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Abstract

We present ONERULER,1 a multilingual benchmark designed to evaluate
long-context language models across 26 languages. ONERULER adapts the
English-only RULER benchmark (Hsieh et al., 2024) by including seven
synthetic tasks that test both retrieval and aggregation, including new vari-
ations of the “needle-in-a-haystack” task that allow for the possibility of a
nonexistent needle. We create ONERULER through a two-step process, first
writing English instructions for each task and then collaborating with native
speakers to translate them into 25 additional languages. Experiments with
both open-weight and closed LLMs reveal a widening performance gap
between low- and high-resource languages as context length increases from
8K to 128K tokens. Surprisingly, English is not the top-performing language
on long-context tasks (ranked 6th out of 26), with Polish emerging as the
top language. Our experiments also show that many LLMs (particularly
OpenAI’s o3-mini-high) incorrectly predict the absence of an answer, even
in high-resource languages. Finally, in cross-lingual scenarios where instruc-
tions and context appear in different languages, performance can fluctuate
by up to 20% depending on the instruction language. We hope the release
of ONERULER will facilitate future research into improving multilingual and
cross-lingual long-context training pipelines.

1 Introduction

Long-context language understanding is essential for real-world applications of LLMs
such as summarization and question answering. However, it is difficult and expensive to
conduct realistic evaluations for these tasks (Kim et al., 2024; Karpinska et al., 2024), which
motivates the use of synthetic benchmarks as proxy diagnostics. One popular example is
the “needle-in-a-haystack” (NIAH) task (Kamradt, 2023), in which a codeword is inserted
into a long document and subsequently queried for. The RULER benchmark (Hsieh et al.,
2024) contains several variants of NIAH (e.g., multiple needles and queries) as well as other
synthetic tasks to test aggregation and variable tracing. Unfortunately, RULER and other
similar benchmarks mostly test long-context understanding in either just English or in a
small number of languages (Bai et al., 2024; Hengle et al., 2024); as such, it remains unclear
how well LLMs perform in multilingual and cross-lingual long-context scenarios.

In this paper, we create ONERULER, a multilingual adaptation of RULER that includes seven
synthetic tasks (five variants of NIAH as well as two aggregation tasks) in 26 different
languages, including both low- and high- resource languages. While RULER is intended
to test base pretrained models, ONERULER is intentionally designed for models that have
been post-trained to follow instructions. Our data collection process involved first writing
instructions for all six tasks in English, and then hiring native speakers of the other 25
languages to translate these instructions. Unlike prior work, our NIAH instructions also
allow for the possibility of a nonexistent needle, where models get credit for identifying that

1Dataset and code available at https://github.com/mungg/OneRuler.
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    The special magic number for   
 "forest" is: 2978103.

    The special magic number for   
 "table" is: 9128733.

    The special magic number for   
 "coffee" is: 1530998.

    The special magic number for   
 "apple" is: 7888231.

    The special magic number for   
 "garden" is: 4718002.

    The special magic number for   
 "queen" is: 6445721.

    The special magic number for   
 "queen" is: 4532661.

    The special magic number for   
 "queen" is: 3011363.

    The special magic number for   
 "queen" is: 5023114.

Multi-query NIAH
    The special magic number for   

 "river" is: 8923741.

    The special magic number for   
 "plane" is: 4225096.

    The special magic number for   
 "medicine" is: 9576844.

    The special magic number for   
 "newspaper" is: 1564287.

    The special magic number for   
 "paper" is: 8440387.

    The special magic number for   
 "island" is: 5132256.

1. advise 2. candidate 3. wetland 4. nosy 5. cop-out 6.
violation 7. toffee 8. itch 9. slavery 10. sensitive 11. decency
12. joyous 13. borrowing 14. tow-truck 15. condition 16.
packet 17. mover 18. shortage 19. sister 20. toffee 21. shift
22. jumbled 23. toffee ... 1622. ale 1623. imported 1624.
clogs 1625. vegetarianism 1626. pastoral 1627. equable 1628.
armor 1629. impress 1630. mainland 1631. monument 1632.
poem 1633. grab-bag 1634. toffee 1635. wetland 1636.
depression 1637. financing 1638. loose 1639. outfit 1640. big
1641. pastoral 1642. caper 1643. drain

<answer>2978103</answer> <answer>1530998</answer> <answer>6445721, 4532661, 
3011363, 5023114</answer>

<answer>8440387, 5132256</answer> <answer>none</answer> <answer>1. wetland, 2. pastoral, 
...,  10. toffee</answer>

Figure 1: The seven tasks included in ONERULER. Spans highlighted in red are distractors,
while green spans contain answers that need to be produced for credit. CWE appears twice
(in easy and hard versions with differing frequencies) but shares the same format, hence
only one version is shown here. The NONE-NIAH task is a novel variant in which the
needle does not exist in the input context.

there is no answer. We show that this simple change dramatically lowers the performance
of models even on the vanilla NIAH task.

We benchmark four recently-released open-weight LLMs of different sizes, Qwen2.5 (7B and
72B), Llama 3.1 (8B), and Llama 3.3 (70B), as well as two closed-source LLMs (OpenAI’s o3-
mini-high and Google’s Gemini 1.5 Flash). Overall, Gemini 1.5 Flash is the strongest tested
model in aggregate, followed by Qwen2.5 72B; o3-mini-high, despite its powerful reasoning
capabilities, struggles badly on longer contexts. Interestingly, we observe a widening gap in
accuracy (averaged over all tasks and models) between low- and high-resource languages as
context length increases (Figure 6), suggesting a disparity between languages in long-context
pretraining and instruction tuning data.

Our experiments yield several surprising and counterintuitive results. For one, English is
not the highest-performing language across all models; in fact, it is the sixth-best language
out of the 26 when evaluated at long-context lengths (64k & 128k), while Polish takes the
top spot.2 Also surprising is the difficulty of even the vanilla NIAH task when we add
the potential of the needle not existing in the context, especially given the near-perfect
vanilla NIAH results observed in RULER and subsequent long-context LLM papers.3 In fact,
a large percentage of errors occur because models incorrectly decide that no needle exists.4
The most difficult task in ONERULER is the aggregation task, which requires listing the ten
most common words in a long list of words: interestingly, reasoning models (o3-mini-high
and DeepSeek-r1) “overthink” mightily on this task by producing thousands of reasoning
tokens. Finally, in the cross-lingual setting, where the instructions and context are in different
languages, we observe that the accuracy can change to 20% depending on the language of
instructions.

2Overall, the top-performing language families are Slavic, Romance, and Germanic, while Bantu
languages fare poorly despite having over 350M speakers.

3See e.g., Figure 2 of the Qwen2.5 paper (Qwen Team, 2025), which shows a now-familiar bright
green rectangle exhibiting perfect NIAH performance.

4This result is reminiscent of the added challenge posed by SQuAD 2.0’s unanswerable questions
upon its release (Rajpurkar et al., 2018).
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Figure 2: NIAH performance across models and languages by language resource group for
long-context tasks (64K and 128K). Gemini 1.5 Flash demonstrates the best long-context
performance, while English and Chinese are surprisingly not among the top five languages.

2 Creating the ONERULER benchmark

ONERULER spans seven tasks, all of which are directly adapted from RULER (Hsieh et al.,
2024). Five are variants of the needle-in-a-haystack retrieval task, differing in the number (and
existence) of needles and queries. The final two tasks both require aggregation: finding words
repeated frequently in a long list of words, with two different distractor word frequencies.
For each task, models are evaluated using four context lengths (8K, 32K, 64K, 128K) with
50 examples per language across 26 languages, resulting in a total of 5.2K prompts per
task per model. In this section, we outline our data curation pipeline and provide detailed
descriptions of each task.

