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Abstract

Attention mechanisms have seen wide adop-
tion in neural NLP models. In addition to
improving predictive performance, these are
often touted as affording transparency: mod-
els equipped with attention provide a distribu-
tion over attended-to input units, and this is
often presented (at least implicitly) as com-
municating the relative importance of inputs.
However, it is unclear what relationship ex-
ists between attention weights and model out-
puts. In this work we perform extensive exper-
iments across a variety of NLP tasks that aim
to assess the degree to which attention weights
provide meaningful “explanations" for predic-
tions. We find that they largely do not. For
example, learned attention weights are fre-
quently uncorrelated with gradient-based mea-
sures of feature importance, and one can iden-
tify very different attention distributions that
nonetheless yield equivalent predictions. Our
findings show that standard attention mod-
ules do not provide meaningful explanations
and should not be treated as though they do.
Code to reproduce all experiments is avail-
able at https://github.com/successar/
AttentionExplanation.

1 Introduction and Motivation

Attention mechanisms (Bahdanau et al., 2014) in-
duce conditional distributions over input units to
compose a weighted context vector for down-
stream modules. These are now a near-ubiquitous
component of neural NLP architectures. Attention
weights are often claimed (implicitly or explic-
itly) to afford insights into the “inner-workings”
of models: for a given output one can inspect the
inputs to which the model assigned large attention
weights. Li ef al. (2016) summarized this com-
monly held view in NLP: “Attention provides an
important way to explain the workings of neural
models". Indeed, claims that attention provides
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Figure 1: Heatmap of attention weights induced over
a negative movie review. We show observed model at-
tention (left) and an adversarially constructed set of at-
tention weights (right). Despite being quite dissimilar,
these both yield effectively the same prediction (0.01).

interpretability are common in the literature, e.g.,
(Xuetal., 2015; Choi et al., 2016; Lei et al., 2017;
Martins and Astudillo, 2016; Xie et al., 2017; Mul-
lenbach et al., 2018).!

Implicit in this is the assumption that the inputs
(e.g., words) accorded high attention weights are
responsible for model outputs. But as far as we
are aware, this assumption has not been formally
evaluated. Here we empirically investigate the re-
lationship between attention weights, inputs, and
outputs.

Assuming attention provides a faithful expla-
nation for model predictions, we might expect
the following properties to hold. (i) Attention
weights should correlate with feature importance
measures (e.g., gradient-based measures); (ii) Al-
ternative (or counterfactual) attention weight con-
figurations ought to yield corresponding changes
in prediction (and if they do not then are equally
plausible as explanations). We report that neither
property is consistently observed by a BiLSTM
with a standard attention mechanism in the context
of text classification, question answering (QA),
and Natural Language Inference (NLI) tasks.

"We do not intend to single out any particular work; in-
deed one of the authors has himself presented (supervised)
attention as providing interpretability (Zhang et al., 2016).
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Consider Figure 1. The left panel shows the
original attention distribution o over the words of
a particular movie review using a standard atten-
tive BILSTM architecture for sentiment analysis.
It is tempting to conclude from this that the token
waste is largely responsible for the model coming
to its disposition of ‘negative’ (§ = 0.01). But one
can construct an alternative attention distribution
& (right panel) that attends to entirely different to-
kens yet yields an essentially identical prediction
(holding all other parameters of f, 8, constant).

Such counterfactual distributions imply that ex-
plaining the original prediction by highlighting
attended-to tokens is misleading. One may, e.g.,
now conclude from the right panel that model out-
put was due primarily to was; but both waste and
was cannot simultaneously be responsible. Fur-
ther, the attention weights in this case correlate
only weakly with gradient-based measures of fea-
ture importance (7, = 0.29). And arbitrarily per-
muting the entries in « yields a median output dif-
ference of 0.006 with the original prediction.

These and similar findings call into question
the view that attention provides meaningful insight
into model predictions, at least for RNN-based
models. We thus caution against using attention
weights to highlight input tokens “responsible for”
model outputs and constructing just-so stories on
this basis.

Research questions and contributions. We ex-
amine the extent to which the (often implicit) nar-
rative that attention provides model transparency
(Lipton, 2016). We are specifically interested in
whether attention weights indicate why a model
made the prediction that it did. This is sometimes
called faithful explanation (Ross et al., 2017). We
investigate whether this holds across tasks by ex-
ploring the following empirical questions.

1. To what extent do induced attention weights
correlate with measures of feature impor-
tance — specifically, those resulting from gra-
dients and leave-one-out (LOO) methods?

2. Would alternative attention weights (and
hence distinct heatmaps/“explanations’) nec-
essarily yield different predictions?

Our findings for attention weights in recurrent
(BILSTM) encoders with respect to these ques-
tions are summarized as follows: (1) Only weakly
and inconsistently, and, (2) No; it is very often

possible to construct adversarial attention distri-
butions that yield effectively equivalent predic-
tions as when using the originally induced atten-
tion weights, despite attending to entirely differ-
ent input features. Even more strikingly, ran-
domly permuting attention weights often induces
only minimal changes in output. By contrast, at-
tention weights in simple, feedforward (weighted
average) encoders enjoy better behaviors with re-
spect to these criteria.

2 Preliminaries and Assumptions

We consider exemplar NLP tasks for which atten-
tion mechanisms are commonly used: classifica-
tion, natural language inference (NLI), and ques-
tion answering.> We adopt the following general
modeling assumptions and notation.

