
Working Paper 24-038

The Value of Open
Source Software

Manuel Hoffmann
Frank Nagle
Yanuo Zhou

The Value of Open Source
Software

Manuel Hoffmann
Harvard Business School

Frank Nagle
Harvard Business School

Yanuo Zhou
University of Toronto

Working Paper 24-038

Copyright © 2024 by Manuel Hoffmann, Frank Nagle, and Yanuo Zhou.

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only.
It may not be reproduced without permission of the copyright holder. Copies of working papers are available from
the author.

The authors are grateful for financial and administrative support from the Linux Foundation without which the data
from the Census would not have otherwise been available. We greatly appreciate the support of the Research
Computing Services at Harvard Business School, the Laboratory for Innovation Science at Harvard, the Linux
Foundation, and the software composition analysis data providers Snyk, the Synopsys Cybersecurity Research
Center, and FOSSA. We thank Tianli Li and Misha Bouzinier for excellent research assistance. We are also thankful
to the software developer Boris Martinovic as well as Rich Lander and Scott Hanselman from Microsoft for insights
into the .NET ecosystem. We received helpful feedback from participants at the Harvard Business School Values
and Valuations Conference, the Harvard Business School D3 Research Day, and the 2023 Academy of Management
Conference.

Funding for this research was provided in part by Harvard Business School.

The Value of Open Source Software
Manuel Hoffmanna Frank Nagleb Yanuo Zhouc

This version: January 1, 2024

Abstract
The value of a non-pecuniary (free) product is inherently difficult to assess. A pervasive

example is open source software (OSS), a global public good that plays a vital role in the economy
and is foundational for most technology we use today. However, it is difficult to measure the value
of OSS due to its non-pecuniary nature and lack of centralized usage tracking. Therefore, OSS
remains largely unaccounted for in economic measures. Although prior studies have estimated the
supply-side costs to recreate this software, a lack of data has hampered estimating the much larger
demand-side (usage) value created by OSS. Therefore, to understand the complete economic and
social value of widely-used OSS, we leverage unique global data from two complementary sources
capturing OSS usage by millions of global firms. We first estimate the supply-side value by
calculating the cost to recreate the most widely used OSS once. We then calculate the demand-
side value based on a replacement value for each firm that uses the software and would need to
build it internally if OSS did not exist. We estimate the supply-side value of widely-used OSS is
$4.15 billion, but that the demand-side value is much larger at $8.8 trillion. We find that firms
would need to spend 3.5 times more on software than they currently do if OSS did not exist. The
top six programming languages in our sample comprise 84% of the demand-side value of OSS.
Further, 96% of the demand-side value is created by only 5% of OSS developers.

JEL Classification: H4; O3; J0
Keywords: Open-source software, global public good

Acknowledgement: The authors are grateful for financial and administrative support from the
Linux Foundation without which the data from the Census would not have otherwise been
available. We greatly appreciate the support of the Research Computing Services at Harvard
Business School, the Laboratory for Innovation Science at Harvard, the Linux Foundation, and the
software composition analysis data providers Snyk, the Synopsys Cybersecurity Research Center,
and FOSSA. We thank Tianli Li and Misha Bouzinier for excellent research assistance. We are
also thankful to the software developer Boris Martinovic as well as Rich Lander and Scott
Hanselman from Microsoft for insights into the .NET ecosystem. We received helpful feedback
from participants at the Harvard Business School Values and Valuations Conference, the Harvard
Business School D3 Research Day, and the 2023 Academy of Management Conference.

a Harvard Business School, Harvard University, 150 Western Avenue, Suite 6.220, Allston, MA
02134, E-Mail: mhoffmann@hbs.edu.
b Harvard Business School, Harvard University, Morgan 213, Soldiers Field, Boston, MA,
02134, E-Mail: fnagle@hbs.edu.
c Rotman School of Management, University of Toronto, 105 St. George Street, Toronto, ON,
M5S 3E6, Canada, E-Mail: yanuo.zhou@rotman.utoronto.ca.

mailto:mhoffmann@hbs.edu
mailto:fnagle@hbs.edu
mailto:yanuo.zhou@rotman.utoronto.ca

2

1. Introduction
In 2011, venture capitalist Mark Andreessen famously argued that “software is eating the world”

(Andreessen, 2011), a sentiment few would argue with today. More recently, venture capitalist

Joseph Jacks argued that “open source is eating software faster than software is eating the world,”

(Jacks, 2022). Other recent studies have come to similar conclusions showing that open source

software (OSS) – software whose source code is publicly available for inspection, use, and

modification and is often created in a decentralized manner and distributed for free – appears in

96% of codebases (Synopsys 2023), and that some commercial software consists of up to 99.9%

freely available OSS (Musseau et al., 2022). Although in its early days OSS frequently copied

features from existing proprietary software, OSS today includes cutting edge technology in various

fields including artificial intelligence (AI), quantum computing, big data, and analytics. However,

despite the increasing importance of OSS to all software (and therefore to the entire economy),

measuring its impact has been elusive. Traditionally, to measure the value created by a good or

service, economists multiply the price (p) times the quantity sold (q). However, in OSS, p is

generally zero since the source code is publicly available, and q is unknown due to the limited

number of restrictions around how the code may be copied and reused. For example, if a company

downloads a piece of OSS from a public code repository, it may copy it thousands of times

internally (legally) and then share it with suppliers or customers (also legally), so public download

data is insufficient. Although some recent studies have sought to estimate the value of p (discussed

below), data for estimating q has been unavailable or intractable for anything more than just a

handful of OSS packages. Using newly collected data from multiple sources, the goal of this paper

is to provide estimates for both p and q and to use those to shine light on the question: What is the

value of open source software?

Understanding the value of OSS is of critical importance not only due to the role it plays

in the economy, but also due to it being one of the most successful and impactful modern examples

of the centuries old economic concept of “the commons” which run the risk of meeting the fate

known as “the tragedy of the commons.” This concept can trace its roots as far back as the 4th-

century BC philosopher Aristotle who wrote “That which is common to the greatest number gets

the least amount of care. Men pay most attention to what is their own and care less for what is

common.” (Aristotle, 1981). William Forster Lloyd (1833) resurfaced the idea in modern

economic thought by highlighting the example of shared tracts of land used for cattle grazing by

3

multiple cattle herders who each had an incentive to overuse the shared resource. Garrett Hardin

(1968) brought the concept into the broader zeitgeist when he wrote an article discussing the

problem entitled “The Tragedy of the Commons.” Building on this work, Elinor Ostrom won the

Nobel Prize for her research highlighting paths to avoiding the tragedy of the commons through

community coordination efforts that did not necessitate government enforced laws to manage and

guard the commons (Ostrom 1990). The parallels between shared grazing lands and shared digital

infrastructure are palpable – the availability of communal grass to feed cattle, and in turn feed

people, was critical to the agrarian economy, and the ability to not have to recreate code that

someone else has already written is critical to the modern economy. Further, in both contexts,

despite knowing grass and code are critical inputs to the economy, measuring their actual value is

difficult. And, as the renowned mathematician and physicist Lord Kelvin is believed to have said,

“If you can’t measure it, you can’t improve it.” And if you cannot improve and maintain it, such

common goods may crumble under the weight of their own success as they are overused, but

underinvested in (Lifshitz-Assaf and Nagle, 2021). Therefore, measuring the value OSS creates is

crucial to the future health of the digital economy, and the rest of the economy that is built on top

of it.

Importantly, recent studies have attempted to address these measurement issues but fall

short of capturing both the breadth and depth of OSS usage – a gap we seek to fill with this paper.

For example, researchers have attempted to gain breadth by using novel methodologies to estimate

the labor replacement value of the current corpus of OSS created in the United States at $38 billion

in 2019 (Robbins et al., 2021) and that created in the European Union at €1 billion (Blind et al.,

2021) by imputing the labor costs that it would have taken to rewrite existing OSS. Such efforts

do a very good job at estimating what it would cost to replace all existing OSS if it disappeared

tomorrow. However, the resultant estimates rely on two important assumptions. First, that all OSS

is equally valuable from a usage standpoint, and second that the concept of OSS would still exist,

and society would just need to rewrite the code once, thus addressing the aforementioned problem

of a missing value for p, but not addressing the missing value of q. In a world where OSS did not

exist at all, then each piece of OSS software would not need to be rewritten just once, but instead

would need to be rewritten by every firm that used the software (assuming the firm could freely

share the software within its boundaries). Other research (Greenstein and Nagle, 2014; Murciano-

Goroff, Zhuo, and Greenstein, 2021) has gone deeper into this hypothetical, albeit in a narrow

4

manner, by only focusing on web servers (which are public facing on the Internet and can therefore

be readily measured). Using different methods, both studies measure q for this one type of software

and impute p by using a goods replacement value approach based on the prices for closed-source

alternatives offered by firms. With data from the United States the resulting estimates show a value

of $2 billion for the OSS Apache Web Server in 2012 (Greenstein and Nagle, 2014) and a

combined value of $4.5 billion for Apache and the increasingly popular OSS web server nginx in

2018 (Murciano-Goroff, et al., 2021). However, although web servers are an important part of the

OSS ecosystem, they constitute a small portion of it. We seek to build upon the important

contributions this existing research has made in an attempt to go both broad and deep to create a

more complete measure of the value of OSS.

