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Abstract—Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural
language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive
and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of
LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as
an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from
academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE.
This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first
briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for
various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations,
hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice,
and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE

research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.

Index Terms—Large Language Models, Mixture of Experts, Gating Functions

1 INTRODUCTION

N the current landscape of artificial general intelligence

(AGI), the transformative impact of transformer-based
large language models (LLMs) has permeated diverse fields
such as natural language processing [1], [2], [3], [4], [5], [6],
[7], computer vision [8], [9], and multimodality [10], [11f],
[12], [13]. Building upon the foundational transformer archi-
tecture, LLMs demonstrate extraordinary capabilities, which
are attributed to their sheer size, the breadth of data they
are trained on, and the significant computational resources
invested in their development [14], [15], [16]. Recognizing a
scaling law [14], [17] that underpins their evolution, it is im-
perative to identify and implement efficient methodologies
for the sustainable scaling of LLMs.

The concept of mixture of experts (MoE), initially intro-
duced in [18], [19], has undergone extensive exploration and
advancement as evidenced by subsequent studies [20], [21],
[22], [23], [24], [25], [26]. The emergence of sparsely-gated
MOoE [27]], particularly within the integration of transformer-
based large language models [28]], has brought new vitality
to this three-decade-old technology. The MoE framework
is based on a simple yet powerful idea: different parts of
a model, known as experts, specialize in different tasks
or aspects of the data. With this paradigm, only pertinent
experts are engaged for a given input, keeping the com-
putational cost in check while still benefiting from a large
pool of specialized knowledge. This scalable and flexible
innovation has offered an effective approach for adhering
to the scaling law, allowing for increased model capacity
without a corresponding surge in computational demands.
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As depicted in Figure |1} MoE has maintained a robust
trajectory of growth, particularly notable in 2024 with the
advent of Mixtral-8x7B [29] and a variety of subsequent
industrial-scale LLMs such as Grok-1 [30], DBRX [31]], Arctic
[32], DeepSeek-V2 [33], etc.

Despite the increasing popularity and application of
MoE models in various domains, the literature has yet
to see a survey that thoroughly examines and categorizes
the advancements in this area. The most recent review of
MoE we could find was presented in September 2022 [34],
predating the pivotal “ChatGPT moment”, which omits
the significant advancements that have recently emerged
alongside the escalating academic and industrial interest in
this domain. This gap in the literature not only hinders the
progress of MoE research but also limits the dissemination
of knowledge on this topic to a broader audience. Our
survey aims to address this deficit by providing a clear and
comprehensive overview of MoE with a novel taxonomy
that segments recent progress into algorithm, system, and
application.

Under this taxonomy, we first delve into MoE algorith-
mic advancements, particularly the prevalent substitution
of feed-forward network (FFN) layers with MoE layers
in transformer-based LLMs [28], [29], [33l, [35], [36], [37],
[38]. As each MoE layer integrates multiple FFNs—each
designated as an expert—and employs a gating function to
activate a selected subset of these experts, we explore the
design choices of gating function and expert network, along-
side collections of available open-source implementations,
hyperparameter configurations, and empirical evaluations.
Furthermore, to underscore the flexibility and versatility of
MOoE, we extend our analysis beyond the standard integra-
tion of MoE into model backbone, and discuss an array of
novel MoE-related designs, such as soft MoE with token
or expert merging [39], [40], [41], [42], [43]], mixture of
parameter-efficient experts (MoPEs) [42], [44], [45], [46], [47],
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Fig. 1. A chronological overview of several representative mixture-of-experts (MoE) models in recent years. The timeline is primarily structured
according to the release dates of the models. MoE models located above the arrow are open-source, while those below the arrow are proprietary
and closed-source. MoE models from various domains are marked with distinct colors: Natural Language Processing (NLP) in green , Computer

Vision in yellow , Multimodal in pink , and Recommender Systems (RecSys) in cyan .

[48], training and inference schemes with model transition
between dense and sparse [49], [501, [51]], [52], [53]], [54], and
various derivatives [55], [56], [57], [58], [59], [60].

With the gradual convergence of model architecture
design in industrial products, system design has emerged
as a pivotal factor in enhancing the quality of LLM ser-
vices. Given the close association of MoE models with
machine learning system design, we provide a comprehen-
sive overview of MoE system design, including computa-
tion, communication, and storage enhancements tailored
to address the unique challenges posed by the sparse and
dynamic nature of its computational workload. Addition-
ally, we overview the applications of MoE across various
domains, including natural language processing, computer
vision, recommender system, and multimodal contexts.

The remainder of this survey is organized as follows.
Section [2] provides a foundational understanding of MoE,
contrasting sparse and dense activation of experts. Section[j]
introduces our proposed taxonomy for categorizing MoE
advancements. Sections[d} b} and [p|delve into the algorithmic
designs, computing system support, and various applica-
tions of MoE models, respectively, following the structure
outlined in our taxonomy in Figure 3| Finally, in Section
we highlight the critical challenges and opportunities for

bridging the research-practicality gap, culminating in Sec-
tion 8l with our conclusions.

2 BACKGROUND ON MIXTURE OF EXPERTS

In transformer-based large language models (LLMs), each
mixture-of-experts (MoE) layer typically consists of a set
of N “expert networks” {f1,..., fn}, alongside a “gating
network” G. The role of the gating network, which often
takes the form of a linear network with a softmax activation
function, is to direct the input to the appropriate expert
networks [27], [36]. The MoE layer is strategically placed
to select the feed-forward network (FFN) within each Trans-
former block, typically following the self-attention (SA) sub-
layer. This positioning is crucial because the FFN become in-
creasingly computationally demanding as the model scales
up. For instance, in the PaLM [5] model with the parameter
number of 540B, the 90% of these parameters are within its
FEN layers.

Formally, each expert network f;, usually a linear-ReLU-
linear network, is parameterized by W, accepting the same
input x and generating an output f;(x; W;). In parallel,
the gating network §, parameterized by ® and typically
consisting of a linear-softmax network, yields the output
G(x; ©). Based on the design of gating function, MoE layers
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can be broadly classified into two categories: dense MoE and
sparse MoE, which are described in detail in the following
subsections.

2.1 Dense MoE

The dense mixture-of-experts layer activates all expert net-
works {f1,..., fn} during each iteration. This strategy has
been extensively employed in a range of early proposals
(18]I, [19], [20], [21]], [22], [23], [24], [25], [26], [61]. Most re-
cently, the dense MoE concept has been revisited by studies
such as EvoMoE [62], MoLE [63], LoORAMOoE [45], and DS-
MOoE [64]. The structure of the dense MoE layer is depicted
in Figure [2[a). Consequently, the output of the dense MoE
layer can be formulated as

N
Fab (0 AW ) = G(x0)fi(x; W), (1)

X; ®); = softmax(g(x; @7 i = exp(g(x; ©);) 7
G(x;0); tmax(g(x; ©)); S explg( O]

@

where g(x;©®) represents the gating value prior to the
softmax operation.

2.2 Sparse MoE

While a dense mixture of experts typically yields higher
prediction accuracy [8], it also incurs a significant increase in
computational overhead. To address this, Shazeer et al. [27]
introduced the sparsely-gated MoE layer, which is designed
to activate only a selected subset of experts during each
forward pass. This strategy achieves sparsity by computing
a weighted sum of the outputs from only the top-k experts,
rather than aggregating the outputs from all the experts. The
structure of the sparse MoE layer is illustrated in Figure[2(b).
Building on the framework established by [27], Equation
can be modified to reflect the sparsely-gated mechanism as
follows:

G(x;0); = softmax(TopK(g(x; ©) + Ruoises k) )is (3)
xX;0);, condition,

TopK(g(x; ©),k); = {g( ) L 4)
—00, otherwise.

condition : if g(x; ®); is in the top-k elements of g(x; ®).
®)

To explain, TopK(-, k) function retains only the top-k entries
of a vector at their original values, while setting all other
entries to —o00. Following the softmax operation, those en-
tries assigned —oo become approximately zero. The hyper-
parameter k is selected based on the specific application,
with common choices being & = 1 [36], [65] or k£ = 2 [28],
291, [35], 1371, [66], [67]. The addition of a noise term R oise
is a prevalent strategy for training a sparsely-gated MoE
layer, fostering exploration among experts and enhancing
the stability of MoE training [27]], [36].

Although the sparse gate G(x; ®) substantially expands
the model’s parameter space without a corresponding in-
crease in computational cost, it can lead to a load balanc-
ing issue. Such an issue refers to the uneven distribution
of workload across experts, with some being frequently

3

utilized and others seldom or never engaged. To address
this, each MoE layer incorporates an auxiliary loss function
that promotes an even distribution of tokens across experts
within each batch, as described in many studies [28]], [29],
[35], [36], [67], [68], [69]. To formulate this concept, consider
a batch of queries B = {x;,X2,...,xr}, comprising T
tokens, and IV experts indexed from ¢ = 1 to V. Following
[28]], [36], the auxiliary load balancing loss for the batch is
defined as

N
»Cload—balancing = NZDZPZﬂ (6)
=1
D, = % Z 1{argmax G(x; ®) = i}, (7)
rzeB
1
Pi== > G(x;0);, ®)
zeB

where D; represents the proportion of tokens distributed to
expert 7, while P; denotes the proportion of the gating prob-
ability assigned to expert i. To ensure an even distribution of
the batch of tokens across the NV experts, the load-balancing
loss function Ligad-balancing should be minimized. The op-
timal condition, i.e., min(Lioad-balancing) = N Zf\;l D;P; =
N vazl ++ = 1, is achieved when each expert receives an
equal number of dispatched tokens D; = %, and an equal
proportion of the gating probability P; = 3-. The balance
is thus maintained across all the experts, ensuring that the
workload is uniformly distributed at all times. Throughout
the subsequent sections, unless explicitly stated otherwise,
the term “MoE” refers to “sparse MoE”.

3 TAXONOMY OF MIXTURE OF EXPERTS

To effectively scale model parameters without a correspond-
ing increase in computational demand, the mixture of ex-
perts (MoE) architecture has emerged as a viable solution.
MOoE leverages a collection of specialized models and a
gating mechanism to dynamically select the appropriate
“expert networks” for processing a given input. This enables
the model to allocate computational resources on an as-
needed basis, a concept known as conditional computation.
The incorporation of MoE architectures into large language
models (LLMs) is now a prevalent practice, allowing these
models to achieve significant parameter scale-ups and con-
sequent enhancements in capabilities [28]], [29], [34], [36],
[67].

For example, the Mixtral 8x7B [29], introduced by Mix-
tral Al, shares its foundational architecture with the ear-
lier Mistral 7B [160], but with a notable difference: each
layer comprises eight feed-forward networks (FFN) (ie.,
experts). Despite utilizing only 13 billion active parameters,
the Mixtral-8x7B demonstrates superior or equivalent per-
formance to the Llama-2-70B [161] and GPT-3.5 [[162] across
various benchmarks. Similarly, the DeepSeek LLM [163],
developed by DeepSeek, has been extended with an MoE
variant known as DeepSeekMOoE [69]. The DeepSeekMoE
16B, while requiring approximately 40% less computation,
attains performance on par with the Llama 2 7B [161]. The
Qwen team has also contributed to this innovative field by
developing the Qwenl1.5-MoE [104], a smaller MoE model
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Fig. 2. An illustration of an MoE layer in Transformer-based models. For each input X, the linear-softmax gating will select all experts namely (a)
Dense MoE or top-k experts namely (b) Sparse MoE to perform conditional computation. The expert layer returns the output of the selected expert

multiplied by the gate value (softmax of the gating function output).

with only 2.7B active parameters that rivals the performance
of leading 7B parameter models such as the Mistral 7B [160]
and the Qwen1.5-7B [164].

To assist researchers in navigating the rapidly evolving
landscape of LLMs equipped with MoE architectures, we
have developed a taxonomy that categorizes these models
from three perspectives: algorithm design, system design,
and application. Figure [3| showcases our taxonomy along-
side several representative studies. In the following sections,
we provide a comprehensive and in-depth analysis of each
category within our taxonomy.

4 ALGORITHM DESIGN OF MIXTURE OF EXPERTS
4.1 Gating Function

The gating function (also known as the routing function or
router), which stands as a fundamental component of all the
MOoE architectures, orchestrates the engagement of expert
computations and the combination of their respective out-
puts. We categorize this mechanism into three distinct types
Based on the processing methodologies of each input, we
categorize the gating mechanism into three distinct types:
sparse, which activates a subset of experts; dense, which
activates all experts; and soft, which encompasses fully-
differentiable approaches including input token merging
and expert merging.