We assume model inputs x € RT*IVI com-
posed of one-hot encoded words at each position.
These are passed through an embedding matrix E
which provides dense (d dimensional) token repre-
sentations x, € RT*4_ Next, an encoder Enc con-
sumes the embedded tokens in order, producing
T m-dimensional hidden states: h = Enc(x.) €
RT>™ We predominantly consider a Bi-RNN as
the encoder module, and for contrast we analyze
unordered ‘average’ embedding variants in which
h; is the embedding of token ¢ after being passed
through a linear projection layer and ReLU activa-
tion. For completeness we also considered Con-
vNets, which are somewhere between these two
models; we report results for these in the supple-
mental materials.

A similarity function ¢ maps h and a query
Q € R™ (e.g., hidden representation of a question
in QA, or the hypothesis in NLI) to scalar scores,
and attention is then induced over these: & =
softmax(¢(h, Q)) € RT. In this work we con-
sider two common similarity functions: Additive
¢(h,Q) = vItanh(W1h + W2Q) (Bahdanau
et al., 2014) and Scaled Dot-Product ¢(h, Q) =
h—\/% (Vaswani et al., 2017), where v, W1, W5 are
model parameters.

Finally, a dense layer Dec with parameters 0
consumes a weighted instance representation and
yields a prediction § = o(8 - hy) € RYI, where
he = Zle &y - hy; o is an output activation func-
tion; and || denotes the label set size.

2While attention is perhaps most common in seq2seq

tasks like translation, our impression is that interpretability
is not typically emphasized for such tasks, in general.



Dataset V| Avg. length Train size Test size Test performance (LSTM)
SST 16175 19 3034 /3321 863 /862 0.81
IMDB 13916 179 12500/ 12500 2184 /2172 0.88
ADR Tweets 8686 20 14446/ 1939 3636 /487 0.61

20 Newsgroups 8853 115 716/710 151/183 0.94

AG News 14752 36 30000 / 30000 1900/ 1900 0.96
Diabetes (MIMIC) 22316 1858 6381/ 1353 12957319 0.79
Anemia (MIMIC) 19743 2188 1847 /3251 460/ 802 0.92
CNN 74790 761 380298 3198 0.64

bADI (Task 1/2/3) 40 8/67/421 10000 1000 1.0/0.48/0.62
SNLI 20982 14 182764 /183187 /183416 3219 /3237 /3368 0.78

Table 1: Dataset characteristics. For train and test size, we list the cardinality for each class, where applicable:
0/1 for binary classification (top), and 0 / 1 / 2 for NLI (bottom). Average length is in tokens. Test metrics are
F1 score, accuracy, and micro-F1 for classification, QA, and NLI, respectively; all correspond to performance
using a BILSTM encoder. We note that results using convolutional and average (i.e., non-recurrent) encoders are
comparable for classification though markedly worse for QA tasks.

3 Datasets and Tasks

For binary text classification, we use:

Stanford Sentiment Treebank (SST) (Socher
et al., 2013). 10,662 sentences tagged with senti-
ment on a scale from 1 (most negative) to 5 (most
positive). We filter out neutral instances and di-
chotomize the remaining sentences into positive
(4, 5) and negative (1, 2).

IMDB Large Movie Reviews Corpus (Maas
et al., 2011). Binary sentiment classification
dataset containing 50,000 polarized (positive or
negative) movie reviews, split into half for train-
ing and testing.

Twitter Adverse Drug Reaction dataset (Nikfar-
jam et al., 2015). A corpus of ~8000 tweets re-
trieved from Twitter, annotated by domain experts
as mentioning adverse drug reactions. We use a
superset of this dataset.

20 Newsgroups (Hockey vs Baseball). Col-
lection of ~20,000 newsgroup correspondences,
partitioned (nearly) evenly across 20 categories.
We extract instances belonging to baseball and
hockey, which we designate as 0 and 1, respec-
tively, to derive a binary classification task.

AG News Corpus (Business vs World ).3 496,835
news articles from 2000+ sources. We follow
(Zhang et al., 2015) in filtering out all but the top
4 categories. We consider the binary classification
task of discriminating between world (0) and busi-
ness (1) articles.

MIMIC ICD9 (Diabetes) (Johnson et al., 2016).
A subset of discharge summaries from the MIMIC
IIT dataset of electronic health records. The task is
to recognize if a given summary has been labeled
with the ICD9 code for diabetes (or not).

*http://www.di.unipi.it/~gqulli/AG_
corpus_of_news_articles.html

MIMIC ICD9 (Chronic vs Acute Anemia) (John-
son et al., 2016). A subset of discharge sum-
maries from MIMIC III dataset (Johnson et al.,
2016) known to correspond to patients with ane-
mia. Here the task to distinguish the type of ane-
mia for each report — acute (0) or chronic (1).

For Question Answering (QA):

CNN News Articles (Hermann et al., 2015). A
corpus of cloze-style questions created via auto-
matic parsing of news articles from CNN. Each
instance comprises a paragraph-question-answer
triplet, where the answer is one of the anonymized
entities in the paragraph.

bAbI (Weston et al., 2015). We consider the
three tasks presented in the original bAbl dataset
paper, training separate models for each. These
entail finding (i) a single supporting fact for a
question and (ii) two or (iii) three supporting state-
ments, chained together to compose a coherent
line of reasoning.

