEL_MODE
OB_FLAG_CREATOR_INFO 0x04 CREATOR_INFO
OB_FLAG_EXCLUSIVE 0x08 EXCLUSIVE
OB_FLAG_PERMANENT 0x10 PERMANENT
OB_FLAG_SECURITY 0x20 DEFAULT_SECURITY_QUOTA
OB_FLAG_SINGLE_PROCESS 0x40 SINGLE_HANDLE_ENTRY

THE OBJECT CREATOR INFORMATION

The orgecT_HEADER Of an object is immediately preceded by an oBJECT CREATOR_INFO
structure if the oB_rrac_creaTor_INFO hit Of itS objectFlags member is set. The
definition of this optiona header part is shown in Listing 7-3. The objectList mem-
ber isanodewithin adoubly linked list (cf. Listing 2-7 in Chapter 2) that connects
objects of the same type to each other. As usual, thislist iscircular. The list head
where the object list originates and ends is located within the ossecT_TvPE Structure
that represents the common type object of the list members. By default, only Port
and waitablerort Objectsinclude ossecT creaTor_1nrFO datain their headers. The
System@bjectInformationdEGS of the ZwQuerySystemInformation() APl function
usesthe objectrist to return complete lists of currently allocated objects, grouped
by aobject type. Gary Nebbett points out inwindows NT/2000 Native APl Reference
that “|...] thisinformation classis only availableif FLc_MATNTATN_OBJECT TYPELIST
was st in the NtGlobal Flags at boot time" (Nebbett 2000, p. 25).

typedef struct _CBIJECT CREATCR | NFO

{
/*000*/ LIST_ENTRY (bj ectList; /1 CBIECT_CREATCR | NFO
/*008*/ HANDLE UniqueProcessId;
/*00C*/ WORD Reservedl;
/*00E*/ WORD Reserved2;
/*010%*/ }

OBJECT_CREATOR_INFO,
* POBJECT_CREATOR_INFO,
* * PPCBJECT_CREATOR_INFC

LISTING 7-3. The oegect CREATOR INFO Structure

WINDOWS 2000 OBJECT STRUCTURES 403

The uniquepProcess1d is the zero-based numeric ID of the process that created
the object. Although defined as a uanpre, this member is not a handle in the usual
sense. It might be described more accurately as an opague 32-bit unsigned integer.
Actually, the Win32 cetcurrentprocess1d() APl function returns these HANDLE
values as DWORD types.

THE OBJECT NAME

If the nameo£f set member of the OBJECT HEADER is nonzero, it specifies the inverse
offset of an orgEcT NaME structure with respect to the base address of the
OBJECT_HEADER. Typica values are ox10 or 0x20, depending on the presence of an
OBJECT_CREATOR_INFO header part. Listing 7-4 shows the definition of the
OBJECT_NAME Structure. The Name member iS a unICODE_STRING WhOSe Buf fer
member points to the name string, which is usually not part of the memory block
containing the object. Not al named objects use an oegecT _name structure in the
header to store the name. For example, some objects rely on a oueryNamepProcedure ()
provided by their associated oBJECT TYPE .

If the pirectory member isnot NULL , it points to the directory object repre-
senting the layer in the system's object hierarchy where this object islocated. Like
filesin afile system, Windows 2000 objects are kept in a hierarchically structured
tree consisting of directory and leaf objects. More details about the orgecT
DIRECTORY structure follow in @ moment.

typedef struct CBIECT NAME
{
/*000*/ POBJECT_D RECTCRY Directory;
/*004*/ UNICODE_STRING Nane;
/*00C*/ DWORD Reser ved;
/*010%*/ }
OBJECT_NAME,
* POBJECT_NAME,
** PPCBJECT_NAME;

LISTING 7-4. The osgecT NAME Structure

THE OBJECT HANDLE DATABASE

Some objects maintain process-specific handle counts stored in a so-called "handle
database." If this is the case, the HandleDBOf f set member of the OBJECT HEADER
contains a nonzero value. Just like the NameOf f set described above, thisis an offset
to be subtracted from the base address of the OBJECT HEADER to locate this header

404 WINDOWS 2000 OBECT MANAGEMENT

part. The ossecT_nanDLE_DB structure is defined in Listing 7-5. If the oB_rLac_
siNGLE_PROCESS flagis setin the objectrlags, the Process member of the union
at the beginning of this structureisvalid and pointsto aprocess object. If more
that one process holds handles to the object, the oB_rLaAc_sINGLE_PROCESS

flagis cleared, and the HandleDBList member becomes valid, pointing to an
OBJECT_HANDLE_DB_LIST that constitutes an array of oBJECT HANDLE_DB Structures,
preceded by acount value.

typedef struct _OBJECT_HANDLE_DB

{

/*000*/ uni on
{

/*000*/ struct _EPROCESS *Process;
/*000%/ Struct _OBJECT HANDLE_DB_LIST *HandleDBList;
/*004*/ ¥
/*004*/ DWIRD HandleCount;
/*008%/ }

OB JECT_HANDLE_DE,
* POBJECT_HANDLE_DB,
* * PPOBJECT_HANDLE_DB;

#define OBJECT_HANDLE_DB_ \
Si zeof (OBJECT_HANDLE_DB)

11

typedef struct OBIJECT HANDLE DB LI ST

{
/*000*/ DWIRD Count;
/*004*/ OBJECT_HANDLE_DB Entries [] ;
[*22?2%] }

OBJECT_HANDLE_DB_LIST,
* POBJECT_HANDLE_DB_LIST,
**PPOBJECT_HANDLE_DB_LIST;

#def i ne OBJECT_HANDLE_DB_LIST_ \
si zeof (OBJECT_HANDLE_DB_LIST)

LISTING 7-5. The OBJECT nawpLe_DE Sructure

RESOURCE CHARGES AND QUOTAS

If aprocess opens ahandle to an object, the process must "pay" for usage of system
resources caused by this operation. The paid dues are referred to as charges, and the

WINDOWS 2000 OBJECT STRUCTURES 405

upper limit a process may spend for resources is termed the quota. In the glossary of
the DDK documentation (Microsoft, 2000F), Microsoft defines the "quota" term in
the following way:

QUOTA

A per-process limit on the use of system resources.

For each process, WindowsNT®/Windows® 2000 sets limits on certain system resources the
process's threads can use, including quotas for paging-file, paged-pool, and nonpaged-pool
usage, etc. For example, the Memory Manager “chargesquota” against the process as its
threads use page-file, paged-pool, or nonpaged-pool memory; it also updates these values
when threads release memory. (Windows 2000 DDK \ Kernel-Mode Drivers\ Design Guide\
Kernel-Mode Glossary \ Q \ quota)

By default, anobject'sOBJECT _TY PE determinesthechargestobeappliedfor
paged/nonpaged pool usage and security. However, this default can be overridden by
adding an orJECT_ouoTA_CHARGES Structure to the object header. The location of this
data relative to the OBJECT HEADER base address is specified by the QuotaChargesOf f set
member of the oBsECcT_HEADER as an inverse offset, as usual. Listing 7-6 shows the struc-
ture definition. The usages of the paged and nonpaged pools are charged separately. If
the object requires security, an additional securitycharge is added to the paged-pool
usage. The default security chargeis 0x800.

If the OB_FLAG_CREATE_INFO hit of the objectFlags in the OBJECT HEADER is
zero, the QuotaBlock member points to a ouora_rrock structure (Listing 7-7) that
contains statistica information about the current resource usage of the object.

#define OB_SECUR TY_CHARGE 0x00000800

typedef struct _OBJECT_QUOTA_CHARGES
{
/*000*/ DWRD PagedPoolCharge;
/*004*/ DWIRD NonPagedPoolCharge;
/*008*/ DWORD SecurityGCharge;
/*00C*/ DWRD Reserved;
/*010%/ }
OBJECT_QUOTA_CHARGES,
* PCBJECT QUOTA CHARGES,
* *PPOBJECT_QUOTA_CHARGES;

LISTING 7-6. The OBJECT QUOTA_CHARGES ructure

406 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _QUOTA BLOCK
{
/*000*/ DNMRD H ags;
/*004*/ DWORD ChargeCount ;
/*008*/ DWORD PeakPool Usage [2]; // NonPagedPool, PagedPool
/*010*/ DWORD Pool Usage [2]; Il NonPagedPool, PagedPool
/*018*/ DWRD PoolQuota [2]; /] NonPagedPool, PagedPool
/*020%/ }
QUOTA_BLOCK,
* PQUOTA_BLOCK,
* * PPQUOTA_BLOCE

LISTING 7-7. The guora_pLock Sructure

OBJECT DIRECTORIES

As already noted in the discussion of the ossecT_nave header part, the Windows
2000 object manager keeps individual objectsin atree of OBJECT_DIRECTORY struc-
tures,alsoknownas"directoryobjects." ANOBJECT DIRECTORY isjustanotherfancy
type of object, with an ordinary ossecT_neaper and everything areal object needs.
The Windows 2000 object directory management is quite tricky. AsListing 7-8
shows,theOBJECT_DIRECTORY ishasicallyahashtablewith37entries. Thisunusual
Sze has probably been chosen becauseit is a prime number. Each table entry can
hold a pointer to an ossEcT_DTRECTORY_ENTRY WhOSE Object member refers to an
object. When anew object is created, the object manager computes a hash valuein
the range 0 to 36 from the object name and creates an oBsecT DIRECTORY ENTRY. |f
the target dot of the hash table is empty, this dot is set up to point to the new direc-
tory entry. If the dot is already in use, the new entry isinserted into a singly-linked
list of entries originating from the target sot, using the NextEntry members of the
involved OBJECT _DIRECTORY _ENTRY structures. To represent hierarchical object rela-
tionships, object directories can be nested in a straightforward way by ssimply adding
an OBJECT_DIRECTORY_ENTRY With an object member that points to a subordinate
directory object.

To optimize the access to frequently used objects, the object manager appliesa
smple most recently used (MRU) algorithm. Whenever an object has successfully been
retrieved, itisputin front of the linked list of entries that are assigned to the same
hash table dot. Moreover, apointer to the updated list is kept in the currententry
member of the oBsecT pIrECTORY. The Currentintryvalid flag indicates whether
the CurrentEntry pointer is vaid. Access to the system's global object directory is
synchronized by means of an ERESOURCE lock called obprootpirectorymutex. This
lock is neither documented nor exported.

WINDOWS 2000 OBJECT STRUCTURES 407

typedef struct _CBIECT_D RECTCRY_ENTRY
{
/*000*/ struct _OBJECT_DIRECTORY_ENTRY *NextEntry;
/*004*/ PCBIECT oj ect ;
/*008%/ }
OBJECT_DIRECTORY_ENTRY,
* POBJECT_DIRECTORY_ENTRY,
**PPOBJECT_DIRECTORY_ENTRY ;

//
ft defi ne CBJECT_HASH TABLE SI ZE 37
typedef struct _OBJECT_DI RECTCRY

/*000*/ PCBJECT_DI RECTORY_ENTRY HashTabl e [OBJECT HASH_TABLE_SIZE] ;
/*094*/ POBJECT_DIRECTORY_ENTRY CurrentEntry;

/*098*/ BOOLEAN CurrentEntryValid;
/*099*/ BYTE Reservedl;

/*09A*/ \WORD Reserved?2;

/*09C*/ DWIRD Reserved3;

/*0A0*/ }

OB JECT_DIRECTORY,
* PCBIECT_D RECTCRY,
* * PPOBJECT_DIRECTORY

LISTING 7-8. The OBJECT _DIRECTORY and oRJECT DIRECTORY_ENTRY Sructures

OBJECT TYPES

The above object header part descriptions have frequently referred to "type objects’
or OBJECT_TY PEstructures, soitisnow timetointroducethese. Formally, atype
object is nothing but a special kind of object, such as an event, device, or process, and
as such has an ossecT_nEADER and potentially some of the optional header substruc-
tures. The only difference is that type objects are related in a special way to other
objects. A type object is sort of a "master object” that defines common properties of
objects of the same kind, and optionally keeps all of its subordinate objects in a dou-
bly-linked list, as explained earlier in the description of the orJECT CREATOR_INFO
structure. Therefore, type objects are frequently referred to as "object types” to
emphasize that they are more than just ordinary objects.

The body of atype object consistsof an OBJECT _TY PE structurewith an embed-
ded orgecT TyPE_INITIALIZER, bOth of which are shown in Listing 7-9. The latter
is used during object creation via obcreateobject () to build a proper object header.
For example, the MaintainHandleCount and vaintainTypeList members are used

408 WINDOWS 2000 OBJECT MANAGEMENT

typedef struct _OBJECT_TYPE_INITIALIZER

{
/*000%*/ WORD Lengt h; //0x004C
/*002*/ BOCOLEAN UseDefaultObject ; / /OBJECT_TYPE .DefaultObject
/*003*/ BOCOLEAN Reservedl;
/*004*/ DWORD InvalidAttributes;
/*008*/ GENERIC_MAPPING GenericMapping;
/*018*/ ACCESS_MASK ValidAccessMask;
/*01C*/ BOOLEAN SecurityRequired;
/*01D*/ BOOLEAN MaintainHandleCount ; // OBJECT_HANDLE_DB
/*01E*/ BOOLEAN MaintainTypeList ; /1 OBIECT_CREATCR | NFO
/*01F*/ BYTE Reser ved2;
/*020*/ BOL PagedPool;
/*024*/ DWORD DefaultPagedPoolCharge;
/*028*/ DWORD DefaultNonPagedPoolCharge;
/*02C*/ NTPROC DumpProcedure ;
/*030%/ NTPRCC OpenProcedure;
/*034*/ NTPRCC CloseProcedure;
/*038*/ NTPROC DeleteProcedure;
/*03C*/ NTPROC_VA D ParseProcedure;
/*040*/ NTPROC_VA D SecurityProcedure; // SeDefaultObjectMethod
/*044*/ NTPROC VA D QueryNameProcedure;
/*048*/ NTPROC_BOOLEAN OkayToCloseProcedure;
/*04C*/ }

CBJECT _TYPE | N TI ALI ZER
* PCBIECT TYPE | N Tl ALl ZER,
**PPOBJECT_TYPE_INITIALIZER;

typedef struct _CBIECT_TYPE
{
/*000*/ ERESOURCE Lock;
/*038%/ LI ST_ENTRY ObjectlListHead; // OBIECT_CREATCR | NFO
/*040*/ UNICODE_STRING ObjectTypeName; // see above
/*048*/ uni on

{
/*048%/ PVOID DefaultObject; // CbpDefaul t Qbj ect
/*048%/ DWRD Code; I/l File: 5C, WwaitablePort : AO
}s
/*04C*/ DWRD ObjectTypelIndex; // OB_TYPE_INDEX_ *
/*050*/ DWORD ObjectCount;
/*054*%/ DWIRD HandleCount;
/*058*/ DWORD PeakObjectCount;
/*05C*/ DWORD PeakHandleCount;
/*060*/ CBIECT_TYPE IN TI ALI ZER ObjectTypelnitializer ;
/*0AC*/ DWCRD ObjectTypeTag; /1 OB_TYPE TAG *

/*0B0*/ }

WINDOWS 2000 OBJECT STRUCTURES 409

OBJECT_TYPE,
* POBJECT_TYPE,
* * PPOBJECT_TWE ;

LISTING 79. The OBJECT_TYPE and OBJECT_TYPE INITIALIZER Structures

by the internal ntoskrnl. exe function obpallocateobiect () to decide whether all
newly created objects will comprise osgecT_HanDLE_DB and OBJECT _CREATOR_INFO
header parts, respectively. Setting the MaintainTypeList flag has the nice side effect
that the objects of this type will be tied to each other in a doubly linked list, originating
from and ending at the objectristHead member of the OBJECT _TYPE. The
OBJECT_TYPE_INITIALIZERasoprovidesthedefaultquotacharges(mentionedearlier
in the discussion of the OBJECT_QUOTA_CHARGES header component) via its befault-
pagedpPoolcCharge and DefaultNonPagedPool Charge members.

Because type objects/object types are essential building blocks of the Windows
2000 object universe, ntoskrnl . exe stores them in named variables, making it easy to
verify the type of an object by simply comparing the obj ectType member of its
OBJECT_HEADER t0 the stored type object in question. Type objects are unique—the sys-
tem never creates more than one type object for each kind of object. Table 7-4 summa-
rizes the type objects maintained by Windows 2000. The information in the various
columns has the following meaning:

TABLE 7-4. Available Object Types
INDEX TAG NAME C STRUCTURE PUBLIC SYMBOL
1 “ObjT” "Type" OBJECT_TYPE No ObpTypeObjectType
2 "Dire" "Directory" OBJECT_DIRECTORY No ObpDirectoryObjectType
3 “Symb” “SymbolicLink” No ObpSymbolicLinkObjectType
4 “Toke” "Token" TOKEN No SepTokenObjectType
5 “Proc” "Process' EPROCESS Yes PsProcessType
6 “Thre” "Thread" ETHREAD Yes PsThreadType
7 "Job "Job" Yes PsJobType
8 "Even" "Event" KEVENT Yes ExEventObjectType
9 "Bven" “EventPair” KEVENT_PAIR No ExEventPairObjectType
10 “Muta” "Mutant" KMUTANT No ExMutantObjectType
n -calt "Callback" CALLBACK_OBJECT No ExCallbackObjectType

(continued)

410

WINDOWS 2000 OBJECT MANAGEMENT

TABLE 7-4. (continued)
INDEX TAG NAME C STRUCTURE PUBLIC SYMBOL
12 “Sema” "Semaphore” KSEMAPHORE Yes ExSemaphoreObjectType
13 "Time" "Timer" ETIMER No ExTimerObjectType
14 "Prof* "Profile" KPROFILE No ExProfileObjectType
15 "Wind" “WindowStation” Yes ExWindowStationObjectType
16 "Desk" "Desktop" Yes ExDesktopObjectType
17 "Sect" "Section" Yes MmSectionObjectType
18 "Key" "Key" No CmpKeyObjectType
19 "Port" "Port" Yes L pcPortObjectType
20 "wait" “WaitablePort” No L pcWaitablePortObjectType
21 “Adap” "Adapter" ADAPTER_OBJECT Yes loAdapterObject Type
22 “Cont” "Controller" CONTROLLER_OBJECT No IoControllerObjectType
23 "Devi" "Device" DEVICE_OBJECT Yes IoDeviceObjectType
24 “Driv” "Driver" DRIVER_OBJECT Yes IoDriverObjectType
25 “loCo” “lIoCompletion”IO_COMPLETION No ToCompletionObjectType
26 "File" "File" FILE_OBJECT Yes IoFileObjectType
27 “WmiG”“WmiGuid” GUID No WmipGuidObjectType

The "Index" column specifies the value of the objectTyperindex member
of the oBoEcT_TYPE Structure.

The "Tag" is the 32-bit identifier stored in the objectTypeTag member of
the OBJECT_TYPE structure. Windows 2000 tags are typically binary values
generated by concatenation of four ANSI characters. During debugging,
these characters can easily be identified in a hex dump listing. Testing the
OobjectTypeTag value is the easiest way to verify that a given type object is
of the expected kind. When allocating memory for an object, Windows
2000 also uses this value—Ilogically OR'ed with 0x80000000—to tag the
new memory block.

The "Name" column states the object name, asiit is specified by the type
object's orgECT _naAME header component. It is obvious that the type tag is
generated from the object name by truncating it to four characters,
appending spaces if the name is shorter.

“C Structure” is the name of the object body structure associated with the
object type. Some of them are documented in the DDK and some in the

WINDOWS 2000 OBJECT STRUCTURES 411

w2k _def . h header file on the CD provided with this book. If no nameis
present, the structureis currently unknown or unidentified.

* The "Symbol" column indicates the name of the pointer variable that
refers to the type object. If the "Public" column contains "yes," the
variable is exported and can be accessed by kernel-mode drivers or
applications that link to the kernel viathe w2k_ca11.d11 library presented
in Chapter 6.

The "Index" column requires further explanation. The value shown here is
taken from the objectTyperndex member of the corresponding OBJECT TYPE struc-
ture. Thisvalueisnot apredefined type ID as arethe DISP_TYPE_* and IO_TYPE_*
constants used by dispatcher and 1/O objects (see Tables 7-1 and 7-2). It merely
reflects the order in which the system created these type objects. Therefore, you
should never use the objectTypeIndex to identify the type of an object. It is safer to
use the objectTypeTag instead, which is certainly more stable across future operat-
ing system versions.