4.1.1 Sparse

The sparse gating functions activate a selected subset of
experts for processing each individual input token, which
can be considered as a form of conditional computation
[165], [166], [167]. The gating functions have been stud-
ied extensively, which may be trained by various forms
of reinforcement learning and back-propagation, making
binary or sparse and continuous, stochastic or deterministic
gating decisions [23]], [65], [168], [169], [170]. Shazeer et
al. [27] pioneered a differentiable heuristic with auxiliary
load balancing losses, in which the outputs from expert
computations are weighted by their selection probabilities.
This introduces a differentiable aspect to the gating process,
thereby facilitating the derivation of gradients that can

guide the gating function’s optimization. This paradigm
has subsequently become predominant in the realm of MoE
research. Due to its selection of experts for each input token,
this method can be recognized as a gating function with
token choice.

Token-Choice Gating. Shazeer et al. [27] posited the
necessity of gating inputs to the top-k experts, with & > 1,
to enhance the efficacy of MoE. The rationale behind this ap-
proach is that by simultaneously consulting multiple experts
for a given input, the network can effectively weigh and
integrate their respective contributions, thereby improving
performance. To accommodate the scalability to thousands
of experts within a MoE layer, they employ a two-level
hierarchical MoE to reduce the branching factor in the
context of a large expert count. Subsequent research has
largely affirmed that increasing the value of k enhances
performance, which has led to the widespread adoption
of this top-k strategy with £ > 1. Notwithstanding, the
Switch Transformer model [36] has shown that a top-1
gating strategy (as illustrated in Figure [4] (a)) can also yield
competitive results, a finding that has been substantiated
and adopted by later studies [65]. Furthermore, M6-t [70]
proposed a novel variation of the top-1 gating called expert
prototyping, which organizes experts into k groups and
then applies top-1 gating in each group. Their experimental
results show the training and downstream perplexity of a
16-layer model in order of best to worst: expert prototyping
with 4 top-1 gating, 1 top-4 gating, 1 top-16 gating, 1 top-1
gating.

Auxiliary Loss for Token-Choice Gating. Token-choice
gating algorithms frequently incorporate an auxiliary loss
during training to promote equitable token distribution
across experts. Table [1| shows prevalent auxiliary loss func-
tions leveraged in the field. Shazeer et al. [27] quantify
the importance of an expert in relation to a training batch
via the batchwise sum of the gate values for that expert.
They define an additional loss Limportance, added to the
overall loss function for the model. This loss, which is
equal to the square of the coefficient of variation of the
set of importance values and multiplied by a hand-tuned
scaling factor Wimportance, €ncourages all experts to have
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Fig. 3. Taxonomy of Mixture of Experts (MoE).



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1
Overview of diverse auxiliary loss functions and their typical coefficient configurations. The originators introducing each auxiliary loss is highlighted
as bolded reference, followed by references that adopts the same approach. Studies that have modified the original formulation are indicated with
underlined reference.

Reference

Auxiliary Loss Coefficient

Shazeer et al. [27]|, V-MOE [8]

GShard [28], Switch-T [36], GLaM [35], Mixtral-8x7B [29], DBRX [31],
Jamba [68], DeepSeekMOoE [69], DeepSeek-V2 [33], Skywork-MoE [67]

Limportance + Lload Wimportance = 01/ Wioad = 0.1

ST-MoE [37], OpenMOoE [38], MoA [82], JetMoE [83]
Mod-Squad [71], Moduleformer [73], DS-MoE [64]

Lauz Waur = 0.01
Laua: + Lz Wauzr = 001, Wy, = 0.001
L wprr = 0.001

equal importance. Although L;pportance promotes balance
in importance, it does not guarantee an even distribution
of training examples among experts, which can lead to
execution inefficiencies on distributed computing environ-
ments. To address this, they introduce a second loss L;,.q to
ensure balanced loads. Building on this foundation, GShard
[28] define a new differentiable auxiliary loss Lg,, using
a differentiable approximation (the dot-product of mean
gates and mean gating decisions per expert), as detailed in
Section Switch Transformers [36] and many other sub-
sequent studies [29], [31], [35]], [68] have embraced this L,
design, and enhancements [33], [67], [69] have been made
to cater to diverse requirements. Nevertheless, ST-MoE [37]
identified limitations with L., particularly at larger scales,
leading to unreliable training outcomes. To mitigate this,
it introduces the integration of router z-loss L., improving
training stability without quality degradation by penalizing
large logits entering the gating network. Since this loss
encourages absolute magnitude of values to be smaller,
roundoff errors are reduced, which can be quite impactful
for exponential functions such as gating. Additionally, Mod-
Squad [71]] posits the difficulty of training multi-task models
under such an expert-balancing loss, which may inadver-
tently force experts to set parameters on conflicting tasks
or hinder the potential synergies from parameter sharing
across complementary tasks. Instead, it proposes to maxi-
mize the mutual information (MI) between experts and tasks
to build task-expert alignment. Differently, ModuleFormer
[73] proposes to maximize the Mutual Information between
experts and tokens. Furthermore, DS-MoE [64] extends the
application of Ly, calibrating different weightings wasr,
in Mixture-of-Attention (MoA, as illustrated in Figure|5|(a))
and FFN MoE modules of different size models.

Expert Capacity for Token-Choice Gating. In conjunc-
tion with load balancing via auxiliary loss, GShard [28]
incorporates an expert capacity limit, defining a threshold
for the number of tokens an expert can process. This can
lead to token overflow, where excess tokens are not pro-
cessed by the designated expert. GShard also proposes a
random routing mechanism that selects a secondary expert
with a probability proportional to its weight, under the
intuition that the contribution of a secondary expert can
be negligible, given that the output is a weighted average
and the secondary weight is typically small. For the task of
image classification with Vision Transformer (ViT) models,
Riquelme et al. [8] enhance the top-k gating strategy with

Batch Prioritized Routing (BPR), which assigns priority
based on higher gating scores rather than the sequence
order of tokens. Zoph et al. [37] have demonstrated the
efficacy of BPR in the context of MoE language models. Kim
et al. [76] suggest randomizing token prioritization within
sequences to mitigate routing bias towards early-positioned
tokens. OpenMoE [38] provides a comprehensive analysis
of gating mechanisms, highlighting the “Drop-towards-the-
End” phenomenon whereby tokens later in a sequence are at
greater risk of being dropped due to experts reaching their
maximum capacity limits, an issue that is exacerbated in
instruction-tuning datasets. Moreover, OpenMoE identifies
a tendency within MoE systems to route tokens based
on token-level semantic similarities, leading to “Context-
independent Specialization”. Additionally, this token ID
routing specialization is established early in pretraining and
remains largely fixed, resulting in a consistent pattern of
token processing by the same experts throughout training,
a phenomenon referred to as “Early Routing Learning”.

Other Advancements on Token-Choice Gating. De-
spite the implementation of gating heuristics and auxil-
iary expert-balancing loss functions aimed at achieving a
balanced workload distribution among experts, the issue
of load imbalance persists as a prevalent challenge within
MOoE architectures. To solve it, the Balanced Assignment of
Sparse Experts (BASE) layer, as conceptualized by Lewis
et al. [74] and illustrated in Figure [ (b), re-envisions the
token-to-expert allocation process by casting it as a linear
assignment problem, aiming to maximize the token-expert
affinities under the constraints that each expert is assigned
an equal quantity of tokens. Subsequently, Clark et al. [65]
introduce a variant of the BASE layer, termed S-BASE, using
an optimal transport formulation. Additionally, they devise
a reinforcement learning based gating algorithm employing
top-1 routing, with the reward function defined as the
negative cross-entropy of the predicted token. The discrete
optimization of gating function can lead to convergence and
statistical performance issues when training with gradient-
based methods. To address these issues, Hazimeh et al. [75]
introduce DSelect-k, which is a smooth version of the top-k
gating algorithm that improves over standard top-k gating.
This method constitutes a refined version of the top-k gating
algorithm, featuring enhanced smoothness properties that
yield improvements over the conventional top-k gating
approach. Kudugunta et al. [77] diverge from the prevalent
token-level gating strategies by introducing a sentence-level
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gating mechanism. This approach involves generating a
sentence representation by averaging the tokens within a
sequence and subsequently routing it to an expert. Chi
et al. [80] observe that prevailing gating mechanisms tend
to push hidden representations clustering around expert
centroids, implying a trend toward representation collapse,
which in turn harms model performance. To counteract this
issue, they project hidden vectors into a lower-dimensional
space before gating and implement L2 normalization for
both token representations and expert embeddings, thus
calculating gating scores within a low-dimensional hyper-
sphere. Cai et al. [88] identify the difficulty in training
the adaptive routers due to gradient vanishing, and intro-
duce a novel strategy involving the training of a Surrogate
Model (SM) that predicts LLM’s language loss given only
router choices. Once trained, the SM is frozen, and the
router is subsequently tuned to minimize language loss,
relying exclusively on feedback from the SM. Skywork-
MOoE [67] proposes two innovative techniques: gating logit
normalization, which improves expert diversification, and
adaptive auxiliary loss coefficients, which provides layer-
specific adjustment of auxiliary loss coefficients. Yuan 2.0-
M32 [84] proposes a new router network, Attention Router
(as illustrated in Figure 4| (e)), which implements a more
efficient selection of experts and yields an enhancement in
model accuracy over classical linear router network. Zeng et
al. [85] posit that the complexity of token feature abstraction
may necessitate a variable number of experts to process.
In response, they propose AdaMoE, a novel approach that
enables token-adaptive gating for MoE, allowing for a
dynamic number of selected experts per token. AdaMoE
subtly modifies the standard top-k MoE by incorporating
a predetermined set of null experts and increasing the value
of k. Importantly, AdaMoE does not mandate a uniform
allocation of null experts across tokens but ensures the
average engagement of null experts with a load-balancing
loss, resulting in an adaptive number of null/true experts
used by each token. Dynamic Mixture of Experts (DYNMOoE)
[87] also introduces an innovative gating mechanism that
enables individual tokens to automatically determine the
number of activated experts via the trainable per-expert
thresholds, incorporating an adaptive process that auto-
matically add or remove experts during training. Shi et al.
[86] introduce Self-Contrast Mixtureof-Experts (SCMoE), a
training-free strategy that utilizes the contrastive informa-
tion among different gating strategies to engage unchosen
experts during inference.

Non-trainable Token-Choice Gating. The dynamic
training of gating functions within MoE models is standard
practice; however, some research has ventured into the
realm of non-trainable token-choice gating mechanisms. The
most significant benefit of non-trainable token-choice gating
is that no additional gating network parameters are required
and the full load balancing can be achieved through specific
gating mechanisms. The Hash Layer [89] utilizes a random
fixed gating approach by hashing the input token, achieving
competitive results without the necessity of training the
gating network. The load balancing is facilitated by the
selection of hash functions prior to training, which can
equitably distribute token batches. Zuo et al. [90] introduces
THOR, an algorithm that randomly allocates two experts to
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each input during training and inference with a consistency
regularized loss promoting consistent predictions. Gururan-
gan et al. [91] propose the DEMix model, which explicitly
assigns distinct experts to discrete pretraining domains,
with domain matching being employed to select experts cor-
responding to the training inputs. Given the potential sub-
optimality of domain categorization and its limited scope
in encompassing test-time domains, a single domain expert
selection could undermine the model’s generalizability. To
address this, DEMix adopts a parameter-free probabilistic
method that dynamically estimates the domain-weighted
mixture at inference. Kudugunta et al. [77] explore task-
level gating incorporating prior knowledge tags, and simi-
larly, M2M-100 model [92] utilizes explicit language-specific
sublayers with deterministically routing input tokens based
on their language. Building upon the aforementioned non-
trainable gating strategies—random gating and domain
mapping—PanGu-} | [93] presents the Random Routed Ex-
perts (RRE) mechanism. As illustrated in Figure E] (c), this
approach initially routes tokens to a domain-specific expert
group, followed by a random selection within that group.

In contrast to explicit language-specific expert selection,
NLLB [78] leverages trainable gating to manage multilin-
gual machine translation tasks, outperforming the M2M-
100 approach [92]. Addressing task interference in gen-
eralist models, Zhu et al. [81] introduce the Conditional
MoE, which augments MoE with trainable gating by in-
tegrating conditional information at various levels, such
as token-level, context-level, modality-level, task-level, and
predefined token attributes. Ye et al. [79] further investigate
the incorporation of trainable gating at task-level MoE.
Additionally, STABLEMOE [72] identifies a challenge with
existing learning-to-route MoE methods: the phenomenon
of gating fluctuation. To counter this, STABLEMOE employs
a two-stage training process. The first stage focuses on
acquiring a balanced and cohesive gating strategy, which
is then distilled into a lightweight gate function, decoupled
from the backbone model. Subsequently, the second stage
leverages the distilled gate for token-to-expert assignments
and freezes it to ensure a stable gating strategy throughout
further training.

Expert-Choice Gating. Zhou et al. [94] propose an in-
version of the conventional token-choice gating paradigm,
wherein each expert selects the top-k tokens they will
process, as illustrated in Figure 4| (d). This approach cir-
cumvents the necessity for auxiliary load balancing losses
during training, ensuring a uniform distribution of tokens
across experts. However, this method may result in un-
even token coverage, with some tokens potentially being
processed by multiple experts or not at all. Despite this,
the technique demonstrates strong empirical performance
and offers an adaptive computational interpretation where
the model can implicitly apply more computation to certain
tokens. The effectiveness of expert-choice gating is further
validated by Zhou et al. in their subsequent Brainformers
study [95]. Additionally, Komatsuzaki et al. [49] integrate the
expert-choice gating strategy within the Vision Transformer
and adapt it for the encoder in T5 models, while maintaining
token-choice gating for the T5 decoder.
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with expert merging [40].