Finally, for Natural Language Inference (NLI):

The SNLI dataset (Bowman et al., 2015). 570k
human-written English sentence pairs manually
labeled for balanced classification with the labels
neutral, contradiction, and entailment, supporting
the task of natural language inference (NLI). In
this work, we generate an attention distribution
over premise words conditioned on the hidden rep-
resentation induced for the hypothesis.

We restrict ourselves to comparatively sim-
ple instantiations of attention mechanisms, as de-
scribed in the preceding section. This means we
do not consider recently proposed ‘BiAttentive’
architectures that attend to tokens in the respec-
tive inputs, conditioned on the other inputs (Parikh
et al., 2016; Seo et al., 2016; Xiong et al., 2016).
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Table 1 provides summary statistics for all
datasets, as well as the observed test performances
for additional context.

4 Experiments

We run a battery of experiments that aim to ex-
amine empirical properties of learned attention
weights and to interrogate their interpretability
and transparency. The key questions are: Do
learned attention weights agree with alternative,
natural measures of feature importance? And,
Had we attended to different features, would the
prediction have been different?

More specifically, in Section 4.1, we empir-
ically analyze the correlation between gradient-
based feature importance and learned attention
weights, and between emphleave-one-out (LOO;
or ‘feature erasure’) measures and the same. In
Section 4.2 we then consider counterfactual (to
those observed) attention distributions. Under the
assumption that attention weights are explanatory,
such counterfactual distributions may be viewed
as alternative potential explanations; if these do
not correspondingly change model output, then it
is hard to argue that the original attention weights
provide meaningful explanation in the first place.

To generate counterfactual attention distribu-
tions, we first consider randomly permuting ob-
served attention weights and recording associated
changes in model outputs (4.2.1). We then pro-
pose explicitly searching for “adversarial” atten-
tion weights that maximally differ from the ob-
served attention weights (which one might show in
a heatmap and use to explain a model prediction),
and yet yield an effectively equivalent prediction
(4.2.2). The latter strategy also provides a use-
ful potential metric for the reliability of attention
weights as explanations: we can report a measure
quantifying how different attention weights can be
for a given instance without changing the model
output by more than some threshold e.

All results presented below are generated on test
sets. We present results for Additive attention be-
low. The results for Scaled Dot Product in its
place are generally comparable. We provide a web
interface to interactively browse the (very large
set of) plots for all datasets, model variants, and
experiment types: https://successar.github.
io/AttentionExplanation/docs/.

In the following sections, we use Total Vari-
ation Distance (TVD) as the measure of change

between output distributions, defined as follows.
TVD(j1,92) = 550 |91 — gail.  We use
the Jensen-Shannon Divergence (JSD) to quan-
tify the difference between two attention dis-
tributions: JSD(aq, ) = FKL[ay|[9592] +
3KL[ag|[4592].

4.1 Correlation Between Attention and
Feature Importance Measures

We empirically characterize the relationship be-
tween attention weights and corresponding fea-
ture importance scores. Specifically we measure
correlations between attention and: (1) gradient
based measures of feature importance (7,), and,
(2) differences in model output induced by leav-
ing features out (7,,). While these measures are
themselves insufficient for interpretation of neu-
ral model behavior (Feng et al., 2018), they do
provide measures of individual feature importance
with known semantics (Ross et al., 2017). Itis thus
instructive to ask whether these measures correlate
with attention weights.

The process we follow to quantify this is de-
scribed by Algorithm 1. We denote the input re-
sulting from removing the word at position ¢ in x
by x_;. Note that we disconnect the computation
graph at the attention module so that the gradient
does not flow through this layer: This means the
gradients tell us how the prediction changes as a
function of inputs, keeping the attention distribu-
tion fixed.*

Algorithm 1 Feature Importance Computations
h < Enc(x), & < softmax(¢(h, Q))
g < Dec(h, )
9e = | ks Leew = 1| Vi € [1,7]
74 < Kendall-7(a, g)
Agt < TVD(Z}(Xft)a @(X)) ’Vt € [17 T]
Tioo < Kendall-7(a, Ag)

Table 2 reports summary statistics of Kendall
7 correlations for each dataset. Full distributions
are shown in Figure 2, which plots histograms of
74 for every data point in the respective corpora.
(Corresponding plots for 7y, are similar and the
full set can be browsed via the aforementioned
online supplement.) We plot these separately for
each class: orange (M) represents instances pre-
dicted as positive, and purple (M) those predicted

“For further discussion concerning our motivation here,

see the Appendix. We also note that LOO results are compa-
rable, and do not have this complication.
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Gradient (BiLSTM) 7, Gradient (Average) 74 Leave-One-Out (BiLSTM) 700