To consider the value of OSS in both a broad and deep manner, we use data from two

primary sources that allow us to gain insights into the OSS used at tens of thousands of firms across

the world. The first is the “Census II of Free and Open Source Software – Application Libraries”

(Nagle et al., 2022). The Census II project utilized partnerships with multiple software composition

analysis (SCA) firms to create various lists of the most widely used OSS. SCAs are hired to scan

the codebases of a company to ensure they are not violating any OSS licenses and, as a byproduct,

track all the OSS code used by their customers and the products they build. The Census II project

aggregated data from multiple SCAs to build a dataset of OSS usage at tens of thousands of firms

based on millions of data points (observations of OSS usage). The second data source is the

BuiltWith dataset, from which we leverage scans of nearly nine million websites to identify the

underlying technology deployed by these websites, including OSS libraries. The BuiltWith data

has been used in multiple academic studies (DeStefano & Timmis 2023, Dushnitsky & Stroube

2021, Koning et al.. 2022), but to our knowledge this is the first one to focus on OSS usage. The

Census II data and the BuiltWith data are complementary as the former focuses on OSS that is

built into the software a company sells, while the latter focuses on OSS that is built into a

company’s website, thus reducing the chances of double-counting observations across the datasets.

In aggregate, these two datasets combined create the most complete measurement of OSS usage

(q) to date. Further, by focusing on OSS that is widely deployed and used by firms, rather than

considering all the projects that exist in an OSS repository, we enhance the methodologies of prior

studies by reducing the likelihood of measurement error stemming from projects that are posted as

publicly available OSS but are not actually used in any practical manner. Not accounting for this

5

measurement error would lead to overestimation of the actual value of OSS as projects that are

widely used would be valued in the same way as projects that are not used at all.

To estimate p, we follow the literature discussed above and use the labor replacement

value. First, we calculate the labor cost it would take an individual firm to recreate a given OSS

package by measuring the number of lines of code within the package and then applying the

Constructive Cost Model II (Boehm, 1984; Boehm et al., 2009) – also known as COCOMO II –

to estimate the number of person-hours it would take to write the code from scratch. We then

utilize global wage data from Salary Expert to get an accurate estimate of the labor costs a firm

would incur if this piece of OSS did not exist. These costs can be combined with the q values from

above at the OSS package level to estimate the combined value of all OSS from both the supply

and demand sides.

We find a value ranging from $1.22 billion to $6.22 billion if we were to decide as a society

to recreate all widely used OSS on the supply side. However, considering the actual usage of OSS

leads to a demand-side value that is orders of magnitude larger and ranges from $2.59 trillion to

$13.18 trillion, if each firm who used an OSS package had to recreate it from scratch (e.g., the

concept of OSS did not exist). We document substantial heterogeneity of the value of OSS by

programming language and internal vs outward-facing programming efforts. Further, we find

considerable heterogeneity in value contributions by programmers as 5% of programmers are

responsible for more than 90% of the value created on the supply- and demand- side. The data we

use is arguably the most comprehensive source of data to measure the value created by firm usage

of OSS at this time. However, as for any project, the evidence is not complete and we argue that

we underestimate the value since our data, e.g., does not include operating systems, which are a

substantial omitted category of OSS.

This study makes four important contributions to the academic literature, practitioners, and

policy makers. First, it provides the most complete estimate of the value of widely used OSS to

date by accounting for not only the supply-side of OSS (price to create it), but also for the

usage/demand-side at a scale that has not been done before. While prior estimates of the value of

OSS only went either broad (estimating the supply-side costs of a large swath of OSS) or deep

(estimating the value created by one particular type of OSS), this study does both by using unique

datasets that allow for a better understanding of the breadth and depth of OSS usage. Further, rather

than measuring the value of all OSS, this study focuses on the value of OSS that is used by firms

6

to create its products and websites, limiting the measurement error occurring in studies that are

unable to account for which OSS is actually used in production. This contribution builds upon, and

extends, important research (e.g., Blind et al., 2021; Greenstein and Nagle, 2014; Murciano-Goroff

et al., 2021; Robbins et al., 2021) that has sought to identify the value of this vital resource that

contributes a great deal to the modern economy despite the difficulties measuring this contribution.

In doing so, it adds insights to a long-running discussion related to the impact of information

technology (IT) on productivity (Brynjolfsson, 1993; Brynjolfsson and Hitt, 1996; Nagle, 2019a;

Solow, 1987) known as the “productivity paradox” where IT investments can have limited impact

on productivity statistics. This debate has continued into the emerging context of AI (Brynjolfsson,

Rock, and Syverson, 2018). Our work contributes to this conversation by highlighting a massive

societal level cost-savings (and hence productivity enhancement) that is created by the existence

of OSS.

Second, our research contributes methodological advances to the study of intangible capital

by highlighting novel sources of data related to investments in OSS. Prior research has shown that

intangible capital plays an increasingly important role in economic growth (Corrado, Hulten, and

Sichel, 2009) and firm value (Peters and Taylor, 2017), but it often goes unmeasured or

misattributed (Eisfeldt and Papanikolaou, 2014). Further, we demonstrate how these data sources

can be used to understand the true investments in software that a firm makes, and that which they

would have to make if OSS did not exist. This is valuable as investments in software are an

increasingly important type of intangible capital that is driving innovation (Branstetter, Drev, and

Kwon, 2019) and performance (Krishnan et al., 2000).

Third, our results help highlight for firms and managers the importance of OSS to their

production, and ideally add weight to arguments that users of OSS should not just free ride but

also contribute to the creation and maintenance of OSS (e.g., Henkel, 2008; Nagle, 2018). Such

contributions are a fraction of the costs that firms would incur if OSS did not exist and the active

participation of OSS users in helping maintain the OSS they use is critical to the health and future

well-being of the OSS ecosystem (Lifshitz-Assaf and Nagle, 2021; Zhang et al., 2019).

Fourth, and finally, our study helps inform policymakers who have recently started to

understand the growing importance of OSS to the economy and taken actions to support the

ecosystem (European Commission, 2020; Executive Order No. 14028, 2021). However, most of

these efforts are related to securing the existing OSS ecosystem, which is quite important, but do

7

not go as far as supporting the creation of new OSS. Our results help shine light on the importance

of OSS to the overall economy and add weight to calls for more societal support of this critical

resource. Our results further show that the majority of the value created by OSS is created by a

small number of contributors. Although it has long been known that a small number of OSS

contributors do most of the work, we add new insights that show this is even more true for the

value creation of widely-used OSS projects and that societal support for these individuals is critical

to the future success of OSS, and in turn, the economy.

The remainder of this paper is organized as follows. Section 2 describes the empirical

setting and data. Section 3 discusses the methods including measurement challenges. In section 4,

we estimate the value of open source software. Section 5 concludes.

2. Empirical Setting and Data
Although the concept of free and open software has existed since the 1950’s, it became more

popular in the 1980’s due to the efforts of Richard Stallman and his launch of the GNU Project

and the Free Software Foundation (Maracke, 2019). However, it was in the 1990’s that OSS took

off after Linus Torvalds released the Linux kernel, a now widely adopted OSS operating system

(Tozzi, 2016). Today, OSS is considered a key building block of the digital economy and is widely

used by software developers in everything from phones to cars to refrigerators to cutting-edge AI

(Lifshitz-Assaf and Nagle, 2021).

We use two complementary main data sources to estimate the value of OSS. The first is

the Census and is inward facing. It allows us to identify OSS code that goes into products that

firms create. The second dataset is BuiltWith and is outward facing, allowing us to identify OSS

code that consumers directly interact with through firm websites. Since the raw data in both

datasets only contains package names, version numbers, and package manager names, and does

not contain any source code related information, we first obtain the publicly accessible code

repository for each package which includes package-level information including the lines of code

and the programming languages used. One may worry about double-counting for the value

calculations as a result of using two separate datasets. However, the overlap of both the Census

and the BuiltWith sample is very small: there are only 18 packages found in both datasets.

Moreover, it is unlikely that double counting is a concern as the two datasets capture different

dimensions of OSS usage: the Census captures packaged software whose usage is inward-facing

while BuiltWith captures usage in websites that are outward-facing. Finally, as a supplementary

8

dataset, we use GHTorrent, a detailed history of OSS-related activity on GitHub, the most popular

OSS hosting platform and a commonly used data source for studies of OSS (e.g., Burton et al,

2017; Conti, Peukert, and Roche, 2023; Fackler, Hofmann, and Laurentsyeva, 2023; Kim, 2020;

Tang, Wang, & Tong, 2023). This detailed historical data allows us to go deeper into how the

value of OSS is created by better understanding the dispersion of the contributions across

individual OSS developers. We describe the details of all three data sources and their preparation

for estimation below.