4.1.2 Dense

In Section we discuss the enduring relevance of dense
MoE, which activates all the experts for each input process.
This dense paradigm continues to inform current innova-
tions in MoE training and inference methodologies, as elab-
orated in Section While sparse activation of experts,
as a trade-off, may yield computational efficiency gains at
the expense of some performance loss when compared to a
densely activated MoE with an equivalent number of total
parameters [64], [69], [73]], it represents a strategic adjust-
ment to balance computational demands with model capa-
bility. Notably, dense activation performs well in the context
of LoRA-MoE fine-tuning, where the computational over-
head of LoRA experts is comparatively low. This approach
enables the effective and flexible integration of multiple
LoRAs across a variety of downstream tasks. It preserves the
generative capabilities of the original pretrained model and
maintains the unique characteristics of individual LoRAs for
each task [45], [63].

4.1.3 Soft

Deciding the allocation of appropriate experts to each input
token pose the fundamental discrete optimization challenge
for sparse MoE. This often necessitates heuristic auxil-
iary losses to ensure balanced expert engagement and to
minimize unassigned tokens. These issues become more

pronounced in scenarios involving out-of-distribution data,
such as small inference batches, novel inputs, or during
transfer learning. Similar to dense MoE, the soft MoE ap-
proach maintains full differentiability by leveraging all the
experts for processing each input, thus avoiding issues in-
herent to discrete expert selection. We distinguish soft MoE
from dense MoE to highlight the characteristic that miti-
gates computational demands through the gating-weighted
merging of input tokens or experts.

Token Merging. Puigcerver ef al. [39] proposed the Soft
MoE, which eschews the conventional sparse and discrete
gating mechanism in favor of a soft assignment strategy
that merges tokens. This method computes several weighted
averages of all tokens, with weights depending on both
tokens and experts, and processes each aggregate with its
respective expert. Their experimental results in image classi-
fication demonstrate that soft MoE enhances the stability of
gating function training and inherently maintains balance.
HOMOE [96] follows the design of Soft MoE and combines
it with Hopfield network to address the the challenges
of Compositional Zero-Shot Learning tasks. Yet, merging
input tokens complicates its application in auto-regressive
decoders, as future tokens required for averaging are inac-
cessible during inference.

Expert Merging. In contrast to the merging of input
tokens, Mugeeth et al. [40] introduced the Soft Merging
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of Experts with Adaptive Routing (SMEAR) framework,
which circumvents discrete gating by merging all the ex-
perts’ parameters through a weighted average, as illus-
trated in Figure {4 (f). They argue that conventional sparse
MoE models often fail to match the performance of their
parameter-matched dense counterparts or those utilizing
non-learned heuristic gating functions, potentially due to
flawed gradient estimation methods for training modules
with non-differentiable, discrete gating decisions. By pro-
cessing the input tokens through a single merged expert,
SMEAR does not incur a significant increase in computa-
tional costs and enables standard gradient-based training.
Empirical evaluations on T5-GLUE and ResNet-DomainNet
benchmarks reveal that SMEAR-equipped models surpass
those with metadata-based [77], [91] or gradient-estimated
learning gating strategies. On ResNet-DomainNet, SMEAR
achieved a 1.5% higher average accuracy than Soft MoE
[39] with single “slot” per expert, at the expense of a near
10% reduction in throughput. Subsequent contributions by
Zhong et al. [41] argue that SMEAR’s demonstrated advan-
tages are confined to downstream fine-tuning on classifica-
tion tasks. They present Lory, an innovative approach for
scaling such expert merging architectures to auto-regressive
language model pretraining. Lory [41] introduces a causal
segment routing strategy, conducting expert merging at the
segment level while maintaining the auto-regressive nature
of language models. Furthermore, it employs similarity-
based data batching to direct expert specialization in par-
ticular domains or topics. Lory’s empirical validation on
LLaMA models showcases significant improvements over
parameter-matched dense models in terms of perplexity (by
13.9%) and on diverse downstream tasks (by 1.5%-11.1%),
highlighting the potential of fully-differentiable MoE ar-
chitectures for language model pretraining and encourag-
ing further investigation in this area. In addition, expert
merging methods have demonstrated efficacy in parameter-
efficient fine-tuning (PEFT) MoE contexts. Zadouri et al.
[42] substantiate that soft merging of experts significantly
outperforms sparse gating mechanisms (top-1, top-2) in the
T5 models [171] fine-tuning with the MoV-10 setting of 10
(IA)? vector expert. Wu et al. [43] propose Omni-SMoLA, an
architecture leveraging the soft method to mix multimodal
low-rank experts, improving the generalist performance
across a broad range of generative vision-language tasks.
He et al. [97] introduce Merging Experts into One (MEO),
merging multiple selected experts into one to reduce the
expert computation cost. Moreover, they perform the expert
selection at the sequence level and employ a token attention
mechanism for capturing the identification of each token,
thus preserving context information without the necessity of
merging distinct weights and biases for individual tokens.

4.2 Experts

In this section, we delineate the architecture of expert net-
works within MoE framework, following our discussion on
the gating function that orchestrates the activation of these
experts.

4.2.1 Network Types

Since the initial integration of MoE into transformer ar-
chitectures [28]], [36], [37], MoE has served as a substitute
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for Feed-Forward Network (FFN) modules within these
models. Typically, each expert within a MoE layer replicates
the architecture of the FFN it replaces. This paradigm,
wherein FFNs are utilized as experts, remains predominant,
and subsequent refinements will be expounded upon in
Sections tod2.4

Feed-Forward Network. As discussed in existing work
[54], the predilection for leveraging MoE in the context of
FENs is rooted in the hypothesis that self-attention layers
exhibit lower sparsity and less domain specificity than
FEN layers. Pan et al. [64] provide empirical support for
this, revealing marked sparsity in FFN layers compared to
self-attention layers, through their analysis of downstream
Wikitext tasks using their pretrained DS-MoE models. Their
results indicate a mere 20% active expert engagement in
FEN layers, in contrast to the 80% observed within self-
attention layers. In earlier investigation of FFN computa-
tional patterns, Zhang et al. [50] and Li et al. [172] observe
that most inputs only activate a small proportion of neurons
of FENs, highlighting the inherent sparsity of FFNs. Subse-
quently, Zhang et al. [98] observe the Emergent Modularity
(EM) phenomenon within pretrained Transformers, reveal-
ing a significant correlation between neuron activation and
specific tasks (evidenced by the functional specialization of
neurons and function-based neuron grouping). This discov-
ery supports the proposition that the MoE structure reflects
the modularity of pre-trained Transformers.

Attention. While the focus of MoE research has pre-
dominantly been on FEN layers within the Transformer
architecture, Zhang et al. [82] introduce the Mixture of Atten-
tion Heads (MoA), an innovative architecture that combines
multi-head attention layers with MoE to further enhance
performance and restrain computational cost. As delineated
in Figure |5| (a), MoA employs two sets of experts, one for
query projection and one for output projection. Both sets
select the experts with the same indices through a common
gating network. To reduce computational complexity, MoA
shares the key (W) and value (W,) projection weights
across attention experts, with experts differentiated only by
their respective query (¢: W) and output (0; : W7) projection
weights, allowing for shared pre-computation of key (K W})
and value (VW) sequences. Subsequent work such as DS-
MOoE [64], JetMoE [83], and ModuleFormer [73] follows the
design of MoA and further refines the combination of MoE
and attention layer.

Others. In addition to the aforementioned expert net-
work types, researchers have explored the use of Con-
volutional Neural Network (CNN) as expert [99], [100],
[101], [102], [173]. Moreover, recent endeavors that integrate
Parameter-Efficient Fine-Tuning (PEFT) techniques with
MoE, such as employing Low-Rank Adaptation (LoRA)
[174] as expert, have shown promising results, which are
discussed in Section

4.2.2 Hyperparameters

The scale of sparse MoE models is governed by several
critical hyperparameters that extend beyond those of dense
transformer models. These include (1) the count of experts
per MoE layer, (2) the size of each expert, and (3) the
placement frequency of MoE layers throughout the model.
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The selection of these hyperparameters is crucial, as it pro-
foundly influences model performance and computational
efficiency across various tasks. Optimal hyperparameter
choices are thus contingent upon the specific application
requirements and the constraints of the computational in-
frastructure. Our subsequent analysis, informed by the ex-
emplified models listed in Table 2, explores these hyperpa-
rameter decisions in depth. Meanwhile, we enumerate some
recent open-source models, summarizing their number of
parameters and benchmark performance in Table

Expert Count. Initial investigations employing thou-
sands of experts per layer yielded impressive gains in pre-
training and translation quality [27], [28], [36]. Nonetheless,
the quality of sparse MoE models is disproportionately
reduced under domain shift [103] or when fine-tuning on
diverse task distributions [36]. GLaM [35] adopts a config-
uration of 64 experts, guided by their findings that a 64-
expert setup with top-2 gating strikes an optimal balance
between execution efficiency and performance across zero-
shot, one-shot, and few-shot scenarios. Reflecting this trend,
more recent sparse MoE models [29], [31], [37]], [38], [67],
[68], [84], [104] commonly utilize no more than 64 experts.
Additionally, DeepSpeed-MoE [66] adopts a Pyramid-MoE
approach, positioning MoE layers with a larger expert count
towards the network’s end.

Expert Size. To scale the model effectively, GLaM [35]
prioritizes the expansion of the intermediate hidden dimen-
sion per expert while standardizing the expert count at 64,
a strategy that often requires the implementation of tensor
parallelism across multiple accelerators to maintain compu-
tational efficiency [35], [36], [66]. From this period forward,
MoE models [29], [31]], [37], [67] typically featured larger
expert dimensions. Differently, DeepSeekMoE [33], [69] in-
troduces the concept of fine-grained expert segmentation
by subdividing the intermediate hidden dimension of FFN
expert, while preserving the overall parameter count. Specif-
ically, DeepSeekMoE-145B employs a reduced intermediate
hidden dimension at one-eighth that of its dense FFN coun-
terpart, increasing both the number of experts (from 16 to
128) and the number of active experts (from top-2 to top-
16) by a factor of eight. They believe that this strategy not
only refines the decomposition of knowledge across experts,
facilitating more precise learning, but also enhances the flex-
ibility of expert activation combinations, allowing for more
specialized and targeted knowledge capture. Qwen1.5-MoE

[104] and DBRX [31] adopt a similar fine-grained expert seg-
mentation strategy. Results from LLAMA-MOoE [51], which
allocates dense FFN parameters across non-overlapping
experts to maintain a consistent parameter count, indicate
that activating 4 out of 16 experts with a dimensionality of
deapert = 688 marginally outperforms the activation of 2 out
of 8 experts with degpert = 1376. Furthermore, Parameter
Efficient Expert Retrieval (PEER) [105], an innovative layer
design employing the product key technique [175]] for sparse
retrieval from a vast pool of tiny experts (over a million
single-neuron experts), surpasses dense FFNs and coarse-
grained MoEs in terms of performance-compute trade-off
on language modeling tasks.

Frequency of MoE Layers. Sparse MoE models typically
evolve from dense architectures by interspersing MoE lay-
ers in place of the dense FEN layers at regular intervals.
Although a higher frequency of MoE layers can enlarge the
model size, it also introduces greater system overhead. In
practice, most MoE models features alternate FFN replace-
ment (1/2) with MoE layers [28]], [35], [66], [103]. Neverthe-
less, variations exist, with some models incorporating MoE
layers every fourth layer (1/4) [37], [38] or in every layer
(1/1) [36], [69]. Following the introduction of Mixtral 8x7B
[29], the trend seems to shift towards placing MoE in every
layer of the model, with a common choice of only 8 or 16
experts mirroring the dimensionality of a dense FFN [31],
[67], (691, [104].

Research into the optimal configuration of MoE layers
has been extensive. V-MoE [8] employs MoE in the last
few even-numbered Transformer layers, noting that, de-
spite using fewer MoE layers, the impact on performance
is minimal while computational speed is significantly en-
hanced. DeepSeekMoE-16B/-145B [69] replaces all FFNs
with MoE layers, excluding the first, due to the observed
slower convergence of load balance status in the first layer.
MoE-LLaVA [106], a recently popular open Large Vision-
Language Model (LVLM), demonstrates that alternating
MoE placement yields superior model quality and execu-
tion efficiency on multimodal tasks, compared to every-
layer MoE placement or “First-Half” and ”Second-Half”
configurations. ST-MoE [37] found that adding a dense FFN
adjacent to each MoE layer can improve model quality.
Brainformers [95] introduce a nonuniform architecture that
integrates MoE layers, dense FENs, attention mechanisms,
and a variety of layer normalizations and activation func-
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TABLE 2
Comparative configurations of MoE with FFN experts in selected models. Model differentiation in each reference is achieved by using the model
size, indicated either by total or activated/total parameter count. Both activated and total expert counts encompass the count of shared experts
when utilized. d,;,04c; is the hidden size, dy ¢, is the intermediate size of FFNS, dexpert is the intermediate size of FFN experts, #L is the number
of layers, #H and d},.,4 are the number of attention heads and attention head dimensions.