Dataset Class Mean 4 Std.  Sig. Frac. Mean &£ Std.  Sig. Frac. Mean = Std. Sig. Frac.
SST 0 0.40 £0.21 0.59 0.69 £ 0.15 0.93 0.34 £0.20 0.47
1 0.38 £0.19 0.58 0.69 +£0.14 0.94 0.33£0.19 0.47
IMDB 0 0.37 £ 0.07 1.00 0.65 £+ 0.05 1.00 0.30 £ 0.07 0.99
1 0.37 £0.08 0.99 0.66 £+ 0.05 1.00 0.31 £0.07 0.98
ADR Tweets 0 0.45 +£0.17 0.74 0.71£0.13 0.97 0.29 +£0.19 0.44
1 0.45+0.16 0.77 0.71 £0.13 0.97 0.40 £0.17 0.69
20News 0 0.08 £0.15 0.31 0.65 £+ 0.09 0.99 0.05 £0.15 0.28
1 0.13£0.16 0.48 0.66 £+ 0.09 1.00 0.14+0.14 0.51
AG News 0 0.42 £0.11 0.93 0.77 £0.08 1.00 0.35+£0.13 0.80
1 0.35£0.13 0.81 0.75 £ 0.07 1.00 0.32£0.13 0.73
Diabetes 0 0.47 £ 0.06 1.00 0.68 £ 0.02 1.00 0.44 £ 0.07 1.00
1 0.38 £ 0.08 1.00 0.68 £ 0.02 1.00 0.38 £ 0.08 1.00
Anemia 0 0.42 £+ 0.05 1.00 0.81 £0.01 1.00 0.42 £ 0.05 1.00
1 0.43 £ 0.06 1.00 0.81 £ 0.01 1.00 0.44 £+ 0.06 1.00
CNN Overall  0.20 + 0.06 0.99 0.48 £0.11 1.00 0.16 £ 0.07 0.95
bAbI 1 Overall 0.23 £0.19 0.46 0.66 £0.17 0.97 0.23£0.18 0.45
bAbI 2 Overall 0.17+£0.12 0.57 0.84 £ 0.09 1.00 0.11 £0.13 0.40
bAbI 3 Overall 0.30 £0.11 0.93 0.76 £0.12 1.00 0.31 £0.11 0.94
SNLI 0 0.36 £ 0.22 0.46 0.54 £ 0.20 0.76 0.44 £0.18 0.60
1 0.42 +0.19 0.57 0.59 £0.18 0.84 0.43 £0.17 0.59
2 0.40 £ 0.20 0.52 0.53 £0.19 0.75 0.44 £ 0.17 0.61

Table 2: Mean and std. dev. of correlations between gradient/leave-one-out importance measures and attention
weights. Sig. Frac. columns report the fraction of instances for which this correlation is statistically significant;
note that this largely depends on input length, as correlation does tend to exist, just weakly. Encoders are denoted
parenthetically. These are representative results; exhaustive results for all encoders are available to browse online.
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Figure 2: Histogram of Kendall 7 between attention and gradients. Encoder variants are denoted parenthetically;
colors indicate predicted classes. Exhaustive results are available for perusal online.
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Figure 3: Mean difference in correlation of (i) LOO
vs. Gradients and (ii) Attention vs. LOO scores using
BiLSTM Encoder + Tanh Attention. On average the
former is more correlated than the latter by >0.2 7,,.
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Figure 4: Mean difference in correlation of (i) LOO
vs. Gradients and (ii) Attention vs. Gradients using
BiLSTM Encoder + Tanh Attention. On average the
former is more correlated than the latter by ~0.25 7.
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Figure 5: Difference in mean correlation of attention
weights vs. LOO importance measures for (i) Av-
erage (feed-forward projection) and (ii) BILSTM En-
coders with Tanh attention. Average correlation (ver-
tical bar) is on average ~0.375 points higher for the
simple feedforward encoder, indicating greater corre-
spondence with the LOO measure.

to be negative. For SNLI, Hl, l, M, code for neu-
tral, contradiction and entailment, respectively.

In general, observed correlations are modest
(recall that a value of O indicates no correspon-
dence, while 1 implies perfect concordance) for
the BiLSTM model. The centrality of observed
densities hovers around or below 0.5 in most of
the corpora considered. On some datasets — no-
tably the MIMIC tasks, and to a lesser extent the
QA corpora — correlations are consistently signif-
icant, but they remain relatively weak. The more
consistently significant correlations observed on
these datasets is likely attributable to the increased
length of the documents that they comprise, which
in turn provide sufficiently large sample sizes to
establish significant (if weak) correlation between
attention weights and feature importance scores.

Gradients for inputs in the “average” (linear
projection) embedding based models show much
higher correspondence with attention weights, as
we would expect for these simple encoders. We
hypothesize that the trouble is in the BiRNN in-
ducing attention on the basis of hidden states,
which are influenced (potentially) by all words,
and then presenting the scores in reference to the
original input.

A question one might have here is how well cor-
related LOO and gradients are with one another.
We report such results in their entirety on the pa-
per website, and we summarize their correlations
relative to those realized by attention in a Bil-
STM model with LOO measures in Figure 3. This
reports the mean differences between (i) gradient
and LOO correlations, and (ii) attention and LOO
correlations. As expected, we find that these ex-
hibit, in general, considerably higher correlation
with one another (on average) than LOO does with
attention scores. (The lone exception is on SNLI.)
Figure 4 shows the same for gradients and atten-
tion scores; the differences are comparable. In the
ADR and Diabetes corpora, a few high precision
tokens indicate (the positive) class, and in these
cases we see better agreement between LOO/gra-
dient measures with attention; this is consistent
with Figure 7 which shows that it is difficult for
the BiLSTM variant to find adversarial attention
distributions for Diabetes.