Census. The Census II of Free and Open Source Software (here: Census) was jointly

undertaken by the Linux Foundation and the Laboratory for Innovation Science at Harvard (Nagle

et al., 2022).1 The Census was created via the aggregation of data from three major software

composition analysis (SCA) firms with thousands of clients across the globe. SCAs are hired to

scan the codebase of a client and gather the OSS usage embedded in their proprietary software to

ensure they are not violating any OSS license agreements.2 Frequently this takes place as part of

the due diligence process related to mergers and acquisitions. Unlike other OSS demand measures

available from public sources such as package download counts and code changes, the way this

data was collected ensures that we observe the precise amount and type of internal OSS usage of

the firms. In addition, it allows us to trace the dependencies each package relies on, so that we can

observe the indirect OSS usage that is commonly hidden and difficult to obtain.3 The result is over

2.7 million observations of OSS packages being used within products created by the SCA client

firms for the calendar year 2020 (January 1 to December 31, 2020).4

The Census project standardized package names based on the naming system of libraries.io

– a widely used site maintained by Tidelift that organizes information about more than eight

million open source packages. The Census focused on the top 2,000 packages based on usage

1 The precise methodologies for the data collection and aggregation are detailed in the Census report by Nagle et al
(2022).
2 OSS usage licenses vary a great deal and while some licenses are very open and allow the code to be reused in any
manner, including within proprietary code that will be made available for sale at a non-zero price, other licenses
restrict reuse to only be allowed if the resultant code is released under the same OSS license (known as copyleft). A
detailed discussion of OSS licenses can be found in Lerner and Tirole (2005) and Almeida et al (2017).
3 Indirect OSS usage is captured by dependency analysis and is necessary to accurately measure the full breadth of the
OSS a firm relies on. For example, if a firm’s proprietary code calls OSS package A, but package A, in turn, calls
package B, then only looking at the direct calls would miss that package B was a required building block for the firm’s
proprietary code.
4 The Census defines an OSS package as “a unit of software that can be installed and managed by a package manager,”
and defines a package manager as “software that automates the process of installing and otherwise managing
packages” (Nagle et al, 2022).

9

reported from the three of the most prominent SCA vendors to identify the most widely used OSS

rather than the long-tail of the usage distribution. This led to packages with less than five

observations of usage being dropped. Since packages written in the JavaScript programming

language, and usually hosted on the Node Package Manager (NPM), are generally smaller (fewer

lines of code) than packages in other languages and therefore frequently have higher usage

numbers (since developers must include many small packages instead of a few large packages),

the Census separately selected the top 1,000 NPM packages and the top 1,000 non-NPM hosted

packages.

This final dataset covers 70% of the total usage of OSS observed in the raw data of the

census.5 For each of these 2,000 OSS packages in the Census, we identified the raw code

maintained on GitHub, the most widely used platform for hosting OSS.6 We first attempted to

obtain the GitHub repository uniform resource locator (URL) for each package from libraries.io.

We were able to match 1,657 packages to repositories via this initial method.7 For URLs without

a matching repository, we performed Google searches loosely following the method in Singh

(2020). More specifically, for each unmatched package, we used the Google API to search for the

package name and “GitHub Repository” and treated the first GitHub repository URL in the results

as its best matched GitHub URL.8 This resulted in an additional 174 packages matched to a

repository. Finally, we manually searched for URLs for the remaining 169 packages to identify

the relevant repository. This entire process resulted in matching 1,840 out of the 2,000 Census

packages to a code repository with the raw source code for the package. The unmatched packages

were determined to have been either removed from GitHub or became proprietary (and thus the

original source code was no longer available) and hence, the manual search allowed us to drop

5 The packages that made up the remaining 30% of the full Census data in the long-tail usage distribution were not
shared in the final report and therefore cannot be included in our analysis.
6 GitHub is a hosting and collaboration platform that contributors can use to coordinate the development and
distribution of OSS projects. Founded in 2008, GitHub has become the largest hub for OSS development in the world.
In January 2023, GitHub had more than 370 million repositories and over 100 million developers. In addition to
personal users, a wide range of private firms actively use the GitHub platform, including Microsoft (which bought
GitHub in 2018), Facebook, Google, and numerous other small and large firms.
7 We attempted to access all repository URLs obtained as a sanity check to ensure they are in working condition. For
those we could not access on GitHub, we manually found the correct URLs.
8 As a robustness check, we randomly selected 50 package-repository matches derived from the Google Search method
and we checked them by hand. All matches were manually confirmed to be correct providing additional support for
the automated matching method.

10

these 160 unmatched packages (less than 8% of the Census sample of 2,000) with high confidence

from our analysis.

BuiltWith. The BuiltWith data contains scans of all public websites across the globe and

identifies the technologies they use. Unlike the inward facing Census data which focus on the

usage of OSS, the BuiltWith data scan for the use of both proprietary and OSS in firm websites

without explicit differentiation. To separate OSS from proprietary software in BuiltWith, we turn

to the subset of all open source web development software in the technology category that includes

"JavaScript and its libraries," which generates 778 observations corresponding to the NPM OSS

category in the Census data. There are two reasons for this sampling choice. First, this given

category is constructed by BuiltWith and we use it as a proxy for OSS to separate it from pecuniary

software. Second, JavaScript, one of the core technologies for building websites, is the most

popular programming language by usage on GitHub (GitHub, 2022) and thus enables us to capture

the most important OSS from the demand side perspective. The scans include 8.8 million unique

websites and 72.8 million corresponding observations of OSS usage from January 1 to November

16, 2020. Further, to ensure that we measure the value of OSS usage generated by the private

sector, we match the adopting domains of the JavaScript-related OSS from BuiltWith with

company websites recorded in Orbis, Compustat, and PitchBook, three commonly used databases

of corporate activity that capture registered businesses across the world. Performing this match

ensures that OSS used by non-commercial websites (e.g., an individual person’s personal website)

is excluded in our analysis. This results in a match-rate of 38.6%, which corresponds to around 3.4

million websites of distinct firms.

For the BuiltWith data, we cannot employ the first method we use for the Census (using

libraries.io to help identify the repository URL) since only the technology names associated with

the packages were provided by BuiltWith, and other information (e.g., package and package

manager names) is not included. 9 Hence, we start by performing the Google Search method

mentioned above which results in a match of 695 packages to repositories. We then manually

searched the Github URLs for 83 of the remaining unmatched packages, resulting in an addition

of 46 packages. In total, for the BuiltWith data we were able to identify 741 out of 778 package-

9 Since the package and package manager names are missing, a precise match using libraries.io was not feasible.
Technology names are product names intended for customers and can be less technical and precise than the package
names for internal development purposes. Thus, using technology names in a libraries.io search could cause significant
ambiguity.

11

repository matches. As with the Census data, the remaining 37 unmatched packages (less than 5%)

are dropped from our analysis because they had been deleted from GitHub.

GHTorrent database. To obtain measures of the dispersion of the OSS value creation, we

utilize the GHTorrent database, which contains the entire activity history on GitHub using

GitHub’s Representational State Transfer (REST) application programming interface (API). We

leveraged its records of GitHub repositories, developer-level commits, and developer public

profile information to estimate the contribution of each developer. We narrowed the sample for

our developer contribution analysis in two steps. First, we winnowed the GitHub repositories and

their commits from GHTorrent based on the repository URLs of our joint Census-BuiltWith

sample.10 Second, we focus on human contributions to OSS by removing approximately eight

thousand (12%) GitHub contributors that we considered to be robots.11 The final sample contains

around sixty thousand developers and 2.3 million commits.

To prepare these three datasets for estimation, we first identified the number of lines of

code and the programming languages used for each package using the OSS packages pygount (to

count the number of lines of code) and linguist (to identify programming languages).12 We

categorize each distinct language into one of three different buckets moving from more likely

human-written to more likely machine-written (see Table A1). Bucket 1 contains programming

and markup languages (which are most likely to be human-written), bucket 3 contains data (most

likely to be machine-written), and bucket 2 contains anything in between, such as config files and

batch processing (which are sometimes human-written and sometimes machine-written, but it is

difficult to tell based purely on looking at the code).13 For our primary estimation we only use

bucket 1 while providing robustness checks for buckets 2 and 3 in the Appendix, and thus our

results represent a lower bound. Finally, for some analyses we dig deeper and show the top 5

programming languages (as classified by GitHub, 2022 for the year 2020; the year our data is

from). The top 5 programming languages contain C (including C# and C++), Java, JavaScript,

10 The match rate is over 96%, with the unmatched repositories accounting for only 0.15% of our calculated OSS
demand value discussed below.
11 The filtering is based on the “fake user” classification by GHTorrent, as well as any usernames containing words
“bot” or “robot”, surrounded by special characters. This method is more conservative than other methods of bot
detection like that used in the GitHub Innovation Graph (https://innovationgraph.github.com/), which rely on a
monthly commit frequency threshold.
12 https://pypi.org/project/pygount/ and https://github.com/github-linguist/linguist
13 Note that our focus is the cost to recreate OSS code written by humans, not robots. However, directly removing all
OSS contributions from robot accounts is infeasible here, because we cannot observe the exact lines of code written
by the robot accounts on GitHub.

12

Python, and Typescript. We also add Go to this list of top languages since it is an increasingly

widely used language in OSS.

3. Methodology
We first measure the value of OSS by considering the supply and the demand side of OSS using a

labor market approach.14 The thought experiment is that we live in a world where OSS does not

exist and has to be recreated at each firm that uses a given piece of OSS. Using the labor market

approach, we calculate the labor replacement cost of each OSS package. To estimate the value for

each package, we use COCOMO II (Boehm, 1984; Boehm et al., 2009) at the individual package

level and then sum across all package values to obtain a supply-side labor market replacement

value. Then, we scale the supply-side value by the number of times firms are using each package

while removing multi-usage within each firm to obtain a demand-side value.