OBJECT HANDLES

Whereas a kernel-mode driver can directly contact an object by querying a pointer to
its object body, a user-mode application cannot. When it calls one of the API func-
tions that open an object, it receives back a handle that must be used in subsequent
operations on the object. Although Windows 2000 applies the "handle" metaphor to
avariety of things that are not necessarily related, there is a construct that can be
caled the handle in the strictest sense. This pure form of a handle is a process-spe-
cific 16-bitnumber that is usually a multiple of four and constitutes an index into a
handle table maintained by the kernel for each process. The main HANDLE TABLE
structure is shown at the end Listing 7-10. This table points to a HANDLE_LAYER1
structure that consists of pointers to nanpLE_ravErR2 structures, which in turn are
composed of uanprLE_rAYER3 pointers. Finally, the third indirection layer contains
pointers to the actual handle table entries, represented by HANDLE_ENTRY Structures.

/I HANDLE BIT-FIELDS
/6 —W

/1 11111111111111110000000000000000
/|l FEDCBA9876543210FEDCBA9876543210
1/

Il |x|x|xx|x|xa|alalalalalajalbb|b|b|b|b|b|b]c|c|c|c|c|c|c|c|y|y]

(continued)

412 WINDOWS 2000 OBJECT MANAGEMENT

/!l | not used | HANDLE_LAYER1 | HANDLE_LAYER2 | HANDLE_LAYER3 |tag]|

#define HANDLE_LAYER_SIZE 0x00000100

Il

tfdefine HANDLE_ATTRIBUTE INHERIT 0x00000002
#define HANDLE_ATTRIBUTE_MASK 0x00000007
#def i ne HANDLE_OBJECT_MASK O0XFFFFFFF8

typedef struct _HANDLE_ENTRY // cf. OBJECT_HANDLE_INFORMATION

{

/*000*/ uni on

{
/*000*/ DWIRD HandleAttributes;// HANDLE_ATTRIBUTE_MASK
/*000*/ PCBIECT_HEADER ObjectHeader ; // HANDLE_OBJECT_MASK
/*004*/ }:
/*004*/ uni on

{
/*004*/ ACCESS_MASK GrantedAccess ; /1 if used entry
/*004*/ DWRD NextEntry; /1 if free entry
/*008*/ }i
/*008*/ }

HANDLE_ENTRY,
* PHANDLE_ENTRY,
* * PPHANDLE_ENTRY

11 -

typedef struct _HANDLE LAYER3
{
/*000*/ HANDLE_ENTRY Entries [HANDLE_LAYER SIZE]; // bits 2 to 9
/*800*/ }
HANDLE_LAYER3,
* PHANDLE_LAYER3,
* *PPHANDLE_LAYER3;

I -

typedef struct _HANDLE LAYER2
{
/*000*/ PHANDLE_LAYER3 Layer3 [HANDLE_ LAYER_SIZE)}; // bits 10 to 17
/*400%/ }
HANDLE_LAYER2,
* PHANDLE_LAYER2,
* * PPHANDLE_LAYER?2

WINDOWS 2000 OBJECT STRUCTURES 413

typedef struct _HANDLE_LAYER1
{
/*000*/ PHANDLE_LAYER2 Layer2 [HANDLE LAYER_SIZE]; // bits 18 to 25
/*400%/)
HANDLE_LAYER1,
* PHANDLE_LAYERI1,
* * PPHANDLE_LAYER1;

’

typedef struct _HANDLE_ TABLE
{
/*000*/ DWIRD Reser ved;
/*004%*/ DWCRD HandleCount;
/*008*/ PHANDLE_LAYER1 Layerl ;
/*00C*/ struct _EPROCESS *Process; // passed to PsChargePoolQuota ()

/*010*/ HANDLE UniqueProcessId;
/*014*/ DWORD NextEntry;
/*018*%/ DWORD TotalEntries;
/*01C*/ ERESOURCE HandleTableLock;
/*054*/ LIST_ENTRY HandleTableList ;
/*05C*/ KEVENT Event;

/*06C*/ }

HANDLE_TABLE,
* PHANDLE_TABLE,
* * PPHANDLE_TABLE;

LISTING 7-10. Handle Tables, Layers, and Entries

This three-layered addressing mechanism is a clever trick to be able to dynami-
cally increase or decrease the storage needed for handle entries with minimum effort
while also minimizing waste of memory. Because each handle table layer takes up to
256 pointers, a process can theoretically open 256 * 256 * 256, or 16,777,216
handles. With each handle entry consuming 8 bytes, the required maximum storage
amounts to 128 MB. However, because a process rarely needs that many handles, it
would be an immense waste of space to allocate the complete handle table from the
start. The three-layered approach used by Windows 2000 starts out with the mini-
mum set of a single subtable per layer. Not counting the vanpLE_TARLE itself, the
required storageis 256 *4 + 256* 4 + 256* 8, or 4,096 bytes. Theinitial han-
dle table material fits exactly into a single physical memory page.

To look up the uanDLE_ENTRY Of @ HANDLE, the system divides the 32-bit value
of the handle into three 8-bit fragments, discarding bits #0 and #1, as well as the top-
most six bits. Given these three fragments, the handle resolution mechanism proceeds
as follows:

414 WINDOWS 2000 OBJECT MANAGEMENT

1. Bits #18 to #25 of the HANDLE are used as an index into the Layer2 array
of the nanpLE_ravER1 block referred to by the Layer1 member of the
HANDLE_TABLE.

2. Bits#10 to #17 of the HANDLE are used as an index into the Layer3 array
of the anpLE_LAYER2 block retrieved in the previous step.

3. Bits#2 to #9 of the HANDLE are used as an index into the Entries array of
the vaNDLE_LAYER3 block retrieved in the previous step.

4. The HaNDLE_ENTRY retrieved in the previous step provides a pointer to the
OBJECT HEADER (see Listing 7-2) of the object associated to the HANDLE.

If this sounds confusing, Figure 7-2 may clarify what occurs in this situation.
Actualy, Figure 7-2 is remarkably similar in structure to Figure 4-3 in Chapter 4,
where the 1386 CPU's linear-to-physical address translation is depicted. Both algo-
rithms break an input value into three fragments, with two of them used as offsets
into two hierarchically arranged indirection layers and the third one sdlecting an
entry from the target layer. Note that the layered handle table model is new to
Windows 2000. Windows NT 4.0 provided a single-layered table that had to be
expanded if the currently opened handles didn't fit into the memory block currently
dlocated for the handle table (cf. Custer 1993, Solomon 1998).

| 31 25 18 17 10 9 2 i
‘I L e e et | | HanpLe
Not - —\ A\ = /' Not
| Used X Y Used
‘ HANDLE TABLE HANDLE _LAYERY HANDLE_LAYERZ HANDLE _LAYER3
| Layer1 l
I POBJECT _HEADER
| --—————_——.-—-—’
1 = k= sEntry {z]===

—p{ Layer2 [x] -

3 Layers [y 4—

FIGURE 7-2 HANDLE to OBJECT HEADER Resolution

WINDOWS 2000 OBJECT STRUCTURES 415

Because each process has its own handle table, the kernel must somehow keep
track of the currently allocated tables. Therefore, ntoskrnl. exe maintains a
L1sT_ENTRY Variable named HandleTablelistHead that is the root of a doubly linked
list of HaNDLE_TABLE Structures, chained together by means of their HandleTableList
members. When following their 71ink or Blink pointers, you must always subtract
the HandleTableList member offset 0x54 to get to the base address of the surround-
ing HanDLE_TABLE structure. The owning process of each table can easily be deter-
mined by consulting itS uniqueProcesstd member. The first HANDLE _TABLE in
the list is usually owned by the system process (ID=8), followed by the table of the
system Tdle Process (ID=0). The latter nannre_taBLE is also reachable by an inter-
nal variable referred to as obpkernelHandleTable.

When accessing handle tables, the system uses a couple of synchronization
objects to preserve data integrity in multithreaded handle access scenarios. The
entire handle table list is locked by means of the global HandlerablernistrLock
insidentoskrnl. exe, Which is an ERESOURCE structure. This type of synchron-
ization object allows exclusive or shared locks, acquired with the help of the
ExAcquireResourceExclusiveLite () and ExAcquireResourceSharedLite ()

API functions, respectively. Thelock isreleased by calling exreleaseresourcelitel() .
After locking the handle table list for exclusive access, you are guaranteed that the
system will not change any list entries until the lock is released. Each sanpLE TABLE
in the list entry has its own ERESOURCE lock, termed HandleTableLock in Listing
7-10. ntoskrnl. exe providestheinternal functions exrockHandleTableExclusive ()
and ExLockHandleTableshared () t0 acquire this eresource, and ExUnlockHandle
TableShared () to release it (no matter whether the lock is exclusive or shared, even
though the name suggests that it is good for shared locks only). These functions are
simply wrappers around ExAcquireResourceExclusivelite (), Exacquireresource
sharedLite(), and ExReleaseResourceLite() , taking a pointer to @ HANDLE_TABLE
and passing over itsHandleTableLock.

Unfortunately, all essentia functions and global variables used by the kernel's
handle manager are not only undocumented, but a so inaccessible because they are
not exported by thentoskrni. exe module. Although it is certainly possible to look up
objects by their handles using the kernel cal interface proposed in Chapter 6 and the
scheme outlined in Figure 7-2, I don't recommend doing s0. One reason is that this
code would deliberately give up compatibility with Windows NT 4.0 because of the
radical handle table design change. Another reason isthat the kernel provides a luxu-
rious function that returns the contents of all handle tables owned by the currently
active processes. This function isntouerysystemnformation (), and the information
class required to obtain the handle information is systemtandleTnformation (16).
Please refer to Schreiber (1999) or Nebbett (2000) for extensive details on how to
issue this APl call. The systemiandleTnformation data are obtained from the internal
function ExpGetHandleInformation () that relies on obcetHandleInformation () .
The latter in turn calls ExSnapShotHandleTables () , where the handle table list

416 WINDOWS 2000 OBJECT MANAGEMENT

enumeration is ultimately performed. ExSnapShotHandleTables () expects a pointer
to a callback function that is called for each nanprLe_enTrY referring to an object.
ObGetHandleInformation () USeStheinternal obpcaptureHandleInformation() cal-
back functionto fill the caller's buffer with an array of structures containing informa-
tion about each handle currently maintained by the system.

PROCESSAND THREAD OBJECTS

Probably the most interesting and complex inhabitants of the Windows 2000 object
world are the process and thread objects. These are usually the top-level entities a soft-
ware developer must deal with. A kernel-mode component always runs in the context
of a thread, and this thread is often part of a user process. Therefore, it is quite natural
that process and thread objects are object types that frequently are explored in debug-
ging situations. The Windows 2000 Kernel Debugger accounts for this requirement by
providing the "bang" commands !processfieldsand ! threadfields, exported

by the debugger extension kdextx86.d11. Both commands output asimplelist of
name/offset pairs describing the members of the EPROCESS and ETHREAD structures,
respectively (cf. Examples 1-1 and 1-2 in Chapter 1). These object structures are
undocumented, so these debugger commands are currently the only official source of
information about them.

Unfortunately, the | processfields output (cf. Example 1-1) startswith a
member named Pcb that refersto a substructure comprising Ox6c¢ bytes, because the
next member Exitstatus islocated at this offset. Pcb is a KPROCESS structure that is
completely undocumented. This arrangement isinteresting: Obvioudly, aprocess
isrepresented by a smaller kernel object embedded in alarger executive object. This
nesting scheme reappears with the thread object. The debugger's ! threadfields
command (cf. Example 1-2) reveals a Tcb member of no less than 0x180 bytes at the
beginning of the ETHREAD structure. Thisis a xTHREAD structure, representing another
kernel object inside an executive object.

Although it is helpful that the Kernel Debugger provides symbolic informa-
tion about the executive's process and thread objects, the plain member names do
not necessarily provide enough cues to identify the members' data types. Moreover,
the opacity of the Pcb and Tch members makes it quite difficult to understand the
nature of these objects. In a disassembly listing generated by the Kernel Debugger,
you will frequently see instructions referencing data within the confines of these
opagque members. The used offsets are completely useless without information
about the name and type of the referenced data. Therefore, | have collected infor-
mation from various sources plus results of my investigation, to figure out what

WINDOWS 2000 OBJECT STRUCTURES 417

these objects look like. Part one of the resultsis shown in Listings 7-11 and 7-12,
defining the KPROCESS and KTHREAD structures, respectively. The DISPATCHER_HEADER
at the beginning of both objects qualifies processes and threads as dispatcher
objects, whichinturn meansthey can bewaited for using KeWaitForsingleObject()
and kewaitForMultipleObjects() . A thread object becomes signaled after execu-
tion of the thread has ceased, and a process object enters the signaled state after all
of itsthreads have terminated. Thisis nothing new for Win32 programmers—it iS
quite common to wait for termination of a process spawned by another process by
means of the Win32 API functionwaitForsingleobject(). However, now you
finally know why waiting for processes and threads is possiblein thefirst place.

typedef struct _KPROCESS
{
/*000*/ DI SPATCHER HEADER Header; // DO _TYPE_PROCESS (0x1B)

/*010*/ LIST_ENTRY ProfileListHead;
/*018*/ DWORD DirectoryTableBase;
/*01C*/ DWORD PageTableBase;
/*020*/ KGDTENTRY LdtDescriptor;
/*028*/ Kl DTENTRY Int2lDescriptor;
/*030*/ \WORD TopmOff set;
/*032*/ BYTE Iopl;
/*033*/ BOOLEAN vdmFlag;
/*034*/ DIWCRD ActiveProcessors;
/*038*/ DWRD KernelTime; // ticks
/*03C*/ DWORD User Ti ne; /1 ticks
/*040*/ LIST_ENTRY ReadyListHead;
/*048*/ LI ST_ENTRY SwapListEntry;
/*050*/ LI ST_ENTRY ThreadListHead; // KTHREAD. ThreadListEntry
/*058*/ PVOID ProcessLock;
/*05C*/ KAFFINTY Affinity;
/*060*/ \WORD StackCount;
/*062*/ BYTE BasePriority;
/*063*/ BYTE ThreadQuantum;
/*064*/ BOOLEAN AutoAlignment;
/*065*/ BYTE State;
/*066*/ BYTE ThreadSeed;
/*067*/ BOOLEAN DisableBoost;
/*068*/ DWORD des;
/*06C*/ }
KPROCESS,
* PKPROCESS,
**PPKPROCESS;

LISTING 7-11. The KPROCESS Object Sructure

418 WINDOWS 2000 OBJECT MANAGEMENT

typedef

/*000%*/
F*010%*y
1*Q18xy
1EQLC*/
1%020%7
/*024%*/
7*028%7
/*02C*/
/*02D*/
/*02E*/
(*Q2E*S
/*030%¢
/*031*/
/*032*/
/*033*/
/*034*/
/*04C*/
/*050%*/
/*054%*/
/*055%/
1*056%*/
1*057 %y
regsgxy
1%05C*/
/*064%*/
/*068*/
(*Q69*7
/*06A*/
/*06B*/
*QeCH7
1HOECkY
/*0D0*/
/*0DA*/
/*0D8*/
1*0D9*/
/*0DC*/
/*0E0*/
/*0E4*/
/*0E8*/
1¥110*)
1*118%*/
IEL1CHY
1*11D*y
[*L1B*/
I*LTE*Y
/*120*/

struct _KTHREAD

{

Dl SPATCHER HEADER Header; // DO TYPE THREAD (x60Q)
LI ST_ENTRY MutantListHead;
PVOID InitialStack;

Pva D StackLimit;

struct _TEB *Teb;

Pva D TlsArray;

PVa D KernelStack;
BOCLEAN DebugActive;

BYTE State; // THREAD STATE *
BOOLEAN Al erted;

BYTE bReserved0ll;

BYTE Iopl;

BYTE NpxState;

BYTE Sat urati on;

BYTE Priority;

KAPC_STATE ApcState;

DWRD ContextSwitches;
DWORD WaitStatus;

BYTE WaitIrqgl;

BYTE WaitMode;

BYTE WaitNext ;

BYTE WaitReason;

PLI ST_ENTRY WaitBlockList ;

LI ST_ENTRY WaitListEntry;
DWRD WaitTime;

BYTE BasePriority;

BYTE DecrementCount ;

BYTE PriorityDecrement;
BYTE Quantum;
KWAIT_BLOCK WaitBlock [41;
DWRD LegoData;

DWORD KernelApcDisable;
KAFFI NI TY UserAf finity;
BOOLEAN SystemAf finityActive;
BYTE Pad (37
PSERVICE_DESCRIPTOR_TABLE pServiceDescriptorTable;
Pva D Queue;

PV D ApcQueueLock;

KTIMER Timer;

LI ST_ENTRY QueueListEntry;
KAFFI NI TY Affinity;

BOOLEAN Pr eenpt ed;

BOCLEAN ProcessReadyQueue;
BOCOLEAN KernelStackResident ;
BYTE NextProcessor;

PVva D CallbackStack;

WINDOWS 2000 OBJECT STRUCTURES 419

/*124*/ struct _WIN32_THREAD *Win32Thread;
/*128%*/ PVOID TrapFrame;
/*12C*/ PKAPC_STATE ApcStatePointer ;
/*130*/ PMAD pl30;
/*134*/ BOOLEAN EnableStackSwap;
/*135*/ BOCOLEAN LargeStack;
/*136*/ BYTE ResourceIndex;
/*137%*/ KPROCESSOR_MODE PreviousMode;
/*138*%/ DWIRD KernelTime; // ticks
/*13C*/ DWORD UserTime; /1 ticks
/*140%/ KAPC_STATE SavedApcState ;
/*157*/ BYTE bReserved02;
/*158*/ BOOLEAN Alertable;
/*159*/ BYTE ApcStateIndex;
/*15A*/ BOOLEAN ApcQueueable;
/*15B*/ BOOLEAN AutoAlignment ;
/*15Cc*/ PVMAD StackBase;
/*160*/ KAPC SuspendApc;
/*190*/ KSEMAPHORE SuspendSemaphore ;
/*1A4*/ LIST_ENTRY ThreadListEntry; [/ see KPROCESS
/*1AC*/ BYTE FreezeCount;
/*1AD*/ BYTE SuspendCount ;
/*1AE*/ BYTE IdealProcessor;
/*1AF*/ BOOLEAN DisableBoost ;
/*1B0*/ }
KTHREAD,
* PKTHREAD,
**PPKTHREAD;

LISTING 7-12. The KTHREAD Object Sructure

A KPROCESS linksto its threads via its ThreadListHead member, which is the
starting and ending point of a doubly linked list of KTHREAD objects. The list nodes of
thethreadsarerepresented by their ThreadristEntry members. Asusual with
LIST_ENTRY hodes, the base address of the surrounding object is computed by sub-
tracting the offset of the LtsT_EnTrRY member from its address, because the Flink
and Blink members always point to the next .1st_enTrY inside thelist, not to the
owner of thelist node. Thismakesit possibleto interlink objectsin multiplelists
withoutany interference.

In Ligtings 7-11 and 7-12, as well as in the following listings, you see occasiona
memberswith names consisting of alower-caseletter and athree-digit hexadecimal
number. These are memberswhose identity and purposeiscurrently unknown to me.
The leading character reflects the supposed member type (e.g., d for DWORD or p for
PV OID), and the numeric trailer specifiesthe member's offset from the beginning of
thestructure.