A potential issues with using Kendall 7 as our
metric here is that (potentially many) irrelevant
features may add noise to the correlation mea-
sures. We acknowledge that this as a shortcoming



of the metric. One observation that may mitigate
this concern is that we might expect such noise to
depress the LOO and gradient correlations to the
same extent as they do the correlation between at-
tention and feature importance scores; but as per
Figure 4, they do not. We also note that the cor-
relations between the attention weights on top of
feedforward (projection) encoder and LOO scores
are much stronger, on average, than those be-
tween BiLSTM attention weights and LOO. This
is shown in Figure 5. Were low correlations due
simply to noise, we would not expect this.’

The results here suggest that, in general, atten-
tion weights do not strongly or consistently agree
with standard feature importance scores. The ex-
ception to this is when one uses a very simple
(averaging) encoder model, as one might expect.
These findings should be disconcerting to one hop-
ing to view attention weights as explanatory, given
the face validity of input gradient/erasure based
explanations (Ross et al., 2017; Li et al., 2016).

4.2 Counterfactual Attention Weights

We next consider what-if scenarios corresponding
to alternative (counterfactual) attention weights.
The idea is to investigate whether the prediction
would have been different, had the model empha-
sized (attended to) different input features. More
precisely, suppose & = {d;}.; are the atten-
tion weights induced for an instance, giving rise
to model output 4. We then consider counterfac-
tual distributions over y, under alternative a.. To be
clear, these experiments tell us the degree to which
a particular (attention) heat map uniquely induces
an output.

We experiment with two means of construct-
ing such distributions. First, we simply scram-
ble the original attention weights &, re-assigning
each value to an arbitrary, randomly sampled in-
dex (input feature). Second, we generate an ad-
versarial attention distribution: this is a set of at-
tention weights that is maximally distinct from &
but that nonetheless yields an equivalent predic-
tion (i.e., prediction within some € of §).

4.2.1 Attention Permutation
To characterize model behavior when attention

weights are shuffled, we follow Algorithm 2.

>The same contrast can be seen for the gradients, as one
would expect given the direct gradient paths in the projection
network back to individual tokens.

Algorithm 2 Permuting attention weights
h < Enc(x), & < softmax(¢(h, Q))
9 < Dec(h, &)
for p < 1to 100 do
aP + Permute(&)
9P < Dec(h, aP)
AgP < TVD[”, ]
end for
Ag™e? < Median,(AjP)

> Note : h is not changed

Figure 6 depicts the relationship between the
maximum attention value in the original & and the
median induced change in model output (Ag™%)
across instances in the respective datasets. Colors
again indicate class predictions, as above.

We observe that there exist many points with
small Aj™e? despite large magnitude attention
weights. These are cases in which the attention
weights might suggest explaining an output by
a small set of features (this is how one might
reasonably read a heatmap depicting the atten-
tion weights), but where scrambling the attention
makes little difference to the prediction.

In some cases, such as predicting ICD codes
from notes using the MIMIC dataset, one can see
different behavior for the respective classes. For
the Diabetes task, e.g., attention behaves intu-
itively for at least the positive class; perturbing
attention in this case causes large changes to the
prediction. This is consistent with our preceding
observations regarding Figure 4. We again conjec-
ture that this is due to a few tokens serving as high
precision indicators for the positive class; in their
absence (or when they are not attended to suffi-
ciently), the prediction drops considerably. How-
ever, this is the exception rather than the rule.

4.2.2 Adversarial Attention

We next propose a more focused approach to
counterfactual attention weights, which we will re-
fer to as adversarial attention. The intuition is to
explicitly seek out attention weights that differ as
much as possible from the observed attention dis-
tribution and yet leave the prediction effectively
unchanged. Such adversarial weights violate an
intuitive property of explanations: shifting model
attention to very different input features should
yield corresponding changes in the output. Alter-
native attention distributions identified adversari-
ally may then be viewed as equally plausible ex-
planations for the same output. (A complication
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here is that this may be uncovering alternative, but
also plausible, explanations. This would assume
attention provides sufficient, but not exhaustive,
rationales. This may be acceptable in some sce-
narios, but problematic in others.)

Operationally, realizing this objective requires
specifying a value e that defines what qualifies as
a “small” difference in model output. Once this
is specified, we aim to find k adversarial distri-
butions {aV, ..., a®}, such that each oY) max-
imizes the distance from original & but does not
change the output by more than e. In practice we
simply set this to 0.01 for text classification and
0.05 for QA datasets.®

We propose the following optimization problem
to identify adversarial attention weights.

- () k

maximize =

maximize f{a i)

subjectto Vi TVD[j(x, o), §(x, &)] < ¢

(D
Where f({a®}F ) is:

k
4 1 L
@ al+ — OINE))
;1 ISD[a\Y, &) + K= 1) E .JSD[a ,a]

(2)
In practice we maximize a relaxed version
of this objective via the Adam SGD opti-
mizer (Kingma and Ba, 2014): f({a®_ ) +
ASF  max(0, TVD[j(x, a®), §(x, &)] — €).”

Equation 1 attempts to identify a set of new at-
tention distributions over the input that is as far
as possible from the observed « (as measured
by JSD) and from each other (and thus diverse),
while keeping the output of the model within €
of the original prediction. We denote the out-
put obtained under the i*" adversarial attention by
4. Note that the JS Divergence between any two
categorical distributions (irrespective of length) is
bounded from above by 0.69.