Second, we move beyond the aggregate and inspect inequality in the value creation process.

In OSS, as with many creative endeavors, it is common that a small handful of individuals provide

the bulk of the contributions, while many others make small contributions (sometimes referred to

as the 80/20 rule, implying 80% of the work is done by 20% of the people). Research has shown

these frequent contributors often attain positions of influence in OSS communities as a result of

their efforts (Hanisch, et al, 2018). Therefore, to better understand the dispersion of value creation

across developers, we first use the GHTorrent data and identify individual developer contributions

in two ways: a) through their OSS value contributions directly and b) through the total number of

repositories they contributed to. We then test how concentrated these two contribution measures

are to better understand whether many or few developers contribute to the total value we measure.

We explain the exact details for the labor market approach and the inequality of valuations below.

3.1 Labor market approach

For the labor market approach, we estimate the value of OSS by calculating the replacement value

of a package. We ask how much it would cost to reproduce the package by hiring a programmer

and paying them a competitive market wage. To estimate this supply-side value (𝑉!"#$%&), we take

the complete list of OSS packages discussed above, and then count the lines of code in each unique

14 In an alternative version, we use a mixture of a labor and goods market approach that is more closely aligned with
Greenstein and Nagle (2014) and Murciano-Goroff, et al (2021). However, applying this method in our setting requires
numerous additional assumptions due to data constraints. For simplicity we call it the goods market approach for
which we provide the details and statistics, as well as the limitations in Appendix A.

13

package.15 For each unique package, i, we calculate the value and then sum over all these values

to obtain the total value:

 	𝑉!"#$%& = ∑ 𝑉!!
'
()* = ∑ 𝑃(∗ 1'

()* 	. (1)

In this calculation, we implicitly do not incorporate any production externalities since we

assume that there is no spillover knowledge from one package to the next that would lower the

cost of programming.16 This methodology is similar to that used by other papers that estimate the

supply-side costs of OSS (Blind et al., 2021; Nagle, 2019b; Robbins et al., 2021).

We then calculate the demand-side value of OSS by incorporating the usage information (Q) for

each package:

 𝑉+"#$%& 	= ∑ 𝑉+!
'
()* = ∑ 𝑃(∗ 𝑄('

()* 	. (2)

Here, we do not incorporate consumption externalities, i.e., we do not allow a benefit to

arise for the general public when a package has been created and we further make sure that each

firm is only replacing a package they use once, since a replaced package can be used within a firm

as a club good (e.g., see Cornes and Sandler, 1996). The value 	𝑉!"#$%&reflects the cost to rewrite

all widely-used OSS once (e.g., the concept of OSS still exists, but all of these packages needed to

be rewritten from scratch), while the value 𝑉+"#$%&reflects the cost for each firm that uses one of

these OSS packages to pay a developer to rewrite those packages (e.g., OSS itself no longer exists).

For both the supply and demand models, we obtain the dollar-value for each package (𝑃()

via the Constructive Cost Model II, also abbreviated as COCOMO II (Boehm 1984, Boehm et al.

2009). The model has previously been used by the United States Department of Defense to estimate

software project costs as well as in prior research estimating the value of OSS (Blind et al., 2021;

Nagle, 2019b; Robbins et al., 2021). It is a highly flexible model that allows us to create non-linear

transformations of lines of code to dollar-values. It uses the following modelling equation:

15 We use only the pure lines of code excluding documentation lines and empty lines. Hence, we underestimate the
true value of recreating each package.
16 Similar to a representative agent model (e.g. see Williamson 2006), one may think of each package being reproduced
by separate programmers who are identical replicas of each other (and therefore have the same skill level, but do not
become more efficient via learning).

14

 𝐸(= 	𝛼𝜂𝐿(
, (3)

where 𝐿 represents the lines of codes in thousands and E the effort in person-month units

for each project i. Consistent with Blind et al. (2021), we use the default parameter values for 𝛼,

𝛽 and	𝜂. The parameters 𝛼, 𝛽 are non-linear adjustment factors set to 2.94, and 1.0997 respectively.

The parameter 𝜂 is an effort-adjustment factor which can be modified to incorporate subjective

assessments of product, hardware, personnel, and project attributes. Since we do not have a prior

for each project, we set 𝜂 to the default value of one. To obtain the price (𝑃() of each OSS project,

we then multiply the results of equation (3) by the weighted global wage that an average

programmer would obtain on the open market. To calculate a global wage, we include the base

monthly salaries of software developers from Salary Expert for the top 30 countries in terms of

their GitHub developer counts in 2021 (Wachs et al., 2022).17 The weight of each country is its

share of active GitHub contributors over the total contributors in the top 30 countries. We further

create bounds by using a low-wage (India) and high-wage (USA) labor market for the wage to

better understand how the value would vary by the pool of programmers used to recreate all of

OSS.18

3.2 Contribution Measurement

To better understand how value is created and whether it is created equally or unequally, we

build up a graphical depiction in three steps. In the first step, we measure the value contributions

by developers. In a second step, we obtain a measure for the number of repositories developers

contribute to. Finally, we provide a graphical representation of both using the commonly known

concept of the Lorenz curve to better understand the extent of inequality in contributions. We

describe the details below.

Value Contribution. We calculated the supply and demand values of OSS that each developer

contributed. At the repository level, we quantified each developer's proportional work contribution

by calculating their share of commits to the total number of commits for a repository. This share

was subsequently multiplied with the repository’s demand and supply values separately to derive

17 There are 179 counties in Wachs et al. (2022), but the top 30 countries consist of over 88% of the global active
contributors with each of the rest having less than 0.6% share. The top 30 countries are listed in Table A2.
18 We choose the high- and low-wage reference countries based on a combination of the number of active GitHub
developers and the average annual software developer base wage.

15

the value-added contribution of that individual contributor to the repository. Finally, we aggregate

the value contributions across all repositories for each developer. The individual value contribution

from a unique developer Dev, 𝑉-+./, can be expressed as:

𝑉-+./ = ∑ 𝜎(+./'
(∗ 𝑉(- 	 (7)

where 𝜎(+./ is the share of commits the focal developer made in repository i, and 𝑉(- is the demand

or supply value of the entire repository i specified in Equations (1) and (2), with 𝑗 ∈ {𝐷, 𝑆}, and N

is the number of repositories in our main sample, i.e. Census and BuiltWith combined.

Repository Contribution. This is simply the number of repositories a given developer

contributes to, and it is expressed as follows:

𝑁+./ = ∑ 𝟙{𝜎(+./ > 0}'
((8)

where 𝟙 is the indicator function equal to 1 when the developer has a non-zero number of commits

to repository i. This measure entails the variety of OSS needs being addressed by individual

developers. Jointly with the value contribution measure, they help us understand whether the value

that is being generated overall is concentrated within a small number of developers. It may be

generally more desirable for the whole OSS ecosystem and its diversity if individual developers

participate in many repositories and not just a few.

Measuring the Dispersion of Contributions. To graphically examine the dispersion of

developer contribution values, we utilized Lorenz curves (Lorenz, 1905), with respect to both

demand and supply side values. Lorenz curves are a well-established way to represent inequality

and, as such, they allow us to better understand how dispersed developer contributions to OSS

within the private economy are. Developers are systematically arranged in ascending order based

on their contributions to OSS demand and supply, as delineated in Equation (7). Subsequently,

these ranks were normalized to a scale ranging from 0 to 100 percentiles, serving as the x-axis

values for the Lorenz Curves. The y-axis, on the other hand, presents the corresponding value

contributions 𝑉-+./. The graphical representation in the results section will elucidate the degree of

inequality pertaining to the value contributions among developers. To supplement the analysis, we

16

further investigated how dispersed the repository contribution, 𝑁+./, is by plotting Equation (8).

This enables us to ascertain whether any substantial value inequality stems from top contributors

predominantly focusing on a narrow subset of exceptionally popular repositories, or alternatively,

from their engagement with a broader spectrum of successful repositories.

4. Results

After applying the labor market approach using COCOMO II, we obtain global estimates for the

value of OSS. To calculate the overall value, we first need the underlying number of lines of code

(to calculate the supply-side value) and then the usage statistics (for the demand-side value). Since

there may be substantial heterogeneity in value by programming languages, we also show the top

programming languages during our investigation period in the year 2020, as discussed above.

--- Table 1 about here ---

Table 1 shows descriptive statistics from both data sets separately. The inward-facing

Census (Panel A) contains just over 261.7 million lines of code with 72% of the lines being

attributable to the top programming languages. The average package includes 142 thousand lines

of code with a slightly lower average of 113 thousand lines of code for the subset of top languages.

When considering the demand (usage) side, we observe that the Census packages were used over

2.7 million times while 92% of this usage is attributable to the top languages. The average package

was used 1,472.4 times with a higher usage of around 1,497.5 for the top languages. For the

outward-facing BuiltWith data we find similar patterns, but at different levels. The packages

included from BuiltWith include over 82 million lines of code, 71% of which are attributable to

the top programming languages. The average package within the BuiltWith sample has 111

thousand lines of code with a lower average of around 80 thousand lines of code for the top

languages. This is because our BuiltWith data primarily consists of JavaScript-based packages,

which are often smaller than packages written in other languages. BuiltWith packages were used

over 142 thousand times where 99.97% were attributable to the top languages. Next, we used these

raw observations to calculate the value of all OSS through the labor market approach and estimated

the value created from the supply and demand side.