Languages: We include 26 diverse languages: Chinese (zh), Czech (cs), Danish (da), Dutch
(nl), English (en), Finnish (fi), French (fr), German (de), Hindi (hi), Hungarian (hu), Italian
(it), Japanese (ja), Korean (ko), Norwegian (no), Persian (fa), Polish (pl), Portuguese (pt),
Russian (ru), Serbian (sr), Sesotho (st), Spanish (es), Swahili (sw), Swedish (sv), Tamil (ta),
Ukrainian (uk), and Vietnamese (vi). These languages provide a solid representation of
different language families and writing systems (e.g., Latin, Cyrillic, logographic)5 and
exhibit a range of typological features, such as variations in word order and morphological
complexity. For fair comparison in retrieval and cross-lingual tasks, we also translated a
consistent set of 100 vocabulary words into all 26 languages.

High vs. low resource languages: Many of our experiments present comparisons between
high-resource and low-resource languages. To define what constitutes a low-resource language,
we rely on the official article count of Wikipedia articles per language (Joshi et al., 2020;
Ranathunga & de Silva, 2022),6 defining a minimum threshold of 250K articles for a language
to be considered high resource. Per this definition, we identify four low-resource languages
for our study: Hindi, Sesotho, Swahili, and Tamil.

Annotator instructions: We hired 17 annotators from Upwork7 and recruited 6 volunteers
to translate the English instructions and a list of 100 vocabulary words8 into 25 languages.
All annotators were native speakers of the target languages with strong English proficiency.9
They were provided with the context about the task and its objectives to ensure high-quality
translations. Annotators were instructed to translate and localize the instructions to make

5Details of language family and script for each language are in §A.
6https://meta.wikimedia.org/wiki/List_of_Wikipedias
7https://www.upwork.com/
8To prevent homonyms from being translated as different words, we provided descriptions for

each word generated using the GPT-4o mini model.
9Two annotators were native speakers of multiple languages and translated both of those languages

(Polish & Japanese, Russian & Ukrainian).
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Single NIAH Template

Please read and memorize the text below. I will ask you about it later
<text>
[CONTEXT]
The special magic number for "[WORD 1]"" is: [NUMBER 1].
[CONTEXT]
</text>

<question>What special magic numbers associated with "[WORD 1]" are mentioned in
the provided text? Please list all that apply. If no such numbers exist, please
answer "none".
</question>

Please provide your answer in the following format:
<answer>List all numbers here</answer>

Figure 3: Prompt template for our “Single NIAH” task with one magic number. The bolded
sentence introduces the possibility of no answer existing, which we show significantly hurts
model accuracies, even for this Single NIAH task where the answer always exists.

the prompts sound as natural as possible.10 After completing the initial translations, each
annotator reviewed the full set of instructions and made any necessary adjustments. All
annotators were paid $25 USD per language to translate instructions and vocabulary words.
The total cost of obtaining these translations was $492 USD.

Tokenization: It is difficult to conduct a fair comparison across models because they
use different tokenizers: for example, one of our Tamil documents is 42,124 tokens using
Gemini’s tokenizer and 103,990 tokens using Qwen’s tokenizer. This discrepancy presents us
with a choice of either (1) ensuring that the input text shown to each model is identical, even
if they have differing token counts across models; or (2) ensuring that the total number of
tokens shown to each model is identical, even if this means some models see more text than
others. We decide to report our main results using the second setting to focus specifically
on the effect of sequence length on model performance. However, we also report results
of experiments run under the first configuration in §D, noting that our conclusions about
relative model rankings and language-specific performance do not change significantly.

2.1 Retrieval tasks

We propose five retrieval tasks to assess the model’s ability to extract information from
extended contexts. Each task is based on the needle-in-a-haystack paradigm (Kamradt,
2023), where a target sentence is embedded within a longer text and the model must retrieve
specific details. Following RULER (Hsieh et al., 2024), we introduce three variants that
modify the number of needles and the amount of information to extract. However, we
deviate by reformatting all tasks for instruction-following models (instead of base pretrained
models) and also by introducing the possibility of the answer not existing. For each task,
we vary the position of the needle between prompts and pay special attention to injecting
the target sentence cleanly, respecting the spacing and punctuation conventions of the
given language. To create plausible contexts for needle injection, we collect and clean 26
open-domain non-copyrighted books, one per language.11 Below are descriptions of each
task:

10We pay special attention to the grammar of each language to ensure that any swap of variables
will not result in ungrammatical sentences.

11Each book was processed to remove the front and back matter. See Table 4 for the complete list of
books in the dataset.
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• Single-NIAH (S-NIAH): This task follows the classic needle-in-a-haystack frame-
work, where a single target sentence (the needle) is embedded in a book-length
context. The model must locate this sentence and retrieve the specific number
(“value”) associated with the keyword (“key”). In S-NIAH, only one needle is
present with no distractors. Unlike NIAH configurations in prior work, our prompt
template (Figure 3) allows for the possibility of a nonexistent needle, although in
S-NIAH the needle always exists. This wording is present in each of our NIAH
variants, and we ablate its impact on performance in §4.

• Multi-key NIAH (MK-NIAH): This variant embeds multiple needles with different
keys into the context, where only one needle contains the correct key. Specifically,
we insert 4 needles with unique keys, where 3 serve as distractors (Figure 11). The
model must identify the needle containing the target key and return its correspond-
ing value.

• Multi-value NIAH (MV-NIAH): In contrast to MK-NIAH, this variant inserts 4
needles that share the same key but have different values (Figure 12). To successfully
complete the task, the model must retrieve all four values associated with the
common key.

• Multi-query NIAH (MQ-NIAH): While sharing the same needle structure as MK-
NIAH, this variant presents multiple queries within each question (Figure 13). The
model’s response is considered correct only if it accurately retrieves all required
information for every query. This tests the model’s ability to maintain context
awareness across multiple retrieval operations.

• None-NIAH (NONE-NIAH): This novel variant tests a model’s ability to recognize
when no correct answer exists. The context contains four embedded needles that
all function as distractors. This challenges models to acknowledge the absence of a
correct response rather than forcing an incorrect selection.

2.2 Aggregation tasks

Unlike our retrieval tasks, which focus on extracting specific information from large and
irrelevant contexts, aggregation tasks require models to synthesize information across the
entire context to generate accurate responses. We adapt RULER’s Common Word Extraction
(CWE) task, which requires identifying the n most frequent words from a context. We
extracted word lists for 26 languages from GitHub repositories (§3) dedicated to language
wordlists, using part-of-speech tagging to identify nouns, adjectives, and verbs. Our two
CWE settings are:

• CWE-easy: The most frequent words in the list appear exactly 30 times each, while
other distractor words appear 3 times each. This replicates the parameters from
RULER, chosen because the task proves easy in short context settings but difficult in
longer contexts.

• CWE-hard: We also examine a more difficult setting that changes only the word
frequencies. In this setting, the most frequent words appear 20 times each while
distractor words appear 10 times each. This setting challenges models in both short
and long context settings because of the reduced frequency gap between answer
words and distractors.

3 Experiments

We evaluate 7 different models on ONERULER across four context lengths (Figure 5), reporting
micro-accuracy across models, languages, and tasks on the subset of returned responses.12

While most models perform near perfectly on vanilla NIAH for English, accuracies on low
resource languages and those that use non-Latin scripts is drastically lower, especially at

12We discard refusals and instances where reasoning models run out of generation tokens before
returning an answer.
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Figure 4: Micro-accuracy across context-lengths and languages for all NIAH tasks. We find
that Romance languages perform the best across all context lengths, along with languages
like Polish and Russian. All models struggle on languages that use non-Latin or Cyrillic
scripts. Gemini-1.5 Flash does surprisingly well on Sesotho in comparison to other models.

longer context lengths. Only Gemini-1.5 and Qwen2.5 72B perform well on NIAH tasks at
long contexts (128K) on aggregate, but they still have room for improvement especially on
low resource languages. Our CWE aggregation tasks are difficult for all models, especially
the CWE-hard task: none of the test models achieves an accuracy above 1%.