One can view an attentive decoder as a func-
tion that maps from the space of latent input repre-
sentations and attention weights over input words
AT=1 to a distribution over the output space ).
Thus, for any output ¢, we can define how likely
each attention distribution v will generate the out-
put as inversely proportional to TVD(y(«), 9).

SWe make the threshold slightly higher for QA because
the output space is larger and thus small dimension-wise per-
turbations can produce comparatively large TVD.

"We set A = 500.

Algorithm 3 Finding adversarial attention weights

h < Enc(x), & < softmax(¢(h, Q))

9 < Dec(h, &)

oM alk) Optimize Eq 1

fori < 1tokdo
7% « Dec(h,a®)
A« TVD[g,5"]
Aa® « JSD[4, a?)]

end for

e-max JSD + max; 1[Ag®) < €] Aa®

> h is not changed

Figure 7 depicts the distributions of max JSDs
realized over instances with adversarial attention
weights for a subset of the datasets considered
(plots for the remaining corpora are available on-
line). Colors again indicate predicted class. Mass
toward the upper-bound of 0.69 indicates that we
are frequently able to identify maximally different
attention weights that hardly budge model output.
We observe that one can identify adversarial atten-
tion weights associated with high JSD for a sig-
nificant number of examples. This means that it
is often the case that quite different attention dis-
tributions over inputs would yield essentially the
same (within €) output.

In the case of the Diabetes task, we again ob-
serve a pattern of low JSD for positive examples
(where evidence is present) and high JSD for neg-
ative examples. In other words, for this task, if one
perturbs the attention weights when it is inferred
that the patient is diabetic, this does change the
output, which is intuitively agreeable. However,
this behavior again is an exception to the rule.

We also consider the relationship between max
attention weights (indicating strong emphasis on
a particular feature) and the dissimilarity of iden-
tified adversarial attention weights, as measured
via JSD, for adversaries that yield a prediction
within € of the original model output. Intuitively,
one might hope that if attention weights are peaky,
then counterfactual attention weights that are very
different but which yield equivalent predictions
would be more difficult to identify.

Figure 8 illustrates that while there is a negative
trend to this effect, it is realized only weakly. Thus
there exist many cases (in all datasets) in which
despite a high attention weight, an alternative and
quite different attention configuration over inputs
yields effectively the same output. In light of this,
presenting a heatmap in such a scenario that im-
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Figure 8: Densities of maximum JS divergences (c-max JSD) (x-axis) as a function of the max attention (y-axis)
in each instance for obtained between original and adversarial attention weights.

plies a particular feature is primarily responsible
for an output would seem to be misleading.

5 Related Work

We have focused on attention mechanisms and the
question of whether they afford transparency, but a
number of interesting strategies unrelated to atten-
tion mechanisms have been recently proposed to
provide insights into neural NLP models. These
include approaches that measure feature impor-
tance based on gradient information (Ross et al.,
2017; Sundararajan et al., 2017) (aligned with the
gradient-based measures that we have used here),
and methods based on representation erasure (Li
et al., 2016), in which dimensions are removed
and then the resultant change in output is recorded
(similar to our experiments with removing tokens
from inputs, albeit we do this at the input layer).
Comparing such importance measures to atten-
tion scores may provide additional insights into
the working of attention based models (Ghaeini
et al., 2018). Another novel line of work in this
direction involves explicitly identifying explana-
tions of black-box predictions via a causal frame-
work (Alvarez-Melis and Jaakkola, 2017). We
also note that there has been complementary work
demonstrating correlation between human atten-
tion and induced attention weights, which was rel-
atively strong when humans agreed on an explana-
tion (Pappas and Popescu-Belis, 2016). It would
be interesting to explore if such cases present ex-
plicit ‘high precision’ signals in the text (for ex-
ample, the positive label in diabetes dataset).
More specific to attention mechanisms, re-

cent promising work has proposed more princi-
pled attention variants designed explicitly for in-
terpretability; these may provide greater trans-
parency by imposing hard, sparse attention. Such
instantiations explicitly select (modest) subsets of
inputs to be considered when making a predic-
tion, which are then by construction responsible
for model output (Lei et al., 2016; Peters et al.,
2018). Structured attention models (Kim et al.,
2017) provide a generalized framework for de-
scribing and fitting attention variants with explicit
probabilistic semantics. Tying attention weights to
human-provided rationales is another potentially
promising avenue (Bao et al., 2018).

We hope our work motivates further develop-
ment of these methods, resulting in attention vari-
ants that both improve predictive performance and
provide insights into model predictions.

6 Discussion and Conclusions

We have provided evidence that correlation be-
tween intuitive feature importance measures (in-
cluding gradient and feature erasure approaches)
and learned attention weights is weak for re-
current encoders (Section 4.1). We also estab-
lished that counterfactual attention distributions
— which would tell a different story about why a
model made the prediction that it did — often have
modest effects on model output (Section 4.2).
These results suggest that while attention mod-
ules consistently yield improved performance on
NLP tasks, their ability to provide transparency or
meaningful explanations for model predictions is,
at best, questionable — especially when a complex



encoder is used, which may entangle inputs in the
hidden space. In our view, this should not be terri-
bly surprising, given that the encoder induces rep-
resentations that may encode arbitrary interactions
between individual inputs; presenting heatmaps of
attention weights placed over these inputs can then
be misleading. And indeed, how one is meant to
interpret such heatmaps is unclear. They would
seem to suggest a story about how a model arrived
at a particular disposition, but the results here in-
dicate that the relationship between this and atten-
tion is not always obvious.