--- Table 2 about here ---

17

Table 2 shows the estimates for the value of OSS based on the firm-relevant joint Census

and BuiltWith sample. All estimates in Table 2 are based only on software languages classified in

bucket 1 from Table A1, which are the most likely to be written by a human rather than a

machine.19 The first column contains estimates with wages from a low income country (India), the

global average wage, and a high income country (United States of America), respectively (as

described above). To reproduce all widely-used OSS once (e.g., the idea of OSS still exists, but all

current OSS is deleted and needs to be coded from scratch), using programmers at the average

developer wage from India, it would require an investment of $1.22 billion. In contrast, if we use

the average developer wage from the United States, then reproducing all widely-used OSS would

require an investment of $6.22 billion. Using a pool of programmers from across the world,

weighed based on the existing geographic contributions to OSS as discussed above, would lead to

an investment somewhere in between the low and high-income country, $4.15 billion. It is useful

to compare these numbers to those from similar studies to understand differences in valuing all

OSS (prior studies) versus that which is widely used (our study). Robbins et al. (2021) and Blind

et al. (2021) use a method similar to ours and estimate that the value of OSS created in the US is

$38 billion in 2019 and that created in the EU is €1 billion in 2018. Wachs et al. (2022) show that

roughly 50% of OSS contributions come from the US and EU combined. In aggregate, that would

lead these studies to give a global value of OSS of $78 billion. Thus, our middle estimate of a

supply-side value of $4.15 billion for only firm-oriented and widely used OSS is a credible lower-

bound and highlights the higher estimations of the total of supply-side value of OSS when not

considering whether or not a given OSS package is widely used. This further indicates that the

supply-side value of the most widely used OSS is roughly 5.5% of the supply-side value of all

OSS.

The second column in Table 2 contains the demand side estimates based on the labor

market approach. We find that if firms had to recreate all OSS packages they used (e.g., OSS itself

no longer existed and every firm that used an OSS package had to recreate it), then the entire cost

would amount to between $2.59 trillion to $13.18 trillion using labor from the low wage or high

wage country only, respectively. A pool of programmers across the globe could recreate all of OSS

that is being widely used for a cost of approximately $8.80 trillion. Interpreting this number is

19 Tables in the appendix show the equivalent values from Table 2 when including software language buckets 1 and 2
(Table A3) and all three software language buckets (Table A4).

18

slightly more complicated but still feasible. According to a Statista (2023) report, global software

revenue in 2020 (the same year as our data) was $531.7 billion. However, this represents a flow,

not a stock, of software. Relying on government estimates that software fully depreciates over

three years, we can do a back of the envelope calculation and consider the purchase value of the

full stock of prepackaged software used in 2020 as the aggregate of that sold from 2018 to 2020,

which is $1.54 trillion. Further, this represents only the expenditure on prepackaged software and

does not include custom purchased or in-house developed software. Here, the best obtainable

estimates of private-sector investment in software overall come from the United States National

Income and Product Accounts data (NIPA 2023). In 2020, the national account data shows that in

the US, private firms spent $479.2 billion on software, of which 45% ($215.5 billion) was

prepackaged. If we assume this is a consistent ratio for the rest of the world, then the total amount

firms spent on software being used in 2020 was $3.4 trillion (= $1.54 trillion/0.45). Combining

this rough estimate with the demand side estimate of the value of OSS based on an average global

wage ($8.8 trillion), this indicates firms would spend $12.2 trillion (=$3.4 trillion + $8.8 trillion),

or three and a half times what they currently spend if they needed to pay in-house developers to

write the OSS that they currently use for free.

--- Figure 1 about here ---

Figure 1 shows the heterogeneity of the value of OSS across the top programming languages. Panel

A shows the supply side value with the labor value being displayed on the vertical axis. We find

that OSS packages created in Go have the highest value with $803 million in value that would

have to be created from scratch if the OSS packages did not exist. Go is closely followed by

JavaScript and Java with $758 million and $658 million, respectively. The value of C and

Typescript is $406 million and $317 million, respectively, while Python has the lowest value of

the top languages with around $55 million. JavaScript is not only the top language on GitHub since

at least 2014 (GitHub, 2022) it is also the language with one of the highest values in our data. In

contrast, Python became more popular over time moving up from the number four spot to the

number two language being used in 2020 across all OSS packages on GitHub, while it is in the

last spot of our top languages.

Panel B shows the demand side value across the top programming languages. Based on

usage generated value, Go is more than four times the value of the next language, JavaScript.

19

Typescript (a language that extends JavaScript) has seen immense growth rising from the tenth

spot of the top 10 languages in 2017 to the fourth spot in 2020 which is also reflected in our data

with Typescript being the third most important language on the demand side. The two web

languages are followed by C and far behind are Java, and Python.

--- Figure 2 about here ---

Figure 2 splits the OSS value estimates for each language by our inward facing (Census)

and outward facing (BuiltWith) data sources. Panel A and Panel B focus on the supply and demand

side estimation for the Census. We obtain a similar pattern that has been established already in the

aggregate when pooling both data sources (Figure 1) albeit the impact of JavaScript is substantially

lower. On the supply side of the Census in Panel A, Java has the second-highest value while

JavaScript code from the Census contributes to a substantially lower value to the aggregate.

Similarly, the supply side values of C, Python, and Typescript are mainly driven by the Census.

From the demand side Panel B we find that Go is the most popular language for inward facing

code while all other languages appear to be negligible in relative terms.

Figure 2, Panel C and Panel D show the supply and demand side values for the BuiltWith

dataset. The supply side value in Panel C clearly indicates that the value from the BuiltWith sample

is driven by JavaScript code, which is a good sanity check since we focused on JavaScript packages

to proxy for OSS in the BuiltWith sample, as discussed above. The second highest value is created

by TypeScript which is reassuring since it is a superset of JavaScript. Panel D shows a similar

pattern on the usage side where most of the value arises from JavaScript while TypeScript is

trailing at the second spot as well. The other languages contribute only marginal amounts to the

supply and demand side values. Overall, these findings are broadly consistent with the main use

cases of the various languages (web programming vs. application programming) and an idea that

languages through which value are generated are not necessarily identical to languages that are

used by the general public.

--- Figure 3 about here ---

20

Figure 3 shows the demand-side value of OSS across industries by NAICS 2-digit codes

using the BuiltWith online data.20 This can be interpreted as the value each of these industries

receive because OSS exists. The industry with the highest usage value of around $43 billion is

“Professional, Scientific, and Technical Services.” “Retail Trade” as well as “Administrative and

Support and Waste Management and Remediation Services” make up another large part of the

demand-side externally facing value of OSS with $36 billion and $35 billion, respectively. In

contrast, industries that constitute just a small portion of the value are “Mining, Quarrying, and

Oil and Gas Extraction”, “Utilities”, “Agriculture, Forestry, Fishing, and Hunting.” The latter

industries are classical non-service sector industries and as such software is expected to play less

of a role there.

-- Figure 4 about here ---

Figure 3 shows the Lorenz curves and the number of repositories that a fraction of programmers

has contributed to for the supply side (Panel A) and the demand side (Panel B). A Lorenz curve

that lay directly on the 45 degree line would imply a very even distribution of values across

programmers. Instead, Panel A shows a Lorenz curve as a nearly flat line with a drastic increase

for the final share of programmers. This implies that the distribution of the supply value is highly

uneven and considerably more concentrated than the 80/20 standard. Indeed, the last five percent

of programmers, or 3,000 programmers, generate over 93% of the supply side value. Similarly,

Panel B shows – when accounting for usage – that those last five percent generate over 96% of the

demand side value. In aggregate, this indicates that a very small number of programmers are

creating the bulk of OSS code that is heavily relied upon by firms to create their own code. In both

Panel A and Panel B we can also see a rise in the number of repositories for the last 10-15% of

programmers that contribute to the highest value, which implies that the uneven value that is

generated by few programmers is not just due to a few highly valuable repositories but by the

contributions of this handful of contributors to a substantial number of repositories.

5. Conclusion

20 Due to the Census containing proprietary customer information, it did not reveal industries across the whole dataset
and as such we can only show the value across industries using the outward-facing data from BuiltWith. We match
BuiltWith websites to industry information from the Orbis and Compustat datasets. 94.6% of BuiltWith websites are
matched with an industry through this process. For firms (domains) that are associated with multiple industries we
took the average value and distributed it across industries.

21

In this study we estimate the value of widely-used open source software globally with two

unique datasets: the Census of OSS and the BuiltWith data. We are able to estimate not only the

supply side value of existing code (e.g., the cost it would take to rewrite each piece of widely-used

OSS once) but also the demand side value for the private economy (e.g., the cost it would take for

each company that uses a piece of OSS to rewrite it). While we do not focus on the long tail of

OSS, we consider this an additional contribution of our study as focusing on OSS that is widely

used allows us to more precisely understand the value created by OSS, rather than only measuring

the replacement cost for all OSS (which would overestimate the true value since many OSS

projects are not used in production code). However, although we highlight the substantial value

that OSS has in our society based on a wide swath of usage data, it is not feasible to identify 100%

of the OSS used across the world and, as such, our demand-side estimates are likely an

underestimate of the true value.