Model # Param Ctx len # Vocab

� Gemini 1.5 Flash 1M 256K
� o3-mini-high 200K 200K

� Deepseek-R1 685B 128K 129k
� Llama3.3 70B 128K 128K
� Llama3.1 8B 128K 128K
� Qwen2.5-72B 72B 128K 152K
� Qwen2.5-7B 7B 128K 152K

Figure 5: Closed-source (�) and open-weights
(�) models used in the experiments. We re-
port models’ parameters count, claimed con-
text length, and vocabulary size.

Model selection: We evaluate 5 open-
source models: (DeepSeek-AI, 2025), Llama
3.3-70B (Llama Team, 2024), Llama 3.1-
7B (Llama Team, 2024), Qwen2.5 (Qwen
Team, 2025) in 7B and 72B variants), and
Deepseek-R1,13 the latter only for an anal-
ysis experiment in English. We also com-
pare to 2 closed-source models: Gemini 1.5
Flash and o3-mini-high. Notably, Qwen was
trained on 3 trillion tokens of multilingual
data with a particular focus on English
and Chinese. We evaluate Llama and Qwen
with vLLM (Kwon et al., 2023) and we use
up to 4 A100 GPUs for running evaluation.
Model specifications can be found in Fig-
ure 5 and detailed comparisons are provided in §B.1.

3.1 Results

Figure 2b shows that ONERULER accuracy aggregated over all NIAH tasks and context
lengths is (unsurprisingly) higher for high-resource languages than low-resource languages.
We do see some correlation between model size and aggregate accuracy on low-resource lan-
guages, with the difference in accuracy between high and low resource languages shrinking
as model size increases (Figure 6a). We highlight several more interesting findings below:

13Although Deepseek-R1 is an open-source model, it requires 16 A100-80GB GPUs for inference,
which exceeds our available resources. Therefore, we utilized the Fireworks API (https://fireworks.
ai/) for evaluation. Due to cost constraints, we limited our Deepseek-R1 experiments to English.
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Figure 6: (A) Micro-accuracy of all models on the S-NIAH task for the top 5 and bottom 5
languages by Wikipedia size. As context length increases, the performance gap between
high-resource and low-resource languages increases. (B) The average accuracy of all models
on the S-NIAH task, with and without the inclusion of the “None” answer in the prompt.
Models are much more likely to produce errors at long contexts when they think there is a
chance of the needle not existing.

The gap between high- and low-resource languages widens as context size increases: As
context size increases from 8K to 128K, Figure 6a shows that aggregate ONERULER accuracy
between the top five and bottom five languages by Wikipedia size widens considerably.
Specifically, the difference in aggregate accuracy increases from 11% with a context length of
8K to 34% with context length of 128K. We speculate that the widening gap might be due to
a lack of low-resource data used during long context extension (Gao et al., 2024; Lenz et al.,
2025; Llama Team, 2024): it is possible that long-context capabilities do not easily transfer
across languages.

Low-resource languages are challenging even at short contexts: All models demonstrate
strong aggregate ONERULER accuracy with a context length of 8K, as shown in Figure 2a.
However, they still struggle with low-resource languages like Swahili and Sesotho. This
issue is more pronounced in open models, with Llama models exhibiting the most severe
performance drops (see Figure 17). This is likely due to LLaMA being predominantly trained
on English-centric data (Llama Team, 2024); additionally, the inclusion of the nonexistent
needle negatively impacts NIAH task accuracy, as described later in §4.

English and Chinese are not the highest-performing languages: English is the dominant
pretraining language for most models, with Qwen also emphasizing Chinese in their data
mixture, and so we might expect these to be the top-performing models on ONERULER,
especially at longer contexts. However, at context lengths of 64K and 128K, we unexpectedly
observe that Polish is the top performer on NIAH tasks with an average accuracy of 88%
across all models, as depicted in Figure 2b. English is only the 6th best language out of the 26,
with an average NIAH accuracy of 83.9%. More shockingly, Chinese is the 4th worst language
on ONERULER, with an average NIAH accuracy of 62.1%. While there seems to be some
correlation between resource availability and performance (all 4 low-resource languages
rank in the bottom 6 languages), it remains unclear why some high-resource languages like
Chinese fare worse than anticipated. In contrast, the top 10 positions are occupied by Slavic,
Romance, and Germanic languages, all of which have substantial resources, as indicated by
the number of Wikipedia articles (Figure 9). Notably, none of these languages rank among
the bottom 10, with Czech performing the worst among them.

Individual model performance varies: Figure 4 displays the aggregate accuracy of dif-
ferent models on all ONERULER NIAH tasks as a function of language and context size.
While Gemini 1.5 Flash outperforms all other models across all context lengths, we observe
that Qwen2.5 72B is consistently better than LLama 3.3 70B across all context lengths, with
notably higher performance in the 64k and 128k context-length settings. Also interesting is
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the low average performance of o3-mini-high: it achieves only 67% accuracy on English at a
context length of 128K, compared to 92% on Polish and 89% on Ukrainian.

OneRuler accuracy by task vs. language group
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Figure 7: The performance of models on
each task, with bars representing English,
all other high-resource languages, and low-
resource languages. We see a large perfor-
mance gap between resource groups on all
tasks. We note that no model can reliably
perform the CWE_hard task.

CWE is much more challenging than NIAH:
Compared to the NIAH tasks, on which all
models consistently achieve above 80% accu-
racy on high-resource languages, the CWE
task presents a substantially greater chal-
lenge. As seen in Figure 7, average English
accuracy over all models is only 36.4% for
the CWE_easy task14. The CWE_hard set-
ting proves unsolvable with nearly 0% accu-
racy across all models,15 indicating that LLMs
have significant room for improvement on
long-context aggregation tasks.

4 Analysis

In this section, we dig into some of the sur-
prising results we observe above, seeking to
understand what properties of the tasks in
ONERULER most trouble the models we tested
(e.g., nonexistent needles, “overthinking” in
reasoning models, language-specific issues). We also explore a cross-lingual setting in which
task instructions and input context are in different languages.

The option to answer none makes NIAH significantly harder: Since tasks like None-
NIAH inherently lack valid answers, we explicitly provided an option for models to respond
accordingly by including the instruction: If no such number exists, please answer ‘none’ (Fig-
ure 3). This simple addition made our NIAH tasks much harder than those in RULER:
Figure 6b shows that adding this sentence drops aggregate NIAH accuracy by 32% at a
context length of 128K. We observe several models, and in particular o3-mini-high as shown
in Figure 8b, have a common failure mode of responding none when the needle actually
exists in the context. We suspect the inclusion of this sentence may make models overly
cautious to responding, and/or many of these models include NIAH data (without the none
option) during post-training.

Reasoning models behave strangely on NIAH tasks: Interestingly, we observe that o3-
mini-high produces significantly more reasoning tokens for its incorrect answers than
for its correct answers, as shown in §18, suggesting that its reasoning behavior for these
simple retrieval tasks is highly inefficient. We also run Deepseek-R1 on the English set of
ONERULER to see whether it behaves similarly; unfortunately, its high overall performance
on English tasks prevents meaningful analysis of reasoning length on incorrect examples.
Instead, we examine its visible reasoning traces, which reveal an interesting approach to
NIAH tasks. Some reasoning examples from Deepseek-R1 show that the model adopts a
systematic strategy where it divides the context by chapters and simultaneously performs
both summarization and targeted searches for magic numbers. See §C for a detailed example.

Reasoning models “overthink” on simple aggregation tasks: On both CWE tasks, o3-
mini-high fails to generate answers within its 10K output token limit for almost every
sample across all languages and context sizes.16 Notably, this overthinking persists even

14We note that 4 languages (ko, zh, st, sw) have contexts shorter than 128k tokens because the
required number of words exceeded our available vocabulary size.

15We also examine partial accuracy in §C.3, showing that models can identify some of the most
frequent words right but not all.