420 WINDOWS 2000 OBJECT MANAGEMENT

The EPROCESS and ETHREAD executive objects surrounding the KPROCESS and
kTHREAD dispatcher objects are shown in Listings 7-13 and 7-14. These structures
contain several unidentified members that hopefully will be analyzed soon by others,
maybeencouraged by thematerial inthisbook. However, themostimportant and
most frequently referenced members are included, and at least it is known what
information is missing.

typedef struct _EPROCESS

{
/*000*/ KPROCESS Pcb;
/*06C*/ NTSTATUS ExitStatus;
/*070*/ KEVENT LockEvent;
/*080*%/ DWORD LockCount ;
/*084*/ DWORD dog4;
/*088*/ LARGE_INTEGER CreateTime;
/*090*/ LARGE_INTEGER ExitTime;
/*098*/ PVOID LockOwner ;
/*09C*/ DWIRD UniqueProcessId;
/*0A0*/ LIST_ENTRY ActiveProcessLinks ;
/*0R8*/ DWORD Quot aPeakPool Usage (2]; // NP, P
/*0B0*/ DWORD QuotaPoolUsage [21; I/ NP, P
/*0B8*/ DWIRD PagefileUsage;
/*0BC*/ DWORD CommitCharge;
/*0C0*/ DNRD PeakPagefileUsage;
/*0c4a*/ DWORD PeakVirtualSize;
/*0C8*/ LARGE_| NTEGER VirtualSize;
/*0D0*/ MMSUPPORT Vm;
/*100*/ DWNRD d100;
/*104*/ DWORD dlo4;
/*108*/ DWORD d108;
/*10C*/ DWORD dloc;
/*110*/ DWORD d110;
/*114*/ DWIRD dll4;
/*118*/ DWORD dll8;
/*11Cc*/ DIWORD arye;
/*120*/ PVMAD DebugPort;
/*124*/ PMA D ExceptionPort;
/*128*/ PHANDLE_TABLE ObjectTable;
/*12Cc*/ PMAD Token;
/*130*/ FAST_MUTEX WorkingSetLock;
/*150*/ DWORD WorkingSetPage;
/*154*/ BOOLEAN ProcessOutswapEnabled;
/*155*/ BOCOLEAN ProcessOutswapped;
/*156*/ BOCOLEAN AddressSpacelInitialized;
/*157*/ BOOLEAN AddressSpaceDeleted;
/*158*/ FAST MUTEX AddressCreationLock;
/*178%/ KSPI N _LOK HyperSpaceLock;

/*17C*/ DWORD ForkInProgress;

[*180*/
v i: i
%183 %/
/*184%/
(*188x*y
(*18Cxy
[*190>7
IHL9L ¥
I*1g8%/
Vi i el
/*1A0*/
/*1A4*/
/*1A8*/
/*1AA*/
/*1AB*/
/*1AC*/
1*1B0*Y
/*1B4*/
I*1BB*/
FEUBCkY
rEieQry
/*1C4*/
1*1c*/
[=1CC*Y
P*LDOEy
/*1D4*/
/*1D8*/
I=IDCHE/
/*1EQ0*/
/*1E4*/
/*1E8*/
1*LECH/
1*1F0*/
/*1F4*/
I*1F8*/
I*1IFCH*/
[%20C*{
1%210%/
1*2T1 %4
1*212%*/

I*212%¢
[*213%/

1%212%y

WORD
BOOLEAN
BYTE
DWRD
HARDWARE_PTE
DWRD
DWORD
PVOID
Pva D
PMaD
DWRD
DWORD
WORD
BOOLEAN
BOOLEAN
HANDLE
struct _PEB
Pva D
PQUOTA_BLOCK
NTSTATUS
DNRD
HANDLE
DWORD
ACCESS_MASK
DNRD
DNRD
Pva D
DWORD
Pva D
DWRD
DWRD
DNRD
DWORD
DWRD
DWORD
BYTE
DNRD
BYTE
BYTE
uni on
{
struct
t
BYTE
BYTE
}i
struct

{
WORD

WINDOWS 2000 OBJECT STRUCTURES 421

VmOperation;
ForkWasSuccessful ;
MmAgressiveWsTrimMask;
VmOperationEvent ;
PageDirectoryPte;
LastFaultCount;
ModifiedPageCount;
VadRoot ;

VadHint;

CloneRoot ;

NumberOf PrivatePages ;
NumberOf LockedPages ;
NextPageColor;
ExitProcessCalled;
CreateProcessReported;
SectionHandle;
*Peb;
SectionBaseAddress;
QuotaBlock;
LastThreadExitStatus;
WorkingSetWatch;
Win32WindowStation;
InheritedFromUniqueProcessId;
GrantedAccess ;
DefaultHardErrorProcessing; // HEM*
LdtInformation;
VadFreeHint ;
VdmObjects;

DeviceMap; // 0x24 bytes
SessionId;

dlES8;

dlEC:

dl1Fo0;

dlF4;

d1lF8;

ImageFileName ([16];
VmTrimFaultValue;
SetTimerResolution;
PriorityClass;

SubSystemMinorVersion;
SubSystemMajorVersion;

SubSystemVersion;

(conti nued)

422 WINDOWS 2000 OBJECT MANAGEMENT

/*214*/
1*218*/
/*21C*/
/%220%/
1*224%/
/*228%/
yE2ZC*)
1%23Q% 4
/*234%/
%238
1%268%/
*26C*y/
*270%]
PE2TARS
1*278%
IH27CH Y
/*280%/
/*284%/
/*288*/

*

}i

struct _WIN32_PROCESS *Win32Process;
DWRD d218;
DWORD daic;
DWORD d220;
DWORD dz24;
DWRD d228;
DWORD d22C;
PVOID Wowé64 ;
DWORD d234;
IO_COUNTERS IoCounters;
DWORD d268;
DWORD d26C;
DWRD d270;
DWRD d274;
DWRD d278;
DWORD d27c¢C;
DWORD d280;
DWORD d284;
}

EPROCESS,

PEPROCESS,

**PPEPROCESS ;

LISTING 7-13. The EPROCESS Object Sructure
typedef struct _ETHREAD
{

/*000*/ KTHREAD Tcbh;
/*1B0*/ LARGE_INTEGER CreateTime;
/*1B8*/ union

{
1*LB8*/ LARGE_INTEGER ExitTime;
/*1B8*/ LIST_ENTRY LpcReplyChain;

}i
/*1C0*/ union

{
/%1CO*/ NTSTATUS ExitStatus;
I*1Co*y DWORD OfsChain;

}i

/*1C4*/ LIST_ENTRY
/*1CC*/ LIST_ENTRY
/*1D4*/ PVOID
/*1D8*/ LI ST_ENTRY
/*1E0*/ CLIENT_ID
/*1E8*/ KSEMAPHORE
/*1FC*/ DWORD
/*200*/ DWORD
/*204*/ DWRD
/*208*/ DWIRD
/*20C*/ LIST_ENTRY
/*214%/ PVAD
/*218*/ PVA D
/*21Cc*/ DINORD
/*220*/ BOCOLEAN
/*221*/ BOOLEAN
/*222*/ BOOLEAN
/*223%/ BOOLEAN
/*224*/ BOCOL
/*228%*/ ACCESS_MASK
/*22C*/ PEPROCESS
/*230%/ PVAD
/*234%*/ uni on

{
PE234%/ Pva D
r*234%Y DWRD

}i
/*238%/ BOOLEAN
/*239*/ BOCOLEAN
/*23A*/ BOOLEAN
/*23B*/ BOOLEAN
/*23C*/ DWORD
/*240*/ DNRD
/*244*/ DWNORD
/*248%/ }
ETHREAD,
* PETHREAD,
**PPETHREAD;

WINDOWS 2000 OBJECT STRUCTURES

PostBlockList ;
TerminationPortList;
ActiveTimerListLock;
ActiveTimerListHead;
cid;
LpcReplySemaphore ;
LpcReplyMessage;
LpcReplyMessageld;
PerformanceCountLow;
ImpersonationInfo;
IrpList;
TopLevelIrp;
DeviceToVerify;
ReadClusterSize;
ForwardClusterOnly;
DisablePageFaultClustering;
DeadThread;
Reserved;
HasTerminated;
GrantedAccess ;
ThreadsProcess ;
StartAddress;

Win32StartAddress;
LpcReceivedMessageId;

LpcExitThreadCalled;
HardErrorsAreDisabled;
LpcReceivedMsgIdvalid;
ActiveImpersonationInfo;
PerformanceCountHigh;
d240;

d244;

423

LISTING 7-14. The ETHREAD Object Sructure

424 WINDOWS 2000 OBJECT MANAGEMENT

It is apparent that both the EPROCESS and ETHREAD object structures contain
additional members after the ones listed by the : processfieldsand ! threadfields
debugger commands. Y ou may wonder how | dare to claim that. Well, there are two
principal ways to find out details about undocumented object structure members.
One is to observe how system functions operating on objects access their members;
the other one is to examine how objects are created and initialized. The latter
approach yields the size of an object. The basic object creation function inside
ntoskrnl.eXeisobcreateobject() . It adlocates the memory for the object header
and body and initializes common object parameters. However, obcreateobject () iS
absolutely ignorant about the type of object it creates, so the caller must specify the
number of bytes required for the object body. Hence, the problem of finding out the
size of an object boils down to finding an obcreateobject () call for this object type.
Process objects are created by the Native APl function NtCreateProcess (), which
lets PspCreateProcess () do the dirty work. Inside this function, an obcreateobject ()
call can be found that requests an object body size of 0x288 bytes. That's why Listing
7-13 contains a couple of unidentified trailing members until afinal offset of 0x288 is
reached. The situation is similar for the ETHREAD structure. The NtCreateThread ()
API function calls pspcreateThread () , whichinturn cals obcreateobject (),
requesting 0x248 bytes.

The list of currently running processesis formed by interlinking the
ActiveProcessLinks member of the EPROCESS structure. The head of this list is
stored in the internal global variable PsActiveProcessHead, and the associated
FasT_MUTEX Synchronization object is named pspactiveProcessMutex. Unfortu-
nately, the PsActiveProcessHead variableis not exported by ntoskrnl . exe, but
PsInitialSystemProcess IS, pointing to the EPROCESS structure of the system
process with the process ID 8. Following the Blink of its ActiveProcessLinks list
entry leads us directly to the PsActiveProcessHead. Basically, the linkage of
processes and threads is structured as shown in Figure 7-3. Figure 7-3 is overly sm-
plified because the illustrated process list contains only two items. In a real-world
scenario, thelist will be much longer. (While | am writing this paragraph, my task
manager reports 36 processes!) To keep the picture as smple as possible, only the
thread list of one process is shown, assuming that this process has two active threads.

Listings 7-12 and 7-13 suggest that there must be a third process and thread
object layer above the kernel and executive layers, indicated by pointers to
WIN32_PROCESS and win32_THREAD structures inside EPROCESS and KTHREAD. These
undocumented structures constitute the process and thread representations of the
Win32 subsystem. Although the purposes of some of their members are quite obvi-
ous, they still contain too many unidentified holes to be included here. Thisis another
area of future research.

WINDOWS20000BJECT STRUCTURES 425

KTHREAD KTHREAD
ThreadListEntry ThreadListEntry
Flink 'y Flink i
Blink Blink R
ETHREAD ETHREAD
KPROCESS KPROCESS
ThreadListHead ThreadListHead
P Flink :;1 Flink
Blink Blink
PsActiveProcessHead ActiveProcessLinks ActiveProcessLinks
> Flink Flink Flink
=
Blink s Blink = Blink
EPROCESS EPROCESS
FIGURE 7-3. Process and Thread Object Lists
THREAD AND PROCESS CONTEXTS

While the system executes code, the execution always takes place in the context of
athread that is part of some process. In several situations, the system has to look

up thread- or process-specific information from the current context. Therefore, the
system always keeps a pointer to the current thread in the Kernel's Processor Control
Block (KPRCB). This structure, defined inntadk.n, isshownin Listing 7-15.

typedef struct _KPRCE // base address OxFFDFF120

{
/*000*/ WORD MinorVersion;
/*002%/ WORD MajorVersion;
/*004%/ struct _KTHREAD *CurrentThread;
/*008*/ struct _KTHREAD *NextThread;
/*00C*/ struct _KTHREAD *IdleThread;
/*010*%/ CHAR Nunber ;
/*011*/ CHAR Reser ved,

(continued)

426 WINDOWS 2000 OBJECT MANAGEMENT

/*012*/ WWORD

BuildType; /*014*/ KAFFIN TY

/*018*/ Struct _RESTART_BLOCK *RestartBlock;

/*01C*/ }
KPRCB,
* PKPRCB,
**PPKPRCB

SetMember ;

LISTING 7-15. The Kernel's Processor Control Block (KPRCB)

The KPRCB structureisfound at linear address oxrrprr120, and apointer to it
is stored in the Prcb member of the Kernel's Processor Control Region (KPCR), also
defined inntddk. h (Listing 7-16) and located at address oxrrprF000 . AS explained
in Chapter 4, thisessentia dataareaisreadily accessiblein kernel-modeviathe FS
segment; thatis, readingfrom addressFS: Oisequivalenttoreadingfromlinear
address DS: OXFFDFFO00 . At address oxrrorri3c, immediately following the KPRCB,
the system keepslow-level CPU information in a CONTEXT structure (Listing 7-17).

typedef struct _KPCR // base address O0xFFDFF000

{
/%000%/ NT_TIB

/*01C*/ struct _KPCR

/*020%/ PKPRCB
/*024*/ KIRQL
/*028*/ DWIRD
/*02C*/ DIWORD
/*030*/ DWRD
/*034*/ DNRD

/*038*%/ struct _K DIENTRY
/*03C*/ Struct _KGDTENTRY
/*040%/ struct _KTSS

/*044%*/ \WORD
/*046%/ \WORD
/*048%/ KAFFIN TY
/*04C*/ DWORD
/*050%/ BYTE
/*051*/ BYTE
/*054%/ }
KPCR,
* PKPCR
**PPKPCR ;

NtTib;

*SelfPcr;
Prcb;

Irqgl;

IRR;
IrrActive;
IDR;
Reserved?;

*IDT;:

*GDT;

*TSS;
MajorVersion;
MinorVersion;
Set Menber ;
StallScaleFactor;
DebugActive;
Nunber ;

LISTING 7-16. The Kernel's Processor Control Region (KPCR)

#define SIZE_OF_80387_REGISTERS 80

typedef struct _FLOATING_SAVE_AREA // base address OxFFDFF158
f
/*000*/ DWIRD ControlWord;
/*004*/ DWORD StatusVWrd;
/*008*/ DWIRD TagWord;
/*00C*/ DWIRD ErrorOffset;
/*010*/ DWIRD ErrorSelector;
/*014*/ DWORD DataOffset;
/*018*/ DWORD DataSelector;
/*01Cc*/ BYTE RegisterArea [SIZE_OF_80387_REGISTERS];
/*06C*/ DWIRD CrONpxState;
/*070%/ }
FLQATI NG_SAVE _AREA,
* PFLQATI NG_SAVE _AREA,
**PPFLOATING_SAVE_AREA;

#def i ne MAXIMUM_SUPPORTED_EXTENSION 512

typedef struct _CONTEXT // base address O0xFFDFF13C

{
/*000*/ DWORD ContextFlags;
/*004*/ DWORD Dro0;
/*008*/ DWORD Drl;
/*00C*/ DWORD Dr2;
/*010*/ DWORD Dr3;
/*014%/ DWORD Dré6;
/*018*/ DWORD Dr7;
/*01c*/ FLQOATI NG_SAVE AREA FloatSave;
/*08C*/ DWORD SegGs;
/*090*/ DWORD SegFs;
/*094*%/ DWORD SegEs;
/*098*/ DWORD SegDs;
/*09C*/ DWORD Edi;
/*0A0*/ DWORD Esi;
/*0A4*/ DWORD Ebx;
/*0A8*%/ DWORD Edx;
/*0AC*/ DWORD Ecx;
/*0B0O*/ DWIRD Eax;
/*0B4*/ DWORD Ebp;
/*0B8*/ DWORD Eip;
/*0BC*/ DWIRD SegCs;
/*0C0*/ DWIRD EFlags;
/*0c4*/ DWORD ESp;
/*0C8*/ DWIRD SegSs;
/*0cc*/ BYTE Ext endedRegi sters [MAXIMUM_SUPPORTED_EXTENSION] ;
r=2cexy)
CONTEXT,
* PCONTEXT,
**PPCONTEXT ;

LISTING 7-17. The CPU's CONTEXT and FLOATING_SAVE_AREA

428 WINDOWS 2000 OBJECT MANAGEMENT

According to Listing 7-15, the KPRCB contains three KTHREAD pointers at the offsets
0x004, 0x008, and 0x00C:

1. currentThread points to the KTHREAD object of the thread that is currently
executing. This member is accessed very frequently by the kernel code.

2. NextThread points to the KTHREAD object of the thread scheduled to run
after the next context switch.

3. Idlerhread points to the KTHREAD object of an idle thread that performs
background tasks while no other threads are ready to run. The system
provides a dedicated idle thread for each installed CPU. On a single-
processor machine, the idle thread object is named POBootThread and is
the only thread in the thread list of the ps1dleprrocess object.

Because the first member of an ETHREAD is a krureAD, a KTHREAD pointer aways
points to an ETHREAD as well, and vice versa. This means that KTHREAD and ETHREAD can
be typecast interchangeably. The sameis true for KPROCESS and EPROCESS pointers.

Because the Windows 2000 kernel maps the linear address 0xFFDFF000 tO
address 0x00000000 of the CPU's FS segment in kernel-mode, the system alwaysfinds
the current KPCR, KPRCB, and CONTEXT data at the addresses rs: 0x0, Fs: 0x120, and
FS: 13c. Whenyou aredisassembling kernel codein adebugger, you will frequently
see the system retrieve apointer from FS: 0x124, whichis obviously the current
thread object. Example 7-1 lists the output of the Kernel Debugger if the command
U PsCetCurrentProcess Id iSissued, instructing the debugger to unassemble
10 lines of code, starting at the address of the symbol psGetcurrentprocessIid.

The implementation of the PsGetCurrentProcessid () function smply retrieves the
KTHREAD/ETHREAD Of the current thread and returns the value of the member at offset
0x1£0, which happens to be the uniqueProcess ID of the c..zent_1p cid member of
the ETHREAD, according to Listing 7-14. psGetCurrentThreadid () isamost identical,
except that it retrieves the uniqueThread ID at offset 0x1e4. By the way, the cLtenT 1D
structure has been introduced in Chapter 2, Listing 2-8.

kd> u PsGet Qurrent Processi d

u PsGet Qurrent Processid

ntoskrnl ! PsGetCurrentProcessId:

8045252a 64al 24010000 r aov eax, fs: [00000124]
80452530 8b80e0010000 nmv eax, [eax+0xle0]

WINDOWS 2000 OBJECT STRUCTURES 429

80452536 c3 ret

80452537 cc int 3

ntoskrnl! PsGetCurrentThreadId:

80452538 64a124010000 nov eax, fs: [00000124]
8045253e 8b80e4010000 nmov eax, [eax+0xled]
80452544 c3 ret

80452545 cc int 3

EXAMPLE 7-1. Retrieving Process and ThreadlDs

Sometimes, the system needs a pointer to the process object that owns the current
thread. This address can be looked up quite easily by reading the Process member of
the Apcstate substructure inside the current kK THREAD .

THREAD AND PROCESS ENVIRONMENT BLOCKS

Y ou may wonder about the purpose of the Teb and Peb members inside the KTHREAD and
EPROCESS structures. The Teb, pointsto a Thread Environment Block (res), outlined
inLigting 7-18. Thefirst part of the TEB the Thread information Block (NT_TIB), is
defined in the Platform Software Development Kit (SDK) and DDK header fileswinnt . h
andntddk.h, respectively. The remaining members are undocumented. Windows 2000
maintainsa TEB structure for each thread object in the system. In the address space

of the current process, the TEBS of its threads are mapped to the linear addresses
0x7FFDE000, 0x7FFDD000, 0x7FFDC000, and so on, always stepping down one 4-KB
page per thread. As noted in Chapter 4, the TEB of the current thread is also accessible
viathe FS segment in user-mode. Many nta11 . a11 functions accessthe current TEB by
reading the value at address FS: 0x18, which isthe Self member of the embedded
NT_TIB. Thismember aways provides the linear address of the surrounding TEB

within the 4-GB address space of the current process.