Rerence  Modets BP0 T g, Tement Advaion Shae Bge
600B 2/2048 1024 8192 dipn 36 16 128 1/2 ReLU 0
GShard [28] 200B 2/2048 1024 8192 dipn 12 16 128 1/2 ReLU 0
(2020) 150B 2/512 1024 8192 defm 36 16 128 1/2 ReLU 0
37B 2/128 1024 8192 dipn 36 16 128 1/2 ReLU 0
7B 1/128 768 2048 dipn 12 12 64 1/2 GEGLU 0
Switch [36) 26B 1/128 1024 2816 dijn 24 16 64 1/2 GEGLU 0
(2021) 395B 1/64 4096 10240  dpp, 24 64 64 1/2 GEGLU 0
1571B 1/2048 2080 6144 dipn 15 32 64 1 ReLU 0
0.1B/1.9B 2/64 768 3072 dipn 12 12 64 1/2 GEGLU 0
GLaM [35] 1.7B/27B 2/64 2048 8192 dipn 24 16 128 1/2 GEGLU 0
(2021) 8B/143B 2/64 4096 16384  dsp, 32 32 128 1/2 GEGLU 0
64B/1.2T 2/64 8192 32768  dsp, 64 128 128 1/2 GEGLU 0
350M/13B 2/128 1024 4dmoder  dspn 24 16 64 1/2 GeLU 0
DeepSpeed-MoE [66] 1.3B/52B 2/128 2048  4dmodel dyn 24 16 128 1/2 GeLU 0
(2022) PR-350M/4B  2/32-2/64 1024 4ddmoder  dppn 24 16 64 1/2, 10L-32E, 2L-64E GeLU 1
PR-1.3B/31B  2/64-2/128 2048  ddmoqer  dfpn 24 16 128  1/2, 10L-64E, 2L-128E GeLU 1
ST-MOoE [37) 0.8B/4.1B 2/32 1024 2816 dijn 27 16 64 1/4, add extra FEN GEGLU 0
(2022) 32B/269B 2/64 5120 20480 dfsn 27 64 128 1/4, add extra FFN GEGLU 0
Mixtral [29] 13B/47B 2/8 4096 14336  dgp, 32 32 128 1 SwiGLU 0
(2023) 39B/141B 2/8 6144 16384  dsp, 56 48 128 1 SwiGLU 0
LLAMA-MoE 1] 3.0B/6.7B 2/16 4096 11008 688 32 32 128 1 SW%GLU 0
(2023) 3.5B/6.7B 4/16 4096 11008 688 32 32 128 1 SwiGLU 0
3.5B/6.7B 2/8 4096 11008 1376 32 32 128 1 SwiGLU 0
DeepSeckMoE [§9] 0.24B/1.89B 8/64 1280 - Ydpy 9 10 128 1 SW%GLU 1
(2024) 2.8B/16.4B 8/66 2048 10944 1408 28 16 128 1, except 1st layer SwiGLU 2
22B/145B 16/132 4096 - %d ffn 62 32 128 1, except 1st layer SwiGLU 4
339M/650M 2/16 768 3072 dipn 12 12 64 1/4 SwiGLU 1

OpenMOoE [38] .

(2024) 2.6B/8.7B 2/32 2048 8192 dipn 24 24 128 1/6 SwiGLU 1
6.8B/34B 2/32 3072 12288 dpp, 32 24 128 1/4 SwiGLU 1
Qwenlé’é’g;E 194] 5 75 /14.38 8/64 2048 5632 1408 24 16 128 1 SwiGLU 4
D]g{o); 5’1 ‘ 36B/132B 4/16 6144 10752 dsp, 40 48 128 1 SwiGLU 0
I aré%; i)ﬁg- 12B/52B 2/16 409 14336 dgp, 32 32 128 Attenlﬁ/ Ozr’leamba SwiGLU 0
Skywogg;‘:)oE [67] 20B/146B 2/16 4608 12288 dsp, 52 36 128 1 SwiGLU 0
Yuan 2('2%;\2)32 [84) 3.7B/40B 2/32 2048 8192 dsp, 24 16 256 1 SwiGLU 0

tions without strict sequential layering, trading architectural
regularity for the flexibility of sub-layer composition. Jamba
[68] integrates the architecture of Mamba [176] by adopting
a 1:7 ratio of attention-to-Mamba layers.

4.2.3 Activation Function

Building upon dense Transformer architectures, sparse MoE
models have adopted a progression of activation functions
paralleling those in leading dense large language models,
including BERT [181], T5 [171]], GPT [2]], LLAMA [161] and
so on. The evolution of activation functions has seen a shift
from ReLU [107] to more advanced options such as GeLU
[108]], GeGLU [109]], and SwiGLU [109]. This trend extends
to other components of MoE models, which now frequently
incorporate Root Mean Square Layer Normalization (RM-
SNorm) [182]], Grouped Query Attention (GQA) [183], and
Rotary Position Embeddings (RoPE) [184].

4.2.4 Shared Expert

DeepSpeed-MoE [66] innovatively introduces the Residual-
MoE architecture, wherein each token is processed by a
fixed expert and another selected through gating, achiev-
ing two experts engagement per layer without increasing
the communication cost beyond that of top-1 gating. This
approach considers the gating-selected MoE expert as an
error-correcting adjunct to the fixed dense FEN. A concep-
tually similar approach, Conditional MoE Routing (CMR), is
employed in NLLB [78], which also combines the outputs of
dense FFN and MoE layers. This paradigm of integrating
fixed FFN with sparse MoE, often referred to as shared
expert and illustrated in Figure 5| (b), has gained traction in
recent language models such as DeepSeekMOoE [69], Open-
MoE [38], Qwen1.5-MoE [104], and MoCLE [46], indicating
its ascension to a mainstream configuration. Instead of using
a single shared expert, DeepSeekMoE [69] and Qwenl.5-
MoE [104] employ multiple shared experts, due to their
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TABLE 3
A collection of recent open-source models detailing activated and total parameter counts, alongside performance benchmarks such as MMLU
[177] (5-shot), GSM8K [178] (5-shot), MATH [179] (4-shot), and HumanEval [180] (0-shot), unless specified otherwise.

Name Time | Affiliation | L2rmS Benchmarks Link

Activ. Total | MMLU GSMS8K MATH HumanEval
Mixtral-8x7B-v0.1 2023.12 Mistral 13B 47B 70.6 58.4, 74.4 (8-shot) 28.4 40.2 https:/ /huggingface.co/mistralai/Mixtral-8x7B-v0.1
DeepSeekMoE-16B-Base | 2024.1 | DeepSeek 3B 16B 45.0 18.8 (8-shot) 4.3 26.8 https:/ /huggingface.co/deepseek-ai/ deepseek-moe-16b-base
Grok-1 2024.3 XAT 86B 314B 73.0 62.9 239 63.2 https:/ / github.com /xai-org/grok-1
Qwen1.5-MoE-A2.7B 2024.3 Alibaba 3B 14B 62.5 61.5 (8-shot) 34.2 https:/ /huggingface.co/Qwen/Qwen1.5-MoE-A2.7B
DBRX Instruct 20243 | Databricks | 36B  132B 737 728 70.1 https:/ /huggingface.co/databricks/dbrx-instruct
Jamba-v0.1 2024.3 | AI21 Labs 12B 52B 67.4 59.9 (3-shot) - 29.3 https:/ /huggingface.co/ai21labs/Jamba-v0.1
Mistral-8x22B-v0.1 2024.4 Mistral 39B 141B 77.8 78.6, 88.4 (8-shot) 41.8 45.1 https:/ /huggingface.co/mistralai/Mixtral-8x22B-v0.1
Arctic Instruct 20244 | Snowflake | 17B  480B 67.3 742 - - https:/ /huggingface.co/Snowflake/snowflake-arctic-instruct
DeepSeek-V2 2024.5 | DeepSeek | 21B  236B 78.5 79.2 (8-shot) 43.6 48.8 https:/ /huggingface.co/deepseek-ai/DeepSeek-V2
DeepSeek-V2-Chat (RL) | 2024.5 | DeepSeek | 21B  236B 778 92.2 (8-shot) 53.9 81.1 https:/ /huggingface.co/deepseek-ai/DeepSeek-V2-Chat
Yuan 2.0-M32 2024.5 IEIT 4B 40B 722 92.7 (8-shot) 55.9 (8-shot) 74.4 https:/ /huggingface.co/IEITYuan/Yuan2-M32
Skywork-MoE-Base 2024.6 Kunlun 22B  146B 774 76.1 319 439 https:/ /huggingface.co/Skywork /Skywork-MoE-Base

fine-grained expert segmentation design. He et al. [111] in-
troduce Partially Dynamic Networks (PAD-Net), iteratively
transforming partial parameters of gating-selected experts
into static parameters (akin to shared experts) based on
their impact on loss values. Zhao et al. [112] introduce
HyperMoE, an innovative MoE framework that integrates
expert-shared and layer-shared hypernetwork to effectively
capture cross-expert and cross-layer information. Addition-
ally, based on the design of shared expert, ScMoE [110]
decouples the MoE process to separately handle the rep-
resentations from preceding layers and integrate them with
the outputs processed by the shared expert of the current
layer, thus improving efficiency by facilitating overlap in
communication and computation. A comparable method to
enhance overlapping is employed in the Dense-MoE hybrid
transformer architecture, as delineated in Snowflake Arctic
[32], which bears resemblance to the LoRA MoE framework
discussed in Section and illustrated in Figure[6] (d).

4.3 Mixture of Parameter-Efficient Experts

LLMs pretrained on generic massive datasets have demon-
strated impressive abilities, enabling their deployment
across diverse tasks [118]]. However, to tailor a pretrained
LLM for a specific downstream task, fine-tuning is essential.
Traditional full fine-tuning, which updates all the parame-
ters of the base model, is computationally intensive, espe-
cially as model sizes continue to grow [185]. To address this
issue, research into parameter-efficient fine-tuning (PEFT)
has emerged, intending to reduce computational demands
during the adaptation of a generic pretrained model to
particular tasks [186]. PEFT methods only update a small
set of parameters while maintaining the rest of the base
model untouched [187]. As an example of PEFT, LoRA [174]
introduces two low-rank matrices to receive incremental
updates associated with the task-specific fine-tuning. Only
the LoRA matrices are updated while the base model is
kept untouched during fine-tuning. These techniques have
achieved state-of-the-art performance across numerous NLP
tasks [174], [188].

Despite these successes, PEFT approaches often strug-
gle with generalizing across multiple tasks due to their
limited scope of trainable parameters and the potential for
catastrophic forgetting [114]. To mitigate these limitations,

a line of mixture of parameter-efficient experts (MoPE)
research has emerged, focusing on integrating the MoE
framework with PEFT [114], [119]. MoPE incorporates the
MoE'’s gating mechanism and multi-expert architecture, but
with each expert constructed using PEFT techniques [189].
The subtle combination boosts PEFT’s performance under
the multi-task scenario [116]. Additionally, by leveraging
PEFT for constructing experts, MoPE operates with fewer
parameters, achieving greater resource efficiency compared
to traditional MoE models [42].

MOoPE harnesses the best of both fields: the task ver-
satility of MoE and the resource efficiency of PEFT [114],
positioning it as a promising area of study that pushes the
boundaries of both fields. In the following subsection, we
will give a taxonomy of MoPE, as depicted in Figure [6]
based on their placement within the Transformer model
architecture. We will then review recent MoPE research,
summarizing the methodologies and contributions.

4.3.1 Feed-Forward Network

Following the conventional MoE structure, a series of inves-
tigations introduce the MoPE framework to the FFN layer
of every Transformer block. During the training process, the
focus is on optimizing the parameter-efficient experts and
the gating mechanism, leaving the rest of the pretrained
model intact. As illustrated in Figure @b), the forward
process under the MoPE framework integrated with FFN
can be expressed as:

FFNJVIOE(X/) _ FFN(X/) + Z X/AW{fn . fo’ﬂ(x/)i’

i=1
©)
(10)

where AW//" and G//"(x) is the parameter-efficient ex-
pert and gating function applied to the FFN layer, respec-
tively.