Adjusted for usage, we find a large demand-side value of OSS of $8.8 trillion when using

programmers from across the world, with some variance, depending on whether we would hire

programmers from a low- or high-income country only. There is substantial heterogeneity in the

value across programming languages and whether the code is inward–facing – i.e., for creating

products that are being sold – or outward-facing – i.e., used on the company’s website. The top 6

programming languages create 84% of the demand-side value. We also show substantial

heterogeneity by industries and, finally, heterogeneity in the value contributions by programmers

themselves. Over 95% percent of the demand-side value is generated by only five percent of

programmers, and those programmers contribute not only to a few widely used projects but to

substantially more projects than the programmers that are engaged at the lower end of the value

distribution.

In aggregate, our results show the substantial value that OSS contributes to the economy

despite this value generally showing up as zero via direct measurement since prices equal zero and

quantity is difficult to measure using public data alone. Our research lays the groundwork for

future studies of not only OSS, but of all IT and its growing impact on the global economy.

22

References
Almeida, D. A., Murphy, G. C., Wilson, G., & Hoye, M. (2017, May). Do software developers

understand open source licenses? In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC) (pp. 1-11). IEEE.

Andreessen, M. (2011). Why Software Is Eating The World. Accessed May 1, 2023. Source:
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460

Aristotle. (1981). Politics. Book 2, Chapter 3. T.A. Sinclair translation. Penguin Books, London.
Blind, K., Böhm, M., Grzegorzewska, P., Katz, A., Muto, S., Pätsch, S., & Schubert, T. (2021).

The impact of Open Source Software and Hardware on technological independence,
competitiveness and innovation in the EU economy. European Commission, Ed.

Blind, K., & Schubert, T. (2023). Estimating the GDP effect of Open Source Software and its
complementarities with R&D and patents: evidence and policy implications. The Journal
of Technology Transfer, 1-26.

Boehm, B. W. (1984). Software engineering economics. IEEE transactions on Software
Engineering, (1), 4-21.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., Madachy, R.,
Reifer, D., & Steece, B. (2009). Software cost estimation with COCOMO II. Prentice Hall
Press.

Branstetter, Lee G., Matej Drev, and Namho Kwon. (2019). “Get with the program: Software-
driven innovation in traditional manufacturing.” Management Science 65, no. 2: 541-558.

Brynjolfsson, E. (1993). The productivity paradox of information technology. Communications of
the ACM, 36(12), 66-77.

Brynjolfsson, E., & Hitt, L. (1996). Paradox lost? Firm-level evidence on the returns to information
systems spending. Management Science, 42(4), 541-558.

Brynjolfsson, E., Rock, D., & Syverson, C. (2018). Artificial intelligence and the modern
productivity paradox: A clash of expectations and statistics. In The economics of artificial
intelligence: An agenda (pp. 23-57). University of Chicago Press.

Burton, R. M., Håkonsson, D. D., Nickerson, J., Puranam, P., Workiewicz, M., & Zenger, T.
(2017). GitHub: exploring the space between boss-less and hierarchical forms of
organizing. Journal of Organization Design, 6, 1-19.

Conti, A., Peukert, C., & Roche, M. |(2023). "Beefing IT up for your Investor? Open Sourcing
and Startup Funding: Evidence from GitHub." Harvard Business School Working paper
No. 22-001.

Cornes, R., & Sandler, T. (1996). The theory of externalities, public goods, and club goods.
Cambridge University Press.

DeStefano, T., and J. Timmis (2023). Demand Shocks and Data Analytics Diffusion, working
paper.

Dushnitsky, G., & Stroube, B. K. (2021). Low-code entrepreneurship: Shopify and the alternative
path to growth. Journal of Business Venturing Insights, 16, e00251.

Eisfeldt, A. L., & Papanikolaou, D. (2014). The value and ownership of intangible capital.
American Economic Review, 104(5), 189-194.

European Commission. (2020). Open Source Software Strategy 2020-2023. Luxembourg: Office
for Official Publications of the European Communities.

Executive Order No. 14028. (2021). Executive Order on Improving the Nation’s Cybersecurity.
May 2021.

23

Fackler, T., Hofmann, M., & Laurentsyeva, N. (2023). Defying Gravity: What Drives
Productivity in Remote Teams? (No. 427). CRC TRR 190 Rationality and Competition.

Greenstein, S., & Nagle, F. (2014). Digital dark matter and the economic contribution of Apache.
Research Policy, 43(4), 623-631.

GitHub (2022). “Octoverse: The state of open source software.” Accessed November 3, 2023.
https://octoverse.github.com/2022/top-programming-languages.

Hanisch, M., Haeussler, C., Berreiter, S., & Apel, S. (2018, July). Developers’ progression from
periphery to core in the Linux kernel development project. In Academy of Management
Proceedings (Vol. 2018, No. 1, p. 14263). Briarcliff Manor, NY 10510: Academy of
Management.

Hardin, G. (1968). “The Tragedy of the Commons”. Science. 162 (3859): 1243–1248.
Henkel, J. (2009). Champions of revealing—the role of open source developers in commercial

firms. Industrial and Corporate Change, 18(3), 435-471.
Jacks, J. (2022). Open Source Is Eating Software FASTER than Software Is Eating The World.

Accessed May 1, 2023. Source: https://www.coss.community/cossc/open-source-is-
eating-software-faster-than-software-is-eating-the-world-3b01

Kim, D. Y. (2020). Product Market Performance and Openness: The Moderating Role of
Customer Heterogeneity. In Academy of Management Proceedings (Vol. 2020, No. 1, p.
21309). Briarcliff Manor, NY 10510: Academy of Management.

Koning, R., Hasan, S., & Chatterji, A. (2022). Experimentation and start-up performance:
Evidence from A/B testing. Management Science, 68(9), 6434-6453.

Krishnan, M. S., Kriebel, C. H., Kekre, S., & Mukhopadhyay, T. (2000). An empirical analysis of
productivity and quality in software products. Management science, 46(6), 745-759.

Lerner, J., & Tirole, J. (2005). The scope of open source licensing. Journal of Law, Economics,
and Organization, 21(1), 20-56.

Lorenz, M. O. (1905). "Methods of measuring the concentration of wealth". Publications of the
American Statistical Association. Publications of the American Statistical Association,
Vol. 9, No. 70. 9 (70): 209–219. Bibcode:1905PAmSA...9..209L. doi:10.2307/2276207.
JSTOR 2276207.

Lifshitz-Assaf, H., & Nagle, F. (2021). The digital economy runs on open source. Here's how to
protect it. Harvard Business Review Digital Articles. https://hbr.org/2021/09/the-digital-
economy-runs-on-open-source-heres-how-to-protect-it.

Lloyd, W. F. (1833). Two lectures on the checks to population: Delivered before the University of
Oxford, in Michaelmas Term 1832. JH Parker.

Maracke, C. (2019). Free and Open Source Software and FRAND‐based patent licenses: How to
mediate between Standard Essential Patent and Free and Open Source Software. The
Journal of World Intellectual Property, 22(3-4), 78-102.

Murciano-Goroff, R., Zhuo, R., & Greenstein, S. (2021). Hidden software and veiled value
creation: Illustrations from server software usage. Research Policy, 50(9), 104333.

Musseau, J., Meyers, J. S., Sieniawski, G. P., Thompson, C. A., & German, D. (2022, May). Is
open source eating the world’s software? Measuring the proportion of open source in
proprietary software using Java binaries. In Proceedings of the 19th International
Conference on Mining Software Repositories (pp. 561-565).

Nagle, F. (2018). Learning by contributing: Gaining competitive advantage through contribution
to crowdsourced public goods. Organization Science, 29(4), 569-587.

https://hbr.org/2021/09/the-digital-economy-runs-on-open-source-heres-how-to-protect-it
https://hbr.org/2021/09/the-digital-economy-runs-on-open-source-heres-how-to-protect-it

24

Nagle, F. (2019a). Open source software and firm productivity. Management Science, 65(3), 1191-
1215.

Nagle, Frank (2019b). “Government Technology Policy, Social Value, and National
Competitiveness.” Harvard Business School Working Paper, No. 19-103, March 2019.

Nagle, F., Dana, J., Hoffman, J., Randazzo, S., & Zhou, Y. (2022). Census II of Free and Open
Source Software—Application Libraries. Linux Foundation, Harvard Laboratory for
Innovation Science (LISH) and Open Source Security Foundation (OpenSSF).
https://www.linuxfoundation.org/research/census-ii-of-free-and-open-source-software-
application-libraries.

NIPA (2023). Bureau of Eonomic Analysis, NIPA Table 5.6.5. accessed: 2023-11-14, source:
https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_
list=331&series=q&first_year=2013&last_year=2023&scale=-9.

Nordhaus, William D., 2006, “Principles of National Accounting for Nonmarket Accounts,” in A
New Architecture for the US National Accounts, editors, Dale W. Jorgenson, J. Steven
Landefeld, and William D. Nordhaus, University of Chicago Press.

Ostrom, Elinor (1990). Governing the commons: The evolution of institutions for collective action.
Cambridge: Cambridge University Press.

Peters, R. H., & Taylor, L. A. (2017). Intangible capital and the investment-q relation. Journal of
Financial Economics, 123(2), 251-272.

Robbins, C., Korkmaz, G., Guci, L., Calderón, J. B. S., & Kramer, B. (2021). A First Look at
Open-Source Software Investment in the United States and in Other Countries, 2009-2019.