/1 typedef struct _NT_TIB // see winnt.h / ntddk.h
I {

// /*000*/ struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList ;

/l /*004*/ PVOID StackBase;

/1 /*008*/ PVAD StackLimit;

/l /*00Cc*/ PVAD SubSystemTib;

/1 /*010%/ ynion (conti nued)

430 WINDOWS 2000 OBJECT MANAGEMENT

/1 /*010%/ PVOID FiberData;

/] /*010%/ ULONG Ver si on;

/1 E]

/1 /*014*/ PMAD ArbitraryUserPointer;

/1 /*018+%/ struct _NT_TIB *Self;
/1 /*01c*/ }

1/ NT_TI B,
1/ * PNT_TIB,
1/ **PPNT_TIB;
11

typedef struct _TEB // base addresses 0x7FFDE000, Ox7FFDDOOO,

{
/*000*/ NI_TIB Ti b;
/*01c*/ PVA D EnvironmentPointer;

/*020*/ CLIENT_ID Cid;
/*028*/ HANDLE RpcHandle;
/*02c*/ PPMA D ThreadLocalStorage;
/*030*/ PPEB Peb;
/*034*/ DWORD LastErrorValue;
/*038%/)
TEB,
* PTEB,
**PPTEB;

LISTING 7-18. The Thread Environment Block (TEB)

Just as each thread hasitsown TEB , each process has an associated PEB or
Process Environment Block. The peB is much more complex than the TEB, asList-
ing 7-19 demonstrates. It contains various pointers to subordinate structures that refer
to more subordinate structures, and most of them are undocumented. Listing 7-19
includes raw sketches of some of them, using tentative names and leaving much to be
desired. The PEB islocated at linear address 0x7rFpro00, thatis, inthefirst 4-KB page
following the TEB stack of the process. The system can eesily access the PEB by smply
referencing the Peb member of thecurrent thread'sTes.

typedef struct _MODULE_HEADER

/*000*/ DWORD d0oo;
/*004*/ DWORD dooé4;
/*008%/ LI ST_ENTRY Listl;
/*010*/ LIST_ENTRY List2;

WINDOWS 2000 OBJECT STRUCTURES 431

/*018%/ LI ST_ENTRY List3;
/*020%/ }
MODULE_HEADER,
* PMODULE_HEADER,
* * PPMODULE_HEADER;

typedef struct _PROCESS MIDULE | NFO

/*000*/ DWORD Size; /1 0x24
/*004*/ MODULE_HEADER ModuleHeader ;
/*024%/ }

PROCESS_MODULE_INFO,
* PPROCESS_MODULE_INFO,
* *PPPROCESS_MODULE_INFO;

11

/1 see Rt1 Oreat eProcessParaneters ()

typedef struct _PROCESS_PARAMETERS

{
/*000*/ DWORD Al | ocat ed;
/*004*/ DWORD Si ze;
/*008*/ DNCRD Flags; // bit 0: all pointers nornalized
/*00C*/ DWORD Reservedl;
/*010*/ LONG Consol e;
/*014*/ DWRD ProcessGroup;
/*018*/ HANDLE StdInput;
/*01c*/ HANDLE Stdoutput;
/*020*/ HANDLE StdError;
/*024*/ UNICODE_STRING WorkingDirectoryName;
/*02C*/ HANDLE WorkingDirectoryHandle;

/*030*/ UNICODE_STRING SearchPath;
/*038*/ UNICODE_STRING ImagePath;
/*040*/ UNICODE_STRING CommandLine;

/*048*/ PWORD Environment ;
/*04C*/ DWORD X;

/*050*/ DWORD b'e]

/*054*/ DWRD X8ize;
/*058*/ DWORD YSize;
/*05C*/ DWORD XCountChars ;
/*060*/ DWIRD YCountChars;
/*064*/ DWORD FillAttribute;
/*068*/ DWCRD Flags2;
/*06C*/ WIRD ShowWindow;
/*06E*/ WWORD Reserved?2;

/*070*/ UNICODE_STRING Title;
/*078*/ UNICODE_STRING Deskt op;

/*080*/ UNICODE_STRING Reserved3 ;)
(conti nued)

432 WINDOWS 2000 OBJECT MANAGEMENT

/*088*/ UNICODE_STRING Reserved4;
/*090*/ }
PROCESS_PARAMETERS,
* PPROCESS_PARAMETERS,
* *PPPROCESS_PARAMETERS

11

typedef struct _SYSTEM STR NGS

{
/*000*/ UNICODE_STRING SystemRoot; /1l d:\WINNT
/*008*/ UNICODE_STRING System32Root; /] d:\WINNT\System32
/*010*/ UNICODE_STRING BaseNamedObjects; // \BaseNamedObjects
/*018%/ }

SYSTEM_STRINGS,
* PSYSTEM_STRINGS,
* *PPSYSTEM_STRINGS;

typedef struct _TEXT_INFO
{
/*000*/ PVOID Reser ved;
/*004*/ PSYSTEM_STRINGS SystemStrings;
/*008*/ }
TEXT_I NFQ
* PTEXT_I NFQ
**PPTEXT_INFO;

/1

typedef struct _PEE // base address 0x7FFDF000

{
/*000*/ BOCLEAN InheritedAddressSpace;
/*001*/ BOOLEAN ReadImageFileExecOptions;
/*002*/ BOOLEAN BeingDebugged;
/*003*/ BYTE b003;
/*004*/ DINORD aonos;
/*008*/ PVA D SectionBaseAddress;

/*00C*/ PPROCESS_MODULE_INFO ProcessModuleInfo;
/*010*/ PPROCESS_PARAMETERS ProcessParameters;

/*014*/ DINRD SubSystembData;

/*018*/ HANDLE ProcessHeap;

/*01C*/ PCR TI CAL_SECTI (N FastPeblLock;

/*020*/ PMAQ D AcqguireFastPebLock; // function
/*024*/ PMAD ReleaseFastPebLock; // function
/*028*/ DNRD donzs;

/*02c*/ PPMAD User32Dispatch; /1 function

/*030%/ DWRD do3o;

/*034%/ DWIRD
/*038%/ DWIRD
/*03C*/ DWORD
/*040*/ PRTL_BITMAP
/*044%/ DNORD
/*04C*/ PVOID
/*050%/ PV D
/*054*/ PTEXT_I NFO
/*058%/ PVA D
/*05C*/ PvVA D
/*060*/ PVA D
/*064%/ DWIRD
/*068*/ DWORD
/*06C*/ DWIRD
/*070%/ LARGE_INTEGER
/*078%/ DWNCRD
/*07C*/ DINCRD
/*080%/ DWIRD
/*084%/ DWIRD
/*088*/ DWIRD
/*08C*/ DWIRD
/*090%/ PHANDLE
/*094%/ DINRD
/*098*/ DINRD
/*09C*/ DINRD
/*0A0*/ PCR Tl CAL_SECTI CN
/*0A4*/ DWORD
/*0A8*/ DWORD
/*0AC*/ \WRD
/*0AE*/ \WORD
/*0BO*/ DWRD
/*0B4*/ DWIRD
/*0B8*/ DNRD
/*0BC*/ DNRD
/*0C0*/ KAFFINITY
/*0C4*/ DWRD
/*150%/ PVA D
/*154%/ DWIRD
/*1D4*/ HANDLE
/*1D8*/ DWIRD
/*1DC*/ DWIRD
/*1E0*/ PWIRD
/*1E4*/ DWORD
/*1E8*/ }
PEB,
* PPEB,
**PPPEB;

WINDOWS 2000 OBJECT STRUCTURES

dos4;
do3s;
TlsBitMapSize; /1 nunber of bits
TlsBitMap; /1 ntdll! Tl sBitNMap
TlsBitMapData [2]; // 64 bits
p04cC;
p050;
TextInfo;
InitAnsiCodePageData;
InitOemCodePageData;
InitUnicodeCaseTableData;
KeNumberProcessors;
NtGlobalFlag;
aec;
MmCriticalSectionTimeout ;
MmHeapSegmentReserve ;
MmHeapSegmentCommit ;
MmHeapDeCommitTotalFreeThreshold;
MmHeapDeCommitFreeBlockThreshold;
NumberOf Heaps ;
AvailableHeaps; // 16, *2 if exhausted
ProcessHeapsListBuffer;
doo4;
doos;
dooc;
LoaderLock;
NtMajorVersion;
NtMinorVersion;
NtBuildNumber ;
CmNtCSDVersion;
PlatformId;
Subsyst em
MajorSubsystemVersion;
MinorSubsystemVersion;
Af finityMask;

adoA4 [35];

pl50;

adl54 [32];
Win32WindowStation;
dlps8;

dlDC;

CSDVersion;

dlE4;

433

LISTING 7-19. The Process Environment Block (PEB)

434 WINDOWS 2000 OBJECT MANAGEMENT

ACCESSING LIVE SYSTEM OBJECTS

The preceding sections have provided alot of theoretical information. As a practical
exampletoillustrate object management in the most useful form, | thought of writing
a kernel object browser. This would show how objects are arranged hierarchically
and how some of their properties can be retrieved. Unfortunately, ntoskrnl . exe fails
to export several key structures and functions required in an object browser applica-
tion. This means that not even a kernel-mode driver has access to them—they are
reserved for internal system use. On the other hand, Chapter 6 introduced a mecha-
nism that allows access to honexported data and code by evaluating the Windows
2000 symboal files, so the object browser seemed to be an ideal test case to check out
the practical suitability of this approach. The symbolic call interface from Chapter 6
passed thistest, so | haveincluded the sample application w2k_obj . exe with full
source code on the companion CD in the directory tree \src\w2k_obj . However, the
mogt interesting parts of the code are not buried inside w2k_obj . c. The hard work is
really done by the w2k _ca11. a11 library introduced in Chapter 6. Hence, many of
the subsequent code snippets are pulled fromw2k_call.c.

ENUMERATING OBJECT DIRECTORY ENTRIES

Y ou probably know the small obidir . exe utility in the Windows 2000 DDK, in the
\ntddk\bin directory. objdir.exe retrieves object directory information via the undoc-
umented Native APl function NtQueryDirectoryObj ect () exported by ntd11.d11.
Contrary to this, my object browser w2k_ob7 . exe bangs directly at the object directory
and its leaf objects. This sounds rather scary, but actualy it isn't. The best proof is that
w2k_obj . exe works on both Windows 2000 and Windows NT 4.0 without asingle
line of version-dependent code. Admittedly, thereareacoupl e of subtle differencesin
the object structures of both operating system versions, but the basic model has
remained the same. Providing a sample application that works directly on the raw
object structuresrather than using higher-level API functionsisanillustrative meansto
verify whether the structures shown in the preceding sections are accurate.

The most important thing to do before accessing global system data structures
istolock them. Otherwise it might happen that the system alters the data in the con-
text of a concurrent thread, so the application unexpectedly reads invalid data or
reaches into the void. Windows 2000 provides a large set of locks for the numerous
internal data items it maintains. The problem with these locks is that they are usually
not exported. Although a kernel-mode driver can do al sorts of things forbidden in
user-mode, it can't safely access nonexported data structures. However, the extended
kernel cal interface discussed in Chapter 6 and implemented by the w2k_cai1. dll
sample library can make the impossible possible by looking up the addresses of inter-
nal symbols from the operating system's symbol files. ThisDLL exportsthefollowing
three object manager data thunks that allow access to the kernel's object directory:

ACCESSING LIVE SYSTEM OBJECTS 435

1. ObpRootDirectoryMutex () returns the address of the ERESOURCE lock
that synchronizes access to the object directory as a whole.

2. ObpRootDirectoryObject () returns a pointer to the OBJECT DIRECTORY
structure representing the root node of the object directory.

3.__ ObpTypeDirectoryobject()returnsapointertotheOBJECT_DIRECTORY
structure representing the \objectTypes subdirectory node of the object
directory.

An application must be extremely cautious when it works with pointers to kernel
objects, especidly after acquiring a global lock. If the lock isn't properly released, the
system might be left in ahandcuffed state, unable to perform even the simplest tasks.

Although the root directory lock is named obprootDirectoryMutex, itisn't
really a mutex in the strict sense of the word. It is an ERESOURCE rather than a xiuTEx,
and as such must be acquired with the help of the exacquireresourceExclusiveLite ()
Of ExAcquireResourceSharedLite () APl functions. The "Lite" suffix is important—
never use thesiblings ExAcquireResourceExclusive () Of ExAcquireResourcShared()
on Windows 2000 or NT4 ERESOURCE locks. This structure has been revised quite a
bit since Windows NT 3.x, and the latter pair of functions works only with the
old-style ERESOURCE type, included in w2k_def.h as eresource_orp (see aso
Appendix C). The counterpart of the Exacquireresource*Lite () functionsis
named ExreleaseresourceLite () and should be carefully distinguished fromits
old-style sibling ExReleaseResource () .

The basic approach of my object browser is to lock the object directory, take a
snapshot of al nodes found in its hierarchic structure, and display the snapshot data
after releasing the directory lock. This procedure guarantees the least interference
with the system, and the application can take as much time as it needs to display
the data without overusing the system. Taking a faithful snapshot of the directory
requires very intimate knowledge of the system's object structures, so this application
is a great test case for the reliability of the object information | have supplied above.
This job can be subdivided into the following two basic tasks:

1. Copying the structure of the object directory tree. This involves copying
and interlinking several oeosrcT DIRECTORY Structures, each one
representing an individual nonleaf node.

2. Copying the contents of the object directory tree. This means copying the
orsecT_HEADER and its related structures of each leaf node in the tree.

Thew2kDirectoryOpen () function shown in Listing 7-20 performs the first task.
Itlocksthedirectoryandenumeratesall childrenof thesuppliedOBJECT_DIRECTORY .
To capture the entire object tree, this function must be called recursively for each

436 WINDOWS 2000 OBJECT MANAGEMENT

directory entry that is itself an oegecT_pIrRECTORY . Please recall that each object direc-
tory node consists of a hash table that can accommodate a maximum of 37 entries.
Each hash table dot canin turn refer to an arbitrary number of entries by putting
them into alinked list. Therefore, enumeration of directory entries requires two nested
loops: The outer one scans al 37 hash table dots for non-nuLr entries, and the inner
one walks down the linked lists. Thisis about al the w2kpirectoryopen () function
does. Theresulting data is structurally equivalent to the original model, except that

all pointersrefer to memory blocks reachablein user-mode. The basic copying including
automatic memory allocation is performed by the powerful w2kspycione () function,
also exported by w2k _ca11.d11 (seeListing 6-30). Thew2kpirectoryclose () functionin
Listing 7-20 undoes the work done by w2kpirectoryopen (), Simply deallocating al
cloned memory blocks.

PCBJECT_DI RECTCRY WINAPT
w2kDirectoryOpen (POBJECT_DIRECTORY pDir)

{
DWRD i
PERESOURCE pLock;
PPCBJECT_DI RECTORY_ENTRY ppEntry;
PCBJECT_DI RECTQRY pDirl = NULL;
if (((pLock= ObpRootDirectoryMutex ()) != NULL) &&
_ExAcquireResourceExclusiveLite (pLock, TRUE))
{
if ((pDirl= w2kSpyClone (pDr, OBJECT_DIRECTORY_)) !=NULL)
{
for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i ++)
{

ppEntry = pDirl->HashTable + i ;

while (*ppEntry != NULL)
{
if ((*ppEntry=
w2kSpyClone (*ppEntry,
OBJECT_DIRECTORY_ENTRY_))
1= NULL)
{
(*ppEntry)->0Object =
w2kObjectOpen ((*ppEntry) ->Object) ;

pPpENtry = & (*ppEntry)->NextEntry;

}

ACCESSING LIVE SYSTEM OBJECTS 437

_ExRel easeResourceLite (pLock);

}

return pDirl;

}

’

PCBJECT_D RECTCRY WINAPI
w2kDi rectoryd ose (POBJECT_DIRECTORY pDir)

POBJECT_DIRECTORY_ENTRY pEntry, pEntryl;
DNCRD i

if (pOr !=NUL)

{
for (i = 0; i < OBJECT_HASH_TABLE_SIZE; i++)
{
for (pEntry = pDir->HashTable [i];
pEntry 1= NULL;
pEntry = pEntryl)
{
pEntryl = pEntry->NextEntry;
w2k (Chj ect A ose (pEntry->0Object) ;
w2kMemoryDestroy (pEntry):;
}
}
w2kMemoryDestroy (pDir);
)
return NULL;

}

LISTING 7-20. The w2kDirectoryOpen () and w2kDirectoryClose () API Functions

A closer look at Listing 7-20 reveasthat w2kDirectoryOpen() and
w2kDirectoryClose () cdl the functions w2kobjectopen () and w2kObjectClose () ,
respectively. w2kobiectopen () takes care of part two of the directory copying proce-
dure: It clones leaf objects. It doesn't produce complete object copies, because this
would require identifying each object type and copying the appropriate number of
bytes from the object body. w2kobjectopen () copies the entire header portion of an
object, including most of its subordinate structures, and builds a fake object body
that contains pointers to the real object body and to various parts of the object
header copy. Listing 7-21 shows the data structures built and initialized by
w2kObjectOpen () . W2K_OBJECT_FRAME IS amonolithic data block that comprises
the object header copy and the fake object body. The latter is represented by the
W2K_OBJECT structure, which isjust a collection of pointers to members of

438 WINDOWS 2000 OBJECT MANAGEMENT

W2K_OBJECT_FRAME. w2kObjectOpen () alocates memory for the W2K_OBJECT_FRAME
structure, initializesit with datafrom the original object, and returns apointer to the
object frame'sobiect member. If you recall the foregoing description of object bodies
and headers, it becomes apparent that thew2x_orJecT_rFraME mimicsthe structure of
areal object. That is, it has all header fields the original object has, and an application
can accessthemin the sameway that the system accessesits objectsin kernel-mode
memory, using the offsets and flags in the oBJECT HEADER.

typedef struct _W2K_OBJECT

{

POBJECT pObject;
POBJECT_HEADER pHeader;
PCBJECT_CREATCR | NFO pCreatorInfo ;
POBJECT_NAME pName ;
POBJECT_HANDLE_DB pHandleDB;
POBJECT_QUOTA_CHARGES pQuotaCharges ;
PCBIECT_TYPE pType ;
PQUOTA_BLOCK pQuotaBlock;
PCBJECT_CREATE_I NFO pCreateInfo;
PWORD pwName ;

PWORD pwType ;

}

W2K_OBJECT, *PW2K_OBJECT, **PPW2K_ORBRJECT;

#define W2K_OBJECT sizeof (W2K_OBJECT)

typedef struct _W2K_OBJECT_ FRAME

{

OBJECT_QUOTA_CHARGES QuotaCharges ;
OBJECT_HANDLE_DB HandleDB;
OBJECT_NAME Nane ;
GBIJECT_CREATCR I NFO CreatoriInfo;
CBJECT_HEADER Header ;
W2K_OBJECT j ect ;
CBIECT_TYPE Type ;
QUOTA_BLOCK QuotaBlock;
CBJECT_CREATE_I NFO CreatelInfo;
WORD Buffer [];

}

W2K_OBJECT_FRAME, *PW2K_OBJECT_FRAME, **PPW2K_OBJECT_FRAME;

tfdefine W2K_OBJECT_ FRAME_ sizeof (W2K_OBJECT_FRAME)
#def i ne W2K_OBJECT_FRAME (_n) (W2K_OBJECT_FRAME_+ ((_n) * WORD_))

LISTING 7-21. Object Clone Structures

ACCESSING LIVE SYSTEM OBJECTS 439

| don't want to go into the details of w2kobjectopen () and al of its subordinate
functions. For illustrative purposes, the three-part set of functions shown in Listing 7-22
should suffice. w2kobjectHeader () Creates a copy of an object's OBJECT HEADER,
and w2kobj ectCreatornfo () and w2kObj ectname () copy the OBJECT_CREATOR_INFO
and orgecT_naMe header parts, if present. Again, w2kspyClone () isthe main work-
horse. For more examples of this kind, please refer to thew2k_call. c sourcefileon
the accompanying CD.

#define BACK(_p,_d) ((PVOID) (((PBYTE) (_p)) - (_d)))

PCBJECT_HEADER WINAPI
wW2k(Chj ect Header (POBIECT p(oj ect)
{

DNRD doffset = OB JECT_HEADER_
PCBJECT_HEADER pHeader = NULL;

if (pQbject != NULL)

{
pHeader = w2kSpyd one (BACK (pQbj ect, doffset) ,
doffset);
}
return pHeader;

}

11

PCBIJECT_CREATCR | NPO W NAPI
w2kObj ectCreatorInfo (POBJECT_ HEADER pHeader y
PCBIECT pQhj ect)
{
DWORD dOf f set
POBJECT_CREATOR_INFO pCreatorInfo = NULL;

if ((pHeader != NULL) && (pCbject != NUL) &&
(pHeader - >(hj ect Fl ags & OB_FLAG_CREATOR_INFO))

{
dOf f set = CBIJECT_CREATOR | NFO_ + OBJECT_HEADER_;

pOreatorl nfo = w2kSpyd one (BAXK (p(bhj ect, dOfset) ,
OBJECT_CREATOR_INFO_) ;

}

return pCreatorInfo;

}

(conti nued)

440 WINDOWS 2000 OBJECT MANAGEMENT

POBJECT_NAME WINAPI
w2kObjectName (POBJECT_HEADER pHeader,
POBJECT pObject)
{
DWRD dOf f set ;
POBJECT_NAME pNanme = NULL;

if ((pHeader != NULL) && (pChject != NULL) &&
(dCr f set = pHeader->NameOffset))

{

dOf f set += OBJECT_HEADER_;

pNane = w2kSpyClone (BACK (pChject, doffset) ,
OBJECT_NAME_) ;

)

return pNane;

}

LISTING 7-22. Object Cloning Helper Functions

The bottom line of the story is that w2kDirectoryOpen () takes a pointer to a
live oBsECT_DIRECTORY hode and returns a copy that contains w2x_oBJECT pointers
wherethe original directory stores its object body pointers. The object browser
application callsthis API function repeatedly, once for each directory layer it dis-
plays. Listing 7-23 is a heavily edited version of the browser code, stripped down
toits bare essentials. The original code found inw2k_ob7 . ¢ contains many distract-
ing extras that would have obscured the basic functional layout. The top-level
functionisnamed pisplayobjects() . It requeststhe object root pointer from
w2k _call .d11via__ obprRootDirectoryobiect () and forwards it to DisplayOject (),
which displays the type and name of the object and callsitself recursively if the object
iSan oBJECT_DIRECTORY. For each nesting level, pisplayobject () adds alineinden-
tation of three spaces. | have added the functions in Listing 7-23 to w2k _obj . ¢ on the
companion CD under the section header "POOR MAN'S OBJECT BROWSER."
However, this code is not called anywhere, although it does work.