There are important limitations to this work
and the conclusions we can draw from it. We have
reported the (generally weak) correlation between
learned attention weights and various alternative
measures of feature importance, e.g., gradients.
We do not intend to imply that such alternative
measures are necessarily ideal or that they should
be considered ‘ground truth’. While such mea-
sures do enjoy a clear intrinsic (to the model) se-
mantics, their interpretation in the context of non-
linear neural networks can nonetheless be difficult
for humans (Feng et al., 2018). Still, that atten-
tion consistently correlates poorly with multiple
such measures ought to give pause to practition-
ers. That said, exactly how strong such correla-
tions ‘should’ be in order to establish reliability as
explanation is an admittedly subjective question.

We also acknowledge that irrelevant features
may be contributing noise to the Kendall 7
measure, thus depressing this metric artificially.
However, we would highlight again that atten-
tion weights over non-recurrent encoders exhibit
stronger correlations, on average, with leave-one-
out (LOO) feature importance scores than do at-
tention weights induced over BiLSTM outputs
(Figure 5). Furthermore, LOO and gradient-based
measures correlate with one another much more
strongly than do (recurrent) attention weights and
either feature importance score. It is not clear why
either of these comparative relationships should
hold if the poor correlation between attention and
feature importance scores owes solely to noise.
However, it remains a possibility that agreement
is strong between attention weights and feature
importance scores for the top-k features only (the
trouble would be defining this £ and then measur-
ing correlation between non-identical sets).

An additional limitation is that we have only
considered a handful of attention variants, selected

to reflect common module architectures for the re-
spective tasks included in our analysis. We have
been particularly focused on RNNs (here, BilL-
STMs) and attention, which is very commonly
used. As we have shown, results for the simple
feed-forward encoder demonstrate greater fidelity
to alternative feature importance measures. Other
feedforward models (including convolutional ar-
chitectures) may enjoy similar properties, when
designed with care. Alternative attention specifi-
cations may yield different conclusions; and in-
deed we hope this work motivates further devel-
opment of principled attention mechanisms.

It is also important to note that the counterfac-
tual attention experiments demonstrate the exis-
tence of alternative heatmaps that yield equiva-
lent predictions; thus one cannot conclude that the
model made a particular prediction because it at-
tended over inputs in a specific way. However,
the adversarial weights themselves may be scored
as unlikely under the attention module parame-
ters. Furthermore, it may be that multiple plausi-
ble explanations for a particular disposition exist,
and this may complicate interpretation: We would
maintain that in such cases the model should high-
light all plausible explanations, but one may in-
stead view a model that provides ‘sufficient’ ex-
planation as reasonable.

Finally, we have limited our evaluation to tasks
with unstructured output spaces, i.e., we have not
considered seq2seq tasks, which we leave for fu-
ture work. However we believe interpretability is
more often a consideration in, e.g., classification
than in translation.
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Attention is not Explanation: Appendix

A Model details

For all datasets, we use spaCy for tokenization. We map out of vocabulary words to a special <unk>
token and map all words with numeric characters to ‘qqq’. Each word in the vocabulary was initialized
to pretrained embeddings. For general domain corpora we used either (i) FastText Embeddings (SST,
IMDB, 20News, and CNN) trained on Simple English Wikipedia, or, (ii) GloVe 840B embeddings (AG-
News and SNLI). For the MIMIC dataset, we learned word embeddings using Gensim over all discharge
summaries in the corpus. We initialize words not present in the vocabulary using samples from a standard
Gaussian MV (u = 0, 0% = 1).

A.1 BiLSTM

We use an embedding size of 300 and hidden size of 128 for all datasets except bAbI (for which we use
50 and 30, respectively). All models were regularized using ¢, regularization (A = 107°) applied to
all parameters. We use a sigmoid activation functions for binary classification tasks, and a softmax for
all other outputs. We trained the model using maximum likelihood loss using the Adam Optimizer with
default parameters in PyTorch.

A2 CNN

We use an embedding size of 300 and 4 kernels of sizes [1, 3, 5, 7], each with 64 filters, giving a final
hidden size of 256 (for bAbl we use 50 and 8 respectively with same kernel sizes). We use ReLU
activation function on the output of the filters. All other configurations remain same as BiILSTM.

A.3 Average

We use the embedding size of 300 and a projection size of 256 with ReLU activation on the output of the
projection matrix. All other configurations remain same as BiLSTM.

B Further details regarding attentional module of gradient

In the gradient experiments, we made the decision to cut-off the computation graph at the attention
module so that gradient does not flow through this layer and contribute to the gradient feature importance
score. For the sake of gradient calculation this effectively treats the attention as a separate input to the
network, independent of the input. We argue that this is a natural choice to make for our analysis because
it calculates: how much does the output change as we perturb particular inputs (words) by a small
amount, while paying the same amount of attention to said word as originally estimated and shown in
the heatmap?

C Graphs

To provide easy navigation of our (large set of) graphs depicting attention weights on various datasets/-
tasks under various model configuration we have created an interactive interface to browse these results,
accessible at: https://successar.github.io/AttentionExplanation/docs/.