16All model configurations reported in §B.1.
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Figure 8: (A) The cross-lingual average accuracy of En, Ko, an Pl on NIAH tasks at each
context length. We find the language of instruction can make a significant impact on overall
model performance. (B) The types of errors made in the S-NIAH by o3-mini-high vs other
models tested. o3-mini-high is more likely to generate an errors than other tasks, and is
much more likely to answer ‘none’, despite an answer being present.

with smaller contexts, with reasoning outputs sometimes exceeding the length of the given
context itself! This is not just unique to o3-mini-high: we similarly observe that a significant
number of Deepseek R1’s responses in the CWE_hard task also terminate before an answer
is provided as seen in §19. As a whole, these results suggest that reasoning models should
be better optimized for tasks requiring aggregating information across long contexts.

Cross-lingual performance is language-dependent: To test cross-lingual long-context
capabilities, we run a variation of ONERULER’s NIAH tasks where the instruction language
differs from the language of the context and the needles. We run experiments on English,
Polish, and Korean (Figure 8a), finding that the choice of instruction language significantly
impacts performance. Given English contexts, switching the instruction language to a lower
resource language such as Korean decreases the average NIAH accuracy across all models
at all context lengths; for example at 64K context-length performance drops from 91% to
71%. However, if the context is in Korean, switching the instructions to English or Polish
improves performance: for example, at a context length of 128K, average accuracy increases
from 61% to 78% when instructions are switched from Korean to English. Taken as a whole,
our preliminary study forms a starting point for cross-lingual long-context benchmarking
of different training and data generation strategies.

Analysis of common errors: For the S-NIAH, models frequently answer ‘none’ (see
Figure 8b). Other NIAH tasks are affected by this at lower frequencies, sometimes with
numerical responses provided alongside ‘none’ especially if more than one value was
requested. In multi-key and none NIAH, models often return distractors. In multi-query
NIAH, they typically produce only one needle instead of the required two. Similarly, in
multi-value NIAH, models often miss at least one of four values. Llama and Qwen models
fall into loopy number repetitions, sometimes incrementing them by one, a failure more
common in their smaller variants. In CWE tasks, models frequently return only a subset
of the top 10 words, with accuracy declining as context length increases (see Figure 21).
Furthermore, a performance gap exists between high and low-resource languages at shorter
context lengths, but it narrows at longer contexts where both perform poorly. Finally, we
observe models either hallucinating answers, reformulating the task, or, in the case of
Qwen2.5 7B and LLaMa 3.1 8B, mixing languages almost exclusively for Polish (see Table 1).
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LANG TASK MODEL EXAMPLE COMMENT

DE NIAH
Single

Qwen2.5 7B <Antwort> 1600 </Antwort> Die Zahl 1600 wird im Text erwähnt in Bezug auf die Höhe
des Ortes, an dem Joachim Ziemßen lebt: "Sechzehnhundert Meter über dem Meer".
Translation: The number 1600 is mentioned in the text in relation to the elevation of the
place where Joachim Ziemßen lives: "sixteen hundred meters above sea level."

Used context instead of needle to
create answer.

ZH NIAH
Single

o3-mini (high) <答案>2</答案> 解析：在文本中有一道：“我史一. . . . . .本都着字是‘吃人’！上着多
字. . . . . . ”里“”上所的容是“吃人”字，因此“”相的魔法字就是“2”。
Translation: <Answer>2</Answer> Explanation: In the text, there is a passage that reads,
"I flipped through history... the entire book was filled with two characters: ’eat people’! The
book contained so many words..." Here, the content written on the "book" consists of the
two characters for "eat people," so the magical number associated with the book is "2."

Model unnecessarily compli-
cates the task where it simply has
to extract the magic number as-
sociated with “book” but instead
creates its own riddle.

PL NIAH None Qwen2.5 7B <odpowiedź> Brak </od프로그래머:文字示不正常，可能是。保使用UTF-8打文件。
Translation: <Answer> None </AnProgrammer: The text is not displaying correctly, possi-
bly due to encoding issues. Please open the file using UTF-8 encoding.

Model answers then starts pro-
ducing Korean and switches into
Chinese.

JA CWE easy o3-mini (high) <答え> 在る; 有る, 議室, けがらわしい, 組合せ, もらう, 出る, 社, 連休, 年, 物 </
答え>
※なお、こちらの回答は投稿の全語リストを機械的に頻度解析した結果（想的な解析例）に基づく
ものであり、際のデータ理結果と異なる可能性があります。
Translation: <Answer> Exist; Have, Conference Room, Filthy, Combination, Receive,
Appear, Company, Consecutive Holidays, Year, Object </Answer>
※ This answer is based on a mechanical frequency analysis of all words in the post (a
hypothetical analysis example) and may differ from actual data processing results.

Model produces a hypothetical
answer.

EN CWE easy Llama 3.1 8B <Answer> 1. the 2. and 3. of 4. to 5. a 6. in 7. that 8. is 9. for 10. with </Answer> Model returns an answer irrel-
evant to the context, listing 10
likely high-frequency words.

JA CWE hard Gemini 1.5 Flash <答え> 1. 言葉遣い 2. 修 3. 俳優 4. 俳優 5. 俳優 6. 俳優 7. 俳優 8. 俳優 9. 俳優 10.
俳優 上記のリストには、「俳優」 という語が繰り返し出現しているため、出現頻度が最も高い語
として 「俳優」 を10回げました。リストに 「俳優」 という語が含まれていない場合は、出現頻度が
最も高い語を10個列することはできません。元のリストに誤りがあるか、追加情報が必要です。
</答え>
Translation: <Answer> 1. Language usage 2. Training 3. Actor 4. Actor 5. Actor 6. Actor 7.
Actor 8. Actor 9. Actor 10. Actor In the list above, the word “actor” appears repeatedly;
therefore, it has been listed 10 times as the most frequent word. If the word “actor” were
not included in the list, it would not be possible to enumerate the 10 most frequent words.
This suggests that there may be an error in the original list or that additional information is
needed.

Model seemingly creates its own
rules, focusing in on the word
‘actor’ and claiming that ‘actor’
must appear in the original list.

Table 1: Example failures for both NIAH and CWE tasks. Other common cases include
returning incomplete answer (missing values), partially correct answer (some CWE words
are incorrect), or ‘none’ where the answer exists.

5 Related work

Evaluation of multilingual long-context LLMs: Most related to our work are prior
efforts to benchmark multilingual long-context language models. LongBench (Bai et al.,
2024) includes both synthetic and natural tasks in English and Chinese, while Tanzer et al.
(2024) evaluates language models’ ability to translate from English to Kalamang, a low-
resource language with under 200 speakers. There are also several multilingual variants of
NIAH (Hengle et al., 2024; Agrawal et al., 2024; Huang et al., 2025); however, ONERULER
includes many more languages than these efforts, in addition to the none answer type and
evaluation of reasoning models.

Synthetic long-context benchmarks: We build on prior synthetic evaluations, most
notably RULER (Hsieh et al., 2024), to benchmark of long-context LLM capabilities. Most of
these are largely based on the “needle-in-a-haystack” framework (Kamradt, 2023), which
has gained popularity due to its ease of evaluation and modification (Yuan et al., 2024; Xu
et al., 2024; Song et al., 2025; Laban et al., 2024). Outside of NIAH, the recent LongReason
benchmark (Ling et al., 2025) expands the context of short-context reasoning questions to
evaluate long-context capabilities.

Realistic long-context benchmarks: While synthetic tasks are cheap and easy to control,
they also do not test real-world tasks; as such, other benchmarks (mostly in English) focus
on specific tasks such as QA (An et al., 2024; Levy et al., 2024), summarization (Kim et al.,
2024) or a suite of many realistic tasks (Shaham et al., 2023; Dong et al., 2023; Li et al., 2024;
Lee et al., 2024; Yen et al., 2025). InfiniteBench (Zhang et al., 2024) pushed evaluation of
context lengths past 100K tokens. Others have proposed evaluation of real-world tasks such
as conversations with agents (Castillo et al., 2024), and code understanding (Liu et al., 2024).
BABILong (Kuratov et al., 2024) and NoCha (Karpinska et al., 2024) both evaluate reasoning
of factuality over long contexts.
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6 Conclusion

We introduce ONERULER, a novel multilingual benchmark, to evaluate long-context under-
standing across 26 languages, which features five variations of the needle-in-a-haystack task
(including the challenging nonexistent needle variant) and two aggregation tasks. ONERULER
shows that disparities in performance between high-resource and low-resource languages
increase as context-length increases. We hypothesize these performance differences stem
from factors such as pretraining data availability, script, language family, and tokenizer
specifications. Including a “None” option in the prompt sharply decreases model perfor-
mance on NIAH, and models fail on the harder variation of the CWE aggregation task. We
also note that some languages, like English and Chinese, under-perform expectations, and
that reasoning models exhibit a propensity to “overthink” in seemingly straightforward
tasks. By releasing ONERULER, we aim to spur the development of training techniques that
bridge the resource gap across languages and improve handling of extended contexts.