VA D WNAPI _Di spl ayQhj ect (PW2K_OBJECT pChj ect,
DWCRD dLevel)
{
PCBJECT_D RECTCRY pDir;
PCBJECT_D RECTORY_ENTRY pEntry;
DWCRD i;

ACCESSING LIVE SYSTEM OBJECTS 441

for (i =0; i < drevel; i++) printf (L ");

_printf (L"%+.-16s%s\r\n", pObject->pwType, pObject->pwName) ;

if ((!lstrcmp (pObject->pwType, L"Directory")) &&
((pDir =w2kDirectoryOpen (pObject->pObject)) !=NULL))
{
for (i = 0;i < OBJECT_HASH_TABLE_SIZE; i ++)
{

for (pEntry = pDr->HashTable [i];
pEntry ! = NULL;

pEntry = pEntry->NextEntry)
{
_DisplayObject (pEntry->Object, dLevel+l);
}
w2kDi rectoryd ose (pDir) ;
}
return;

}

/17

VO D wINAPI _Di splayQojects (VAD
{

PW2K_OBJECT pChj ect;

if ((pObject= w2kChj ect (pen (_ ObpRootDirectoryObject ()))
!= NULL)
{
_Di spl ay(hj ect (poject, 0);
wW2kChbj ect A ose (pObject) ;
}

return;

}

LISTING 7-23. A Very Smple Object Browser

In Example 7-2, 1 have compiled some characteristic parts of an object directory
listing generated by the code in Listing 7-23. For example, the \BaseNamedoObijects
subdirectory comprises named objects that are typically shared between processes
and can be opened by name. The \objectTypes subdirectory contains al 27
OBJECT_TY PEtypeobjects (cf. Listing 7-9) supported by the system, aslisted
in Table 7-4.

442 WINDOWS 2000 OBJECT MANAGEMENT
1
" Directory \ '
Directory ArcName
SymbolicLink....multi(0)disk(0) rdisk(0)
SymbolicLink.. . .multi(0)disk(0) rdisk (1)
SymbolicLink.. . .multi(0)disk(0)rdisk(l)partition(1l)
SymbolicLink.. . .multi(0) di sk(O rdisk(0)partition(1)
SymbolicLink. .. .multi(0)disk(0) £fdisk(0)
SymbolicLink. .. .multi(0)disk (0)rdisk(0)partition(2)
Devi ce Nt fs
Port SeLsaCommandPort
Key REQ STRY
Por t Xact SrvLpcPort
Por t DbgU Api Por t
Drectory NLS
Section N sSecti onCP874
Section N sSect i onGP950
Section N sSect i onCP20290
Section N sSecti onCP1255c 1255.nls
D rectory BageNamedObjects
Section Df SharedHeapE445BB
Section DFMap0-14765686
Mut ant ZonesCacheCounterMutex
Section DFMap0-14364447
Event WINMGMT COREDLL UNLQADED
Mit ant MJ CDA DeviceQitSec 19
Event AgentToWkssvcEvent
Event userenv: Machine Goup Policy has been applied
Synboli cLink. . . .Local
Section DFMapG 15555297
Section Df SharedHeapED2256
Section O Shar edHeapESF975
Section DFVapO- 15232696
Section DFVapO- 15170325
Event Shel | NotificationCallbacksOutstanding
Secti on DFVapO- 14364985
Event SETTermEvent
Event wi nl ogon: UWser GPO Event 112121
D rectory ObjectTypes
Type D rectory
Type Mut ant
Type Thr ead
Type Controller
Type Profile
Type Event
Type Type
Type Section

ACCESSING LIVE SYSTEM OBJECTS 443

Type Event Pai r

Type SymbolicLink

Type Deskt op

Type Ti mer

Type File

Type WindowStation

Type Driver

Type WmiGuid

Type Devi ce

Type Token

Type IoCompletion

Type Process

Type Adapt er

Type Key

Type Job

Type WaitablePort

Type Por t

Type Cal | back

Type Senaphor e
Directory Security

Event TRKWKS EVENT

WaitablePort. .. .TRKWKS_PORT

Event LSA AUTHENTI CATION | N TI ALI ZED

Event NetworkProviderLoad

EXAMPLE 7-2. Excerpts from an Object Directory

The full-featured object browser code inside w2k_ob7 . exe not only displays the
directory treeinamorepleasing visual form, but also allowsdisplay of additional
object features and filtering of object types. Example 7-3 shows the various options
offered by the w2k_ob7 . exe command line.

// w2k_obj.exe

/1 SBS Wndows 2000 Obj ect Browser V1. 00
// 08-27-2000 Sven B. Schrei ber

// sbs@orgon. com

Usage: w2k_obj [+-atf] [<type>] l<#>*11 [/root] [/types]

+a -a : show hide object addresses (default: -a)
+t -t : show hi de object type nanes (default: -t)
+ -f : show hide object flags (default: -f)

(continued)

444 WINDOWS 2000 OBJECT MANAGEMENT

<type> : show <type> objects only (defaul t:]
<#> show <#> directory levels (default: -1)
-1 show al| directory levels

/root show ObpRootDirectoryObject tree

/types : show ObpTypeDirectoryObject tree

Exanpl e: w2k_obj +atf *port 2 /root

This command di splays all Port and Witabl ePort objects,
starting in the root and scanning two directory |evels.
Each line includes address, type, and flag information.

EXAMPLE 7-3. The Command Help of w2k _obi . exe

In Example 7-4, I have issued the sample command w2k_obj +atf *port 2 /root
mentioned in the hel p screen. It restricts the output to Port and Waitabl ePort objects

by applying thetypefilter expression * port and i ncludes obj ect body addresses,
type names, and flagsfor each entry. The display islimited to two subordinate

directory layers.

Root directory contents:

8149CDDO Directorv
E26A0540 Port
E130CC20 Port
E13E2380 Port
E13E4BAO Port
E26A9D20 Port
E13E4CAO Port
E13E3260 Port
E2707680 Port
| 81499B70 Directorv
| 812FDB60 Directory
| 814940BO Directory
81490B30 Directorv
81499A90 Directorv
| 814AFEA90 Directory
| 814AE4FO Directory
8148BE50 Directory
| 814AB3DO Directory
| 814852FODirectory
| 814A9F50 Directorv

VV V V V Vv VvV Vv

(2 Il evel s shown)

<32> \

<24> seLsaCommandPort

<24> XactSrvLocPort

<24> DbaUiApiPort

<26> SeRmCommandPort

<24> LsaAut henti cati onPort

<24> DbaSsApiPort

<24> SmApiPort

<24> ErrorLoaPort

<32> \ ArcNane

<10> \NLS

<32> \Driver

<32> \WmiGuid

<32> \Device
<32> \Device\DmControl
<32> \Device\HarddiskDmVolumes
<32> \ Device\l de
<32> \ Devi ce\ Har ddi skO
<32> \ Devi ce\ Har ddi skl
<22> \Device\WinDfs

ACCESSING LIVE SYSTEM OBJECTS 445

| \ 814AB030 Directorv <32> \ Devi ce\ Scsi
| 81319030 D rectorv <30> \Windows
> E2615520 Port <24> sbApiPort
> E260E1AO Port <24> ApiPort
812FC810 Directorv <32> \Windows\WindowStations
81319150 Directory <30> \RPC Control
> E26B6A20 Port <24> tavsrvlpc
> E3228440 Port <24> OLE3c
> E269F360 Port <24> spoolss
> E269B6EO Port <24> OLE2
> E2C96C60 Port <24> OLE3f
> E1306BCO Port <24> OLE3
> E269BD20 Port <24> LRPC0000021c . 00000001
> E276D520 Port <24> OLES
> E2699D40 Port <24> CLE6
> E2697C00 Port <24> QLE7
> E26FQAEO Port <24> ntsvcs
> E26B6B20 Port <24> policyagent
> E2814CAO Port <24> OLEa
> E29DC3CO Port <24> COLEb
> E304C8AO Port <24> OLE40
> E3165660 Port <24> QK1
> E26979A0 Port <24> evpmavver
> | E13069A0 Port <24> senssvc
> | \ E2C8D040 Port <24> OLE42
| 812FD030 Directorv <30> \BaseNamedObiects
| \ 812FDF50 Drectory <30> \ BaseNaned(hj ect s\ Restri ct ed
| 8149CBDO Directorv <32> \?7?
1 814B5030 Directorv <32> \FileSvstem
| 8149C0CBO Directory <32> \ObjectTypes
| 81499C50 Directorv <32> \Securitv
> | _ 8121EB20 waitablePort _ <24> TRKWKS_PORT
| 8149B2DO Directory <32> \ Cal | back
\ 81446E90 Directory <30> \KnownDl1ls
54 objects

EXAMPLE 7-4. Output ofthe Command w2x_obi +atf *port 2 /root

Note that Directory objects are always included in the list, even though the
type name pattern doesn't match them. Otherwise, it would be unclear to which node
inthedirectory hierarchy the matching objects are assigned. The > charactersinthe
first display column act as visual cues that distinguish the objects with a matching
object type from the additional Directory objects.

446 WINDOWS 2000 OBJECT MANAGEMENT

WHERE DO WE GO FROM HERE?

So much could still be said about Windows 2000 internals. But the number of
words fitting into a reasonably sized book is limited, so it must end somewhere.
The seven chapters of this book were tough reading, but maybe it was thrilling as
well. If you are now seeing Windows 2000 with different eyes, | have reached my
goal. If you are a programming or debugging tool developer, the programming and
interfacing techniques in this book will help you add value to your products that
none of the competitive tools can currently offer. If you are developing other kinds
of software for Windows 2000, the understanding of the inner system dynamics
imparted by this book will help you writing more efficient code that optimally
exploits the features of your operating system. | also would like this book to spur
the inquiring minds of developers everywhere, kicking off an avalanche of research
that unveils the mysteries that still surround most parts of the Windows 2000
kernel. | never believed that treating the operating system as a black box was a
good programming paradigm—and | still don't believe it.

APPENDIX A

Kernel
Debugger

Commands

The following tables provide a quick reference to the Windows 2000 Kernel Debug-
ger's console command interface, described in Chapter 1.

TABLE A-1. Built-in Kernel Debugger Commands

COMMAND DESCRIPTION
A [<address>] Assemble
BA[#] <elrlwlixI12]4> <address> Address breakpoint
BC[<bp>] Clear breakpoint(s)
BD[<bp>] Disable breakpoint(s)
BE[<bp>] Enable breakpoint(s)
BL[<bp>] List breakpoint(s)
BP[#] <address> Set breakpoint

C <range> <address>
DItype][<range>]

E[type] <address> [<list>]

F <range> <list>

G [=<address> [<address>...]]
I<type> <port>

J<expression> [‘Jemd1[‘J;[Jemd2[‘]
K[B] <count>

KB = <base> <stack> <ip>

Compare memory

Dump memory

Enter

Fill memory

Go to address

Read from I/O port
Conditional execution

Stack trace

Stack trace from specific state

(continued)

447

448 KERNEL DEBUGGER COMMANDS

TABLE A-1. (continued)
COMMAND DESCRIPTION
L{+I-}[lost*] Control source options

LN <expression>

LS[.] [<first>][,<count>]

LSA <address>[,<first>][,<count>]
LSC

LSF[-] <file>

M <range> <address>
N [<radix>]
AR] [=<address>] [<value>]

Q

#R

R[F][L][M <expression>] [[<register> [= <expression>]]]

Rm[?] [<expression>]
S<range><list>

SS<nlalw

SX [dd [<event>|*|<expression>]]
T[R] [=<address>] [<expression>]
U [<range>]

O<type> <port> <expression>

X [<*Imodule>!]<*Isymbol>
.cache [Siz€]

Jogopen[<file>]

Jogappend [<file>]

Jogclose

.reboot

.reload

~<processor>

? <expression>

#<string> (address|

$< <filename>

List nearest symbols

List sourcefilelines

List source file lines at address
Show current source file and line

Load or unload a source file for
browsing

Move memory

Sat / show number radix
Program step

Quit debugger

Multiprocessor register dump
Get/set register/flag value

Control prompt register output mask
Search memory

Set symbol suffix

Exception

Trace

Unassemble

Write to I/O port

Examine symbols

Set virtual memory cache size
Open new log file

Append to log file

Close log file

Reboot target machine

Reload symbols

Change current processor
Display expression

Seasch fora swing o the fosassawfoYy
Take input from a command file

APPENDIX A 449

TABLE A-2. Command Argument Types Used in Table 1-1
ARGUMENT DESCRIPTION
<address> #<1 6-bit protect-mode [seg:]address>
&<V86-mode [seg:]address>
<event> ct, et, 1d, av, cc
<expression> operators: + - * / not by wo dw poi mod(%) and(&) xor(*) or(l) hi low
operands: number in current radix, public symbol, <register>
<flag> iopl, of, df, if, tf, sf, zf, af, pf, cf
<list> <byte> [<byte> ..]
<pattern> [(nt | <dll-name>)!]<var-name> (<var-name> caninclude ? and *)
<radix> 8,10, 16
<range> <address> <address>
<address> L <count>
<register> [elax, [€e]bx, [e]cx, [eldx, [€]s, [€]di, [€]bp, [€lsp, [€lip, [€]fl
al, ah, bl, bh, cl, ch, dl, dh, cs, ds, es, fs, gs, ss
crQ, cr2, cr3, crd, drO, drl, dr2, dr3, dr6, dr?
gdtr, gdtl, idtr, idtl, tr, dtr
<type> b(BYTE)
w (WORD)
dis] (DWORD [with symbols])
q (QWORD)
f (FLOAT)
D (DOUBLE)
a(ASCIl)
c (DWORD and CHAR)
u (Unicode)

sIS (ASCI/Unicode string)
1(list)

450 KERNEL DEBUGGER COMMANDS

TaBLE A-3. Bang Commands Exported by kdextx86.d11
COMMAND DESCRIPTION
lad <Address> [flags] Display the ACL

lapic [base]
larbiter [flags]

larblist <address> [flagg]

bugdump

tbushnd

tbushnd <address>

lca <address> [flags]

Icallback <address> [num]
tcalldara <table name>

Icbreg <BaseAddr> | % %<PhyAddr>
lemreslist <CM Resource List>
fexr

ldb <physical address>

!dblink <address> [count] [biag]
ldcs <Bus>.<Dev>.<Fn>
!dd<physical address>
Idefwrites

!devext <address> <type>

!devnode <node> [flags] [service]

Dump local APIC
Display all arbiters and arbitrated ranges

flags: 1 I/O arbiters
2 Memory arbiters
4 IRQ arbiters
8 DMA arbiters
10 Bus number arbiters

Dump st of resources being arbitrated

flags: 1 Include Interface and Slot info per device
Display bug check dump data

Dump HAL "BUS HANDLER" ligt

Dump HAL "BUS HANDLER" structure of handler <address>
Dump control area of a section

Dump callback frames for specified thread

Dump call data hash table

Dump CardBusregisters

Dump CM resource list

Dump context record at specified address

Display physical memory BY TEs

Dump aligt via its blinks

Dump PCI ConfigSpace of device

Display physica memory DWORDs

Dump deferred write queue and triages cached write throttles

Dump device extension at <address> of type <type> <type>
PCI, PCMCIA, USBD, OpenHCI, USBHUB, UHCD, HID

Dump device node

node: 0 List main tree
1 List pending removals
2 List pending ejects
addr List specified node
flags: 1 Dump children
2 Dump CM Resource List
4 Dump 1/O Resource List
8 Dump translated CM Resource List
10 Dump only nodes that aren't started
20 Dump only nodes that have problems

service: If present, only nodes driven by this service dumped

TABLE A-3.

APPENDIX A

Bang Commands Exported by kdextx86 .d11

451

COMMAND

DESCRIPTION

!devobj <device>

!devstack <device>

!dflink <address> [count] [bias]
bias

!drivers

!drvobj <driver> [flags]

leb <physical address> <BYTE list>
led <physical address>

lerrlog

lexca <BasePort>.<SktNum>

lexqueue [flags]

lexr <address>
!filecache

Ifilelock <address>
Ifiletime

!fpsearch <address>
!frag [flags]

!gentable <address>

thandle <address> <flags> <process>

<TypeName>

theap <address> [flags]

Dump device object and IRP queue
<device> Device object address or name
Dump device stack associated with device object
Dump alist viaits flinks
Mask of bits to ignore in each pointer
Display information about all loaded system modules
Dump driver object and related information
<driver> Driver object address or name
flags: 1 Dump device object list
2 Dump driver entry points
Enter BY TE values to physical memory
Enter DWORD values to physical memory <DWORD list>
Dump the error log contents
Dump ExCA registers
Dump the ExWorkerQueues

flags: 1/2/4 Same as !thread / !process
10 Only critical work queue
20 Only delayed work queue
40 Only hypercritical work queue

Dump exception record at specified address

Dump information about the file system cache
Dump filelock structure

Dump 64-bit FILETIME as a human-readable time
Find a freed special pool alocation

Display kernel mode pool fragmentation

flags: 1 List all fragment information
2 List allocation information
3 Both

Dump the given rtl_generic_table
Dump handle for a process

flags: 2 Dump nonpaged object
Dump heap for a process

address: Desired heap to dump or O for al
flags: -v Verbose

-f Free List entries

-a All entries

(continued)

452 KERNEL DEBUGGER COMMANDS
TABLE A-3. Bang Commands Exported by kdextxse6 .d11
COMMAND DESCRIPTION
-S Summary
-X Force a dump even if the datais bad
thelp Display command help
1HidPpd <address> <flags> Dump preparsed Data of HID device
lib <port> Read a BYTE from an I/0 port
lid <port> Read a DWORD from an 1/O port
lioapic [base] Dump I/O APIC

lioreslist <O Resource List>
lirp <address> <dumplevel>

lirpfind [pooltype] [restart addr]
[<irpsearch> <address>]

liw <port>
ljob <address> [<flags>]
tlocks [-v] <address>

llookaside <address> <options>
<depth>

pc

!memusage

!mps

!mtrr
Inpx [base]
lob <port>

Dump 1/O resource requirements list
Dump IRP at specified address

address == Dump active IRPs (checked only)
dumplevel:0 Basic stack info

1 Full field dump

2 Include tracking information (checked only)
Search pool for active IRPs
pooltype: 0 Nonpaged pool (default)

1 Paged pool

2 Specia pool

restart addr If present, scan will be restarted from here in pool
<irpsearch> Specifiesfilter criteriato find a specific IRP:

userevent Irp.UserEvent == <address>

device Stack location: DeviceObject == <address>
fileobject Irp.Tal.Overlay.Origina FileObject == <address>
mdlprocess Irp.MdlIAddress.Process ==<address>

thread Irp.Tail. Overlay. Thread == <address>

arg One of the arguments == <address>

Read a WORD from an I/O port
Dump JobObject at <address>, processes in job
Dump kernel-mode resource locks

Dump lookaside lists
options. 1 Reset list counters

2 Set list depth to <depth>
Dump LPC ports and messages
Dump the page frame database table
Dump MPS BIOS structures
Dump MTTR
Dump NPX save area
Write a BYTE to an I/O port

TABLE A-3.