One of the pioneering studies in this domain, LoORAMoE
[45]], efficiently applies the MoPE structure to FEN. Lo-
RAMOE integrates a few plug-in LoRA experts into the
FEN layer, employing a gating mechanism to orchestrate the
experts’ contributions. Realizing the diversity in data distri-
butions, LORAMOE separates the experts into two distinct
groups: one focuses on learning various downstream tasks,

x" = LayerNorm(SA(x) + x),
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Fig. 6. The illustration of the taxonomy of MoPEs based placement within the Transformer model architecture. (a) exemplifies the integration of
MoPE with the Key and Value modules of the attention mechanism, with applicability extending to Query and Output projection modules. (b)
represents the application of MoPE to the FFN. (c) refers to the MoPE integration at the level of the Transformer block, wherein two distinct groups
of experts are applied to attention and FFN, where separate sets of experts are allocated to both attention and FFN, each regulated by its own
gating mechanism. (d) illustrates a layer-wise integration of MoPE, in which each Transformer layer is regarded as a unified entity with a gating

orchestrating the interplay among experts.

and the other is dedicated to aligning pretrained world
knowledge with human instructions. To ensure that each
group of experts maintains its focus, LORAMOE defines a
localized balancing constraint loss, which preserves the im-
portance of each expert within its group while allowing dif-
ferent groups to concentrate on their respective tasks. This
design enables LoORAMOE to effectively resolve the knowl-
edge forgetting issue and enhance model performance on
downstream tasks. In a similar vein, AdaMix injects
a set of Adapter experts after the FFN layer in each
Transformer block. Adapter tuning is a PEFT method that
integrates a pair of feed-forward up and down projection
matrices into the Transformer block. During fine-tuning,
only the incremental Adapter blocks are updated, with the
rest of the model unchanged. AdaMix utilizes a stochastic
routing policy that randomly selects the projection matrices
during training, maintaining computational costs equivalent
to a single adapter. To minimize service costs during infer-
ence, AdaMix averages the outputs of all the experts.

Taking a different approach, MixDA [113] includes

two training stages to leverage domain-specific knowledge
while preserving learned information. During the first stage,
MixDA only fine-tunes the domain-adapters that work in
parallel with the FFN to acquire domain-specific knowledge
while simultaneously retaining the world knowledge. In the
second stage, MixDA introduces a gating network and task-
adapters on top of the FFN layer for tailoring the model to
specific downstream tasks. This strategy allows for a more
nuanced adaptation to the task at hand. LLaVA-MoLE
extends the application of MoPE to multimodal tasks. It
creates a set of LoRA experts for the FEN layer to handle
inputs from different domains, enhancing the model’s ver-
satility. LLaVA-MoLE adopts a top-1 routing strategy, acti-
vating the most relevant expert based on the router’s output
distribution, thus maintaining computational costs close to
a standard FFN with LoRA. This framework is effective in
addressing data conflicts and consistently surpasses plain-
LoRA baselines across diverse data configurations.

Contrasting with the MoPE implementations we have
discussed, MixLoRA [114] creates a LoRA-MOoE framework
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that closely aligns with the conventional MoE models.
Rather than just plugging in multiple lightweight experts,
MixLoRA fuses LoRA experts with the shared FFN layer.
By leveraging the base weights from a single FFN of
the base model, MixLoRA streamlines the creation of the
MOoPE architecture. Furthermore, MixLoRA implements a
high-throughput framework that significantly reduces token
computation latency and memory usage during both train-
ing and inference, optimizing performance and efficiency.

4.3.2 Attention

A branch of research has been exploring the application of
the MoPE framework with the attention mechanism. These
studies typically involve augmenting the attention mecha-
nism by incorporating a gating network and a set of parallel
experts. The MoPE framework can be applied to the Query,
Key, Value, and Output projection modules, individually or
in various combinations, within the attention mechanism.
During the fine-tuning process, only the parameters of the
activated experts and the gating network are updated, while
the remaining parameters of the model are kept frozen. For
example, as shown in Figure [f[a), the integration of MoPE
with the Key and Value module of the attention mechanism
can be formalized as follows:

QKT + X1 xAWF - GF(x),)
V dhead
(V + Z xAWY? - G¥(x);),

i=1

SAMOE (%) = Softmax(

)

(11)

where Q, K,V represents the Query, Key and Value mod-
ules, respectively. AW* and G*(x) denote the parameter-
efficient expert and its corresponding gating function for the
Key module. Similarly, AW" and G"(x) indicate the expert
and the gating function for the Value module. Here, n is
the number of experts, and dj,cqq is the dimensions in the
Multi-head Attention mechanism.

Recent studies have demonstrated the effectiveness of
extending MoE to the attention layer [73]], [82], [83]. Addi-
tionally, there is a new line of research has focused on the fu-
sion of MoPE with the attention mechanism to enhance the
model’s efficiency and adaptability. For instance, MoELoRA
[47] applies MoE to the attention mechanism in a resource-
efficient manner by leveraging a PEFT method, adopting
LoRA [174] to construct the experts. Specifically, MoELoRA
sets multiple LORA experts to the Query and Value matrices
of the attention mechanism, and utilizes a gating network to
activate the top-k experts related to the specific tasks during
both training and inference phases. To alleviate routing
randomness, MoELoRA employs a contrastive learning loss
to control the training of experts. The contrastive learning
loss is designed to accentuate the differences in output
distributions between experts, thereby encouraging them to
capture diverse features relevant to the downstream tasks.
MoELoRA offers a solution for flexibly combining various
computational modules tailored to downstream tasks.

Another framework, MoCLE [46], aims to resolve task
conflicts that arise from the diversity of training tasks of
different sources and formats. MoCLE utilizes a clustering
model to categorize different tasks and then leverages a
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router to direct the clustered input to LoRA experts in-
serted into the Query and Value modules of the attention
mechanism. These LoRA experts contain a group of mul-
tiple task experts and a universal expert. Each task expert
is dedicated to a particular task to reduce task conflicts,
while the universal expert, trained on all tasks, helps to
maintain model generalization. SiRA [116] introduces sev-
eral lightweight LoRA adapters as experts, along with a
top-k gating mechanism. To mitigate load imbalance and
over-fitting issues, SiRA incorporates a capacity constraint
that limits the number of tokens each expert can process.
Additionally, it employs an auxiliary loss to promote load
balancing and an expert dropout mechanism to equalize
the gating distribution. SiRA provides an efficient and fine-
grained approach to improving the quality of LoRA.

4.3.3 Transformer Block

The integration of MoPE with the Transformer architecture
has received substantial attention in recent research. This
approach involves creating two groups of experts: one for
the attention mechanism, and another for the FFN within
the Transformer block. Each group is regulated by its gating
mechanism to control the activation of the experts. As ex-
hibited in Figure [6|c), the forward process under the MoPE
framework integrated with the Transformer block can be
denoted as:

y = LayerNorm(x' + FENM°E (x')),
x’ = LayerNorm(SAM°F (x) 4 x).

(12)
(13)

MoV [42] is one of the notable attempts that combine MoPE
with the Transformer block to pursue parameter efficiency.
Utilizing the PEFT method, (IA)® [188], MoV introduces
tunable vectors that re-scale the Key and Value modules in
the attention mechanism, as well as the activation within the
FEN. By substituting conventional experts with (IA)? vec-
tors and updating only these lightweight experts and their
corresponding gating during fine-tuning, MoV significantly
reduces the computational burden associated with gradient
calculations and lessens the memory footprint required for
model storage. Similarly, MoLORA [42] employs multiple
LoRA experts to the attention and FEN blocks, outperform-
ing the standard LoRA approach. UniPELT [117] proposed
a hybrid framework that integrates three representative
PEFT methods as experts, namely Adapter [190], Prefix-
tuning [191], and LoRA [174]. Prefix-tuning is a method
that freezes the base model and optimizes the continuous
task-specific vectors prepended to the input of the attention.
Within the UniPELT framework, LoRA matrices are applied
to the weight matrices of Query and Key in the attention
mechanism, Prefix vectors are added to the Key and Value
modules, and the Adapter block is inserted after the FFN
layer. UniPELT leverages different gating mechanisms to
dynamically activate the experts, efficiently finding the ap-
proaches that best suit the given task.

Further broadening the scope of the LoORA-MoE frame-
work, Omni-SMoLA [43] extends the MoPE with three sets
of LoRA experts, each tailored to handle text tokens, visual
tokens, and multimodal tokens, respectively. The special-
ization enables the architecture to enhance performance
across various vision-and-language tasks. In the context of
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MOoPE research, the number of experts emerges as a critical
hyperparameter influencing downstream task performance
[42], [48]. Additionally, the use of many experts may lead to
redundancy [192]]. MoLA [118] is one of the pioneering work
that explores the expert allocation issue. It proposes a LoRA-
MOoE framework with a Layer-wise Expert Allocation, which
enables the flexible employment of varying numbers of
experts across different layers. The expert allocation strategy
proposed by MoLA further improves the effectiveness of
the LoRA-MoE framework. In the specialized field of med-
ical applications, MOELoRA [119] tackles the challenges of
task variety and high adaptation cost. It integrates LoRA
experts and task-motivated gate functions into the attention
and FEN of each layer. The gating utilizes task identity to
modulate expert contributions, creating unique parameter
sets tailored to individual tasks. The design of MOELoRA
combines the strengths of both MoE and LoRA, strength-
ening LLM’s capability in medical domains. Liu ef al. [[120]
design a novel framework, named Intuition-MoR1E, which
leverages the inherent semantic clustering of instances to
emulate cognitive processes in the human brain for multi-
tasking purposes. This framework provides implicit guid-
ance to the gating mechanism, thereby enhancing feature
allocation. Furthermore, they introduce a cutting-edge rank-
1 expert architecture. This architecture advances beyond the
conventional 1-1 mapping of two weight matrices Wf;p and
Wi wn in LORA expert composition, facilitating a flexible
combination of any Wip with any W7 to form an expert.
They implement MoE in the transformer blocks, specifically
targeting the Query, Key, Value, and FFN modules. Xu et al.
[121]] present Multiple-Tasks Embedded LoRA (MeteoRA),
a scalable and efficient framework that embeds multiple
task-specific LoRA adapters into the base LLM using a full-
mode MoE architecture. This framework incorporates cus-
tom GPU kernel operators to accelerate LORA computation
while maintaining memory overhead.

4.3.4 Every Layer

There has been considerable interest in incorporating MoPE
into fundamental components such as the attention, FFN,
and Transformer block. Existing work often approaches the
attention mechanism and FEN independently, employing
distinct gating mechanisms to modulate them separately.
Rather than treating these elements isolated, there is a
new direction that considers the Transformer layer as an
integrated whole. This shift in perspective allows for the ap-
plication of the MoPE framework to the entire Transformer
layer, capturing the combined dynamics of the attention and
FFN within a unified approach. As illustrated in Figurel6[d),
the forward process under the MoPE framework integrated
with every layer is as follows:

n
y = LayerNorm(x’ + FFN(x')) + ZxAWﬁayw - GlYer (x);,

i=1

(14)

x" = LayerNorm(SA(x) + x), (15)

where AW!%er and Gl9¢"(x) is the parameter-efficient
expert and gating function applied to the entire layer, re-
spectively.
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In this context, the approach presented by MoLE [48]
provides innovative insights. MoLE identifies that various
layers within LoRA exhibit unique features. In response
to this finding, MoLE pursues to enhance the composition
effect of trained LoRAs by dynamically adjusting the layer-
specific weights according to the desired objective. This
is achieved by integrating a set of trained LoRAs and a
gating function into each layer. MoLE treats each layer
of trained LoRAs as an individual expert and only trains
the gating to learn the optimal composition weights for a
specified domain. This dynamic linear composition strategy
significantly extends the versatility of LoRA, enabling its
application across a broader spectrum of practical scenarios.

4.4 Training & Inference Scheme

The architectural advancements of Mixture-of-Experts
(MoE) models have been complemented by extensive re-
search into training and inference schemes, with the objec-
tive of optimizing both computational efficiency and model
quality.

Original Training & Inference Scheme. Initial training
methodologies, as established in seminal works [8], [27],
[28], [36], [37], involve constructing an MoE model and
training it from scratch, with inference directly following
the model configurations of training.

The advent of MoE models has introduced novel
paradigms for training and inference, enabling a flexible
approach that synergizes the strengths of dense and sparse
models while mitigating their respective weaknesses. As
depicted in Figure [/| we divide the emerging schemes
into three distinct categories: Dense-to-Sparse, which entails
initiating with dense model training and progressively tran-
sitioning to a sparse MoE configuration [49], [62], [64], [67],
[106], [122]], [123], [124]; Sparse-to-Dense, which involves
degrading a sparse MoE model to a dense form that is
more conducive to hardware implementation for inference
[52], [53], [127]; and Expert Models Merging, a process of
integrating multiple pretrained dense expert models into a
unified MoE model [54], [129], [130].

4.4.1 Dense-to-Sparse

To mitigate the training overhead associated with vision
MoE transformer models, the Residual Mixture-of-Experts
(RMoE) approach [122] commences with training a dense,
non-MoE model on the upstream task, followed by an
efficient fine-tuning stage to transition into a MoE model.
This process reveals that directly inheriting expert weights
from a pretrained non-MoE model’s FFN can lead to sub-
optimal performance, necessitating an alignment between
the MoE and FFN outputs during the fine-tuning phase.
Similarly, Dua et al. [[123] advocate for initially training a
dense model, subsequently introducing sparsity by incor-
porating a randomly initialized gating module, and further
training the model’s feed-forward layers under sparsity con-
ditions—specifically, by updating the weights locally within
each compute node rather than averaging gradients across
nodes.