Singh, Shivendu Pratap (2020) Products, Platforms, and Open Innovation: Three Essays on
Technology Innovation. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

Solow, R. (1987). “We Better Watch Out.” New York Times Book Review, July 1987, p. 36.
Statista (2023). Statista Software Worldwide, accessed 2023-11-14, source: -

https://www.statista.com/outlook/tmo/software/worldwide#revenue, accessed November
2023.

Synopsys (2023). 2023 OSSRA: A deep dive into open source trends. Accessed May 1, 2023.
Source : https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-
report/

Tang, S., Wang, Z., & Tong, T. (2023). Knowledge Governance in Open Source Contributions:
The Role of Gatekeepers. In Academy of Management Proceedings (Vol. 2023, No. 1, p.
17622). Briarcliff Manor, NY 10510: Academy of Management.

Tozzi, C. (2016). “Open Source History: Why Did Linux Succeed?” Channel Futures, August,
2016. Accessed November 3, 2023. https://www.channelfutures.com/open-source/open-
source-history-why-did-linux-succeed

Wachs, J., Nitecki, M., Schueller, W., & Polleres, A. (2022). The geography of open source
software: Evidence from github. Technological Forecasting and Social Change, 176,
121478.

Williamson, S. (2006). Notes on macroeconomic theory. University in St. Louis. Department of
Economics.

Zhang, Y., Zhou, M., Mockus, A., & Jin, Z. (2019). Companies’ participation in oss development–
an empirical study of openstack. IEEE Transactions on Software Engineering, 47(10),
2242-2259.

25

26

Figure 1 The value of open source software: top languages

Panel A. Supply Side

Panel B. Demand Side

Note. The figures show the labor market value for the top-5 languages according to GitHub plus Go. Panel A
displays the supply side while Panel B incorporates usage. On the labor side we use our estimated average global
wage for programmers as explained in the methodology section.

27

Figure 2 The value of open source across top-5 languages + Go and across data sources

Panel A. Census. Supply Side

Panel B. Census. Demand Side

Panel C. BuiltWith. Supply Side Panel D. BuiltWith. Demand Side

Note. The figures show the labor and goods market value for the top-5 languages (according to GitHub) + Go split
by inward facing (Census) and outward facing (BuiltWith) data source. Panel A and Panel B show the supply side
and demand side values for the Census and Panels C and D the supply and demand side values for BuiltWith.

28

Figure 3 The value of open source across industries from websites

Note. The figure shows the demand side labor value across NAICS 2-digit code industries using the Built With data.
For firms (domains) that are associated with multiple industries we took the average value and distributed it across
industries.

29

Figure 4 The dispersion of the value creation of open source

Panel A. Supply Side

Panel B. Demand Side

Note. The figures show the Lorenz curve of the labor market value contribution per developer (in blue) as well as
the number of repositories that a fraction of programmers contributed to (in yellow). Panel A displays the supply
side while Panel B incorporates usage.

30

Table 1 Descriptive statistics on lines of code and usage
 Sum Mean SD Obs

Panel A: Census
Lines of Code – All packages 261,653,728 142,203.1 887,937.2 1,840
Lines of Code – Top 5 Languages and Go 189,673,184 113,712.9 702,832.1 1,668
Usage – All packages 2,709,155 1472.4 2,167.9 1,840
Usage – Top 5 Languages and Go 2,497,785 1497.5 2,228.8 1,668

Panel B: BuiltWith
Lines of Code – All packages 82,504,613 111,342.3 613,488.1 741
Lines of Code – Top 5 Languages and Go 58,664,935 79,925.0 354,415.0 734
Usage – All packages 142,794.4 192.7 733.4 741
Usage – Top 5 Languages and Go 142,751.2 194.5 736.6 734

Note. The statistics are based on the lines of codes of different repositories. Panel A (B) portrays the aggregate sum,
mean, standard deviation and number of observations for the Census (BuiltWith) data across lines of code and usage
using all packages from bucket 1 (see Table A1).

Table 2 The labor-market value of open source

 Labor Supply Labor Demand
Wage: Low $1.22 Billion $2.59 Trillion
Wage: Global $4.15 Billion $8.80 Trillion
Wage: High $6.22 Billion $13.18 Trillion

Note. The high wage scenario is based on the US average wage and the low wage scenario is the Indian average wage
for programmers in 2020. The global wage is an average wage from the countries in Table A4, weighted according to
their contributions to OSS. These estimates include only languages from software classified in bucket 1 (see Table
A1).

31

Online Appendix

Table A1 Languages within each bucket
 Type Language

Panel A: Bucket 1 - Languages

 Mark-Up Language BIBTEX
 Mark-Up Language COLDFUSION HTML
 Mark-Up Language DOCBOOK XML
 Mark-Up Language HAML
 Mark-Up Language HTML
 Mark-Up Language HXML
 Mark-Up Language JAVAEE XML
 Mark-Up Language MARKDOWN
 Mark-Up Language MASON
 Mark-Up Language MXML
 Mark-Up Language RELAX-NG COMPACT
 Mark-Up Language RHTML
 Mark-Up Language TEX
 Mark-Up Language XML
 Mark-Up Language XQUERY
 Mark-Up Language YAML
 Programming Language ABNF
 Programming Language ACTIONSCRIPT
 Programming Language ADA
 Programming Language APPLESCRIPT
 Programming Language ARDUINO
 Programming Language ASPECTJ
 Programming Language ASPX-CS
 Programming Language ASPX-VB
 Programming Language AWK
 Programming Language C
 Programming Language C#
 Programming Language CHARMCI
 Programming Language CLOJURE
 Programming Language COFFEESCRIPT
 Programming Language COMMON LISP
 Programming Language CSS
 Programming Language CUDA
 Programming Language CYTHON
 Programming Language D
 Programming Language DART
 Programming Language DELPHI
 Programming Language EASYTRIEVE
 Programming Language EC
 Programming Language ELIXIR
 Programming Language ELM
 Programming Language EMACSLISP
 Programming Language ERLANG
 Programming Language F#
 Programming Language FISH
 Programming Language FORTH
 Programming Language FORTRAN
 Programming Language FORTRANFIXED

32

 Programming Language GAP
 Programming Language GHERKIN
 Programming Language GLSL
 Programming Language GO
 Programming Language GRAPHVIZ
 Programming Language GROOVY
 Programming Language HASKELL
 Programming Language HAXE
 Programming Language IDL
 Programming Language JAVA
 Programming Language JAVA SERVER PAGE
 Programming Language JAVASCRIPT
 Programming Language KOTLIN
 Programming Language LESSCSS
 Programming Language LIQUID
 Programming Language LIVESCRIPT
 Programming Language LLVM
 Programming Language LOGOS
 Programming Language LUA
 Programming Language MATHEMATICA
 Programming Language MINISCRIPT
 Programming Language MODULA-2
 Programming Language NASM
 Programming Language NIX
 Programming Language OBJECTIVE-C
 Programming Language OBJECTIVE-J
 Programming Language OCAML
 Programming Language OPENEDGE ABL
 Programming Language PAWN
 Programming Language PERL
 Programming Language PHP
 Programming Language PL/PGSQL
 Programming Language POSTSCRIPT
 Programming Language POVRAY
 Programming Language PROLOG
 Programming Language PROPERTIES
 Programming Language PUPPET
 Programming Language PYTHON
 Programming Language REASONML
 Programming Language REBOL
 Programming Language REDCODE
 Programming Language REXX
 Programming Language RUBY
 Programming Language RUST
 Programming Language S
 Programming Language SASS
 Programming Language SCALA
 Programming Language SCILAB
 Programming Language SCSS
 Programming Language SLIM
 Programming Language SMALLTALK
 Programming Language SOLIDITY
 Programming Language STANDARD ML
 Programming Language SWIFT
 Programming Language SWIG
 Programming Language TADS 3

33

 Programming Language TCL
 Programming Language THRIFT
 Programming Language TRANSACT-SQL
 Programming Language TREETOP
 Programming Language TYPESCRIPT
 Programming Language VB.NET
 Programming Language VBSCRIPT
 Programming Language VCL
 Programming Language VIML
 Programming Language WEB IDL

Panel B: Bucket 2 – Auxiliary Languages

 Assembler/Compiler/Interpreter/Macro Processors GAS
 Assembler/Compiler/Interpreter/Macro Processors M4
 Assembler/Compiler/Interpreter/Macro Processors RAGEL IN RUBY HOST
 Configuration CMAKE
 Configuration INI
 Configuration MAKEFILE
 Configuration NGINX CONFIGURATION FILE
 Configuration NSIS
 Configuration SQUIDCONF
 Configuration TERRAFORM
 Configuration TOML
 Formatting GROFF
 IDE NETBEANS PROJECT
 Template Engine CHEETAH
 Template Engine GENSHI
 Template Engine PUG
 Template Engine SMARTY
 Template Engine VELOCITY
 Terminal/Batch ANT
 Terminal/Batch APACHECONF
 Terminal/Batch BASH
 Terminal/Batch BATCHFILE
 Terminal/Batch MAVEN
 Terminal/Batch POWERSHELL
 Terminal/Batch RPMSPEC
 Terminal/Batch SINGULARITY
 Terminal/Batch TCSH
 Translational GETTEXT CATALOG

Panel C: Bucket 3 - Data

 Data BNF
 Data DIFF
 Data DTD
 Data E-MAIL
 Data JSON
 Data PROTOCOL BUFFER
 Data RESTRUCTUREDTEXT
 Data TEXT ONLY
 Data XSLT

34

Table A2 Top 30 countries included for the global wage
Country

United States
China

Germany
India

United Kingdom
Brazil
Russia
France
Canada
Japan

South Korea
Netherlands

Spain
Poland

Australia
Sweden
Ukraine

Italy
Switzerland
Indonesia
Taiwan

Colombia
Argentina
Mexico
Norway
Belgium
Denmark
Finland
Vietnam
Austria

Note. The top 30 countries are sorted in ascending order by GitHub user shares, and they include 88% of GitHub
activity from 2020.