Bang Commands Exported by kdextxge. dai1

APPENDIX A 453

COMMAND

DESCRIPTION

lobja <TypeName>

lod <port>
fow <port>

!patch

Ipci [flag] [bus] [device] [function]

!pciir

Ipcitree

per

Ipfn

Ipic

Ipnpevent <address>
!pocaps

Ipodev <devobj>
Ipolist

Ipolist [<devobj>]
!ponode

!popolicy

Ipoproc <Address>
!pool <address> [detail]

Dump an object manager object's attributes
lobject <-r | Path | address | 0 TypeName>Dump an object manager object

-r

Force reload of cached object pointers

WriteaDWORD to an /O port

WriteaWORD to an I/O port

Enable and disable various driver flags
Dump PCI type1 configuration [rawdump:minaddr] [maxaddr]

flag: Ox01

Dump the Processor Control Region (PCR)

0x02
0x04
0x08
0x10
0x20
0x40
0x80

Verbose

From bus 0 to ‘bus’
Dump raw BYTEs
Dump raw DWORDs

Do not skip invalid devices

Do not skip invalid functions

Dump capabilitiesif found

Dump device specific on VendorID:8086
Dump the PCI IRQ routing table
Dump the PCI tree structure

Dump the pageframe database entry for the physical page
Dump PIC (8259) information
Dump specified PNP event, or al events if <address> ==
Dump system power capabilities

Dump power relevant datain device object

Dump power IRP seria list
Dump power IRP serial list entries for specified devobj
Dump power device node stack (devnodes in power order)
Dump system power policy
Dump processor power state.
Dump kernel mode heap
address: 0

detail:

-1
else
0

1

2

Only the process heap (default)

All heaps in the process
Pool entry
Summary Information

Summary + location/size of regions
Display information only for address

(continued)

454 KERNEL DEBUGGER COMMANDS

TABLE A-3. Bang Commands Exported by kdextx86.di1

COMMAND DESCRIPTION
3 Summary + blocks in committed regions
4 Summary + free lists

Ipoolfind <tag> [pooltype]

Ipoolused [flags [TAG]]

!poReqList [<devobj>]
Iportcls <devobj> [flags]

Ipotrigger <address>
Iprocess [flags] [imagename]

Iprocessfields

Ipte

Iptov <Physical PageNumber>
1glocks
Irange<RtlRangeList>

Iready

Ireghash

Iregkcb <address>

Iregpool [slr]

Find occurrences of the specified pool <tag>

<tag> Four-character tag, * and ? are wild cards
pooltype: 0 Nonpaged pool (default)
1 Paged pool
2 Special pool
Dump usage by pool tag
flags: 1 Verbose
2 Sort by NonPagedPool Usage
4 Sort by PagedPool Usage

Dump PoRequestedPowerlrp created Power IRPs
Dump portcls data for portcls bound devobj

flags: 1 Port dump
2 Filter dump
4 Pin dump
8 Device context
10 Power info
100 Verbose
200 Reslly verbose

Dump POP_ACTION_TRIGGER
Dump process at specified address

flags: 1 Don't stop after Cid/Image information
2 Dump thread wait states
4 Dump only thread states
6 Dump thread states and stack

Show offsetsto al fieldsin the EPROCESS structure
Dump the corresponding PDE and PTE for the entered address
Dump all valid physical/virtual mappings for apage directory
Dump state of al queued spin locks
Dump RTL_RANGE_LIST
Dump state of all ready system threads
Dump registry hash table
Dump registry key-control-blocks
Dump registry allocated paged pool
s Save list of registry pages to temporary file
r Restore list of registry pages from temporary file

APPENDIX A 455

TABLE A-3. Bang Commands Exported by kdextx86 .a11

COMMAND DESCRIPTION

Irellist <relation list> [flags] Dump PNP relation lists

remlock
Il <Address> [flags]
I [selector]

Isession <id> [flags] [image name]

lsd <Address> [flags]
Isocket <address>
lsrb<address>
Istacks<detail-level>

Isysptes
Ithread <address> [flags]

Ithreadfields

Itime

Itimer

Itoken <address> [flags]
Itokenfields

Itrap [base]

Itss [register]

!tunnel <address>

Itz [<address> <flags>]
Itzinfo <address>

lurb <address> <flags>

lusblog <log> [addr] [flags]

flags: 1 Not used

2 Dump CM Resource List

4 Dump IO Resource List

8 Dump translated CM Resource List
Dump aremove lock structure
Display SECURITY_DESCRIPTOR
Examine selector values
Dump sessions
Display the SID structure at the specified address
Dump PCMCIA socket structure
Dump SCSI Request Block at specified address
Dump summary of current kernel stacks
detail-level: 0 Display stack summary

1 Display stacks, no parameters

2 Display stacks, full parameters
Dump the system PTEs
Dump thread at specified address
flags: 1 Not used

2 Dump thread wait states

4 Dump only thread states

6 Dump thread states and stack
Show offsetsto all fieldsin the ETHREAD structure
Report PerformanceCounterRate and TimerDifference
Dump timer tree
Dump token at specified address
Show offsetsto all fieldsin atoken structure
Dump trap frame
Dump TSS
Dump afile property tunneling cache
Dump thermal zones (No arguments. dump all zones)
Dump thermal zone information
Dump an USB Reguest Block
Display anUSB log
<log> USBHUB, USBD, UHCD, OpenHCI

(continued)

456 KERNEL DEBUGGER COMMANDS

TABLE A-3. Bang Commands Exported by kdextx86.dl|
COMMAND DESCRIPTION
addr: Address to begin dumping fromin <log>
flags: -r Resat the log to dump from most
recent entry

lusbstruc <address> <type>

Ivad

lversion

lvim

lvpd<address>

tvtop DirBase address
lwdmaud <address> <flags>

1zombies

-sL Search for tagsin comma-delimited list L
-IN Sat number of linesto display at atimeto N
Display an USB HC descriptor of <type>

<type> OHCIReg, HCCA, OHCIHcdED, OHCIHcdTD,
OHCIEndpoint, DevData, UHCDReg

DumpVADs

Version of extension DLL

Dump virtual memory values

Dump volume parameter block

Dump physical page for virtual address
Dump wdmaud data for structures

flags: 1 I/O control history dump given

WdmaloctlHistoryListHead

2 Pending IRPs given
WdmaPendinglrpListHead

4 Allocated MDLs given
WdmaAllocatedMdIListHead

8 pContext dump given
WdmaContextListHead

100 Verbose

Find all zombie processes

APPENDIX A

457

TABLE A-4. Bang Commands Exported by userkax.d11
COMMAND DESCRIPTION

latom Dump atoms or atom tables

!dcls [pcls] Dump window class

tdess Dump critical section stack traces

!dcur -aivp [peur]

!dde-vr [convlwindow|xact]
!ddesk -vh <pdesk>

lddl [pdesk]

lddk <pKbdTbl>

Idf [flags] | [-p pid]

Idfa

!dha address

Idhe [pointerlhandie] | [-t[o[p]] type [pti/ppi]]
ldhk -ag [pti]

!dhot

ldhs-vpty [idItype]

Idi

Idii <piiex>

!dime [-hrvus] -[wei] [imclwnd,etc.]
!dimk [pImeHotKeyObj]
!dinp -v [pDevicelnfo]

1kl -akv <pkl>

tdll [*Jaddr [[b#] [0#] [c#] [t[addr]]
Idlr<pointerlhandle>

Idm -vris <menulwindow>
!dmon <pMonitor>

Idmq [-ac] [pq]
!dms<MenuState>

!dp -vept [id]

Idpa -cvsfrp

'dpi [ppi]

!dpm <ppopupmenu>

ldg -t [pq]

!dsbt <pSBTrack>

!dsbwnd <psbwnd>

lds [-bchmopvw]

Dump cursors

Dump DDE tracking information
Display objects allocated in desktop
Dump desktop log

Dump deadkey table

Display or set debug flags

Dump allocation fail stack trace
Dump heap allocations and verify heap
Dump handle entries

Dump hooks

Dump registered hotkeys

Dump handle table statistics

Display USER input processing globals
Dump extended IME information
Dump Input Context

Dump IME Hotkeys

Dump input diagnostics

Dump keyboard layout structures
Dump linked list (can Ctrl-C)

Display assignment locks for object
Dump a menu

Dump MONITOR

List messagesin queues

Dump a pMenuState

Display simple processinformation
Dump pool alocations

Display PROCESSINFO structure specified
Dump a popup menu

Display Q structure specified

Display Scroll Bar Track structure
Dump extra fields of Scrollbar windows
Display SERVERINFO structure

(continued)

458 KERNEL DEBUGGER COMMANDS

TABLE A-4. (continued)

COMMAND DESCRIPTION
!dsms -vl [psmg] Display SMS (SendMessage structure) specified
ldso <Structure> [Field] [addr [*n]] Dump structure field(s)'s offset(s) and value(s)
ldt -gvep [id] Display simple thread information
Idtdb [ptdb] Dump Task Database
Idti [pti] Display THREADINFO structure

Idil [-f] [pointerlhandle]
!dtmr [ptmr]

Idu [pointerlhandl€]
!dumphmgr [-9]

Idup

!dupm

ldvs -s

ldw -aethvsprwoz [hwnd/pwnd]
ldwe [-n] [addr]

tdwpi -p [pwpi | ppi]
ldws [pws]

Idy [pci]

Ifind baseaddr addr [o#]
Ifno <address>

Ifrr<psrcLo> <psrcHi> <prefLo> [prefHi]

thelp -v [cmd]

lhh

Ikbd -au [pq]

Isss [-s] <addr> [length]
Itest

luver

Display thread locks

Dump timer structure

Generic object dumping routine
Dump object allocation counts (debug version only)
User preferences DWORDs

User preference bit mask

Dump sections and mapped views

Display information on windows in system
Display WinEvent hooks/notifies

Display WOWPROCESSINFO structure specified
Dump window stations

Dump DISPLAYINFO

Find linked list element

Find nearest object

Find Range Reference

Display command help (-v verbose)

Dump gdwHydraHint

Display key state for queue

Stack Analysis Stuff

Test basic debug functions

Show versions of USERTEXTS and WIN32K.SYS

APPEND

Kernel API

Functions

| X B

Appendix B contains a compilation of functions exported by the system modules
win32k.sys, ntdll.dll, and ntoskrnl.exe, disCUSSed in Chapter 2.

TABLE B-1. The Windows 2000 Native API
FUNCTION NAME INT 2Eh ntdI.Nt* ntdll.Zw* ntoskrnl.Nt* ntoskrnl.Zw*

NtAcceptConnectPort 0x0000 N/A N/A
NtA ccessCheck 0x0001 N/A N/A
NtAccessCheckAndAuditAlarm 0x0002 N/A
NtAccessCheckByType 0x0003 N/A N/A
NtAccessCheckByTypeAndAuditAlarm

0x0004 N/A N/A
NtA ccessCheckBy TypeResultList 0x0005 N/A N/A
NtAccessCheckByTypeResultListAndAuditAlarm

0x0006 N/A N/A
NtAccessCheckByTypeResultListAndAuditAlarmByHandle

0x0007 N/A N/A
NtAddAtom 0x0008 N/A
NtAdjustGroupsToken 0x0009 N/A N/A
NtAdjustPrivilegesToken 0x000A
NtAlertResumeThread Ox0O00B N/A N/A
NtAlertThread Ox000C N/A
NtAllocateLocallyUniqueld OxO00D N/A
NtAllocateUserPhysical Pages OxOO0O0E N/A N/A

N/A Not Available (continued)

459

460 KERNEL API FUNCTIONS

TABLE B-1. (continued)

FUNCTION NAME INT 2Eh ntdl.Nt* ntdll.Zw* ntoskrnl.Nt* ntoskrnl.Zw*
NtAllocateUuids OxO00F N/A
NtAllocateVirtualMemory 0x0010
NtAreM appedFilesTheSame 0x0011 N/A N/A
NtAssignProcessToJobObject 0x0012 N/A N/A
NtBuildNumber N/A N/A N/A N/A
NtCallbackReturn 0x0013 N/A N/A
NtCancelDeviceWakeupRequest ~ 0x0016 N/A N/A
NtCancelloFile 0x0014 N/A
NtCancelTimer 0x0015 N/A
NtClearEvent 0x0017 N/A
NtClose 0x0018
NtCloseObjectAuditAlarm 0x0019 N/A
NtCompleteConnectPort OxOO0IA N/A N/A
NtConnectPort 0x001B
NtContinue Ox00IC N/A N/A
NtCreateChannel OxOOF! N/A N/A
NtCreateDirectoryObject 0Ox00ID N/A
NtCreateEvent OxOOIE
NtCreateEventPair OxOO0IF N/A N/A
NtCreateFile 0x0020
NtCreateloCompletion 0x0021 N/A N/A
NtCreateJobObject 0x0022 N/A N/A
NtCreateK ey 0x0023 N/A
NtCreateMailslotFile 0x0024 N/A N/A
NtCreateM utant 0x0025 N/A N/A
NtCreateNamedPipeFile 0x0026 N/A N/A
NtCreatePagingFile 0x0027 N/A N/A
NtCreatePort 0x0028 N/A N/A
NtCreateProcess 0x0029 N/A N/A
NtCreateProfile Ox002A N/A N/A
NtCreateSection 0Ox002B
NtCreateSemaphore Ox002C N/A N/A
NtCreateSymbolicL inkObject 0Ox002D N/A

APPENDIX B 461

TABLE B-1. (continued)

FUNCTION NAME INT 2Eh ntdll.Nt* ntdlI.Zw* ntoskrnl.Nt* ntoskrnl.Zw*
NtCreateThread Ox002E N/A N/A
NtCreateTimer Ox002F N/A
NtCreateToken 0x0030 N/A N/A
NtCreateWaitablePort 0x0031 N/A N/A
NtCurrentTeb N/A N/A N/A N/A
NtDelayExecution 0x0032 N/A N/A
NtDeleteAtom 0x0033 N/A
NtDeleteFile 0x0034
NtDeleteK ey 0x0035 N/A
NtDeleteObjectAuditAlarm 0x0036 N/A N/A
NtDeleteValueKey 0x0037 N/A
NtDeviceloControlFile 0x0038
NtDisplayString 0x0039 N/A
NtDuplicateObject Ox003A
NtDuplicateToken 0Ox003B
NtEnumerateK ey Ox003C N/A
NtEnumerateValueK ey 0x003D N/A
NtExtendSection Ox003E N/A N/A
NtFilterToken Ox003F N/A N/A
NtFindAtom 0x0040 N/A
NtFlushBuffersFile 0x0041 N/A N/A
NtFlushInstructionCache 0x0042 N/A
NtFlushKey 0x0043 N/A
NtFlushVirtualMemory 0x0044 N/A
NtFlushWriteBuffer 0x0045 N/A N/A
NtFreeUserPhysical Pages 0x0046 N/A N/A
NtFreeVirtualMemory 0x0047
NtFsControlFile 0x0048
NtGetContextThread 0x0049 N/A N/A
NtGetDevicePowerState Ox004A N/A N/A
NtGetPlugPlayEvent Ox004B N/A N/A
NtGetTickCount Ox004C N/A N/A
NtGetWriteWatch Ox004D N/A N/A

(continued)

462 KERNEL API FUNCTIONS

TABLE B-1. (continued)

FUNCTION NAME INT 2Eh ntdILNt* ntdll.Zw* ntoskrnl.Nt* ntoskrnl.Zw*
NtGlobaFlag N/A N/A N/A N/A
NtlmpersonateAnonymousToken — OX004E N/A N/A
NtlmpersonateClientOfPort Ox004F N/A N/A
NtlmpersonateThread 0x0050 N/A N/A
NtlnitializeRegistry 0Ox0051 N/A N/A
NtInitiatePowerAction 0x0052 N/A
NtlIsSystemResumeAutomatic Ox0053 N/A N/A
NtListenChannel OxOOF2 N/A N/A
NtListenPort 0Ox0054 N/A N/A
NtLoadDriver 0x0055 N/A
NtLoadKey 0x0056 N/A
NtLoadKey2 0x0057 N/A N/A
NtLockFile 0x0058 N/A
NtLockVirtualMemory 0x0059 N/A N/A
NtMakeTemporaryObject Ox005A N/A
NtMapUserPhysicalPages Ox005B N/A N/A
NtM apUserPhysi ca PagesScetter Ox005C N/A N/A
NtMapViewOf Section Ox005D
NtNotifyChangeDirectoryFile Ox005E N/A
NtNotifyChangeKey Ox005F N/A
NtNotifyChangeMultipleKeys 0x0060 N/A N/A
NtOpenChannel OxOOF3 N/A N/A
NtOpenDirectoryObject Ox0061 N/A
NtOpenEvent 0x0062 N/A
NtOpenEventPair 0x0063 N/A N/A
NtOpenFile 0x0064
NtOpenloCompletion 0x0065 N/A N/A
NtOpenjobObject 0x0066 N/A N/A
NtOpenKey 0x0067 N/A
NtOpenM utant 0Ox0068 N/A N/A
NtOpenObjectAuditAlarm 0x0069 N/A N/A
NtOpenProcess Ox006A

NtOpenProcessToken Ox006B

APPENDIX B 463

TABLE B-1. (continued)

FUNCTION NAME INT 2Eh ntdI.Nt* ntdll.Zw* ntoskenl.Nt* ntoskrnl.Zw*
NtOpenSection Ox006C N/A
NtOpenSemaphore 0Ox006D N/A N/A
NtOpenSymbolicLinkObject Ox006E N/A
NtOpenThread Ox006F N/A
NtOpenThreadToken 0x0070 N/A
NtOpenTimer 0x0071 N/A
NtPlugPlayControl 0x0072 N/A N/A
NtPowerInformation 0x0073 N/A
NtPrivilegeCheck 0x0074 N/A N/A
NtPrivilegedServiceAuditAlarm 0x0075 N/A N/A
NtPrivilegeObjectAuditAlarm 0x0076 N/A N/A
NtProtectVirtualMemory 0x0077 N/A N/A
NtPulseEvent 0x0078 N/A
NtQueryAttributesFile Ox007A N/A N/A
NtQueryDefaultLocale 0Ox007B N/A
NtQueryDefaultUILanguage Ox007C N/A
NtQueryDirectoryFile Ox007D
NtQueryDirectoryObject Ox007E N/A
NtQueryEaFile Ox007F
NtQueryEvent 0x0080 N/A N/A
NtQueryFullAttributesFile 0x0081 N/A N/A
NtQueryInformationAtom 0x0079 N/A
NtQueryInformationFile 0x0082
NtQueryInformationJobObject 0x0083 N/A N/A
NtQueryInformationPort 0x0085 N/A N/A
NtQueryInformationProcess 0x0086
NtQueryInformationThread 0x0087 N/A N/A
NtQueryInformationToken 0x0088
NtQuerylInstallUILanguage 0x0089 N/A
NtQuerylIntervalProfile 0x008A N/A N/A
NtQueryloCompletion 0x0084 N/A N/A
NtQueryKey 0x008B N/A
NtQueryMultipleValueKey 0x008C N/A N/A

(continued)

464 KERNEL APl FUNCTIONS

TABLE B-1. (continued)
FUNCTION NAME INT 2Eh ntdI.Nt* ntdll.Zw* ntoskrnl.Nt* ntoskrnl.Zw*

NtQueryM utant 0x008D N/A N/A
NtQueryObject 0x008E N/A
NtQueryOpenSubK eys 0x008F N/A N/A
NtQueryPerformanceCounter 0x0090 N/A N/A
NtQueryQuotalnformationFile 0x0091 N/A
NtQuerySection 0x0092 N/A
NtQuerySecurityObject 0x0093

NtQuerySemaphore 0x0094 N/A N/A
NtQuerySymbolicLinkObject 0x0095 N/A
NtQuerySystemEnvironmentValue 0x0096 N/A N/A
NtQuerySystemInformation 0x0097

NtQuerySystemTime 0x0098 N/A N/A
NtQuery Timer 0x0099 N/A N/A
NtQueryTimerResolution Ox009A N/A N/A
NtQueryValueKey Ox009B N/A

NtQuery VirtualMemory Ox009C N/A N/A
NtQuery VolumelnformationFile ~ Ox009D

NtQueueApcThread Ox009E N/A N/A
NtRai seException Ox009F N/A N/A
NtRaiseHardError OxO0AO N/A N/A
NtReadFile OxOO0Al

NtReadFileScatter 0x00A2 N/A N/A
NtReadRequestData Ox00A3 N/A N/A
NtReadVirtualMemory OxO0A4 N/A N/A
NtRegisterThreadTerminatePort ~ OxOOA5 N/A N/A
NtReleaseM utant OxO0A6 N/A N/A
NtReleaseSemaphore OxOOA7 N/A N/A
NtRemoveloCompletion 0x00A8 N/A N/A
NtReplaceK ey OxOO0A9 N/A

NtReplyPort OxO0AA N/A N/A
NtReplyWaitReceivePort OxOOAB N/A N/A
NtReplyWaitReceivePortEx OxOOAC N/A N/A
NtReplyWaitReplyPort OxOOAD N/A N/A