Nie et al. [62] present EvoMoE, an efficient end-to-end
MOoE training framework. EvoMoE decouples the joint learn-
ing of experts and the sparse gate, emphasizing the acqui-
sition of foundational knowledge through a single expert at
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Fig. 7. Schematic representation of training and inference schemes related to MoE. It provides an abstracted view of model transition, without
focusing specific model states during training or inference. Subfigure (a) depicts the original scheme without architectural transformation. Subfigure
(b) depicts the merging of distinct expert models, exemplified by BTX . Subfigure (c) depicts the transition from a dense model to a sparse
model. Subfigure (d) depicts the inverse process, where a sparse model is converted to a dense model.

the inception of training. Subsequently, it spawns multiple
diverse experts and advances the diversification of experts
by training with the novel Dense-to-Sparse gate (DTS-Gate).
The DTS-Gate initially operates as a dense activation of all
experts, then progressively and adaptively constricting to
route tokens to a reduced number of experts. A similar
strategy is employed in the development of the MoE-LLaVA
large vision-language model, which commences with
a dense model, subsequently multiplies the feed-forward
network (FFN) to create expert initializations, and proceeds
to train exclusively the MoE layers, while keeping the re-
maining model components static.

Komatsuzaki ef al. highlight the efficiency of sparse
models in terms of quality and computational cost, yet
acknowledge their significant data requirements and the
expense of training from scratch at scale. To address this,
they introduce a scheme termed “sparse upcycling,” which
leverages pre-existing training investments by initializing
a sparsely activated MoE model from a pretrained dense
checkpoint. This involves transferring all parameters—and
optionally their associated optimizer states—from the orig-
inal checkpoint, with the exception of the MoE gating
network parameters, which are not present in the dense
model. Notably, the new MoE layers are populated with
identical copies of the original dense model’s FEN layers,
and the gating mechanism weights are initialized randomly.
A critical obstacle in model upcycling is the initial perfor-
mance decrease resulting from structural modifications to
a trained network. To mitigate this performance regression
during upcycling, the researchers propose normalizing the

gating scores for each input token to 1, which are used to
combine the outputs of multiple experts. This approach is
grounded in the notion that, in the dense model, each token
was processed by a singular “expert” FEN. While this nor-
malization proved beneficial for upcycled vision models, it
was found to be detrimental to the performance of upcycled
language models. In the first introduction of sparse MoE
by [27], the softmax function was applied to the selected
top-k gating values, which normalizes the combination gat-
ing scores to 1, formulated as softmax(TopK(g(x; ®), k)).
However, subsequent LLMs [28], [36], with MoE have
evolved to apply the softmax function across all potential
gating values before isolating the top-k subset, formulated
as TopK (softmax(g(x; ©)), k).

Building upon the sparse upcycling technique [49], the
Skywork-MoE model [67] leverages the foundational ar-
chitecture of its pre-developed Skywork-13B model [193],
adopting its dense checkpoints as a foundation for initial
states. Their empirical evidence indicates that the deci-
sion between sparse upcycling and training from scratch
should be informed by both the performance of available
dense checkpoints and the MoE-specific training resources,
as models trained from scratch consistently surpass their
upcycled counterparts in performance. The study observes a
decline in average expert similarity throughout the training
of upcycled MoEs, suggesting a diversification of experts
emerges during the process. Importantly, the Skywork-MoE
analysis reveals that models with greater expert similarity
tend to underperform, establishing expert similarity as a
potential diagnostic tool during MoE training for upcycled
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models. Conversely, the expert similarity in models trained
from scratch remains minimal, implying that non-uniform
expert initialization promotes diversification.

Pan et al. [64] posit that the parameter inefficiency
observed in MoE models stems from conventional sparse
training methodologies, where only a selected group of
experts is engaged and refined for each input token. To
counteract this, they introduce a hybrid framework for MoE
models, denoted as DS-MoE, which integrates dense train-
ing (activating all the experts) with sparse inference (sparse
expert activation) to achieve higher computation and pa-
rameter efficiency. Notably, DS-MoE maintains activation
for all self-attention experts (MoA [82]) during inference but
selectively activates FEN experts, reflecting the observation
that self-attention layers manifest considerably less sparsity
compared to FEN layers.

Chen et al. [124] introduce SMoE-Dropout, an inno-
vative plug-and-play training framework, which initially
modularizes the FFN into a sequence of smaller FFNs then
employs a random policy parameterized by fixed weights
to route token to k experts with the largest response.
Progressively, the framework activates an increasing num-
ber of experts, preventing overfitting to the amounts of
used network capacity during training. MoEfication [50]
investigates various strategies for expert construction in T5
models, including random splitting, parameter clustering,
and building co-activation graphs. MoEBERT [125] imple-
ments an importance-based method for adapting FFNs into
experts within BERT models. LLaMA-MoE [51] conducts
an extensive examination of different expert construction
methods, ultimately proposing a straightforward random
division approach that partitions the parameters of FFNs
into non-overlapping experts. Emergent MoEs (EMoE) [126]
splits certain FEN layers of the original model into MoE
layers with clustering-based experts construction and avg-
k gating, which ameliorates the parameter updating during
fine-tuning and can even be abandoned afterward to pre-
serve the original model architecture.

4.4.2 Sparse-to-Dense

Switch Transformer [36] studies the distillation of large
sparse models into smaller dense counterparts to achieve
parameter efficiency for deployment. The study reports
that initializing the corresponding weights of dense model
from non-expert layers of MoE model modestly enhances
performance, facilitated by the consistent dimension of non-
expert layers. Furthermore, an improvement in distillation is
observed when employing a mixture of 0.25 for the teacher
probabilities and 0.75 for the ground truth label. Leveraging
both methods, the distillation preserves approximately 30%
of the sparse model’s quality gains using only about 5% of
the parameters. Similarly, Xue et al. [52]] address the chal-
lenges of overfitting, deployment difficulty, and hardware
constraints associated with sparse MoE models. Drawing
inspiration from human learning paradigms, they propose
a new concept referred to as ‘knowledge integration” aimed
at creating a dense student model (OneS) that encapsulates
the expertise of a sparse MoE model. Their framework
first implements knowledge gathering, explored through
a variety of methods such as summation, averaging, top-
k Knowledge Gathering, and their Singular Value Decom-
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position Knowledge Gathering. Then, they refine the dense
student model by knowledge distillation to mitigate noise
introduced by the knowledge gathering. The OneS model
retains 61.7% of the MoE'’s benefits on ImageNet and 88.2%
on NLP datasets. Further investigations into MoE model
distillation are also conducted by other researchers [66], [78].

Chen et al. [53] highlight the challenges associated with
deploying MoE models on resource-constrained platforms,
such as cloud or mobile environments. Observing that only
a fraction of experts contribute significantly to MoE fine-
tuning and inference, they propose a method for the pro-
gressive elimination of non-essential experts. This approach
retains the advantages of MoE while simplifying the model
into a single-expert dense structure for the target down-
stream task. Similarly, ModuleFormer [73] applies a compa-
rable pruning technique, removing task-unrelated experts
for a lightweight deployment. Huang et al. [127] separate
the training and inference stages for Vision Transformers
(ViTs). They substitute certain FFNs in the ViT with custom-
designed, efficient MoEs during training. These MoEs assign
tokens to experts using a random uniform partition and
incorporate Experts Weights Averaging (EWA) on these
MOoEs at the end of each iteration. After training, the MoEs
are converted back to FFNs through averaging of expert
weights, thus reverting the model to its original dense ViT
for inference. He et al. [[128] propose a unified framework
for MoE model compression, encompassing two strategies:
Expert Slimming, which compresses individual experts via
pruning and quantization, and Expert Trimming, which
structurally removes unimportant experts.

4.4.3 Expert Models Merging

Li et al. [129] introduce the Branch-Train-Merge (BTM) al-
gorithm, a method for the communication-efficient training
of language models (LMs). BTM independently trains a set
of expert LMs (ELMs), each tailored to a specific domain
within the training corpus, such as scientific or legal text.
These ELMs, which operate without shared parameters,
can be ensembled or parameter-averaged at inference to
coalesce into a singular LM. Expanding on this concept,
Sukhbaatar et al. [54] present Branch-Train-MiX (BTX), de-
signed to combine the strengths of BTM and Mixture-of-
Experts while addressing their respective limitations. BTX
maintains separate training for multiple expert LLMs, akin
to BTM, but subsequently integrates these experts within
a unified MoE model. Specifically, it consolidates the FFNs
from all ELMs into a singular MoE module at each layer,
with a gating network determining the appropriate FFN
expert for each token. Other components, such as the self-
attention layers from ELMs, are merged by averaging their
weights. The resulting model then undergoes MoE fine-
tuning on all the combined data to enable the gate to
effectively mix the FFN experts.

Wang et al. [130] point out that while the emergence of
Foundation Models made it easier to obtain expert models
tailored to specific tasks, the heterogeneity of data at test
time necessitates more than a single expert. Accordingly,
they explore the Fusion of Experts (FoE) challenge, which
aims to integrate outputs from expert models that provide
diverse but complementary insights into the data distribu-
tion, formulating it as an instance of supervised learning.
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Fig. 8. Schematic depiction of diverse parallel strategies for MoE. For clarity and conciseness, this illustration omits some All-to-All, All-Reduce,
Point-to-Point communication within parallelism, and Normalization, Encode, Decode, Gate in subfigures (b), (c), and (d).

4.5 Derivatives

Building upon the principles of algorithm design high-
lighted earlier, numerous studies have drawn inspiration
from the Mixture of Experts (MoE) framework, proposing
a range of MoE variants. We categorize these innovative
models as derivatives of the MoE. For instance, Xue et
al. [58] introduced WideNet, an approach that increases
model width by substituting the feed-forward network
(FEN) with an MoE layer while maintaining shared trainable
parameters across Transformer layers, except for the nor-
malization layers. Subsequently, Tan et al. [59] presented the
Sparse Universal Transformer (SUT), an efficient enhance-
ment of the Universal Transformer, which is characterized
by parameter-sharing across its layers. SUT incorporates a
Sparse Mixture of Experts and a novel stick-breaking-based
dynamic halting mechanism, thus reducing computational
complexity without compromising parameter efficiency or
generalization capabilities. Moreover, the traditional MoE
models often employ discrete matching between experts
and tokens [27], [28], [35], [36], [37], [94], [103], a practice
associated with training instability and uneven expert uti-
lization. To address these challenges, Antoniak et al. [56]
innovatively proposes the Mixture of Tokens (MoT), which
blends tokens from different examples before presenting
them to the experts. Thus, MoT enables the model to benefit
from a wider array of token-expert combinations.

Recently, the MoE’s principle of assigning specialized
knowledge to individual experts has been adapted to
parameter-efficient fine-tuning (PEFT). Choi et al. [60] pro-
pose the sparse mixture-of-prompts (SMoP), a method that
utilizes a gating mechanism to train multiple short soft
prompts, each adept at processing distinct subsets of data.
This addresses the inefficiencies encountered with long soft
prompts during prompt tuning. The MoE framework has
also been integrated into lifelong learning (LLL), which
seeks to facilitate continuous learning from an ongoing
stream of data. The Lifelong-MoE model [55] dynamically

expands model capacity by adding experts with regularized
pretraining, effectively mitigating the issue of catastrophic
forgetting [194] typically associated with straightforward
fine-tuning. In a recent development, the MoE concept of
conditional computation has been further refined to op-
timize resource allocation in transformer-based language
models (LMs). The Mixture-of-Depths (MoD) [57] employs
a binary gating network to decide whether a token should
be processed by a given Transformer layer. As a result,
MoD transformers can dynamically allocate computational
resources (FLOPs) to specific sequence positions, achieving
a lower overall FLOP footprint compared to vanilla or MoE-
based transformers.

In summary, the evolution of MoE derivatives reveals a
trend where models either integrate the conditional compu-
tation aspect of the gating mechanism or merge the MoE
structure with various tasks achieved by assigning special-
ized knowledge to individual experts, such as aforemen-
tioned prompt tuning [60] and lifelong learning [55] with
MoE, demonstrating the versatility and adaptability of the
MOoE architecture across different domains.

5 SYSTEM DESIGN OF MIXTURE OF EXPERTS

While Mixture of Experts (MoE) has been increasingly lever-
aged to enhance the capabilities of large language models,
its adoption introduces new challenges to existing training
and inference systems, due to the inherently sparse and
dynamic nature of its computational workload. GShard
[28] introduces expert parallelism that implements parallel
gating and expert computation by dispatching partitioned
local tokens with load balancing limit of expert capacity.
Since then, expert parallelism has emerged as a fundamental
strategy to facilitate efficient scaling of MoE models. This
approach can be viewed as an augmentation of data paral-
lelism [197], [198], [199], where each expert in an MoE layer
is assigned to a distinct device, while all non-expert layers
are duplicated across devices. As depicted in Figure a), the
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TABLE 4
Comparative overview of the open-source MoE system frameworks, arranged chronologically by reference publication date from newest to oldest.
We give the count of GitHub stars as of June 2024.