References
Ameeta Agrawal, Andy Dang, Sina Bagheri Nezhad, Rhitabrat Pokharel, and Russell Schein-

berg. Evaluating multilingual long-context models for retrieval and reasoning. In Jonne
Sälevä and Abraham Owodunni (eds.), Proceedings of the Fourth Workshop on Multilingual
Representation Learning (MRL 2024), pp. 216–231, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.mrl-1.
18.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng
Kong, and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 14388–14411, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.776. URL https://aclanthology.org/2024.
acl-long.776/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao
Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench:
A bilingual, multitask benchmark for long context understanding. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3119–3137, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL https://aclanthology.org/2024.
acl-long.172.

David Castillo, Joseph Davidson, Finlay Gray, José Solorzano, and Marek Rosa. In-
troducing goodai ltm benchmark. Blog, 2024. URL https://www.goodai.com/
introducing-goodai-ltm-benchmark/.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Bamboo: A com-
prehensive benchmark for evaluating long text modeling capacities of large language
models. In International Conference on Language Resources and Evaluation, 2023. URL
https://api.semanticscholar.org/CorpusID:262459341.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context
language models (effectively). arXiv preprint arXiv:2410.02660, 2024.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context, December 2024. URL http://arxiv.org/abs/2403.05530. arXiv:2403.05530
[cs].

Amey Hengle, Prasoon Bajpai, Soham Dan, and Tanmoy Chakraborty. Multilingual needle
in a haystack: Investigating long-context behavior of multilingual large language models,
2024. URL https://arxiv.org/abs/2408.10151.

11

https://aclanthology.org/2024.mrl-1.18
https://aclanthology.org/2024.mrl-1.18
https://aclanthology.org/2024.acl-long.776/
https://aclanthology.org/2024.acl-long.776/
https://aclanthology.org/2024.acl-long.172
https://aclanthology.org/2024.acl-long.172
https://www.goodai.com/introducing-goodai-ltm-benchmark/
https://www.goodai.com/introducing-goodai-ltm-benchmark/
https://arxiv.org/abs/2501.12948
https://api.semanticscholar.org/CorpusID:262459341
http://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2408.10151


Preprint. Under review.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia,
and Boris Ginsburg. RULER: What’s the real context size of your long-context language
models? In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=kIoBbc76Sy.

Xu Huang, Wenhao Zhu, Hanxu Hu, Conghui He, Lei Li, Shujian Huang, and Fei Yuan.
Benchmax: A comprehensive multilingual evaluation suite for large language models,
2025. URL https://arxiv.org/abs/2502.07346.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The
state and fate of linguistic diversity and inclusion in the NLP world. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 6282–6293, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.560. URL
https://aclanthology.org/2020.acl-main.560/.

Gregory Kamradt. Needle in a haystack - pressure testing llms. GitHub Repository, 2023.
URL https://github.com/gkamradt/LLMTestNeedleInAHaystack/tree/main.

Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya Goyal, and Mohit Iyyer. One thousand
and one pairs: A “novel” challenge for long-context language models. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 17048–17085, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.948.
URL https://aclanthology.org/2024.emnlp-main.948/.

Yekyung Kim, Yapei Chang, Marzena Karpinska, Aparna Garimella, Varun Manjunatha,
Kyle Lo, Tanya Goyal, and Mohit Iyyer. FABLES: Evaluating faithfulness and content
selection in book-length summarization. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=YfHxQSoaWU.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Igorevich Sorokin, Artyom
Sorokin, and Mikhail Burtsev. BABILong: Testing the limits of LLMs with long context
reasoning-in-a-haystack. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
u7m2CG84BQ.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Haotong Zhang, and Ion Stoica. Efficient memory management for
large language model serving with pagedattention. Proceedings of the 29th Symposium
on Operating Systems Principles, 2023. URL https://api.semanticscholar.org/CorpusID:
261697361.

Philippe Laban, A. R. Fabbri, Caiming Xiong, and Chien-Sheng Wu. Summary of a haystack:
A challenge to long-context llms and rag systems. In Conference on Empirical Methods
in Natural Language Processing, 2024. URL https://api.semanticscholar.org/CorpusID:
270869972.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael
Boratko, Yi Luan, Sébastien M. R. Arnold, Vincent Perot, Siddharth Dalmia, Hexiang Hu,
Xudong Lin, Panupong Pasupat, Aida Amini, Jeremy R. Cole, Sebastian Riedel, Iftekhar
Naim, Ming-Wei Chang, and Kelvin Guu. Can long-context language models subsume
retrieval, rag, sql, and more? ArXiv, abs/2406.13121, 2024. URL https://arxiv.org/abs/
2406.13121.

Barak Lenz, Opher Lieber, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg,
Ben Aviram, Chen Almagor, Clara Fridman, Dan Padnos, Daniel Gissin, Daniel Jannai,
Dor Muhlgay, Dor Zimberg, Edden M. Gerber, Elad Dolev, Eran Krakovsky, Erez Safahi,
Erez Schwartz, Gal Cohen, Gal Shachaf, Haim Rozenblum, Hofit Bata, Ido Blass, Inbal
Magar, Itay Dalmedigos, Jhonathan Osin, Julie Fadlon, Maria Rozman, Matan Danos,
Michael Gokhman, Mor Zusman, Naama Gidron, Nir Ratner, Noam Gat, Noam Rozen,
Oded Fried, Ohad Leshno, Omer Antverg, Omri Abend, Or Dagan, Orit Cohavi, Raz Alon,

12

https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://arxiv.org/abs/2502.07346
https://aclanthology.org/2020.acl-main.560/
https://github.com/gkamradt/LLMTestNeedleInAHaystack/tree/main
https://aclanthology.org/2024.emnlp-main.948/
https://openreview.net/forum?id=YfHxQSoaWU
https://openreview.net/forum?id=u7m2CG84BQ
https://openreview.net/forum?id=u7m2CG84BQ
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:270869972
https://api.semanticscholar.org/CorpusID:270869972
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2406.13121


Preprint. Under review.

Ro’i Belson, Roi Cohen, Rom Gilad, Roman Glozman, Shahar Lev, Shai Shalev-Shwartz,
Shaked Haim Meirom, Tal Delbari, Tal Ness, Tomer Asida, Tom Ben Gal, Tom Braude,
Uriya Pumerantz, Josh Cohen, Yonatan Belinkov, Yuval Globerson, Yuval Peleg Levy, and
Yoav Shoham. Jamba: Hybrid transformer-mamba language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=JFPaD7lpBD.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input
length on the reasoning performance of large language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15339–15353, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
818. URL https://aclanthology.org/2024.acl-long.818/.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. LooGLE: Can long-context
language models understand long contexts? In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 16304–16333, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.859. URL
https://aclanthology.org/2024.acl-long.859/.

Zhan Ling, Kang Liu, Kai Yan, Yifan Yang, Weijian Lin, Ting-Han Fan, Lingfeng Shen,
Zhengyin Du, and Jiecao Chen. Longreason: A synthetic long-context reasoning bench-
mark via context expansion, 2025. URL https://arxiv.org/abs/2501.15089.