APPENDIX B 465

TABLE B-1. (continued)

FUNCTION NAME INT 2Eh ntdILNt* ntdll.Zw* ntoskrnl.Nt* ntoskrnl.Zw*
NtReplyWaitSendChannel OxOOF4 N/A N/A
NtRequestDeviceWakeup OXOOAE N/A N/A
NtRequestPort 0x00AF N/A
NtRequestWaitReplyPort 0x00BO
NtRequestWakeupLatency OxO0BI N/A N/A
NtResetEvent 0Ox0O0B2 N/A
NtResetWriteWatch 0x00B3 N/A N/A
NtRestoreK ey 0x00B4 N/A
NtResumeT hread 0x00B5 N/A N/A
NtSaveKey 0Ox00B6 N/A
NtSaveMergedKeys 0x00B7 N/A N/A
NtSecureConnectPort 0x00B8 N/A N/A
NtSendWaitReplyChannel OxOO0F5 N/A N/A
NtSetContextChannel OxO0F6 N/A N/A
NtSetContextThread OxO0BA N/A N/A
NtSetDefaultHardErrorPort OxO0BB N/A N/A
NtSetDefaultLocale 0x00BC N/A
NtSetDefaultUl Language OxO0BD N/A
NtSetEaFile OxOOBE
NtSetEvent OxOOBF
NtSetHighEventPair 0x00CO N/A N/A
NtSetHighWaitLowEventPair Ox00Cl N/A N/A
NtSetInformationFile 0x00C2
NtSetInformationJobObject 0x00C3 N/A N/A
NtSetInformationKey Ox00C4 N/A N/A
NtSetInformationObject 0x00CS5 N/A
NtSetInformationProcess 0Ox00C6
NtSetInformationThread 0x00C7
NtSetInformationToken 0x00C8 N/A N/A
NtSetIntervalProfile Ox00C9 N/A N/A
NtSetloCompletion 0x00B9 N/A N/A
NtSetL dtEntries OxOOCA N/A N/A
NtSetL owEventPair 0xO0CB N/A N/A

(continued)

466 KERNEL APl FUNCTIONS

TABLE B-1. (continued)

FUNCTION NAME INT 2Eh ntdlLNt* natdll.Zw* atoskenlNt* ntoskrnl.Zw*
NtSetLowWaitHighEventPair 0x00CC N/A N/A
NtSetQuotalnformationFile OxO0CD N/A
NtSetSecurityObject OXOOCE
NtSetSystemEnvironment Value OxOOCF N/A N/A
NtSetSystemInformation OxO0DO N/A
NtSetSystemPower State 0x00D1 N/A N/A
NtSetSystemTime 0Ox00D2 N/A
NtSetThreadExecutionState Ox0O0D3 N/A N/A
NtSetTimer Ox00D4 N/A
NtSetTimerResolution 0Ox00D5 N/A N/A
NtSetUuidSeed OxO0D6 N/A N/A
NtSetValueKey 0x00D7 N/A
NtSetVolumelnformationFile 0x00D8
NtShutdownSystem 0Ox00D9 N/A N/A
NitSignalAndWaitForSingleObject 0x00DA N/A N/A
NtStartProfile OxOODB N/A N/A
NtStopProfile OxO0DC N/A N/A
NtSuspendThread OxO0DD N/A N/A
NtSystemDebugControl OxOODE N/A N/A
NtTerminateJobObject OxOODF N/A N/A
NtTerminateProcess OxOO0EO N/A
NtTerminateThread OxOOCE! N/A N/A
NtTestAlert OxOOE2 N/A N/A
NtUnloadDriver OxOOE3 N/A
NtUnloadKey 0x00E4 N/A
NtUnlockFile OxOOE5 N/A
NtUnlockVirtualM emory OxOOE6 N/A N/A
NtUnmapViewOfSection OxOO0E7 N/A
NtVdmControl OxOOES8 N/A
NtWaitForMultipleObjects OxOOE9 N/A
NtWaitForSingleObject OxOOEA
NtWaitHighEventPair 0x00EB N/A N/A
NtWaitLowEventPair OxOOEC N/A N/A

APPENDIX B 467

TABLE B-1. (continued)
FUNCTION NAME INT 2Eh ntdll.Nt* ntdil.Zw* ntoskrnl.Nt* ntoskrnl.Zw*
NtWriteFile OxOOQED
NtWriteFileGather OxOOEE N/A N/A
NtWriteRequestData OxOOEF N/A N/A
NtWriteVirtualM emory OxOO0FO N/A N/A
NtYieldExecution 0x00F7 N/A
TABLE B-2. The GDI/Win32KInterface

gdi32.dll INT 2Eh win32k.sys
N/A 0x1000 NtGdiAbortDoc
N/A 0x1001 NtGdiAbortPath
N/A 0x1002 NtGdi AddFontResourceW
N/A 0x1003 NtGdi AddRemoteFontToDC
N/A 0x1004 NtGdi AddFontM emResourceEx
N/A 0x1005 NtGdiRemoveM ergeFont
N/A 0x1006 NtGdiAddRemoteMMInstance ToDC
N/A 0x1007 NtGdiAlphaBlend
N/A 0x1008 NtGdiAngleArc
AnyLinkedFonts 0x1009 NtGdiAnyLinkedFonts
FontIsLinked OxIO0A NtGdiFontIsLinked
N/A 0x100B NtGdiArclnternal
N/A 0x100C NtGdiBeginPath
N/A 0x100D NtGdiBitBIt
N/A 0x100E NtGdiCancelDC
N/A 0x100F NtGdiCheckBitmapBits
N/A 0x1010 NtGdiCloseFigure
N/A 0x1011 NtGdi Col orCorrectPal ette
N/A 0x1012 NtGdi CombineRgn
N/A 0x1013 NtGdiCombineTransform
N/A 0x1014 NtGdi ComputeXformCoefficients
GdiConsoleTextOut 0x1015 NtGdiConsol eTextOut
N/A 0x1016 NtGdiConvertM etafileRect
N/A 0x1017 NtGdiCreateBitmap

(continued)

468 KERNEL API FUNCTIONS

TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys
N/A 0x1018 NtGdiCreateClientObj
N/A 0x1019 NtGdiCreateCol orSpace
N/A OxIOIA NtGdiCreateColorTransform
N/A OxIOIB NtGdiCreateCompatibleBitmap
N/A OxloIC NtGdi CreateCompatibleDC
N/A OxI0ID NtGdiCreateDIBBrush
N/A OxIOIE NtGdiCreateDIBitmaplInternal
N/A OxIOIF NtGdiCreateDIBSection
N/A 0x1020 NtGdiCreateEllipticRgn
CreateHalftonePalette 0x1021 NtGdiCreateHalftonePal ette
N/A 0x1022 NtGdiCreateHatchBrushInternal
N/A 0x1023 NtGdiCreateMetafileDC
N/A 0x1024 NtGdiCreatePaletteInternal
N/A 0x1025 NtGdiCreatePatternBrushInternal
N/A 0x1026 NtGdiCreatePen
N/A 0x1027 NtGdiCreateRectRgn
N/A 0x1028 NtGdiCreateRoundRectRgn
N/A 0x1029 NtGdiCreateServerMetaFile
N/A 0x102A NtGdiCreateSolidBrush
N/A Ox102B NtGdi D3dContextCreate
N/A Oxl02C NtGdi D3dContextDestroy
N/A 0x102D NtGdiD3 dContextDestroy All
N/A 0x102E NtGdiD3dV alidateT extureStageState
N/A 0x102F NtGdiD3dDrawPrimitives2
N/A 0x1030 NtGdiDdGetDriverState
N/A 0x1031 NtGdiDdAddAttachedSurface
N/A 0x1032 NtGdiDdAIphaBIt
N/A 0x1033 NtGdiDdAttachSurface
N/A 0x1034 NtGdiDdBeginMoCompFrame
N/A 0x1035 NtGdiDdBIt
N/A 0x1036 NtGdiDdCanCreateSurface
N/A 0x1037 NtGdiDdCanCreateD3DBuffer

N/A 0x1038 NtGdiDdColorControl

APPENDIX B 469

TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys
N/A 0x1039 NtGdiDdCreateDirectDrawO bj ect
N/A OxI03A NtGdiDdCreateSurface
N/A 0x103B NtGdiDdCreateSurface
N/A 0x103C NtGdiDdCreateM oComp
N/A OxI03D NtGdiDdCreateSurfaceObject
N/A 0x103E NtGdiDdDeleteDirectDrawObject
N/A OxI03F NtGdiDdDel eteSurfaceObject
N/A 0x1040 NtGdiDdDestroyMoComp
N/A 0x1041 NtGdiDdDestroySurface
N/A 0x1042 NtGdiDdDestroyD3DBuffer
N/A 0x1043 NtGdiDdEndM oCompFrame
N/A 0x1044 NtGdiDdFlip
N/A 0x1045 NtGdiDdFlipToGDI Surface
N/A 0x1046 NtGdiDdGetAvailDriverMemory
N/A 0x1047 NtGdiDdGetBItStatus
N/A 0x1048 NtGdiDdGetDC
N/A 0x1049 NtGdiDdGetDriverInfo
N/A 0x104A NtGdiDdGetDxHandle
N/A 0x104B NtGdiDdGetFlipStatus
N/A 0x104C NtGdiDdGetlnternalMoComplnfo
N/A 0x104D NtGdiDdGetMoCompBufflnfo
N/A OxI04E NtGdiDdGetMoCompGuids
N/A 0x104F NtGdiDdGetMoCompFormats
N/A 0x1050 NtGdiDdGetScanLine
N/A 0x1051 NtGdiDdL ock
N/A 0x1052 NtGdiDdLockD3D
N/A 0x1053 NtGdiDdQueryDirectDrawObject
N/A 0x1054 NtGdiDdQueryMoCompStatus
N/A 0x1055 NtGdiDdReenableDirectDrawObject
N/A 0x1056 NtGdiDdReleaseDC
N/A 0x1057 NtGdiDdRenderM oComp
N/A 0x1058 NtGdiDdResetVisrgn
N/A 0x1059 NtGdiDdSetColorK ey

(continued)

470 KERNEL API FUNCTIONS

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys
N/A 0x105A NtGdiDdSetExclusiveM ode
N/A Ox105B NtGdiDdSetGammaRamp
N/A Ox105C NtGdiDdCreateSurfaceEx
N/A OxI105D NtGdiDdSetOverlayPosition
N/A OxI05E NtGdiDdUnattachSurface
N/A OxI05F NtGdiDdUnlock
N/A 0x1060 NtGdiDdUnlockD3D
N/A 0x1061 NtGdiDdUpdateOverlay
N/A 0x1062 NtGdiDdWaitForVerticalBlank
N/A 0x1063 NtGdiDvpCanCreateVideoPort
N/A 0x1064 NtGdiDvpColorControl
N/A 0x1065 NtGdiDvpCreateVideoPort
N/A 0x1066 NtGdiDvpDestroyVideoPort
N/A 0x1067 NtGdiDvpFlipVideoPort
N/A 0x1068 NtGdiDvpGetVideoPortBandwidth
N/A 0x1069 NtGdiDvpGetVideoPortField
N/A OxI06A NtGdiDvpGetVideoPortFlipStatus
N/A Ox106B NtGdiDvpGetVideoPortInputFormats
N/A Ox106C NtGdiDvpGetVideoPortLine
N/A Ox106D NtGdiDvpGetVideoPortOutputFormats
N/A OxIO6E NtGdiDvpGetVideoPortConnectinfo
N/A OxI06F NtGdiDvpGetVideoSignalStatus
N/A 0x1070 NtGdiDvpUpdateVideoPort
N/A 0x1071 NtGdiDvpWaitForVideoPortSync
N/A 0x1072 NtGdiDel eteClientObj
N/A 0x1073 NtGdiDeleteCol or Space
N/A 0x1074 NtGdiDeleteColorTransform
N/A 0x1075 NtGdiDel eteObjectApp
N/A 0x1076 NtGdiDescribePixel Format
N/A 0x1077 NtGdiGetPerBandInfo
N/A 0x1078 NtGdiDoBanding
N/A 0x1079 NtGdiDoPalette
N/A 0x107A NtGdiDrawEscape

APPENDIX B

471

TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys
N/A OxI07B NtGdiEllipse
EnableEUDC Ooxlo7C NtGdiEnableEudc
N/A OxI107D NtGdiEndDoc
N/A OxI07E NtGdiEndPage
N/A OxIO7F NtGdiEndPath
N/A 0x1080 NtGdiEnumFontChunk
N/A 0x1081 NtGdiEnumFontClose
N/A 0x1082 NtGdiEnumFontOpen
N/A 0x1083 NtGdiEnumObjects
N/A 0x1084 NtGdiEqual Rgn
N/A 0x1085 NtGdiEudcEnumFaceNameLinkW
N/A 0x1086 NtGdiEudcL oadUnloadLink
N/A 0x1087 NtGdiExcludeClipRect
N/A 0x1088 NtGdiExtCreatePen
N/A 0x1089 NtGdiExtCreateRegion
N/A 0x108A NtGdiExtEscape
N/A 0x108B NtGdiExtFloodFill
N/A 0x108C NtGdiExtGetObjectW
N/A 0x108D NtGdiExtSelectClipRgn
N/A 0x108E NtGdiExtTextOutW
N/A 0x108F NtGdiFillPath
N/A 0x1090 NtGdiFillRgn
N/A 0x1091 NtGdiFlattenPath
N/A 0x1092 NtGdiFlushUserBatch
N/A 0x1093 GreFlush
N/A 0x1094 NtGdiForceUFIMapping
N/A 0x1095 NtGdiFrameRgn
GdiFullscreenControl 0x1096 NtGdiFullscreenControl
N/A 0x1097 NtGdi GetAndSetDCDword
N/A 0x1098 NtGdiGetAppClipBox
N/A 0x1099 NtGdiGetBitmapBits
N/A OxI09A NtGdiGetBitmapDimension
N/A OxI09B NtGdi GetBoundsRect

(continued)

472 KERNEL APl FUNCTIONS

TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys
N/A Oxl09C NtGdiGetCharABCWidthsW
N/A OxI09D NtGdiGetCharacterPlacementW
N/A OxI09E NtGdiGetCharSet
N/A OxI09F NtGdiGetCharWidthW
GetCharWidthInfo 0x10A0 NtGdiGetCharWidthInfo
N/A OxIOAI NtGdiGetColor Adjustment
N/A OxI OA2 NtGdiGetCol orSpaceforBitmap
N/A OxIOA3 NtGdiGetDCDword
N/A 0x10A4 NtGdiGetDCforBitmap
N/A OxI OA5 NtGdi GetDCObject
N/A OxI OA6 NtGdiGetDCPoint
N/A OxIOA7 NtGdi GetDeviceCaps
N/A 0x10A8 NtGdi GetDeviceGammaRamp
N/A OxI0A9 NtGdiGetDeviceCapsAll
N/A 0x10AA NtGdiGetDIBitsInternal
N/A 0x10AB NtGdiGetETM
N/A OxIOAC NtGdiGetEudcTimeStampEx
N/A OxIOAD NtGdiGetFontData
N/A 0x10AE NtGdiGetFontResourcelnfolnternal W
GetGlyphIndicesW 0x10AF NtGdi GetGlyphlindicesw
N/A 0x10BO NtGdiGetGlyphIndicesWinternal
N/A OxIOB NtGdiGetGlyphOutline
N/A 0x10B2 NtGdiGetK erningPairs
N/A OxI0B3 NtGdiGetLinkedUFIs
N/A OxIOB4 NtGdiGetMiterLimit
N/A 0x10BS NtGdiGetMonitorID
N/A OxIOB6 NtGdiGetNearestCol or
N/A 0x10B7 NtGdiGetNearestPaletteIndex
N/A 0x10B8 NtGdi GetObjectBitmapHandle
N/A OxI0B9 NtGdi GetOutlineTextMetricsInternal W
N/A OxIOBA NtGdi GetPath
N/A OxIOBB NtGdi GetPixel
N/A 0x10BC NtGdi GetRandomRgn

APPENDIX B

473

TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys
N/A 0x10BD NtGdiGetRasterizerCaps
N/A 0x10BE NtGdiGetRealizationInfo
N/A 0x10BF NtGdiGetRegionData
N/A OxI0CO NtGdi GetRgnBox
N/A OxIOCl NtGdiGetServerMetaFileBits
GdiGetSpool M essage OxloCc2 NtGdi GetSpool M essage
N/A OxI0C3 NtGdiGetStats
N/A Oxl0oCc4 NtGdiGetStockObject
N/A OxI0C5 NtGdiGetStringBitmapW
N/A OxI0C6 NtGdiGetSystemPal etteUse
GetTextCharsetInfo 0x10C7 NtGdi GetTextCharsetinfo
N/A 0x10C8 NtGdiGetTextExtent
N/A OxI0C9 NtGdi GetTextExtentExW
N/A OxIOCA NtGdiGetTextFaceW
N/A Ox10CB NtGdiGetTextMetricsW
N/A OxloccC NtGdiGetTransform
N/A 0x10CD NtGdiGetUFI
N/A OxI OCE NtGdiGetUFIPathname
GetFontUnicodeRanges OxIOCF NtGdi GetFontUnicodeRanges
N/A Oxl ODO NtGdiGetWidthTable
N/A OxloD1 NtGdiGradientFill
N/A OxI0OD2 NtGdiHfontCreate
N/A 0x10D3 NtGdilcmBrushInfo
N/A Oxl OD4 NtGdilnit
N/A OxI0OD5 NtGdilnitSpool
GdilnitSpool OxI0D6 NtGdilntersectClipRect
N/A OxIoD7 NtGdilnvertRgn
N/A 0x10D8 NtGdiLineTo
N/A OxI0D9 NtGdiMakeFontDir
N/A OxIODA NtGdiMakelInfoDC
N/A OxlODB NtGdiMaskBIt
N/A OxloDC NtGdiModifyWorldTransform
N/A OxIODD NtGdiMonoBitmap

(continued)

474 KERNEL API FUNCTIONS

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys
N/A OxIODE NtGdiMoveTo
N/A OxIODF NtGdiOffsetClipRgn
N/A OxIOEO NtGdiOffsetRgn
N/A OxIOEI NtGdiOpenDCW
N/A 0x10E2 NtGdiPaBlIt
N/A 0x10E3 NtGdiPolyPatBIt
N/A OxIOE4 NtGdiPathToRegion
N/A OxIOE5 NtGdiPigBIt
N/A OxIOE6 NtGdiPolyDraw
N/A 0x10E7 NtGdiPolyPolyDraw
N/A OxIOE8 NtGdiPolyTextOutW
N/A OxIOE9 NtGdiPtInRegion
N/A 0x10EA NtGdiPtVisible
GdiQueryFonts 0x10EB NtGdiQueryFonts
N/A OxIOEC NtGdiQueryFontAssoclnfo
N/A 0x10ED NtGdiRectangle
N/A OxIOEE NtGdiRectInRegion
N/A 0x10EF NtGdiRectVisible
N/A 0x10F0 NtGdiRemoveFontResource W
N/A OxIOFI NtGdiRemoveFontMemResourceEx
N/A 0x10F2 NtGdiResetDC
N/A 0x10F3 NtGdiResizePal ette
N/A 0x10F4 NtGdiRestoreDC
N/A OxIOF5 NtGdiRoundRect
N/A OxIOF6 NtGdiSaveDC
N/A 0x10F7 NtGdi Scal eViewportExtEx
N/A 0x10F8 NtGdiScaleWindowExtEx
N/A OxIOF9 NtGdi SelectBitmap
N/A 0x10FA NtGdiSelectBrush
N/A 0x10FB NtGdi SelectClipPath
N/A 0x10FC NtGdi SelectFont
N/A 0x10FD NtGdiSelectPen
N/A OxIOFE NtGdi SetBitmapBits