Reference Affiliation - Optlmlzah(-)ns - Link Star
Computation Communication Storage
OpenMoE [38] Colossal-Al v v https:/ / github.com/hpcaitech/Colossal Al 38K
ScatterMoE [140] Mila Quebec v https:/ / github.com/shawntan/scattermoe 140
Megablocks [139] Stanford University v https:/ /github.com/stanford-futuredata/megablocks 11K
Tutel [132] Microsoft v v https:/ / github.com/microsoft/ tutel 672
SE-MoE [133] Baidu v v v https:/ /github.com/PaddlePaddle/Paddle 21K
HetuMoE [136] Peking University v v https:/ /github.com/PKU-DAIR /Hetu 236
Deepspeed-MoE [66] Microsoft v v https:/ / github.com/microsoft/DeepSpeed 33K
FastMOoE [131] Tsinghua University v v https:/ /github.com/laekov /fastmoe 14K
Fairseq [103], [195] Meta https:/ /github.com/facebookresearch/fairseq/tree/moe, 29K
Mesh-TensorFlow [[196] | Google https:/ /github.com/tensorflow /mesh 1.6K

process flow of expert parallelism consists of the following
sequential operations: gate routing, input encode, All-to-
All dispatch, expert computation, All-to-All combine, and
output decode. In general, the input size for general matrix
multiply (GEMM) needs to be large enough to achieve
optimal utilization and throughput that computing device
necessitates. Therefore, input encode is employed to aggre-
gate the input tokens of a same expert into a contiguous
memory space, as determined by the token-expert mapping
from gate routing. Subsequently, the All-to-All dispatch is
employed to send the input tokens to their corresponding
experts across the distributed devices. Following the local-
ized computation by the experts, the inverse process—All-
to-All combine and output decode—reinstates the original
data layout according to the gating indices.

Furthermore, the synergy of expert parallelism [36],
[132], [135], [200], [201] with other existing parallel strategies
(tensor [202], [203]], [204], pipeline [205], [206], [207], se-
quence parallelism [208]], [209], [210]) has been investigated
to enhance the scalability and efficiency of MoE models in
large-scale distributed environments. As shown in Figure
we illustrate several examples of hybrid parallelism, encom-
passing (b) data + expert + tensor parallelism [36], [66],
[132], [135], [138], (c) data + expert + pipeline parallelism
[132], [134], [138], and (d) expert + tensor parallelism [67]. It
is imperative to recognize that the choice of distributed par-
allelism strategies influences a complex interplay between
computation efficiency, communication overhead, memory
occupation, potentially affected by various hardware con-
figurations. Consequently, the deployment strategies for
practical applications necessitate nuanced trade-offs and
bespoke designs tailored to specific use-case scenarios.

In the subsequent discussion, we delineate the chal-
lenges introduced by MoE models from computation, com-
munication, and storage aspects, concurrently reviewing
existing research addressing these issues. Table ] shows an
overview of the open-source MoE frameworks.

5.1

Despite MoE is designed to scale model parameters effi-
ciently without increasing computational demand, it en-
counters challenges pertaining to computational efficiency.
One concern is the imbalance of computational load across
distributed devices employing expert parallelism, which

Computation

incurs significant synchronization overhead as the system
awaits the processing completion of the most heavily loaded
expert. Such issues are typically addressed through algorith-
mic strategies, such as optimized gating mechanisms and
expert capacity adjustments, as discussed in Section
Besides, solutions like SE-MoE [133], Tutel [132], FlexMoE
[137] and SmartMoE [138] have introduced dynamic expert
placement strategies to distribute the workload as equally as
possible among devices. Additionally, FasterMoE [134] has
implemented a novel dynamic shadowed expert strategy,
replicating experts on multiple devices to mitigate severe
load imbalance. These model placement related strategies
impact both computation and communication efficiency.

Another concern is that MoE introduces additional com-
putational overhead through operations including gate rout-
ing, input encode, and output decode. Unlike expert com-
putations, which mirror operations in dense models and
benefit from extensive optimization on prevalent hardware
such as GPUs, these MoE operations are characterized by
redundant computation and memory movement, resulting
in low efficiency on computing devices. Therefore, recent
studies like DeepSpeed-MoE [66], FastMoE [131], HetuMoE
[136] and Tutel [132] have focused on the development
of tailored GPU kernels to enhance the efficiency of MoE
operations.

In contexts where multiple experts are deployed on a sin-
gle GPU device, MegaBlocks [139] reformulates MoE com-
putation in terms of block-sparse operations, developing
specialized block-sparse GPU kernels that efficiently handle
the dynamic workloads without dropping tokens. Zheng
et al. [141] propose PIT, a deep-learning compiler tailored
for dynamic sparsity of MoE, which can find feasible PIT
rules for all the operators within a model and generate
optimized GPU kernels for them. PIT employs a novel
tiling mechanism, utilizing the Permutation Invariant Trans-
formation (PIT)—a mathematically proven property—to
transform multiple sparsely located micro-tiles into a GPU-
efficient dense tile without changing the computation re-
sults, thereby achieving both high GPU utilization and
low coverage waste. Despite these advancements, Tan et al.
[140] highlight remaining optimization potential within cur-
rent MoE frameworks such as MegaBlocks and PIT, which
commence with an initial scatter-to-group data copy that
increases memory footprint and requires a translation of the
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MOoE problem into the sparse matrix format. Although this
translation contributes minimally to computation overhead,
it imposes limitations on the transparency and adaptability
of extending MegaBlocks to modules beyond the FFN. To
address these issues, Tan et al. [140] propose ScatterMoE, a
MoE implementation designed to effectively minimize the
memory footprint. ScatterMoE leverages ParallelLinear, a
linear module capable of executing grouped matrix opera-
tions on scattered groups. This approach yields intermediate
representations (e.g., the hidden states of an SMoE MLP)
that are directly accessible as standard PyTorch tensors,
allowing for easy extensions of MoE methods to other types
of expert modules.

5.2 Communication

In expert parallelism, the quadruple invocation of All-to-
All communication during both the forward and back-
ward propagation phases within each MoE layer causes
a significant overhead, even emerging as the primary
constraint on efficiency. The All-to-All communication
paradigm encompasses both intra-node (via PCle, pre-4th-
generation NVLink) and inter-node (Ethernet, Infiniband,
4th-generation NVLink) communication channels. The effi-
ciency of such communication is contingent upon a mul-
titude of factors, including the heterogeneity of channel
bandwidths, network topology, and the collective commu-
nication algorithms. Moreover, load imbalances intrinsic to
MoE may exacerbate these inefficiencies by inducing syn-
chronization delays.

To optimize the use of high intra-node bandwidth and
low inter-node bandwidth, DeepSpeed-MoE [66], HetuMoE
[136] and ScheMOoE [147] have introduced hierarchical All-
to-All communication strategies that enhance intra-node
process and reduce inter-node data exchanges. Besides,
FasterMoE [134], TA-MoE [143] and SE-MoE [133] have
introduced topology-aware routing strategies aimed at mit-
igating cross-node expert selection, thereby reducing inter-
node communication burdens. Additionally, ExFlow [142]
exploits expert affinity, anticipating expert allocation across
layers to maximize the retention of token processing within
local GPU confines. The strategic allocation of experts to
minimize network traffic and leverage high-bandwidth con-
nections is a prevalent approach in distributed MoE system
[66], [67], [135]. Moreover, this is often integrated with the
placement design of non-expert modules to optimize overall
system performance.

Given the concurrent feature of communication and
computation, pipelining [205], [206], [207] is commonly em-
ployed to overlap their execution, thereby reducing the total
time cost. This technique, which is integrated in systems
such as Tutel [132], FasterMoE [134], PipeMoE [146] and
MPipeMoE [144], orchestrates overlapping between All-
to-All communication and expert computation. Notably,
Lancet [145] underscores the inherent constraints of these
pipelining methods, particularly the bounded duration for
which expert computation and communication can over-
lap. To address this limitation, Lancet partitions non-MoE
computations and integrates them into the pipeline during
forward pass, and strategically schedules gradient weight
computations to augment overlap in the backward pass.
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Punniyamurthy et al. [148] also emphasize the challenge
posed by collective communications, which are often on
the critical path, noting the difficulty of hiding their latency
by overlapping kernel-granular communication and com-
putation due to the absence of independent computation.
Their solution involves fusing computation with dependent
collective communication by leveraging GPU’s massive par-
allelism and GPU-initiated communication.

Aiming to break the inherent dependencies and thereby
extend the overlap duration, ScMoE [110] restructures the
MOoE architecture to simultaneously process representations
from preceding layers while engaging with current-layer
representations. This decoupling of communication depen-
dencies facilitates substantial, and in certain cases, com-
plete overlapping between communication and computa-
tion. Snowflake Arctic [32] employs a similar design, utiliz-
ing a Dense-MOoE hybrid transformer architecture to overlap
communication with computation.

5.3 Storage

The ever-increasing parameters in MoE models exacerbate
the constraints posed by memory capacity in compute
devices, a challenge already pronounced in dense mod-
els. While expert parallelism offers a mitigation strategy
through the distribution of experts across multiple devices,
individual devices may still struggle to accommodate nu-
merous experts, particularly in inference contexts where
device capacity—such as that of edge devices (PCs, smart-
phones, IoTs)—is inherently more restricted.

Considering the hierarchical storage pyramid, solutions
like SE-MoE [133], Pre-gated MoE [149]], and EdgeMOoE
[150] selectively retain only essential non-expert parameters
and the active expert parameters within the GPU’s High-
Bandwidth Memory (HBM), offloading inactive expert pa-
rameters to CPU memory or SSDs. These patterns incur
additional overhead from data transfer across the storage
hierarchy, thus they integrate expert selection forecasting
and expert parameter prefetching techniques to overlap
parameter access with computation.

In addition, MPipeMoE [144] introduces a strategy to
reduce the memory overhead associated with activations
and temporary buffers. This is achieved by sharing buffer
for various partitions of tensors, while leveraging recompu-
tation/communication and CPU offloading to recover the
requisite activations in the backward pass.

6 APPLICATIONS OF MIXTURE OF EXPERTS

In the current landscape dominated by Transformer-based
large language models (LLMs), the mixture of experts (MoE)
paradigm offers a compelling method to significantly ex-
pand model capacity while avoiding a corresponding surge
in computational demands during training and inference
phases. These models have been instrumental in enhancing
the performance of LLMs across a spectrum of downstream
tasks, with some applications achieving results that eclipse
human performance [29], [34], [69]. Rumors suggest that the
formidable GPT-4 may employ an MoE architecture with
an array of 8 x 220B experts, trained on diverse datasets
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and tasks, and utilizing a 16-iteration inference process D
Given these, MoE has garnered widespread adoption across
fields such as natural language processing, computer vision,
recommender systems, and multimodal applications. The
essence of these applications lies in leveraging conditional
computation to significantly boost the number of model
parameters, thereby augmenting model capacities with a
fixed computational cost, or implementing dynamic expert
selection through gating mechanisms for efficient multi-task
learning. In the following, we explore several representative
applications of MoE in various domains to provide an over-
all understanding of how MoE can be utilized to specific
tasks.

Natural Language Processing. The integration of MoE
architectures with LLMs has unlocked extraordinary capa-
bilities in a range of natural language understanding (NLU)
and generation (NLG) tasks, including machine translation
[27], [78]], open-domain question answering [35], [103]], code
generation [29], [67], [69], [164], and mathematical problem-
solving [29], [33], [69], [164]. The methods of integrating
MoE into LLMs have been thoroughly discussed and an-
alyzed in Section 4] (algorithm design) and Section 5| (system
design), and will not be reiterated in depth here. Beyond
augmenting LLM capabilities, MoE has been instrumental
in enhancing LLM’s safety while preserving its usability.
A notable implementation is MoGU [151], which leverages
dynamic routing to balance the contribution between usable
LLM and safe LLM.

Computer Vision. The great success of sparsely-gated
Mixture of Experts networks (MoE) in NLP has inspired
their application in computer vision. For example, Riquelme
et al. [8] introduced Vision MoE (V-MoE), which incorpo-
rates a sparsely activated mixture of MLPs into selected
ViT [211] blocks. In image recognition tasks, V-MoE rivals
the performance of state-of-the-art networks while requiring
substantially less computational power during inference.
This demonstrates the potential of MoE to discern distinct
image semantics through specialized experts. Hwang et al.
[132] develop Tutel, a scalable system design and implemen-
tation for MoE with dynamic parallelism and pipelining,
which they demonstrate with SwinV2-MoE, built upon Swin
Transformer V2 [9]. Moreover, Zhang et al. [100] explore ad-
versarial robustness in CNN-based MoE models, proposing
a novel router-expert alternating adversarial training frame-
work called ADVMOE. In most recent work, Chowdhury et
al. [99] introduce the concept of patch-level routing in MoE
(pPMoOE) that segments each input image into n patches (or
tokens) and allocates [ patches (I < n) to each expert for
processing through prioritized routing to enhance efficiency.