Jiawei Liu, Jia Le Tian, Vijay Daita, Yuxiang Wei, Yifeng Ding, Yuhan Katherine Wang, Jun
Yang, and LINGMING ZHANG. RepoQA: Evaluating long context code understanding.
In First Workshop on Long-Context Foundation Models @ ICML 2024, 2024. URL https:
//openreview.net/forum?id=hK9YSrFuGf.

Llama Team. The Llama 3 Herd of Models, November 2024. URL http://arxiv.org/abs/
2407.21783. arXiv:2407.21783 [cs].

OpenAI. Openai o3-mini system card, January 2025. URL https://cdn.openai.com/
o3-mini-system-card-feb10.pdf. Accessed: 2025-02-15.

Qwen Team. Qwen2.5 Technical Report, January 2025. URL http://arxiv.org/abs/2412.
15115. arXiv:2412.15115 [cs].

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don‘t know: Unanswerable
questions for SQuAD. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
784–789, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-2124. URL https://aclanthology.org/P18-2124/.

Surangika Ranathunga and Nisansa de Silva. Some languages are more equal than others:
Probing deeper into the linguistic disparity in the NLP world. In Yulan He, Heng Ji,
Sujian Li, Yang Liu, and Chua-Hui Chang (eds.), Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 823–848, Online
only, November 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
aacl-main.62. URL https://aclanthology.org/2022.aacl-main.62/.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-
shot benchmark for long text understanding. In Conference on Empirical Methods in Natural
Language Processing, 2023. URL https://api.semanticscholar.org/CorpusID:258841877.

Mingyang Song, Mao Zheng, and Xuan Luo. Counting-stars: A multi-evidence, position-
aware, and scalable benchmark for evaluating long-context large language models. In
Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eu-
genio, and Steven Schockaert (eds.), Proceedings of the 31st International Conference on
Computational Linguistics, pp. 3753–3763, Abu Dhabi, UAE, January 2025. Association for
Computational Linguistics. URL https://aclanthology.org/2025.coling-main.253/.

13

https://openreview.net/forum?id=JFPaD7lpBD
https://openreview.net/forum?id=JFPaD7lpBD
https://aclanthology.org/2024.acl-long.818/
https://aclanthology.org/2024.acl-long.859/
https://arxiv.org/abs/2501.15089
https://openreview.net/forum?id=hK9YSrFuGf
https://openreview.net/forum?id=hK9YSrFuGf
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
https://aclanthology.org/P18-2124/
https://aclanthology.org/2022.aacl-main.62/
https://api.semanticscholar.org/CorpusID:258841877
https://aclanthology.org/2025.coling-main.253/


Preprint. Under review.

Garrett Tanzer, Mirac Suzgun, Eline Visser, Dan Jurafsky, and Luke Melas-Kyriazi. A
benchmark for learning to translate a new language from one grammar book. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=tbVWug9f2h.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Hugging-
face’s transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771,
2019. URL http://arxiv.org/abs/1910.03771.

Xiaoyue Xu, Qinyuan Ye, and Xiang Ren. Stress-testing long-context language models
with lifelong ICL and task haystack. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/
forum?id=j6PTT6NB2O.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe
Wasserblat, and Danqi Chen. HELMET: How to evaluate long-context models effectively
and thoroughly. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=293V3bJbmE.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang, Shiyao Li, Minghui Zhuang, Zheyue Tan,
Zhuyu Yao, Dahua Lin, Boxun Li, Guohao Dai, Shengen Yan, and Yu Wang. Lv-eval: A
balanced long-context benchmark with 5 length levels up to 256k, 2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han,
Zhen Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞Bench: Extending long context
evaluation beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15262–15277, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. URL https://aclanthology.org/2024.acl-long.814.

A Data

In this section we detail the data used for ONERULER.

Languages We use 26 langauges, from a wide range of language families, scripts, and
resource sizes. All languages are detailed in Table 2.

Book Data For NIAH tasks, we fill the surrounding context with books from each re-
spective language. In Table 4, we detail for each book the title, author, year, and original
language of publication. All books must be long enough to fill the 128k context-length tasks
for the specified language.

B Generations

Prompt Templates For each task, we use the following templates. For translation purposes,
tasks were translated at the instruction level, meaning that each paragraph was translated
separately. According to the prompt template, the correct instructions and words were
added to make the final prompts. The NIAH prompts included are for the Single-Niah
task (Figure 3), the multi-query task (Figure 13), multi-key task (Figure 11), none task
(Figure 14), multi-value task (Figure 12), and the single NIAH task without the inclusion of
none Figure 15. The CWE prompt is shown in (Figure 16). We include the English prompts
for understanding, but for experiments in a language, translated instruction prompts are
used. We ensured all variables could be substituted in templates without grammatical
changes (e.g., singular/plural forms, gender variants). All instructions and needles are
verified translations by native speakers of each respective language.
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LANGUAGE ISO FAMILY SUBFAMILY SCRIPT MORPH. SPEAKERS WIKI ARTICLES

English en Indo-European West Germanic Latin Analytic ∼1.5B ∼6,961,391
German de Indo-European West Germanic Latin Fusional ∼134M ∼2,992,863
French fr Indo-European Romance Latin Fusional ∼312M ∼2,668,204
Swedish sv Indo-European North Germanic Latin Fusional ∼10M ∼2,605,454
Dutch nl Indo-European West Germanic Latin Fusional ∼30M ∼2,180,999
Russian ru Indo-European Slavic Cyrillic Fusional ∼255M ∼2,031,560
Spanish es Indo-European Romance Latin Fusional ∼560M ∼2,013,009
Italian it Indo-European Romance Latin Fusional ∼67M ∼1,906,293
Polish pl Indo-European Slavic Latin Fusional ∼40M ∼1,649,832
Chinese zh Sino-Tibetan Sinitic Hanzi Analytic ∼1.1B ∼1,465,839
Japanese ja Japonic – Kanji/Kana Agglutinative ∼125M ∼1,452,150
Ukrainian uk Indo-European Slavic Cyrillic Fusional ∼40M ∼1,368,238
Vietnamese vi Austroasiatic Vietic Latin Analytic ∼86M ∼1,293,417
Portuguese pt Indo-European Romance Latin Fusional ∼264M ∼1,144,604
Persian (Farsi) fa Indo-European Iranian Perso-Arabic Fusional ∼80M ∼1,030,086
Serbian sr Indo-European Slavic Cyrillic/Latin Fusional ∼12M ∼703,048
Korean ko Koreanic – Hangul Agglutinative ∼81M ∼699,221
Norwegian no Indo-European North Germanic Latin Fusional ∼5M ∼643,075
Finnish fi Uralic Finnic Latin Agglutinative ∼6M ∼589,626
Czech cs Indo-European Slavic Latin Fusional ∼10M ∼563,790
Hungarian hu Uralic Ugric Latin Agglutinative ∼13M ∼554,772
Danish da Indo-European North Germanic Latin Fusional ∼6M ∼306,973
Tamil ta Dravidian Southern Dravidian Tamil Agglutinative ∼87M ∼172,122
Hindi hi Indo-European Indo-Aryan Devanagari Fusional ∼600M ∼165,001
Swahili sw Niger–Congo Bantu Latin Agglutinative ∼87M ∼97,374
Sesotho st Niger–Congo Bantu Latin Agglutinative ∼12M ∼1,383

Table 2: Languages with family, subfamily, script, morphological type, approximate number
of speakers (Ethnologue), and number of Wikipedia articles.