APPENDIX B

475

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys

N/A OxIOFF NtGdi SetBitmapDimension
N/A 0x1100 NtGdiSetBoundsRect
N/A 0x1101 NtGdi SetBrushOrg
N/A 0x1102 NtGdi SetColor Adj ustment
N/A 0x1103 NtGdi SetCol orSpace
N/A 0x1104 NtGdi SetDeviceGammaRamp
N/A 0x1105 NtGdiSetDIBitsToDevicelnternal
N/A 0x1106 NtGdi SetFontEnumeration
N/A 0x1107 NtGdi SetFontXform
N/A 0x1108 NtGdiSetlcmMode
N/A 0x1109 NtGdiSetLinkedUFIs
SetMagicColors 0x110A NtGdiSetMagicColors
N/A 0x110B NtGdi SetMetaRgn
N/A 0x110C NtGdiSetMiterLimit
N/A 0x110D NtGdiGetDevice Width
N/A 0x110E NtGdiMirrorWindowOrg
N/A 0x110F NtGdiSetLayout
N/A 0x1110 NtGdi SetPixel
N/A OxII111 NtGdi SetPixel Format
N/A 0x1112 NtGdi SetRectRgn
N/A 0x1113 NtGdi SetSystemPal etteUse
N/A 0x1114 NtGdi SetTextJustification
N/A 0x1115 NtGdi SetupPublicCFONT
N/A 0x1116 NtGdi SetVirtual Resol ution
N/A Ox1117 NtGdiSetSizeDevice
N/A 0x1118 NtGdiStartDoc
N/A 0x1119 NtGdi StartPage
N/A 0x111A NtGdiStretchBlt
N/A 0x111B NtGdiStretchDIBitsInternal
N/A 0x111C NtGdiStrokeAndFillPath
N/A 0x111D NtGdiStrokePath
N/A OxI11E NtGdi SwapBuffers
N/A 0x111F NtGdiTransformPoints

(continued)

476 KERNEL APl FUNCTIONS

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys

N/A 0x1120 NtGdi TransparentBIt
N/A 0x1121 NtGdiUnloadPrinterDriver
N/A 0x1122 NtGdiUnmapMemFont
N/A 0x1123 NtGdiUnrealizeObject
N/A 0x1124 NtGdiUpdateColors
N/A 0x1125 NtGdiWidenPath
ActivateKeyboardLayout 0x1126 NtUserActivateK eyboardL ayout
N/A Ox1127 NtUserAlterWindowStyle
N/A 0x1128 NtUserAssociateInputContext
AttachThreadInput 0x1129 NtUserAttachThreadInput
BeginPaint 0x112A NtUserBeginPaint
N/A Oxl12B NtUserBitBItSysBmp
BlockInput 0x112C NtUserBlockInput
N/A Oxl12D NtUserBuildHimcList
N/A 0x112E NtUserBuildHwndList
N/A 0x112F NtUserBuildNameL.ist
N/A 0x1130 NtUserBuildPropList
N/A 0x1131 NtUserCallHwnd
N/A 0x1132 NtUserCallHwndL ock
N/A 0x1133 NtUserCallHwndOpt
N/A 0x1134 NtUserCallHwndParam
N/A 0x1135 NtUserCallHwndParamLock
N/A 0x1136 NtUserCallMsgFilter
N/A 0x1137 NtUserCallNextHookEx
N/A 0x1138 NtUserCalINoParam
N/A 0x1139 NtUserCallOneParam
N/A OxII3A NtUserCallTwoParam
ChangeClipboardChain Ox113B NtUserChangeClipboardChain
N/A OxlI3C NtUserChangeDisplay Settings
N/A OxI13D NtUserChecklmeHotKey
N/A OxII3E NtUserCheckMenultem
ChildWindowFromPointEx OxII3F NtUserChildWindowFromPointEx

ClipCursor 0x1140 NtUserClipCursor

APPENDIX B

477

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys

CloseClipboard 0x1141 NtUserCloseClipboard
CloseDesktop 0x1142 NtUserCloseDesktop
CloseWindowStation 0x1143 NtUserCloseWindowStation
N/A 0x1144 NtUserConsoleControl
N/A 0x1145 NtUserConvertMemHandle
CopyAcceleratorTableW 0x1146 NtUserCopyAcceleratorTable
CountClipboardFormats 0x1147 NtUserCountClipboardFormats
CreateAcceleratorTableW 0x1148 NtUserCreateAcceleratorTable
CreateCaret 0x1149 NtUserCreateCaret
N/A 0x114A NtUserCreateDesktop
N/A 0x114B NtUserCreateInputContext
N/A 0x114C NtUserCreatel ocalMemHandle
N/A 0x114D NtUserCreateWindowEx
N/A 0x114E NtUserCreate WindowStation
DdeGetQualityOf Service 0x114F NtUserDdeGetQualityOf Service
N/A 0x1150 NtUserDdelnitialize
DdeSetQualityOf Service 0x1151 NtUserDdeSetQualityOfService
DeferWindowPos 0x1152 NtUserDeferWindowPos
N/A 0x1153 NtUserDef SetText
DeleteMenu 0x1154 NtUserDeleteMenu
N/A 0x1155 NtUserDestroyAcceleratorTable
N/A 0x1156 NtUserDestroyCursor
N/A 0x1157 NtUserDestroylnputContext
DestroyMenu 0x1158 NtUserDestroyMenu
Destroy Window 0x1159 NtUserDestroy Window
N/A OxII5A NtUserDisableThreadlme
N/A OxI15B NtUserDispatchMessage
DragDetect 0x115C NtUserDragDetect
DragObject OxII15D NtUserDragObject
DrawAnimatedRects 0x115E NtUserDrawAnimatedRects
N/A 0x11SF NtUserDrawCaption
N/A 0x1160 NtUserDrawCaptionTemp
N/A 0x1161 NtUserDrawlconEx

(continued)

478 KERNEL API FUNCTIONS

TABLE B-2 (continued)

gdi32.dll INT 2Eh win32k.sys
N/A 0x1162 NtUserDrawMenuBarTemp
EmptyClipboard 0x1163 NtUserEmptyClipboard
N/A 0x1164 NtUserEnableMenultem
EnableScrollBar 0x1165 NtUserEnableScrol|Bar
N/A 0x1166 NtUserEndDeferWindowPosEx
EndMenu 0x1167 NtUserEndMenu
EndPaint 0x1168 NtUserEndPaint
N/A 0x1169 NtUserEnumDisplayDevices
EnumDisplayMonitors 0x116A NtUserEnumDisplayMonitors
N/A 0x116B NtUserEnumbDi splay Settings
N/A oxll6C NtUserEvent
ExcludeUpdateRgn 0x116D NtUserExcludeUpdateRgn
N/A OxII6E NtUserFillWindow
N/A 0x116F NtUserFindExistingCursorlcon
N/A 0x1170 NtUserFindWindowEx
FlashWindowEx 0x1171 NtUserFlashWindowEx
N/A 0x1172 NtUserGetAltTabInfo
GetAncestor 0x1173 NtUserGetAncestor
N/A 0x1174 NtUserGetApplmeL evel
N/A 0x1175 NtUserGetAsyncKeyState
GetCaretBlinkTime 0x1176 NtUserGetCaretBlink Time
GetCaretPos Ox1177 NtUserGetCaretPos
N/A 0x1178 NtUserGetClassInfo
N/A 0x1179 NtUserGetClassName
N/A 0x117A NtUserGetClipboardData
N/A 0x117B NtUserGetClipboardFormatName
GetClipboardOwner 0x117C NtUserGetClipboardOwner
GetClipboardSequenceNumber 0x117D NtUserGetClipboardSequenceNumber
GetClipboardViewer 0x117E NtUserGetClipboardViewer
GetClipCursor 0x117F NtUserGetClipCursor
GetComboBoxInfo 0x1180 NtUserGetComboBoxInfo
N/A 0x1181 NtUserGetControlBrush

N/A 0x1182 NtUserGetControl Color

APPENDIX B 479

TABLE B-2. (continued)
gadi32dll INT 2Eh win32k.sys
N/A 0x1183 NtUserGetCPD
N/A 0x1184 NtUserGetCursorFramelnfo
GetCursorInfo 0x1185 NtUserGetCursorInfo
GetDC 0x1186 NtUserGetDC
GetDCEXx 0x1187 NtUserGetDCEX
GetDoubleClick Time 0x1188 NtUserGetDoubleClickTime
GetForegroundWindow 0x1189 NtUserGetForegroundWindow
GetGuiResources 0x118A NtUserGetGuiResources
GetGUIThreadInfo 0x118B NtUserGetGUIThreadInfo
N/A 0x118C NtUserGetlconInfo
N/A 0x118D NtUserGetlconSize
N/A 0x118E NtUserGetlmeHotKey
N/A 0x118F NtUserGetImelnfoEx
GetInternalWindowPos 0x1190 NtUserGetInternal WindowPos
GetK eyboardL ayoutL ist 0x1191 NtUserGetK eyboardL ayoutL ist
N/A 0x1192 NtUserGetK eyboardL ayoutName
GetK eyboardState 0x1193 NtUserGetK eyboardState
N/A 0x1194 NtUserGetK eyNameText
N/A 0x1195 NtUserGetK ey State
GetListBoxInfo Oxl 196 NtUserGetListBoxInfo
GetMenuBarlInfo 0x1197 NtUserGetMenuBarlnfo
N/A 0x1198 NtUserGetMenulndex
GetMenultemRect Oxl 199 NtUserGetM enultemRect
N/A 0x119A NtUserGetMessage
GetM ouseM ovePointsEx Oxl 19B NtUserGetMouseMovePointsEx
GetUserObjectInformationW 0x119C NtUserGetObjectInformation
GetOpenClipboardWindow Oxl 19D NtUserGetOpenClipboardWindow
GetPriorityClipboardFormat 0x119E NtUserGetPriorityClipboardFormat
GetProcessWindowStation Oxl 19F NtUserGetProcessWindowStation
GetScrollBarInfo 0x11A0 NtUserGetScrollBarInfo
GetSystemMenu 0x11A1 NtUserGetSystemMenu
N/A 0x11A2 NtUserGetThreadDesktop
N/A 0x11A3 NtUserGetThreadState

(continued)

480 KERNEL APl FUNCTIONS

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys

GetTitleBarInfo 0x11A4 NtUserGetTitleBarInfo
N/A 0x11A5 NtUserGetUpdateRect
N/A Oxl 1A6 NtUserGetUpdateRgn
GetWindowDC Oxl 1A7 NtUserGetWindowDC
GetWindowPlacement Oxl 1A8 NtUserGetWindowPlacement
N/A Oxl 1A9 NtUserGetWOWClass
N/A Oxl 1AA NtUserHardErrorControl
HideCaret Oxl 1AB NtUserHideCaret
HiliteMenultem 0x11AC NtUserHiliteMenultem
ImpersonateDdeClient Window OxI1AD NtUserImpersonateDdeClient Window
N/A Oxl 1AE NtUserlnitialize
N/A Oxl 1AF NtUserlInitializeClientPfnArrays
N/A 0x11B0 NtUserlInitTask
N/A OxlIBI NtUserInternal GetWindowText
InvalidateRect 0x11B2 NtUserInvalidateRect
InvalidateRgn 0x11B3 NtUserInvalidateRgn
IsClipboardFormatAvailable 0x11B4 NtUserlIsClipboardFormatAvailable
Kill Timer 0x11B5 NtUserKill Timer
N/A 0x11B6 NtUserL oadK eyboardL ayoutEx
LockWindowStation 0x11B7 NtUserL ockWindowStation
LockWindowUpdate 0x11B8 NtUserL ockWindowUpdate
Lock Workstation 0x11B9 NtUserLockWorkStation
N/A 0x11BA NtUserMapVirtualKeyEx
M enultemFromPoint 0x11BB NtUserM enultemFromPoint
N/A 0x11BC NtUserMessageCall
N/A 0x11BD NtUserMinMaximize
N/A 0x11BE NtUserMNDraglL eave
N/A 0x11BF NtUserMNDragOver
N/A OxlI 1C0 NtUserModifyUserStartuplnfoFlags
Move Window OxlICI NtUserMove Window
N/A 0x11C2 NtUserNotifyIMEStatus
N/A 0x11C3 NtUserNotifyProcessCreate
N/A Oxl 14 NtUserNotifyWinEvent

APPENDIX B

481

TABLE B-2. (continued)

gdi32.dll INT 2Eh win32k.sys
N/A 0x11C5 NtUserOpenClipboard
N/A oxIlCc6 NtUserOpenDesktop
OpenlnputDesktop oxlICc7 NtUserOpenInputDesktop
N/A Oxl 1C8 NtUserOpenWindowStation
PaintDesktop Oxl 1C9 NtUserPaintDesktop
N/A Oxl 1CA NtUserPeekM essage
N/A Oxl 1CB NtUserPostMessage
N/A Ooxl1CC NtUserPostThreadMessage
N/A Oxl 1CD NtUserProcessConnect
N/A OxI1CE NtUserQueryInformationThread
N/A 0x11CF NtUserQueryInputContext
QuerySendM essage OxIIDO NtUserQuerySendMessage
QueryUserCounters OxIIDI NtUserQueryUserCounters
N/A Oxl 1D2 NtUserQuery Window
Real ChildwWindowFromPoint Oxl 1D3 NtUserReal ChildwWindowFromPoint
RedrawWindow Oxl 1D4 NtUserRedrawWindow
N/A Oxl 1D5 NtUserRegisterClassExWOw
RegisterHotK ey Oxl 1D6 NtUserRegisterHotK ey
RegisterTasklist Oxl 1D7 NtUserRegisterTasklist
N/A OxI1D8 NtUserRegister WindowMessage
RemoveMenu Oxl 1D9 NtUserRemoveMenu
N/A OxI1DA NtUserRemoveProp
N/A OxI1DB NtUserResolveDesktop
N/A OxI1DC NtUserResol veDesktopForWOw
N/A Oxl 1DD NtUserSBGetParms
N/A OxI1DE NtUserScrolIDC
N/A OxI1DF NtUserScrollWindowEx
N/A 0x11E0 NtUserSelectPalette
SendInput 0x11E1 NtUserSendInput
N/A 0x11E2 NtUserSendM essageCal lback
N/A 0x11E3 NtUserSendNotify Message
SetActive Window 0x11E4 NtUserSetActiveWindow
N/A 0x11ES NtUserSetApplmeL evel

(continued)

482 KERNEL APl FUNCTIONS

TABLE B-2. (continued)
gdi32.dil INT 2Eh win32k.sys

SetCapture 0x11E6 NtUserSetCapture
N/A 0x11E7 NtUserSetClassLong
SetClassWord 0x11ES8 NtUserSetClassWord
N/A 0x11E9 NtUserSetClipboardData
SetClipboardViewer 0x11EA NtUserSetClipboardViewer
SetConsoleReserveKeys 0x11EB NtUserSetConsoleReserveK eys
SetCursor 0x11EC NtUserSetCursor
SetCursorContents 0x11ED NtUserSetCursorContents
N/A 0x11EE NtUserSetCursorlconData
PrivateSetDbgTag 0x11EF NtUserSetDbgTag
SetFocus 0x11F0 NtUserSetFocus
N/A 0x11F1 NtUserSetimeHotKey
N/A 0x11F2 NtUserSetImelnfoEx
N/A 0x11F3 NtUserSetlmeOwnerWindow
N/A 0x11F4 NtUserSetInformationProcess
N/A 0x11FS NtUserSetInformationThread
SetInternalWindowPos 0x11Fe6 NtUserSetInternalWindowPos
SetK eyboardState 0x11F7 NtUserSetK eyboardState
SetLogonNotifyWindow 0x11F8 NtUserSetLogonNotify Window
N/A 0x11F9 NtUserSetMenu
SetMenuContextHelpld 0x11FA NtUserSetM enuContextHel pld
SetMenuDefaultltem 0x11FB NtUserSetMenuDefaultltem
N/A 0x11FC NtUserSetMenuFlagRtoL
SetUserObjectInformation W 0x11FD NtUserSetObjectInformation
SetParent 0x11FE NtUserSetParent
SetProcessWindowStation 0x11FF NtUserSetProcessWindowStation
N/A 0x1200 NtUserSetProp
PrivateSetRipFags 0x1201 NtUserSetRipFlags
SatScrallinfo 0x1202 NtUserSetScrollInfo
SetShellWindowEx 0x1203 NtUserSetShel|WindowEx
N/A 0x1204 NtUserSetSysColors
N/A 0x1205 NtUserSetSystemCursor
SatSystemMenu 0x1206 NtUserSetSystemMenu

APPENDIX B

483

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys

SetSystemTimer 0x1207 NtUserSetSystemTimer
SetThreadDesktop 0x1208 NtUserSetThreadDesktop
N/A 0x1209 NtUserSetThreadlL ayoutHandles
N/A OxI20A NtUserSetThreadState
SetTimer Ox120B NtUserSetTimer
N/A Oxl20C NtUserSetWindowFNID
N/A OxI20D NtUserSetWindowLong
SetWindowPlacement OxI20E NtUserSetWindowPlacement
SetWindowPos OxI20F NtUserSetWindowPos
N/A 0x1210 NtUserSetWindowRgn
N/A 0x1211 NtUserSetWindowsHook AW
N/A 0x1212 NtUserSet WindowsHookEx
N/A 0x1213 NtUserSetWindowStationUser
SetWindow Word 0x1214 NtUserSetWindowWord
N/A 0x1215 NtUserSetWinEventHook
ShowCaret 0x1216 NtUserShowCaret
ShowScrolIBar 0x1217 NtUserShowScrolIBar
ShowWindow 0x1218 NtUserShowWindow
ShowWindowAsync 0x1219 NtUserShowWindowAsync
N/A OxI21A NtUserSoundSentry
SwitchDesktop OxI21B NtUserSwitchDesktop
N/A Oxl21C NtUserSystemParametersinfo
N/A OxI21D NtUserTestForInteractiveUser
N/A OxI21E NtUserThunkedMenulnfo
N/A OxI21F NtUserThunkedMenultemInfo
N/A 0x1220 NtUserToUnicodeEx
TrackMouseEvent 0x1221 NtUser TrackM ouseEvent
TrackPopupMenuEx 0x1222 NtUserTrackPopupM enuEx
N/A 0x1223 NtUserTranslateAccelerator
N/A 0x1224 NtUserTranslateM essage
Unhook WindowsHookEx 0x1225 NtUserUnhookWindowsHook Ex
UnhookWinEvent 0x1226 NtUserUnhookWinEvent
N/A 0x1227 NtUserUnloadK eyboardL ayout

(continued)

484 KERNEL API FUNCTIONS

TABLE B-2 (continued)

gdi32.dll INT 2Eh win32k.sys
Unlock WindowStation 0x1228 NtUserUnlock WindowStation
N/A 0x1229 NtUserUnregisterClass
UnregisterHotKey OxI22A NtUserUnregisterHotK ey
N/A Oxl122B NtUserUpdatelnputContext
N/A Oxl22C NtUserUpdatelnstance
UpdateLayeredWindow Ox122D NtUserUpdatel ayeredWindow
Setl ayeredWindowAdttributes OxI22E NtUserSetlL ayeredWindowAttributes
N/A OxI22F NtUserUpdatePerUser SystemParameters
UserHandleGrantAccess 0x1230 NtUserUserHandleGrantAccess
N/A 0x1231 NtUserValidateHandleSecure
ValidateRect 0x1232 NtUserValidateRect
N/A 0x1233 NtUserVkKeyScanEx
N/A 0x1234 NtUserWaitForInputldle
N/A 0x1235 NtUserWaitForMsgAndEvent
WaitMessage 0x1236 NtUserWaitMessage
Win32PoolAllocationStats 0x1237 NtUserWin32PoolAllocationStats
WindowFromPoint 0x1238 NtUserWindowFromPoint
N/A 0x1239 NtUserYieldTask
N/A OxI23A NtUserRemoteConnect
N/A Ox123B NtUserRemoteRedrawRectangle
N/A Ox123C NtUserRemoteRedrawScreen
N/A OxI23D NtUserRemoteStopScreenUpdates
N/A OxI23E NtUserCtxDisplaylOCtl
EngAssociateSurface OxI23F NtGdiEngAssociateSurface
EngCreateBitmap 0x1240 NtGdiEngCreateBitmap
EngCreateDeviceSurface 0x1241 NtGdiEngCreateDeviceSurface
EngCreateDeviceBitmap 0x1242 NtGdiEngCreateDeviceBitmap
EngCreatePal ette 0x1243 NtGdiEngCreatePalette
N/A 0x1244 NtGdiEngComputeGlyphSet
EngCopyBits 0x1245 NtGdiEngCopyBits
N/A 0x1246 NtGdiEngDeletePal ette
EngDeleteSurface 0x1247 NtGdiEngDeleteSurface
EngEraseSurface 0x1248 NtGdiEngEraseSurface

APPENDIX B 485

TABLE B-2. (continued)
gdi32.dll INT 2Eh win32k.sys

EngUnlockSurface 0x1249 NtGdiEngUnlockSurface
EngLockSurface OxI24A NtGdiEngLockSurface
EngBitBlt Oxl24B NtGdiEngBitBlt
EngStretchB