D Adversarial Heatmaps

SST

Original: reggio falls victim to relying on the very digital technology that he fervently scorns creating
a meandering inarticulate and ultimately disappointing film

Adversarial: reggio falls victim to relying on the very digital technology that he fervently scorns
creating a meandering inarticulate and ultimately disappointing film Ag: 0.005

IMDB
Original: fantastic movie one of the best film noir movies ever made bad guys bad girls a jewel heist
a twisted morality a kidnapping everything is here jean has a face that would make bogart proud and the


https://spacy.io/
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.simple.vec
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://radimrehurek.com/gensim/
https://successar.github.io/AttentionExplanation/docs/

rest of the cast is is full of character actors who seem to to know they’re onto something good get some
popcorn and have a great time

Adpversarial: fantastic movie one of the best film noir movies ever made bad guys bad girls a jewel
heist a twisted morality a kidnapping everything is here jean has a face that would make bogart proud
and the rest of the cast is is full of character actors who seem to to know they’re onto something good
get some popcorn and have a great time Ag: 0.004

20 News Group - Sports

Original:i meant to comment on this at the time there ’ s just no way baserunning could be that
important if it was runs created would n ’ t be nearly as accurate as it is runs created is usually about
qqq qqq accurate on a team level and there * s a lot more than baserunning that has to account for the
remaining percent .

Adpversarial:i meant to comment on this at the time there * s just no way baserunning could be that
important if it was runs created would n ’ t be nearly as accurate as it is runs created is usually about
qqq qqq accurate on a team level and there * s a lot more than baserunning that has to account for the
remaining percent . Ag: 0.001

ADR

Original:meanwhile wait for DRUG and DRUG to kick in first co i need to prep dog food etc . co omg
<UNK> .

Adpversarial:meanwhile wait for DRUG and DRUG to kick in first co i need to prep dog food etc . co
omg <UNK> . Ag: 0.002

AG News
Original:general motors and daimlerchrysler say they # qqq teaming up to develop hybrid technology
for use in their vehicles . the two giant automakers say they have signed a memorandum of understanding
Adversarial:general motors and daimlerchrysler say they # qqq teaming up to develop hybrid
technology for use in their vehicles . the two giant automakers say they have signed a memorandum
of understanding . Ay: 0.006

SNLI

Hypothesis:a man is running on foot

Original Premise Attention:a man in a gray shirt and blue shorts is standing outside of an old
fashioned ice cream shop named sara ’s old fashioned ice cream , holding his bike up , with a wood
like table , chairs , benches in front of him .

Adversarial Premise Attention:a man in a gray shirt and blue shorts is standing outside of an old
fashioned ice cream shop named sara ’s old fashioned ice cream , holding his bike up , with a wood like
table , chairs , benches in front of him . Ag: 0.002

Babi Task 1
Question: Where is Sandra ?
Original Attention:John travelled to the garden . Sandra travelled to the garden
Adversarial Attention:John travelled to the garden . Sandra travelled to the garden Ag: 0.003

CNN-QA

Question:federal education minister @placeholder visited a @entity15 store in @entityl7 , saw cam-
eras

Original: @entityl , @entity2 ( @entity3 ) police have arrested four employees of a popular @entity2
ethnic - wear chain after a minister spotted a security camera overlooking the changing room of one
of its stores . federal education minister @entityl3 was visiting a @entityl5 outlet in the tourist resort
state of @entityl7 on friday when she discovered a surveillance camera pointed at the changing room ,
police said . four employees of the store have been arrested , but its manager — herself a woman — was
still at large saturday , said @entity17 police superintendent @entity25 . state authorities launched their



investigation right after @entity13 levied her accusation . they found an overhead camera that the minister
had spotted and determined that it was indeed able to take photos of customers using the store ’s changing
room , according to @entity25 . after the incident , authorities sealed off the store and summoned six
top officials from @entity15 , he said . the arrested staff have been charged with voyeurism and breach
of privacy , according to the police . if convicted , they could spend up to three years in jail , @entity25
said . officials from @entity15 — which sells ethnic garments , fabrics and other products — are heading to
@entityl7 to work with investigators , according to the company . " @entity15 is deeply concerned and
shocked at this allegation , " the company said in a statement . " we are in the process of investigating
this internally and will be cooperating fully with the police . "

Adversarial: @entityl , @entity2 ( @entity3 ) police have arrested four employees of a popular
@entity2 ethnic - wear chain after a minister spotted a security camera overlooking the changing room
of one of its stores . federal education minister @entity13 was visiting a @entity15 outlet in the tourist
resort state of @entityl7 on friday when she discovered a surveillance camera pointed at the changing
room , police said . four employees of the store have been arrested , but its manager — herself a woman —
was still at large saturday , said @entity17 police superintendent @entity25 . state authorities launched
their investigation right after @entity13 levied her accusation . they found an overhead camera that
the minister had spotted and determined that it was indeed able to take photos of customers using the
store ’s changing room , according to @entity25 . after the incident , authorities sealed off the store
and summoned six top officials from @entityl5 , he said . the arrested staff have been charged with
voyeurism and breach of privacy , according to the police . if convicted , they could spend up to three
years in jail , @entity25 said . officials from @entity15 — which sells ethnic garments , fabrics and other
products — are heading to @entity17 to work with investigators , according to the company . " @entity15
is deeply concerned and shocked at this allegation , " the company said in a statement . " we are in the
process of investigating this internally and will be cooperating fully with the police . " Ag: 0.005