Language Source

Chinese https://github.com/drkameleon/complete-hsk-vocabulary/tree/main

Czech https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/czech.txt

Danish https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/danish.txt

Dutch https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/dutch.txt

English Wonderwords library (same as Ruler)
Finnish https://github.com/akx/fi-words/blob/master/words/words.txt

French https://raw.githubusercontent.com/Blkzer0/Wordlists/refs/heads/master/French.txt

German https://github.com/Jonny-exe/German-Words-Library

Hindi https://github.com/eymenefealtun/all-words-in-all-languages/blob/main/Hindi/Hindi.txt

Hungarian https://github.com/Blkzer0/Wordlists/blob/master/Hungarian.txt

Italian https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/italian.txt

Japanese https://github.com/elzup/jlpt-word-list/tree/master

Korean https://github.com/acidsound/korean_wordlist/blob/master/wordslist.txt

Norwegian https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/norwegian.txt

Persian (Farsi) https://github.com/mvalipour/word-list-fa/blob/master/words.txt

Polish https://github.com/MontrealCorpusTools/sct_resources/blob/main/Polish/words.txt

Portuguese https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/portuguese.txt

Russian https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/russian.txt

Serbian https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/serbian.txt

Southern Sotho https://github.com/eymenefealtun/all-words-in-all-languages/blob/main/Sesotho/Sesotho.txt

Spanish https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/spanish.txt

Swahili https://github.com/michaelnjuguna/All-swahili-words-dictionary/blob/main/kamusi.txt

Swedish https://raw.githubusercontent.com/martinlindhe/wordlist_swedish/refs/heads/master/swe_wordlist

Tamil https://github.com/vigneshwaran-chandrasekaran/tamil-language-words-list/blob/master/tamilwords.txt

Ukrainian https://github.com/gurkylee/Wordlist-Collection/blob/main/languages/ukrainian.txt

Vietnamese https://github.com/duyet/vietnamese-wordlist

Table 3: Resources of word list

B.1 Model Configurations

For model configurations, we run inference on open models using greedy decoding with
temperature set to 0.0, which we also applied to the Gemini-1.5-Flash model. For o3-mini,
we set reasoning efforts to high and configured the maximum output token length to 10k,
with temperature fixed at 1.0 as per OpenAI defaults. For Deepseek-R1, we set the maximum
output token length to 8k and used a temperature of 0.6. We evaluated all 26 languages on
Gemini 1.5 Flash and o3-mini, utilizing Batch API for o3-mini which provided a 50% cost
reduction. For Deepseek-R1, we used the Fireworks API but limited evaluation to English
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Figure 9: Language by Wikipedia size. The counts indicate the current number of articles
available on Wikipedia for the given language.

only due to budget constraints. Please refer to Table 5 for detailed model configurations and
associated costs.

C Additional Results

C.1 Retrieval Results

In this section, we detail additional results for the Needle-in-a-Haystack task. In Figure 17,
we see the performance of each model averaged across all NIAH tasks and all languages,
with gemini-1.5-flash outperforming all other models, especially at long context-lengths.

16



Preprint. Under review.

Figure 10: Language family by the number of speakers as reported by Ethnologue.

Multi-Key NIAH Template

Please read and memorize the text below. I will ask you about it later
<text>
[CONTEXT]
The special magic number for "[WORD 1]"" is: [NUMBER 1].
[CONTEXT]
The special magic number for "[WORD 2]" is: [NUMBER 2].
[CONTEXT]
The special magic number for "[WORD 3]" is: [NUMBER 3].
[CONTEXT]
The special magic number for "[WORD 4]" is: [NUMBER 4].
</text>

<question>What special magic numbers associated with "[WORD 3]" are mentioned in
the provided text? Please list all that apply. If no such numbers exist, please
answer "none".</question>

Please provide your answer in the following format:
<answer>List all numbers here</answer>

Figure 11: Prompt template for Multi-Key NIAH Task with multiple magic numbers.

C.2 Reasoning Results

In this section, we detail additional results for reasoning models. In Figure 18 we show
the average amounts of reasoning tokens for NIAH tasks from o3-mini. We observe that
incorrect answers produce drastically higher amounts of reasoning tokens than correct
answers. In Figure 19, we show the number of responses exceeding the set max number of
output tokens for the English language. We note that both o3-mini-high and deepseek-r1
often exceed the token limit, overreasoning for a simple task.
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Multi-Value NIAH Template

Please read and memorize the text below. I will ask you about it later
<text>
[CONTEXT]
The special magic number for "[WORD 1]"" is: [NUMBER 1].
[CONTEXT]
The special magic number for "[WORD 1]" is: [NUMBER 2].
[CONTEXT]
The special magic number for "[WORD 1]" is: [NUMBER 3].
[CONTEXT]
The special magic number for "[WORD 1]" is: [NUMBER 4].
</text>

<question>What special magic numbers associated with "[WORD 1]" are mentioned in
the provided text? Please list all that apply. If no such numbers exist, please
answer "none".</question>

Please provide your answer in the following format:
<answer>List all numbers here</answer>

Figure 12: Prompt template for Multi-Value NIAH Task with multiple magic numbers.

Multi-Query NIAH Template

Please read and memorize the text below. I will ask you about it later
<text>
[CONTEXT]
The special magic number for "[WORD 1]"" is: [NUMBER 1].
[CONTEXT]
The special magic number for "[WORD 2]" is: [NUMBER 2].
</text>

<question>What special magic numbers associated with "[WORD 1]" and "[WORD 2]"
are mentioned in the provided text? Please list all that apply. If no such
numbers exist, please answer "none".</question>

Please provide your answer in the following format:
<answer>List all numbers here</answer>

Figure 13: Prompt template for Multi-Query NIAH Task with multiple magic numbers.

18



Preprint. Under review.

None NIAH Template

Please read and memorize the text below. I will ask you about it later
<text>
[CONTEXT]
The special magic number for "[WORD 1]"" is: [NUMBER 1].
[CONTEXT]
The special magic number for "[WORD 2]" is: [NUMBER 2].
[CONTEXT]
The special magic number for "[WORD 3]" is: [NUMBER 3].
[CONTEXT]
The special magic number for "[WORD 4]" is: [NUMBER 4].
</text>

<question>What special magic numbers associated with "[WORD 5]" are mentioned in
the provided text? Please list all that apply. If no such numbers exist, please
answer "none".</question>

Please provide your answer in the following format:
<answer>List all numbers here</answer>

Figure 14: Prompt template for None NIAH Task with no matching magic numbers.

Single NIAH - No ’None’ Template

Please read and memorize the text below. I will ask you about it later
<text>
[CONTEXT]
The special magic number for "[WORD 1]"" is: [NUMBER 1].
[CONTEXT]
</text>

<question>What special magic numbers associated with "[WORD 1]" are mentioned in
the provided text? Please list all that apply. If no such numbers exist, please
answer "none".
</question>

Please provide your answer in the following format:
<answer>List all numbers here</answer>

Figure 15: Prompt template for Single NIAH Task, without the inclusion of None in the
prompt.

CWE Template

Below is a numbered list of words. In these words, some appear more often than
others. Memorize the ones that appear most often.
<list>[CONTEXT]</list>
<question> What are the 10 most common words in the list above? </question>
Please provide your answer in the following format
<answer> List the words here </answer>

Figure 16: Prompt template for Most Common Words Task.
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Figure 17: By model performance across all languages on the NIAH tasks across context
lengths. We find that LLama-3.3 has the largest decrease in performance across context
lengths.

Figure 18: Average reasoning token length for correct vs. incorrect answers across context
lengths in NIAH tasks
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Lang. Title Author Year Token Count
cs The Good Soldier Švejk, Vol. 3 Jaroslav Hašek 1923 174576
da Elderflower and Hops Sophie Breum 1900 76082
de The Magic Mountain Thomas Mann 1924 598161
en Little Women Louisa May Alcott 1868 233668
es Don Quixote Miguel de Cervantes 1605 626105
fa The Blind Owl Sadegh Hedayat 1936 77451
fi Sylvi Minna Canth 1893 60803
fr Les Misérables Victor Hugo 1862 970526
hi Chandrakanta Devaki Nandan Khatri 1888 813743
hu King Midas, Vol. 1 Zoltán Ambrus 1891 224484
it The Late Mattia Pascal Luigi Pirandello 1904 144402
ja Kokoro Natsume Sōseki 1914 185905
ko A Boy’s Sorrow Yi Kwang-su 1917 12279
nl The Diary of a Young Girl Anne Frank 1947 136314
no Kristin Lavransdatter, Vol. 2: The Wife Sigrid Undset 1921 251016
pl Nights and Days, Vol. 3 Maria Dąbrowska 1934 452847
pt The Book of Disquiet Fernando Pessoa 1982 248245
ru War and Peace Leo Tolstoy 1869 1112514
sr Seconds of Eternity Dragutin Ilić 1921 45038
st Chaka Thomas Mofolo 1925 119342
sv The Story of Gösta Berling Selma Lagerlöf 1891 255416
sw My Life Fifty Years After Shaaban Robert 1958 61490
ta Ponniyin Selvan, Vol. 1: The First Floods Kalki Krishnamurthy 1950 912523
uk Instytutka Marko Vovchok 1862 41056
vi Pure Heart Hoàng Ngo. c Phách 1925 72267
zh Call to Arms Lu Xun 1922 153415

Table 4: Complete list of books used for needle injections in the retrieval task. Each row
contains the language the book was originally published in, the title, author name, published
year, and token count. Tokens counts calculated using tiktoken (o200k).