35

Table A3 The labor-market value of open source using languages in buckets 1 and 2

 Labor Supply Labor Demand
Wage: Low $1.23 Billion $2.60 Trillion
Wage: Global $4.18 Billion $8.84 Trillion
Wage: High $6.26 Billion $13.24 Trillion

Note. The high wage scenario is based on the US average wage and the low wage scenario is the Indian average wage
for programmers in 2020. The global wage is an average wage from the countries in Table A4. The estimates include
only languages from buckets 1 and 2 (see Table A1).

Table A4 The labor-market value of open source using languages in buckets 1, 2, and 3

 Labor Supply Labor Demand
Wage: Low $1.88 Billion $3.52 Trillion
Wage: Global $6.41 Billion $11.96 Trillion
Wage: High $9.59 Billion $17.91 Trillion

Note. The high wage scenario is based on the US average wage and the low wage scenario is the Indian average wage
for programmers in 2020 The global wage is an average wage from the countries in Table A4. The estimates include
only languages from buckets 1, 2, and 3 (see Table A1).

36

Table A5 Goods Basket – Equivalent Open Source and Proprietary Software
Open Source Software Proprietary Software

Apache Http Server Windows Server 2008
Audacity Adobe Audition
Blender Autodesk Maya
Elasticsearch Amazon Kendra
FileZilla SmartFTP
FreeCAD AutoCAD
GIMP Adobe Photoshop
GNU Octave MATLAB
GnuCash QuickBooks
KeePass 1Password
LibreOffice Microsoft Office Suite
MariaDB server Microsoft SQL Server
Metabase Tableau
MySQL Oracle MySQL
OpenVPN ExpressVPN
PSPP SPSS
Redis Redis Enterprise
TensorFlow TensorFlow Enterprise
VirtualBox VMware Workstation
VLC Media Player CyberLink PowerDVD

37

Table A6 The goods-market value of open source using languages in buckets 1, 2, and 3

 Goods-Demand Bucket 1 Goods-Demand Bucket 1-2 Goods Demand, Bucket 1-3
Wage: Low $177 Million $179 Million $242 Million
Wage: Global $177 Million $179 Million $242 Million
Wage: High $177 Million $179 Million $242 Million

Note. The high wage scenario is based on the US average wage and the low wage scenario is the Indian average wage
for programmers in 2020 The global wage is an average wage from the countries in Table A4. The estimates include
only languages from buckets 1, 2, and 3 (see Table A1).

38

Appendix A) Goods-Market Valuation Approach

As an alternate estimation method, instead of using the labor replacement cost, we use a goods

replacement value approach. We identify several OSS packages that have similar closed-source,

pecuniary alternatives and consider the costs if all commercial users of the free OSS had to replace

that software with a pecuniary alternative (similar to the calculations Greenstein and Nagle (2014)

and Murciano-Goroff et al. (2021) performed for web servers). We can then use this alternate value

of p, combined with the q values from above to estimate a goods replacement value of OSS. This

method builds on suggestions from Nordhaus (2006, p. 146) who says “…the price of market and

nonmarket goods and services should be imputed on the basis of the comparable market goods and

services.” We do not expect the estimates from the two methods to be similar. Quite the contrary,

the value of those two methods varies substantially since the latter goods-market approach assumes

a fixed price to sell a good multiple times and that fixed price is usually lower than the total value

estimated from recreating all packages on the labor side. The differential between these estimates

is essentially the result of a firm stepping in to reproduce the missing OSS packages and then

selling them for a pecuniary price rather than all firms needing to reproduce those packages from

scratch themselves.

With the goods market approach, the thought experiment is still that we live in a world

where OSS does not exist, but it has to be recreated via one firm that then charges a price for a

good that is currently free. To value OSS via the goods market approach, we created a basket of

equivalent substitute proprietary goods that are priced on the open market as a stand-in for an OSS

product. This methodology is consistent with that used in the prior literature (Greenstein and

Nagle, 2014; Murciano-Goroff et al., 2021) although both of those studies only used a single good

rather than a basket since they were focused on only one type of OSS (web servers). Since there is

no readily available database for proprietary equivalents of OSS, we conduct a search based on

subjective perception of popularity of OSS and we then search for pecuniary, closed-source

substitutes for them. The resulting basket of 20 OSS packages with proprietary substitutes is a

good representation of the diversity of OSS. The software ranges from media and design software

to statistical analysis programs, to database management and web server software.21

21 Table A5 shows the basket of OSS and their proprietary equivalents that we used. To create this basket, we looked
for proprietary software that had an OSS equivalent that was similar in its overall function and feature set, and sought
to identify pairs of software that, in aggregate, captured a broad and representative set of the types of OSS that exist.

39

Based on our OSS equivalent substitute proprietary goods basket we then obtain prices for

each proprietary software equivalent and we calculated the COCOMO labor market supply-side

value for each OSS product in the basket which we use as a proxy – for lack of the code from the

proprietary software – for the COCOMO labor supply side value of the proprietary software (e.g.,

the cost it would take to pay a programmer to write that proprietary software from scratch). We

then calculate the average COCOMO labor supply-side value of the basket, 𝑉!,1#23.4, and the

average price for the basket, 𝑃!,1#23.4.22 Since, we know the labor market supply-side value of all

OSS, 𝑉!"#$%&, we can setup the following equation and obtain the price of OSS, 𝑃! for the goods-

market for all OSS via a simple scaling transformation:

5"

6"
#$%&' =

5",)$*+,-
6",)$*+,-

𝑃! =
6"
#$%&'

6",)$*+,-
𝑃!,1#23.4 (4)

This results in the following goods-market supply-side value:

𝑉!7%%82 	= 𝑃! ∗ 1. (5)

We can then obtain the equivalent demand-side goods-market values as follows:

𝑉+7%%82 	= 𝑃! ∗ 𝑄. (6)

From the goods market side, we consider the equivalent price that a firm would charge if

it produced all existing widely used OSS and then sold it as a product to customers.

Table A6, column 3 shows that the value on the demand side ranges between $177 million

and $244 million across the different buckets independent of the country of origin from which

programmers are hired. Naturally, the goods-market value will be substantially smaller than the

labor demand value since this imaginary firm will make a profit at a comparatively low price by

producing the software once and then selling it to many customers. Further, while Greenstein and

Nagle (2014) as well as Murciano-Goroff et al. (2021) focus on one particular type of software

only (web servers), we attempt to expand on their approach to many goods. However, the data

limitations become a stronger constraint in this context which makes it inherently more difficult

22 We obtained the average price of the goods-market proprietary basket by using a 3 years lifespan of software, i.e.
1/(1-0.66), so the depreciation factor is 0.33. This is consistent with the United States Internal Revenue Service (IRS)
rules for depreciating software, which states “If you can depreciate the cost of computer software, use the straight line
method over a useful life of 36 months.” https://www.irs.gov/publications/p946#en_US_2022_publink1000107354.

40

to estimate the value through this approach while requiring substantially more assumptions.

Instead of a pure goods-market approach, this requires assistance from the labor-market approach

in terms of scaling for the estimate, which ultimately leads to a substantial underestimate of the

value of OSS. Further, the pricing strategy of the proprietary software counterparts is sensitive to

the market demand. With the goods-market approach extending to multiple goods, the strong

implicit assumption is that the market demands for our basket software and our sample OSS are

similar, so they lead to commensurate prices.

An alternative and even more simplified goods-market back-of-the-envelope calculation

that does not account for lines of code and relies on no scaling from the labor market approach

would simply be to multiply a price of a reference good with the usage. We can take the minimum,

average, and maximum prices of the basket of proprietary goods as captured in the reference price

vector p = (69.99, 1610.17, 5800) and simply multiply it with usage from the combined Census

and BuiltWith sample (Table 1). Based on those imputed proprietary price assumptions, the goods

market demand side value would range from $0.2 – $16.5 trillion (minimum price – maximum

price) with the mean price resulting in a value estimate of $4.5 trillion. However, while this

estimate creates slightly more variance than the labor market approach, it is inherently flawed by

simply assuming that the imputed prices are identical for each open source product based on the

reference price. We further think this very simple back-of-the-envelope is an orange to apples

comparison since the goods in our basket are fully functional, stand-alone software packages,

while the packages in the Census and BuiltWith datasets are comprised of application libraries,

which are generally smaller than such stand-alone packages.

Given all the complexities and assumptions one has to make due to lack of data for a goods-

market approach, we place stronger emphasis on the labor cost approach highlighted in the main

body but we include this method here for completeness.