Recommender System. Recommender systems are
quintessential in various large-scale applications where they
are required to balance and optimize multiple objectives
simultaneously [212]. A prime example is in the domain
of movie recommendations, where the aim is not only to
suggest movie that align with users” immediate preferences
but also to ensure subsequent user satisfaction for the se-
lected movies [61]. The effectiveness of multi-task models
hinges on the intricate interplay between task-specific goals
and the relationships between tasks. Consequently, under-

1. https:/ /x.com/soumithchintala/status/1671267150101721090
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standing the trade-offs inherent in these relationships is
crucial. Mixture-of-experts (MoE) models with gating mech-
anisms have emerged as a popular paradigm for tackling
the complexities of multi-task learning in recommender
systems. Ma et al. [61] introduce the multi-gate mixture-of-
experts (MMOE) approach, which capitalizes on the concept
of shared expert submodels across all tasks, guided by a
gating network tailored to each individual task. Address-
ing the “seesaw phenomenon” where the improvement of
one task’s performance can detrimentally affect another
is another challenge in multi-task learning. To counteract
this, Tang et al. [152] propose the Progressive Layered Ex-
traction (PLE) model for personalized recommendations.
PLE distinctly segregates shared and task-specific compo-
nents and employs a progressive routing mechanism to
incrementally extract and refine the semantic knowledge,
thereby enhancing the efficacy of joint representation learn-
ing and the routing of information across tasks. Recently,
in the pursuit of capturing both the long-term and short-
term user preferences that are particularly salient in se-
quential recommendation scenarios, a novel method named
AdaMCT [153] has been proposed. AdaMCT utilizes layer-
aware adaptive mixture units to dynamically blend CNN
and Transformer experts, thereby tailoring the recommenda-
tions to individual user patterns. Zhang et al. [154] present
M30oE, an adaptive Multi-domain Multi-task Mixture-of-
Experts framework designed for improving multi-domain
multi-task recommendation. This framework incorporates
a shared expert module, a domain expert module, and a
task expert module to address the common information
learning, domain-aspect user preferences, and task-aspect
user preferences, respectively. Moreover, it employs a two-
level fusion mechanism, powered by AutoML, ensuring
precise control over feature extraction and fusion across
diverse domains and tasks.

Multimodal Applications. Multimodal models are de-
signed to process and integrate various data types within a
single neural network framework [213]. These models often
simultaneously encompass two primary data modalities:
images and text [214], [215], [216]. The Mixture of Experts
(MoE) architecture has gained considerable traction as the
foundation of multimodal models due to its capacity for
expert layers to learn distinct modality partitioning [155].
One notable implementation of this approach is the LIMoE
model [155], a sparse mixture of expert models tailored
for multimodal learning. LIMOE is trained on both images
and text data, employing contrastive loss and an entropy-
based regularization technique to address load balancing
challenges inherent in MoE systems. Subsequently, Shen et
al. [156], Li et al. [157] and Lin et al. [106] have further in-
vestigated the potential of MoE for scaling vision-language
models, offering valuable insights that contribute to the
development of more efficient and effective multimodal
learning systems. Furthermore, to address the specific is-
sue of task conflicts in instruction tuning of Large Vision-
Language Models (LVLMs), MoCLE [46] integrates MoE
with LoRA [174] experts and a distinct universal expert to
activate task-specific model parameters based on clusters of
instructions. In parallel, to mitigate data conflicts, LLaVA-
MOoLE [115] deploys a set of LoRA experts, specifically for
the MLP layer, combined with a top-1 gating mechanism
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to refine instruction tuning in Multimodal Large Language
Models (MLLMs). While the MLLMs employing MoE ar-
chitectures have demonstrated impressive performances,
they generally involve a limited number of experts and
modalities [158]]. To address this limitation, Li et al. [[158]
introduce the pioneering Uni-MoE, a unified MLLM with
MOoE architecture capable of managing an extensive range of
modalities. They introduce a progressive training strategy
to bolster expert collaboration and generalization across
modalities, and they utilize LoRA [174], a lightweight fine-
tuning methodology, to minimize computational demands.

7 CHALLENGES & OPPORTUNITIES

Mixture of Experts (MoE) models present a compelling
approach for significantly increasing model capacity at a
constant computational cost. Despite their promise, several
intrinsic challenges remain, necessitating further collabo-
rative design and engineering across algorithm, system,
and application aspects. In this section, we identify critical
challenges and promising directions for future investigation
as follows:

Training Stability and Load Balancing. MoE models
that utilize sparse gating have become a popular means to
expand model capacity without proportionally increasing
computational demands. However, the discrete nature of
assigning a fixed number of experts to tokens leads to
significant challenges in maintaining balanced workloads
of experts and training stability across varying inputs [27],
[28], [36], [56], [94]. Load imbalances, where certain experts
become over-utilized while others are underutilized can
hinder expert specialization and further degrade model
performance. Although current efforts [28], [29], [35], [36],
[67], [68], [69] have attempted to address this challenge by
incorporating auxiliary loss functions to encourage even
token distribution across experts, these solutions can still
lead to training instability [37] and often neglect the relative
importance of different tokens [94]. Therefore, future studies
should focus on more effective regularization techniques
[37] or innovative gating algorithms [40], [41], [56], [94] that
encourage equitable load distribution among experts and
enhance model training stability.

Scalability and Communication Overhead. As the esca-
lating sizes of LLMs with MoE necessitate more expansive
distributed systems, the imperative for efficient communi-
cation during model training becomes increasingly critical,
as elaborated in Section The trade-off between model
complexity, indicated by the number of parameters, and the
communication overhead represents a significant bottleneck
in distributed training processes [28]]. To address these chal-
lenges, it is essential to develop and implement effective
strategies that enhance the efficiency of information transfer
from system aspect or streamline information exchange
without compromising model performance from algorithm
aspect. Innovations such as DeepSpeed [66], FasterMoE
[134], and ScMoE [110] are at the forefront of minimiz-
ing communication overhead. For example, the shared ex-
pert approach [32], [66], [69], [104], advancing MoE with
parameter-sharing frameworks, holds promise for reducing
the volume of data transmitted between distributed systems
while concurrently enhancing model performance in natural
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language processing tasks. Such innovations are pivotal in
facilitating more scalable and efficient distributed training
architectures for MoE models.

Expert Specialization and Collaboration. Expert spe-
cialization refers to the concept where each expert devel-
ops non-overlapping and focused knowledge. Encouraging
experts to concentrate their skills on distinct sub-tasks or
domains has been shown to enhance the performance and
generalization of the MoE model. The prevailing strategy
involves designating a select number of experts as shared
ones, with the goal of capturing commonalities in knowl-
edge and reducing redundancy among those experts that are
routed dynamically [38], [66], [69], [104]. However, fostering
effective collaboration among these specialized experts is an
ongoing challenge. Relying solely on a sparsely computed
weighted sum of outputs from the top-k experts can over-
look the intricate internal relationships that exist across the
entire experts. Consequently, exploring new mechanisms for
enhancing both the specialization and collaboration among
experts is crucial for the development of more integrated
and powerful MoE models.

Sparse Activation and Computational Efficiency. One
of the primary benefits of MoE models lies in their ca-
pacity for sparse activations, which theoretically enhances
computational efficiency. Nevertheless, implementing this
efficiency in practice poses substantial challenges. This is
attributed to the non-uniformity of sparse operations within
hardware accelerators [217], [218]. Furthermore, optimiz-
ing the balance between activating a select top-k subset
of experts from an entire pool of experts entails intricate
coordination. This optimization is crucial for ensuring that
each expert develops a specialized niche [69]. Thus, there
is a pressing need for further research into hardware opti-
mization techniques that more adeptly accommodate sparse
computations. Such advancements would not only preserve
the model’s capacity but could also significantly enhance
the performance and efficiency of MoE models.

Generalization and Robustness. MoE models have
demonstrated increased computational efficiency during
pretraining phases. However, there is a notable propensity
for sparse MoE architectures to overfit to specific tasks
or datasets, which undermines their ability to generalize
effectively [36], [37], [219], [220]. To enhance the general-
ization and robustness of MoE models when encountering
unseen data and diverse input variations, various strategies
have been explored. These include regularization techniques
such as dropout [36] and token dropping [37], as well as
multi-task instruction tuning [219], [220]. Looking ahead,
there is potential for further advancements in this challenge.
Future endeavors could explore innovative regularization
methods, refined multi-task learning frameworks, or the
incorporation of meta-learning concepts that bolster the
MoE models’ robustness and extend their generalization
capabilities across an even broader spectrum of downstream
tasks.

Interpretability and Transparency. The inherent com-
plexity of MoE models, coupled with their dynamic gating
of inputs to specialized experts, poses significant challenges
to interpretability. This becomes particularly problematic
in contexts where comprehending the rationale behind the
model’s decisions is essential. Enhancing the interpretability



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

of MoE models is therefore critical, not only to facilitate a
clearer understanding of their decision-making processes
but also to address underlying challenges such as load
balancing [28], [35], [36] and the mitigation of knowledge
redundancy [69], [104]. In light of these considerations, there
is a pressing need for future studies focused on the devel-
opment of methods and tools that can effectively visualize
and explain the behavior of individual experts within MoE
models, as well as the nature of their interactions. Such ad-
vancements would significantly improve our grasp of MoE
models and bolster their ongoing development, ensuring
their gating decisions are transparent and trustworthy.

Optimal Expert Architecture. The design of MoE archi-
tectures, encompassing the selection of network types and
the quantity of experts, significantly influences the efficacy
of multi-task learning across various domains. A plethora
of network architectures has been adopted as experts, in-
cluding LSTM [27], CNN [99], [100], FFNs (MLPs) [28], [36],
[37], [64], Attention [73], [82], and LoRA [45], [47], [1T4].
Among these, FFNs as experts remain the most prevalent.
Despite their considerable achievements, the exploration of
various hybrids of network types within experts (as the
distinct features processing capabilities of different network
architectures), as well as the development of innovative
expert architectures, remains nascent areas of research. Fur-
thermore, the strategic allocation of a varying number of
experts across different layers of the model presents an area
ripe for investigation. This is due to two primary consid-
erations: 1) different layers of the model capture semantic
information at varying levels of granularity; 2) an excessive
number of experts can complicate the training process and
augment computational costs, while an insufficient num-
ber of experts might lead to knowledge redundancy and
diminish the specialization capabilities of the experts. To
navigate these challenges, the development of automated
architecture search methods specifically designed for MoE
models is imperative [95]. Such approaches could systemat-
ically identify optimal configurations, balancing the trade-
offs between computational efficiency and the specialization
of experts.

Integration with Existing Frameworks. Ensuring seam-
less integration of MoE models into existing large language
models (LLMs) is crucial for their broad adoption. It is
particularly vital to enable adaptation of LLMs to MoE
architecture without necessitating training from scratch, as
it can significantly reduce resource consumption. Recent
studies [42]], [45], [47], [48], [114], [115], [118] have demon-
strated the efficacy of combining Parameter-efficient Fine-
tuning (PEFT) techniques with MoE frameworks, offering a
promising method for incorporating MoE into established
LLMs. However, these methods may compromise model
performance or complicate the existing parallel strategies
of pretraining and inference efforts [186]. Advancing the
development of modular and plug-and-play MoE compo-
nents is essential. Additionally, optimizing these compo-
nents for training and deployment across diverse computing
environments and hardware platforms will expand their ap-
plicability. Such advancements are expected to enhance the
versatility and efficiency of MoE models, making them more
accessible for a wide range of applications and platforms.

By addressing these challenges, we can unlock the full
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potential of MoE models, paving the way for more efficient
and powerful machine learning systems, particular for large
language models (LLMs), that are capable of handling the
ever-growing complexity and diversity of real-world tasks.

8 CONCLUSION

In this survey, we present a systematic and comprehensive
review of the literature on MoE models, serving as a valu-
able compendium for researchers exploring the landscape of
MOoE technologies. We introduce a new taxonomy for MoE
models and provide an in-depth analysis that encompasses
three distinct vantage points: algorithm design, system de-
sign, and practical applications, complemented by a curated
collection of open-source implementations, detailed hyper-
parameter configurations, and thorough empirical assess-
ments. Moreover, we highlight the critical challenges faced
in the field and outline the most promising avenues for fu-
ture investigation. To support the continuous dissemination
of knowledge and advancements, we have established a
dedicated resource repository to facilitate ongoing updates
and the sharing of cutting-edge developments in MoE re-
search. We hope this survey can contribute to an essential
reference for researchers seeking to rapidly acquaint them-
selves with MoE models, and that it will actively contribute
to the vibrant progression.
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