Model Size Context Length Huggingface Wolf et al. (2019) / API Cost

Gemini 1.5 Flash (Gemini Team, 2024) - 1M gemini-1.5-flash $137.7
o3-mini-high (OpenAI, 2025) - 200K o3-mini-2025-01-31 $1932.5

Deepseek-R1 (DeepSeek-AI, 2025) 685B 128k deepseek-r1 $333.2
Llama3.3 (Llama Team, 2024) 70B 128K meta-llama/Llama-3.3-70B-Instruct -
Llama3.1 (Llama Team, 2024) 8B 128K meta-llama/Meta-Llama-3.1-8B-Instruct -
Qwen2.5-72B (Qwen Team, 2025) 72B 128K Qwen/Qwen2.5-72B-Instruct -
Qwen2.5-7B (Qwen Team, 2025) 7B 128K Qwen/Qwen2.5-7B-Instruct

Table 5: Comparison of Open and Closed Language Models used in experiments

C.3 Aggregation Results

We evaluate CWE in both the easy and hard settings over four context lengths: 8k, 32k,
64k, and 128k. Performance of each model by context length can be found in Figure 20. All
models evaluated perform much better on the CWE_easy task in the 8k length, with o3-mini
nearing perfect performance at the 8k length. The drop in performance amidst increasing
context length indicates language models still have trouble with this kind of aggregation
task in very long-context settings. The CWE_hard task is near impossible for all models. For
a task that would be so simple for humans, the near-total incapability of modern LLMs

21



Preprint. Under review.

(a) o3-mini-high (b) Deepseek-R1

Figure 19: Number of responses exceeding maximum output tokens in CWE tasks due to
reasoning overthinking (English only)

Example of Deepseek-R1’s Reasoning for MV-NIAHs
<think>

Okay, let’s tackle this question. The user wants to know the special magic numbers
associated with the word “field” mentioned in the provided text. I need to go through
the text carefully and look for any instances where the word “field” is followed by a
number.
First, I’ll start by recalling that the text is from “Little Women” by Louisa May Alcott.
The user provided a lengthy excerpt covering several chapters. The task is to find any
mention of a “special magic number for ’field”’ in the text.
I’ll need to scan through the text for the exact phrase “The special magic number for
’field’ is: [number].” Since the user provided the entire text, I can search for occurrences
of this specific phrase.
Looking through the chapters, I remember that in some parts, there are notes or numbers
inserted. Let me check each chapter section:
1. Chapter One: No mention of a magic number here. The story starts with the sisters
talking about Christmas. 2. Chapter Two: Focuses on Christmas morning and the girls’
activities. No numbers related to “field.” 3. Chapter Three: The Laurence boy. Here,
there’s a mention of a magic number. The text says: “The special magic number for
’field’ is: 2140194.” So that’s one number. 4. Chapter Four: Burdens. No mention here. 5.
Chapter Five: Being Neighborly. No numbers here either. 6. Chapter Six: Beth Finds the
Palace Beautiful. No magic numbers. 7. Chapter Seven: Amy’s Valley of Humiliation.
No numbers here. 8. Chapter Eight: Jo Meets Apollyon. No mention. 9. Chapter Nine:
Meg Goes to Vanity Fair. Here, another instance: “The special magic number for ’field’
is: 4946066.” 10. Chapter Ten: The P.C. and P.O. No numbers here. 11. Chapter Eleven:
Experiments. No mention. 12. Chapter Twelve: Camp Laurence. Another instance:
“The special magic number for ’field’ is: 4117625.”
So, in total, there are three instances where the text explicitly states a special magic
number for “field”: 2140194, 4946066, and 4117625. Each of these is found in different
chapters. I need to list all three as the answer. </think>

Table 6: Example of Deepseek’s reasoning for the MV-NIAH task, showing how it systemati-
cally analyzes the text by dividing it into chapters and searching for the target pattern.

to complete the task in the harder setting highlights that synthetic tasks like CWE and
NIAH, that can be made more challenging as model performance improves, are necessary
for ongoing evaluation of models.

CWE Errors: For CWE (both easy and hard configurations), the model must get all 10
words correct. While seemingly harsh, this task would be quite easy for a human to master
with a simple CTRL + F on the keyboard or bit of introductory programming. In the easy
configuration, often times, models are able to correctly return 8 or 9 of the top 10 words, as
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(a) CWE_easy (b) CWE_hard

Figure 20: CWE Accuracy by Context Length

(a) CWE_easy (b) CWE_hard

Figure 21: Plots of number of correct words identified my models when the model is
ultimately incorrect at different context lengths. As context length increases, the model
finds less correct words. High resource languages tend to return higher average numbers of
correct words, which may be indicative of issues relating to tokenization.

seen in Figure 21. LLama-8b often liked to return a list of the 10 most frequent words used
in English (’and’, ’the’, ’I’, etc ...). However, in the hard version, most models are unable
to return a single correct common word. High-resource languages show ability to return a
higher number of correct words when it is incorrect, but the gap closes as context length
increases. Example CWE errors are presented in Table 1.

D One Tokenizer Does Not Rule Them All

One of the biggest challenges of the multilingual setting is understanding the effects of the
tokenizer on model performance. For example, one model may be able to take in 50,000
tokens in Tamil, but another may only be able to take in 25,000, changing the overall amount
of information passed to the model. What would happen if we measured the effects of a
model using the information density (or amount of content given), instead of the token
count? Below, we detail many of the same experiments as conducted earlier, but in the
context of each model being given the same amount of information per model instead of the
same amount of tokens.

Drastic Differences in Token Lengths: For each language, the token counts of other
tokenizers when stabilizing for 128k by cl100 show astounding variance, as seen in Figure 22.
We see resounding differences between tokenizers. For example, Tamil has only 33,249
tokens when processed using the o-series tokenizer, compared to 128,000 with cl100.

Similar findings hold despite dramatic differences in tokenized lengths: As seen in
Figure 23, when controlling for amount of context information, Cyrillic languages (and those
heavily influenced) (Russian, Ukrainian, Polish) perform highly, surpassing the performance
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Figure 22: For each language, the token counts of other tokenizers when stabilizing for 128k
by cl100.
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of romance languages like Italian, French, and Spanish. English performance is even lower,
typically 8th. However, similar patterns remain: Gemini 1.5 Flash and Qwen2.5 72B perform
the best, and high-resource Latin/Cyrillic languages outperform others. It is interesting
to note that languages such as Korean, Hindi, and Chinese are towards the low end of
the performance spectrum, as they are often tokenized to the shortest lengths when in
comparison to English data. As context length increases, we still see that the performance
gap between high-resource and low-resource languages, consistent with our main results of
controlling for number of tokens.

Gemini 1.5 Flash Qwen2.5 72B o3-mini LLaMA 3.3 70B LLaMA 3.1 8B Qwen2.5 7B
8k 32k 64k 128k 8k 32k 64k 128k 8k 32k 64k 128k 8k 32k 64k 128k 8k 32k 64k 128k 8k 32k 64k 128k
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Figure 23: Heatmap of average accuracy of NIAH tasks by language when controlling for
input context length.
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